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Abstract

Motivation

The digenic inheritance hypothesis holds the potential to enhance diagnostic yield
in rare diseases. Computational approaches capable of accurately interpreting and
prioritizing digenic combinations based on the proband’s phenotypic profiles and
familial information can provide valuable assistance to clinicians during the
diagnostic process.

Results

We have developed diVas, a hypothesis-driven machine learning approach that
can effectively interpret genomic variants across different gene pairs. DiVas
demonstrates strong performance both in classifying and prioritizing causative
pairs, consistently placing them within the top positions across 11 real cases
(achieving 73% sensitivity and a median ranking of 3). Additionally, diVas exploits
Explainable Artificial Intelligence (XAl) to dissect the digenic disease mechanism
for predicted positive pairs.

Availability and Implementation

Prediction results of the diVas method on a high-confidence, comprehensive,
manually curated dataset of known digenic combinations are available at
oliver.engenome.com.
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1. Introduction

The identification of disease-causing mutations represents a paramount challenge in the
realm of human genetics. Rare Diseases (RDs), which affect around 6% of the population
in Western societies, display a genetic component in roughly 80% of instances’. Precise
genetic diagnosis not only leads to better disease management but also aids in tailoring
the most appropriate treatment strategy for each patient2. Recent years have witnessed
remarkable advancements in Whole Genome Sequencing (WGS) and Whole Exome
Sequencing (WES), enhancing our capacity to uncover the genetic underpinnings of
RDs®% and employing computational tools that facilitate variant interpretation and
prioritization has proven to be of paramount importance®. In the case of individuals
suspected of having a RD, the diagnostic process aims to identify the potential genetic
cause by considering the patient's phenotypic characteristics and familial information.
Predominantly, most RDs exhibit monogenic (Mendelian) inheritance’, prompting
clinicians to focus on identifying the single mutated gene responsible for the observed
disease phenotype(s).

To achieve this, the American College of Medical Genetics (ACMG), in collaboration with
the Association for Molecular Pathology (AMP), has formulated guidelines that aid in the
interpretation of genomic variants as pathogenic, likely pathogenic, benign, likely benign,
or of uncertain significance (VUS). These determinations are based on diverse factors,
including familial segregation, in silico predictions of the variant's damaging impact, and
population allele frequency®. Medical professionals employ these guidelines to identify
the potentially small number of pathogenic variants in a patient, ultimately aiming to
pinpoint the mutation causing the disease.

Despite the advancement in technical capabilities and knowledge, the diagnostic yield,
defined as the percentage of patients for whom the genetic cause of the disease is
identified after sequencing, varies between 35% to 55% based on the disorder!, leaving
approximately 200 million patients without a definitive diagnosis®.

In contrast to the monogenic inheritance hypothesis, oligogenic models propose that the
manifestation of a genetic disorder arises from the combined occurrence of mutations in

multiple genes. The simplest form of this paradigm is digenic inheritance (DI), wherein
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the disease's origin is attributed to two mutated genes. In the Dl field, distinct mechanisms
have been recognized: True Digenic (TD, also known as Pure Digenic), Composite (CO,
also known as Modifier), or Dual Molecular Diagnosis (DM). In the case of TD, the
disease's phenotype(s) emerges when both causative genes carry mutations in the
patient's genome. Modifiers denote variants that, when present alongside causative
variants, can influence disease outcomes, such as severity or onset age. Lastly, the DM
mechanism entails the co-occurrence of two distinct disorders, each caused by
pathogenic mutations in different genes®. The DI paradigm holds significant potential for
supporting the diagnosis of RDs”. For instance, research has revealed various genes
acting as digenic contributors in arrhythmogenic cardiomyopathy, a disorder typically
regarded as monogenic'®. Several other conditions have also been investigated in the
context of DI patterns, including hypogonadotropic hypogonadism, deafness, ciliopathies,
and Long QT syndrome".

To pinpoint causative gene pairs, potentially thousands of candidates from WGS/WES
must be assessed. Computational tools, exploiting statistical and Machine Learning (ML)
techniques, greatly support the diagnostic procedure. Recent years have seen the
emergence of numerous tools that assess the impact of individual mutations'?>-'4, or
predict variants’ pathogenicity’>-'”. Some methods further incorporate the patient's
phenotypic data to prioritize variants, aiming to discern the causative one among the top
contenders'®. A limited number of computational tools have been specifically designed to
classify and prioritize digenic pairs'®. VarCopp was the first published ML tool to
categorize variant pairs as either pathogenic or benign, relying on 11 features grouped
into two subsets: variant-level features (in silico predictions of the damaging effects of the
variants in a pair) and gene-level features that capture both gene-gene interactions and
a priori gene properties?’. Subsequently, an additional ML model named Digenic Effect
(DE) predictor was developed to further elucidate digenic mechanisms (TD, CO, or DM)?'.
ORVAL is an online platform that processes standard VCF files containing the proband’s
variants, utilizing both VarCopp and the DE predictor for digenic classification and
oligogenic network analysis??. DiGePred is a ML approach, available as a stand-alone
tool. Like ORVAL, DiGePred uses different gene-gene interaction features, such as co-
expression, protein-protein interaction and pathway similarity, and a priori gene-level
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features such as haploinsufficiency and gene essentiality. While DiGePred autonomously
classifies gene pairs?3, it doesn't provide the variant-specific resolution that ORVAL offers.
A more recent ML methodology for predicting digenic interactions at the gene level is
DIEP (Digenic Interaction Effect Predictor)?*. OligoPVP is an automatic variant
interpretation tool that can be used to prioritize digenic and oligogenic instances?5. To our
understanding, OligoPVP is the sole tool that integrates proband's phenotypes for
interpretation. However, OligoPVP initially prioritizes each variant based on a
pathogenicity score, subsequently prioritizing sets of two or more interacting genes as
determined by a high-confidence gene-gene interaction network. The final score is the
sum of the pathogenicity scores of all the variants involved in the combination.

