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Abstract

Understanding what drives protein abundance is essential to biology, medicine, and biotechnology.
Driven by evolutionary selection, the amino acid sequence is tailored to meet the required
abundance of proteomes, underscoring the intricate relationship between sequence and functional
demand. Yet, the specific role of amino acid sequences in determining proteome abundance remains
elusive. Here, we demonstrate that the amino acid sequence predicts abundance by shaping a
protein’s conformational stability. We show that increasing the abundance provides metabolic cost
benefits, underscoring the evolutionary advantage of maintaining a highly abundant and stable
proteome. Specifically, using a deep learning model (BERT), we predict 56% of protein abundance
variation in Saccharomyces cerevisiae solely based on amino acid sequence. The model reveals
latent factors linking sequence features to protein stability. To probe these relationships, we
introduce MGEM (Mutation Guided by an Embedded Manifold), a methodology for guiding protein
abundance through sequence modifications. We find that mutations increasing abundance
significantly alter protein polarity and hydrophobicity, underscoring a connection between protein
stability and abundance. Through molecular dynamics simulations and in vivo experiments in yeast,
we confirm that abundance-enhancing mutations result in longer-lasting and more stable protein
expression. Importantly, these sequence changes also reduce metabolic costs of protein synthesis,
elucidating the evolutionary advantage of cost-effective, high-abundance, stable proteomes. Our
findings support the role of amino acid sequence as a pivotal determinant of protein abundance and

stability, revealing an evolutionary optimization for metabolic efficiency.
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Introduction

The intricate interplay between protein synthesis and degradation defines intracellular protein levels,
with implications for therapeutic strategies, as well as efficient protein and cellular engineering. The
complex regulation of protein homeostasis suggests that multiple factors contribute to the overall
proteome makeup, with the evolutionarily encoded sequence potentially playing a pivotal role in
proteome composition. For instance, protein synthesis is strongly regulated at the initiation step 2,
whose rate varies broadly between mRNAs, depending not only on the transcript sequence features
but also on the amino acids at the N-terminal **. In bacteria, the amino acid composition of the C-
terminal is a strong determinant of protein degradation rates, explaining a wide range of protein
abundances °%. These, along with the multiple mechanisms of post-translational regulation "%,
suggest that this rather tight regulation occurs at the degradation level and is encoded, at least
partially, in the amino acid sequence. Empirically, amino acid composition and sequence features
were seen to correlate with protein abundance ="', transcending mere codon composition influences
on protein abundance'?. While the importance of protein sequence in determining abundance is
recognised, the quantitative relationship between sequence and abundance remains elusive, as

does the link between the evolutionary mechanisms that underlie this relationship.

On a broader scale, proteins situated as central players in cellular processes or as critical nodes in

'3, Evolutionarily, these highly abundant

interaction networks often exhibit higher abundances
proteins face stringent constraints, evolving at a slower pace due to their potential large-scale impact
on cellular fitness ''°. Remarkably, the conservation of steady-state protein abundances spans
across diverse evolutionary lineages, ranging from bacteria to human '®~'®. Theoretical models
suggest that increasing protein abundance slows evolution due to reduced fitness, with the least
stable proteins adapting the fastest '°. Yet, under strong selection, proteins can evolve faster by
adopting mutations that enhance stability and folding ?°. Experimental evidence also suggests that
a protein's capacity to evolve is enhanced by the mutational robustness conferred by extra stability
2123 'meaning that protein stability increases evolvability by allowing a protein to accept a broader
range of beneficial mutations while still folding to its native structure. Thermostability gains of highly
expressed orthologs are often accompanied by a more negative AG of folding, indicating that highly
expressed proteins are often more thermostable 24, as often explained by the so-called misfolding
avoidance hypothesis (MAH), because stable proteins are evolutionarily designed to tolerate

25-27

translational errors . On the contrary, several empirical studies revealed no substantial

correlation between protein stability and protein abundance #2°. Likewise, the overall cost (per
protein) of translation-induced misfolding is low compared to the metabolic cost of synthesis *°*',
suggesting that MAH does not explain why highly abundant proteins evolve slower #. On the other
hand, cells may have fine-tuned protein sequences to balance their functional importance with the

metabolic costs they incur, reflecting an optimisation between functional necessity and energy
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3234 _Given the intricate interplay of evolutionary constraints, protein stability, abundance,

efficiency
and metabolic cost, it still remains unclear how cells evolved their sequences to strike an optimal
balance between functional demands of proteome and cellular fithess associated with synthesis and

maintenance of protein abundance.

In this study, we explored the relationship between a protein's amino acid sequence and its
abundance. Using a deep neural network transformer (BERT) trained on data from 21 proteome
studies, we could predict over half of the protein copy number variation (R? st = 56%) in
Saccharomyces cerevisiae based solely on amino acid sequences. Delving into the neural network's
self-attention mechanism to understand which protein sequence features are predictive of their
abundances, we revealed that the network indirectly identified specific physicochemical properties
inherently encoded in amino acid sequences related to a protein’s conformational stability. We then
introduced MGEM (Mutation Guided by an Embedded Manifold) to probe sequence space and found
that abundance-enhancing mutations notably affected protein polarity and hydrophobicity, hinting at
a stability-abundance connection. Molecular dynamics simulations further confirmed the enhanced
stability of abundance-increasing mutants. Using a proteomics experiment in yeast, we revealed that
mutant protein remained more abundant over the course of yeast growth phases compared to a wild
type variant. Importantly, we found that mutants with increased abundance had lower amino acid
synthesis costs than their native versions, underscoring the fithess benefits of abundant, stable
proteins. Our research shows that the amino acid sequence is a key factor influencing intracellular
protein levels. This is achieved by boosting protein stability, which is driven by cost-effective amino
acid substitutions, providing evolutionary benefits by reducing the metabolic costs of protein

synthesis.
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Results

The amino acid sequence is predictive of protein abundance.

To investigate the relationship between amino acid sequence and protein abundance, we used a
compendium of 21 experimental systematic quantitative studies employing mass spectrometry and
microscopy to estimate absolute protein abundances of over 5000 proteins (copy numbers per cell)
in Saccharomyces cerevisiae grown predominantly in the exponential phases across multiple
conditions essentially capturing proteome variation **. The gene-wise dynamic range of protein
abundances spanned an average of 5 orders of magnitude, while individual protein expression
values for 95% of proteins varied within only one relative standard deviation (RSD) across all
experimental conditions (Figure S1). A similar phenomenon has been observed previously with
mRNA levels encoded in the DNA sequences %, This result suggests that individual protein
expression across experimental conditions primarily fluctuates around a specific expression value,

suggesting its deterministic nature.

