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 62 

Abstract 63 

Background 64 

The impact of genetic variants on gene expression has been intensely studied at the transcription 65 

level, yielding in valuable insights into the association between genes and the risk of complex 66 

disorders, such as schizophrenia (SCZ). However, the downstream impact of these variants and 67 

the molecular mechanisms connecting transcription variation to disease risk are not well 68 

understood.  69 

Results 70 

We quantitated ribosome occupancy in prefrontal cortex samples of the BrainGVEX cohort. 71 

Together with transcriptomics and proteomics data from the same cohort, we performed cis-72 

Quantitative Trait Locus (QTL) mapping and identified 3,253 expression QTLs (eQTLs), 1,344 73 

ribosome occupancy QTLs (rQTLs), and 657 protein QTLs (pQTLs) out of 7,458 genes 74 

quantitated in all three omics types from 185 samples. Of the eQTLs identified, only 34% have 75 

their effects propagated to the protein level. Further analysis on the effect size of eQTLs showed 76 

clear post-transcriptional attenuation of eQTL effects.  77 

We then investigated the biological relevance of the attenuated eQTLs by identifying omics-78 

specific QTLs, and identified 228 omics-specific QTLs (70 esQTL, 51 rsQTL, and 107 psQTL), 79 
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with five showing strong colocalization with SCZ GWAS signals and three of which were esQTL. 80 

Using both S-PrediXcan and two-sample Mendelian Randomization (MR), we identified a total 81 

52 SCZ risk genes, 34% of which are novel. We found 67.3% of these SCZ-risk-driving eQTLs 82 

show little to no evidence of driving corresponding variations at the protein level. 83 

Conclusion 84 

The effect of eQTLs on gene expression in the prefrontal cortex is commonly attenuated post-85 

transcriptionally. Many of the attenuated eQTLs still correlate with SCZ GWAS signal. Further 86 

investigation is needed to elucidate a mechanistic link between attenuated eQTLs and SCZ 87 

disease risk.   88 

  89 

Introduction 90 

Complex diseases such as neuropsychiatric disorders are multi-factorial with genetic components 91 

(1, 2). Large scale Genome-Wide Association Studies (GWAS) have uncovered thousands of 92 

disease associated loci, signaling a promising era ahead for causal variant identification (3). 93 

However, efforts in fine mapping these disease risk loci often narrowed down the underlying 94 

causal signal to non-coding regions of the genome (4–6). Regulatory variants in such non-coding 95 

regions are therefore the prime candidates for driving the genetic risk of disease etiology. 96 

Consequently, integrating gene expression information to pinpoint causal variants or to identify 97 

risk genes has become a staple of genetic studies of complex diseases (7), with multiple consortia 98 

efforts facilitating large scale gene expression profiling and regulatory element mapping (8–10). 99 

Many powerful methods, such as coloc, PrediXcan, SMR/HEIDI, to name a few, have also been 100 

developed to leverage gene expression information for fine mapping GWAS signals or for 101 

identifying underlying risk genes (11–13).  102 
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Schizophrenia (SCZ) is a psychiatric disorder affecting ~1% of the world-wide population (14). 103 

The heritability of SCZ has been estimated at between 60% to 80% indicating a strong genetic 104 

component (15, 16). Accordingly, recent schizophrenia GWAS study reported by Trubetskoy et 105 

al. identified 287 significant risk loci and prioritized 120 risk genes using functional genomic data 106 

(17). The use of RNA-Seq data from the brain was instrumental for risk gene prioritization by 107 

Trubetskoy et al.; however, information from downstream gene regulation processes, such as 108 

translation rate and protein abundance, was either not utilized or unavailable.  109 

Measuring transcriptional changes as a proxy for gene activity has a long history in molecular 110 

biology (18). In the context of human genetics, buffering of downstream effects of genetic 111 

variants impacting gene expression (i.e. an eQTL) has been shown to be prevalent (19). In 112 

addition, QTLs specific to protein level have also been reported (19-21). Together, these 113 

observations indicated the importance and potential benefits of including downstream omics 114 

types, such as proteomics data, as information sources for fine mapping disease regulatory 115 

variants. Indeed, recent studies using multi-omics approaches have demonstrated increased power 116 

for risk gene identification among other benefits (22, 23). Of note, our recent work on genetic 117 

variants associated with protein level in prefrontal cortex of the human brain indicated the extent 118 

of contribution from non-synonymous coding variants to changes at the protein level, and the 119 

utility of these protein QTL variants in prioritizing GWAS risk genes for psychiatric disorders 120 

(21). 121 

Another potential benefit of taking a multi-omics approach for identifying disease risk genes rests 122 

in the potential to dissect the fine details of regulatory mechanisms driving the disease-genotype 123 

association. Having relevant datasets to illuminate the origin and propagation of genetic impact 124 

could potentially arrive at a conclusion of the driver regulatory process for a risk gene. Ribo-seq 125 

is a technology that could be used to collect relevant data to fill in the gap between transcript and 126 
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protein expression. By adapting RNA-Seq to a ribosome footprinting method, ribo-seq provides 127 

transcriptome-wide quantification of ribosome occupancy (24, 25), which can serve as a proxy for 128 

the amount of active translation synthesizing proteins from each mRNA transcript. When 129 

analyzed in conjunction with RNA-Seq and quantitative proteomics data, ribo-seq enables 130 

identification of translational and post-translational regulatory events (19, 26), both major steps 131 

defining the human genetics aspect of the Central Dogma of molecular biology.  132 

As a part of the consortium efforts to improve our understanding of the genetic basis of 133 

neuropsychiatric disorders (27), we generated multiple data modalities that included SNP 134 

genotyping, RNA-Seq, ribo-seq, and proteomics of postmortem cortical tissue samples of the 135 

BrainGVEX cohort, which altogether covered multiple omics levels from DNA, transcript to 136 

protein. In conjunction with the quantitative proteomics and transcriptome profiling results that 137 

we previously published (21, 28), here we integrated ribo-seq data as our operational definition 138 

for protein translation based on the transcriptome to make it a true multi-omics investigation. Our 139 

results reveal regulatory properties of common variants in the human brain and their utility in 140 

identifying the regulatory processes driving disease risk for schizophrenia. It offers an opportunity 141 

from a population angle to dissect and appreciate the regulatory information flow in the biological 142 

processes associated with the Central Dogma. Additional “rules” including information 143 

attenuation and modification regulation in the process are recognized. 144 

Results  145 

Measuring transcriptome-wide ribosome occupancy level in prefrontal cortex of adult human 146 

brain to quantify the level of protein translation  147 

To investigate regulatory impact of genetic variants on protein translation in the prefrontal cortex 148 

of the human brain, we performed ribosome profiling on 211 prefrontal cortex samples from the 149 
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BrainGVEX collection. In total we collected ~62 billion ribosome profiling reads. Consistent with 150 

the expected ribosome footprint size, we found the average insert size of our ribo-seq libraries to 151 

range between 27.4 and 29.5 nucleotides. Similar to prior published studies (29), we found on 152 

average 74 % of unwanted reads from ribosomal RNA, tRNA, and snoRNA, which contributed 153 

no information to the translation of protein coding genes. After removing these unwanted reads, 154 

we obtained an average of 30.3 million uniquely mapped informative reads per sample (inter-155 

quartile range: 20.5 ~ 37.6 million reads). When focusing our analysis on the informative reads, 156 

we found our ribo-seq data to have ~3 times higher proportion of exon reads than that of the total 157 