ORVAL, DiGePred, and DIEP were trained using known positive digenic pairs from
DIDA?¢, a curated dataset listing 258 pathogenic variant pairs sourced from literature.
Presently, DIDA is not available anymore, and the authors have recently published a new
database, OLIDA, encompassing more than 1000 oligogenic variant combinations?’. The
need for expanded open-access resources concerning digenic and oligogenic variants,
similar to ClinVar?®, is crucial for understanding these complex genetic interactions and
for providing a valuable reference for clinicians and researchers, aiding in accurate
diagnoses and treatment decisions. Additionally, it's essential to raise awareness and
educate the community about digenic and oligogenic inheritance to promote collaboration
and research progress. For this reason, there's a pressing need to establish a community
platform where researchers can share candidate causative combinations.

We introduce diVas, an ML tool designed for digenic variant interpretation, grounded in
monogenic ACMG/AMP standard guidelines and gene-gene interaction data. DiVas can
also harness the proband’s phenotypic data to enhance the classification and
prioritization of digenic pairs. For positively predicted pairs, diVas employs cutting-edge
Explainable Artificial Intelligence (XAl) techniques for further subclassification into distinct
digenic mechanisms (TD/CO and DM). We have validated diVAs’ capability to identify the
true causative pair from thousands of candidates in various real-world scenarios and have

compared our tool with existing methods for digenic variant interpretation.
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We applied this method to analyze our comprehensive high-confidence, manually curated
dataset of digenic combinations and associated phenotypes. Predictions are available at

oliver.engenome.com.

2. Materials and methods

2.1 Dataset description

2.1.1 Training data collection and preprocessing

To collect data for training purposes, we curated a dataset of pathogenic digenic
combinations extracted both from DIDA28, from literature review?®-32 and from an internal
unpublished database. Variants have been reported with their genomic coordinates and
associated with the caused phenotypes expressed as Human Phenotype Ontology (HPO)
terms33, if explicitly available. The positive training set contains 238 unique gene pairs
and 316 unique genes. At the variant level, the distribution of variant effects in the training
set is shown in Figure 1, with more than 90% having a coding effect. Taking into account
both variants and HPO terms, each digenic combination in the training set is unique. For
digenic pairs in the DIDA database that lacked HPO terms, we utilized phenoBERT?* to
extract phenotypes from associated publications. In cases where scientific publications
were unavailable, we employed a prevalence-based phenotype sampling method,
drawing from the pool of phenotypes linked to the respective disease(s) in the HPO
resource: the more frequently a phenotype appears in the manifestation of a disease, the
more likely it is to be extracted when describing the digenic combination. Each causative
digenic combination is associated with a median number of 5 HPO terms (range [1, 14]).
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Figure 1: Distribution of Variant Effects in Pathogenic Digenic Combinations

The negative dataset contains about 15,000 neutral digenic combinations extracted from
1000 Genomes Project (1KGP) data, and from solved monogenic or digenic real cases
(internal data). Digenic combinations derived from the 1KGP were paired with either a
randomly sampled set of phenotypes from a DIDA-positive digenic combination or a pool
of phenotypes chosen through a prevalence-based approach from randomly selected
disorders. For each real case, we first processed the VCF files to produce all potential
digenic combinations. Subsequently, we selected a subset of these combinations that
included:

(i) at least one variant with a significant pathogenic impact on the gene (7% of the subset);
(i) one of the variants from the causative pair (3% of the subset); (iii) combinations chosen
at random (90% of the subset). In summary, pathogenic combinations constitute 2.5% of
the training set.

2.1.2 Independent dataset of digenic combinations

In order to assess the performance of diVas, we manually curated a high-confidence
dataset that encompasses digenic combinations representative of all the known digenic
disorders. To be included in the manually curated dataset, digenic combinations should
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not belong to the diVas’ positive training set, regardless of the associated phenotypes.
Initially, we harnessed generative Al techniques to extract phenotype descriptions from
an extensive corpus of scientific literature34. Subsequently, these extracted phenotypes
underwent a rigorous manual curation and validation process led by domain experts. This
hybrid approach, combining the efficiency of Al-driven data extraction with the precision
of human expertise, resulted in a dataset that captures the complexity of digenic disorders
with high confidence. Our dataset comprises over 600 digenic combinations (399 unique
genes for a total of 452 unique gene pairs) that were used to assess the accuracy of
diVas in terms of pathogenicity and digenic mechanism prediction.

2.1.3 Digenic combinations generation

DiVas has the capability to analyze both Single Nucleotide Variants (SNVs) and
Insertion/Deletion (INDEL) variants in both the GRCh37 and GRCh38 genome
assemblies.

Each instance created by diVas to represent a digenic combination comprises a minimum
of 2 variants, which can be in a homozygous or heterozygous state across both genes.
The maximum number of variants in an instance is 4, which occurs in cases of compound
heterozygosity on both genes.