Next, to investigate the relationship between amino acids and intracellular protein levels, we
formulated a regression problem by utilising protein sequences to model protein abundance values.
To learn sequences, we chose the Bidirectional Encoder Representations from Transformers
(BERT) architecture 3, which allows for transparency in weighing the contributions of amino acid
residues on protein levels and provides insights into the most relevant sequence features the model
uses *°*' to make predictions about protein abundances, using an intrinsic attention mechanism*?.
Due to deep learning's need for extensive training data and the yeast dataset's limited size, we used
repeated measurements (up to 21 sequence copies from all experiments in the dataset) to account
for inter-experimental variability (equivalent to regression with replicates). Our augmented dataset
included 199,206 training examples, with 10% of random sequences uniquely chosen for validation
during model training and 10% for a hold-out test during final model evaluation (Methods M1). By
training BERT from scratch, we found that the model predicts 56% of protein abundance variation
(R? = 56% on a holdout test set) using only an amino acid sequence as input, suggesting that the
sequence predominantly encodes protein abundance. In contrast, the model predictions failed
completely when performing a randomization test with shuffled sequences (R? = -73%, Figure 1A
inset), confirming that the model relies on residue interdependencies in a sequence rather than
simply learning amino acid frequencies when predicting protein levels. Further analysis confirmed
that amino acid frequency is uniformly distributed across the entire dynamic range of protein
abundances, with a mean CV of 7% over abundance deciles (Figure S1D), supporting the neural

network's ability to pick up information encoded in the sequence.
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Figure 1. The amino acid sequence is predictive of protein abundance.
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A) BERT performance on a hold-out test set, coloured by density. Inset: Random prediction control using
shuffled versions of the test sequences. The poor performance on randomized input, effectively predicting a
single value, demonstrates that the model has learned sequence structure and not amino acid frequencies.
B) Attention profiles correlate with amino acid metabolic costs (see also Table S1 for full description). Shown
are distributions across all sequences of maximum (absolute) Pearson correlations of any attention profile with
p-value < 1e-5. Inset: A BERT attention matrix example (top) and derived attention profile (bottom) for a short
sequence. Attention matrices consist of directional association weights between pairs of residues, normalized
as a percentage. The profiles were obtained by averaging along the “attends-to” axis, as the “attended-by”
variation is generally more informative, resulting in one-dimensional attention profiles.

C) Attention profiles correlate with 10 non-redundant AAindex variables (colored by index type), showing that
profiles capture information pertaining to backbone conformation, physicochemical properties, domain linkage,
and secondary structure. While some AAindex types correlate with attention profiles both positively and
negatively (e.g. backbone conformation), individual AAindex variables within these types are overall either
positively or negatively correlated. The categories shown span AAindex variables that are both positively and
negatively correlated with attention.

D) Proteins are split into two subpopulations of sequences with high attention values (z-score > 1) that are
either enriched in turns and helices (S, I, G, and T in DSSP notation) and, to a lesser extent, extended strand
(E), or largely depleted in extended strand (E) and turn (T), as assessed with one-sided hypergeometric tests
(p-value < 0.05).

E) Overlap of attention patterns with protein domains from the yeast InterPro database, grouped by member
databases. The attention coverage of domains (fraction overlapping with attention profiles) is significantly
higher than control for 10 out of 12 member databases (Wilcoxon two-sided signed-rank test, p-value < 0.05),
with the highest coverage in PRINTS and PROSITE.


https://doi.org/10.1101/2023.10.02.560091
http://creativecommons.org/licenses/by-nc-nd/4.0/

164

165

166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199

bioRxiv preprint doi: https://doi.org/10.1101/2023.10.02.560091; this version posted October 4, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

The attention mechanism identifies sequence and structural features

linked to protein abundance.

Next, we wanted to interpret the features learned by the transformer which explain protein
abundance. Models generated by deep neural networks are often difficult to interpret **, however the
self-attention mechanism used by transformers has been shown to match multiple physicochemical
properties and substitution likelihoods of amino acids °. To increase interpretability of the model as
a map of sequence-to-protein abundances, we trained the model from scratch, as opposed to fine-
tuning pretrained large protein language models *~*’. Protein language embeddings, including
sequence representations learned from structural models ¢, have been shown to have limited
generalization to all protein functions and properties “>*°, thus making it difficult to use for generalized
interpretation. Instead, by training the model from scratch in a regression setting, we ensured that
our model learned relevant sequence representations related to protein abundance, easing
interpretation. Thus, we next attempted to identify abundance-related links to physicochemical
protein features using the attention values derived from yeast protein sequences. We extracted the
attention weights of each input sequence and obtained one-dimensional per-residue attention
profiles, which reflected the average percentage of attention that each residue receives from all
others in the sequence when making the corresponding abundance prediction (see Figure S2 and
Methods M2).

To examine the determinants of protein abundance, we first correlated attention profiles with amino
acid costs *' (Methods M3), as amino acid synthesis cost is known to be a determinant of protein

325234 The strongest correlations were found between attention profiles and the

abundance
energetic cost of amino acids (craig_energy) *° averaged over all proteins (mean Pearson’s r = 0.32,
BH adj. p-value < 1e-5). Conversely, anticorrelations were observed with synthetic cost under both
respiratory and fermentative growth (wagner_resp, wagner_ferm, respectively) ** as well as the
number of synthesis steps (craig_steps) *° (mean Pearson’s r = -0.35, -0.33, and -0.31, respectively,
BH adj. p-value < 1e-5). Additionally, some of the systemic costs introduced by Barton et al. °' using
genome-scale flux balance analysis calculations *® showed positive and negative correlations with
attention, such as the impact of the relative change of the amino acid requirement on the minimal
intake of glucose (yeast car_rel, mean Pearson’s r = 0.32 over 1855 proteins and -0.33 over 705
proteins) and the absolute change of the amino acid requirement on the minimal intake of ammonium
(veast_nit_abs, mean Pearson’s r = 0.25 over 1833 proteins and -0.28 over 1165 proteins, Figure
1B and Table S1). A negative correlation with synthesis cost implies that the model assigns more
weight to "cheaply" synthesized amino acids. In contrast, a positive correlation with energy cost
implies paying attention to more energy-rich amino acids when predicting protein abundance. We

stress that the correlations reported here do not directly link cost values to the predicted abundance,
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but rather underline the relevant latent features learned from protein sequence that the model picked

up intrinsically prior to mapping sequence to protein levels.

Based on our observation that amino acid frequency is uniformly distributed across the entire
dynamic range of protein abundances (Figure S1D), we did not expect to find specific single amino
acids that would determine abundances. Instead, we hypothesized that the neural network would
capture higher-order interactions important for structural and functional protein features. Thus, we
correlated attention profiles with a subset of 18 non-redundant AAindex values representing various
physicochemical and biochemical protein properties *” (see Methods M4). We identified significant
correlations with measures of backbone conformation propensity (both positively and negatively
correlated indices, with the strongest mean correlations being 0.38 and -0.38, respectively, p-value
< 1e-5), preference for position at a-helix cap (both positively and negatively correlated indices, with
the strongest mean correlations per sequence being 0.37 and -0.33, respectively, p-value < 1e-5),
polarity (highest mean correlation = 0.35, p-value < 1e-5), domain linker propensity (mean correlation
= -0.31, p-value < 1e-5), and the composition of extracellular domains seen in membrane proteins
(two protein subpopulations, one with mean correlation = 0.36, the other with mean anticorrelation =
-0.33, p-value < 1e-5) (Figure 1C, see Tables S2 and S3 for a detailed description). Physicochemical
properties of amino acids, such as polarity, have been shown to affect translation speed "' and
protein stability 8. The correlations with backbone conformation and preference for a-helix cap
indicators suggest a link to secondary structure, while the correlation with domain linker propensity

points to the model having learned to some extent the boundaries of domain separation.

We next assessed the connection between secondary structure and attention profiles by analyzing

the enrichment of per-residue DSSP annotations °%°

in high-attention positions using AlphaFold2 -
generated*® structures for 4745 yeast proteins. We counted the annotations at positions with
attention profile z-scores > 1 and compared them to background annotation counts across all
proteins (using one-sided hypergeometric tests for enrichment and depletion, p-value < 0.05)
(Methods M5). The results showed that attention values were enriched in turns and helices (S, I, G,
and T in DSSP notation) but depleted in extended strands (E) for most proteins (3254 proteins)
(Figure 1D). For turns (T), the protein subpopulations were more evenly split, with this structure
enriched in 505 proteins and depleted in 754 proteins. These findings suggest that helical structures
may be implicated in protein abundance, while the contribution of turns and sheets towards the model

prediction may be more complex.

