

1 **Asymmetric cortical projections to striatal direct and indirect pathways**
2 **distinctly control actions**

3 Jason R. Klug^{1,5}, Xunyi Yan^{1,3,5}, Hilary A. Hoffman¹, Max D. Engelhardt¹, Fumitaka Osakada²,
4 Edward M. Callaway², and Xin Jin^{1,3,4*}

5 ¹ Molecular Neurobiology Laboratory, ² Systems Neurobiology Laboratories, The Salk Institute
6 for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA

7 ³ Center for Motor Control and Disease, Key Laboratory of Brain Functional Genomics, East
8 China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China

9 ⁴ NYU–ECNU Institute of Brain and Cognitive Science, New York University Shanghai, 3663
10 North Zhongshan Road, Shanghai 200062, China

11 ⁵ These authors contributed equally to this work.

12 *Correspondence to: xjin@bio.ecnu.edu.cn

14 **Abstract**

15 **The striatal direct and indirect pathways constitute the core for basal ganglia function in**
16 **action control. Although both striatal D1- and D2-spiny projection neurons (SPNs) receive**
17 **excitatory inputs from the cerebral cortex, whether or not they share inputs from the same**
18 **cortical neurons, and how pathway-specific corticostriatal projections control behavior**
19 **remain largely unknown. Here using a new G-deleted rabies system in mice, we found that**
20 **more than two-thirds of excitatory inputs to D2-SPNs also target D1-SPNs, while only one-**
21 **third do so *vice versa*. Optogenetic stimulation of striatal D1- vs. D2-SPN-projecting**
22 **cortical neurons differently regulate locomotion, reinforcement learning and sequence**
23 **behavior, implying the functional dichotomy of pathway-specific corticostriatal subcircuits.**
24 **These results reveal the partially segregated yet asymmetrically overlapping cortical**
25 **projections on striatal D1- vs. D2-SPNs, and that the pathway-specific corticostriatal**
26 **subcircuits distinctly control behavior. It has important implications in a wide range of**
27 **neurological and psychiatric diseases affecting cortico-basal ganglia circuitry.**

28

29 **In Brief:**

30 Klug, Yan et al. employed a new modified rabies system in combination with slice physiology,
31 optogenetics and behavioral tests to reveal that pathway-specific corticostriatal subcircuits
32 distinctly control actions.

33

34 **Highlights**

35 • One-third of the excitatory inputs to D1-SPNs project to D2-SPNs, while two-third of the
36 excitatory inputs to D2-SPNs also target D1-SPNs

37 • Activation of D1-SPN projecting cortical neurons triggers behavioral effects in line with
38 postsynaptic striatal direct pathway activation

39 • Activation of D2-SPN projecting cortical neurons causes behavioral effects similar with co-
40 activation of both direct and indirect pathways

41 • Corticostriatal subcircuits control actions in a brain-region and pathway-specific manner

42

43 **Introduction**

44 The corticostriatal circuits are critically involved in sensory, cognition, and the learning
45 and control of actions (Aoki et al., 2019; Graybiel, 1998; Haber, 2016; Hikosaka et al., 1998; Jin
46 and Costa, 2010; 2015; Kupferschmidt et al., 2017; Stephenson-Jones et al., 2011; Tanji, 2001;
47 Yin and Knowlton, 2006). Dysfunctional corticostriatal circuitry has been implicated in
48 numerous neurological and psychiatric diseases (Shepherd, 2013), including Parkinson's
49 (Redgrave et al., 2010), autism (Monteiro and Feng, 2017) and obsessive-compulsive disorder
50 (Dalley and Robbins, 2017). The striatal direct and indirect pathways, made up of D1- vs. D2-
51 expressing spiny projection neurons (SPNs) respectively, constitute the core components for
52 basal ganglia functions in relation to action learning and movement control (Albin et al., 1989;
53 DeLong, 1990; Gerfen et al., 1990). Numerous studies have suggested that the two pathways
54 play distinct yet complementary role in controlling actions (Cui et al., 2013; Geddes et al., 2018;
55 Hikosaka et al., 2019; Hikosaka et al., 2000; Jin et al., 2014; Kravitz et al., 2010; Markowitz et
56 al., 2018; Mink, 2003; Tecuapetla et al., 2016). It is well known that D1- and D2-SPNs are
57 spatially intermixed in the striatum and they both receive major excitatory inputs from the
58 cerebral cortex (Bolam et al., 2000; C.R. Gerfen, 2016; Pan et al., 2010). Previous monosynaptic
59 rabies tracing study has revealed that sensory and limbic cortical regions preferably send
60 projections to D1-SPNs, compared to the motor cortical inputs biased toward D2-SPNs (Wall et
61 al., 2013). However, this anatomical analysis was based on relative percentage of various inputs
62 and does not reflect the absolute number of cortical projections. Furthermore, how the functional
63 distinction between these two pathways is generated in the corticostriatal circuitry, and whether
64 the striatal D1- and D2-SPNs receive the inputs from the same or different group of cortical
65 neurons remain largely unknown. This is mainly due to the lack of appropriate tools to label and

66 manipulate the specific cortical subpopulations projecting to D1- vs. D2-SPNs for functional
67 investigations.

68 Here using a new G-deleted rabies system in mice (Klug et al., 2018; Osakada et al.,
69 2011; Wall *et al.*, 2013), we are able to selectively target and express channelrhodopsin-2
70 (ChR2) in presynaptic neurons projecting to D1- vs. D2-expressing SPNs. Whole-cell recordings
71 from brain slice reveal that only one-third of the excitatory inputs to D1-SPNs target D2-SPNs,
72 suggesting that many excitatory inputs to D1-SPNs selectively drive the direct pathway. In
73 contrast, a large proportion of excitatory inputs to D2-SPNs send collateral projections to D1-
74 SPNs, implying that excitatory inputs to D2-SPNs control both the indirect and direct pathways.
75 Optogenetic stimulation of D1- vs. D2-SPN-projecting cortical neurons *in vivo* differently
76 regulate locomotion, reinforcement learning and sequence behavior, in a cell-type and brain-
77 region dependent manner. These results reveal the functional organization of cell-type- and
78 pathway-specific corticostriatal subcircuits, and offer essential insights into how they might
79 control behavior in health and disease.

80

81 **Results**

82 A new modified rabies virus system (Klug *et al.*, 2018; Osakada *et al.*, 2011; Wall *et al.*,
83 2013) was employed to label and functionally target the specific cortical neurons projecting to
84 striatal D1- versus D2-SPNs. Specifically, D1- or A2a-Cre mice (Gong *et al.*, 2007) were
85 injected with Cre-dependent helper viruses (AAV5/EF1 α -Flex-TVA-mCherry, AAV8/CA-Flex-
86 RG) in the dorsal striatum (Klug *et al.*, 2018; Wall *et al.*, 2013) (Fig. 1A-B; see Materials and
87 Methods). Three weeks later, either (EnvA) SAD- Δ G Rabies-GFP or (EnvA) SAD- Δ G Rabies-
88 ChR2-mCherry was injected into the same striatal location to retrogradely infect the presynaptic

89 cortical neurons projecting to D1- or D2-SPNs (Fig 1B). We first injected (EnvA) SAD-ΔG
90 Rabies-GFP in a subgroup of mice to validate the corticostriatal anatomy. In both D1- and A2a-
91 Cre tracing experiments, intensive labeling was found in different cortical regions as expected
92 including the midcingulate cortex (MCC) (van Heukelum et al., 2020; Vogt and Paxinos, 2014)
93 and the primary motor cortex (M1), which targets mainly the dorsal medial and dorsal lateral
94 striatum respectively (Aoki *et al.*, 2019; Bolam *et al.*, 2000; C.R. Gerfen, 2016; Pan *et al.*, 2010;
95 Shepherd, 2013) (Fig. 1C, D). For functional studies, (EnvA) SAD-ΔG Rabies-ChR2-mCherry
96 was utilized to express ChR2 in the presynaptic cortical neurons projecting to D1- or D2-SPNs.
97 To validate the functional expression of ChR2 in the cortex, whole-cell patch clamp recordings
98 were performed from the mCherry-positive layer V pyramidal neurons in M1 around day 7 post
99 rabies injection (Fig. 1E-G; see Materials and Methods). Both the current-voltage relationship
100 revealed by somatic current injections (Fig. 1H) and the spiking activity elicited by blue laser
101 frequency stimulation (Fig. 1I; Fig. S1) confirmed the overall health and the functional
102 expression of ChR2 in the rabies-infected cortical neurons. These results thus demonstrate that
103 we were able to successfully target and functionally express ChR2 in presynaptic cortical
104 neurons projecting to either striatal D1- or D2-SPNs.