RNA-Seq data collected from the same individuals using an rRNA-depletion method (28). When 158 

visualized in aggregate across annotated coding genes, we found our ribo-seq data to show strong 159 

sub-codon periodicity at the expected positions (Fig. S1). High proportion of exon reads and 160 

strong sub-codon periodicity reflect the enrichment of footprints from ribosomes actively engaged 161 

in translating mature mRNA and indicates the quality of the dataset. 162 

Multi-omics cis-QTL mapping identified candidate regulatory variants and revealed translational 163 

and post-translational attenuation of eQTL effects 164 

To identify variants associated with inter-individual expression differences, we perform cis-QTL 165 

mapping for each data type independently. Using the full dataset (i.e. 416 RNA-Seq samples, 195 166 

ribo-seq samples, and 268 proteomics samples, which are coupled with the corresponding 167 

genotype data), we identified 12,411 eQTLs (out of 16,540 genes we deem sufficiently 168 

quantitated), 2,849 rQTLs (out of 14,572 genes), and 1,036 pQTLs (out of 8,013 genes) at FDR < 169 

0.1. The majority of the eQTLs identified here were replicated in the prefrontal cortex RNA-Seq 170 

data from the GTEx consortium (Table S1). Intriguingly, we found drastic differences between 171 

omics types in the numbers of QTLs mapped, suggesting that some of the eQTL effects do not 172 

propagate all the way to the protein level. However, the differences in the number of genes tested 173 
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between omics types and the differences in sample size make the comparison challenging to 174 

interpret. To better compare the effects of genetic regulation between multiple data modalities, we 175 

identified 185 samples with 7,458 genes that were sufficiently quantitated across all three 176 

datatypes. Using this unified dataset, we found 3,253 eQTLs, 1,344 rQTLs, and 657 pQTLs at 177 

FDR <0.1 (Fig. 1A, Fig. S2, Table S2, S3, S4). Similar to the results derived from the full dataset, 178 

using the unified dataset we found fewer significant QTLs as we moved downstream the Central 179 

Dogma of molecular biology.  180 

A challenge in comparing between the numbers of QTLs identified from each omics type rests in 181 

the fact that not all true effects were identified. Tests replicating QTLs identified from one omics 182 

type in the other omics types can better capture the proportion of genetic effects shared between 183 

QTL types. We performed replication tests using π1 estimates from the qvalue method (30). 184 

Overall, we found high proportion of QTLs replicated in other omics types (Fig. 1B). However, 185 

when considering the replication rates with the direction of genetic information flow, we found 186 

asymmetric replication rates, with the downstream omics types to replicate less than the upstream 187 

omics types. More specifically, we found 84.7% of the rQTLs were replicated at the transcript 188 

level, but only 60.2% of the eQTLs were replicated at the ribosome occupancy level. Moreover, 189 

while 75.9% of the pQTLs were replicated at the transcript level, only 34.0% of the eQTLs were 190 

replicated at the protein level (Fig. 1B). The lower percentage of eQTLs and rQTLs replicated at 191 

the protein level indicates potential effect attenuation (i.e. either the inter-individual variation in 192 

gene expression becoming smaller and therefore harder to detect or a lack of such effect in the 193 

downstream omics types). Interestingly, in addition to the effect attenuation at the protein level, 194 

which was previously reported for lymphoblastoid cell lines (LCLs) (19), here, using brain 195 

samples, we found further asymmetry between eQTL and rQTL replication, indicating effect 196 

attenuation at the level of translation. A similar asymmetry in proportion replicated between 197 
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upstream and downstream omics types was observed when using a direction-aware cutoff-based 198 

approach across a wide range of significance cutoffs used to define replication rates (Fig. S3).  199 

While our replication tests revealed a trend of effect attenuation for eQTL variants in the 200 

downstream phenotypes (Fig. 1B), these same observations could alternatively be explained by 201 

differences in statistical power between technologies. An independent piece of evidence that is 202 

not sensitive to measurement precision is needed to reach a solid conclusion. Using eQTLs 203 

independently identified from prefrontal cortex samples by the CommonMind Consortium (CMC) 204 

(31), we avoid the ascertainment bias for large effect size eQTLs identified from our dataset and 205 

can therefore directly compare the effects size of eQTL variants between the three omics types in 206 

our dataset. A similar approach was successfully implemented to address this power issue in prior 207 

work in LCLs (19). Using 5,915 CMC eQTLs that were also quantitated in our dataset, we found 208 

the eQTL effects on the transcript expression level to be significantly larger than their effects on 209 

ribosome occupancy level (per allele log2 fold differences: mRNA 0.2433 [95% CI= 210 

0.2381~0.2486] vs. ribosome occupancy 0.1836 [95% CI= 0.1794~0.1878]), which were in turn 211 

significantly larger than their effects on protein level (per allele log2 fold differences: 0.1486 212 

[95% CI=  0.1451~0.1522]) (Fig. 1C, t-test P < 2.2e-16 for all pairwise comparisons). By focusing 213 

on the effect sizes of independently identified eQTLs, our results strongly support the presence of 214 

downstream mechanisms attenuating eQTL effects both at the ribosome occupancy level 215 

(translationally) and at the protein level (post-translationally). Moreover, for the CMC eQTLs, we 216 

found translational regulation to account for more effect size reduction than post-translational 217 

regulation (Fig. 1C).  218 

Identifying omics specific QTLs and their signal colocalization with schizophrenia GWAS   219 
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The prevalent effect size reduction of eQTLs raised the question of the relevance of these genetic 220 

regulation at the organismal level. Because most cellular tasks are executed by proteins, the 221 

genetic regulatory effects not reaching the protein level are less likely to have an impact on 222 

organismal traits. To answer this question, we set out to investigate the relevance of different 223 

