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Abstract 

Motivation 

The digenic inheritance hypothesis holds the potential to enhance diagnostic yield 

in rare diseases. Computational approaches capable of accurately interpreting and 

prioritizing digenic combinations based on the proband’s phenotypic profiles and 

familial information can provide valuable assistance to clinicians during the 

diagnostic process. 

Results 

We have developed diVas, a hypothesis-driven machine learning approach that 

can effectively interpret genomic variants across different gene pairs. DiVas 

demonstrates strong performance both in classifying and prioritizing causative 

pairs, consistently placing them within the top positions across 11 real cases 

(achieving 73% sensitivity and a median ranking of 3). Additionally, diVas exploits 

Explainable Artificial Intelligence (XAI) to dissect the digenic disease mechanism 

for predicted positive pairs. 

Availability and Implementation 

Prediction results of the diVas method on a high-confidence, comprehensive, 

manually curated dataset of known digenic combinations are available at 

oliver.engenome.com. 
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1. Introduction 

The identification of disease-causing mutations represents a paramount challenge in the 

realm of  human genetics. Rare Diseases (RDs), which affect around 6% of the population 

in Western societies, display a genetic component in roughly 80% of instances1. Precise 

genetic diagnosis not only leads to better disease management but also aids in tailoring 

the most appropriate treatment strategy for each patient2. Recent years have witnessed 

remarkable advancements in Whole Genome Sequencing (WGS) and Whole Exome 

Sequencing (WES), enhancing our capacity to uncover the genetic underpinnings of 

RDs335 and employing computational tools that facilitate variant interpretation and 

prioritization has proven to be of paramount importance6. In the case of individuals 

suspected of having a RD, the diagnostic process aims to identify the potential genetic 

cause by considering the patient's phenotypic characteristics and familial information. 

Predominantly, most RDs exhibit monogenic (Mendelian) inheritance7, prompting 

clinicians to focus on identifying the single mutated gene responsible for the observed 

disease phenotype(s).  

To achieve this, the American College of Medical Genetics (ACMG), in collaboration with 

the Association for Molecular Pathology (AMP), has formulated guidelines that aid in the 

interpretation of genomic variants as pathogenic, likely pathogenic, benign, likely benign, 

or of uncertain significance (VUS). These determinations are based on diverse factors, 

including familial segregation, in silico predictions of the variant's damaging impact, and 

population allele frequency8. Medical professionals employ these guidelines to identify 

the potentially small number of pathogenic variants in a patient, ultimately aiming to 

pinpoint the mutation causing the disease.  

Despite the advancement in technical capabilities and knowledge, the diagnostic yield, 

defined as the percentage of patients for whom the genetic cause of the disease is 

identified after sequencing, varies between 35% to 55% based on the disorder1, leaving 

approximately 200 million patients without a definitive diagnosis5. 

In contrast to the monogenic inheritance hypothesis, oligogenic models propose that the 

manifestation of a genetic disorder arises from the combined occurrence of mutations in 

multiple genes. The simplest form of this paradigm is digenic inheritance (DI), wherein 
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the disease's origin is attributed to two mutated genes. In the DI field, distinct mechanisms 

have been recognized: True Digenic (TD, also known as Pure Digenic), Composite (CO, 

also known as Modifier), or Dual Molecular Diagnosis (DM). In the case of TD, the 

disease's phenotype(s) emerges when both causative genes carry mutations in the 

patient's genome. Modifiers denote variants that, when present alongside causative 

variants, can influence disease outcomes, such as severity or onset age. Lastly, the DM 

mechanism entails the co-occurrence of two distinct disorders, each caused by 

pathogenic mutations in different genes9. The DI paradigm holds significant potential for 

supporting the diagnosis of RDs7. For instance, research has revealed various genes 

acting as digenic contributors in arrhythmogenic cardiomyopathy, a disorder typically 

regarded as monogenic10. Several other conditions have also been investigated in the 

context of DI patterns, including hypogonadotropic hypogonadism, deafness, ciliopathies, 

and Long QT syndrome11. 

To pinpoint causative gene pairs, potentially thousands of candidates from WGS/WES 

must be assessed. Computational tools, exploiting statistical and Machine Learning (ML) 

techniques, greatly support the diagnostic procedure. Recent years have seen the 

emergence of numerous tools that assess the impact of individual mutations12314, or 

predict variants’ pathogenicity15317. Some methods further incorporate the patient's 

phenotypic data to prioritize variants, aiming to discern the causative one among the top 

contenders18. A limited number of computational tools have been specifically designed to 

classify and prioritize digenic pairs19. VarCopp was the first published ML tool to 

categorize variant pairs as either pathogenic or benign, relying on 11 features grouped  

into two subsets: variant-level features (in silico predictions of the damaging effects of the 

variants in a pair) and gene-level features that capture both gene-gene interactions and 

a priori gene properties20. Subsequently, an additional ML model named Digenic Effect 

(DE) predictor was developed to further elucidate digenic mechanisms (TD, CO, or DM)21. 

ORVAL is an online platform that processes standard VCF files containing the proband’s 

variants, utilizing both VarCopp and the DE predictor for digenic classification and 

oligogenic network analysis22. DiGePred is a ML approach, available as a stand-alone 

tool. Like ORVAL, DiGePred uses different gene-gene interaction features, such as co-

expression, protein-protein interaction and pathway similarity, and a priori gene-level 
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features such as haploinsufficiency and gene essentiality. While DiGePred autonomously 

classifies gene pairs23, it doesn't provide the variant-specific resolution that ORVAL offers. 