105 Taking advantage of this rabies-ChR2 system, we first sought to determine how many
106 functional excitatory inputs that the striatal D1- and D2-SPNs might share. The possible
107 functional organization of excitatory inputs to D1- and D2-SPNs at the single cell level, like the
108 corticostriatal projections, could be completely segregated, totally overlapping, or partially
109 mixed (Fig. 2A). In order to differentiate these possibilities, we made whole-cell recordings from
110 D1- or D2-SPNs in brain slice by optogenetic stimulation of rabies-ChR2-infected excitatory
111 terminals in striatum. We asked what the probability is that a D1- or D2-SPN targeted by the

112 same presynaptic excitatory inputs projecting to the nearby D1- or D2-SPN population. D1- or
113 A2a-Cre mice were crossed to the D1- or D2-eGFP reporter line for visualizing striatal D1- vs.
114 D2-SPNs in slice recordings (see Methods). Following the helper viruses and rabies-ChR2-
115 mCherry injection in the D1-/A2a-Cre x D1-/D2-eGFP mice, the mCherry negative striatal SPNs
116 were selected to be recorded in the whole-cell mode and D1- vs. D2-SPNs can be further
117 separated based on the eGFP expression. Picrotoxin, a GABA_A antagonist, was added throughout
118 the recordings to isolate the excitatory postsynaptic currents (EPSCs). Following the blue laser
119 stimulation of ChR2-positive presynaptic terminals in striatum, the short-latency (< 10 ms)
120 EPSCs recorded was considered as the direct excitatory inputs on D1- or D2-SPNs (Klug *et al.*,
121 2018; Kress *et al.*, 2013), which can be blocked by glutamate antagonists NBQX/APV (see
122 Methods).

123 Recordings from the mCherry-negative, non-starter striatal D1-SPNs in striatal D1-
124 rabies-ChR2-infected mice revealed that with high probability (~63%) a D1-SPN receives the
125 inputs from the presynaptic excitatory neurons projecting to surrounding D1-SPNs (Fig. 2B, D;
126 Fig. S2). This is true from recordings in non-starter D1-SPNs identified both as mCherry (-) /
127 eGFP (+) in D1-Cre x D1-eGFP mice and mCherry (-) / eGFP (-) in D1-Cre x D2-eGFP mice
128 (Fig. 2B, D). Similarly, recordings from mCherry-negative non-starter striatal D2-SPNs in
129 striatal D2-rabies-ChR2-tracing mice revealed that with a very high probability (~79%) a D2-
130 SPN receives the inputs from the presynaptic excitatory neurons project to surrounding D2-SPNs
131 (Fig. 2C, D; Fig. S2). Again, it is similar from recordings in non-starter D2-SPNs identified both
132 as mCherry (-) / eGFP (+) in A2a-Cre x D2-eGFP mice and mCherry (-) / eGFP (-) in A2a-Cre x
133 D1-eGFP mice (Fig. 2C, D). However, recordings from striatal D2-SPNs in the striatal D1-
134 rabies-ChR2-tracing mice revealed that the chance for a D2-SPN to receive excitatory inputs

135 from the presynaptic neurons projecting to surrounding D1-SPNs is rather low (~40%, Fig. 2E,
136 G; Fig. S2). In contrast, recordings from striatal D1-SPNs in the striatal D2-rabies-ChR2-tracing
137 mice revealed that the chance for a D1-SPN to receive the excitatory inputs from the presynaptic
138 neurons projecting to surrounding D2-SPNs is remarkably high (~73%, Fig. 2F, G; Fig. S2).
139 These data unveil a complex picture including both parallel and crosstalk between the excitatory
140 inputs to D1- and D2-SPNs. Notably, the likelihood that the input connectivity was significantly
141 higher from the presynaptic excitatory inputs of D2-SPNs to D1-SPNs than from the presynaptic
142 excitatory inputs of D1-SPNs to D2-SPNs (Fig. 2D, G). Together these results suggest largely
143 segregated yet asymmetrically overlapping excitatory projections to striatum where the majority
144 of excitatory inputs to D1-SPNs only target the D1-SPNs, while most excitatory inputs to D2-
145 SPNs target both D2- and D1-SPNs.

146 Based on this asymmetrically overlapping functional organization, one would predict that
147 the excitatory inputs to D1-SPNs mostly control the striatal direct pathway, while the inputs to
148 D2-SPNs would drive both the indirect and direct pathways (Fig. 3A). To test whether this is the
149 case, we injected rabies-ChR2-mCherry into the dorsal striatum of D1- or A2a-Cre mice as
150 before, and implanted optic fibers bilaterally in either MCC or M1 (see Methods). This allows
151 us to selectively activate D1- or D2-SPN projecting neurons in MCC or M1 and determine the
152 optogenetic effects on behavior. For comparison, we performed behavioral experiments by
153 optogenetic stimulation of striatal D1- or D2-SPNs in dorsal medial (DMS) and dorsal lateral
154 striatum (DLS), two areas that receive dense excitatory projections from MCC and M1,
155 respectively (Aoki *et al.*, 2019; Shepherd, 2013) (see Methods). Consistent with the previous
156 observations (Kravitz *et al.*, 2010), optogenetic stimulation (20Hz) of D1-SPNs in the DMS or
157 DLS facilitated locomotion (Fig. 3B, C, E, F). Conversely, optogenetic stimulation (20Hz) of

158 D2-SPNs in DMS significantly suppressed locomotion (Fig. 3B, D), which is less obvious in
159 DLS (Fig. 3E, G).

160 Notably, high-frequency (20Hz) but not low-frequency (5Hz) optogenetic stimulation of
161 MCC neurons that project to D1-SPNs significantly facilitated locomotion in the open field (Fig.
162 3H, I; Fig. S1), similar to D1-SPN activation in DMS. However, optogenetic stimulation (20Hz)
163 of D2-SPN projecting MCC neurons in the same location did not alter locomotion in the open
164 field (Fig. 3H, J), in contrast with the effects of stimulation of D2-SPNs in DMS (Fig. 3D).
165 Similarly, high-frequency optogenetic stimulation (20Hz) of M1 neurons that project to D1-
166 SPNs facilitated locomotion in the open field (Fig. 3K, L; Fig. S1), while 20Hz stimulation of the
167 M1 neurons projecting to D2-SPNs did not significantly alter locomotion (Fig. 3K, M). Further
168 control experiments employing the same optogenetic stimulation in the exact cortical locations
169 but with ChR2 expression only in the striatum do not generate any behavioral phenotypes (Fig.
170 S3). It thus rules out the possibility that the behavioral effects observed by cortical stimulation in
171 the rabies-ChR2 mice were triggered through direct striatal activation due to the light penetration
172 into the striatum. These results are consistent with the functional connectivity in which the
173 excitatory inputs to D1-SPNs mostly drive the direct pathway, and the inputs to D2-SPNs target
174 both the indirect and direct pathways (Fig. 3A). It also suggests that the cortical neurons in the
175 same cortical layer and spatial location could differently control actions depending on their
176 striatal projection targets, in a pathway- and cell type-specific manner.

177 We next ask whether the cortical subpopulations projecting to striatal D1- vs. D2-SPNs
178 could differently control action learning. We first performed experiments in the D1-Cre mice
179 with viral expression of ChR2 in the striatum, and found that optogenetic stimulation of D1-
180 SPNs robustly supported intracranial self-stimulation (ICSS) (Fig. 3N) in either DMS (Fig. 3O)

181 or DLS (Fig. 3P). Conversely, optogenetic stimulation of D2-SPNs, either in DMS (Fig. 3O) or
182 DLS (Fig. 3P), did not promote ICSS behavior. These data confirmed that the D1-SPN activation
183 in both DMS and DLS drives action learning and ICSS, while D2-SPN stimulation does not
184 strongly support ICSS behavior (Kravitz et al., 2012; Vicente et al., 2016).

185 We then test how the striatum-projecting cortical neurons in MCC or M1 would support
186 ICSS behavior, and whether there is any difference between activation of the D1- vs. D2-SPN
187 projecting cortical neurons. Similar to the effects of direct striatal D1-SPN stimulation (Fig. 3O,
188 P), optogenetic stimulation of striatal D1-SPN projecting neurons was sufficient to support ICSS
189 behavior both in MCC (Fig. 3Q, R) and in M1 (Fig. 3Q, S). Notably, optogenetic stimulation of
190 the cortical neurons projecting to D2-SPNs also significantly drove ICSS behavior, irrespective
191 of whether it is in MCC (Fig. 3R) or M1 (Fig. 3S). These data suggested that optogenetic
192 activation of either D1- or D2-SPN projecting neurons in MCC or M1 could drive reinforcement
193 learning and support ICSS behavior.