In instances of compound heterozygous combinations, the presence of at least one
coding variant in each gene is mandatory for inclusion in the analysis. If familial genetic
data is accessible, diVas employs this information to effectively reduce the number of
instances requiring evaluation. This reduction is achieved by eliminating combinations
that do not adhere to the expected pattern of transmission, utilizing genetic information
from both affected and unaffected family members. The assumption is that a candidate
digenic combination must be shared among affected family members within a family and
be absent as a whole from healthy relatives.

In situations where multiple instances have been generated for a particular gene pair,
diVas retains at most 4 combinations for each gene pair: for each gene, two inheritance
hypotheses are considered (dominant vs recessive) and the variant(s) with the highest
pathogenic impact based on the pathogenicity score outlined in section 2.1.4.1 are
chosen.
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2.1.4 Features set

The feature set employed to characterize each digenic combination is designed to
encompass the effects of variants on gene functions, interactions between genes, and
associations between genes and phenotypes. The detailed description of the features
and the model is reported in Limongelli et al.3> Features at variant and gene level describe
each gene of the digenic combination independently. Unlike ORVAL and DiGePred, diVas
has deliberately moved away from sorting the two genes within a pair based on a single
feature or in a random manner. Instead, duplicated variant and gene-level features have

been independently arranged according to their minimum and maximum values.

2.1.4.1 Variant impact on gene

The influence of the variant(s) on each gene within the gene pair is quantified using a
pathogenicity score®®. This score incorporates various pieces of information, including the
variant's prevalence in the broader population, in silico predictions of pathogenicity, and
the classification of the variant in publicly available databases. Specifically, the
pathogenicity score assigned to each variant in a digenic pair corresponds to the count
of ACMG/AMP criteria that the variant satisfies, as detailed in our earlier work8:15-36,

2.1.4.2 Gene-Gene interaction

Several gene-gene level attributes have been incorporated to capture indications of
interactions between genes. These attributes encompass biological distance, similarity in
pathways based on Gene Ontology, phenotypic similarity, and coexpression. The specific

resources and versions utilized are documented in Table 1.

Feature Name Description Resource Version
Biological Degree of functional association between | STRING®” vi1.5
Distance two or more genes, articulated according

to a series of levels of evidence
(experimental, text-mining, etc.) on the

base of a PPI network.
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Pathway Jaccard similarity metric between the Reactome® v85
Similarity pathways the two genes are involved into
Gene Ontology- | Semantic similarity between gene Gene Ontology*® | 2023-06-
based similarity | ontology terms associated to the gene 11

pair
Coexpression Genes correlation obtained by CoexpressDB* v7.3

processing RNA-Seq samples

Phenotypic Ontology-based similarity between the Human 2023-01-
Similarity two phenotypes sets associated to the Phenotype 27
genes Ontology®?

Table 1: Gene-Gene interaction features. For each attribute, the name, description, associated

resource, and version are provided.

2.1.4.3 Phenotypic associations

The connection between the gene pair and patient phenotypes described through HPO
terms is quantified using diverse metrics. The objective is to prioritize digenic
combinations that collectively provide a more robust explanation of the patient's traits. By
computing a measure of similarity between a patient's clinical manifestations (provided
as a set of HPO terms) and disease descriptions associated with genes, phenotype-
based prioritization tools utilize standards and quantitative similarity measures to cluster
and compare phenotype sets.

The phenotypic similarity score is based on HPO information. It is computed starting from
standard phenotypic similarity indexes (the HPOSIim package*') and leveraging the
Resnik similarity between two phenotypic terms and the Best Match Average approach
to compute the whole similarity between 2 sets of HPO terms, as described in Deng et
al., 201541,

We calculate two distinct phenotypic similarity scores that measure the phenotype
similarities between the input set of HPO terms and the HPO terms associated with each
gene in the combination. These scores indicate the extent to which each gene in the
combination explains the observed phenotypes in the patient.
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2.2 Classification system

We designed a structured pipeline implementing the diVas algorithm that accepts a list of
variants from the proband as input. These variants must be provided in a Variant Call
Format (VCF) file, compatible with both the GRCh37 and GRCh38 assemblies. This
pipeline performs variant annotation, generates all potential candidate digenic pairs as
previously described, and subsequently categorizes each pair as either pathogenic or
non-pathogenic, relying on the probability of pathogenicity predicted by the ML model.
Our ML classifier, tailored to a "phenotype-driven" approach, is trained using the
comprehensive variant-level, gene-level, and phenotype-level feature set detailed in
section 2.1.4.

Consequently, the phenotype-driven model requires an additional input: the list of the
phenotypes observed in the patient, as HPO terms. However, certain scenarios, such as
prenatal testing, may pose challenges in accessing the patient's phenotypic information.
To address such cases, we also introduced a "phenotype-free" model, which relies solely
on variant-level and gene-level features, excluding phenotypic information from its input.
In the case of the phenotype-driven model, following the prediction process, if a pair is
identified as pathogenic, a Bayesian approach that harnesses XAl through SHAP4243 is
employed. This approach serves to determine whether the positively predicted pair
adheres to a DM mechanism or not (No-DM)?2¢ thereby predicting the digenic mechanism.
The classification workflow for the phenotype-driven approach is visualized in Figure 2.
Further details concerning the ML classifier for digenic prediction and the prediction of the
digenic mechanism are elaborated upon in Sections 2.2.1 and 2.2.2.
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Figure 2. The diVas Workflow Overview: diVas initiates its process by accepting a VCF file, which
encompasses the proband's SNVs and INDELSs, along with the patient's HPO terms and optional
family data. This data is then streamlined to curate a list of potential candidate combinations. For
every unique instance, a diverse range of features is calculated. Leveraging a pre-trained ML
model, each pair is classified as either pathogenic or non-pathogenic, accompanied by a
probability score. These combinations are then ranked based on their predicted probabilities.
Notably, for every combination identified as pathogenic, diVas conducts an analysis of the ML
classifier's decision pattern, pinpointing the digenic mechanism (through the Bayesian XAl-based
digenic effect predictor module) and differentiating between DM combinations and No-DM (both
CO and TD) combinations.

