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Abstract/Introduction

Inter-organ communication is a vital process to maintain physiologic homeostasis, and its
dysregulation contributes to many human diseases. Beginning with the discovery of insulin over
a century ago, characterization of molecules responsible for signal between tissues has required
careful and elegant experimentation where these observations have been integral to deciphering
physiology and disease. Given that circulating bioactive factors are stable in serum, occur
naturally, and are easily assayed from blood, they present obvious focal molecules for
therapeutic intervention and biomarker development. For example, physiologic dissection of the
actions of soluble proteins such as proprotein convertase subtilisin/kexin type 9 (PCSK9) and
glucagon-like peptide 1 (GLPI) have yielded among the most promising therapeutics to treat
cardiovascular disease and obesity, respectively' ™. A major obstacle in the characterization of
such soluble factors is that defining their tissues and pathways of action requires extensive
experimental testing in cells and animal models. Recently, studies have shown that secreted
proteins mediating inter-tissue signaling could be identified by “brute-force” surveys of all genes
within RNA-sequencing measures across tissues within a population® . Expanding on this
intuition, we reasoned that parallel strategies could be used to understand how individual genes
mediate signaling across metabolic tissues through correlative analyses of gene variation
between individuals. Thus, comparison of quantitative levels of gene expression relationships
between organs in a population could aid in understanding cross-organ signaling. Here, we
surveyed gene-gene correlation structure across 18 metabolic tissues in 310 human individuals
and 7 tissues in 103 diverse strains of mice fed a normal chow or HFHS diet. Variation of genes
such as FGF21, ADIPOQ, GCG and IL6 showed enrichments which recapitulate experimental
observations. Further, similar analyses were applied to explore both within-tissue signaling
mechanisms (liver PCSK9) as well as genes encoding enzymes producing metabolites (adipose
PNPLA2), where inter-individual correlation structure aligned with known roles for these critical
metabolic pathways. Examination of sex hormone receptor correlations in mice highlighted the
difference of tissue-specific variation in relationships with metabolic traits. We refer to this
resource as Gene-Derived Correlations Across Tissues (GD-CAT) where all tools and data are
built into a web portal enabling users to perform these analyses without a single line of code
(gdcat.org). This resource enables querying of any gene in any tissue to find correlated patterns
of genes, cell types, pathways and network architectures across metabolic organs.

