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Abstract. We study motility-induced phase separation (MIPS) in living active matter, in which
cells interact through chemical signalling, or quorum sensing. In contrast to previous theories of
MIPS, our multiscale continuum model accounts explicitly for genetic regulation of signal production
and motility. Through analysis and simulations, we derive a new criterion for the onset of MIPS that
depends on features of the genetic network. Furthermore, we identify and characterise a new type
of oscillatory instability that occurs when gene regulation inside cells promotes motility in higher
signal concentrations.

INTRODUCTION

Chemical signals control cell motility to regulate self-
organised patterning in living systems, from tissue mor-
phogenesis and wound healing to cancer [1]. In bacte-
rial populations, chemical signalling, or quorum sensing
(QS), drives self-organisation by promoting population-
level behaviours such as biofilm formation and swarm-
ing motility [2, 3]. Bacterial QS systems have been en-
gineered to connect directly to genes controlling motil-
ity in synthetic genetic networks, enabling the gener-
ation of tunable patterns in vitro [4–6]. However, we
lack fundamental understanding of how cell-level fea-
tures, such as gene-regulatory networks, determine emer-
gent population-level pattern formation in living active
matter.

Minimal physical models of active and living matter
typically consist of physically interacting self-propelled
particles. Despite their simplicity, such models can
display complex emergent dynamics, such as motility-
induced phase separation (MIPS) [7, 8]. This phe-
nomenon is caused by a self-trapping mechanism whereby
particles experience reduced motility at high densities
owing to their interactions, eventually leading to dense
macroscopic clusters of immotile particles coexisting with
a dilute phase of motile particles [7]. Similar phase tran-
sitions have been observed in active matter systems with
agents that interact through flows [9–13], morphogens
[14], social interactions [15, 16], chemotaxis [17–21], and
electrostatic torques [22]. In the past, models for chem-
ically interacting particles have been placed within this
framework by representing signals indirectly through a
density-dependent motility [7, 23–25] or an effective phys-
ical force [26, 27], but it is not known how far these ap-
proaches accurately represent chemical signalling in liv-
ing matter.

More recently, minimal models of active matter have
been supplemented with a concentration field of sig-
nalling molecules that mediates the orientation [21, 28–
34] or motility [5, 35–37] of cells or particles. Such models

have demonstrated that, broadly, repression of motility
by intercellular signals tends to promote variations in cell
density [5, 36, 38–41], in line with models of physically in-
teracting particles. However, these existing models often
represent gene regulation and chemical signalling using
coarse-grained or effective terms, rather than accounting
for gene-regulatory kinetics explicitly. Therefore, it is not
known in general how the properties of gene-regulatory
networks connect to the characteristics of emergent pat-
terns in living active matter.
Here, we develop a multiscale continuum model of

chemically interacting particles or cells. Our theory sys-
tematically accounts for intracellular processes through
careful treatment of the population’s gene regulation
and phenotype (i.e. motility). Thereby, we connect
population-level patterns with the gene-regulatory net-
work inside cells and intercellular QS signalling. We de-
rive a criterion for MIPS mediated by QS in terms of
the properties of the gene-regulatory network and dis-
cover a new route to MIPS via genetic regulation of
tumbling frequency. We clarify that it is only consis-
tent to approximate chemically mediated interactions by
a density–dependent motility in the limit of fast chem-
ical timescales; in general, one must account for chemi-
cal timescales to predict the onset of QS-induced MIPS.
In general, the density dependence is nonlinear, in con-
trast to physically interacting active Brownian particles
(ABPs) [42–44]. Finally, we identify and explain a new
type of oscillatory instability that occurs when cell motil-
ity is promoted, rather than repressed, in higher concen-
trations of QS signal. This new instability does not oc-
cur in active matter systems in which the interactions are
purely physical.

MODEL SETUP

We start by imposing rules at the cell level, before sys-
tematically deriving a continuum model from the cell dy-
namics. We consider a population of N chemically inter-
acting bacteria in two dimensions, and neglect physical
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interactions to focus on the role of chemical signalling.