2.2.1 Digenic prediction model

We trained the ML model for digenic variant interpretation using a strategy of 500
repeated hold-outs. In each iteration, the dataset was partitioned into training, validation,
and test subsets. To minimize potential circularity and avoid overly optimistic outcomes
in the test set, we ensured that, during each hold-out, gene pairs in the test subset did
not overlap with those in the training or validation subsets**. In the training set, we
conducted inner cross-validation to determine the optimal hyper-parameters for the ML
model. The validation set was employed to identify the best classification threshold. Given
the frequent imbalance in variant interpretation datasets, adjusting this threshold can
enhance the model's performance and utility for the minority class*®.
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Then, the best model, using the optimized threshold, predicts the test set, and various
performance metrics are evaluated. This process is reiterated 500 times, with the metrics'
statistics averaged over these repetitions. The ultimate classification framework consists
of an ensemble of 500 classifiers. For a new instance, the final predicted class is
determined by the majority of classifiers, while the predicted probability is the median of
all predicted probabilities. Further details on the repeated hold-out procedure are
elaborated in the Supplementary Methods (refer to the DiVas training procedure under
Materials and Methods).

Additionally, to investigate whether the model may have different performance on distinct
disorders, we performed a leave-one-phenotype-out validation: we firstly selected a set
of different disease categories exploiting Clingen gene-based classification*®: among all
the Clinical Domains curated by Clingen Working Groups, only categories with a minimum
of 10 pathogenic combinations belonging to our dataset have been retained (see Table
S1). With this approach, we could evaluate 9 out of the 13 available groups from ClinGen.
For each disease category, we excluded the pathogenic pairs associated with that
category and the negative pairs involving the same genes from the training set. We
trained the ML classifier on the remaining set of variants and we evaluated the
performance on the excluded pathogenic pairs. With this procedure, we aim at assessing
the generalization capability of our approach on instances relative to disorders not
represented in the training set.

2.2.2 XAl-based digenic mechanism prediction

As previously mentioned, DI can encompass various disease mechanisms, such as TD,
CO, and DM. After a pair is predicted to be pathogenic, understanding its specific
subcategory can be valuable.

Distinguishing between a DM and a TD or a CO combination for pathogenic digenic
variants is crucial. In a DM, each mutation in different genes is independently pathogenic,
leading to two separate genetic conditions. In contrast, in the other digenic mechanisms,
two mutations jointly cause a specific phenotype. This distinction is crucial for accurate
clinical management, as treatment strategies might differ based on the underlying genetic
cause*’. Moreover, understanding whether it's a DM or not is essential for genetic
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counseling, offering insights into inheritance patterns and risks to family members. The
differentiation also has significant implications for research, providing valuable
information about gene-gene interactions and their role in disease manifestation, and for
predicting disease progression and outcomes.

One potential approach is to develop an additional ML classifier, similar to those
described in previous studies?'-48.

Along those lines, authors of previous work identified a set of informative features that
can differentiate between DM, TD, and CO subcategories. However, rather than
constructing an entirely new ML model based on these distinct features, we adopt a
different strategy. We begin by recognizing that positive pairs falling into different
subcategories should exhibit varying characteristics. For instance, in the case of DM, we
expect that both variants within a pair will possess high pathogenicity scores, while the
gene-gene interaction might be minimal. Conversely, in scenarios of TD or CO, we expect
strong interconnections between the involved genes. Thus, we propose that the decision-
making process of the classifier should diverge for DM and No-DM (TD and CO)
scenarios.

XAl is an emerging topic in Al, driven by the need for more trustworthy and transparent
classification systems2. The aim of XAl is to develop methodologies that support humans
to understand the classification process made by complex black-box algorithms, such as
deep networks or ensemble methods. Local XAl focuses on providing an explanation for
each single prediction made by a ML classifier’®. We assume that the local explanation
of a digenic prediction can uncover the digenic mechanism (DM or No-DM). For example,
in the case of a TD pair, we anticipate that the classifier would identify it as positive due
to the pronounced gene-gene interaction and phenotypic similarity. On the other hand,
for a DM scenario, the decision-making process would likely place greater emphasis on
the values of variant-level features. In particular, we used SHAP, a widely applied local
XAl method using a game theory approach to dissect the predicted probability and assign
a Shapley value to each feature. This numeric value can be interpreted as the contribution
of that feature to the predicted probability®®. To develop our XAl-based digenic effect
predictor, we compute the Shapley values for the prediction of each sample with a known
digenic effect. Since our final prediction pipeline is an ensemble of 500 classifiers, for a
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single instance we computed the local XAl of the classifier in the ensemble whose
predicted probability for that instance is equal to the median predicted probability.
Subsequently, we sum the computed Shapley values for each of the three features
category: gene-level features, variant-level features and phenotype-level features. On the
training set, we calculate the first percentile, the median and the third percentile of the
Shapley values for each group. For each instance, and for each features group, we assign

13 b1 “ ” [

a categorical attribute “low”, “low-median”, “median-high” or “high” if the sum of the
Shapley values for that group is below the first percentile, between the first percentile and
the median, between the median and the third percentile, or above the third percentile.
Therefore, each positive predicted instance will be further characterized by three
categorical  features:  gene level contribution,  variant_level contribution  and
pheno_level_contribution, each having 4 different possible values (low, low-median,
median-high, high). We calculated the probabilities of being DM given each feature
contribution to classification, and we used a Naive Bayes approach to classify a new

positive predicted instance as follows:

(DM|gene_level _contribution;), p(DM|variant_level contribution;) " p(DM|pheno_level_contribution;)

P
p(DMle) p(DM) * p(DM) p(DM) p(DM)

Equation 1: Naive Bayes predicted probability formula.

