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Abstract

Background

The impact of genetic variants on gene expression has been intensely studied at the transcription
level, yielding in valuable insights into the association between genes and the risk of complex
disorders, such as schizophrenia (SCZ). However, the downstream impact of these variants and
the molecular mechanisms connecting transcription variation to disease risk are not well
understood.

Results

We quantitated ribosome occupancy in prefrontal cortex samples of the BrainGVEX cohort.
Together with transcriptomics and proteomics data from the same cohort, we performed cis-
Quantitative Trait Locus (QTL) mapping and identified 3,253 expression QTLs (eQTLs), 1,344
ribosome occupancy QTLs (rQTLs), and 657 protein QTLs (pQTLs) out of 7,458 genes
quantitated in all three omics types from 185 samples. Of the eQTLs identified, only 34% have
their effects propagated to the protein level. Further analysis on the effect size of eQTLs showed
clear post-transcriptional attenuation of eQTL effects.

We then investigated the biological relevance of the attenuated eQTLs by identifying omics-

specific QTLs, and identified 228 omics-specific QTLs (70 esQTL, 51 rsQTL, and 107 psQTL),
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80  with five showing strong colocalization with SCZ GWAS signals and three of which were esQTL.
81  Using both S-PrediXcan and two-sample Mendelian Randomization (MR), we identified a total

82 52 SCZ risk genes, 34% of which are novel. We found 67.3% of these SCZ-risk-driving eQTLs

83  show little to no evidence of driving corresponding variations at the protein level.

84  Conclusion

85  The effect of eQTLs on gene expression in the prefrontal cortex is commonly attenuated post-

86  transcriptionally. Many of the attenuated eQTLs still correlate with SCZ GWAS signal. Further
87  investigation is needed to elucidate a mechanistic link between attenuated eQTLs and SCZ

88  disease risk.

89

90 Introduction

91  Complex diseases such as neuropsychiatric disorders are multi-factorial with genetic components

92 (I, 2). Large scale Genome-Wide Association Studies (GWAS) have uncovered thousands of

93  disease associated loci, signaling a promising era ahead for causal variant identification (3).

94  However, efforts in fine mapping these disease risk loci often narrowed down the underlying

95  causal signal to non-coding regions of the genome (4—6). Regulatory variants in such non-coding

96  regions are therefore the prime candidates for driving the genetic risk of disease etiology.

97  Consequently, integrating gene expression information to pinpoint causal variants or to identify

98  risk genes has become a staple of genetic studies of complex diseases (7), with multiple consortia

99  efforts facilitating large scale gene expression profiling and regulatory element mapping (8—10).
100  Many powerful methods, such as coloc, PrediXcan, SMR/HEIDI, to name a few, have also been
101 developed to leverage gene expression information for fine mapping GWAS signals or for

102 identifying underlying risk genes (//-13).
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Schizophrenia (SCZ) is a psychiatric disorder affecting ~1% of the world-wide population (/4).
The heritability of SCZ has been estimated at between 60% to 80% indicating a strong genetic
component (15, 16). Accordingly, recent schizophrenia GWAS study reported by Trubetskoy et
al. identified 287 significant risk loci and prioritized 120 risk genes using functional genomic data
(17). The use of RNA-Seq data from the brain was instrumental for risk gene prioritization by
Trubetskoy et al.; however, information from downstream gene regulation processes, such as

translation rate and protein abundance, was either not utilized or unavailable.

Measuring transcriptional changes as a proxy for gene activity has a long history in molecular
biology (/8). In the context of human genetics, buffering of downstream effects of genetic
variants impacting gene expression (i.e. an eQTL) has been shown to be prevalent (/9). In
addition, QTLs specific to protein level have also been reported (/9-21). Together, these
observations indicated the importance and potential benefits of including downstream omics
types, such as proteomics data, as information sources for fine mapping disease regulatory
variants. Indeed, recent studies using multi-omics approaches have demonstrated increased power
for risk gene identification among other benefits (22, 23). Of note, our recent work on genetic
variants associated with protein level in prefrontal cortex of the human brain indicated the extent
of contribution from non-synonymous coding variants to changes at the protein level, and the
utility of these protein QTL variants in prioritizing GWAS risk genes for psychiatric disorders

1.

Another potential benefit of taking a multi-omics approach for identifying disease risk genes rests
in the potential to dissect the fine details of regulatory mechanisms driving the disease-genotype
association. Having relevant datasets to illuminate the origin and propagation of genetic impact
could potentially arrive at a conclusion of the driver regulatory process for a risk gene. Ribo-seq

is a technology that could be used to collect relevant data to fill in the gap between transcript and
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127 protein expression. By adapting RNA-Seq to a ribosome footprinting method, ribo-seq provides
128  transcriptome-wide quantification of ribosome occupancy (24, 25), which can serve as a proxy for
129  the amount of active translation synthesizing proteins from each mRNA transcript. When

130 analyzed in conjunction with RNA-Seq and quantitative proteomics data, ribo-seq enables

131 identification of translational and post-translational regulatory events (79, 26), both major steps

132 defining the human genetics aspect of the Central Dogma of molecular biology.

133 As a part of the consortium efforts to improve our understanding of the genetic basis of

134 neuropsychiatric disorders (27), we generated multiple data modalities that included SNP

135 genotyping, RNA-Seq, ribo-seq, and proteomics of postmortem cortical tissue samples of the

136 BrainGVEX cohort, which altogether covered multiple omics levels from DNA, transcript to

137 protein. In conjunction with the quantitative proteomics and transcriptome profiling results that
138 we previously published (217, 28), here we integrated ribo-seq data as our operational definition
139 for protein translation based on the transcriptome to make it a true multi-omics investigation. Our
140  results reveal regulatory properties of common variants in the human brain and their utility in

141 identifying the regulatory processes driving disease risk for schizophrenia. It offers an opportunity
142 from a population angle to dissect and appreciate the regulatory information flow in the biological
143 processes associated with the Central Dogma. Additional “rules” including information

144  attenuation and modification regulation in the process are recognized.