QTL types in SCZ. More specifically, we aim to identify expression specific QTLs (i.e. genetic 224 

variants that impact transcript level of the linked genes but not the downstream ribosome 225 

occupancy level nor protein level) that colocalize with SCZ GWAS. 226 

Consistent with prior reports (32), using our full dataset we found significant proportion of SCZ 227 

heritability to be mediated by gene expression. By performing mediated expression score 228 

regression (MESC) (32) on summary statistics from the Trubetskoy et al. SCZ GWAS (17), we 229 

found our eQTLs to mediate 7.09%, rQTLs to mediate 4.06%, and pQTLs to mediate 2.17% of 230 

SCZ heritability (Table S5). After establishing the relevance for each of the three QTL types in 231 

SCZ, we next sought to identify omics-specific QTLs in order to further evaluate their relevance 232 

in driving SCZ risk. Because regulation of a gene is often modulated by multiple genetic variants, 233 

to evaluate the consequence of overall cis-QTL impact on gene expression, we use PrediXcan to 234 

estimate aggregate genetic regulatory effects for each gene. To distinguish between genes that 235 

have QTL effects shared across multiple omics types and genes that have omics-specific QTL 236 

effects, for each omics type we built PrediXcan models with or without regressing out the other 237 

omics types and computed the correlation between the imputed expression from the two models. 238 

We termed this correlation Rc. To identify Rc
2 values that reflect significant sharing between 239 

omics types, we permuted sample labels to emulate conditions of no real correlation between the 240 

three omics types in order to generate empirical null distributions. Using both a false discovery 241 

rate (FDR), which is calculated based on the empirical null, and an effect size cutoff based on Rc
2, 242 

we defined a set of shared QTL genes and three sets of omics-specific QTL genes. At 10% FDR, 243 

we defined shared QTL genes by further requiring the Rc
2 to be smaller than 0.5. Using these 244 
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criteria, from the 1,354 genes that passed the minimum PrediXcan criteria for being included in 245 

this analysis (see details in methods), we identified 295 shared QTL genes that have QTL effects 246 

shared between at least two omics types. For genes that failed to reject null at the 10% FDR cutoff 247 

(i.e. potentially omics-specific) we further set a conservative Rc
2 > 0.9 cutoff to define omics-248 

specific QTLs for those QTLs that did not change after regressing out effects from other omics 249 

types. Using these criteria, we found 70 esQTL (mRNA-specific QTL) genes, 51 rsQTL 250 

(ribosome occupancy-specific QTL) genes, and 107 psQTL (protein-specific QTL) genes (Fig. 251 

S4, Table S6).  252 

To investigate the relevance of omics-specific QTL genes in SCZ, we performed summary 253 

statistics-based signal colocalization between QTL signals and SCZ GWAS signals. Using coloc 254 

with default prior (11), at a posterior probability cutoff of 70% for the signal colocalization 255 

hypothesis, we found esQTLs of 3 genes, CCDC117, GATAD2A, and JAKMIP2 to colocalize 256 

with SCZ GWAS signals at loci 22q12.1, 19p13.11, and 5q32, respectively (Fig. 2A, Fig. 2B). In 257 

addition, we found rsQTLs of UGGT2 to colocalize with SCZ GWAS signals at locus 13q32.1 258 

(Fig. 2C, Fig. 2D) and psQTLs of P2RX7 to colocalize with SCZ GWAS signals at locus 259 

12q24.31. On the other hand, for shared QTL genes, we found the eQTLs of 6 genes and the 260 

rQTLs of 1 gene to colocalize with SCZ GWAS signals. In summary, we identified strong signal 261 

colocalization with SCZ GWAS from both shared QTLs and omics-specific QTLs, at comparable 262 

proportions (i.e. 7 from 295 of shared vs. 5 from 228 of omics-specific). This indicates that the 263 

omics-specific QTLs are equally important in explaining SCZ GWAS signals. 264 

Functional genomics identification of Schizophrenia risk genes  265 

To further investigate the relevance of attenuated eQTLs in SCZ risk, we next took a 266 

complementary approach by first identifying risk genes from each omics type separately and then 267 
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investigating the relevant regulatory processes driving SCZ risk. Following the observed 268 

percentages of SCZ heritability mediated by gene regulation found in our full dataset, here using 269 

the same GWAS we focused our effort to identify risk genes for SCZ based on our unified multi-270 

omic dataset using S-PrediXcan (33). At 5% family-wise error rate, we found 52, 29, and 16 SCZ 271 

risk genes, respectively from RNA-Seq, ribo-seq, and proteomics data (Fig. 3A, Fig. S5; note that 272 

the color and shape code of this figure will become relevant in the next results section). Among 273 

them only four genes, NEK4, KHK, CNNM2 and DARS2 were consistently identified as SCZ risk 274 

genes from all three omics types (Fig. 3B). The majority (74.3%) of the risk genes were identified 275 

only from one of the three omics types. This limited sharing in risk gene identification between 276 

omics types is in clear contrast to the amount of signal sharing found between QTL types (Fig. 277 

1B).  278 

Among the 74 risk genes we identified using S-PrediXcan (i.e. the union between the risk genes 279 

identified from each of the three omics types), 44 have previously been reported in GWAS studies 280 

as either the mapped genes or as one of the nearby genes under the GWAS peak (Table S7) (17, 281 

34–36). Of these previously reported genes, 27 matched the mapped genes while the remaining 17 282 

nominated an alternative candidate gene for each GWAS locus (Note that for some of these 17 283 

loci, the original GWAS signal was mapped to an intergenic region). Comparing our results to 284 

other published SCZ risk gene identification studies, we found 15 matched to the risk genes 285 

identified by Giambartolomei et al., which used RNA-Seq and DNA methylation data from 286 

prefrontal cortex of the human brain (22) and 12 matched to the 120 prioritized SCZ risk genes 287 

from Trubetskoy et al., which used colocalization with eQTL and Hi-C data (17). On the other 288 

hand, for 25 of our 74 risk genes (33.8%), we found no match to the known risk gene list (Table 289 

S8), which we compiled based on previous GWAS and functional genomics risk gene 290 

identification studies (17, 22, 34–36). These “no match” novel risk genes have relatively weak 291 

SCZ GWAS signals and are therefore challenging to identify without the additional information 292 
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provided in our multi-omics QTL dataset. For example, we found strong colocalization between a 293 

modest schizophrenia GWAS signal at 2p23.3 and all three types of molecular QTLs of the gene 294 

KHK (Fig. 3D). Intriguingly, the KHK pQTL is in opposite direction of the KHK eQTL and rQTL 295 

(Fig. 3C), suggesting a linked post-translational process regulating the protein level in addition to 296 

the transcriptional regulation. KHK, known as Ketohexokinase, plays a pivotal role in fructose 297 

metabolism and has been hypothesized to contribute significantly to sustaining neuronal function 298 

(37). Another novel SCZ risk genes, BTN3A2, belongs to the Butyrophilin Subfamily 3. 299 