Results

Construction of a web tool to survey transcript correlations across tissues and individuals (GD-
CAT) — Previous studies have established that “brute force” analyses of correlation structure across
tissues from population expression data can identify new several known and mechanisms of organ
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87  cross-talk. These were accomplished by surveying the global correlation structure using all genes,
88  whereby skewed upper-limits of significance distributions were sufficient to prioritize proteins
89  which elicit signaling”®. Following this intuition, we hypothesized that a paralleled but alternative
90 approach to inter-individual correlation structure could be exploited to understand the functional
91 consequences of specific genes. Our initial goal was to establish a user-friendly interface where
92  all of these analyses and gene-centric queries could be performed without running any code. To
93  accomplish this, we assembled a complete analysis pipeline (Fig 1A) as a shiny-app and docker
94  image hosted in a freely-available web address (gdcat.org). Here, users can readily-search gene
95 correlation structure between individuals from filtered human (gene-by-tissue expression project
96 - GTEx) and mouse (hybrid mouse diversity panel - HMDP) across tissues. GTEXx is presently the
97  most comprehensive pan-tissue dataset in humans'®, which was filtered for individuals where most
98  metabolic tissues were sequenced’. Collectively, this dataset contains 310 individuals, consisting
99 of 210 male and 100 female (self-reported) subjects between the ages of 20-79. Data from the
100 HMDP consisted of 96 diverse mouse strains fed a normal chow (5 tissues) or high-fat/high-
101  sucrose diet (7 tissues) as well as carefully characterized clinical traits !'"1¢. Initially, users select
102  a given species, followed by reported sex or diet (mouse) which loads the specified environment.
103  Subsequent downstream analyses are then implemented accordingly from a specific gene in a
104  given tissue.. This selection prompts individual gene correlations across all other gene-tissue
105  combinations using biweight midcorrelation'’. From these charts, users are able to select a given
106  tissue, where gene set enrichment analysis testing using clusterprofiler'® and enrichR '° are applied
107  to the correlated set of genes to determine the positively (activated) and negatively (suppressed)
108  pathways which occur in each tissue. In addition to general queries of gene ~ gene correlation
109  structure, comparison of expression changes are also visualized between age groups as well as
110  reported sexes. In addition, we included the top cell-type abundance correlations with each gene.
111 To compute cell abundance estimates from the same individuals, we used single-nucleus RNA-
112 seq available from GTEx* and applied cellular deconvolution methods to the bulk RNA-seq?!
113 (methods). Comparison of deconvolution methods®! showed that DeconRNASeq?? captured the
114  most cell types within several tissues (Supplemental Figures 1-3) and therefore was applied to all
115  tissues where sn-RNA-seq was available. We note that visceral adipose, subcutaneous adipose,
116  aortic artery, coronary artery, transverse colon, sigmoid colon, the heart left ventricle, the kidney
117  cortex, liver, lung, skeletal muscle, spleen, and small intestine are the only tissues where sn-seq is
118  available and not other tissues, such as brain, stomach and thyroid.
119 We initially examined pan-tissue transcript correlation structures for several well-established
120  mechanisms of tissue crosstalk via secreted proteins which contribute to metabolic homeostasis.
121 Here, binning of the significant tissues and pathways related to each of these established secreted
122 proteins resembled their known mechanisms of action (Fig 1B-E). For example, variation with
123 subcutaneous adipose expression of ADIPOQ was enriched with genes in several metabolic tissues
124  where it has been known to act (Fig 1B, left). In particular, subcutaneous adipose 4ADIPOQ
125  expression correlated with fatty acid oxidative process within adipose (Fig 1B, middle) and was
126  enriched with ECM, chemotaxis and ribosomal biogenesis in skeletal muscle (Fig 1B, right).
127  These correlated pathways align with the established physiologic roles of the protein in that fat
128  secreted adiponectin when oxidation is stimulated®*-* and muscle is a major site of action®.
129 Beyond adiponectin, inter-individual correlation structure additionally recapitulated broad
130  signaling mechanisms for other relevant endocrine proteins. For example, intestinal GCG
131  (encoding GLP1, Fig 1C), liver FGF21 (Fig 1D) and skeletal muscle /L6 (Fig 1E) showed binning
132  patterns and pathway enrichments related to their known functions in pancreas'?, adipose
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133 tissue’’?® and other metabolic organs®’, respectively. These analyses and web tool show some

134  examples of exploring transcriptional correlation structure to confirm and identify mechanisms of
135  signaling, where we note that additional limitations should be considered.