A more recent ML methodology for predicting digenic interactions at the gene level is 

DIEP (Digenic Interaction Effect Predictor)24. OligoPVP is an automatic variant 

interpretation tool that can be used to prioritize digenic and oligogenic instances25. To our 

understanding, OligoPVP is the sole tool that integrates proband's phenotypes for 

interpretation. However, OligoPVP initially prioritizes each variant based on a 

pathogenicity score, subsequently prioritizing sets of two or more interacting genes as 

determined by a high-confidence gene-gene interaction network. The final score is the 

sum of the  pathogenicity scores of all the variants involved in the combination.  

ORVAL, DiGePred, and DIEP were trained using known positive digenic pairs from 

DIDA26, a curated dataset listing 258 pathogenic variant pairs sourced from literature. 

Presently, DIDA is not available anymore, and the authors have recently published a new 

database, OLIDA, encompassing more than 1000 oligogenic variant combinations27. The 

need for expanded open-access resources concerning digenic and  oligogenic variants, 

similar to ClinVar28, is crucial for understanding these complex genetic interactions and 

for providing a valuable reference for clinicians and researchers, aiding in accurate 

diagnoses and treatment decisions. Additionally, it's essential to raise awareness and 

educate the community about digenic and oligogenic inheritance to promote collaboration 

and research progress. For this reason, there's a pressing need to establish a community 

platform where researchers can share candidate causative combinations. 

We introduce diVas, an ML tool designed for digenic variant interpretation, grounded in 

monogenic ACMG/AMP standard guidelines and gene-gene interaction data. DiVas can 

also harness the proband’s phenotypic data to enhance the classification and 

prioritization of digenic pairs. For positively predicted pairs, diVas employs cutting-edge 

Explainable Artificial Intelligence (XAI) techniques for further subclassification into distinct 

digenic mechanisms (TD/CO and DM). We have validated diVAs’ capability to identify the 

true causative pair from thousands of candidates in various real-world scenarios and have 

compared our tool with existing methods for digenic variant interpretation.  
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We applied this method to analyze our comprehensive high-confidence, manually curated 

dataset of digenic combinations and associated phenotypes. Predictions are available at 

oliver.engenome.com. 

2. Materials and methods 

2.1 Dataset description 

2.1.1 Training data collection and preprocessing 

To collect data for training purposes, we curated a dataset of pathogenic digenic 

combinations extracted both from DIDA26, from literature review29332 and from an internal 

unpublished database. Variants have been reported with their genomic coordinates and 

associated with the caused phenotypes expressed as Human Phenotype Ontology (HPO) 

terms33, if explicitly available. The positive training set contains 238 unique gene pairs 

and 316 unique genes. At the variant level, the distribution of variant effects in the training 

set is shown in Figure 1, with more than 90% having a coding effect. Taking into account 

both variants and HPO terms, each digenic combination in the training set is unique. For 

digenic pairs in the DIDA database that lacked HPO terms, we utilized phenoBERT34 to 

extract phenotypes from associated publications. In cases where scientific publications 

were unavailable, we employed a prevalence-based phenotype sampling method, 

drawing from the pool of phenotypes linked to the respective disease(s) in the HPO 

resource: the more frequently a phenotype appears in the manifestation of a disease, the 

more likely it is to be extracted when describing the digenic combination. Each causative 

digenic combination is associated with a median number of 5 HPO terms (range [1, 14]). 
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Figure 1: Distribution of Variant Effects in Pathogenic Digenic Combinations 

 

The negative dataset contains about 15,000 neutral digenic combinations extracted from 

1000 Genomes Project (1KGP) data, and from solved monogenic or digenic real cases 

(internal data). Digenic combinations derived from the 1KGP were paired with either a 

randomly sampled set of phenotypes from a DIDA-positive digenic combination or a pool 

of phenotypes chosen through a prevalence-based approach from randomly selected 

disorders. For each real case, we first processed the VCF files to produce all potential 

digenic combinations. Subsequently, we selected a subset of these combinations that 

included: 

(i) at least one variant with a significant pathogenic impact on the gene (7% of the subset); 

(ii) one of the variants from the causative pair (3% of the subset); (iii) combinations chosen 

at random (90% of the subset). In summary, pathogenic combinations constitute 2.5% of 

the training set.  

2.1.2 Independent dataset of digenic combinations 

In order to assess the performance of diVas, we manually curated a high-confidence 

dataset that encompasses digenic combinations representative of all the known digenic 

disorders. To be included in the manually curated dataset, digenic combinations should 
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not belong to the diVas’ positive training set, regardless of the associated phenotypes. 

Initially, we harnessed generative AI techniques to extract phenotype descriptions from 

an extensive corpus of scientific literature34. Subsequently, these extracted phenotypes 

underwent a rigorous manual curation and validation process led by domain experts. This 

hybrid approach, combining the efficiency of AI-driven data extraction with the precision 

of human expertise, resulted in a dataset that captures the complexity of digenic disorders 

with high confidence. Our dataset comprises over 600 digenic combinations (399 unique 

genes for a total of 452 unique gene pairs) that were used to assess the accuracy of 

diVas in terms of pathogenicity and digenic mechanism prediction. 

2.1.3 Digenic combinations generation 

DiVas has the capability to analyze both Single Nucleotide Variants (SNVs) and 

Insertion/Deletion (INDEL) variants in both the GRCh37 and GRCh38 genome 

assemblies. 

Each instance created by diVas to represent a digenic combination comprises a minimum 

of 2 variants, which can be in a homozygous or heterozygous state across both genes. 

The maximum number of variants in an instance is 4, which occurs in cases of compound 

heterozygosity on both genes.  