145 Results

146  Measuring transcriptome-wide ribosome occupancy level in prefrontal cortex of adult human

147  brain to quantify the level of protein translation

148 To investigate regulatory impact of genetic variants on protein translation in the prefrontal cortex

149 of the human brain, we performed ribosome profiling on 211 prefrontal cortex samples from the
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150  BrainGVEX collection. In total we collected ~62 billion ribosome profiling reads. Consistent with
151 the expected ribosome footprint size, we found the average insert size of our ribo-seq libraries to
152 range between 27.4 and 29.5 nucleotides. Similar to prior published studies (29), we found on

153 average 74 % of unwanted reads from ribosomal RNA, tRNA, and snoRNA, which contributed
154 no information to the translation of protein coding genes. After removing these unwanted reads,
155  we obtained an average of 30.3 million uniquely mapped informative reads per sample (inter-

156  quartile range: 20.5 ~ 37.6 million reads). When focusing our analysis on the informative reads,
157 we found our ribo-seq data to have ~3 times higher proportion of exon reads than that of the total
158  RNA-Seq data collected from the same individuals using an rRNA-depletion method (28). When
159  visualized in aggregate across annotated coding genes, we found our ribo-seq data to show strong
160  sub-codon periodicity at the expected positions (Fig. S1). High proportion of exon reads and

161  strong sub-codon periodicity reflect the enrichment of footprints from ribosomes actively engaged

162  in translating mature mRNA and indicates the quality of the dataset.

163 Multi-omics cis-OTL mapping identified candidate regulatory variants and revealed translational

164  and post-translational attenuation of eOTL effects

165  To identify variants associated with inter-individual expression differences, we perform cis-QTL
166  mapping for each data type independently. Using the full dataset (i.e. 416 RNA-Seq samples, 195
167  ribo-seq samples, and 268 proteomics samples, which are coupled with the corresponding

168  genotype data), we identified 12,411 eQTLs (out of 16,540 genes we deem sufficiently

169  quantitated), 2,849 rQTLs (out of 14,572 genes), and 1,036 pQTLs (out of 8,013 genes) at FDR <
170 0.1. The majority of the eQTLs identified here were replicated in the prefrontal cortex RNA-Seq
171 data from the GTEx consortium (Table S1). Intriguingly, we found drastic differences between
172 omics types in the numbers of QTLs mapped, suggesting that some of the eQTL effects do not

173 propagate all the way to the protein level. However, the differences in the number of genes tested
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174 between omics types and the differences in sample size make the comparison challenging to

175  interpret. To better compare the effects of genetic regulation between multiple data modalities, we
176 identified 185 samples with 7,458 genes that were sufficiently quantitated across all three

177 datatypes. Using this unified dataset, we found 3,253 eQTLs, 1,344 rQTLs, and 657 pQTLs at

178  FDR <0.1 (Fig. 1A, Fig. S2, Table S2, S3, S4). Similar to the results derived from the full dataset,
179  using the unified dataset we found fewer significant QTLs as we moved downstream the Central

180  Dogma of molecular biology.

181 A challenge in comparing between the numbers of QTLs identified from each omics type rests in
182 the fact that not all true effects were identified. Tests replicating QTLs identified from one omics
183 type in the other omics types can better capture the proportion of genetic effects shared between
184  QTL types. We performed replication tests using ntl estimates from the qvalue method (30).

185  Overall, we found high proportion of QTLs replicated in other omics types (Fig. 1B). However,
186 when considering the replication rates with the direction of genetic information flow, we found
187  asymmetric replication rates, with the downstream omics types to replicate less than the upstream
188 omics types. More specifically, we found 84.7% of the rQTLs were replicated at the transcript
189 level, but only 60.2% of the eQTLs were replicated at the ribosome occupancy level. Moreover,
190  while 75.9% of the pQTLs were replicated at the transcript level, only 34.0% of the eQTLs were
191  replicated at the protein level (Fig. 1B). The lower percentage of eQTLs and rQTLs replicated at
192 the protein level indicates potential effect attenuation (i.e. either the inter-individual variation in
193 gene expression becoming smaller and therefore harder to detect or a lack of such effect in the
194  downstream omics types). Interestingly, in addition to the effect attenuation at the protein level,
195  which was previously reported for lymphoblastoid cell lines (LCLs) (/9), here, using brain

196  samples, we found further asymmetry between eQTL and rQTL replication, indicating effect

197  attenuation at the level of translation. A similar asymmetry in proportion replicated between
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198 upstream and downstream omics types was observed when using a direction-aware cutoff-based

199  approach across a wide range of significance cutoffs used to define replication rates (Fig. S3).

200  While our replication tests revealed a trend of effect attenuation for eQTL variants in the

201  downstream phenotypes (Fig. 1B), these same observations could alternatively be explained by
202  differences in statistical power between technologies. An independent piece of evidence that is
203  not sensitive to measurement precision is needed to reach a solid conclusion. Using eQTLs

204  independently identified from prefrontal cortex samples by the CommonMind Consortium (CMC)
205  (31), we avoid the ascertainment bias for large effect size eQTLs identified from our dataset and
206  can therefore directly compare the effects size of eQTL variants between the three omics types in
207  our dataset. A similar approach was successfully implemented to address this power issue in prior
208  work in LCLs (/9). Using 5,915 CMC eQTLs that were also quantitated in our dataset, we found
209  the eQTL effects on the transcript expression level to be significantly larger than their effects on
210  ribosome occupancy level (per allele log2 fold differences: mRNA 0.2433 [95% Cl=

211 0.2381~0.2486] vs. ribosome occupancy 0.1836 [95% CI= 0.1794~0.1878]), which were in turn

212 significantly larger than their effects on protein level (per allele log2 fold differences: 0.1486

213 [95% CI= 0.1451~0.1522]) (Fig. 1C, t-test P < 2.2e"!6 for all pairwise comparisons). By focusing
214 on the effect sizes of independently identified eQTLs, our results strongly support the presence of
215 downstream mechanisms attenuating eQTL effects both at the ribosome occupancy level

216  (translationally) and at the protein level (post-translationally). Moreover, for the CMC eQTLs, we
217  found translational regulation to account for more effect size reduction than post-translational

218  regulation (Fig. 1C).

219  Identifying omics specific OTLs and their signal colocalization with schizophrenia GWAS
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220  The prevalent effect size reduction of eQTLs raised the question of the relevance of these genetic
221  regulation at the organismal level. Because most cellular tasks are executed by proteins, the

222 genetic regulatory effects not reaching the protein level are less likely to have an impact on

223 organismal traits. To answer this question, we set out to investigate the relevance of different

224 QTL types in SCZ. More specifically, we aim to identify expression specific QTLs (i.e. genetic
225  variants that impact transcript level of the linked genes but not the downstream ribosome

226  occupancy level nor protein level) that colocalize with SCZ GWAS.