Where P(DM) is calculated as the frequency of DM variants in training (28%). The
validation strategy on the 500 repeated sampling is described in the Supplementary
materials (XAl- based digenic mechanism prediction: validation approach on training in

supplementary Materials and Methods).

2.3 Benchmarking with existing digenic interpretation tools

DiVas performances were compared with other recently developed digenic interpretation
tools, namely ORVAL, DiGePred, DIEP, and OligoPVP. While ORVAL, DiGePred, and
DIEP were examined in terms of both sensitivity and prioritization capability, OligoPVP's
evaluation focused solely on its prioritization performance due to its lack of binary
classification.
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The analysis was conducted using data from 11 real cases (gene panel and WES
sequencing). These data were collected from participants who provided informed consent
for the use of their data for research purposes. The consent process was conducted by
the respective partner institutions (see Acknowledgements).

VCF files were pre-filtered to exclude variants with low quality and limited impact on
genes. ORVAL integrates the pathogenicity predictor VarCoPP2.02° and has been run

from the open platform (https://orval.ibsquare.be/, accessed in August 2023) with default

suggested parameters: it filtered out common variants with a MAF>0.035, all intronic
variants that have a distance from the exon edge greater than 13 nucleotides and all
synonymous variants that have a distance greater than 195 nucleotides from each exon
edge. We submitted to ORVAL a tab-delimited file with variant coordinates and
associated zygosity.

DiGePred has been executed on a local machine (8 CPU and 16GB RAM) from
precomputed scores (download in August 2023) on all human gene pairs available at

https://github.com/souhridm/DiGePred. As DiGePred does not take into account single

variant information, we provided the list of unique gene pairs for each sample and tested
the performance with the default suggested DiGePred model
(unaffected_no_gene_overlap), with threshold for classification equal to 0.496, as
reported in the paper?3.

OligoPVP has been run on Amazon Web Service (AWS) cloud EC2 instance (8 CPU and
32GB RAM) based on PhenomeNet Variant Predictor (PVP) v2.1. VCF file with filtered
variants and the list of HPO terms describing each patient were provided as input to the
tool.

DIEP was run locally (8 CPU and 16GB RAM) using the implementation provided by the
authors (https://github.com/pmaglab/DIEP). The threshold for classification is 0.5, as

reported in the paper?*.

DiVas was run on AWS cloud EC2 instances based cluster (1-2 CPU and 4-16GB RAM)
with family analysis when available, while in single-proband modality for the remaining
samples. Benchmark analysis was performed both with the phenotype-driven algorithm
and with the phenotype-free model: as the aim of the phenotype-free model is to prioritize
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digenic pairs that show high-level gene-gene interaction, it has been trained, tested and
validated only on samples with a No-DM diagnosis.

Table 2 reports a summary of benchmark tools specifications.

Tool Version | Last release | WebApp | Code
date available
ORVAL/VarCoPP | 3.0.0 20-06-2023 | Yes https://github.com/sofiapapad90/VarCoPP
DiGePred - 22-09-2021 Yes https://github.com/souhridm/DiGePred
DIEP - 09-08-2022 | No https://github.com/pmglab/DIEP
OligoPVP 211 14-06-2020 | No https://github.com/bio-ontology-research-
group/phenomenet-vp
diVas 3.0.0 01-09-2023 | No Full description of the method is available.
Predictions are available at
oliver.engenome.com

Table 2: Release information and availability of tools used for benchmarking

Further comparison analysis was performed between diVas and ORVAL in terms of

digenic mechanism prediction.

3. Results

3.2 Digenic interpretation

3.2.1 Pathogenicity classification

Before analyzing the digenic dataset with digenic-specific variant interpreters, we
investigated whether monogenic variant interpretation guidelines alone could support the
digenic analysis. We interpreted all single variants in pathogenic pairs according to
ACMG/AMP standard guidelines implemented as in our previous study36. Therefore, each



https://github.com/sofiapapad90/VarCoPP
https://github.com/souhridm/DiGePred
https://github.com/pmglab/DIEP
https://github.com/bio-ontology-research-group/phenomenet-vp
https://github.com/bio-ontology-research-group/phenomenet-vp
https://doi.org/10.1101/2023.10.02.560464
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.10.02.560464; this version posted October 3, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

variant is categorized in the 5 tier system defined by the ACMG/AMP guidelines (see
Monogenic Variant Interpretation in Supplementary materials). After interpreting each
causative training variant according to the ACMG/AMP guidelines, we found that 59% of
variants in DM pairs, 47% in CO and 34% in TD are interpreted as Pathogenic/Likely
pathogenic, and up to 16% of variants (in case of TD pairs) are Benign/Likely benign
(Figure S1). These results confirm the need for the development of digenic-specific
guidelines and approaches for interpretation.