136

137  Pathway-based examination of gene correlation structure and significance thresholds across
138  tissues - While the select observations shown in Figl provide examples of support in exploring
139  correlation structure of genes across interindividual differences to investigate endocrinology,
140  several limitations in these analyses should be considered. First, an additional explanation for a
141  given gene showing strong correlation between the tissues could arise from a general pattern of
142 correlation between the two tissues and not necessarily due to the discrete signaling mechanisms.
143 In previous studies surveying correlation structure and network model architectures in the HMDP
144  and STARNET populations, genes appeared generally stronger correlated between liver and
145  adipose tissue compared to all other organ combinations explored®”’. To investigate this global
146  pattern of gene correlation structure between metabolic organs, we selected key GO terms, KEGG
147  pathways and randomly sampled equal numbers of genes and evaluated relative significance of
148 inter-tissue correlations across multiple statistical thresholds. These analyses suggested that usage
149  of empirical student correlation pvalues recapitulated a clear pattern of inter-tissue correlations
150  between pathways (Fig 2). For example, comparison of the number of genes achieving
151  significance of correlation between tissues among select GO terms revealed that tissues such as
152  adipose and muscle appeared more correlated than spleen and other tissues at pvalues less than le-
153 3 (Fig 2A, left column). These global patterns of gene correlation between tissues among select
154  pathways were reduced when the pvalue threshold was lowered to 1e-6 (Fig 2A, middle column)
155  or qvalue adjustments (methods) were performed (Fig 2A, right two columns). For these reasons,
156  only qvalue adjusted value were used and implemented into pie charts providing the tissue-specific
157  occurrences of correlated genes at 3 thresholds (gq<0.1, g<0.01, g<0.001) within the web tool.
158  Next, in order to further evaluate these global patterns of innate transcript correlation structure and
159  determine whether they reflected concordance between known metabolic pathways or innate to
160 the dataset used, tissues were rank-ordered by the number of genes which meet pvalue thresholds
161  and compared to randomly sampled genes of similar pathway sized (Fig 2B). Among KEGG
162  Pathways selects (hsa04062 — Chemokine signaling pathway, hsa04640 — Hematopoietic cell
163  lineage and hsa00190 — Oxidative phosphorylation), the top-ranked organs by correlated gene
164  numbers differed (Skeletal muscle, Colon and Thyroid, respectively); however, a general trend of
165  specific tissues ranking higher than others were observed (Fig 2B). For example, skeletal muscle
166  and heart appeared among the strongest correlated across pathways and organs, compared to
167  kidney cortex and spleen which were observed to rank among the lowest (Fig 2B, pathways). We
168  note that when the same analysis was performed on randomly sampled genes from each organ
169  consisting of the same number as genes within each KEGG pathway, these rankings and number
170  of significant correlating genes were no longer observed (Fig 2B, random genes), suggesting that
171  in certain instances differences between organs in general connectivity to others might reflect
172 concordance between known pathways. It is important to consider here that for the organs ranking
173 lower, the lack of relative correlating numbers is likely due to sparsity of available data and not
174  necessarily general patterns of gene correlation. This point is supported by the fact that among the
175  lowest-ranked 33% of tissues across pathways, we observed a significant negative overall
176  correlation (bicor = -0.45, pvalue = 2.3e-5) between number of NA values per individual and the
177  gene count for significance shown in Fig 2B. This negative correlation between missing data and
178  number of significant correlations for pathways across tissues was not observed when binning the
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179  top 33% (bicor = 0.09, pvalue = 0.42) or middle 33% (bicor = -0.12, pvalue = 0.27) of organs.
180  Collectively, these analyses show that innate correlations structures exist between organs which
181  differ depending on pathways investigated and that tissues which don’t show broad correlation
182  structure could potentially be attributed to areas of missing data among GTEx.

183

184  PSCKY signaling and lipid exchange between adipose and muscle apparent in simple network
185  models of correlation structure - Next, we wanted to ask whether our approach of analyzing inter-
186  individual correlation structure across tissue for endocrine proteins was also sufficient to define
187  within-tissue signaling mechanisms or actions of enzymes producing metabolites that signal across
188  organs. Dissimilar to the cross-tissue distributions of significance in Fig 1, the same analysis of
189  liver PCSK9 highlighted exclusively liver genes which were varied together (Fig 2A), in particular
190  those involved in cholesterol metabolism/homeostasis (Fig 2B). Consistent with the established
191  role for PCSK9 as a primary degradation mechanism of LDLR**°, network model construction of
192  correlated genes highlighted the gene as a central node linking cholesterol biosynthetic pathways
193  with those involved in other metabolic pathways such as insulin signaling (Fig 2C). Given that
194  organ signaling via metabolites comprises many critical processes among multicellular organisms,
195  our next goal was to apply this gene-centric analyses to established mechanisms of metabolite
196  signaling. The gene PNPLA2 encodes adipose triglyceride lipase (ATGL) which localizes to
197  lipid droplets and breaks down triglycerides for oxidation or mobilization as free fatty acids for
198  peripheral tissues®'. Variation in expression of PNPLA2 showed highly significant enrichments
199  with beta oxidation pathways in adipose tissue (Fig 2D). Muscle pathways enriched for the gene
200  were represented by sarcomere organization and muscle contraction (Fig 2F). Construction of an
201 undirected network from these expression data placed the gene as a central node between the two
202  tissues, linking regulators of adipose oxidation (Fig 2F, red) to muscle contractile process (Fig 2F,
203  purple) where additional strongly co-correlated genes were implicated as additional candidates
204  (Fig 2F). In sum, these analyses provide two examples of within-liver signaling via PCSK9 and
205  adipose-muscle communication through PNPLA2 where the top-correlated genes and network
206  models recapitulate known mechanisms. Given the utility of these undirected network models, a
207  function in GD-CAT was added to enable users to generate network models for any gene-tissue
208  combination and select parameters such as number of within-tissue and peripheral correlated genes
209  to include.