194 Corticostriatal circuitry is critical for action sequence learning and execution (Geddes *et*
195 *al.*, 2018; Hikosaka *et al.*, 1998; Jin and Costa, 2010; 2015; Jin *et al.*, 2014; Tanji, 2001;
196 Tecuapetla *et al.*, 2016). In particular, striatal direct and indirect pathways have been suggested
197 to play distinct roles in controlling learned action sequences, as D1-SPNs facilitate ongoing
198 actions while D2-SPNs inhibit actions and mediate switching (Geddes *et al.*, 2018; Jin and
199 Costa, 2010; 2015; Jin *et al.*, 2014; Tecuapetla *et al.*, 2016). We thus ask how the D1- vs. D2-
200 SPN projecting neurons in MCC and M1 regulate the learned action sequences. D1- or A2a-Cre
201 mice injected with helper viruses were trained under fixed-ratio schedule, in which a fixed
202 amount of eight (FR8) leads to reward (Geddes *et al.*, 2018; Jin and Costa, 2010; Jin *et al.*, 2014;
203 Tecuapetla *et al.*, 2016) (Fig. 4A; see Methods). Three weeks later, the trained animals were

204 injected with (EnvA) SAD-ΔG Rabies-ChR2-mCherry virus in the dorsal striatum and optic
205 fibers were bilaterally implanted in either MCC or M1 as before. Mice were continuously trained
206 for a few more days to allow the rabies-mediated ChR2 expression before the optogenetic
207 experiments start (Fig. 4E). High-frequency stimulation (20Hz) of the cortical neurons projecting
208 to D1-SPNs or D2-SPNs was delivered upon the first lever press of the FR8 sequence in
209 randomly chosen 50% trials (Geddes *et al.*, 2018; Tecuapetla *et al.*, 2016) (Fig. 4A, E, see
210 Methods). Stimulation of MCC inputs to D1-SPNs facilitated lever pressing over the duration of
211 the FR8 sequence (Fig. 4B, D). Conversely, stimulation of MCC inputs to D2-SPNs slightly
212 reduced the lever press rate over the stimulation period (Fig. 4C, D). The modulation effects on
213 lever pressing rate were significantly different between optogenetic stimulation of D1- and D2-
214 SPN projecting MCC neurons (Fig. 4D). On the other hand, optogenetic activation of the M1
215 neurons that project to D1-SPNs facilitated lever pressing during sequence execution (Fig. 4F,
216 H), similar to the effects of MCC stimulation. However, optogenetic stimulation of the M1
217 neurons projecting to D2-SPNs delivered an overall facilitation effect on lever pressing (Fig. 4G,
218 H). Overall, stimulation of either D1- or D2-SPN projecting M1 neurons facilitated lever
219 pressing in a similar degree (Fig. 4H). These results thus revealed the highly heterogeneous
220 functions of corticostriatal subcircuits in controlling learned action sequences, depending on both
221 the cortical region and their cell-type specific targets in striatum.

222

223 **Discussion**

224 By taking advantage of a new monosynaptic rabies tracing with optogenetics system, we
225 have discovered a significant degree of segregation between the excitatory inputs to striatal D1-

226 vs. D2-SPNs. Notably, the results unveiled an overall asymmetric crosstalk from the excitatory
227 inputs of D2-SPNs onto D1-SPNs, but not vice versa. Striatal D1- and D2-SPNs receive
228 excitatory inputs from both the cortex and thalamus (Klug *et al.*, 2018; Wall *et al.*, 2013). Since
229 the current techniques do not allow us to isolate the inputs from a specific region to D1- vs. D2-
230 SPNs in slice recording, these results do not exclude the possibility that there might be certain
231 cortical or thalamic regions targeting D1- and D2-SPNs equally or even with a reverse bias.
232 However, the overall functional organization does imply that while the excitatory inputs to D1-
233 SPNs in general drive the striatal direct pathway, the excitatory inputs to D2-SPNs control both
234 the striatal direct and indirect pathways. Indeed, it has been recently reported that corticospinal
235 neurons, which project to both spinal cord and DLS, form uneven synapses onto direct and
236 indirect pathway neurons in the DLS and preferentially target at D1- other than D2-SPNs
237 (Nelson *et al.*, 2021). Furthermore, a series of *in vivo* optogenetic experiments in both MCC and
238 M1 have further supported this notion, and demonstrated that the functionally heterogeneous
239 corticostriatal neuronal subpopulations differently control actions, in both a cortical-region- and
240 striatal-targeting-cell-type-specific manner. These *in vivo* functional findings in corticostriatal
241 pathways are in consistent with the observations of *in vitro* synapse connection probability.
242 Future studies should aim to further dissect the organization and function of pathway-specific
243 thalamostriatal subcircuits, and determine whether they share the same principles of
244 corticostriatal projections.

245 The cortical neurons projecting to striatum mainly consist of layer 2/3 and layer 5
246 pyramidal cells (Klug *et al.*, 2018; Wall *et al.*, 2013), including both the intratelencephalic (IT)
247 and pyramidal tract (PT) types of neurons (Shepherd, 2013). While some anatomical preference
248 might exist (Lei *et al.*, 2004), it has been found that both the striatal direct and indirect pathways

249 receive functional inputs from both the IT and PT neurons (Ballion et al., 2008; Kress *et al.*,
250 2013). Our rabies-ChR2 tracing system allows us to further separate the cortical inputs to striatal
251 D1- vs. D2-SPNs and selectively stimulate these specific cortical subpopulations during behavior
252 and learning. These results have further revealed the diversity of corticostriatal cell subtypes and
253 underscored their heterogeneous functions in behavior. Although the behavioral phenotypes of
254 optogenetic stimulation of different cortical neuronal subpopulations are largely consistent with
255 their functional connectivity with the striatal D1- vs. D2-SPNs, it does not necessarily suggest
256 the observed effects were mediated completely by striatum but not through their collaterals
257 targeting other brain regions or spinal cord (Nelson *et al.*, 2021; Shepherd, 2013). In addition, it
258 has been known that both striatal direct and indirect pathways receive inhibitory inputs from
259 certain GABAergic interneurons in motor cortices (Melzer et al., 2017). In our behavioral
260 experiments with optogenetic stimulation in the motor cortex, there might be possible
261 contribution from these striatum-projecting cortical inhibitory neurons. However, given the
262 nature of sparse distribution of the GABAergic interneurons in the cortex, it is unlikely that they
263 dominate the observed behavioral phenotype (Melzer et al., 2017). Nevertheless, from the
264 striatum point of view, the distinct behavior effect does strongly suggest that the specific
265 information the direct vs. indirect pathway received from the cortex is somehow channeled, but
266 at the same time, effectively coordinated by the cortex.

267 These results have important implications on how the corticostriatal circuitry controls
268 actions in health and disease. The traditional model of the basal ganglia suggests that the direct
269 and indirect pathways play opponent roles in facilitating and inhibiting action, respectively
270 (Albin *et al.*, 1989; DeLong, 1990; Kravitz *et al.*, 2010). More recent models of basal ganglia,
271 however, propose that the direct pathway co-activates and cooperates with the indirect pathway

272 with the former activating the selected action and the latter inhibiting the competing actions (Cui
273 *et al.*, 2013; Hikosaka *et al.*, 2000; Jin *et al.*, 2014; Mink, 1996; Tecuapetla *et al.*, 2016). Under
274 more complicated behavior context, it has been previously reported that the striatal D1- and D2-
275 SPNs are co-activated during the initiation of an action sequence, but become largely segregated
276 during the sequence performance (Geddes *et al.*, 2018; Jin *et al.*, 2014). More specifically, the
277 various subpopulations of striatal D1- and D2-SPNs differently change their firing activity to
278 support the start/stop of the sequence, the execution of the elemental actions, and the switch
279 between subsequences (Geddes *et al.*, 2018). These previous findings thus suggested that the
280 striatal direct and indirect pathways have to dynamically coordinate their activity throughout the
281 performance of sequential actions (Geddes *et al.*, 2018; Hikosaka *et al.*, 2019; Jin and Costa,
282 2015; Markowitz *et al.*, 2018; Tecuapetla *et al.*, 2016).