Each cell is denoted by the index i and is located at
position xi with an internal chemical concentration ui(t),
which represents a gene-regulatory protein or transcrip-
tion factor. The internal chemical obeys the kinetics

u̇i = f(ui, c(xi, t)) +
√
2εξi(t). (1)

Here, f characterises the gene-regulatory network
(GRN), and depends on the internal chemical concentra-
tion ui and the local concentration field c of autoinducer
(AI), which permeates the population. Although our up-
scaling is general, we later define f for definiteness. The
last term in (1) represents the stochastic behaviour inher-
ent to chemical reactions; ξi represents zero-mean Gaus-
sian white noise and ε its magnitude. We work in the
limit of small magnitude noise in the gene-regulatory ki-
netics. We include this small noise term for two reasons.
Firstly, biochemical reactions are intrinsically stochastic,
especially if the reagents are present in small amounts
[45]. Secondly, this term regularizes the continuum equa-
tions and, as we show below, the system is singular in the
limit ε → 0.

In terms of cell motility, we assume that the cells un-
dergo both active motion and passive diffusion. The ac-
tive component is characterised by active Brownian mo-
tion [46, 47] and run-and-tumble dynamics. Between
tumbles, the particle positions xi therefore obey

ẋi = v(ui)ei +
√

2Dtζi(t), (2)

where v(ui) is the gene-regulated self-propulsion speed
and Dt a passive translational diffusion coefficient as-
sociated with the zero-mean Gaussian white noise ζi.
The cell orientations are described by the vector ei =
(cosφi, sinφi)

T where the angle φi undergoes diffusion
with no directional bias due to the active Brownian com-
ponent:

φ̇i =
√

2Dr(ui)ηi(t), (3)

where Dr is a rotational diffusion coefficient associated
with the zero-mean Gaussian white noise ηi. The active
motility parameters Dr, v, and the tumble rate γ are
gene-regulated, which is modelled by allowing a depen-
dence on ui. Such regulation may arise naturally [3, 48]
or synthetically [4–6].

We derive continuum equations from the individual-
based equations of motion (1)–(3) for a large population
of cells using standard methods (see Section A of the
Supplemental Material [49], c.f. [44, 50–52]). In the con-
tinuum equations, the intracellular chemical concentra-
tion u becomes an independent variable. That is, the
population-level equations are structured in terms of the
GRN inside cells; we refer to these multiscale equations
as GRN-structured.

The continuum GRN-structured cell density n(x, u, t)
satisfies

∂tn = D(u)∇2n+ ε∂2
un− ∂u (f(u, c)n) , (4a)

D(u) := Dt +
v2(u)

2 [γ(u) +Dr(u)]
. (4b)

Here, D(u) is the effective gene-regulated diffusion coef-
ficient. The second term on the RHS of (4a) accounts
for the stochastic component of the kinetics. The third
term on the RHS of (4a) codifies the GRN through
an advection of the structured cell density in the u-
coordinate. The second term on the RHS of (4b) is
the contribution arising from the run-and-tumble and ac-
tive Brownian dynamics. The physical cell density ρ(x, t)
is related to the GRN-structured cell density n through
ρ =

∫∞

0
n du. In deriving equations (4), we assume that

the gene-regulatory kinetics and cell diffusion occur on
timescales much longer than the tumbling and reorien-
tation timescales, in line with biological parameter es-
timates [36, 53], and consider lengthscales much larger
than the cell persistence length (see Section A of the
Supplemental Material [49]).
Positive feedback is a canonical component of quorum-

sensing GRNs, present in many bacterial species [2, 53].
We pose the following specific functional form for f which
incorporates positive feedback:

f(u, c) = a+
Lc

K + c
− λu. (5)

Here, a represents a constant base production rate of the
intracellular chemical u, and λ is a natural decay rate.
The second term on the RHS of (5) represents the pro-
duction of u induced by the local AI concentration c,
which constitutes one half of the positive feedback loop
illustrated in Figure 1a. This term saturates at a maxi-
mal rate of L and has a ‘threshold’ activation at c = K
where the production rate is half-maximal.
The other half of the positive feedback loop in the QS

circuit involves the AI concentration field c(x, t). We
assume that AI diffuses passively with coefficient Dc, de-
cays with rate β, and is generated through cell secretion
at a rate α(u). Thus, we have

∂tc = Dc∇2c− βc+

∫ ∞

0

α(u)n(x, u, t) du, (6)

where the final term on the RHS is the continuum secre-
tion term. This term is non-local in u as it encodes the
contribution from all internal concentrations in a locally
averaged region of space. We emphasize that positive
feedback is only present in the QS circuit when the se-
cretion rate α(u) is non-constant across internal concen-
trations u. For simplicity, we pose a secretion rate that
is proportional to the internal concentration, i.e.