210

211 Inter-individual correlation analysis of hybrid mouse diversity panel highlights tissue- and diet-
212 specific phenotype relationships with sex hormones - Genetic reference panels in model organisms,
213 such as mice, present appeal in studying complex traits in that environmental conditions can be
214  tightly controlled, tissues and invasive traits readily accessible and the same, often renewable,
215  genetic background can be studied and compared among multiple exposures such as diets or drug
216  treatments '>¥273%  For this resource, we utilized data from the HMDP fed a normal chow!'>'® or
217  HFHS diet for 8 weeks''™!'*. While the number of tissues available was less than in GTEXx, these
218  panels allow for comparison of how gene correlations shift depending on diet. Therefore, queries
219  of gene correlation queries in mice were segregated into either chow or HFHS diet and an
220  additional panel to download a table or visualize the relationship between genes and clinical
221  measures was added. The inferred abundances of cell types from each individual are correlated
222 across user-defined genes, with the bicor coefficient plotted for each cell type.

223 One advantage of hybrid mouse diversity panel data compared to GTEx is the abundance of
224  phenotypic measures available within each cohort. To show the utility of examining correlations
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225  within this reference panel, we selected sex hormone receptors androgen receptor (4r), estrogen
226  receptor alpha (Esrl) or estrogen receptor beta (Esr2) and binned the top 10 phenotypes which
227  were correlated. These analyses were segregated based on where sex hormones were expressed
228  (either liver or adipose tissue) or dietary regiment of the ~100 strains (normal chow or HFHS diet).
229  This analysis demonstrated the difference in relationships between tissue location of sex hormone
230  receptor and dietary context with metabolic traits. For example, expression of A7 in adipose tissue
231  among HMDP mice fed a HFHS diet was negatively correlated with fat mass and body weight
232 traits, whereas expression in liver oppositely correlated with the same traits in a positive direction
233 (Fig 4A). The top traits which correlated also differed by tissue or expression for Ar, such as
234 plasma lipid parameters in adipose tissue compared to blood cell traits in chow-fed mice (Fig 4A).
235  We note that among the three hormone receptors investigated, Esr2 appeared the most consistently
236 correlated between tissues and diets with metabolic traits (Fig 4B). Expression of Esr/ also
237  showed a clear tissue and diet difference in the traits which were the most strongly co-regulated.
238  Under HFHS dietary conditions, a negative correlation with insulin and fat pad weights were
239  observed exclusively with adipose expression, while positive correlations with liver lipids were
240  observed with expression in liver (Fig 4C). These analyses highlight how phenotype correlations
241  in mouse populations can help to determine contexts relevant for gene regulation and point to the
242 diversity of potential contexts relevant for sex hormone receptors in metabolic tissues.