283 But how are the dynamically different activities in the striatal direct and indirect
284 pathways generated in the circuitry? Both the striatal direct and indirect pathways are driven by
285 the excitatory inputs from the cerebral cortex and thalamus (Bolam *et al.*, 2000; C.R. Gerfen,
286 2016; Pan *et al.*, 2010; Wall *et al.*, 2013). However, whether or not they receive the projections
287 from the same presynaptic neurons, and how the input information is channeled into the two
288 pathways for proper action control remain mostly unknown. The current study has revealed the
289 largely segregated but asymmetrically overlapping organization of the cortical projections to
290 striatal direct vs. indirect pathway. This specific corticostriatal organization provides a structural
291 foundation for the striatal direct and indirect pathways to implement such a dynamic
292 coordination of activity during sequence behavior (Geddes *et al.*, 2018; Hikosaka *et al.*, 2019;
293 Hikosaka *et al.*, 1998; Jin and Costa, 2010; 2015; Jin *et al.*, 2014; Markowitz *et al.*, 2018; Tanji,
294 2001; Tecuapetla *et al.*, 2016). For instance, the dedicated cortical projections to striatal direct

295 vs. indirect pathway are well suited for controlling sequence initiation and termination, where the
296 activation of D1- and D2-SPNs is critical (DeLong, 1990; Geddes *et al.*, 2018). On the other
297 hand, the overlapping cortical projections to both striatal direct and indirect pathways could be
298 crucial for action switching, which requires proper coordination of the two pathways to inhibit
299 current action and activate the upcoming one (DeLong, 1990; Geddes *et al.*, 2018). Our findings
300 also predict that the striatal D1- vs. D2-SPN projecting neurons in the cerebral cortex would fire
301 differently but activate in relation with each other during behavior. Future work should aim to
302 understand how these two cortical subpopulations behave and coordinate to control the striatal
303 direct and indirect pathways for action learning and selection in health and disease (Dalley and
304 Robbins, 2017; Geddes *et al.*, 2018; Hikosaka *et al.*, 2000; Jin *et al.*, 2014; Mink, 2003;
305 Monteiro and Feng, 2017; Redgrave *et al.*, 2010; Shepherd, 2013).

306

307 **Materials and Methods**

308 Animals

309 All procedures were approved by the Salk Institute Institutional Animal Care and Use
310 Committee and followed NIH guidelines for the care and use of laboratory animals. Group
311 housed male and female mice (2 - 6 months old) were used in this study. Animals were housed
312 on a 12-hour dark/12-hour light cycle (dark from 6 pm to 6 am). Heterozygous Drd1-Cre (The
313 Jackson Laboratory, stock # 030329, GENSAT: EY217) and Adora2a-Cre (The Jackson
314 Laboratory, stock # 036158, GENSAT: KG139) mice were obtained from MMRRC and were
315 backcrossed to C57Bl6/J mice, stock # 000664 (> 9 generations) (Cui *et al.*, 2013; Jin *et al.*,
316 2014; Madisen *et al.*, 2012; Tecuapetla *et al.*, 2016). BAC reporter lines D1-eGFP (MMRRC:
317 MMRRC_000297-MU; GENSAT: X60) and D2-eGFP (MMRRC: MMRRC_00230-UNC;
318 GENSAT: S118) (Gong *et al.*, 2007) were crossed to Drd1-Cre (D1-Cre) and Adora2a-Cre (A2a-
319 Cre) mice to identify D1- and D2-SPNs for electrophysiological recordings.

320

321 Surgery and viral injection

322 For G-deleted rabies-mediated retrograde tracing and functional determination (slice
323 recordings) (Smith *et al.*, 2016), all surgeries were performed under aseptic conditions with
324 animals anesthetized with ketamine (100 mg/kg) / xylazine (10 mg/kg) while mounted on a
325 stereotaxic device (Kopf Instruments; Tujunga, CA). The skull was leveled at bregma and
326 lambda and a small hole was drilled at the coordinate (from bregma and midline) of AP + 0.5
327 mm, ML ± 1.8mm. A Hamilton syringe (33-gauge needle) containing 1 µl freshly mixed
328 AAV5/EF1α-Flex-TVA-mCherry (UNC Vector Core; Chapel Hill, NC) and AAV8/CA-Flex-RG
329 (UNC Vector Core; Chapel Hill, NC) was slowly lowered to DV - 2.2 mm from the dura to

330 target dorsal central striatum. The virus cocktail was injected slowly over ~10 min, and the
331 needle was left in place for ~5 additional minutes afterwards. Then, the needle was slowly
332 retracted over 5 minutes to reduce the virus from moving into the needle track. After injection,
333 mice were sutured and returned to their home cage with ibuprofen (50 mg/kg/day) in their
334 drinking water for the following four days. They were given three weeks to allow for maximal
335 expression of helper viruses, before they were injected with 1.5 μ l of (EnvA) SAD- Δ G Rabies-
336 eGFP or 1.5 μ l of (EnvA) SAD- Δ G Rabies-ChR2-mCherry (Salk Vector Core, La Jolla, CA) on
337 an angle (18°) to avoid labeling any neurons in the initial injection tract in the same target region.
338 Injecting locations were identical in D1-Cre and A2a-Cre animals. All the injections were done
339 unilaterally for anatomical and slice physiology experiments, and bilaterally for behavioral
340 experiments.

341 To prepare animals for optogenetic behavior experiments testing D1- or D2-SPN
342 projecting cortical neurons, animals were anesthetized with isoflurane (4% induction, 1-2%
343 maintenance) and locally injected with bupivacaine to numb the incision site. The animals
344 received bilateral injections of helper virus (TVA, RG) as before in dorsal striatum. After ~21
345 days of pre-training and full body weight recovered (see Operant Conditioning), the skull was
346 exposed again, and cleaned with 4% H₂O₂ and UV-light etched with Opti-Bond All-in-One
347 (Kerr, Orange, CA). Then 1.5 μ l (EnvA) SAD- Δ G Rabies-ChR2-mCherry was bilaterally
348 injected in each hemisphere using the same coordinates as before. Then, custom made, polished
349 optical fibers (200 μ m diameter, 0.37 NA; Thor Labs, Newton, NJ) were implanted in input
350 regions: MCC (AP +0.2 mm, ML \pm 0.8 mm for skull holes, fibers penetrate into brain at 17°
351 angle off midline with traveling distance of 1.3mm, actual fiber tips target brain at AP +0.2 mm,
352 ML \pm 0.4 mm, DV -1.2 mm) or M1 (AP +0.5 mm, ML \pm 1.2 mm, DV -0.5 mm). The fibers were

353 secured with a light-curing composite (Tetric EvoFlow, Ivoclar Vivadent; Mississauga, ON).
354 Finally, a layer of black dental cement (Lang Dental, Wheeling, IL) was added on the top of the
355 previous cement to support and block laser light diffusion during stimulation. Animals were
356 given ibuprofen in their drinking water for pain management during post-surgery recovery (4
357 days).

358 For striatal opto-ICSS and open field experiments, D1- or A2a-Cre mice were injected
359 bilaterally with AAV5-EF1 α -DIO-ChR2(H134R)-mCherry (Salk Vector Core, La Jolla, CA) in
360 DMS (AP 0.5 mm, ML \pm 1.5 mm, DV -2.2 mm) or DLS (AP 0.5 mm, ML \pm 2.5 mm, DV -2.2
361 mm), and fiber optics were implanted \sim 0.2 mm above the injection site. In control experiments
362 for testing striatal activation by light penetration from cortical optic fibers (Fig S3), D1- or A2a-
363 Cre mice were injected with AAV5-EF1 α -DIO-ChR2(H134R)-mCherry bilaterally in DMS, and
364 fiber optics were bilaterally implanted into M1 of the same coordinates as previously described.
365

366 Ex vivo brain slice electrophysiology

367 4-8 days were allowed for expression and optimal cell health post unilateral (EnvA)
368 SAD- Δ G Rabies-ChR2-mCherry injection before electrophysiology recordings on acute slice
369 were carried out (Klug *et al.*, 2017; Smith *et al.*, 2016). Mice were anesthetized with
370 ketamine/xylazine and transcardially perfused with \sim 20 mL ice-cold, bubbling (95% O₂/5%
371 CO₂) NMDG cutting solution [consisting of (in mM): NMDG 105, HCl 105, KCl 2.5, NaH₂PO₄
372 1.2, NaHCO₃ 26, Glucose 25, Sodium L-Ascorbate 5, Sodium Pyruvate 3, Thiourea 2, MgSO₄
373 10, CaCl₂ 0.5, 300 mOsm, pH = 7.4]. The extracted brain was blocked coronally with a brain
374 matrix (Zivic Instruments; Pittsburg, PA) and acute coronal slices (300 μ m) were cut on a
375 vibratome (VT1000S, Leica Microsystems; Buffalo Grove, IL) through the striatum in ice-cold,

376 bubbling NMDG based cutting solution. Slices recovered for 15 minutes at 32 °C in bubbling
377 NMDG cutting solution, then transferred to a holding chamber containing normal aCSF
378 [consisting of (in mM): NaCl 125, KCl 2.5, NaH₂PO₄ 1.25, NaHCO₃ 25, D-Glucose 12.5, MgCl₂
379 1, CaCl₂ 2, pH = 7.4, 295 mOsm] bubbling (95% O₂/5% CO₂) at 28 °C. At least one hour after
380 recovery, the slices were placed in the recording chamber, in which normal aCSF (33~34 °C,
381 bubbling with 95% O₂/ 5% CO₂) was perfused over the slices at ~2 mL/min throughout
382 recordings. Dorsal striatal SPNs were visualized under IR-DIC optics (Zeiss Axioskop2;
383 Oberkochen, Germany) at 40x and D1- or D2-SPNs were confirmed by eGFP expression with
384 brief observation in the epifluorescent channel. D1-SPNs (eGFP-positive in D1-eGFP mice, or
385 eGFP-negative in D2-eGFP mice) or D2-SPNs (eGFP-positive in D2-eGFP mice, or eGFP-
386 negative in D1-eGFP mice) that were ChR2-mCherry-negative, but in the injection site and
387 surrounded by cells expressing ChR2-mCherry were targeted for recording. Only animals with
388 high efficiency labeling throughout the cortex were used for recordings to determine
389 collateralization.