As structural properties imply function, we also investigated whether abundance-driven attention
specifically focuses on any functional regions of protein sequences. We examined the extent to
which the attention patterns cover the domains from the S. cerevisiae InterPro ' database. To allow

for comparison with controls, we focused only on domains with a length less than half of the protein
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sequence, analyzing a total of 18,000 domains (Methods M6). For 10 out of 12 member databases,
domains were significantly more covered by high attention than random regions of the same length
(Wilcoxon two-sided signed-rank test, adj. p-value < 0.05) (Figure 1E). The results are particularly
striking as our BERT model was trained from scratch, not pre-trained on domains as in the study by
Rao et al. *°. We next performed a GO enrichment analysis on proteins with well-covered domains
(chosen as at least 30% domain length overlapping with attention patterns, well above the random
control), a total of 832 domains in 517 proteins (Methods M7). From the enriched terms, GO-slim
terms were produced for summarization (Table S4). The enriched (Hypergeometric test, adj. p-value
< 0.05) biological processes are diverse and, among others, include translation, protein folding,
modification, and metabolic processes; the molecular functions include cytoskeletal protein binding,
unfolded protein binding, DNA and RNA binding, transmembrane transporter activity and others.
This variety points at widespread domain patterns to which the model attends across different protein
classes rather than specific functional motifs, which hints at the role of sequence across the entire
proteome. On the technical side of the attention mechanism itself, it is interesting to note that

domains were predominantly captured by a single (and deeper) network layer (Figure S3).

Navigating the sequence space to control protein abundance.

We next hypothesized that our model could facilitate precise control over protein abundance by
introducing targeted changes to the protein sequence. To achieve this, we developed a Mutation
procedure Guided by an Embedded Manifold (MGEM), which enables us to navigate the BERT
model's embedded sequence manifold and perform individual amino acid substitutions that increase
abundance. The approach involves traversing a uni-dimensional UMAP projection of the BERT
encoder's high-dimensional embedded space, which assigns a scalar importance value to each
residue in a sequence based on its impact on protein abundance (i.e. as determined by both position
and amino acid that the model learned) (Figure 2A). MGEM substitutes low-importance residues in
a starting wild type sequence with high-importance residues from a set of guide sequences selected
based on their topmost abundance levels (Figure 2B, see details in Methods M8 and M9). Thus, by
borrowing important amino acids (as measured by their order in the UMAP projection) from highly
abundant proteins, the modified sequence is “moved” towards higher abundance. This is based on
the posited property of the high-dimensional BERT embedded space by which the sequence
representations are approximately ordered (or “ranked”) according to the target value (Figure 2A).
The per-residue importance values obtained with UMAP are a good approximation of this ordering
(Spearman’s p = 0.8, p-value < 1e-16) (Figure 2C), enabling the sorting of all residues on a univariate
scale that spans all sequences, according to their importance towards prediction (see Methods M8).
Our novel method relies on the learned relationship between sequences and only minimally changes
wild types by deterministically substituting the individual amino acids directly related to the

abundance, without relying on probabilistic or stochastic optimization searches.
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We next performed a series of in silico sequence perturbation experiments by introducing
substitutions that would increase protein abundance. This was done across the entire set of protein
sequences, in different substitution schemes, each consisting of changing a given number of lowest
importance residues per sequence (a fixed number of 2, 5, 10, and 20 residues, as well as 10%,
20%, and 30% of residues in each sequence). We observed that MGEM enables control of target
values (protein abundance) significantly more than a random control (paired t-test, adj. p-value <1e-
16 for all schemes) in which a random set of residues of the same size as the MGEM set for the
given scheme was selected and mutated to random amino acids (Figure 2D). Indeed, on average,
random mutations yielded a decrease in protein abundance. The greatest MGEM increase was
obtained when mutating 20% of the sequence, achieving an average 675% predicted abundance

increase.

By inspecting MGEM mutants, we discovered that in terms of sequence position, the N-terminus is
the most important for abundance prediction. The average wild type embedded ordering
(importance) profile peaks over the leading 20% of the sequence (Figure 2E), and as a consequence
of the MGEM selection process, results in most amino acids being left unchanged in this region
(Figure 2F). Additionally, there is a much shorter hotspot of frequently mutated amino acids at the
very last positions of the C-terminus. In accordance with other studies *, this would suggest that the
N-terminus is generally evolutionarily optimized for expression efficiency. Indeed, the composition of
the first 30% of sequences significantly differs from the composition of the full sequences (one-sided
hypergeometric test, p-value < 1e-3), with the leading region enriched in Ala (A), His (H), Met (M),
Pro (P), GIn (Q), Arg (R), Ser (S), Thr (T) (Table S5). The observation that distributions of substituted
amino acids differ from the above (some are replaced uniformly across the entire sequence length)
is another indication of the role of both the position and the nature of the amino acid. In terms of
replacement amino acids, we observed that the vast majority are A, G, and V (Figure 2G). In terms
of physicochemical AAindex variables, mutants show significant perturbations (paired t-test, p-value
< 1e-80) (see Table S6 and Figure S4), especially in indices that describe polarity (specifically
amphiphilicity, with a 19% average decrease), backbone conformation propensity (with the largest
index average decrease by 18% and the highest average index increase by 9%), and in the
preference for position at a-helix cap (average decrease by 5%), which suggests a change in the

likely secondary structure and a shift towards higher hydrophobicity in the mutants.
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Figure 2. Navigating the sequence space to control protein abundance through guided
mutation.

A) Conceptual illustration showing the posited structure of the BERT encoder embedded space and the
embedded ordering construction that supports our guided mutation procedure. The encoder maps each
residue in a sequence to a high-dimensional point in the embedded space E and sequences thus appear as
point clouds. From a point cloud, a thin feedforward predictor yields an abundance prediction. The embedded
space is posited to be structured in such a way as to allow a “traversal” of the point clouds, on a path or
geodesic between all points (curved red line) connecting the points that are part of the lowest abundance
sequences to the highest, in an increasing order of predicted values. This path in high-dimensional space is
approximated with a parametric UMAP projection from the embedded space E to a single dimension, thus
giving a simple linear ranking (or ordering) o/ for each residue j, in each sequence i. This ranking serves to
indicate the global weight of a given residue towards the final prediction, compared with all other residues
across all sequences.

B) Simplified illustration of MGEM (mutation guided by embedded manifold) procedure, which takes advantage
of the global embedded order value (“importance”) obtained for each residue, across all sequences. The

residues with the lowest order value in a sequence are selected for substitution (the “I” residue at position 4 in
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the illustration) and their order values are increased by a large amount, as a higher value would yield a greater
abundance. As we do not have an inverse mapping from this new value to an amino acid, we find the substitute
by taking “inspiration” from guide sequences, chosen as the top 10 highest abundance sequences. The residue
with closest ordering value to the newly increased value (“O” in the example) is taken and this amino acid
replaces the original one in the wild type sequence.

C) The UMAP projection is a good approximation of the embedded manifold, as it generally correlates well
with abundance (Spearman p-value < 1e-308) (the plot is colored by density). Each point corresponds to the
centroid of a sequence point cloud, projected through the learned UMAP function. The horizontal axis is
normalized to the smallest and largest values in the set of projected points. The centroid of the lowest
abundance sequence is marked with a black square and that of the highest abundance sequence with a black
triangle. The approximation is worse for lower abundance sequences, as the red square should have appeared
as the minimum ordering value.

D) Predicted abundance increase on sequences mutated with MGEM (black bars showing averages, with 95%
confidence intervals). An increasingly higher number of residues with lowest ordering (2, 5, 10, 20 residues,
as well as 10%, 20%, and 30% of the sequence) were selected in each scheme shown in the figure. The
highest overall increase occurred for the scheme consisting of mutating the 20% lowest-order residues. All
schemes showed significantly higher values than random control (blue), which on average decreases predicted
abundance.