227  Consistent with prior reports (32), using our full dataset we found significant proportion of SCZ
228 heritability to be mediated by gene expression. By performing mediated expression score

229 regression (MESC) (32) on summary statistics from the Trubetskoy et al. SCZ GWAS (17), we
230  found our eQTLs to mediate 7.09%, rQTLs to mediate 4.06%, and pQTLs to mediate 2.17% of
231  SCZ heritability (Table S5). After establishing the relevance for each of the three QTL types in
232 SCZ, we next sought to identify omics-specific QTLs in order to further evaluate their relevance
233 in driving SCZ risk. Because regulation of a gene is often modulated by multiple genetic variants,
234 to evaluate the consequence of overall cis-QTL impact on gene expression, we use PrediXcan to
235  estimate aggregate genetic regulatory effects for each gene. To distinguish between genes that
236 have QTL effects shared across multiple omics types and genes that have omics-specific QTL

237  effects, for each omics type we built PrediXcan models with or without regressing out the other
238 omics types and computed the correlation between the imputed expression from the two models.
239 We termed this correlation Re. To identify R.? values that reflect significant sharing between

240  omics types, we permuted sample labels to emulate conditions of no real correlation between the
241  three omics types in order to generate empirical null distributions. Using both a false discovery
242 rate (FDR), which is calculated based on the empirical null, and an effect size cutoff based on R¢?,
243 we defined a set of shared QTL genes and three sets of omics-specific QTL genes. At 10% FDR,

244 we defined shared QTL genes by further requiring the R¢? to be smaller than 0.5. Using these

Page 11 of 48


https://doi.org/10.1101/2023.06.04.543603
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.06.04.543603; this version posted October 4, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

245  criteria, from the 1,354 genes that passed the minimum PrediXcan criteria for being included in
246  this analysis (see details in methods), we identified 295 shared QTL genes that have QTL effects
247  shared between at least two omics types. For genes that failed to reject null at the 10% FDR cutoff
248 (i.e. potentially omics-specific) we further set a conservative R¢2 > 0.9 cutoff to define omics-

249  specific QTLs for those QTLs that did not change after regressing out effects from other omics
250  types. Using these criteria, we found 70 esQTL (mRNA-specific QTL) genes, 51 rsQTL

251  (ribosome occupancy-specific QTL) genes, and 107 psQTL (protein-specific QTL) genes (Fig.

252 S4, Table S6).

253 To investigate the relevance of omics-specific QTL genes in SCZ, we performed summary

254 statistics-based signal colocalization between QTL signals and SCZ GWAS signals. Using coloc
255 with default prior (/7), at a posterior probability cutoff of 70% for the signal colocalization

256 hypothesis, we found esQTLs of 3 genes, CCDC117, GATAD2A, and JAKMIP?2 to colocalize
257 with SCZ GWAS signals at loci 22¢q12.1, 19p13.11, and 5¢32, respectively (Fig. 2A, Fig. 2B). In
258  addition, we found rsQTLs of UGGT?2 to colocalize with SCZ GWAS signals at locus /3¢32.1
259  (Fig. 2C, Fig. 2D) and psQTLs of P2RX7 to colocalize with SCZ GWAS signals at locus

260  12g24.31. On the other hand, for shared QTL genes, we found the eQTLs of 6 genes and the

261  rQTLs of 1 gene to colocalize with SCZ GWAS signals. In summary, we identified strong signal
262 colocalization with SCZ GWAS from both shared QTLs and omics-specific QTLs, at comparable
263 proportions (i.e. 7 from 295 of shared vs. 5 from 228 of omics-specific). This indicates that the

264  omics-specific QTLs are equally important in explaining SCZ GWAS signals.

265  Functional genomics identification of Schizophrenia risk genes

266  To further investigate the relevance of attenuated eQTLs in SCZ risk, we next took a

267  complementary approach by first identifying risk genes from each omics type separately and then
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268  investigating the relevant regulatory processes driving SCZ risk. Following the observed

269  percentages of SCZ heritability mediated by gene regulation found in our full dataset, here using
270  the same GWAS we focused our effort to identify risk genes for SCZ based on our unified multi-
271 omic dataset using S-PrediXcan (33). At 5% family-wise error rate, we found 52, 29, and 16 SCZ
272 risk genes, respectively from RNA-Seq, ribo-seq, and proteomics data (Fig. 3A, Fig. S5; note that
273 the color and shape code of this figure will become relevant in the next results section). Among
274  them only four genes, NEK4, KHK, CNNM?2 and DARS2 were consistently identified as SCZ risk
275 genes from all three omics types (Fig. 3B). The majority (74.3%) of the risk genes were identified
276  only from one of the three omics types. This limited sharing in risk gene identification between
277  omics types is in clear contrast to the amount of signal sharing found between QTL types (Fig.

278 1B).

279  Among the 74 risk genes we identified using S-PrediXcan (i.e. the union between the risk genes
280  identified from each of the three omics types), 44 have previously been reported in GWAS studies
281 as either the mapped genes or as one of the nearby genes under the GWAS peak (Table S7) (17,
282 34-36). Of these previously reported genes, 27 matched the mapped genes while the remaining 17
283 nominated an alternative candidate gene for each GWAS locus (Note that for some of these 17
284 loci, the original GWAS signal was mapped to an intergenic region). Comparing our results to

285  other published SCZ risk gene identification studies, we found 15 matched to the risk genes

286  identified by Giambartolomei et al., which used RNA-Seq and DNA methylation data from

287  prefrontal cortex of the human brain (22) and 12 matched to the 120 prioritized SCZ risk genes
288  from Trubetskoy et al., which used colocalization with eQTL and Hi-C data (/7). On the other
289 hand, for 25 of our 74 risk genes (33.8%), we found no match to the known risk gene list (Table
290  S8), which we compiled based on previous GWAS and functional genomics risk gene

291 1identification studies (17, 22, 34-36). These “no match” novel risk genes have relatively weak

292 SCZ GWAS signals and are therefore challenging to identify without the additional information
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293 provided in our multi-omics QTL dataset. For example, we found strong colocalization between a
294  modest schizophrenia GWAS signal at 2p23.3 and all three types of molecular QTLs of the gene
295  KHK (Fig. 3D). Intriguingly, the KHK pQTL is in opposite direction of the KHK eQTL and rQTL
296  (Fig. 3C), suggesting a linked post-translational process regulating the protein level in addition to
297  the transcriptional regulation. KHK, known as Ketohexokinase, plays a pivotal role in fructose
298  metabolism and has been hypothesized to contribute significantly to sustaining neuronal function
299  (37). Another novel SCZ risk genes, BTN3A2, belongs to the Butyrophilin Subfamily 3.