243

244  Discussion

245  Limitations and Conclusions — Here, we provide a new resource to explore correlations across
246  organ gene expression in the context of interindividual differences. We highlight areas where
247  these align with established and relevant mechanisms of physiology and suggest that similar
248  explorations could be used as a discovery tool. Several key limitations should be considered when
249  exploring GD-CAT for mechanisms of inter-tissue signaling though. Primarily, the fact that
250  correlation-based analyses could reflect both causal or reactive patterns of variation. While several
251  statistical methods such as mediation®**® and mendelian randomization®’-*® exist to further refine
252  causal inferences, likely the only definitive method to distinguish is in carefully-designed
253  experimentation. Further, analyses of genetic correlation (ex. correlations considering genetic loci
254  to infer causality) also present appeal in refining some causal mechanisms. Correlation between
255  molecular and phenotypic variables can occur for a variety of reasons, not just between their
256  individual relationships, but often more broadly, from a variety of complex genetic and
257  environmental factors. Further, many correlations tend to be dominated by genes expressed within
258  the same organ. This could be due to the fact that, within-tissue correlations could capture both
259  the pathways regulating expression of a gene, as well as potential consequences of changes in
260  expression/function, and distinguishing between the two presents a significant challenge. For
261  example, a GD-CAT query of insulin (/NS) expression in pancreas shows exclusive enrichments
262  in pancreas and corresponding pathway terms reflect regulatory mechanisms such as secretion and
263  ion transport (Supplemental Fig 4). Representation of given genes may also differ significantly
264  depending on the dataset used. For example, while queries of other tissues for the critical X
265  Inactive Specific Transcript (XIST), in liver no significant correlations appear. This is due to the
266  fact that the gene operates in a sex-dependent manner, where females are significantly less
267 represented in GTEx and liver exists as a sparser tissue compared to others (Fig 2). In addition,
268  the analyses presented are derived from differences in gene expression across individuals which
269  arise from complex interaction of genetic and environmental variables. Expression of a gene and
270  its corresponding protein can show substantial discordances depending on the dataset used. These
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271 have been discussed in detail**~*!, but ranges of co-correlation can vary widely depending on the
272 datasets used and approaches taken. We note that for genes encoding proteins where actions from
273  acute secretion grossly outweigh patterns of gene expression, such as insulin, caution should be
274  taken when interpreting results. As the depth and availability of tissue-specific proteomic levels
275  across diverse individuals continues to increase, an exciting opportunity is presented to explore
276  the applicability of these analyses and identify areas when gene expression is not a sufficient
277  measure. For example, mass-spec proteomics was recently performed on GTEx*?; however, given
278  that these data represent 6 individuals, analyses utilizing well-powered inter-individual
279  correlations such as ours which contain 310 individuals remain limited in applications.

280 The queries provided in GD-CAT use fairly simple linear models to infer organ-organ signaling;
281  however, more sophisticated methods can also be applied in an informative fashion. For example,
282  Koplev et al generated co-expression modules from 9 tissues in the STARNET dataset, where
283  construction of a massive Bayesian network uncovered interactions between correlated modules®.
284  These approaches expanded on analysis of STAGE data to construct network models using
285  WGCNA across tissues and relating these resulting eigenvectors to outcomes*. The generalized
286  approach of constructing cross-tissue gene regulatory modules presents appeal in that genes are
287  able to be viewed in the context of a network with respect to all other gene-tissue combinations.
288  In searching through these types of expanded networks, individuals can identify where the most
289  compelling global relationships occur. One challenge with this type of approach; however, is that
290  coregulated pathways and module members are highly subjective to parameters used to construct
291  GRNs (for example reassignment threshold in WGCNA) and can be difficult in arriving at a
292 “ground truth” for parameter selection. We note that the WGCNA package is also implemented
293  in these analyses, but solely to perform gene-focused correlations using biweight midcorrelation
294  to limit outlier inflation. While the midweight bicorrelation approach to calculate correlations
295  could also be replaced with more sophisticated models, one consideration would be a concern of
296  overfitting models and thus, biasing outcomes.