In instances of compound heterozygous combinations, the presence of at least one 

coding variant in each gene is mandatory for inclusion in the analysis. If familial genetic 

data is accessible, diVas employs this information to effectively reduce the number of 

instances requiring evaluation. This reduction is achieved by eliminating combinations 

that do not adhere to the expected pattern of transmission, utilizing genetic information 

from both affected and unaffected family members. The assumption is that a candidate 

digenic combination must be shared among affected family members within a family and 

be absent as a whole from healthy relatives. 

In situations where multiple instances have been generated for a particular gene pair, 

diVas retains at most  4 combinations for each gene pair: for each gene, two inheritance 

hypotheses are considered (dominant vs recessive) and the variant(s) with the highest 

pathogenic impact based on the pathogenicity score outlined in section 2.1.4.1 are 

chosen.  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 3, 2023. ; https://doi.org/10.1101/2023.10.02.560464doi: bioRxiv preprint 

https://doi.org/10.1101/2023.10.02.560464
http://creativecommons.org/licenses/by-nc-nd/4.0/


2.1.4 Features set 

The feature set employed to characterize each digenic combination is designed to 

encompass the effects of variants on gene functions, interactions between genes, and 

associations between genes and phenotypes. The detailed description of the features 

and the model is reported in Limongelli et al.35 Features at variant and gene level describe 

each gene of the digenic combination independently. Unlike ORVAL and DiGePred, diVas 

has deliberately moved away from sorting the two genes within a pair based on a single 

feature or in a random manner. Instead, duplicated variant and gene-level features have 

been independently arranged according to their minimum and maximum values.  

2.1.4.1 Variant impact on gene 

The influence of the variant(s) on each gene within the gene pair is quantified using a 

pathogenicity score36. This score incorporates various pieces of information, including the 

variant's prevalence in the broader population, in silico predictions of pathogenicity, and 

the classification of the variant in publicly available databases. Specifically, the 

pathogenicity score assigned to each variant in a digenic pair corresponds to the count 

of ACMG/AMP criteria that the variant satisfies, as detailed in our earlier work6,15,36. 

2.1.4.2 Gene-Gene interaction 

Several gene-gene level attributes have been incorporated to capture indications of 

interactions between genes. These attributes encompass biological distance, similarity in 

pathways based on Gene Ontology, phenotypic similarity, and coexpression. The specific 

resources and versions utilized are documented in Table 1. 

 

Feature Name Description Resource Version 

Biological 

Distance 

Degree of functional association between 

two or more genes, articulated according 

to a series of levels of evidence 

(experimental, text-mining, etc.) on the 

base of a PPI network.  

STRING37 v11.5 
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Pathway 

Similarity 

Jaccard similarity metric between the 

pathways the two genes are involved into 

Reactome38 v85 

Gene Ontology-

based similarity 

Semantic similarity between gene 

ontology terms associated to the gene 

pair 

Gene Ontology39 2023-06-

11 

Coexpression Genes correlation obtained by 

processing RNA-Seq samples 

CoexpressDB40 v7.3 

Phenotypic 

Similarity 

Ontology-based similarity between the 

two phenotypes sets associated to the 

genes  

Human 

Phenotype 

Ontology33 

2023-01-

27 

Table 1: Gene-Gene interaction features. For each attribute, the name, description, associated 

resource, and version are provided. 

2.1.4.3 Phenotypic associations 

The connection between the gene pair and patient phenotypes described through HPO 

terms is quantified using diverse metrics. The objective is to prioritize digenic 

combinations that collectively provide a more robust explanation of the patient's traits. By 

computing a measure of similarity between a patient's clinical manifestations (provided 

as a set of HPO terms) and disease descriptions associated with genes, phenotype-

based prioritization tools utilize standards and quantitative similarity measures to cluster 

and compare phenotype sets. 

The phenotypic similarity score is based on HPO information. It is computed starting from 

standard phenotypic similarity indexes (the HPOSim package41) and leveraging the 

Resnik similarity between two phenotypic terms and the Best Match Average approach 

to compute the whole similarity between 2 sets of HPO terms, as described in Deng et 

al., 201541.  

We calculate two distinct phenotypic similarity scores that measure the phenotype 

similarities between the input set of HPO terms and the HPO terms associated with each 

gene in the combination. These scores indicate the extent to which each gene in the 

combination explains the observed phenotypes in the patient.  
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2.2 Classification system 

We designed a structured pipeline implementing the diVas algorithm that accepts a list of 

variants from the proband as input. These variants must be provided in a Variant Call 

Format (VCF) file, compatible with both the GRCh37 and GRCh38 assemblies. This 

pipeline performs variant annotation, generates all potential candidate digenic pairs as 

previously described, and subsequently categorizes each pair as either pathogenic or 

non-pathogenic, relying on the probability of pathogenicity predicted by the ML model. 

Our ML classifier, tailored to a "phenotype-driven" approach, is trained using the 

comprehensive variant-level, gene-level, and phenotype-level feature set detailed in 

section 2.1.4.  

Consequently, the phenotype-driven model requires an additional input: the list of the 

phenotypes observed in the patient, as HPO terms. However, certain scenarios, such as 

prenatal testing, may pose challenges in accessing the patient's phenotypic information. 

To address such cases, we also introduced a "phenotype-free" model, which relies solely 

on variant-level and gene-level features, excluding phenotypic information from its input. 

In the case of the phenotype-driven model, following the prediction process, if a pair is 

identified as pathogenic, a Bayesian approach that harnesses XAI through SHAP42,43 is 

employed. This approach serves to determine whether the positively predicted pair 

adheres to a DM mechanism or not (No-DM)26 thereby predicting the digenic mechanism. 