α(u) = α0u. (7)
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Finally, we assume that the cell population is confined
to a rectangular domain Ω, imposing no flux boundary
conditions on the boundaries ∂Ω. Hence,

∇n ·N = 0, x ∈ ∂Ω, (8)

where N is the unit normal on ∂Ω. To ensure physical
(i.e. non-negative, bounded) concentrations, we also im-
pose no flux at u = 0 and as u → ∞. These conditions
correspond to

ε∂un− f(u, c)n = 0, for u = 0, u → ∞. (9)

Our continuum model therefore consists of the govern-
ing equations (4)–(7), and the boundary conditions (8)–
(9). The multiscale nature of our model is illustrated
schematically in Figure 1a. We verify the predictions of
our theory in the following section via numerical simula-
tions of the governing equations, using the open-source
finite-element library oomph-lib [54] (see Section E of the
Supplemental Material [49]).

FIG. 1: a) Schematic illustration of our multiscale
model of chemically interacting cells. We derive a

continuum population model (right), that retains the
genetic structure of the population (grey box, left)
through chemical stratification. The motility of

individual cells depends on their internal chemical
concentration. The transcription factor (TF) can either
repress or promote motility. b) Snapshots in time of the
cell density from an initially homogeneous state (AI
concentration profile is similar). See also Video S1 in

the Supplemental Material [49].

INSTABILITY OF THE UNIFORM

EQUILIBRIUM STATE

To investigate the emergence of MIPS in our model,
we search for instabilities in the spatially uniform equilib-
rium state, emphasizing that this is not chemically uni-
form in general. To this end, we perform a linear stability
analysis of the governing equations (4)–(9) to derive an
instability criterion for the onset of MIPS.

We derive the steady uniform solution by directly inte-
grating (4a) and imposing the boundary conditions (9).
The spatially uniform equilibrium is then given by

c∗ = const., ne(u) = ρ∗

√

λ

2πε
exp

[

− λ

2ε
(u− u∗)

2

]

,

(10)
where the steady AI concentration c∗ and mean internal
concentration u∗ are defined through the unique positive
solution of the algebraic system

f(u∗, c∗) = 0, βc∗ = α0ρ∗u∗, (11)

where ρ∗ :=
∫∞

0
ne du represents the uniform cell density.

The analysis is singular in the limit ε → 0, since the
equilibrium density ne (10) formally tends to a Dirac
delta function centred at u = u∗, representing identi-
cal internal concentrations in each cell. To analyse this
singular perturbation problem, we perform a WKBJ-like
asymptotic approximation and explicitly factor out the
singular exponential term. This reduces the analysis to a
regular perturbation problem (see Section B of the Sup-
plemental Material [49]).
We perform the linear stability analysis by substituting

small perturbations of the form

n(x, u, t) = ne(u)+η(u)eik·x+σt, c(x, t) = c∗+Ceik·x+σt,
(12)

into the governing equations (4)-(6) and linearizing the
result. Here, k denotes the wavenumber and σ the growth
rate of the small perturbations. This yields the dispersion
relation (see Section B of the Supplemental Material [49])

σ +Dck
2 + β − α0f

∗
c ρ∗

σ + (D∗ −D′
∗u∗)k

2

(σ +D∗k2)(σ +D∗k2 + λ)
= 0.

(13)
Here k := |k| while D∗ := D(u∗), D′

∗ := D′(u∗), and
f∗
c := ∂cf(u∗, c∗). The spatially uniform steady-state
(10) is unstable if Eq. (13) has any root σ with Re(σ) > 0.
We refer to D′

∗ as the motility response since it charac-
terise how the motility responds to changes in internal
concentration. We find that there are two types of insta-
bility depending on the sign of D′

∗.