297 In another notable example MultiCens was developed as a tool to uncover communication
298  between genes and tissues and applied to suggest central processes which exist in multi-layered
299  data relevant for Alzheimer’s disease*. In addition, Jadhav and colleagues adopted a machine
300 learning approach to mine published literature for relationships between hormones and genes®.
301  Further, association mapping of plasma proteomics data has been extensively applied and
302 intersection with genome-wide association disease loci has offered intriguing potential disease
303 mechanisms***’. Another common application to single-cell sequencing data is to search for
304 overrepresentation of known ligand-receptor pairs between cell types*®. These and additional
305 applications to explore tissue communication/coordination present unique strengths and caveats,
306  depending on the specific usage desired. Regardless of methods used to decipher, one important
307 limitation to consider in all these analyses is the nature of underlying data. For example, our
308  evaluation of GTEx data structure suggested that important organs such as spleen and kidney were
309 insufficient due to availability in matching expression data between individuals. Further, GTEx
310 sample vary as to the collection times, sample processing times and other important parameters
311 such as cause of death. Mouse population data such as the HMDP or BxD cohorts offer appeal in
312  these regards, as environmental conditions and collection times are easily fixed. Regardless,
313  careful consideration of how data was generated and normalized are fundamental to interpreting
314  results.

315 In sum we demonstrate that adopting a gene-centric approach to surveying correlation structure
316  of transcripts across organs and individuals can inform mechanism of coordination between
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317  metabolic tissues. Initially, we queried several well-established and key mediators of physiologic
318 homeostasis, such as FGF21, GCG and PCSKY. These approaches are further suggested to be
319  applicable to mechanisms of metabolite signaling, as evident by pan-tissue investigation of adipose
320 PNPLA2. Exploration of hybrid mouse diversity panel data highlighted the diverse phenotype
321  correlations depending on tissue and diet for sex hormone receptors. To facilitate widespread
322 access and use of this transcript isoform-centric analysis of inter-individual correlations, a full
323  suite of analyses such as those performed here can be performed from a lab-hosted server
324  (gdcat.org) or in isolation from a shiny app or docker image.

325

326  Material and methods

327  Availability of web tool and analyses: All analyses, datasets and scripts used to generate the

328 associated web tool (GD-CAT) can be accessed via: https://github.com/mingqizh/GD-CAT or
329  within the associated docker image. In addition, access to the GD-CAT web tool is also available
330 through the web portal gdcat.org. This portal was created to provide a user-friendly interface for
331  accessing and using the GD-CAT tool without the need to download or install any software or
332 packages. Users can simply visit the website, process data and start using the tool.

333  Corresponding tutorial and the other resources were made available to facilitate the utilization of
334  the web tool on GitHub. The interface and server of the web were built and linked based on the
335  shiny package using R (v. 4.2.0). Shiny package provides a powerful tool for building interactive
336 web applications using R, allowing for fast and flexible development of custom applications with
337  minimal coding required.

338

339  Pathway-specific gene correlations across tissues: Detailed scripts and analyses for pathway-
340  specific investigations across tissues in Fig2 are provided in: https://github.com/itamburi/gtex-
341  app-kegg-pathways. Briefly, to interrogate broad tissue correlation structure, the number of

342 genes which passed each biweight midcorrelation pvalue cutoff are shown normalized to the

343  total number of genes corresponding to that pathway term. Pathways were selected by accessing
344  all available GO annotations for all genes using the Universal Protein Resource® and subletting
345  genes where a given term is listed. To determine which tissues show the most co-correlation
346  across genes and organs, KEGG terms shown were selected and each corresponding gene-tissue
347  combinations were correlated. Tissues were then binned by the number of significant

348  correlations which occurring both within and across organs among each selected KEGG pathway
349  atindication correlation pvalues. Rank-ordering on the figure was shown by chemokine

350  signaling at P<(0.01 and each term was compared to a randomly sampled set of genes

351  corresponding to the same number contained in each pathway.