390 Voltage clamp recordings were performed using 3-4 MΩ patch pipettes (WPI; Sarasota,
391 FL), which were pulled from borosilicate glass on a P-97 pipette puller (Sutter Instruments;
392 Novato, CA) and filled with a Cs⁺ methanesulfonate based internal solution [consisting of (in
393 mM): CsMeSO₃ 120, NaCl 5, TEA-Cl 10, HEPES 10, QX-314 5 EGTA 1.1, Mg-ATP 4, Na-
394 GTP 0.3, pH = 7.2-7.3, 305 mOsm]. All cells were voltage clamped at -70 mV during recording.
395 Five minutes post break-in, paired light pulses (473nm, 5-25 mW/mm², 2.5 ms, 50 ms ISI) were
396 delivered through a glass fiber optic (200 μm in diameter, Thor Labs; Newton, NJ), positioned
397 close to the recorded cell (50-150 μm), at 0.05 Hz using a 473 nm blue DPSS laser system
398 (Laserglow Technologies, Toronto, ON). Light evoked currents were collected after at least 8-10

399 minutes of bath application 50 - 100 μ M picrotoxin (MilliporeSigma, St. Louis, MO) to block
400 any ChR2-mediated fast GABA_{AR} transmission. Twenty sweeps were collected to determine
401 latency and CV. At the end of experiments, both 10 μ M NBQX (AMPAR antagonist) and 50 μ M
402 DL-APV (NMDAR antagonist) (MilliporeSigma, St. Louis, MO) were applied to block AMPAR
403 and NMDAR-mediated transmission, respectively to confirm the EPSCs. Series resistance was
404 initially compensated and monitored continuously throughout the experiment, and the data were
405 rejected if the series resistance changed by more than 20% over the duration of the recording. A
406 cell is considered connected if it has a detectable, reliable current (20 sweeps, 0.05 Hz) with
407 onset latency less than 10 ms post laser-on (Klug *et al.*, 2017; Smith *et al.*, 2016). Voltage clamp
408 recordings were digitized at 10 kHz and filtered at 2 kHz.

409 For current clamp recordings of rabies-positive pyramidal neurons in the cortex, a
410 potassium methanesulfonate based internal solution [(in mM): KMeSO₄ 135, KCl 5, CaCl₂ 0.5,
411 HEPES 5, EGTA 5, Mg-ATP 2, Na-GTP 0.3, (pH = 7.3, 305 mOsm)] was used. 750 ms current
412 injections (-250 to 200 pA) were given to test the membrane potential response of rabies-ChR2
413 positive pyramidal neurons, in primary motor cortex layer 5, and followed by 20 Hz or 5 Hz
414 optogenetic stimulation to test the response of these neurons to light. Current clamp recordings
415 were filtered and digitized at 10 kHz. All recordings were performed using a Multiclamp 700A
416 amplifier (Molecular Devices; Sunnyvale, CA), digitized with Digidata 1440 (Molecular
417 Devices; Sunnyvale, CA) and collected with pClamp 9 software (Molecular Devices; Sunnyvale,
418 CA). Data were analyzed with Clampfit 9.

419

420 Open field

421 After helper viruses' injections in the striatum, animals were put back on food and
422 allowed to recover and viral expression. They were then injected with (EnvA) SAD Δ G-ChR2-
423 mCherry virus in the striatum and implanted with fiber optics in the MCC or M1 as described
424 above (see Surgery and Viral Injection). Then animals were allowed to recover over 3 days. On
425 the fourth day post injection and implantation, animals went through open field test. They were
426 connected to fiber-optic leads (Doric) that connected to a laser through a commutator for free
427 movement. An additional light shield was attached at fiber optic connection to the mouse to
428 mask the laser light output. Following habituation to the fiber optic connections in a home cage
429 the mice were placed in the middle of a 41cm x 41cm square, white and evenly illuminated open
430 field chamber. Custom MEDPC code delivered 20 Hz or 5 Hz stimulation (473 nm blue laser, 5
431 mW power at connection to mouse, 10 ms pulse width) for 15 seconds after every 3 minutes and
432 45 seconds, and each animal received 3-4 replicates. Mice with AAV5-EF1 α -DIO-
433 ChR2(H134R)-mCherry injected bilaterally in DMS or DLS went through similar open field test
434 after 4 days of recovery from surgery, with optic stimulation in DMS, DLS or M1. Video was
435 collected for each run and analyzed in Ethovision 8.5. To analyze the open field data, the
436 behavior was binned in 10-s bins and distance traveled during laser on period was normalized to
437 the averaged distances during preceding 45 s just prior to stimulation onset.

438

439 Optogenetic intracranial self-stimulation (opto-ICSS)

440 In opto-ICSS experiments, two different subsets of animals were used: to stimulate D1-
441 and D2-SPNs in DMS and DLS, or to stimulate D1- or D2-SPN projecting cortical neurons in
442 MCC and M1, respectively. Mice that had never experienced the operant chamber were injected
443 with virus and implanted with fiber optics using the procedure described above. From the fourth

444 day following surgery, the mice received ICSS training for 9 consecutive days. They were
445 attached to fiber-optic patch cords and placed in an operant chamber. Each session began with
446 the illumination of a house light and the extension of two levers: one active (left) and one
447 inactive (right). Every time the mouse pressed the active lever, a 20 Hz stimulation was triggered
448 (473 nm blue laser, 5 mW power at connection to mouse, 10 ms pulse width, 1 s duration)
449 targeting the cell bodies in MCC or M1 that project to D1- or D2-SPNs. Each session concludes
450 after 90 minutes with the retraction of the levers and the house light turning off. Continuous
451 pressing of the lever during stimulation will not lengthen the stimulation period. Pressing of the
452 inactive lever had no consequence and was used as a control of general activity measure of non-
453 contingent lever pressing. All protocols were custom written in MEDPC (Med Associates).

454

455 Sequence training and optogenetic stimulation

456 Prior to the injection of the rabies virus, animals were pre-trained for three weeks in fixed
457 ratio 8 (FR8) or fixed ratio 4 (FR4) task (Jin *et al.*, 2010; Jin *et al.*, 2014). Briefly, animals were
458 food-restricted (30 hrs) to start training and weighed daily to monitor their bodyweight. They
459 were fed approximately 2-2.5 g regular chow/mouse/day after each behavioral training session
460 concluded to maintain around 85% of their initial weight. Animals were trained in operant
461 chambers (21.6 cm (L) x 17.8 cm (W) x 12.7 cm (H)) housed in a sound attenuating box (Med-
462 Associates, St. Albans, VT) with two retractable levers to the left and right of a central food
463 magazine and a house light (3 W, 24 V) opposite to the levers and magazine. Sucrose solution
464 (15 μ l, 10%) was delivered by a syringe pump into a metal bowl as a reinforcer. Magazine
465 entries were recorded using an infrared beam break detector. Behavioral chambers were

466 controlled by MED-PC IV software (MED Associates, VT) that recorded all timestamps of lever
467 presses and magazine entries with a resolution of 10 ms.