E) The most important part of the sequence for the model is the N-terminus, as measured by the embedded
ordering value, here normalized to the inverse ranking of residue values (as the relative order is the important
information) divided by sequence length. The plot shows the average such profile for sequences of length 200
to 400, the profiles of which were upsampled by linear interpolation to maximum length.

F) The high importance of the N-terminus for abundance leads to fewer residues being mutated by MGEM, as
a consequence of the embedded ordering values (shown in F). Except for the first few positions in the
sequence, most amino acids in the leading 20% of the sequence are generally untouched (the leading M is
avoided by MGEM). The plot shows for each amino acid the normalized MGEM substitution rate over sequence
length bins spanning the leading 30% of sequences (computed over all sequences and mutation schemes).
The position has been normalized to sequence length and binned to 2 decimals (resulting in 100 bins). For
each amino acid, the number of times MGEM has replaced it in a bin was divided by the wild type count of that
amino acid in the same bin. The z-scores of these values were obtained separately for each amino acid.

G) Average fraction of wild type (left) and MGEM mutant (right) amino acid over the leading 30% of all mutated
sequences (error bars showing 95% confidence intervals). The amino acids are colored by their normalized
hydrophobicity 82, which highlights the overall mutation shift toward more hydrophobic proteins. The binning

was performed as in F), i.e. over 30 of the position 100 bins for each sequence.

13


https://paperpile.com/c/wdnpAS/kOor
https://doi.org/10.1101/2023.10.02.560091
http://creativecommons.org/licenses/by-nc-nd/4.0/

358

359

360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394

bioRxiv preprint doi: https://doi.org/10.1101/2023.10.02.560091; this version posted October 4, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

Highly abundant proteins show greater conformational stability at a

lower metabolic cost.

Mutational analysis from MGEM indicates increased protein abundance primarily from non-polar A,
G, V amino acid substitutions (Figure 2G). Alanine is known to stabilize helices while glycine varies

in its effects ®. Glycine can enhance stability in B-turns 4. Valine is common in thermophilic proteins
y

58 6

, and both alanine and valine substitutions often show similar helix impacts °. Cysteine,
infrequently substituted by our procedure (Figure 2G), is vital for stability due to its potential for
disulfide bridge formation °°. Likewise, it has been observed that highly expressed proteins are often

more thermostable 247

. Using our method which allows for mutations that increase protein
abundance, we sought to determine if the model-learned sequence to abundance mapping is linked
to overall protein stability. To corroborate this, we applied molecular dynamics (MD) simulations to
100 pairs (mutant and wild types, WTs) of non-membrane yeast proteins (Figure 2D, 20% mutation
regime). Both mutated and their original WT versions were modeled using AlphaFold2 structures
(Methods M10) and molecular systems were simulated for 100 ns. While our model does account
for entire protein abundance variation (Figure 1A), there is a risk that introduced mutations could
destabilize proteins. Therefore, we only considered WT and mutant pairs that converged at the end
of the simulation trajectory (Methods M10) considering ~46% of the simulations in our subsequent
analyses. To quantify the degree of protein backbone conformational changes, we started by first
comparing the fluctuations of atomic positions, expressed as the standard deviation of residue alpha
carbons across the entire course of the MD trajectory (root mean square fluctuations, RMSF)
between mutant and WT sequences. 33% of converged systems showed significantly lower RMSF
in comparison to WT proteins (Wilcoxon rank sum test, adj. p-value < 1e-2) (Figure 3A, Figure S5).
Decreases in protein backbone fluctuations might be a sign of protein stabilization®®7°. 59% of
atomic fluctuations of highly abundant mutants were at least 2 standard deviations lower than the
corresponding positions of the WT trajectory (Figure 3B). About 81% of mutations had no direct
impact on atomic fluctuations, i.e. we observed changes in fluctuations in residues as high as two
standard deviations away from corresponding WT positions with no mutations, suggesting that
changes in atomic fluctuations caused by abundance-changing mutations affect overall global
protein dynamics, rather than just local residues (Figure 3C).

Although large structural changes from mutations can destabilize proteins 7!, backbone
conformational changes do not directly indicate protein stability. To delve deeper, we examined
intermolecular interactions, specifically the number of contacts between neighboring amino acids
(Methods M11). Stable proteins with robust hydrophobic cores generally have more native
contacts’. In our comparison, 84% of the high-abundance mutants exhibited significantly more
contacts than their wild types (Wilcoxon rank sum test, adj. p-value < 1e-4) (Figure 3D, Figure S6).

Proteins that easily denature expose their hydrophobic core, resulting in lost hydrophobic
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interactions and increased solvent accessibility . Investigating the effects of A, G, V
substitutions on hydrophobic cores, we computed the Solvent Accessible Surface Area (SASA) for
all proteins. We found a significant decrease (Wilcoxon rank sum test, p-value < 1e-4) in SASA for

abundance-increasing mutants versus wild types, supporting our hypothesis (Figure 3E).

Next, we closely examined the dynamic effects of mutations on the IOC2 protein (UniprotID: Q12072)
based on its top decreased RMSF (Figure 3A). Although the mutant and WT 10C2 started similarly,
they diverged dynamically over 100 ns of simulation (Figure 3F, Figure S7). The stable core, largely
less mutated, differed from the more mutated C-terminal region (Figure 3F, bar plot). A notable
change was the breaking of an alpha-helix in the mutant, enabling the C-terminus to fold closer to
the protein core. This change led to an increase (WT: 53.0%, mutant: 59.9%; Mann-Whitney U test,
p-value < 1e-16) in the median unstructured secondary structure (Figure 3F, DSSP) but formed a
more compact shape than its WT counterpart. Despite imperfect alignment in the C-terminal region,
an overall increase in hydrophobicity is seen in the mutant (mean -0.07 with the WT vs. 0.17 with
the mutant, Mann-Whitney U test p-value < 1e-4), reflected in a reduced RMSF (Figure 3A, Figure
S5). To experimentally validate whether the abundance-increasing mutations could potentially
stabilize protein expression in vivo, we performed an experiment in S. cerevisiae by comparing the
changes in protein expression between exponential (E) and stationary (S) phases. Specifically, we
genetically replaced the native WT variant with the synthetically mutated 10C2 protein (Methods
M12). Using a liquid chromatography-coupled mass spectrometer (LC-MS) in data-independent

576 we monitored the IOC2 expression in exponential and stationary growth

acquisition mode
phases (Methods M12), growing yeast in triplicates to compare the WT and mutant variant (n = 3
per group). We observed that the quantified IOC2 peptides of the mutant variant were on average
~50% more highly expressed (Figure 3G) between S and E phases in comparison to the WT control
(Methods 12), demonstrating that the mutant version of I0C2 extended the expression into the

stationary phase in contrast to the wild type.