On a 500 repeated hold-out validation, the final best performing model selected for
digenic pathogenicity prediction is the phenotype-driven Random Forest.

Table 3 presents the mean, median, and percentiles of various pertinent metrics,
calculated from the 500 iterations of hold-out validation. DiVas demonstrates
commendable performance in detecting both pathogenic (recall) and benign (specificity)
cases. When performance is examined in relation to CO, TD, and DM, the average recall
for TD is slightly lower (0.864), compared to 0.965 for CO and 0.91 for DM.

Notably, when stratified across digenic mechanisms, the phenotype-driven model exhibits
superior performance compared to the phenotype-free model (see Table S2). The DM
mechanism was not considered for the phenotype-free model. Specifically, the average
recall for TD is 0.864 with the phenotype-driven approach, compared to 0.731 with the
phenotype-free approach. On the other hand, the phenotype-driven approach achieves
an average sensitivity of 0.965 for CO, which decreases to 0.899 with the phenotype-free
approach. The distribution of metrics across the 500 sampling iterations can be observed
in Figure S2 and Figure S3.
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Mean Median 25th Percentile | 75th Percentile

Specificity 0.999 0.999 0.998 1.000
Recall 0.928 0.934 0.903 0.963
PRC 0.979 0.982 0.969 0.992
Precision 0.952 0.959 0.934 0.979
F1_score 0.939 0.942 0.923 0.959
Balanced 0.963 0.966 0.951 0.981
Accuracy

TD recall 0.864 0.895 0.813 0.962
DM recall 0.910 0.917 0.857 1.000
CO recall 0.965 1.000 0.933 1.000

Table 3: Performance of the diVas algorithm on 500 repeated sampling iterations. The
assessment included stratification of recall based on different categories: True Digenic (TD), Dual
Molecular Diagnosis (DM), and Composite (CO).

The model's generalization capabilities were assessed using the “leave-one-phenotype-
out” approach. Table S1 shows the number of True Positive and False Negative pairs in
9 different disorder categories. DiVas shows high recall for the disease category, in
particular in Kidney Disease, Inborn Errors of Metabolism and Ocular disorders. The lower
recall (0.917) is shown on Skeletal Disorders. Overall, these results suggest that diVas
classification is reliable even when the prediction is made on variant pairs associated with
disorders not represented in the training dataset. Having a good generalization ability for
populations not represented in the training data is crucial for high-stakes applications like
healthcare®'.
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3.2.2 Digenic mechanism prediction with XAl

Table S3 reports the Naive Bayes conditional probabilities computed on the positive
training set. For each features subgroups (gene-level, variant-level and phenotype-level),
the categorical value (low, low-median, median-high, high), representing the contribution
of that features subgroup to classification (proportional to the SHAP values), is reported,
along with the conditional probability for DM and No-DM classification. We observe that
there's a 94% probability of a pair being classified as DM when there's a low contribution
from the gene-level feature. Since gene level features broadly represent the gene-gene
interactions, this result is in line with what we would expect for DM pairs, in which two
pathogenic variants for two independent disorders are simultaneously detected in
proband’s genome and no interaction is expected a priori between the impacted genes.
On the contrary, the probability of being DM given a low variant-level contribution is low.
Also in this case the XAl classification pattern follows what we would expect: variants in
DM should exhibit high pathogenicity, whereas TD and CO may consist of variants that
are less pathogenic when considering a monogenic hypothesis with genes that have a
strong interaction (Figure S1). Therefore, the variant-level contribution to TD classification
is expected to be low.

On the 500 repeated hold-out validation, performances are reported in Figure 3. In
median, the percentage of DM variants in the test folds is 28%, in line with the general
proportion of DM in the complete set.

Median and percentiles performance of
the digenic mechanism predictor on 500 repeated holdout

N

I

0.2-

_ Specificity Precision Recall

Figure 3: Median, 25th and 75th percentile of specificity, precision and recall of the digenic
mechanism predictor on 500 repeated holdout validation. Positive class is DM (Dual Molecular).
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3.3 Validation on real cases and benchmark analysis

DiVas has been validated on an independent dataset comprising 11 gene panel/WES
samples with confirmed digenic diagnoses collected through international collaboration
(see Acknowledgements). Samples included in the validation set present heterogeneous
phenotypes, ranging from skeletal to kidney disorders, hearing impairment, ocular, and
cardiology abnormalities. The number of HPO terms describing patients' traits varies from
a minimum of 1 to a maximum of 4 terms (Table S4), with a median of 2. A total of 6
samples have been analyzed in single-proband modality, while for the remaining samples
family information has been integrated. For 10 out of 11 pathogenic digenic combinations
the digenic mechanism was known a priori (4 DM and 6 TD/CO).

Since diVas, ORVAL, OligoPVP and DiGePred adopt different filtering and pair
generation strategies, the number of digenic instances evaluated by each tool is different.
As a matter of fact, ORVAL predicts all possible variant combinations, while diVas
evaluates, for a given gene pair, at most 4 combinations with the more pathogenic
variants in those genes (according to different inheritance hypotheses). On the contrary,
DiGePred and DIEP do not consider variant pairs and predict the pathogenicity at the
gene pair level. Finally, OligoPVP predicts the pathogenicity of each individual variant,
subsequently combining variants on genes with evidence of interaction, thus potentially
evaluating more than one instance per gene pair. Therefore, the number of combinations
ranked by diVas, DiGePred and DIEP is lower potentially enhancing their prioritization
ability when compared with ORVAL. For this reason, we evaluated ORVAL prioritization
both in default mode and by de-duplicating gene pairs. In this case, for each gene pair,
the variant combination predicted with the highest probability by ORVAL is selected.
Summary about tools’ performances on the real samples are reported in Table 4 and
Figure 4, while Table S5 contains single samples’ detailed statistics. Table S5 also
compares diVas with its phenotype-free version to evaluate the impact of a patient's
phenotypes on classification.