468 Operant training began with continuous reinforcement (CRF) also known as fixed ratio 1
469 (FR1) in which animals received a reinforcer following each lever press. The animals were
470 trained on CRF for both levers (separate flanking sessions) over three days and the order of lever
471 presentation was counterbalanced. Each session began with the illumination of the house light
472 and the extension of one lever. The session ended with the offset of the house light and retraction
473 of the lever after 90 minutes of training or after a reinforcer cap was reached. On day 1, 2, 3, the
474 mice could earn up to 10, 15, or 30 sucrose reinforcers, respectively. After the animals acquired
475 CRF over 3 days, they were transitioned to FR4 and FR8 schedules on independent levers and
476 the order counterbalanced. The session began with the illumination of the house light and the
477 extension of either the left or right lever. Following four consecutive lever presses (FR4), mice
478 received a reinforcer in a central magazine port. There was no time requirement for completion
479 of the action sequence. The session concluded with the retraction of the lever and the offset of
480 the house light after the mouse received either 80 reinforcers or 90 minutes expired. Another
481 session was given just following the conclusion of the FR4 session, where eight consecutive
482 lever presses (FR8) on the opposite lever resulted in the delivery of a sucrose reinforcer. The
483 order of training FR4 or FR8 was randomly shuffled over 21 days pre-training. Left and right
484 levers were randomly assigned FR4 or FR8 schedules and that set up was maintained for each
485 animal over pre-training.

486 On the fourth day after rabies injection and fiber optic implant, and after open field test,
487 the mice were food deprived for 24 hours to start optogenetic test in sequence tasks. On the fifth
488 day, the animals were tethered to two fiber-optic patch cables attached to a commutator (Doric,

489 Canada) to allow for free rotation and placed back in the original pre-training operant box. They
490 were given three days of re-training in a session of FR4 on one lever and subsequent session of
491 FR8 on the opposite lever with fiber attached (90-minute session, 80 reinforcers max). The order
492 of the sessions was randomly shuffled. If the animals successfully completed 80 reinforcers, they
493 were transitioned to optogenetic stimulation test session. On day 8 post rabies injection,
494 optogenetic stimulations (20 Hz, 473 nm blue laser, 5 mW power at connection to mouse, 10 ms
495 pulse width) were randomly delivered for 8 seconds (a time period covering roughly the entire
496 lever press sequence) on the first press (defined by the first lever press after either head entry or
497 2-second break after the reward delivery) with a 50% likelihood of control non-stimulated trials
498 randomly interleaved (Geddes *et al.*, 2018). Stimulus conditions were repeated on multiple days
499 if needed to collect enough trials for statistics. On day 12 post rabies injection, the animals were
500 perfused for histology analysis.

501 All sequence data were analyzed in MATLAB using custom scripts. To construct the
502 peri-event time histograms (PETH), all lever presses before the reward (control or stimulation
503 trials) were aligned to the first press of the FR4 or FR8 sequence, averaged in 100 ms bins, and
504 filtered with a Gaussian low-pass filter (window size = 5, standard deviation = 5). All the PETHs
505 were plotted with the first press omitted for illustration and comparison clarity. The effects of
506 optogenetic modulation on press rate were qualitatively similar for FR4 and FR8 sequences and
507 thus combined for statistics.

508

509 Histology and microscopy

510 Approximately twelve days following rabies injection or after behavior tests, mice were
511 anesthetized with an overdose of ketamine/xylazine and transcardially perfused with 0.01 M PBS

512 (30-40 mL) followed by 4% paraformaldehyde (PFA)/0.1 M PB, pH 7.4 (30-40 mL), with a
513 peristaltic perfusion pump (Cole Parmer, Vernon Hills, IL) (Klug *et al.*, 2017; Smith *et al.*,
514 2016). The brain was carefully extracted and post-fixed in 4% PFA/0.1 M PB overnight (16-24
515 hrs), then transferred to 30% sucrose/0.1 M PB for 1-2 days until the brain equilibrated and sunk.
516 On the day of cutting, it was coronally blocked with a brain matrix (Zivic Instruments; Pittsburg,
517 PA) and mounted on a freezing microtome. Coronal slices were collected from the most rostral
518 to the most caudal sites at 50 μ m resolution in 96 well plates containing cryoprotectant (0.1 M
519 phosphate buffer, ethylene glycol, glycerol) to maintain AP position. Brain slices surrounding
520 the injection site and fiber implant site were mounted on super frost plus slides (Thermo Fisher
521 Scientific, Waltham, MA), counterstained for DAPI and cover slipped with Aqua-Poly/Mount
522 mounting media (Polysciences, Inc; Warrington, PA). Slides were scanned on an automated
523 slide scanner (Olympus VS120) at 10x in the blue and red channels. Images were batch
524 converted to composite TIFFs and saved for image analysis.

525

526 **Statistics**

527 Statistics were conducted in Graph Pad Prism 6.01 (La Jolla, CA). Fisher's exact-test was used in
528 comparing the likelihood of connections in slice recordings. Student unpaired two-tailed t-test
529 was used in open field test and sequence operant task to analyze optogenetic stimulation effects.
530 Non-parametric Mann Whitney U Test was conducted when distributions significantly deviated
531 from normal distributions. Repeated measured two-way ANOVA with Sidak's multiple
532 comparisons test was used to analyze opto-ICSS learning data and comparison between different
533 genotypes.

534 **Supplementary Information**

535 Supplemental Information includes 3 Supplemental Figures and Supplemental Experimental
536 Procedures.

537

538 **Acknowledgements**

539 The authors would like to thank Tom Jessell, Chris Kintner and members of the Jin lab for
540 discussion and comments on the manuscript. This work was supported by grants from the NIH
541 (R01NS083815), the Dystonia Medical Research Foundation and the McKnight Memory and
542 Cognitive Disorders Award to X.J.

543

544 **Author Contributions**

545 X.J. conceived the project. J.R.K. and X.J. designed the experiments. J.R.K., X.Y. performed the
546 rabies tracing, slice electrophysiology, behavioral experiments and analyzed the data. H.A.H.
547 assisted the viral injections. M.D.E. conducted the cell counting. F.O. and E.M.C. provided the
548 (EnvA)-ΔG-Rabies-ChR2-mCherry virus. J.R.K and X.Y. constructed the figures. J.R.K., X.Y.
549 and X.J. wrote the manuscript.

550

551 **Conflict of Interest**

552 None of the authors declare any conflict of interest, financial or otherwise.

553
554

555 **References:**

556 Albin, R.L., Young, A.B., and Penney, J.B. (1989). The functional anatomy of basal ganglia
557 disorders. *Trends Neurosci* 12, 366-375.

558 Aoki, S., Smith, J.B., Li, H., Yan, X., Igarashi, M., Coulon, P., Wickens, J.R., Ruigrok, T.J., and
559 Jin, X. (2019). An open cortico-basal ganglia loop allows limbic control over motor output via
560 the nigrothalamic pathway. *Elife* 8.

561 Ballion, B., Mallet, N., Bezard, E., Lanciego, J.L., and Gonon, F. (2008). Intratelencephalic
562 corticostriatal neurons equally excite striatonigral and striatopallidal neurons and their discharge
563 activity is selectively reduced in experimental parkinsonism. *Eur J Neurosci* 27, 2313-2321.

564 Bolam, J.P., Hanley, J.J., Booth, P.A., and Bevan, M.D. (2000). Synaptic organisation of the
565 basal ganglia. *J Anat* 196 (Pt 4), 527-542.

566 C.R. Gerfen, J.P.B. (2016). The Neuroanatomical Organization of the Basal Ganglia. In
567 *Handbook of Basal Ganglia Structure and Function*, K.Y.T. Heinz Steiner, ed. (Elsevier), pp. 3-
568 32.

569 Cui, G., Jun, S.B., Jin, X., Pham, M.D., Vogel, S.S., Lovinger, D.M., and Costa, R.M. (2013).
570 Concurrent activation of striatal direct and indirect pathways during action initiation. *Nature* 494,
571 238-242.

572 Dalley, J.W., and Robbins, T.W. (2017). Fractionating impulsivity: neuropsychiatric
573 implications. *Nat Rev Neurosci* 18, 158-171.

574 DeLong, M.R. (1990). Primate models of movement disorders of basal ganglia origin. *Trends
575 Neurosci* 13, 281-285.

576 Geddes, C.E., Li, H., and Jin, X. (2018). Optogenetic Editing Reveals the Hierarchical
577 Organization of Learned Action Sequences. *Cell* 174, 32-43 e15.

578 Gerfen, C.R., Engber, T.M., Mahan, L.C., Susel, Z., Chase, T.N., Monsma, F.J., Jr., and Sibley,
579 D.R. (1990). D1 and D2 dopamine receptor-regulated gene expression of striatonigral and
580 striatopallidal neurons. *Science* 250, 1429-1432.

581 Gong, S., Doughty, M., Harbaugh, C.R., Cummins, A., Hatten, M.E., Heintz, N., and Gerfen,
582 C.R. (2007). Targeting Cre recombinase to specific neuron populations with bacterial artificial
583 chromosome constructs. *J Neurosci* 27, 9817-9823.