Finally, we analyzed the metabolic cost implications of abundance-increasing mutants compared to
wild types, given concerns that increased protein copies might affect fitness '°. Overall, abundance-
increasing mutant metabolic costs decreased significantly compared to random controls (Figure 3H,
paired t-test, p-value < 1e-16). The most notable reductions were in synthesis under fermentative
growth (wagner ferm, -14% average) ** and biosynthetic steps from central metabolism to the
resulting amino acid (craig_steps, -13% average) >°. Both factors had a strong inverse relationship
with BERT attention (Figure 1B & Table S1) confirming that the embedded space ordering (Figure
2A) and the model’s attention indirectly pick up the same evolutionary phenomenon. The exceptions
were the impact of the relative change of the amino acid requirement on the minimal intake of

51

ammonium >’ (yeast_nit_rel, 11% increase on average), which had the lowest correlation with

attention, and the impact of relative change of the amino acid requirement on the minimal intake of
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433  glucose *' (yeast car_rel, 2% increase on average, see Table S7 for a full list). In summary, the
434  significant cost reduction observed is especially striking since neither the BERT model nor the
435 MGEM procedure were specifically trained with cost as a factor. This suggests that the neural
436  network inherently recognized the connection between sequence cost and protein abundance,
437  aligning with earlier observations on the cost-effective metabolism of highly abundant proteomes®?.
438
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Figure 3. Abundant proteins exhibit higher conformational stability and are synthesized at a
lower cost.
A) Root mean square fluctuations between abundance-increasing mutants and wild type (WT) structures over
100 ns of molecular dynamics trajectory. B) Fraction of atomic fluctuation that are at least 2 standard deviations
lower in mutant (red) vs wt (blue). C) Fraction of total significant (absolute z-score > 2) changes in RMSF per

introduced mutation. Indirect denotes the regions of protein sequence with no mutations. D) Comparison of
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contacts between WT and abundance-increasing mutants. Normalization is done with reference to WT using
frames after half of the 100 ns trajectory, contacts are considered at 8A proximity of carbon backbone (Methods
M11). E) Comparison of solvent accessible solvent ares (SASA) between WT and abundance-increasing
mutants. Normalization is done with reference to WT using frames after half of the 100 ns trajectory. F)
Structure (top) and DSSP plot (bottom) of the wild type (left) and the mutant (right) of IOC2 yeast protein. The
structures represent the last frame of the respective simulation (100 ns). The coloring denotes the amino acid
index as shown by the colorbar in the center (N-terminus: blue to C-terminus: red). In the DSSP plot, helical
structures are highlighted in blue, extended structures in red and everything else (e.g. coil, turn, unstructured)
in yellow. The bar plot represents the mutation rate per ~32 amino acids per bar; the dashed line represents
the average mutation rate per bar. On the right hand side the mutated spots are highlighted. G) Ratios of IOC2
(UniprotID: Q12072) peptides between exponential and stationary phases in WT and mutant strains. The
experiment was performed in biological triplicates (Methods M12). H) MGEM reduces protein cost. The
average sequence costs of mutants obtained with MGEM (20% mutated sequence) show significant overall
decrease compared with random control (paired t-test, p-value < 1e-308), particularly in terms of synthesis
costs (see also Table S7). The exceptions were two systemic costs from Barton et al. ®', one having the lowest
correlation with attention (12% cost increase on average), and the other having both weakly positively and

negatively correlated subpopulations (2% cost increase on average).
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Discussion

Intracellular protein levels are determined by a delicate interplay of synthesis, regulation, and
degradation. Despite the vast codon variability seen both within and between species at the DNA
level 7"'"® the conservation of protein ortholog abundances across diverse evolutionary lineages

1618 While intricate cellular dynamics

suggests an evolutionary imprint on amino acid sequences
play a role in immediate protein concentrations, it is likely that significant evolutionary information
resides within the primary sequence itself. Supporting this notion, the analysis of a consolidated
proteomics dataset from a comprehensive list of yeast studies *° showed that, while individual protein
expressions vary, they mostly fluctuate around a specific value for 95% of proteins, but with the
difference between proteins spanning over five orders of magnitude (Figure S1). This led us to
postulate that amino acid sequences may inherently encode protein abundance. To explore this, we
trained a deep neural network to predict protein abundance accounting for over half of the variability
in abundance of the entire proteome dynamic range (Figure 1A, R%est = 56%). By observing that
amino acid composition across deciles of the dynamic range of protein expression is rather uniform
(Figure S1), we confirmed that it is the amino acid arrangement in the sequence and not merely

amino acid composition that is coding for protein abundance (Figure 1A inset).

The contributions of the various protein features on abundance have been studied mostly in isolation
using linear models '>'""°_ However, given the dynamic nature of protein synthesis and degradation
processes and their interactions, nonlinear models that integrate or abstract over the multiple levels
are desired, especially given the loose coupling between some of these (e.g. the dynamic range of
protein abundance is larger than that of mMRNA and the former have longer half-lives ). Thus, to
decipher the biological insights gained by the neural network in predicting protein abundance, we
analyzed the patterns within the BERT self-attention mechanism. Notably, attention profiles showed
correlations with known protein abundance determinants (Figure 1B), including amino acid synthesis
costs, suggesting that the model recognised the cell's energetic currency concerning amino acid
synthesis. The attention mechanism identified multiple associations between residues throughout
the sequence, hinting at the neural network’s ability to discern overarching structural and
physicochemical sequence patterns (Figure 1C). Our analysis further revealed that the network
prioritizes regions with distinct secondary structure elements and functional domains when predicting
protein abundance (Figure 1D, E). Moreover, the correlations found between attention, sequence
structure, and physicochemical properties like polarity and hydrophobicity underscore the potential

relationship between protein abundance and stability (Figure 1C).

The attention values in our model highlight crucial residue pairs for predicting protein abundance.

While this theoretically points to specific sequence positions which are important for abundance
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prediction, understanding the encoder embedded space — a reflection of the sequence grammar
grasped by BERT — is more challenging. This high-dimensional space encapsulates intricate
sequence semantics and isn't straightforward to interpret, resulting in a "semantic gap" between
features and (human) meaning, often seen in deep learning models 2°®'. To enhance our model's
explainability, we introduced the MGEM analytical framework. It simplifies the sequence space
exploration by first establishing a one-dimensional reference (Figure 2A, B), then guiding mutations
towards target sequence regions. Unlike methods that can produce unreliable predictions (predictor

82-84 or local minima problems &, MGEM deterministically modifies sequences based

pathologies)
on their mapped target value, offering a deterministic solution for amino acid substitutions, beneficial
for multiple applications. Furthermore, we believe this type of approach towards transparency and
explainability of deep models warrants further work. As a future improvement, the procedure could
be made free of guide sequences (and free of any bias towards these or inherent limitations
stemming from the choice of the guide set), by constructing or training an inverse embedded-space-

to-sequence mapping.

We applied the MGEM framework to perform a series of control-perturbation experiments to identify
amino acids and protein properties that are intrinsically related to abundance (Figure 2A, B). In
comparison to the random control that resulted in a decrease in protein abundance, MGEM-guided
mutations achieved an average abundance prediction increase of over six times compared to the
wild type sequences (Figure 2D). By inspecting MGEM mutants, we discovered that in terms of
sequence position, the N-terminus was the most important, with the majority of amino acids
remaining unchanged in this region (Figure 2E,F). This suggested that the N-terminus is generally
evolutionarily optimized for expression efficiency, which also supports why it is widely used for

8-8 A short hotspot at the very last position in the C-terminus was

protein expression optimization
frequently mutated, which is known as a signal involved in protein degradation *®. Besides the C-
terminus, however, most of the amino acids were substituted uniformly across the entire sequence
length, mainly with the hydrophobic amino acids A (alanine), G (glycine) and V (valine) (Figure 2G).
The introduction of hydrophobic amino acid residues into protein secondary structural components,
such as helices, sheets and turns, is known to affect a protein’s conformational stability ¢, We
therefore hypothesized that there is a link between increased abundance and protein structure, and

hence its stability.