Overall, diVas shows better performance than the other tools in terms of sensitivity,
median false positive rate, and median ranking of the causative digenic combination.
ORVAL has a sensitivity similar to diVas. However, it predicts nearly 30% of the evaluated
instances as pathogenic, failing to adequately control the number of false positives, which
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is essential for a method used in realistic clinical settings. Also DIEP shows a high number
of false positives (Table S5). Deduplicating ORVAL results by gene pair slightly improves
its prioritization statistics. While DiGePred demonstrates greater specificity than ORVAL,
it exhibits the lowest sensitivity, with only 2 of the 11 causative digenic combinations
accurately predicted as pathogenic.

OligoPVP identifies only 2 out of 11 causative combinations, with a median of 102
prioritized pathogenic combinations identified per sample. This outcome might be
attributed to the outdated resources used to assess gene-gene interactions. A deeper
investigation of the causes of its high missing rate highlights that only 2 out of 11 causative
gene pairs are considered as interacting by OligoPVP, and thus used to build the final
results. Hopefully, updated gene-gene interaction resources may dramatically impact on
OligoPVP’s prioritization performances. For this reason, we decided to exclude OligoPVP

from the benchmark analysis reported in Table 4 and Figure 4.

Tool Median | Sensitivity Median Number of Median
Ranking | (fraction of Predicted Pathogenic | number of
pathogenic combinations ( % over | evaluated
pairs correctly | total number of digenic
classified) evaluated instances) | instances
diVas 3 0.73 16 (0.2%) 6656
ORVAL 154.5 0.64 3510.5(26,15%) 13427
ORVAL_dedup_genes | 154.5 0.64 3460(26.33%) 13143
DiGePred 760 0.18 30 (0.5%) 5856
DIEP 346 0.55 306 (5.23%) 5855
diVas phenotype-free |5 0.73 158 (2.37%) 6656

Table 4: Median performance of digenic prediction tools on the validation set of real cases.
Median ranking of the causative digenic combination, median number of predicted pathogenic

and of evaluated digenic combinations is reported. Additionally, we report the sensitivity,
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computed as the number of true pathogenic pairs correctly classified by the tool divided by the
total number of pathogenic cases (11).

1
1
1
Causatives in the top 5th positions
Causatives between the 6th and 10th positions
B Causatives between the 11th and 25th positions
B Causatives between 26th and 50th positions
Causatives between 51th and 100th positions
B Causatives ranking > 100th
6 6
1
: : . 2

iz ik 15 15

o

@

@

e

diVas divVas phenofree ORVAL  ORVAL dedup genes DiGePred DIEP

Figure 4. Performance of different tools on digenic pairs prioritization of real cases. For each tool,
we report the number of real cases for which the causative pair is ranked 1) in the top 5th
positions, 2) between the 6th and 10th 3) between the 11th and 25th, 4) between the 26th and
50th 5) between the 51th and 100th or 6) above the 100th position.

In addition, we compared diVas and ORVAL in terms of digenic sub-classification ability.
The diVas XAl-based digenic mechanism predictor correctly subclassified 6 out of 8
digenic combinations that have been previously classified as pathogenic by the tool,
resulting in a sensitivity of 75%. ORVAL, aggregating TD/CO in order to be comparable
with our classification, correctly subclassified 3 out of 6 predicted pathogenic

combinations (Table S6).

3.4 Classification performance on selected cases from OLIDA

database

We additionally benchmarked diVas on the manually curated high-confidence database
described in section 2.1.2. DiVas achieves a sensitivity of 0.81 when applied to 645
causative digenic combinations using the phenotype-driven approach, while it reaches a

lower sensitivity of 0.61 when employing the phenotype-free approach.
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The XAl-driven digenic mechanism predictor reaches an accuracy of 76% in
distinguishing DM and TD/CO, when applied to a subset of 46 causative combinations for

which the digenic mechanism was known.

3.5 OliVer: sharing a Dataset of Pathogenic Digenic Combinations

We've made the manually curated dataset publicly available via a dedicated web app
accessible at oliver.engenome.com.

We've predicted 645 instances (not used for training purposes) and have made the
prediction outcomes available via the OliVer platform (oliver.engenome.com). For every
combination, we provide coordinates of manually curated variants, a list of associated
phenotypes we've curated, and prediction insights from diVas and XAl-driven digenic

mechanism predictor. A platform overview is shown in Fig. 5.

1§l Oliver

Search by:

* Variant

* Gene

« Phenotype

i Shap

GENEMANIA

STRING

Figure 5: preview of the OliVer platform available at oliver.engneome.com. Panel 1: search tab
(by variant, by gene or by phenotype). Panel 2: example of variant search and insight of a
combination.
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4. Discussion

Currently, the diagnostic yield of RDs is on average far below 50%" and there is an urgent
need to uplift this value and end the diagnostic odyssey for thousands of patients. One of
the open challenges in the field of genomics is to go beyond the “one gene, one disease”
paradigm that led the diagnostic genetic approach in the last 50 years®2. Oligogenic
inheritance has gained increasing attention within the ongoing challenge of identifying the
causes of rare genetic disorders.