300  Overexpression of BTN3A2 has been observed to inhibit excitatory synaptic activity onto CA1

301  pyramidal neurons (38). NSF or N-Ethylmaleimide Sensitive Factor, which encodes a vesicle

302 fusing ATPase, has been identified as a causal factor in intelligence traits (39).

303 Analyses of multi-omics dataset reveal regulatory mechanisms of schizophrenia risk genes

304  While PrediXcan is a powerful tool for GWAS risk gene identification, it does not control for

305  potential horizontal pleiotropy (40). To this end, we performed two-sample Mendelian

306  Randomization (MR) with Egger regression to replicate the risk genes we identified using S-

307  PrediXcan. Egger regression includes an intercept term, which can be used to evaluate the level of
308  horizontal pleiotropy (47). For each risk gene we first used LD-clumping (42) to identify top

309  SNPs from independent signals as strong genetic instruments (43). We then tested for the causal
310  relationship between gene regulation (i.e. QTL signal) and SCZ (i.e. GWAS). We used an

311  operational definition of a causal effect based on the MR test results (see Methods). At 10% FDR,
312 of the 97 gene-by-omics combinations (i.e. a total of 74 risk genes including some discovered

313 from more than one omics type), 67.0% (65/97) passed the MR test. Of those 33.0% that failed
314  the MR test, 93.8% (30 out of 32) failed because of horizontal pleiotropy identified by the Egger
315 intercept test (Table S9). A total of 52 genes were replicated in at least one of the three omics

316  types. Similar, but stronger, causal effects were observed when using SuSiE (the Sum of Single
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317  Effects) (44) as an alternative approach to define instrument SNPs (Fig. S6). However, when
318  using SuSiE for selecting instrument variables, 41 genes were tested because some of the risk

319 genes had no fine mapped QTL SNPs according to SuSiE.

320 A key strength of using a multi-omics QTL approach to identifty GWAS risk genes rests in the
321  possibility of further narrowing down the potential regulatory mechanisms. To this end, we

322 further examined the likely causal mechanisms for the 52 replicated SCZ risk genes using one-
323 sample Mendelian Randomization to infer causality between QTL types. We focused our analysis
324  on independently testing for causal effects between neighboring QTL types following the

325  direction of information flow of the Central Dogma (i.e. mRNA -> ribosome occupancy, and

326  ribosome occupancy -> protein). Here we used fine-mapped QTL SNPs identified from the

327  exposure omics types (i.e. the upstream omics types) as instrument variables for one-sample MR
328  analysis. Among the 52 two-sample MR replicated SCZ risk genes, we found 17 genes with

329  significant causal effects both from eQTL to rQTL (i.e. the upstream pathway) and from rQTL to
330  pQTL (i.e. the downstream pathway) (both-passed risk genes; Fig. 3A dark red solid circle

331  datapoints). Significant causal effects detected from both pathways suggest transcriptionally

332 regulated protein level differences as the potential mechanisms for these risk genes in SCZ

333 etiology (see an example in Fig. 4A, Fig. 4B). On the other hand, 27 and 8 replicated risk genes
334 have either significant causal effects only in one of the two pathways (single-passed risk genes;
335  Fig. 3A blue triangle datapoints) or have no significant causal effects (none-passed risk genes;

336 Fig. 3A orange rectangle datapoints), respectively.

337  Of note, for the 27 single-passed risk genes, we found significant causal effects only in the
338 upstream pathway (mRNA -> ribosome occupancy). This asymmetry is reminiscent of the eQTL
339 effect attenuation described in the prior sections. A failed test could indicate either a true lack of

340  effect or a lack of statistical power. To take a closer look, we directly assessed the effect size, the

Page 15 of 48


https://doi.org/10.1101/2023.06.04.543603
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.06.04.543603; this version posted October 4, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

341  noise level, and instrument strength of the one-sample MR test results. When comparing to the 17
342 both-passed risk genes, we found significantly smaller effect sizes both for failed tests of the 27
343 single-passed risk genes (only the downstream MR test results included, average 0.367 vs 0.055,
344  t-test P <4.9¢”, Fig. S7TA) and the 8 none-passed risk genes (both upstream and downstream MR
345  test results included, average 0.405 vs 0.033, t-test P < 4e"'2, Fig. S8A). Note that in both cases
346  the inter-quartile range of the estimated causal effects for the failed tests covered zero (Fig. S7A,
347  Fig. S8A). On the other hand, for these same comparison groups, we found no significant

348 difference in instrument strength (Fig. S7C, S8C, if anything slightly stronger instrument was
349  observed in failed tests) and found only slightly higher noise level in the failed MR tests (Fig.

350  S7B and S8B; t-test P =0.026 and P= 0.013 respectively). The estimated small causal effects

351  from the failed tests indicate that either we are observing weak effects that are obscured by the
352 slightly elevated noise level (false negatives) or a lack of true causal effects, or a mixture of the
353 two. In other words, some of these risk genes are likely to be driven by specific QTL types. Case
354  in point, we found SF3B1 to have similar patterns in p value distributions between eQTLs and

355  SCZ GWAS but no clear QTL signals in either ribo-seq or proteomics data (Fig. 4C, Fig. 4D).

356  Discussion

357  Using a panel of postmortem prefrontal cortex samples, we found clear evidence of post-

358  transcriptional attenuation of eQTL effects in the human brain. Many of the differences found
359  between individual brain transcriptomes were not present between individual brain proteomes.
360  This observation echoes earlier work in HapMap lymphoblastoid cell lines (/9) and extends the
361  prior conclusion from in vitro cell lines to complex human tissues. Importantly, distinct from the
362  earlier work in lymphoblastoid cell lines, which found translation to mostly track with

363 transcription, we found clear attenuation of eQTL effect in ribo-seq data indicating that

364  translational regulatory processes are involved in eQTL effect attenuation in the human brain.
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365  Prevalent translational attenuation of variant impact on transcriptional gene expression level has
366  previously been reported in budding yeast (45, 46). However, results from follow up studies (47)
367  appear to present an inconsistent picture. Here, using replication tests for individual eQTLs and
368  testing for aggregate effect size of eQTLs independently identified from CMC, we provided

369  strong evidences supporting prevalent translational attenuation of eQTL effects in the human

370  brain. Although operating at the molecular level, our study remained observational. Omics-

371 specific features could potentially confound the results. Future work replicating this observation
372 and elucidating molecular mechanisms of translational attenuation of eQTL effects are needed to

373 provide a clear understanding of the phenomenon.