Overexpression of BTN3A2 has been observed to inhibit excitatory synaptic activity onto CA1 300 

pyramidal neurons (38). NSF or N-Ethylmaleimide Sensitive Factor, which encodes a vesicle 301 

fusing ATPase, has been identified as a causal factor in intelligence traits (39). 302 

Analyses of multi-omics dataset reveal regulatory mechanisms of schizophrenia risk genes 303 

While PrediXcan is a powerful tool for GWAS risk gene identification, it does not control for 304 

potential horizontal pleiotropy (40). To this end, we performed two-sample Mendelian 305 

Randomization (MR) with Egger regression to replicate the risk genes we identified using S-306 

PrediXcan. Egger regression includes an intercept term, which can be used to evaluate the level of 307 

horizontal pleiotropy (41). For each risk gene we first used LD-clumping (42) to identify top 308 

SNPs from independent signals as strong genetic instruments (43). We then tested for the causal 309 

relationship between gene regulation (i.e. QTL signal) and SCZ (i.e. GWAS). We used an 310 

operational definition of a causal effect based on the MR test results (see Methods). At 10% FDR, 311 

of the 97 gene-by-omics combinations (i.e. a total of 74 risk genes including some discovered 312 

from more than one omics type), 67.0% (65/97) passed the MR test. Of those 33.0% that failed 313 

the MR test, 93.8% (30 out of 32) failed because of horizontal pleiotropy identified by the Egger 314 

intercept test (Table S9). A total of 52 genes were replicated in at least one of the three omics 315 

types. Similar, but stronger, causal effects were observed when using SuSiE (the Sum of Single 316 
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Effects) (44) as an alternative approach to define instrument SNPs (Fig. S6). However, when 317 

using SuSiE for selecting instrument variables, 41 genes were tested because some of the risk 318 

genes had no fine mapped QTL SNPs according to SuSiE.  319 

A key strength of using a multi-omics QTL approach to identify GWAS risk genes rests in the 320 

possibility of further narrowing down the potential regulatory mechanisms. To this end, we 321 

further examined the likely causal mechanisms for the 52 replicated SCZ risk genes using one-322 

sample Mendelian Randomization to infer causality between QTL types. We focused our analysis 323 

on independently testing for causal effects between neighboring QTL types following the 324 

direction of information flow of the Central Dogma (i.e. mRNA -> ribosome occupancy, and 325 

ribosome occupancy -> protein). Here we used fine-mapped QTL SNPs identified from the 326 

exposure omics types (i.e. the upstream omics types) as instrument variables for one-sample MR 327 

analysis. Among the 52 two-sample MR replicated SCZ risk genes, we found 17 genes with 328 

significant causal effects both from eQTL to rQTL (i.e. the upstream pathway) and from rQTL to 329 

pQTL (i.e. the downstream pathway) (both-passed risk genes; Fig. 3A dark red solid circle 330 

datapoints). Significant causal effects detected from both pathways suggest transcriptionally 331 

regulated protein level differences as the potential mechanisms for these risk genes in SCZ 332 

etiology (see an example in Fig. 4A, Fig. 4B). On the other hand, 27 and 8 replicated risk genes 333 

have either significant causal effects only in one of the two pathways (single-passed risk genes; 334 

Fig. 3A blue triangle datapoints) or have no significant causal effects (none-passed risk genes; 335 

Fig. 3A orange rectangle datapoints), respectively.  336 

Of note, for the 27 single-passed risk genes, we found significant causal effects only in the 337 

upstream pathway (mRNA -> ribosome occupancy). This asymmetry is reminiscent of the eQTL 338 

effect attenuation described in the prior sections. A failed test could indicate either a true lack of 339 

effect or a lack of statistical power. To take a closer look, we directly assessed the effect size, the 340 
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noise level, and instrument strength of the one-sample MR test results. When comparing to the 17 341 

both-passed risk genes, we found significantly smaller effect sizes both for failed tests of the 27 342 

single-passed risk genes (only the downstream MR test results included, average 0.367 vs 0.055, 343 

t-test P < 4.9e-5, Fig. S7A) and the 8 none-passed risk genes (both upstream and downstream MR 344 

test results included, average 0.405 vs 0.033, t-test P < 4e-12, Fig. S8A). Note that in both cases 345 

the inter-quartile range of the estimated causal effects for the failed tests covered zero (Fig. S7A, 346 

Fig. S8A). On the other hand, for these same comparison groups, we found no significant 347 

difference in instrument strength (Fig. S7C, S8C, if anything slightly stronger instrument was 348 

observed in failed tests) and found only slightly higher noise level in the failed MR tests (Fig. 349 

S7B and S8B; t-test P = 0.026 and P= 0.013 respectively).  The estimated small causal effects 350 

from the failed tests indicate that either we are observing weak effects that are obscured by the 351 

slightly elevated noise level (false negatives) or a lack of true causal effects, or a mixture of the 352 

two. In other words, some of these risk genes are likely to be driven by specific QTL types. Case 353 

in point, we found SF3B1 to have similar patterns in p value distributions between eQTLs and 354 

SCZ GWAS but no clear QTL signals in either ribo-seq or proteomics data (Fig. 4C, Fig. 4D).  355 

Discussion  356 

Using a panel of postmortem prefrontal cortex samples, we found clear evidence of post-357 

transcriptional attenuation of eQTL effects in the human brain. Many of the differences found 358 

between individual brain transcriptomes were not present between individual brain proteomes. 359 

This observation echoes earlier work in HapMap lymphoblastoid cell lines (19) and extends the 360 

prior conclusion from in vitro cell lines to complex human tissues. Importantly, distinct from the 361 

earlier work in lymphoblastoid cell lines, which found translation to mostly track with 362 

transcription, we found clear attenuation of eQTL effect in ribo-seq data indicating that 363 

translational regulatory processes are involved in eQTL effect attenuation in the human brain. 364 
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Prevalent translational attenuation of variant impact on transcriptional gene expression level has 365 

previously been reported in budding yeast (45, 46). However, results from follow up studies (47) 366 

appear to present an inconsistent picture. Here, using replication tests for individual eQTLs and 367 

testing for aggregate effect size of eQTLs independently identified from CMC, we provided 368 

strong evidences supporting prevalent translational attenuation of eQTL effects in the human 369 

brain. Although operating at the molecular level, our study remained observational. Omics-370 

specific features could potentially confound the results. Future work replicating this observation 371 

and elucidating molecular mechanisms of translational attenuation of eQTL effects are needed to 372 

provide a clear understanding of the phenomenon.    373 

Following this observation, our current work focuses on the important question of whether the 374 

attenuated eQTLs are functionally (biologically) relevant. We attempted to address this question 375 

by exploring the relevance of attenuated eQTLs in SCZ, a neuropsychiatric disorder that is highly 376 