584 Graybiel, A.M. (1998). The basal ganglia and chunking of action repertoires. *Neurobiol Learn
585 Mem* 70, 119-136.

586 Haber, S.N. (2016). Corticostriatal circuitry. *Dialogues Clin Neurosci* 18, 7-21.

587 Hikosaka, O., Kim, H.F., Amita, H., Yasuda, M., Isoda, M., Tachibana, Y., and Yoshida, A.
588 (2019). Direct and indirect pathways for choosing objects and actions. *Eur J Neurosci* 49, 637-
589 645.

590 Hikosaka, O., Miyashita, K., Miyachi, S., Sakai, K., and Lu, X. (1998). Differential roles of the
591 frontal cortex, basal ganglia, and cerebellum in visuomotor sequence learning. *Neurobiol Learn
592 Mem* 70, 137-149.

593 Hikosaka, O., Takikawa, Y., and Kawagoe, R. (2000). Role of the basal ganglia in the control of
594 purposive saccadic eye movements. *Physiol Rev* 80, 953-978.

595 Jin, X., and Costa, R.M. (2010). Start/stop signals emerge in nigrostriatal circuits during
596 sequence learning. *Nature* 466, 457-462.

597 Jin, X., and Costa, R.M. (2015). Shaping action sequences in basal ganglia circuits. *Curr Opin
598 Neurobiol* 33, 188-196.

599 Jin, X., Tecuapetla, F., and Costa, R.M. (2014). Basal ganglia subcircuits distinctively encode
600 the parsing and concatenation of action sequences. *Nat Neurosci* 17, 423-430.

601 Klug, J.R., Engelhardt, M.D., Cadman, C.N., Li, H., Smith, J.B., Ayala, S., Williams, E.W.,
602 Hoffman, H., and Jin, X. (2018). Differential inputs to striatal cholinergic and parvalbumin
603 interneurons imply functional distinctions. *Elife* 7.

604 Kravitz, A.V., Freeze, B.S., Parker, P.R., Kay, K., Thwin, M.T., Deisseroth, K., and Kreitzer,
605 A.C. (2010). Regulation of parkinsonian motor behaviours by optogenetic control of basal
606 ganglia circuitry. *Nature* 466, 622-626.

607 Kravitz, A.V., Tye, L.D., and Kreitzer, A.C. (2012). Distinct roles for direct and indirect
608 pathway striatal neurons in reinforcement. *Nat Neurosci* 15, 816-818.

609 Kress, G.J., Yamawaki, N., Wokosin, D.L., Wickersham, I.R., Shepherd, G.M., and Surmeier,
610 D.J. (2013). Convergent cortical innervation of striatal projection neurons. *Nat Neurosci* 16, 665-
611 667.

612 Kupferschmidt, D.A., Juczewski, K., Cui, G., Johnson, K.A., and Lovinger, D.M. (2017).
613 Parallel, but Dissociable, Processing in Discrete Corticostriatal Inputs Encodes Skill Learning.
614 *Neuron* 96, 476-489 e475.

615 Lei, W., Jiao, Y., Del Mar, N., and Reiner, A. (2004). Evidence for differential cortical input to
616 direct pathway versus indirect pathway striatal projection neurons in rats. *J Neurosci* 24, 8289-
617 8299.

618 Madisen, L., Mao, T., Koch, H., Zhuo, J.M., Berenyi, A., Fujisawa, S., Hsu, Y.W., Garcia, A.J.,
619 3rd, Gu, X., Zanella, S., et al. (2012). A toolbox of Cre-dependent optogenetic transgenic mice
620 for light-induced activation and silencing. *Nat Neurosci* 15, 793-802.

621 Markowitz, J.E., Gillis, W.F., Beron, C.C., Neufeld, S.Q., Robertson, K., Bhagat, N.D., Peterson,
622 R.E., Peterson, E., Hyun, M., Linderman, S.W., et al. (2018). The Striatum Organizes 3D
623 Behavior via Moment-to-Moment Action Selection. *Cell* 174, 44-58 e17.

624 Melzer, S., Gil, M., Koser, D.E., Michael, M., Huang, K.W., and Monyer, H. (2017). Distinct
625 Corticostriatal GABAergic Neurons Modulate Striatal Output Neurons and Motor Activity. *Cell*
626 Rep 19, 1045-1055.

627 Mink, J.W. (1996). The basal ganglia: focused selection and inhibition of competing motor
628 programs. *Prog Neurobiol* 50, 381-425.

629 Mink, J.W. (2003). The Basal Ganglia and involuntary movements: impaired inhibition of
630 competing motor patterns. *Arch Neurol* 60, 1365-1368.

631 Monteiro, P., and Feng, G. (2017). SHANK proteins: roles at the synapse and in autism spectrum
632 disorder. *Nat Rev Neurosci* 18, 147-157.

633 Nelson, A., Abdelmesih, B., and Costa, R.M. (2021). Corticospinal populations broadcast
634 complex motor signals to coordinated spinal and striatal circuits. *Nat Neurosci* 24, 1721-1732.

635 Osakada, F., Mori, T., Cetin, A.H., Marshel, J.H., Virgen, B., and Callaway, E.M. (2011). New
636 rabies virus variants for monitoring and manipulating activity and gene expression in defined
637 neural circuits. *Neuron* 71, 617-631.

638 Pan, W.X., Mao, T., and Dudman, J.T. (2010). Inputs to the dorsal striatum of the mouse reflect
639 the parallel circuit architecture of the forebrain. *Front Neuroanat* 4, 147.

640 Redgrave, P., Rodriguez, M., Smith, Y., Rodriguez-Oroz, M.C., Lehericy, S., Bergman, H.,
641 Agid, Y., DeLong, M.R., and Obeso, J.A. (2010). Goal-directed and habitual control in the basal
642 ganglia: implications for Parkinson's disease. *Nat Rev Neurosci* 11, 760-772.

643 Shepherd, G.M. (2013). Corticostriatal connectivity and its role in disease. *Nat Rev Neurosci* 14,
644 278-291.

645 Smith, J.B., Klug, J.R., Ross, D.L., Howard, C.D., Hollon, N.G., Ko, V.I., Hoffman, H.,

646 Callaway, E.M., Gerfen, C.R., and Jin, X. (2016). Genetic-Based Dissection Unveils the Inputs

647 and Outputs of Striatal Patch and Matrix Compartments. *Neuron* 91, 1069-1084.

648 Stephenson-Jones, M., Samuelsson, E., Ericsson, J., Robertson, B., and Grillner, S. (2011).

649 Evolutionary conservation of the basal ganglia as a common vertebrate mechanism for action

650 selection. *Curr Biol* 21, 1081-1091.

651 Tanji, J. (2001). Sequential organization of multiple movements: involvement of cortical motor

652 areas. *Annu Rev Neurosci* 24, 631-651.

653 Tecuapetla, F., Jin, X., Lima, S.Q., and Costa, R.M. (2016). Complementary Contributions of

654 Striatal Projection Pathways to Action Initiation and Execution. *Cell* 166, 703-715.

655 van Heukelum, S., Mars, R.B., Guthrie, M., Buitelaar, J.K., Beckmann, C.F., Tiesinga, P.H.E.,