374  Following this observation, our current work focuses on the important question of whether the

375  attenuated eQTLs are functionally (biologically) relevant. We attempted to address this question
376 by exploring the relevance of attenuated eQTLs in SCZ, a neuropsychiatric disorder that is highly
377  heritable. We took two approaches to identify risk genes that have either omics-specific QTL

378  signals or attenuated eQTLs. In the first approach, we used PrediXcan to aggregate variant impact
379  at the gene level in order to identify omics-specific risk genes. Our method is distinct from

380  published work on omics-specific QTLs that took a SNP-based approach (/9). Using a gene-

381  based approach, we aimed to increase the interpretability of the results and decrease the challenge
382 of the needle in the haystack problem. Indeed, our approach reduced our search space to 1,354

383  genes, and among these genes we identified 228 omics-specific QTL genes. By limiting our

384  search to the most confident set of omics-specific QTL genes, we identified three clear examples
385  of esQTLs that show strong colocalization with SCZ GWAS signals. At the same time, the

386  limited number of discoveries put certain constraints on our ability to investigate the properties of
387  esQTLs in the context of SCZ disease risk. It is expected that larger samples would reveal more

388  esQTLs and enable deep mechanistic investigation.
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389 In the second approach, we expanded our search by first identified risk genes from all quantitated
390  genes using a TWAS approach, S-PrediXcan method. We then replicated the TWAS risk genes
391  using two-sample Mendelian Randomization with Egger intercept tests. While the majority of the
392 TWAS risk genes were replicated in two-sample Mendelian Randomization tests, of the minority
393 that failed the MR tests most failed because of the Egger intercept test. Our results, therefore,

394  clearly confirmed the need of controlling for potential horizontal pleiotropy in TWAS studies

395 (41). About 34% of the risk genes that we identified here have not been previously reported as
396  SCZrisk genes. These novel SCZ risk genes tend to have weak GWAS signals and are therefore
397  challenging to identify without the help of functional genomics data (see Fig. 3D for an example).
398  To identify causal regulatory mechanisms for each replicated risk gene, we further tested

399 causality between QTL types using one-sample MR. We found 17 risk genes that are likely

400  contributing to SCZ risk through transcriptionally regulated protein level. On the other hand, we
401  also identify 8 genes that show no significant MR tests (candidate omics-specific risk genes) and
402 27 genes that have significant MR test results only from transcription to translation (candidate

403  post-translationally-attenuated risk genes).

404  In essence, attempts to identify esQTLs (or any omics-specific QTLs) are dealing with the

405  challenge of separating true negatives from false negatives. While we applied very conservative
406  criteria to identify esQTLs and performed subsequent evaluations, such caveat is important to

407  keep in mind when interpreting our results. Similarly, the interpretation of the failed MR tests is
408  challenging. Our subsequent analyses looking at comparing instrument strength, noise level, and
409  effect size between passed and failed MR tests, indicated comparable instrument strength, slightly
410  elevated noise level in the failed tests, and clearly smaller effect size in the failed tests. In other
411  words, the failed tests are reflecting either a smaller effect size obscured by noise in the data, or a
412 true lack of causal effect, or possibly a mixture of both. In addition to the issues with false

413 negative results in replication omics types, some of the omics-specific QTL discoveries could be
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414  false positives. Although we have good confidence with our FDR and FWER estimates, given
415  that our test statistics for QTL mapping and risk gene identification are well calibrated (Fig. S2,
416  S5), pleiotropy could introduce positive results from a different underlying cause (i.e. true effects

417 on SCZ risk but false positive risk genes).

418 Power issues, however, do not explain the whole story. As was consistently observed throughout
419  our study, when viewed in aggregate, we see clear effect size differences between omics types,
420  both for QTLs and for causal effects from MR tests. These effect size estimates are not influenced
421 by significance cutoffs and are not biased by power differences. Such general trends are also

422 unlikely to simply be a result of spurious associations or made up entirely of false positives. Our
423 results therefore bring forth an interesting mechanistic question: how do attenuated eQTL variants
424  impact SCZ without changing protein levels? One interesting possibility is that the biologically
425  relevant traits here are translation efficiency (i.e. protein synthesis rates) and protein turnover

426  rates. For example, an association between genotype and translation efficiency could manifest in
427  the form of an attenuated eQTL, where the differences in translation rate appears to offset the

428  differences introduced at the transcript level, which in turn resulted in a lack of association

429  between eQTL SNP genotype and ribosome occupancy level. In other words, the colocalization
430  between an attenuated eQTL and GWAS signal could be reflecting a colocalization of GWAS

431  signal with a translation efficiency QTL. Similarly a protein turnover QTL could also manifest in
432 the form of a rQTL attenuated at the protein level. This hypothesis would predict additional

433 linked regulatory variants (i.e. linked to the attenuated eQTLs) that impact translation efficiency
434 or protein turnover rates. Moreover, the effect at the protein level may be missed at the pQTL due
435  to technical issues specific to proteomics. We hope by presenting the current results, our findings
436  can inspire future studies on this topic to understand the detailed regulation processes from DNA

437  to RNA, protein and diseases.
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438 Materials and Methods

439  Data sources

440  The SNP genotypes (21), RNA-Seq (28), and quantitative mass spectrometry (2/) data generated
441  for prefrontal cortex tissue samples of the BrainGVEX cohort were downloaded from the

442 PsychENCODE Synapse portal (https://www.synapse.org/#!Synapse:syn5613798) (See Table

443 S10 for a summary on the number of samples in each dataset and their respective overlap with the
444 samples in the genotype data). The BrainGVEX cohort includes 420 Caucasians, 2 Hispanics, 1
445  African American, 3 Asian Americans, and 14 unknown-origin individuals. We also used PGC3

446  SCZ GWAS summary statistics data obtained from the Psychiatric Genomics Consortium (/7).

447  Ribosome profiling

448  Ribosome Profiling experiments were performed using [llumina’s TrueSeq Ribo Profile

449  (Mammalian) Kit. TrueSeq Ribo Profile (Mammalian) Kit was developed for cell lines. We

450  adapted the protocol to frozen tissue samples with MP Biomedicals™ FastPrep-24™ Classic