The classification workflow for the phenotype-driven approach is visualized in Figure 2. 

Further details concerning the ML classifier for digenic prediction and the prediction of the 

digenic mechanism are elaborated upon in Sections 2.2.1 and 2.2.2. 
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Figure 2. The diVas Workflow Overview: diVas initiates its process by accepting a VCF file, which 

encompasses the proband's SNVs and INDELs, along with the patient's HPO terms and optional 

family data. This data is then streamlined to curate a list of potential candidate combinations. For 

every unique instance, a diverse range of features is calculated. Leveraging a pre-trained ML 

model, each pair is classified as either pathogenic or non-pathogenic, accompanied by a 

probability score. These combinations are then ranked based on their predicted probabilities. 

Notably, for every combination identified as pathogenic, diVas conducts an analysis of the ML 

classifier's decision pattern, pinpointing the digenic mechanism (through the Bayesian XAI-based 

digenic effect predictor module) and differentiating between DM combinations and No-DM (both 

CO and TD) combinations. 

2.2.1 Digenic prediction model 

We trained the ML model for digenic variant interpretation using a strategy of 500 

repeated hold-outs. In each iteration, the dataset was partitioned into training, validation, 

and test subsets. To minimize potential circularity and avoid overly optimistic outcomes 

in the test set, we ensured that, during each hold-out, gene pairs in the test subset did 

not overlap with those in the training or validation subsets44. In the training set, we 

conducted inner cross-validation to determine the optimal hyper-parameters for the ML 

model. The validation set was employed to identify the best classification threshold. Given 

the frequent imbalance in variant interpretation datasets, adjusting this threshold can 

enhance the model's performance and utility for the minority class45.  
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Then, the best model, using the optimized threshold, predicts the test set, and various 

performance metrics are evaluated. This process is reiterated 500 times, with the metrics' 

statistics averaged over these repetitions. The ultimate classification framework consists 

of an ensemble of 500 classifiers. For a new instance, the final predicted class is 

determined by the majority of classifiers, while the predicted probability is the median of 

all predicted probabilities. Further details on the repeated hold-out procedure are 

elaborated in the Supplementary Methods (refer to the DiVas training procedure under 

Materials and Methods). 

Additionally, to investigate whether the model may have different performance on distinct 

disorders, we performed a leave-one-phenotype-out validation: we firstly selected a set 

of different disease categories exploiting Clingen gene-based classification46: among all 

the Clinical Domains curated by Clingen Working Groups, only categories with a minimum 

of 10 pathogenic combinations belonging to our dataset have been retained (see Table 

S1). With this approach, we could evaluate 9 out of the 13 available groups from ClinGen. 

For each disease category, we excluded the pathogenic pairs associated with that 

category and the negative pairs involving the same genes from the training set. We 

trained the ML classifier on the remaining set of variants and we evaluated the 

performance on the excluded pathogenic pairs. With this procedure, we aim at assessing 

the generalization capability of our approach on instances relative to disorders not 

represented in the training set.  

2.2.2 XAI-based digenic mechanism prediction 

As previously mentioned, DI can encompass various disease mechanisms, such as TD, 

CO, and DM. After a pair is predicted to be pathogenic, understanding its specific 

subcategory can be valuable. 

Distinguishing between a DM and a TD or a CO combination for pathogenic digenic 

variants is crucial. In a DM, each mutation in different genes is independently pathogenic, 

leading to two separate genetic conditions. In contrast, in the other digenic mechanisms, 

two mutations jointly cause a specific phenotype. This distinction is crucial for accurate 

clinical management, as treatment strategies might differ based on the underlying genetic 

cause47. Moreover, understanding whether it's a DM or not is essential for genetic 
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counseling, offering insights into inheritance patterns and risks to family members. The 

differentiation also has significant implications for research, providing valuable 

information about gene-gene interactions and their role in disease manifestation, and for 

predicting disease progression and outcomes. 

One potential approach is to develop an additional ML classifier, similar to those 

described in previous studies21,48.  

Along those lines, authors of previous work identified a set of informative features that 

can differentiate between DM, TD, and CO subcategories. However, rather than 

constructing an entirely new ML model based on these distinct features, we adopt a 

different strategy. We begin by recognizing that positive pairs falling into different 

subcategories should exhibit varying characteristics. For instance, in the case of DM, we 

expect that both variants within a pair will possess high pathogenicity scores, while the 

gene-gene interaction might be minimal. Conversely, in scenarios of TD or CO, we expect 

strong interconnections between the involved genes. Thus, we propose that the decision-

making process of the classifier should diverge for DM and No-DM (TD and CO) 

scenarios. 

XAI is an emerging topic in AI, driven by the need for more trustworthy and transparent 

classification systems42. The aim of XAI is to develop methodologies that support humans 

to understand the classification process made by complex black-box algorithms, such as 

deep networks or ensemble methods. Local XAI focuses on providing an explanation for 

each single prediction made by a ML classifier49. We assume that the local explanation 

of a digenic prediction can uncover the digenic mechanism (DM or No-DM). For example, 

in the case of a TD pair, we anticipate that the classifier would identify it as positive due 

to the pronounced gene-gene interaction and phenotypic similarity. On the other hand, 

for a DM scenario, the decision-making process would likely place greater emphasis on 

the values of variant-level features. In particular, we used SHAP, a widely applied local 

XAI method using a game theory approach to dissect the predicted probability and assign 

a Shapley value to each feature. This numeric value can be interpreted as the contribution 

of that feature to the predicted probability50. To develop our XAI-based digenic effect 

predictor, we compute the Shapley values for the prediction of each sample with a known 

digenic effect. Since our final prediction pipeline is an ensemble of 500 classifiers, for a 
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single instance we computed the local XAI of the classifier in the ensemble whose 

predicted probability for that instance is equal to the median predicted probability. 