352

353  Data sources and availability: All human data used in this study can be immediately accessed
354  via web tool or docker to facilitate analysis. Metabolic tissue data was accessed through GTEx

355 V8 downloads portal on August 18, 2021 and previously described”!?. These raw data can also
356  be readily accessed from the associated R-based walkthrough:

357  https://github.com/Leandromvelez/myokine-signaling. Briefly, these data were filtered to retain
358  genes which were detected across tissues where individuals were required to show counts > 0
359 across all data. Given that our goal was to look across tissues at enrichments, this was done to
360 limit spurious influence of genes only expressed in specific tissues in specific individuals.
361  Hybrid mouse diversity panel data was collected from previously described studies!!!>16:34

and
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362 inter-individual differences were compared at the strain-level to maximize possible comparisons
363  between historical data.

364

365  Correlation analyses across tissues — biweight midcorrelation coefficients and corresponding p-
366  values within and across tissues were generated using WGCNA bicorandpvalue() function!”. We
367 note that while the WGCNA package was used to calculate coefficients and corresponding

368  students pvalues, this generalized framework does not utilize any module generation. Associated
369  qvalue adjustments were applied using the Benjamini-Hochberg FDR from the R package

370  “stats”. These BH adjustments, as opposed to standard qvalue adjustments, were selected given
371  their efficiency in CPU usage on the hosted server.

372

373 Pathway enrichment analyses — Pathway enrichments were generated using gene set enrichment
374  analyses available from the r package clusterprofiler. Specifically, the bicor coefficients were used
375  as the rank-weight of each gene and enrichment tests performed by permuting against the human
376  or mouse reference transcriptome. Terms used for the enrichment analyses were derived from
377  Gene Ontology (Biological Process, Cellular Component and Molecular Function) which were
378  accessed using the R package enrichR. For this analysis and on the available app, input genes
379  were determined at indicated qvalue threshold.

380  Deconvolution of bulk tissue seq data on web tool. All scripts and deconvolution data produced is
381  available at: https://github.com/cvan859/deconvolution. Briefly, sn-RNA-seq data was accessed
382  from the Human cell atlas®® for matching organ datasets with metabolic tissues. From these data,
383 4 deconvolution methods were applied using ADAPTS?' where DeconRNA-Seq* was selected
384  for its ability to capture the abundances of the most cell types across tissues such as liver heart and
385  skeletal muscle (Supplemental Fig 1-3). The full combined matrix was assembled for DeconRNA-
386  Seq results across individuals in GTEx where correlations between cell types and genes was
387  performed also using the bicorandpvalue() in WGCNA'".
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514

515

516

517

518  Figure Legends

519

520 Figure 1. Web tool overview and inter-individual correlation structure of established

521  endocrine proteins. A, Web server structure for user-defined interactions, as well as server and
522  shiny app implementation scheme for GD-CAT. B, All genes across the 18 metabolic tissues in
523 310 individuals were correlated with expression of ADIPOQ in subcutaneous adipose tissue,
524  where a qvalue cutoff of q<0.1 showed the strongest enrichments with subcutaneous and muscle
525  gene expression (pie chart, left). Gene set enrichment analysis (GSEA) was performed using the
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526  bicor coefficient of all genes to ADIPOQ using gene ontology biological process annotations and
527  network construction of top pathways using clusterprofiler, where pathways related to fatty acid
528  oxidation were observed in adipose (left) and chemotaxis/ECM remodeling in skeletal muscle
529  (right). B-D, The same qvalue binning, top within-tissue and top peripheral enrichments were
530 applied to intestinal GCG (B), liver FGF21 (C) and muscle /L6 (D). For these analyses all 310
531 individuals (across both sexes) were used and qvalue adjustments calculated using a Benjamini-
532  Hochberg FDR adjustment.