While bioinformatics and computational approaches have greatly simplified and
supported the diagnostic process, still the majority of available tools are applied to each
single variant in a genome™'5-18  without considering interactions between different
elements, such as genes and their products. In the oligogenic hypothesis, the genetic
cause of a disorder is attributed to the interaction of different mutated genes. As a
consequence, currently available approaches for variant interpretation are not suitable for
the identification of oligogenic causative variants. The development of methodologies for
the interpretation of oligogenic disorders is hampered by limited availability of bona fide
pathogenic oligogenic combinations. Unlike ClinVar?®, a public repository that currently
gathers thousands of interpretations under the monogenic hypothesis, the current
available database of pathogenic oligogenic hypothesis (OLIDA) gathers around 1600
instances, the majority of them represented by digenic combinations?’. Another
fundamental aspect is that OLIDA is a manually-curated database that gathers oligogenic
pathogenic instances from the literature, while ClinVar allows for the submission of
clinically-relevant interpretations from submitters worldwide.

Early methods focusing on digenic variant interpretation (like Orval, DiGePred, OligoPVP
and DIEP) were all trained on DIDA, the previous version of OLIDA, gathering around
250 pathogenic combinations?223. Orval recently integrated the positive training set of the
ML model with the most recently released Olida data. Due to limited availability of bona-
fide pathogenic combinations, external validation of such tools can be hampered by
circularity issues*. The performed benchmark analysis showed that no single tool
emerges as a universal standard: while Orval exhibits high sensitivity, its specificity is
notably compromised. In contrast, DigePred and DIEP provide greater specificity but are
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constrained by their gene-level predictions, without considering the variants included in
each combination. OligoPVP, currently, is the only published tool that incorporates patient
phenotypes into its predictive framework; however, its sensitivity is hindered by outdated
gene-gene interaction resources.

Here, we present diVas, an ML-based approach for digenic variant interpretation aiming
to overcome the limitations of the other tools described above. Unlike other tools, diVas
leverages proband’s phenotypic information to predict the probability of each pair to be
causative. DiVas was trained on more than 350 bona fide curated digenic instances. It
exploits variant pathogenicity, computed according to standard variant interpretation
guidelines through the eVai software3® together with gene-gene interaction and gene-
phenotype association information, to predict the pathogenicity probability. This value is
exploited to rank all the combinations, potentially thousands in a WGS/WES experiment.
In 11 clinical cases, we demonstrated that diVas outperformed existing methods in
prioritizing the causative pairs in the top positions. The causative pair median ranking is
3 for diVas, with at least a 50-fold reduction if compared with other existing solutions.
Better performances have been noticed when a patient's phenotypic description is
provided to the algorithm and the tool proved to generalize well across heterogeneous
phenotypic spectrum of different diseases; however, even when the phenotypic
description is missing, the phenotype-free model can help in the prioritization of the
causative digenic combination. Additionally, diVas is able to account for family
segregation, an essential information for clinical utility>®. An additional layer of
explainability (XAl) allows our tool to further discern the digenic disease mechanisms.
The fact that our ML model is explainable is an important aspect to promote trust in
Artificial Intelligence, and it is highly encouraged by recent EU guidelines on Al%4. A
limitation of our current methodology to predict digenic mechanisms is its resolution:
unlike previous work, our subclassification system is binary, thus predicting DM or No-
DM cases. A future development will be a subclassification system able to distinguish
between CO and TD.

The natural extension of diVas is to move towards oligogenic interpretation. In this case,
the challenge is to gain knowledge on the molecular interactions among sets of genes
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and to obtain a sufficiently robust ground-truth dataset to benchmark and validate such a
solution.

The dramatic improvement in prioritization performances achieved by diVas opens the
way to the wide-spread usage of these tools on undiagnosed patients. It is possible to
imagine a near future where diVas may be exploited in clinical settings on top of routinely
adopted diagnostic solutions based on a monogenic approach on deep-phenotyped

patients lacking a molecular diagnosis.

In this context, digenic inheritance understanding is becoming crucial. We've released a
curated dataset of digenic combinations and associated predictions on the OliVer platform
(oliver.engenome.com) to advance this understanding. This dissemination aims to
highlight digenic inheritance complexities, thereby deepening the scientific community's
foundational knowledge.

Furthermore, providing our curated data and prediction results supports researchers in
their endeavors, reflecting our commitment to advancing the field. This resource is a
powerful tool for hypothesis generation, findings validation, and new investigations.
Beyond data sharing, we aspire to foster a community of researchers and clinicians with
a shared interest in digenic inheritance, promoting collaboration, discussion, and insight
exchange through the OliVer platform. Our contribution is not just data presentation; it's
an invitation to collaborative scientific exploration, expected to drive further

advancements in understanding digenic inheritance and its various implications.

Availability: oliver.engenome.com
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List of Abbreviations

Abbreviation Definition

1KGP 1000 Genomes Project

ACMG American College of Medical Genetics
AMP Association for Molecular Pathology
AWS Amazon Web Services

(610) Composite

DE Digenic Effect

Dl Digenic Inheritance

DM Dual Molecular Dlagnosis

INDEL Insertion/Deletion

HPO Human Phenotype Ontology

ML Machine Learning

SNVs Single Nucleotide Variants

TD True Digenic

VCF Variant Call Format

VUS Variant of Uncertain Significance
WES Whole Exome Sequencing

WGS Whole Genome Sequencing

XAl Explainable Artificial Intelligence
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