heritable. We took two approaches to identify risk genes that have either omics-specific QTL 377 

signals or attenuated eQTLs. In the first approach, we used PrediXcan to aggregate variant impact 378 

at the gene level in order to identify omics-specific risk genes. Our method is distinct from 379 

published work on omics-specific QTLs that took a SNP-based approach (19). Using a gene-380 

based approach, we aimed to increase the interpretability of the results and decrease the challenge 381 

of the needle in the haystack problem. Indeed, our approach reduced our search space to 1,354 382 

genes, and among these genes we identified 228 omics-specific QTL genes. By limiting our 383 

search to the most confident set of omics-specific QTL genes, we identified three clear examples 384 

of esQTLs that show strong colocalization with SCZ GWAS signals. At the same time, the 385 

limited number of discoveries put certain constraints on our ability to investigate the properties of 386 

esQTLs in the context of SCZ disease risk. It is expected that larger samples would reveal more 387 

esQTLs and enable deep mechanistic investigation. 388 
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 In the second approach, we expanded our search by first identified risk genes from all quantitated 389 

genes using a TWAS approach, S-PrediXcan method. We then replicated the TWAS risk genes 390 

using two-sample Mendelian Randomization with Egger intercept tests. While the majority of the 391 

TWAS risk genes were replicated in two-sample Mendelian Randomization tests, of the minority 392 

that failed the MR tests most failed because of the Egger intercept test. Our results, therefore, 393 

clearly confirmed the need of controlling for potential horizontal pleiotropy in TWAS studies 394 

(41). About 34% of the risk genes that we identified here have not been previously reported as 395 

SCZ risk genes. These novel SCZ risk genes tend to have weak GWAS signals and are therefore 396 

challenging to identify without the help of functional genomics data (see Fig. 3D for an example). 397 

To identify causal regulatory mechanisms for each replicated risk gene, we further tested 398 

causality between QTL types using one-sample MR. We found 17 risk genes that are likely 399 

contributing to SCZ risk through transcriptionally regulated protein level. On the other hand, we 400 

also identify 8 genes that show no significant MR tests (candidate omics-specific risk genes) and 401 

27 genes that have significant MR test results only from transcription to translation (candidate 402 

post-translationally-attenuated risk genes).  403 

In essence, attempts to identify esQTLs (or any omics-specific QTLs) are dealing with the 404 

challenge of separating true negatives from false negatives. While we applied very conservative 405 

criteria to identify esQTLs and performed subsequent evaluations, such caveat is important to 406 

keep in mind when interpreting our results.  Similarly, the interpretation of the failed MR tests is 407 

challenging. Our subsequent analyses looking at comparing instrument strength, noise level, and 408 

effect size between passed and failed MR tests, indicated comparable instrument strength, slightly 409 

elevated noise level in the failed tests, and clearly smaller effect size in the failed tests. In other 410 

words, the failed tests are reflecting either a smaller effect size obscured by noise in the data, or a 411 

true lack of causal effect, or possibly a mixture of both. In addition to the issues with false 412 

negative results in replication omics types, some of the omics-specific QTL discoveries could be 413 
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false positives. Although we have good confidence with our FDR and FWER estimates, given 414 

that our test statistics for QTL mapping and risk gene identification are well calibrated (Fig. S2, 415 

S5), pleiotropy could introduce positive results from a different underlying cause (i.e. true effects 416 

on SCZ risk but false positive risk genes).  417 

Power issues, however, do not explain the whole story. As was consistently observed throughout 418 

our study, when viewed in aggregate, we see clear effect size differences between omics types, 419 

both for QTLs and for causal effects from MR tests. These effect size estimates are not influenced 420 

by significance cutoffs and are not biased by power differences. Such general trends are also 421 

unlikely to simply be a result of spurious associations or made up entirely of false positives. Our 422 

results therefore bring forth an interesting mechanistic question: how do attenuated eQTL variants 423 

impact SCZ without changing protein levels? One interesting possibility is that the biologically 424 

relevant traits here are translation efficiency (i.e. protein synthesis rates) and protein turnover 425 

rates. For example, an association between genotype and translation efficiency could manifest in 426 

the form of an attenuated eQTL, where the differences in translation rate appears to offset the 427 

differences introduced at the transcript level, which in turn resulted in a lack of association 428 

between eQTL SNP genotype and ribosome occupancy level. In other words, the colocalization 429 

between an attenuated eQTL and GWAS signal could be reflecting a colocalization of GWAS 430 

signal with a translation efficiency QTL. Similarly a protein turnover QTL could also manifest in 431 

the form of a rQTL attenuated at the protein level. This hypothesis would predict additional 432 

linked regulatory variants (i.e. linked to the attenuated eQTLs) that impact translation efficiency 433 

or protein turnover rates. Moreover, the effect at the protein level may be missed at the pQTL due 434 

to technical issues specific to proteomics. We hope by presenting the current results, our findings 435 

can inspire future studies on this topic to understand the detailed regulation processes from DNA 436 

to RNA, protein and diseases. 437 
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Materials and Methods 438 

Data sources 439 

The SNP genotypes (21), RNA-Seq (28), and quantitative mass spectrometry (21) data generated 440 

for prefrontal cortex tissue samples of the BrainGVEX cohort were downloaded from the 441 

PsychENCODE Synapse portal (https://www.synapse.org/#!Synapse:syn5613798) (See Table 442 

S10 for a summary on the number of samples in each dataset and their respective overlap with the 443 

samples in the genotype data). The BrainGVEX cohort includes 420 Caucasians, 2 Hispanics, 1 444 

African American, 3 Asian Americans, and 14 unknown-origin individuals. We also used PGC3 445 

SCZ GWAS summary statistics data obtained from the Psychiatric Genomics Consortium (17).  446 

Ribosome profiling 447 

Ribosome Profiling experiments were performed using Illumina’s TrueSeq Ribo Profile 448 

(Mammalian) Kit. TrueSeq Ribo Profile (Mammalian) Kit was developed for cell lines. We 449 

adapted the protocol to frozen tissue samples with MP Biomedicals™ FastPrep-24™ Classic 450 

Bead Beating Grinder and Lysis System. Specifically, 60-80 mg of frozen brain tissue was 451 

homogenized in Lysing Matrix D tubes containing 800 µl polysome lysis buffer. The Lysing 452 

tubes were placed on the FastPrep-24™ homogenizer set at 4.0 m/s with 20 s increments until no 453 

visible chunks of tissue remained. Tissue lysate was incubated on ice for 10 min followed by 454 

centrifugation at 20,000g at 4 C for 10 minutes to pellet cell debris. Clarified lysate was 455 

subsequently used for ribo-seq library preparation following TrueSeq Ribo Profile (Mammalian) 456 