We tested our hypothesis using extensive molecular dynamics (MD) simulations, an established
technique for studying protein dynamics at the atomic level ®%°. Our data, derived from 200 MD
simulations of random yeast proteins, showed that the majority of abundance-increasing mutations
had increased the number of protein contacts and reduced solvent accessibility as reflected in
reduced root mean square fluctuations (Figure 3A,D,E), phenotypes representative of stable proteins

90-92 (Figure 3D,E, Figure S6). The in vivo yeast proteomics experiment showed that these mutations

20


https://paperpile.com/c/wdnpAS/uVq6+R4D6
https://paperpile.com/c/wdnpAS/yinH6+7mKrf+aYVi9
https://paperpile.com/c/wdnpAS/vol1u
https://paperpile.com/c/wdnpAS/Vybk+MkZ5+jmjO
https://paperpile.com/c/wdnpAS/Wz7y+MeT4
https://paperpile.com/c/wdnpAS/GMOK+g1Zv+rvtp
https://paperpile.com/c/wdnpAS/Ug74+jwOI
https://paperpile.com/c/wdnpAS/BPlp+sG3l+GuuZ
https://doi.org/10.1101/2023.10.02.560091
http://creativecommons.org/licenses/by-nc-nd/4.0/

539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575

bioRxiv preprint doi: https://doi.org/10.1101/2023.10.02.560091; this version posted October 4, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

resulted in sustained higher expression during growth phases (Figure 3G), further supporting our
hypothesis that mutations increasing abundance also enhance protein stability. Note that here we
kept codon frequencies the same as in the wild type strain, focusing solely on amino acid
substitutions without modifying native gene regulatory regions, e.g. promoters. This approach likely
leaves gene synthesis, transcription, and translation unaffected, while by observing long-term
expression during the stationary phase, we assessed whether in vivo protein levels differed from the
wild type due to changes in stability. While it is still unclear if the introduced mutations directly reduce
in vivo protein degradation via stabilization of its conformation or operate through other mechanisms,
our sequence perturbation experiments align well with previous observations that highly abundant
proteins are generally more stable %3079 This phenomenon is often explained by the so-called
misfolding avoidance hypothesis and related hypotheses, which have dominated evolutionary
discussions for the past decade, all aimed at explaining the slower evolutionary rates observed with
highly abundant proteomes '*'. An alternative explanation for the slow evolution of abundant
proteins suggests that higher benefits come with higher costs '°2%**. However, our findings indicate
that proteins with mutations enhancing their stability are not only more abundant but also more cost-
effective to produce. This explains their evolutionary advantage, as a structurally stable protein

incurs fewer synthesis-associated costs to maintain consistent protein levels.

In conclusion, while the primary goal of our study was to investigate the relationship between a
protein's amino acid sequence and its abundance by examining a BERT network’s self-attention
mechanism, our analysis revealed intricate connections between amino acid sequence, protein
abundance, and metabolic cost related to protein stability. Remarkably, even without explicit
conditioning on synthesis cost, both our BERT model and MGEM procedure succeeded in
uncovering these latent relationships. This demonstrates the power of deep neural networks to
decode complex biological systems. By manipulating the deep model's semantics of these latent
relationships, we unintentionally produced sequences optimized for cost. We demonstrate that
mutations leading to increased abundance also contribute to enhanced protein stability, which in turn
offers an evolutionary advantage by reducing the metabolic costs of protein synthesis. In addition,
the MGEM approach opens new avenues in protein engineering by providing a robust, targeted
method for amino acid substitution mapped to any continuous (real-valued) property. This has the
potential for the design of proteins that are not only functionally efficient but also metabolically cost-
effective, thereby offering a critical advantage in biotechnological applications. While no single theory
can likely fully explain the complex relationships between protein sequence, abundance, and
stability, our work identifies a critical link among these factors. By integrating insights from neural
network predictions, extensive MD simulations, and in vivo experiments, we present a unified
hypothesis that reaffirms the evolutionary advantage of stable, abundant proteins: they offer

functional efficacy at a reduced metabolic cost.
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Methods

M1. Neural Network Training

Saccharomyces cerevisiae (strain S288C) protein sequences were obtained from the UniProt*

reference proteome UP000002311 on 20th January 2020. To avoid technical challenges when
training neural networks, we restricted the set of proteins to those with a length between 100 and
1000 residues (yielding 5202 out of 6049 proteins). The intersection of this set with the proteins with
available abundance values from Ho et al. *° resulted in 4750 unique sequences in our initial
sequence-abundance dataset. To assemble the final dataset we added repeated measurements for
each protein sequence, namely, each sequence appeared up to 21 times, each time with a different
experimental target value from the Ho et al. dataset®, as in a regression with replicates, resulting in
99,603 training examples used as input/independent variable. Subsequently, for each sequence, a
shuffled version was introduced with an “effective null” target value, a very small fractional value of
1e-5 (the unit for absolute abundance is molecules per cell), to allow for power transformations,
resulting finally in 199,206 sequences. This was performed in order to expose the neural network to
nonsense counter-example sequences so that it may learn to distinguish and to facilitate sequence

9.% (here, with real and nonsense

interpretation, similar to training for classification problems
classes) or similar to using decoy sequences for distinguishing signal from noise in mass
spectrometry 97. The data was randomly partitioned as 80% training, 10% validation, and 10% test,
by splitting on unique sequences, i.e. ensuring repeated measurements of the same sequence were
placed in the same data partition to avoid data leakage. Protein sequences (X’s / independent
variable) and their corresponding target raw abundances (Y’s / dependent variable) were loaded as-
is to BERT as input lists. To make the abundance distribution mass-centered, the preprocessing was
configured to Box-Cox transform the raw abundances with A = = 0.05155 using the expectation-

maximization procedure as implemented in SciPy, on data based on medians of the initial dataset.

The training task’s preprocessing routine tokenized the sequences with the TAPE IUPAC®® tokenizer,
each amino acid being assigned a unique integer value and the sequence flanked with special start
and stop integer tokens. The TAPE® implementation of the BERT ProteinBertForValuePrediction
class was adapted for the model training. The model was trained as a regression task to minimize
mean squared error (MSE). The model performance reported here was calculated by taking the
median abundance across experiments for the proteins in the hold-out test set (436 values), as the
test set obtained as above contained sequence repeats. The coefficient of determination was
calculated on median values of the hold-out test using the Scikit-learn function. Hyperparameters
search was performed using the BOHB algorithm *® of the HyperBand scheduler * provided by the
Ray library '®. Details about model architecture and hyperparameters are provided in Tables S9-

S10. The best hypermodel thus found was then retrained. The best model consisted of 8 attention
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layers with 4 heads each (see Tables S8). The model was trained on a multi-GPU cluster using a
mixture of A100 and V100 NVIDIA GPUs.

M2. Attention profile analysis

As it is generally unclear '°' at which depth one might find lower or higher level features in such
architectures, we considered all non-redundant attention profiles for a given sequence when
measuring matches. Specifically, as BERT networks are known to have relatively high redundancy
(i.e. different layers and attention heads learn very similar weights), we performed pairwise Pearson
correlation of attention matrices from all layers and heads and kept only those that were uncorrelated
(r < 0.01) with the majority (at least 90%) of other matrices, for each sequence. This left on average
4 non-redundant attention matrices per sequence. Moreover, attention matrices exhibited strong
asymmetry (see Figure S2), often consisting of effectively uniform vertical streaks (i.e. the majority
of residues “attend to” a single residue near-uniformly), thus making the “attended-by” values more
informative (i.e. which residues receive such attention from all others). These “attended-by” values
were averaged to produce one-dimensional attention profiles, which could be correlated with various
per-residue measures. To match against qualitative data such as protein domains, we extracted
residue attention patterns by keeping only the sequence positions that had an attention value z-

score of at least 1 in the corresponding profile, to keep only those positions with the most signal.

M3. Cost analysis

Per-residue cost profiles were computed for all proteins in the dataset (N = 4750) using the S.
cerevisiae amino acid costs from Barton et al.’', with the exception of yeast sul abs, and
yeast_sul_rel, which were deemed trivial for this task since they featured zero cost for all but a few
amino acids. These profiles were then Pearson-correlated to all attention profiles for each protein
(on average 4 attention profiles per protein), keeping only the maximum correlation with p-value <
1e-5 for each protein. The p-value was set using the Bonferroni correction for multiple testing at a
target threshold of 0.05, thus resulting in 0.05 / 4750 = 1.053e-05.