Case I: Internal chemical represses motility

The first type of instability occurs when higher internal
concentrations reduce motility (D′

∗ < 0), analogous to
classic MIPS where higher cell densities reduce motility
through physical interaction.
We derive the following instability criterion by substi-

tuting σ = 0 into (13) and rearranging:

D′
∗

D∗

< − A

u∗
, (14a)
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where we define

A :=
1

α0ρ∗f∗
c

(

Dcπ
2

L2
m

+ β

)(D∗π
2

L2
m

+ λ

)

− 1 > 0. (14b)

Here, Lm is the largest side length of the domain, and
we use k = π/Lm since the longest wavelength mode
is always the first to lose stability as D′

∗ is decreased
from zero (see Section B of the Supplemental Material
[49]). However, the mode with the largest growth rate,
i.e. largest value of Re(σ), typically corresponds to an
intermediate wavelength, as shown in Fig 2.
Eq. (14) is the first key result of our paper. Quali-

tatively, it states that a spatially uniform population of
chemically interacting cells begins to form clusters when
the cellular motility (characterized by the diffusion co-
efficient D∗) is sufficiently repressed in response to per-
turbations in the internal concentrations. The constant
A, defined in (14b), encodes the required strength of re-
pression in terms of the chemical timescales and genetic
structure of the population. The mechanism driving the
instability is shown schematically in Figure 4a.
A key feature of the instability characterised by (14) is

that any of the gene-regulated active motility parameters
in (4b) can trigger MIPS, not just the self-propulsion
speed v(u). This is in contrast to physical MIPS for
which the analog of (14) is given by the criterion [7]:

1

V

dV

dρ

∣

∣

∣

∣

ρ∗

< − 1

ρ∗
, (15)

where V (ρ) is the effective density-dependent propulsion
speed in physical active matter. A similar phenomenon
occurs for active (velocity) fluctuations where rotational
diffusion affects the onset of MIPS, but is not the under-
lying cause [50]. The difference between (14) and (15)
is that (14) accounts for the timescales of chemical diffu-
sion and gene-regulated motility parameters. As such, we
expect that the classical result (15) should be recovered
when both the AI concentration and gene-regulatory ki-
netics equilibriate quickly. We clarify in Sections B and
D of the Supplemental Material [49] that in order to re-
cover (15), the chemical timescales need to be fast not
just by comparison to the cell diffusion timescale but
also by comparison to the tumbling and reorientation
timescale, which necessitates modifying the upscaling
procedure used to obtain (4). In this very-fast-chemical-
timescale limit, non-constant rotational diffusion or tum-
bling frequency cannot cause MIPS, consistent with (15).
The dynamics of the cell density ρ are illustrated in

Figure 1b, clearly exhibiting MIPS. In Figure 2 we com-
pute steady-state branches that bifurcate from the uni-
form state, and show that the bifurcation point predicted
by our analysis in (14) agrees well with numerically com-
puted branches. The unstable spatial modes from the
dispersion relation σ(k), determined from (13), are illus-
trated in Figure 2. The spatial mode with the largest

FIG. 2: Bifurcation diagram in 1D with 2D steady-state
stripe (cluster) patterns shown as red (green) stars,
respectively (see right panels and Video S2 in the
Supplementary Material). The trivial branch

corresponds to (10) and the bifurcating branch is the
1D MIPS-patterned state (computed from steady-state
versions of (4)–(7)). The bifurcation point (yellow star)

is indistinguishable from that predicted from (14).
Inset: dispersion relation from linear theory. Parameter

values are given in Table S1 of the Supplemental
Material [49].

growth rate measures the cluster sizes that initially form
from the uniform state.