Kit instructions. Indexed libraries were pooled and then sequenced on an Illumina HiSeq 4000. 457 

Note that the experimental protocol for TrueSeq Ribo Profile (Mammalian) Kit that we followed 458 

is a modified version of the previous ribo-seq protocol published by Ingolia and colleagues (25), 459 

and it has the following key modifications: Monosome isolation was performed using Sephacryl 460 
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S400 spin columns (GE; 27–5140-01) on a tabletop centrifuge instead of ultra-high speed 461 

centrifugation in sucrose cushion. Ribosomal RNA depletion was carried out by using Ribo-Zero 462 

Magnetic Kits and this step is moved up to right after the monosomal RNA isolation step and 463 

before the Ribosome Protected Fragment gel isolation step. 464 

Data processing, gene expression quantification, and normalization 465 

For RNA-Seq data, we obtained the FASTQ raw data from the PsychENCODE BrainGVEX 466 

project (https://www.synapse.org/#!Synapse:syn5613798). Then we used cutadapt (v1.12) to trim 467 

adapter for raw reads with code “cutadapt –minimum-length=5 –quality-base=33 -q 30 -a 468 

AGATCGGAAGAGCACACGTCTGAACTCCAGTCA -A 469 

AGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGT”. Then we mapped trimmed reads onto 470 

GENCODE Release 19 (GRCh37.p13) genome with same version’s GTF by STAR (v2.4.2a). 471 

Then we used RSEM software (v1.2.29) to quantify the read counts for each gene (48). The cpm 472 

function in the R package “limma” was used to calculate the log-transformed counts per million 473 

(CPM). We filtered out the genes with CPM < 1 in more than 75% samples and the samples with 474 

network connectivity (49) z score < -5 (Fig. S9), which resulted in a total of 17,207 genes from 475 

426 samples in the quantification table. We then used normalize.quantiles function in the R 476 

package “preprocessCore” (50) to normalize expression level for each sample. We used DRAMS 477 

software to detect and correct mixed-up samples (41), which resulted in final 423 samples. 478 

For ribo-seq data, we used cutadapt (v1.12) to trim adapter for raw reads with code “cutadapt -a 479 

AGATCGGAAGAGCACACGTCT –quality-base=33 –minimum-length=25 –discard-480 

untrimmed”. The trimmed reads were then mapped against a FASTA file of rRNA, tRNA, and 481 

snoRNA sequence using bowtie2 (52) to filter out uninformative reads. The filtered reads were 482 

mapped to GENCODE Release 19 (GRCh37.p13) genome with corresponding transcript model 483 
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GTF file using STAR (v2.4.2a). The uniquely mapped reads, as defined by the “NH:i:1” flag of 484 

the alignment files, were kept for subsequent analysis. We used the featureCounts function in the 485 

R package “subreads” (53) to calculate gene level read counts for ribosome occupancy. The cpm 486 

function in the R package “limma” was used to calculate log-transformed CPM value. We filtered 487 

out genes with CPM < 1 in more than 75% samples and the samples with network connectivity 488 

(49) z score < -3.5 (Fig. S10), which resulted in a total of 15,171 genes quantitated from 209 489 

samples in the quantification table. We then used the normalize.quantiles function in the R 490 

package “preprocessCore” (50) to normalize ribosome occupancy level for each sample. We used 491 

DRAMS software to detect and correct mixed-up samples (51), which resulted in 199 samples. 492 

For quantitative mass spectrometry data, we obtained protein quantification table from the 493 

PsychENCODE BrainGVEX Synapse portal (https://www.synapse.org/#!Synapse:syn5613798). 494 

This table includes abundance quantification for 11,572 proteins from 268 samples. The data 495 

processing steps for producing the mass spectrometry quantification table is detailed in Luo et al. 496 

(21). We further log-transformed protein abundance for each sample. We filtered out genes with 497 

log-transformed protein abundance < 1 in more than 75% samples and the samples with network 498 

connectivity (49) z score < -6, and found no gene and sample were filtered out. We then used the  499 

normalize.quantiles function in the R package “preprocessCore” (50) to normalize protein level 500 

for each sample. We used DRAMS software to detect and correct mixed-up samples (51), which 501 

found no mixed-up samples. We matched the protein ID to gene ID according to the UCSC 502 

database of hg19 version, which resulted in 8,330 genes.   503 

QTL mapping 504 

Estimating and adjusting for unwanted factors 505 
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We used the R package “PEER” (54) to estimate hidden factors for RNA-Seq, ribo-seq, and 506 

quantitative mass spectrometry data separately. The principle of selecting unwanted hidden 507 

factors was to maximize the variance explained with the least number of factors. We identified 508 

30, 29, and 19 hidden factors to remove from RNA-Seq, ribo-seq, and mass spectrometry data, 509 

respectively (Fig. S11). For each gene from each omics type, we adjusted the expression level by 510 

fitting the selected hidden factors as predictors in a linear model and taking the residuals as the 511 

adjusted expression level. The adjusted expression levels were then further centered by mean and 512 

scaled by standard deviation. 513 

Genotype association tests 514 

We identified cis-region expression QTLs (cis-eQTLs), ribo-seq QTLs (cis-rQTLs), and protein 515 

QTLs (cis-pQTLs) separately using QTLTools (1.3.1) (55). Because each gene can encode 516 

several protein isoforms, we selected the protein isoform with the highest median abundance as 517 

the representative protein. For each gene, we defined cis-region as the region ranging from 1Mb 518 

upstream of the 5’ end of the gene to 1Mb downstream of the 3’ end of the gene (i.e. the length of 519 

the gene body plus 2 Mb in size). We tested all common SNPs (MAF > 0.05) within the cis-520 

region using 10,000 permutations to create empirical null distributions and used the beta-521 

approximation approach implemented in QTLTools to estimate the empirical p values. For each 522 

gene, we selected the SNP with the most significant empirical p value from the genotype-523 

expression level association tests to represent the QTL signal. To calculate a genome-wide FDR, 524 

we used the qvalue function of the R package “qvalue” for multiple testing correction and set a 525 

qvalue < 0.1 (i.e. 10% FDR) cutoff to identify significant QTLs.  526 

Estimating mediated SCZ heritability of each omics 527 
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We used MESC to estimate the proportion of SCZ heritability mediated by different omics (32). 528 

In the first step, we calculated the overall expression score using the unwanted-factor-adjusted-529 

expression data (see QTL mapping section) as the individual-level gene expression data with the 530 

corresponding BrainGVEX genotype data and the 1000 genome phase 3 genotype data as the 531 

ancestry matched genotype data for GWAS. In the second step, we used the overall expression 532 

score calculated in the previous step and PGC3 SCZ GWAS summary statistics to estimate SCZ 533 

heritability mediated by each omics. 534 

Identifying omics-shared and omics-specific QTL genes 535 

Building PrediXcan gene expression prediction models 536 

We used the PrediXcan software (13) to separately build gene expression prediction models for 537 