Subsequently, we sum the computed Shapley values for each of the three features 

category: gene-level features, variant-level features and phenotype-level features. On the 

training set, we calculate the first percentile, the median and the third percentile of the 

Shapley values for each group. For each instance, and for each features group, we assign 

a categorical attribute <low=, <low-median=, <median-high= or <high= if the sum of the 

Shapley values for that group is below the first percentile, between the first percentile and 

the median, between the median and the third percentile, or above the third percentile. 

Therefore, each positive predicted instance will be further characterized by three 

categorical features: gene_level_contribution, variant_level_contribution and 

pheno_level_contribution, each having 4 different possible values (low, low-median, 

median-high, high). We calculated the probabilities of being DM given each feature 

contribution to classification, and we used a Naive Bayes approach to classify a new 

positive predicted instance as follows: 

 

 
Equation 1: Naive Bayes predicted probability formula. 

 

Where P(DM) is calculated as the frequency of DM variants in training (28%). The 

validation strategy on the 500 repeated sampling is described in the Supplementary 

materials (XAI- based digenic mechanism prediction: validation approach on training in 

supplementary Materials and Methods).   

2.3 Benchmarking with existing digenic interpretation tools 

DiVas performances were compared with other recently developed digenic interpretation 

tools, namely ORVAL, DiGePred, DIEP, and OligoPVP. While ORVAL, DiGePred, and 

DIEP were examined in terms of both sensitivity and prioritization capability, OligoPVP's 

evaluation focused solely on its prioritization performance due to its lack of binary 

classification.  
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The analysis was conducted using data from 11 real cases (gene panel and WES 

sequencing). These data were collected from participants who provided informed consent 

for the use of their data for research purposes. The consent process was conducted by 

the respective partner institutions (see Acknowledgements).   

VCF files were pre-filtered to exclude variants with low quality and limited impact on 

genes. ORVAL integrates the pathogenicity predictor VarCoPP2.020 and has been run 

from the open platform (https://orval.ibsquare.be/, accessed in August 2023) with default 

suggested parameters: it filtered out common variants with a MAF>0.035, all intronic 

variants that have a distance from the exon edge greater than 13 nucleotides and all 

synonymous variants that have a distance greater than 195 nucleotides from each exon 

edge. We submitted to ORVAL a tab-delimited file with variant coordinates and 

associated zygosity.  

DiGePred has been executed on a local machine (8 CPU and 16GB RAM) from 

precomputed scores (download in August 2023) on all human gene pairs available at 

https://github.com/souhridm/DiGePred. As DiGePred does not take into account single 

variant information, we provided the list of unique gene pairs for each sample and tested 

the performance with the default suggested DiGePred model 

(unaffected_no_gene_overlap), with threshold for classification equal to 0.496, as 

reported in the paper23. 

OligoPVP has been run on Amazon Web Service (AWS) cloud EC2 instance (8 CPU and 

32GB RAM) based on PhenomeNet Variant Predictor (PVP) v2.1. VCF file with filtered 

variants and the list of HPO terms describing each patient were provided as input to the 

tool.  

DIEP was run locally (8 CPU and 16GB RAM) using the implementation provided by the 

authors (https://github.com/pmglab/DIEP). The threshold for classification is 0.5, as 

reported in the paper24. 

DiVas was run on AWS cloud EC2 instances based cluster (1-2 CPU and 4-16GB RAM) 

with family analysis when available, while in single-proband modality for the remaining 

samples. Benchmark analysis was performed both with the phenotype-driven algorithm 

and with the phenotype-free model: as the aim of the phenotype-free model is to prioritize 
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digenic pairs that show high-level gene-gene interaction, it has been trained, tested and 

validated only on samples with a No-DM diagnosis.  

Table 2 reports a summary of benchmark tools specifications. 

 

Tool Version Last release 

date 

WebApp 

available 

Code 

ORVAL/VarCoPP 3.0.0 20-06-2023 Yes https://github.com/sofiapapad90/VarCoPP  

DiGePred - 22-09-2021 Yes https://github.com/souhridm/DiGePred  

DIEP - 09-08-2022 No https://github.com/pmglab/DIEP  

OligoPVP 2.1.1 14-06-2020 No https://github.com/bio-ontology-research-

group/phenomenet-vp 

diVas 3.0.0 01-09-2023 No Full description of the method is available. 

Predictions are available at 

oliver.engenome.com 

Table 2: Release information and availability of tools used for benchmarking 

  

Further comparison analysis was performed between diVas and ORVAL in terms of 

digenic mechanism prediction.  

3. Results 

3.2 Digenic interpretation 

3.2.1 Pathogenicity classification 

Before analyzing the digenic dataset with digenic-specific variant interpreters, we 

investigated whether monogenic variant interpretation guidelines alone could support the 

digenic analysis. We interpreted all single variants in pathogenic pairs according to 

ACMG/AMP standard guidelines implemented as in our previous study36. Therefore, each 
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variant is categorized in the 5 tier system defined by the ACMG/AMP guidelines (see 

Monogenic Variant Interpretation in Supplementary materials). After interpreting each 

causative training variant according to the ACMG/AMP guidelines, we found that 59% of 

variants in DM pairs, 47% in CO and 34% in TD are interpreted as Pathogenic/Likely 

pathogenic, and up to 16% of variants (in case of TD pairs) are Benign/Likely benign 

(Figure S1). These results confirm the need for the development of digenic-specific 

guidelines and approaches for interpretation. 