Case II: Internal chemical promotes motility

Surprisingly, our linear stability analysis predicts a new
type of instability when higher internal concentrations
promote motility (D′

∗ > 0). Since physical inter-particle
forces act to reduce motility as density increases, this
new instability would not be induced in populations with
purely physical interactions. Chemically interacting pop-
ulations do not have this restriction; GRNs connected to
intercellular signalling can increase cell motility directly
in e.g. bacterial swarming where QS regulates flagella
assembly [48], and indirectly by e.g. controlling biosur-
factant production [3].
Mathematically, this instability occurs when σ is

purely imaginary, i.e. via a Hopf bifurcation. The ana-
logue of (14a) for this instability is given by (see Section
C of the Supplemental Material [49]):

D′
∗

D∗

>
B

u∗
, (16a)

where we define

B :=
ωλ + ω

ω0

[

(ω0 + ωλ)(ω0 + ω)

α0f∗
c ρ∗

− 1

]

> 0, (16b)

ωj := D∗k
2 + j, ω := Dck

2 + β. (16c)

Eq. (16) is the second key result of our paper. It quan-
tifies the condition under which a uniform population
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of chemically interacting cells undergo spatio-temporal
density oscillations. Qualitatively, the population be-
comes unstable when the cellular motility is sufficiently
promoted in response to perturbing the internal concen-
trations. The constant B, defined in (16b), encodes infor-
mation about the chemical timescales and genetic struc-
ture of the population. Similar to the criterion (14), the
instability can be triggered if any of the active motility
parameters in (4b) are non-constant. In contrast to (14),
the longest wavelength mode, in general, is not the first
to become unstable, as can be seen by comparing the
dispersion relations for the two instabilities in Figures 2
and 3c. We show the type of spatio-temporal dynamics
arising from this instability in Figure 3a. The oscillations
tend to a limit cycle resembling a standing wave pattern,
which bifurcates from the uniform state as illustrated by
Figure 3b.

FIG. 3: a) Oscillatory patterning in 1D showing the
formation of periodic spatio-temporal oscillations

resembling standing waves (see also Video S3 in the
Supplemental Material). b) Bifurcation diagram
showing the amplitude of density oscillations. c)

Dispersion relation from the linear theory.

FIG. 4: Schematic illustrations of the instability
mechanisms. a) Small density/AI perturbation from the

unstable uniform equilibrium in Case I. b) Periodic
spatio-temporal oscillations in Case II.

The mechanism driving this new oscillatory instabil-
ity is an effective time delay between local density fluc-
tuations and changes in motility, illustrated schemati-
cally in Figure 4b. Oscillatory patterns are known to
arise in chemotactic active matter where effective time-
delays between changes in density and orientation [21]
or chemoattractant [29] drive the instability. Here, the
time delay between density and motility is caused by
finite timescales in the QS circuit. To understand the
mechanism physically, consider a region of locally higher
cell density. As the density fluctuation begins to relax,
the AI concentration field increases locally in response to
the higher density, which leads to locally higher internal
concentrations due to the reaction kinetics. Owing to the
chemically regulated motility D(u), the cells with higher
internal concentrations experience a higher motility. As
the local density returns to the equilibrium value, the
locally higher motility persists and the region begins to
deplete of cells, thereby forming a region of lower den-
sity. This forms the first half of the periodic cycle, with
the second half having equivalent reasoning. The oscilla-
tions decay if the time delay is too short, which can be
seen mathematically by considering the behaviour of B
as the delay tends to zero, i.e. in the limit of fast chemi-
cal timescales (in which a ∼ L ∼ λ ∼ α0 ∼ β are large).
From (16b), it can be shown that B → ∞ in this limit
and hence the criterion (16a) cannot be satisfied, favour-
ing a stable uniform colony.
Our results demonstrate that explicit modelling of gene

regulation in cell populations is key to understanding
MIPS in living active matter. Our GRN–structured
model allows for a direct link between cell-level genetic
processes and macroscale pattern formation – in princi-
ple, the model can be simplified via an internal mean-
field formulation of the governing equations (4)–(7), but
this is only quantitatively accurate near the spatially uni-
form equilibrium (Supplemental Material [49]). More
fundamentally, our theory predicts that gene-regulated
tumbling frequency alone can cause MIPS, in contrast
to classical physical MIPS. Additionally, gene regulation
that promotes motility in higher signal concentrations
is required for the oscillatory instability (Hopf bifurca-
tion) that we identify here; this instability is absent in
systems with purely physical interactions between parti-
cles. Our continuum model is appropriate for large cell
populations, which are common in many natural [3] and
synthetic [5] biological systems. In future work it would
be interesting to explore the predictions of agent-based
simulations of the microscopic model (2)–(3), (5)–(6), es-
pecially for small cell populations.
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