M4. AAindex Correlations

All 544 AAindex measures (https://www.genome.jp/aaindex, release 9.1 2006) were computed on a

subsample of 1000 S. cerevisiae proteins using the R package Bio3D 2.4-3'%2. An average absolute
correlation matrix was computed across the protein sequence subset and the AA indices were
filtered using the R findCorrelation function (with a cutoff of 0.5) from the caret package 6.0-88, to
only keep an non-redundant subset of 18 AA indices: BUNA790103, FINA910104, GEOR030103,
GEORO030104, LEVM760103, MITS020101, NADH010107, NAKH920107, PALJ810107,
QIAN880138, RICJ880104, RICJ880117, ROBB760107, TANS770102, TANS770108,
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VASM830101, WERD780103, WOEC730101. These per-sequence profiles for these indices were
then computed for all proteins in the dataset (N = 4750) and Pearson-correlated to all attention
profiles. Only the maximum correlation with p-value < 1e-5 was kept for each protein. The p-value
was set using the Bonferroni correction for multiple testing at a target threshold of 0.05, thus resulting
in 0.05/4750 = 1.053e-05. Note that the polar requirement (WOEC730101) was not part of the non-
redundant list and was added manually due to its frequent description in the literature and the low
correlation (r < 0.4) to the other indices. The resulting correlation distributions were filtered to only

those AA indices with an absolute mean correlation of above 0.3 across all proteins.

MS5. Secondary structure analysis (DSSP)

Available S. cerevisiae PDB files (4745) generated by AlphaFold2 were downloaded from RCSB-
PDB (on 2022-03-18). For each of these, DSSP 3.0.0 annotations were obtained using the
BioPython 1.79'% dssp_dict_from_pdb_file function. For each protein and all its attention profiles (4
/ protein, on average), DSSP annotations at positions with attention z-scores > 1 were counted. To
avoid small numbers for significance testing, only structures with counts > 10 were kept. For all
attention profiles, one-sided hypergeometric tests with a threshold p-value of 0.05 were performed
both for enrichment and depletion of structure annotation counts, against the total background count
of annotations across all proteins. Finally, this was summarized as the number of proteins that have

attention profiles enriched or depleted in each type of DSSP structural annotation.

M6. Domain analysis

Each InterPro domain was overlapped with the attention patterns produced for its protein (i.e. the
positions of the sequence with attention z-score > 1), recording the highest overlap fraction (i.e. the
largest fraction of aftended-to domain residues) among all patterns produced for the sequence
(output from all network layers and heads). To have a balanced control set, only domains that
stretched to at most 50% of their protein length were kept (18,000 domains), so that the attention
coverage inside the domain could be weighted against that outside of it. This was done (for each
domain) by taking the number of high-attention positions outside the domain and dividing it by the
number of times the domain could fit in the outside region (i.e. the number of windows the same
length as the domain). This yielded an expected count corresponding to repeatedly randomly
sampling subsequences the same length as the domain. The coverage fractions were taken as the
the number of high-attention positions (either in the domain or the expected value outside) divided
by the length of the domain. To assess the significance of the difference in domain coverage fraction
distribution between attention and control, we performed a two-sided Wilcoxon signed-rank test,
separately for each domain member database. The adjusted p-values were < 0.05 for 10 out of 12

member databases, where SFLD and HAMAP differences were not significant.
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M7. GO term enrichment analysis

The GO enrichment analysis for domains that overlap with attention was performed considering the
proteins that have well-covered domains ( >= 30% of their positions overlapping attention patterns)
against the full set of proteins, with the Python library GOATOOLS 1.0.15' using the Holm-
Bonferroni p-value correction method and a significance threshold of 0.05. To summarize the results,
GOATOOLS was used to obtain yeast GO slim terms (Table S4).

M8. Embedded Ordering

To assess how individual amino acids in a sequence affect the abundance prediction, we probed the
embedded space that the BERT encoder maps to. We call an embedded ordering the parametric
UMAP projection "% that we trained to map from this space down to a one-dimensional scale. The
encoder’'s embedded space contains 1024-dimensional point clouds (one cloud for each sequence)
(Figure 2A), with every amino acid being assigned a (1024-dimensional) point. And because BERT
uses a learned positional encoding, each residue in the sequence may be assigned a different value
depending on position (i.e. regardless of the type of amino acid). From this space, a relatively simple
feed-forward network (2 weight-normalized linear layers) is used for predicting values on the real
line (Box-Cox-transformed protein abundances). The fundamental assumption of our construction is
that (good) training induces a structure on the embedded encoder space that reflects the total order
of abundance values (i.e. all scalar values are comparable and arranged in a strict succession).
Under this assumption, we posit there exists a relatively low-dimensional manifold on which a
geodesic connects all points in the (full) embedded space, resulting in an arrangement from lowest-
prediction-value point clouds to highest-prediction-value point clouds (Figure 2A). The geodesic thus
gives a total order within the embedded space. To retrieve a manageable approximation of the
geodesic (and thus, of the order), we trained a parametric UMAP projection down to one-dimensional
space. The embedded ordering thus constructed assigns a scalar value to each residue in the
sequence, reflecting its contribution to the prediction. Moreover, these scalar values reflect a global
ranking across the entire sequence space, i.e. lower abundance sequences will have residues with
overall low order values, and the converse for higher abundance sequences. This enables easy

assessment of the importance of each residue and enables mutation procedures.

The training set for the parametric UMAP consisted of the embedded start token point of each
sequence, as information from the entire sequence is “routed” through these network nodes in the
attention layers, and 10% of these were kept as a hold-out test set. The training was performed over
multiple values of the UMAP number of neighbors hyperparameter, spanning an inclusive range from
1% to 25% of the number of sequences in the training set (aiming to balance local versus global
structure). The performance was evaluated as the Spearman correlation between the centroids of

the UMAP-projected point clouds and the corresponding abundance targets over test sequences.
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M9. Mutation Guided by an Embedded Manifold (MGEM)

The guided mutation was performed by sorting the residues according to their embedded ordering
value and selecting the lowest of these for substitution, a different number for each scheme: the
lowest 2, 5, 10, and 20 residues in each sequence, as well as the lowest 10%, 20%, and 30% of
residues in each sequence. The 10 highest abundance sequences were selected as guides. This
gives a pool of 4480 points distributed on the higher range of ordering values, available for
substitution. For each residue selected to be substituted, its order value was increased by a large
value, set as the width of the interval containing 99% of the embedded ordering (UMAP-projected)
values, intuitively inducing a large shift in contribution to the prediction. To obtain a substitute residue
that would match this shifted value, the guide sequences were used. The residue with the closest
ordering value to this shifted value in each guide sequence was then chosen as a substitution
candidate. This substitution was repeated for 10 guide sequences, and the one resulting in the
highest prediction increase was finally selected. Both for the guided and the random substitution, the
leading M residue was avoided. Random control was performed by choosing random residues (the

same number as for each respective scheme) and substituting them with random amino acids.