On a 500 repeated hold-out validation, the final best performing model selected for 

digenic pathogenicity prediction is the phenotype-driven Random Forest.  

Table 3 presents the mean, median, and percentiles of various pertinent metrics, 

calculated from the 500 iterations of hold-out validation. DiVas demonstrates 

commendable performance in detecting both pathogenic (recall) and benign (specificity) 

cases. When performance is examined in relation to CO, TD, and DM, the average recall 

for TD is slightly lower (0.864), compared to 0.965 for CO and 0.91 for DM. 

Notably, when stratified across digenic mechanisms, the phenotype-driven model exhibits 

superior performance compared to the phenotype-free model (see Table S2). The DM 

mechanism was not considered for the phenotype-free model. Specifically, the average 

recall for TD is 0.864 with the phenotype-driven approach, compared to 0.731 with the 

phenotype-free approach. On the other hand, the phenotype-driven approach achieves 

an average sensitivity of 0.965 for CO, which decreases to 0.899 with the phenotype-free 

approach. The distribution of metrics across the 500 sampling iterations can be observed 

in Figure S2 and Figure S3. 
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 Mean Median 25th Percentile 75th Percentile 

Specificity 0.999 0.999 0.998 1.000 

Recall 0.928 0.934 0.903 0.963 

PRC 0.979 0.982 0.969 0.992 

Precision 0.952 0.959 0.934 0.979 

F1_score 0.939 0.942 0.923 0.959 

Balanced 

Accuracy 

0.963 0.966 0.951 0.981 

TD recall 0.864 0.895 0.813 0.962 

DM recall 0.910 0.917 0.857 1.000 

CO recall 0.965 1.000 0.933 1.000 

Table 3: Performance of the diVas algorithm on 500 repeated sampling iterations. The 

assessment included stratification of recall based on different categories: True Digenic (TD), Dual 

Molecular Diagnosis (DM), and Composite (CO). 

 

The model's generalization capabilities were assessed using the <leave-one-phenotype-

out= approach. Table S1 shows the number of True Positive and False Negative pairs in 

9 different disorder categories. DiVas shows high recall for the disease category, in 

particular in Kidney Disease, Inborn Errors of Metabolism and Ocular disorders. The lower 

recall (0.917) is shown on Skeletal Disorders. Overall, these results suggest that diVas 

classification is reliable even when the prediction is made on variant pairs associated with 

disorders not represented in the training dataset. Having a good generalization ability for 

populations not represented in the training data is crucial for high-stakes applications like 

healthcare51.  
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3.2.2 Digenic mechanism  prediction with XAI 

Table S3 reports the Naive Bayes conditional probabilities computed on the positive 

training set. For each features subgroups (gene-level, variant-level and phenotype-level), 

the categorical value (low, low-median, median-high, high), representing the contribution 

of that features subgroup to classification (proportional to the SHAP values), is reported, 

along with the conditional probability for DM and No-DM classification. We observe that 

there's a 94% probability of a pair being classified as DM when there's a low contribution 

from the gene-level feature. Since gene level features broadly represent the gene-gene 

interactions, this result is in line with what we would expect for DM pairs, in which two 

pathogenic variants for two independent disorders are simultaneously detected in 

proband’s genome and no interaction is expected a priori between the impacted genes. 

On the contrary, the probability of being DM given a low variant-level contribution is low. 

Also in this case the XAI classification pattern follows what we would expect: variants in 

DM should exhibit high pathogenicity, whereas TD and CO may consist of variants that 

are less pathogenic when considering a monogenic hypothesis with genes that have a 

strong interaction (Figure S1). Therefore, the variant-level contribution to TD classification 

is expected to be low.  

On the 500 repeated hold-out validation, performances are reported in Figure 3. In 

median, the percentage of DM variants in the test folds is 28%, in line with the general 

proportion of DM in the complete set.  

 

Figure 3:  Median, 25th and 75th percentile of specificity, precision and recall of the digenic 

mechanism predictor on 500 repeated holdout validation. Positive class is DM (Dual Molecular). 
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3.3 Validation on real cases and benchmark analysis 

DiVas has been validated on an independent dataset comprising 11 gene panel/WES 

samples with confirmed digenic diagnoses collected through international collaboration 

(see Acknowledgements). Samples included in the validation set present heterogeneous 

phenotypes, ranging from skeletal to kidney disorders, hearing impairment, ocular, and 

cardiology abnormalities. The number of HPO terms describing patients' traits varies from 

a minimum of 1 to a maximum of 4 terms (Table S4), with a median of 2. A total of 6 

samples have been analyzed in single-proband modality, while for the remaining samples 

family information has been integrated. For 10 out of 11 pathogenic digenic combinations 

the digenic mechanism was known a priori (4 DM and 6 TD/CO).  

Since diVas, ORVAL, OligoPVP and DiGePred adopt different filtering and pair 

generation strategies, the number of digenic instances evaluated by each tool is different. 

As a matter of fact, ORVAL predicts all possible variant combinations, while diVas 

evaluates, for a given gene pair, at most 4 combinations with the more pathogenic 

variants in those genes (according to different inheritance hypotheses). On the contrary, 

DiGePred and DIEP do not consider variant pairs and predict the pathogenicity at the 

gene pair level. Finally, OligoPVP predicts the pathogenicity of each individual variant, 

subsequently combining variants on genes with evidence of interaction, thus potentially 

evaluating more than one instance per gene pair. Therefore, the number of combinations 

ranked by diVas, DiGePred and DIEP is lower potentially enhancing their prioritization 

ability when compared with ORVAL. For this reason, we evaluated ORVAL prioritization 

both in default mode and by de-duplicating gene pairs. In this case, for each gene pair, 

the variant combination predicted with the highest probability by ORVAL is selected. 