451  Bead Beating Grinder and Lysis System. Specifically, 60-80 mg of frozen brain tissue was

452 homogenized in Lysing Matrix D tubes containing 800 pl polysome lysis buffer. The Lysing

453 tubes were placed on the FastPrep-24™ homogenizer set at 4.0 m/s with 20 s increments until no
454  visible chunks of tissue remained. Tissue lysate was incubated on ice for 10 min followed by

455  centrifugation at 20,000g at 4 °C for 10 minutes to pellet cell debris. Clarified lysate was

456  subsequently used for ribo-seq library preparation following TrueSeq Ribo Profile (Mammalian)
457  Kit instructions. Indexed libraries were pooled and then sequenced on an Illumina HiSeq 4000.
458  Note that the experimental protocol for TrueSeq Ribo Profile (Mammalian) Kit that we followed
459  1is a modified version of the previous ribo-seq protocol published by Ingolia and colleagues (25),

460  and it has the following key modifications: Monosome isolation was performed using Sephacryl
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461 S400 spin columns (GE; 27-5140-01) on a tabletop centrifuge instead of ultra-high speed
462  centrifugation in sucrose cushion. Ribosomal RNA depletion was carried out by using Ribo-Zero
463  Magnetic Kits and this step is moved up to right after the monosomal RNA isolation step and

464  before the Ribosome Protected Fragment gel isolation step.

465  Data processing, gene expression quantification, and normalization

466  For RNA-Seq data, we obtained the FASTQ raw data from the PsychENCODE BrainGVEX

467  project (https://www.synapse.org/#!Synapse:syn5613798). Then we used cutadapt (v1.12) to trim
468  adapter for raw reads with code “cutadapt —minimum-length=5 —quality-base=33 -q 30 -a

469  AGATCGGAAGAGCACACGTCTGAACTCCAGTCA -A

470 AGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGT”. Then we mapped trimmed reads onto
471  GENCODE Release 19 (GRCh37.p13) genome with same version’s GTF by STAR (v2.4.2a).
472 Then we used RSEM software (v1.2.29) to quantify the read counts for each gene (48). The cpm
473 function in the R package “limma” was used to calculate the log-transformed counts per million
474  (CPM). We filtered out the genes with CPM < 1 in more than 75% samples and the samples with
475  network connectivity (49) z score < -5 (Fig. S9), which resulted in a total of 17,207 genes from
476 426 samples in the quantification table. We then used normalize.quantiles function in the R

477  package “preprocessCore” (50) to normalize expression level for each sample. We used DRAMS

478  software to detect and correct mixed-up samples (47), which resulted in final 423 samples.

479  For ribo-seq data, we used cutadapt (v1.12) to trim adapter for raw reads with code “cutadapt -a
480 AGATCGGAAGAGCACACGTCT —quality-base=33 —minimum-length=25 —discard-

481  untrimmed”. The trimmed reads were then mapped against a FASTA file of rRNA, tRNA, and
482 snoRNA sequence using bowtie2 (52) to filter out uninformative reads. The filtered reads were

483 mapped to GENCODE Release 19 (GRCh37.p13) genome with corresponding transcript model
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484  GTF file using STAR (v2.4.2a). The uniquely mapped reads, as defined by the “NH:i:1” flag of
485  the alignment files, were kept for subsequent analysis. We used the featureCounts function in the
486 R package “subreads” (53) to calculate gene level read counts for ribosome occupancy. The cpm
487  function in the R package “limma” was used to calculate log-transformed CPM value. We filtered
488  out genes with CPM < 1 in more than 75% samples and the samples with network connectivity
489  (49) z score < -3.5 (Fig. S10), which resulted in a total of 15,171 genes quantitated from 209

490  samples in the quantification table. We then used the normalize.quantiles function in the R

491  package “preprocessCore” (50) to normalize ribosome occupancy level for each sample. We used

492  DRAMS software to detect and correct mixed-up samples (57), which resulted in 199 samples.

493 For quantitative mass spectrometry data, we obtained protein quantification table from the

494  PsychENCODE BrainGVEX Synapse portal (https://www.synapse.org/#!Synapse:syn5613798).
495  This table includes abundance quantification for 11,572 proteins from 268 samples. The data

496  processing steps for producing the mass spectrometry quantification table is detailed in Luo et al.
497  (21). We further log-transformed protein abundance for each sample. We filtered out genes with
498  log-transformed protein abundance < 1 in more than 75% samples and the samples with network
499  connectivity (49) z score < -6, and found no gene and sample were filtered out. We then used the
500  normalize.quantiles function in the R package “preprocessCore” (50) to normalize protein level
501  for each sample. We used DRAMS software to detect and correct mixed-up samples (57), which
502  found no mixed-up samples. We matched the protein ID to gene ID according to the UCSC

503  database of hg19 version, which resulted in 8,330 genes.

504  QTL mapping

505  Estimating and adjusting for unwanted factors
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506  We used the R package “PEER” (54) to estimate hidden factors for RNA-Seq, ribo-seq, and

507  quantitative mass spectrometry data separately. The principle of selecting unwanted hidden

508  factors was to maximize the variance explained with the least number of factors. We identified
509 30, 29, and 19 hidden factors to remove from RNA-Seq, ribo-seq, and mass spectrometry data,
510  respectively (Fig. S11). For each gene from each omics type, we adjusted the expression level by
511  fitting the selected hidden factors as predictors in a linear model and taking the residuals as the
512 adjusted expression level. The adjusted expression levels were then further centered by mean and

513  scaled by standard deviation.

514 Genotype association tests

515  We identified cis-region expression QTLs (cis-eQTLs), ribo-seq QTLs (cis-rQTLs), and protein
516  QTLs (cis-pQTLs) separately using QTLTools (1.3.1) (55). Because each gene can encode

517  several protein isoforms, we selected the protein isoform with the highest median abundance as
518  the representative protein. For each gene, we defined cis-region as the region ranging from 1Mb
519  upstream of the 5’ end of the gene to 1Mb downstream of the 3° end of the gene (i.e. the length of
520  the gene body plus 2 Mb in size). We tested all common SNPs (MAF > 0.05) within the cis-

521  region using 10,000 permutations to create empirical null distributions and used the beta-

522 approximation approach implemented in QTLTools to estimate the empirical p values. For each
523 gene, we selected the SNP with the most significant empirical p value from the genotype-

524  expression level association tests to represent the QTL signal. To calculate a genome-wide FDR,
525  we used the qvalue function of the R package “qvalue” for multiple testing correction and set a

526  qvalue <0.1 (i.e. 10% FDR) cutoff to identify significant QTLs.