RNA-Seq, ribo-seq, and quantitative mass spectrometry. For each gene, an Elastic Net algorithm 538 

was used for feature selection from SNPs located within the cis-region defined for each gene (i.e. 539 

gene body +/- 1Mb flanking regions) based on results from a ten-fold cross-validation. After that, 540 

weights were produced for every selected SNP of each gene, which were used in the prediction 541 

models. For each gene, we calculated the Pearson correlation between predicted and observed 542 

gene expression (Cross-validation R, Rcv), which was considered as a metric for prediction 543 

accuracy. Only the genes with Rcv > 0.1 and P < 0.05 were retained. We produced prediction 544 

models for the unified set of 7,458 genes and 185 samples shared across omics. 545 

Building conditionally independent prediction models 546 

To identify omics-shared and omics-specific QTL genes among different omics, we built 547 

conditionally independent prediction models for each omics. For each gene, we regressed from 548 

the data the genetic regulation signals of all other omics types (i.e. the imputed quantification 549 
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level of all other omics types). The models were built based on the regressed expression (i.e. the 550 

residual from the regression). Note that because in many cases multiple protein isoform 551 

quantifications match to one gene, when building model for gene-based quantification omics 552 

types, such as mRNA and ribosome occupancy, we aggregate data across all protein isoforms for 553 

each gene. In contrast, when building model for protein data, quantifications between isoforms 554 

were kept separate.  555 

More specifically, assuming a total of p omics types, we took the following steps to identify 556 

shared-QTL genes and to define omics-specific QTL genes: 557 

Step 1: For each gene and each omics type, we built original prediction models using equation 1 558 

                                                             𝐸௞ = ∑ 𝑤௜
௡
௜ୀ଴ 𝑆௜ + 𝜀,                                                      (1)            559 

where 𝐸௞ denotes the observed expression of omics type k; 𝑤௜ denotes the weight of the i-th SNP 560 

𝑆௜; n denotes the number of SNPs selected by the elastic net. 561 

We can calculate the imputed expression with genotype data: 𝐸௞
෢ = ∑ 𝑤௜

௡
௜ୀ଴ 𝑆௜.  562 

Step 2: For each gene in omics type k, we regressed out the imputed expression on the same gene 563 

of all the other omics types from the observed expression using equation 2 and kept the residual 564 

                                         𝐸௞ =  𝛽ଵ𝐸ଵ
෢ + 𝛽ଶ𝐸ଶ

෢ + ⋯ + 𝛽  
௟ିଵ 

𝐸௟ିଵ
෣ + 𝑒௞ ,                                       (2)                                                                            565 

where 𝛽௟ denotes slope of the l-th other omics types, 𝐸௟
෡  denotes the imputed expression of the l-th 566 

other omics types, and 𝑒௞ denotes the residual for omics type k. Then, the expression value 567 

conditioning on the genetic regulation of all the other omics types (𝑅௞) can be represented as the 568 
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sum of mean expression across genes (𝐸௞) and the residual (𝑒௞). Step 3: After that, we built the 569 

conditional prediction models and estimated the SNP-weights parameters) using equation 3. 570 

                                                       𝑅௞ = ∑ 𝑚௜
௡
௜ୀ଴ 𝑆௜ + 𝜀,                                                          (3) 571 

where 𝑚௜ is the weight of i-th SNP 𝑆௜ for the conditional prediction model. 572 

Step 3: We calculated the square of correlation of imputed gene expression between the original 573 

model and conditional model and named it as observed Rc
2. 574 

Step 4: To determine whether a gene share genetic regulation signals with other omics types, we 575 

used permutation to create a null distribution of Rc
2. We permuted the sample label for imputed 576 

expression of the other omics types, and repeated step 2to build the conditional prediction model 577 

using permuted data, which we named conditional permutation model. We then calculated 578 

permutation Rc
2 of imputed gene expression between the original model and conditional 579 

permutation model. 580 

Step 5: We performed 50 permutations and calculated empirical p values of the observed Rc
2 581 

based on its rank among the permutation Rc
2 (i.e. ordered from the smallest to the greatest). 582 

Step 6: We used Benjamini-Hochberg control procedure to adjust the empirical p values to 583 

calculate FDR for shared-QTL genes. 584 

Step 7: We defined omics-specific QTL genes as genes with FDR > 0.1 and Rc
2 >0.9, and the 585 

omics-shared QTL genes as genes with FDR <0.1 and Rc
2 <0.5. 586 

Colocalization  587 
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We used coloc (11) to detect signal colocalization between SCZ GWAS and each QTL type at the 588 

cis-region of each QTL gene. For each QTL gene, for all common SNPs (MAF > 0.05) within the 589 

cis-region, we use QTL effects and GWAS summary statistics as input for coloc analysis. For 590 

QTL effects, we calculated slope and square of slope’ standard error from a linear model fit using 591 

SNP genotype as the predictor of gene quantifications. We then used the coloc.abf function in the 592 

R package “coloc” (11) to calculate the posterior possibility of each hypothesis using the default 593 

prior. We use posterior probability of 70% for the colocalization hypothesis (i.e. PPH4) as the 594 

cutoff for reporting our colocalization findings.  595 

TWAS identification of SCZ risk genes 596 

Gene-level association tests were performed for SCZ using S-PrediXcan (33) based on the 597 

prediction models built using our omics data, which is described in the “building prediction 598 

models” section, and the SCZ GWAS summary statistics data from PGC3 (17). The association 599 

tests were done separately for each omics. For protein data, we performed omnibus test to 600 

incorporate p values of all protein isoforms together to calculate a single p value for the 601 

corresponding gene. The family wise error rates for SCZ risk genes were calculated using 602 