Summary about tools’ performances on the real samples are reported in Table 4 and 

Figure 4, while Table S5 contains single samples’ detailed statistics. Table S5 also 

compares diVas with its phenotype-free version to evaluate the impact of a patient's 

phenotypes on classification.  

Overall, diVas shows better performance than the other tools in terms of sensitivity, 

median false positive rate, and median ranking of the causative digenic combination. 

ORVAL has a sensitivity similar to diVas. However, it predicts nearly 30% of the evaluated 

instances as pathogenic, failing to adequately control the number of false positives, which 
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is essential for a method used in realistic clinical settings. Also DIEP shows a high number 

of false positives (Table S5). Deduplicating ORVAL results by gene pair slightly improves 

its prioritization statistics. While DiGePred demonstrates greater specificity than ORVAL, 

it exhibits the lowest sensitivity, with only 2 of the 11 causative digenic combinations 

accurately predicted as pathogenic.  

OligoPVP identifies only 2 out of 11 causative combinations, with a median of 102 

prioritized pathogenic combinations identified per sample. This outcome might be 

attributed to the outdated resources used to assess gene-gene interactions. A deeper 

investigation of the causes of its high missing rate highlights that only 2 out of 11 causative 

gene pairs are considered as interacting by OligoPVP, and thus used to build the final 

results. Hopefully, updated gene-gene interaction resources may dramatically impact on 

OligoPVP’s prioritization performances. For this reason, we decided to exclude OligoPVP 

from the benchmark analysis reported in Table 4 and Figure 4. 

 

Tool Median 

Ranking 

Sensitivity 

(fraction of 

pathogenic 

pairs correctly 

classified) 

Median Number of 

Predicted Pathogenic 

combinations ( % over 

total number of 

evaluated instances) 

Median 

number of 

evaluated 

digenic 

instances 

diVas 3 0.73 16 (0.2%) 6656 

ORVAL 154.5 0.64 3510.5(26,15%) 13427 

ORVAL_dedup_genes 154.5 0.64 3460(26.33%) 13143 

DiGePred 760 0.18 30 (0.5%) 5856 

DIEP 346 0.55 306 (5.23%) 5855 

diVas phenotype-free 5 0.73 158 (2.37%) 6656 

Table 4: Median performance of digenic prediction tools on the validation set of real cases. 

Median ranking of the causative digenic combination, median number of predicted pathogenic 

and of evaluated digenic combinations is reported. Additionally, we report the sensitivity, 
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computed as the number of true pathogenic pairs correctly classified by the tool divided by the 

total number of pathogenic cases (11). 

 

 

Figure 4. Performance of different tools on digenic pairs prioritization of real cases. For each tool, 

we report the number of real cases for which the causative pair is ranked 1) in the top 5th 

positions, 2) between the 6th and 10th 3) between the 11th and 25th, 4) between the 26th and 

50th 5) between the 51th and 100th or 6) above the 100th position. 

 

In addition, we compared diVas and ORVAL in terms of digenic sub-classification ability. 

The diVas XAI-based digenic mechanism predictor correctly subclassified 6 out of 8 

digenic combinations that have been previously classified as pathogenic by the tool, 

resulting in a sensitivity of 75%. ORVAL, aggregating TD/CO in order to be comparable 

with our classification, correctly subclassified 3 out of 6 predicted pathogenic 

combinations (Table S6).  

3.4 Classification performance on selected cases from OLIDA 

database  

We additionally benchmarked diVas on the manually curated high-confidence database 

described in section 2.1.2. DiVas achieves a sensitivity of 0.81 when applied to 645 

causative digenic combinations using the phenotype-driven approach, while it reaches a 

lower sensitivity of 0.61 when employing the phenotype-free approach. 
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The XAI-driven digenic mechanism predictor reaches an accuracy of 76% in 

distinguishing DM and TD/CO, when applied to a subset of 46 causative combinations for 

which the digenic mechanism was known.  

3.5 OliVer: sharing a Dataset of Pathogenic Digenic Combinations  

We've made the manually curated dataset publicly available via a dedicated web app 

accessible at oliver.engenome.com. 

We’ve predicted 645 instances (not used for training purposes) and have made the 

prediction outcomes available via the OliVer platform (oliver.engenome.com). For every 

combination, we provide coordinates of manually curated variants, a list of associated 

phenotypes we've curated, and prediction insights from diVas and XAI-driven digenic 

mechanism predictor. A platform overview is shown in Fig. 5. 

 

 

Figure 5: preview of the OliVer platform available at oliver.engneome.com. Panel 1: search tab 

(by variant, by gene or by phenotype). Panel 2: example of variant search and insight of a 

combination. 
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4. Discussion 

Currently, the diagnostic yield of RDs is on average far below 50%1 and there is an urgent 

need to uplift this value and end the diagnostic odyssey for thousands of patients. One of 

the open challenges in the field of genomics is to go beyond the <one gene, one disease= 

paradigm that led the diagnostic genetic approach in the last 50 years52. Oligogenic 

inheritance has gained increasing attention within the ongoing challenge of identifying the 

causes of rare genetic disorders.  