533

534  Figure 2. Tissue-specific contributions to pan-organ gene-gene correlation structure. A

535  Heatmap showing all the number of gene-gene correlations across tissues which achieve

536  significance relative to total number of genes in each pathway at biweigth midcorrelation student
537  pvalue < le-3 (left column), pvalue < 1e-6 (left middle column) of BH-corrected qvalue <0.1

538  (right middle column) or BH-corrected qvalue<0.01 (right column). Within-tissue correlations
539 are omitted from this analysis. B-D, Genes corresponding to each KEGG pathway shown were
540  correlated both within and across all other organs where the number of genes which meet each
541  students pvalue threshold are shown (y-axis). Tissues (x-axis) are rank-ordered by the number of
542  genes which correlate for hsa04062 — Chemokine signaling pathway at pvalue<0.01 and shown
543  for other KEGG terms, hsa04640 — Hematopoietic cell lineage (C) and hsa00190 — Oxidative
544  phosphorylation (D) and additionally pvalue<le-4 (right side).

545

546  Figure 3. Inter-individual transcript correlation structure and network architecture of

547  liver PCSKY and adipose PNPLA2. A, distribution of pan-tissue genes correlated with liver

548  PCSK9 expression (q<0.1), where 93% of genes were within liver (purple). B, Gene ontology
549  (BP) overrepresentation test for the top 500 hepatic genes correlated with PCSK9 expression in
550 liver. C, Undirected network constructed from liver genes (aqua) correlated with PCSK9, where
551  those annotated for “cholesterol biosynthetic process” are colored in red. D-E, over-

552  representation tests corresponding to the top-correlated genes with adipose (subcutaneous)

553  PNPLA2 expression residing in adipose (D) or peripherally in skeletal muscle (E). F, Undirected
554  network constructed from from the strongest correlated subcutaneous adipose tissue (light aqua)
555  and muscle genes (dark blue) with PNPLA2 (black), where genes corresponding to GO terms
556  annotated as “fatty acid beta oxidation” or “Muscle contraction” are colored purple or red,

557  respectively. For these analyses all 310 individuals (across both sexes) were used and qvalue

558  adjustments calculated using a Benjamini-Hochberg FDR adjustment. Network graphs

559  generated based in Biweight midcorrelation coefficients, where edges are colored blue for

560 positive correlations or red for negative correlations. Network edges represent positive (blue)
561 and negative (red) correlations and the thicknesses are determined by coefficients. They are set
562  for arange of bicor=0.6 (minimum to include) to bicor=0.99

563

564  Figure 4. HMDP tissue- and diet-specific correlations of sex hormone receptors. The top
565 10 phenotypic traits which correlated to expression of androgen receptor (A), estrogen receptor 1
566  (B) or estrogen receptor 2 (C) colored by direction in the hybrid mouse diversity panel. Positive
567  correlations are shown in light blue and negative correlations as sunset orange, where phenotypes
568  (y-axis) are ordered by significance (x-axis, -log(pvalue) of correlation). Correlations are

569  segregated by whether sex hormone receptors are expressed by gonadal adipose tissue (left two
570  columns) in ~100 HMDP strains fed a HFHS diet (left), normal chow diet (left middle) or liver-
571  expressed receptors fed a HFHS diet (right middle) or normal chow diet (right).
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572

573  Supplemental Figure 1: Performance across 4 methods of cell-type deconvolution where

574  relative proportions of cells (y-axis) are shown for all cell types annotated in single-cell reference
575  (x-axis) in Liver.

576

577  Supplemental Figure 2: Performance across 4 methods of cell-type deconvolution where

578  relative proportions of cells (y-axis) are shown for all cell types annotated in single-cell reference
579  (x-axis) in Heart.

580

581  Supplemental Figure 3: Performance across 4 methods of cell-type deconvolution where

582  relative proportions of cells (y-axis) are shown for all cell types annotated in single-cell reference
583  (x-axis) in Skeletal Muscle.

584

585  Supplemental Figure 4: Pancreatic /NS expression correlations across tissues in GTEx were

586  binned according to q<0.1 (top) and corresponding pancreatic GSEA network graph is shown
587  (bottom)

588
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