527  Estimating mediated SCZ heritability of each omics
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528  We used MESC to estimate the proportion of SCZ heritability mediated by different omics (32).
529  In the first step, we calculated the overall expression score using the unwanted-factor-adjusted-
530  expression data (see QTL mapping section) as the individual-level gene expression data with the
531  corresponding BrainGVEX genotype data and the 1000 genome phase 3 genotype data as the
532 ancestry matched genotype data for GWAS. In the second step, we used the overall expression
533 score calculated in the previous step and PGC3 SCZ GWAS summary statistics to estimate SCZ

534  heritability mediated by each omics.

535  Identifying omics-shared and omics-specific QTL genes

536  Building PrediXcan gene expression prediction models

537  We used the PrediXcan software (/3) to separately build gene expression prediction models for
538  RNA-Seq, ribo-seq, and quantitative mass spectrometry. For each gene, an Elastic Net algorithm
539  was used for feature selection from SNPs located within the cis-region defined for each gene (i.e.
540  gene body +/- 1Mb flanking regions) based on results from a ten-fold cross-validation. After that,
541  weights were produced for every selected SNP of each gene, which were used in the prediction
542 models. For each gene, we calculated the Pearson correlation between predicted and observed
543 gene expression (Cross-validation R, R¢y), which was considered as a metric for prediction

544  accuracy. Only the genes with Ry > 0.1 and P < 0.05 were retained. We produced prediction

545  models for the unified set of 7,458 genes and 185 samples shared across omics.

546  Building conditionally independent prediction models

547  To identify omics-shared and omics-specific QTL genes among different omics, we built
548  conditionally independent prediction models for each omics. For each gene, we regressed from

549  the data the genetic regulation signals of all other omics types (i.e. the imputed quantification
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550  level of all other omics types). The models were built based on the regressed expression (i.e. the
551  residual from the regression). Note that because in many cases multiple protein isoform

552 quantifications match to one gene, when building model for gene-based quantification omics

553 types, such as mRNA and ribosome occupancy, we aggregate data across all protein isoforms for
554  each gene. In contrast, when building model for protein data, quantifications between isoforms

555  were kept separate.

556  More specifically, assuming a total of p omics types, we took the following steps to identify

557  shared-QTL genes and to define omics-specific QTL genes:

558  Step 1: For each gene and each omics type, we built original prediction models using equation 1

559 E, =Yiow; S; + ¢ (D

560  where E}, denotes the observed expression of omics type k; w; denotes the weight of the i-th SNP

561  S;; n denotes the number of SNPs selected by the elastic net.

562 We can calculate the imputed expression with genotype data: E, = Y-, w; S;.

563  Step 2: For each gene in omics type &, we regressed out the imputed expression on the same gene

564  of all the other omics types from the observed expression using equation 2 and kept the residual

565 Ex = BEy + BBy + -+ B E_1 + e, (2)

566 where B, denotes slope of the I-th other omics types, E; denotes the imputed expression of the /-th
567  other omics types, and e, denotes the residual for omics type k. Then, the expression value

568  conditioning on the genetic regulation of all the other omics types (R ) can be represented as the
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sum of mean expression across genes (Ex) and the residual (ey). Step 3: After that, we built the

conditional prediction models and estimated the SNP-weights parameters) using equation 3.

Ry =X om;S; +¢ (3)

where m; is the weight of i-th SNP §; for the conditional prediction model.

Step 3: We calculated the square of correlation of imputed gene expression between the original

model and conditional model and named it as observed R.%.

Step 4: To determine whether a gene share genetic regulation signals with other omics types, we
used permutation to create a null distribution of Rc*>. We permuted the sample label for imputed
expression of the other omics types, and repeated step 2to build the conditional prediction model
using permuted data, which we named conditional permutation model. We then calculated
permutation R¢? of imputed gene expression between the original model and conditional

permutation model.

Step 5: We performed 50 permutations and calculated empirical p values of the observed R.2

based on its rank among the permutation R.? (i.e. ordered from the smallest to the greatest).

Step 6: We used Benjamini-Hochberg control procedure to adjust the empirical p values to

calculate FDR for shared-QTL genes.

Step 7: We defined omics-specific QTL genes as genes with FDR > 0.1 and R¢% >0.9, and the

omics-shared QTL genes as genes with FDR <0.1 and R.? <0.5.

Colocalization
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588  We used coloc (11) to detect signal colocalization between SCZ GWAS and each QTL type at the
589  cis-region of each QTL gene. For each QTL gene, for all common SNPs (MAF > 0.05) within the
590  cis-region, we use QTL effects and GWAS summary statistics as input for coloc analysis. For

591  QTL effects, we calculated slope and square of slope’ standard error from a linear model fit using
592 SNP genotype as the predictor of gene quantifications. We then used the coloc.abf function in the
593 R package “coloc” (11) to calculate the posterior possibility of each hypothesis using the default
594  prior. We use posterior probability of 70% for the colocalization hypothesis (i.e. PPH4) as the

595  cutoff for reporting our colocalization findings.

596  TWAS identification of SCZ risk genes

597  Gene-level association tests were performed for SCZ using S-PrediXcan (33) based on the

598  prediction models built using our omics data, which is described in the “building prediction

599  models” section, and the SCZ GWAS summary statistics data from PGC3 (/7). The association
600  tests were done separately for each omics. For protein data, we performed omnibus test to

601  incorporate p values of all protein isoforms together to calculate a single p value for the

602  corresponding gene. The family wise error rates for SCZ risk genes were calculated using

603  Bonferroni correction of nominal p values.

604  Two-sample Mendelian randomization (MR)

605  To identify causal relationships between each omics type and SCZ we used MR analysis. Here we
606  used fine mapped QTL SNPs as instruments, gene expression quantification at each omics type as

607  exposure, and SCZ GWAS signal as outcome.

608  More specifically, we took the following steps to test for causal relationship between gene

609  regulation at each omics level and SCZ:
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Step 1: Here we used two methods of selecting instrument SNPs. For each gene of each QTL
type, we performed LD clumping by PLINK with “—clump-kb 1000 —clump-12 0.5” parameters to
select instrument SNPs with p value < 0.05. Another method is fine-mapping by susie_rss()

function with default parameters in R package “SuSiE” (44).

Step 2: For each gene, we used harmonise data() function in R package “TwoSampleMR” (56) to
harmonize QTLs of each omics type and SCZ GWAS SNPs to be in the same direction (i.e. effect

relative to the same allele).