While bioinformatics and computational approaches have greatly simplified and 

supported the diagnostic process, still the majority of available tools are applied to each 

single variant in a genome13,15318, without considering interactions between different 

elements, such as genes and their products. In the oligogenic hypothesis, the genetic 

cause of a disorder is attributed to the interaction of different mutated genes. As a 

consequence, currently available approaches for variant interpretation are not suitable for 

the identification of oligogenic causative variants. The development of methodologies for 

the interpretation of oligogenic disorders is hampered by limited availability of bona fide 

pathogenic oligogenic combinations. Unlike ClinVar28, a public repository that currently 

gathers thousands of interpretations under the monogenic hypothesis, the current 

available database of pathogenic oligogenic hypothesis (OLIDA) gathers around 1600 

instances, the majority of them represented by digenic combinations27. Another 

fundamental aspect is that OLIDA is a manually-curated database that gathers oligogenic 

pathogenic instances from the literature, while ClinVar allows for the submission of 

clinically-relevant interpretations from submitters worldwide.  

Early methods focusing on digenic variant interpretation (like Orval, DiGePred, OligoPVP 

and DIEP) were all trained on DIDA, the previous version of OLIDA, gathering around 

250 pathogenic combinations22,23. Orval recently integrated the positive training set of the 

ML model with the most recently released Olida data. Due to limited availability of bona-

fide pathogenic combinations, external validation of such tools can be hampered by 

circularity issues44. The performed benchmark analysis showed that no single tool 

emerges as a universal standard: while Orval exhibits high sensitivity, its specificity is 

notably compromised. In contrast, DigePred and DIEP provide greater specificity but are 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 3, 2023. ; https://doi.org/10.1101/2023.10.02.560464doi: bioRxiv preprint 

https://doi.org/10.1101/2023.10.02.560464
http://creativecommons.org/licenses/by-nc-nd/4.0/


constrained by their gene-level predictions, without considering the variants included in 

each combination. OligoPVP, currently, is the only published tool that incorporates patient 

phenotypes into its predictive framework; however, its sensitivity is hindered by outdated 

gene-gene interaction resources. 

Here, we present diVas, an ML-based approach for digenic variant interpretation aiming 

to overcome the limitations of the other tools described above. Unlike other tools, diVas 

leverages proband’s phenotypic information to predict the probability of each pair to be 

causative. DiVas was trained on more than 350 bona fide curated digenic instances. It 

exploits variant pathogenicity, computed according to standard variant interpretation 

guidelines through the eVai software36 together with gene-gene interaction and gene-

phenotype association information, to predict the pathogenicity probability. This value is 

exploited to rank all the combinations, potentially thousands in a WGS/WES experiment. 

In 11 clinical cases, we demonstrated that diVas outperformed existing methods in 

prioritizing the causative pairs in the top positions. The causative pair median ranking is 

3 for diVas, with at least a 50-fold reduction if compared with other existing solutions. 

Better performances have been noticed when a patient’s phenotypic description is 

provided to the algorithm and the tool proved to generalize well across heterogeneous 

phenotypic spectrum of different diseases; however, even when the phenotypic 

description is missing, the phenotype-free model can help in the  prioritization of the 

causative digenic combination. Additionally, diVas is able to account for family 

segregation, an essential information for clinical utility53. An additional layer of 

explainability (XAI) allows our tool to further discern the digenic disease mechanisms. 

The fact that our ML model is explainable is an important aspect to promote trust in 

Artificial Intelligence, and it is highly encouraged by recent EU guidelines on AI54. A 

limitation of our current methodology to predict digenic mechanisms is its resolution: 

unlike previous work, our subclassification system is binary, thus predicting DM or No-

DM cases. A future development will be a subclassification system able to distinguish 

between CO and TD.  

The natural extension of diVas is to move towards oligogenic interpretation. In this case, 

the challenge is to gain knowledge on the molecular interactions among sets of genes 
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and to obtain a sufficiently robust ground-truth dataset to benchmark and validate such a 

solution.  

The dramatic improvement in prioritization performances achieved by diVas opens the 

way to the wide-spread usage of these tools on undiagnosed patients. It is possible to 

imagine a near future where diVas may be exploited in clinical settings on top of routinely 

adopted diagnostic solutions based on a monogenic approach on deep-phenotyped 

patients lacking a molecular diagnosis.  

 

In this context, digenic inheritance understanding is becoming crucial. We've released a 

curated dataset of digenic combinations and associated predictions on the OliVer platform 

(oliver.engenome.com) to advance this understanding. This dissemination aims to 

highlight digenic inheritance complexities, thereby deepening the scientific community's 

foundational knowledge.  

Furthermore, providing our curated data and prediction results supports researchers in 

their endeavors, reflecting our commitment to advancing the field. This resource is a 

powerful tool for hypothesis generation, findings validation, and new investigations. 

Beyond data sharing, we aspire to foster a community of researchers and clinicians with 

a shared interest in digenic inheritance, promoting collaboration, discussion, and insight 

exchange through the OliVer platform. Our contribution is not just data presentation; it's 

an invitation to collaborative scientific exploration, expected to drive further 

advancements in understanding digenic inheritance and its various implications. 

 

Availability: oliver.engenome.com 
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List of Abbreviations 

Abbreviation Definition 

1KGP 1000 Genomes Project 

ACMG American College of Medical Genetics 

AMP Association for Molecular Pathology 

AWS Amazon Web Services 

CO Composite 

DE Digenic Effect 

DI Digenic Inheritance 

DM Dual Molecular DIagnosis 

INDEL Insertion/Deletion 

HPO Human Phenotype Ontology 

ML Machine Learning 

SNVs Single Nucleotide Variants 

TD True Digenic 

VCF Variant Call Format 

VUS Variant of Uncertain Significance 

WES Whole Exome Sequencing 

WGS Whole Genome Sequencing 

XAI Explainable Artificial Intelligence 
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