Bonferroni correction of nominal p values.  603 

Two-sample Mendelian randomization (MR) 604 

To identify causal relationships between each omics type and SCZ we used MR analysis. Here we 605 

used fine mapped QTL SNPs as instruments, gene expression quantification at each omics type as 606 

exposure, and SCZ GWAS signal as outcome.  607 

More specifically, we took the following steps to test for causal relationship between gene 608 

regulation at each omics level and SCZ:  609 
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Step 1: Here we used two methods of selecting instrument SNPs. For each gene of each QTL 610 

type, we performed LD clumping by PLINK with “–clump-kb 1000 –clump-r2 0.5” parameters to 611 

select instrument SNPs with p value < 0.05. Another method is fine-mapping by susie_rss() 612 

function with default parameters in R package “SuSiE” (44).  613 

Step 2: For each gene, we used harmonise_data() function in R package “TwoSampleMR” (56) to 614 

harmonize QTLs of each omics type and SCZ GWAS SNPs to be in the same direction (i.e. effect 615 

relative to the same allele). 616 

Step 3: We then performed two-sample MR for each gene in each omics type separately. Two-617 

sample MR analysis was done using mr() function, which includes IVW and Egger methods, in 618 

the R package “TwoSampleMR” (56). 619 

Step 4: We used the intercept test (i.e. the Egger method) to test for horizontal pleiotropy, and 620 

used predictor coefficient and its corresponding p value from IVW to determine the effect size 621 

and significance of causal effects for each omics type on SCZ. 622 

Step 5: We used Benjamini-Hochberg to adjust for multiple testing. 623 

Step 6: We define a gene by omics type combination as causal for SCZ if the causal effect test 624 

passed the FDR < 0.1 cutoff and the Egger intercept test passed the intercept p value > 0.05 625 

cutoff. 626 

One-sample Mendelian randomization 627 

For one-sample MR we used two-stage least squares (2SLS) approach to find causal relationships 628 

between omics types. We performed the following analysis in two iterations, both following the 629 

direction of genetic information flow. In the first iteration, we tested causal relationships between 630 
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transcript level and ribosome occupancy level (i.e. mRNA -> ribosome occupancy). In the second 631 

iteration, we tested causal relationships between ribosome occupancy level and protein level (i.e. 632 

ribosome occupancy -> protein). 633 

Step 1: We used the same two methods for instrument SNP selection as described in the previous 634 

section. Here we tested two pathways (mRNA -> ribosome occupancy and ribosome occupancy -635 

> protein). For mRNA -> ribosome occupancy, we used the SNPs of eQTL with p value < 0.05 636 

and LD clumping by PLINK with “–clump-kb 1000 –clump-r2 0.5” parameters. For ribosome 637 

occupancy -> protein, we used the SNPs of rQTL with p value < 0.05 and LD clumping by 638 

PLINK with “–clump-kb 1000 –clump-r2 0.5”.    639 

Step 2: We then combined genotype and quantification data of the relevant omics types into a 640 

dataframe: datmr for mRNA -> ribosome occupancy pathway, datrp for ribosome occupancy -> 641 

protein pathway.  642 

Step 3: For each gene, we then set formula in R package “ivreg”: ivreg(“ribosome occupancy ~ 643 

mRNA | SNP1+SNP2+SNP3+…+SNPn”, data = datmr) and ivreg(“protein ~ ribosome occupancy | 644 

SNP1+SNP2+SNP3+…+SNPm”, data = datrp). 645 

Step 4: We used the summary() function to get slope, p value of slope, intercept, p value of 646 

intercept, F-statistic and p value of F-statistic of each ivreg object. P value of Intercept was used 647 

to test horizontal pleiotropy, F-statistic was used to check instrument strength. 648 

Step 5: We used Benjamini-Hochberg control procedure to adjust for multiple testing. 649 

Step 6: We defined a causal relationship for each gene by pathway combination as the causal 650 

effect test passed the FDR < 0.1 cutoff and the Egger intercept test passed the intercept p value > 651 

0.05 cutoff. 652 
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 968 

 969 

Fig. 1. Genetic regulation of gene expression in the human brain. (A) P-value quantile-970 

quantile plot between the observed (Y-axis) and the expected based on null distribution (X-axis). 971 

The black line indicates the expected distribution of p values when there are no real QTL signals. 972 

The number of cis-QTLs (i.e. the most significantly associated SNP for each gene) identified at 973 

10% FDR is labeled in the top left inset. (B) Replication rate between QTL types. Proportions of 974 

QTLs replicated in the other two omics types are listed in the 3X3 matrix. Each row is a discovery 975 

omics type and each element of the row correspond to the proportion QTL signals replicated in 976 

the omics type specified by the column label. For example, only 34% of the eQTL signals were 977 

replicated in the protein data. (C) Effect size of CMC eQTL SNPs in BrainGVEX data. Mean and 978 
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95% confidence interval of absolute per allele effect across all CMC eQTL SNPs that were also 979 

analyzed in the BrainGVEX union set is shown.  980 
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 981 

 982 

Fig. 2. Signal colocalization between schizophrenia GWAS and omics-specific QTLs. (A, C) 983 

Boxplots summarizing normalized gene expression level stratified by QTL genotypes for 984 

CCDC117 esQTLs (A) and UGGT2 rsQTLs (C). (B, D) Manhattan plots showing p value 985 

distribution for each QTL type and schizophrenia GWAS for the 1Mb QTL mapping window 986 

flanking CCDC117 (B) and UGGT2 (D). The red line indicates the position of the lead 987 

colocalization SNP between omics-specific QTLs and schizophrenia GWAS. 988 
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 990 

  991 

Fig. 3. Schizophrenia risk genes identified from each of the three omics types RNA-Seq 992 

(mRNA), ribo-seq (ribosome occupancy), and proteomics (protein) using S-PrediXcan. (A) 993 

Manhattan plots showing significance level (i.e. -log10 FWER from S-PrediXcan) of gene-994 

schizophrenia association across the genome for genes that pass the 5% FWER significance 995 

cutoff. The black horizontal dotted line indicated the significance cutoff. Risk genes are color-996 

coded according to the MR test results. Grey asterisks mark the risk genes that failed the two-997 

sample MR tests; dark red solid circle marks the risk genes that pass both one-sample MR tests 998 

(passing both one-sample MR tests suggest that transcriptionally regulated protein level 999 

differences between individuals drives the disease risk); blue triangle marks the risk genes that 1000 

pass one of the two one-sample MR tests; orange rectangle marks the risk genes that failed both 1001 
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one-sample MR tests. (B) Venn diagram illustrating the number and corresponding percentage of 1002 

overlapping risk genes between omics types. (C) Boxplots summarizing normalized gene 1003 

expression level stratified by eQTL genotypes for KHK. (D) Manhattan plots showing p value 1004 

distribution for each QTL type and schizophrenia GWAS for the 1Mb QTL mapping window 1005 

flanking KHK. The red line indicates the position of the lead colocalization SNP between eQTLs 1006 

and schizophrenia GWAS. 1007 
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 1009 

  1010 

Fig. 4. Signal colocalization between schizophrenia GWAS and eQTLs of example risk 1011 

genes. (A, C) Boxplots summarizing normalized gene expression level stratified by QTL 1012 

genotypes for NEK4 eQTLs (A) and SF3B1 eQTLs (C). (B, D) Manhattan plots showing p value 1013 

distribution for each QTL type and schizophrenia GWAS for the 1Mb QTL mapping window 1014 

flanking NEK4 (B) and SF3B1 (D). The red line indicates the position of the colocalization lead 1015 

SNP between eQTLs and schizophrenia GWAS. 1016 
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