M10. Molecular dynamics (MD) simulations

We randomly subsampled 100 proteins with an increased abundance of at least 100% (from the
20% mutation regime, Figure 2D), ignoring transmembrane proteins. We applied molecular
dynamics (MD) simulations to 100 mutated non-membrane yeast proteins showing higher
abundance (Figure 2D, 20% mutation regime). Structures were generated both for mutated
sequences and their corresponding wild types using AlphaFold2*®. The structures were generated
utilizing the full big fantastic database (BFD) and all five CASP 14 models . For each sequence,
the structures with the highest average pLDDT score were then selected for molecular dynamics
simulations. Simulations were carried out using the GROMACS simulation package 2022 '°¢-'%  the
AMBER99*-ILDN force field ' and the TIP3P water model''®. The protein was centered in a
dodecahedron box with 1 nm distance to the box’s boundaries, solvated and neutralized by adding
ions. The energy of the solvated system was minimized using a steepest descent algorithm (steps =
50,000, emtol = 1000 kJ/mol/nm, emstep = 0.01). Afterwards, the system was equilibrated for 100
ps in an NVT ensemble followed by a 100 ps equilibration in an NpT ensemble. For the productive
run an NpT ensemble was chosen using the Parrinello-Rahman barostat (ref p = 1 bar, tau_p = 2
fs, compressibility = 4.5e-5 bar?(-1))'"". The temperature was set to 300 K using the v-rescale
thermostat (tau = 0.1)"'2. For all steps periodic boundary conditions were applied in all dimensions.
For the simulations a leap-frog integrator'™® with a time-step of 2 fs was chosen. Covalent bonds
involving hydrogens were constrained using the LINCS algorithm (lincs_iter = 1, lines_order = 4)'",
Short range non-bonding interactions were cut off at 1 nm. For the van-der-Waals interactions a

Verlet-cutoff scheme (ns_type = grid, nstlist = 10 steps, DispCorr = EnerPres), for the electrostatic
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interactions a Particle-Mesh-Ewald summation (pme_order = 4, fourierspacing = 0.16 nm)'"®

was
applied. For each mutant and WT version of proteins, simulations were run for 100 ns. Protein
coordinates were written to file every 1 ps. Simulations were considered converged if the RMSD was
within a 10% error margin for 80% of the time points in the final quarter (Figure S8). Only these

converged simulations (entire 100 ns) were selected for RMSF profile comparisons (Figure 3A).

M11. Analysis of MD simulations

For the analysis, first, the periodic boundary conditions were fixed, and afterwards, the frames were
rotationally and translationally fitted onto the protein atoms of the last frame of the trajectory using a
least-square fit as implemented in GROMACS gmx trjconv. RMSF values were extracted using the
GROMACS simulation package. Solvent accessible surface area (SASA) was computed using the
implementation in GROMACS gmx sasa. The fraction of native contacts (Q2) were calculated from
the last frame of the trajectory using the Python module MDAnalysis 2.2.0 "'®""". Contacts were
defined as pairs of residues with an alpha carbon distance of 8A or less. For the calculation of the
DSSP® and the solvent accessible surface area''® for the analysis of the protein UniprotlD:Q12072
python package MDTraj 1.9.7 '"° was used. Dynamics were analyzed using VMD 1.9.4 and
ChimeraX 1.4 ''22_ The structural images shown in Figure 3 were made with VMD. VMD is
developed with NIH support by the Theoretical and Computational Biophysics group at the Beckman

Institute, University of lllinois at Urbana-Champaign.

M12. Proteomics analysis

The S. cerevisiae I0C2 knockout strain (ioc2A::kanMX) in the BY4741 (MATa his3A1 leu2A0

met15A0 ura3A0) background was requested from the Yeast Knockout (YKO) Collection ' in
Gothenburg University and used for genomic engineering in the following procedures. Predicted
mutant (UniprotID: Q12072) DNA sequences flanking with 90 bp overlap to the specific genome sites
on both ends were ordered as gene fragments from either TWIST Bioscience

(www.twistbioscience.com). The mutant DNA sequence was designed such that it does not change

original wild type codons to minimally affect the translation. The predicted mutated amino acids were
substituted using most frequent corresponding codon.

To replace the kanMX gene ' with the mutant gene in the genome, a gRNA plasmid targeting
kanMX was constructed based on an All-In-One plasmid pML104 '?*. The 20 bp gRNA sequence
targeting at the kanMX gene (GCCGCGATTAAATTCCAACA) was designed with the CRISPR tool
in Benchling (https://benchling.com). Primer sets pFA6-KanMX 488-507 FWD / pML_F and pFA6-
KanMX 488-507 REV / f1 ori_R (Table S11) were used to amplify pML104 into 2 fragments
pML104.part1 and pML104.part2 with 20 bp homologous sequences on both ends and gRNA
sequence integrated in the pFA6-KanMX 488-507 FWD / pFA6-KanMX 488-507 REV primers.
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pML104.part1 and pML104.part2 were ligated into a circular plasmid named as
pPML104.gRNA _kanMX by Gibson Assembly '** and was sequence-verified by Eurofins
(https://www.eurofins.com/) with M13R primer (Table S11). pML104.gRNA_kanMX and mutant gene

was transformed into knockout strain with PEG/LiAc method % and selected on synthetic minimal

medium without uracil (SD-URA) plates. Colonies were verified with PCR using the primer set
YLR095C _F / YLR095C R (Table S1), and the amplified fragments were sequence-verified by

Eurofins (https://www.eurofins.com/) with YLR095C F / YLR095C R primer set. SD medium
127

supplemented with 5-fluoroorotic acid (SD+5-FOA) was used to select colonies for loss of
pML104.gRNA_kanMX.

Recombinant colonies without plasmids and the wild type BY4741 colony were picked into YPD
medium. After overnight growth, 1% was inoculated into 1.5 ml YPD medium in a 48 well flower plate
(M2P labs) and each sample had triplicates. The 48 well flower plates were cultured in 30 °C, 1200
rpm for either around 10 h in a Biolector (M2P labs), until the cell growth reached mid-exponential
phase, or 24 h until the cell growth reached stationary phase. 1 ml cells from both phases were

collected and washed with MilliQ water once. After centrifugation, the supernatant was removed and

cell pellets were kept in -80 -C until send to perform proteomics analysis at High Throughput Mass

Spectrometry Core Facility, Charité (Berlin, Germany). Data independent acquisition was performed
using the TimsTOF PRO mass spectrometer (Bruker) was coupled to the UltiMate 3000 RSL
(Thermo). The peptides were separated using the Waters ACQUITY UPLC HSST3 1.8 um column
at 40°C using a linear gradient ramping from 2% B to 40% B in 30 minutes (Buffer A: 0.1% FA; Buffer
B: ACN/0.1% FA) at a flow rate of 5 pl/min. The column was washed by an increase in 1 min to 80%
and kept by 6 min. In the following 0.6 min the composition of B buffer was changed to 2% and
column was equilibrated for 3 min. For MS calibration of ion mobility dimension, three ions of Agilent
ESI-Low Tuning Mix ions were selected (m/z [Th], 1/KO [Th]: 622.0289, 0.9848; 922.0097, 1.1895;
1221.9906, 1.3820). The dia-PASEF windows scheme was ranging in dimension m/z from 400 to
1200 and in dimension 1/K 0 0.6— 1.43, with 32 x 25 Th windows with Ramp Time 100 ms. Data
quantification was performed using the DIA-NN 1.8 software, using library-free mode. Q12072
protein’s expression analysis in exponential and stationary phases (Figure 3G) was carried out using
only the peptides that were detected in both growth phases in mutant and wild types correspondingly,
i.e. the protein changes are calculated as fold-changes of corresponding Q12072 measured peptides
in each strain. For the expression experiment three biological replicates from mutant and wild type
were analyzed (6 samples in total). The raw mass spectrometry data have been deposited to the

8

ProteomeXchange Consortium via the PRIDE partner repository '# with the dataset identifier

PRIDE:XXXXXXX.

M13. Statistical analyses

All statistical analyses were performed using the Python (3.9) package Scipy 1.8.1'%° and R 4.2.0.
For data manipulation and visualization we used pandas 1.4.0 "*°, seaborn 0.12.2 ¥ | scikit-learn
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0.24.2 *2 | and the R tidyverse 2.0.0 "> package collection. Hypothesis testing was performed using
the non-parametric Wilcoxon Rank Sum test, unless indicated otherwise.

M14. Data and Software Availability

Scripts, training parameters, and software versions are provided in the following repository:
https://github.com/fburic/protein-mgem

The models and data required to reproduce figures are stored in the following Zenodo record:
https://doi.org/10.5281/zenodo.8377127
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