Step 3: We then performed two-sample MR for each gene in each omics type separately. Two-
sample MR analysis was done using mr() function, which includes IVW and Egger methods, in

the R package “TwoSampleMR” (56).

Step 4: We used the intercept test (i.e. the Egger method) to test for horizontal pleiotropy, and
used predictor coefficient and its corresponding p value from IVW to determine the effect size

and significance of causal effects for each omics type on SCZ.

Step 5: We used Benjamini-Hochberg to adjust for multiple testing.

Step 6: We define a gene by omics type combination as causal for SCZ if the causal effect test
passed the FDR < 0.1 cutoff and the Egger intercept test passed the intercept p value > 0.05

cutoff.

One-sample Mendelian randomization

For one-sample MR we used two-stage least squares (2SLS) approach to find causal relationships
between omics types. We performed the following analysis in two iterations, both following the
direction of genetic information flow. In the first iteration, we tested causal relationships between
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631  transcript level and ribosome occupancy level (i.e. mRNA -> ribosome occupancy). In the second
632  iteration, we tested causal relationships between ribosome occupancy level and protein level (i.e.

633  ribosome occupancy -> protein).

634  Step 1: We used the same two methods for instrument SNP selection as described in the previous
635  section. Here we tested two pathways (mRNA -> ribosome occupancy and ribosome occupancy -
636 > protein). For mRNA -> ribosome occupancy, we used the SNPs of eQTL with p value < 0.05
637  and LD clumping by PLINK with “—clump-kb 1000 —clump-r2 0.5 parameters. For ribosome
638  occupancy -> protein, we used the SNPs of rQTL with p value < 0.05 and LD clumping by

639  PLINK with “—clump-kb 1000 —clump-12 0.5”.

640  Step 2: We then combined genotype and quantification data of the relevant omics types into a
641  dataframe: datm: for mRNA -> ribosome occupancy pathway, daty, for ribosome occupancy ->

642  protein pathway.

643 Step 3: For each gene, we then set formula in R package “ivreg”: ivreg(“ribosome occupancy ~
644  mRNA | SNP1+SNP>+SNP3+...+SNP,”, data = datw,) and ivreg(“protein ~ ribosome occupancy |

645  SNP;+SNP>+SNPs+...+SNPy,”, data = datyp).

646  Step 4: We used the summary() function to get slope, p value of slope, intercept, p value of
647  intercept, F-statistic and p value of F-statistic of each ivreg object. P value of Intercept was used

648  to test horizontal pleiotropy, F-statistic was used to check instrument strength.

649  Step 5: We used Benjamini-Hochberg control procedure to adjust for multiple testing.

650  Step 6: We defined a causal relationship for each gene by pathway combination as the causal
651  effect test passed the FDR < 0.1 cutoff and the Egger intercept test passed the intercept p value >

652 0.05 cutoff.
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Fig. 1. Genetic regulation of gene expression in the human brain. (A) P-value quantile-
quantile plot between the observed (Y-axis) and the expected based on null distribution (X-axis).
The black line indicates the expected distribution of p values when there are no real QTL signals.
The number of cis-QTLs (i.e. the most significantly associated SNP for each gene) identified at
10% FDR is labeled in the top left inset. (B) Replication rate between QTL types. Proportions of
QTLs replicated in the other two omics types are listed in the 3X3 matrix. Each row is a discovery
omics type and each element of the row correspond to the proportion QTL signals replicated in
the omics type specified by the column label. For example, only 34% of the eQTL signals were

replicated in the protein data. (C) Effect size of CMC eQTL SNPs in BrainGVEX data. Mean and

Page 43 of 48


https://doi.org/10.1101/2023.06.04.543603
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.06.04.543603; this version posted October 4, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

979  95% confidence interval of absolute per allele effect across all CMC eQTL SNPs that were also

980  analyzed in the BrainGVEX union set is shown.
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983  Fig. 2. Signal colocalization between schizophrenia GWAS and omics-specific QTLs. (A, C)
984  Boxplots summarizing normalized gene expression level stratified by QTL genotypes for

985 CCDCI117 esQTLs (A) and UGGT?2 rsQTLs (C). (B, D) Manhattan plots showing p value

986  distribution for each QTL type and schizophrenia GWAS for the IMb QTL mapping window
987  flanking CCDC117 (B) and UGGT?2 (D). The red line indicates the position of the lead

988  colocalization SNP between omics-specific QTLs and schizophrenia GWAS.

989
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992 Fig. 3. Schizophrenia risk genes identified from each of the three omics types RNA-Seq
993  (mRNA), ribo-seq (ribosome occupancy), and proteomics (protein) using S-PrediXcan. (A)
994  Manhattan plots showing significance level (i.e. -logl0 FWER from S-PrediXcan) of gene-
995  schizophrenia association across the genome for genes that pass the 5% FWER significance
996  cutoff. The black horizontal dotted line indicated the significance cutoff. Risk genes are color-
997  coded according to the MR test results. Grey asterisks mark the risk genes that failed the two-
998  sample MR tests; dark red solid circle marks the risk genes that pass both one-sample MR tests
999  (passing both one-sample MR tests suggest that transcriptionally regulated protein level

1000  differences between individuals drives the disease risk); blue triangle marks the risk genes that

1001 pass one of the two one-sample MR tests; orange rectangle marks the risk genes that failed both
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one-sample MR tests. (B) Venn diagram illustrating the number and corresponding percentage of
overlapping risk genes between omics types. (C) Boxplots summarizing normalized gene
expression level stratified by eQTL genotypes for KHK. (D) Manhattan plots showing p value
distribution for each QTL type and schizophrenia GWAS for the 1Mb QTL mapping window
flanking KHK. The red line indicates the position of the lead colocalization SNP between eQTLs

and schizophrenia GWAS.
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1011 Fig. 4. Signal colocalization between schizophrenia GWAS and eQTLs of example risk

1012 genes. (A, C) Boxplots summarizing normalized gene expression level stratified by QTL

1013 genotypes for NEK4 eQTLs (A) and SF3B1 eQTLs (C). (B, D) Manhattan plots showing p value
1014 distribution for each QTL type and schizophrenia GWAS for the IMb QTL mapping window
1015  flanking NEK4 (B) and SF3B1 (D). The red line indicates the position of the colocalization lead

1016 ~ SNP between eQTLs and schizophrenia GWAS.

1017
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