656 Vogt, B.A., Glennon, J.C., and Havenith, M.N. (2020). Where is Cingulate Cortex? A Cross-

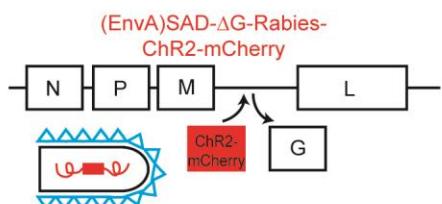
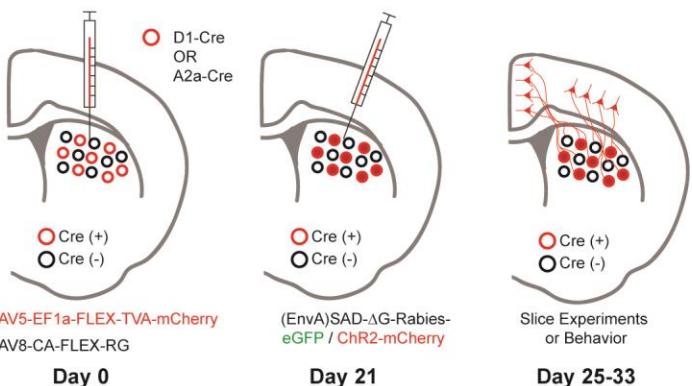
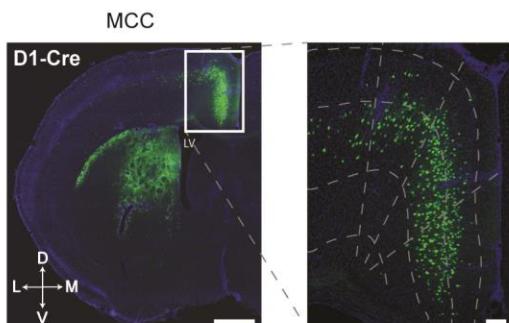
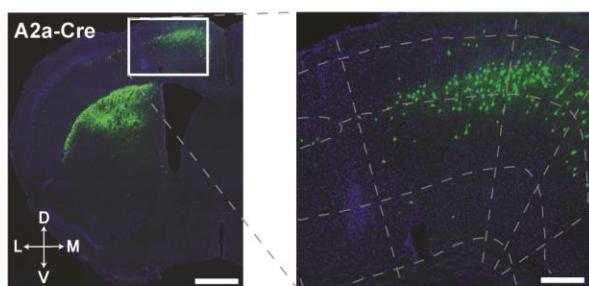
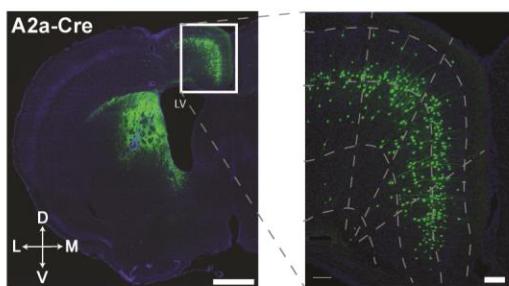
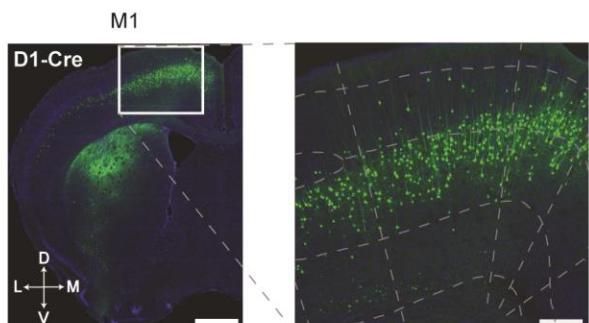
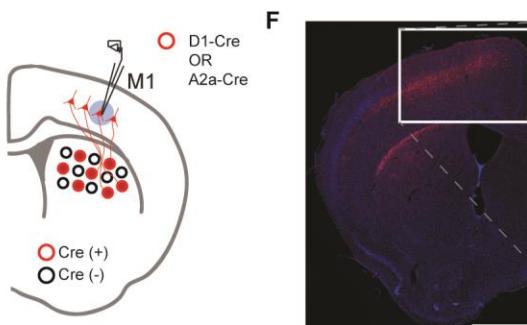
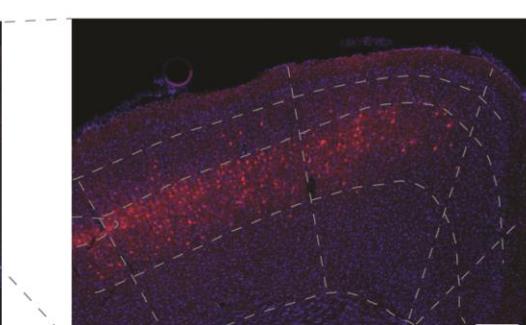
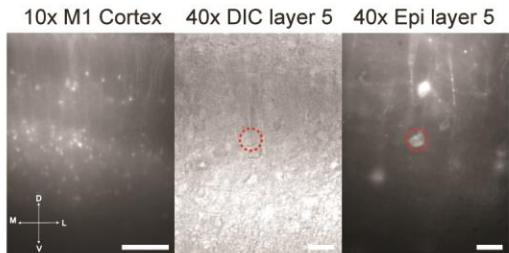
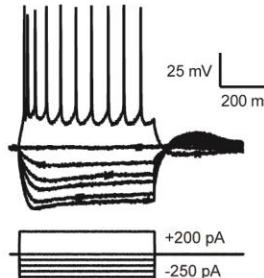
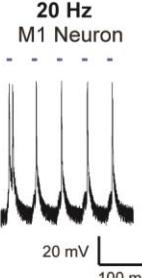
657 Species View. *Trends Neurosci* 43, 285-299.

658 Vicente, A.M., Galvao-Ferreira, P., Tecuapetla, F., and Costa, R.M. (2016). Direct and indirect

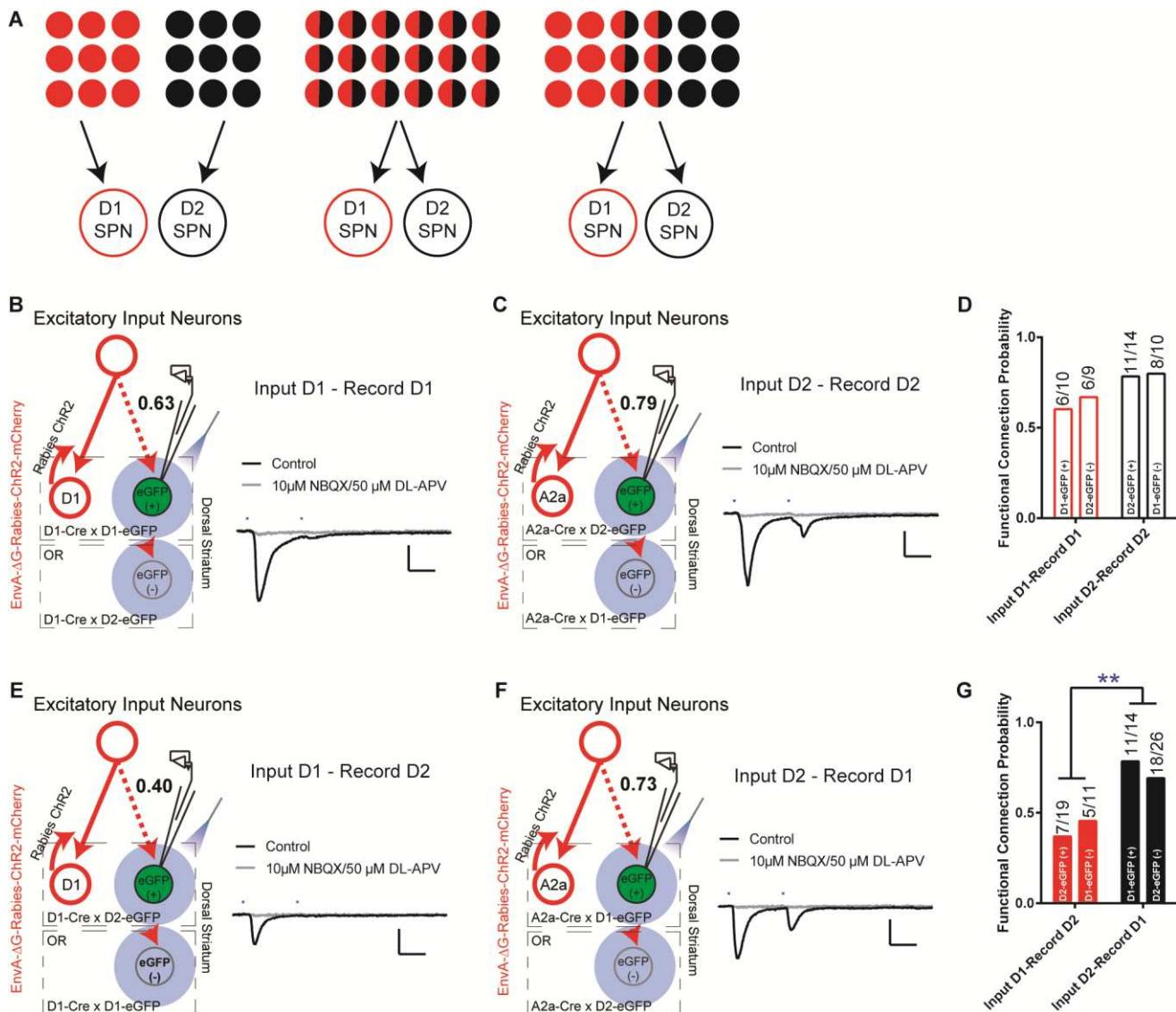
659 dorsolateral striatum pathways reinforce different action strategies. *Curr Biol* 26, R267-269.

660 Vogt, B.A., and Paxinos, G. (2014). Cytoarchitecture of mouse and rat cingulate cortex with

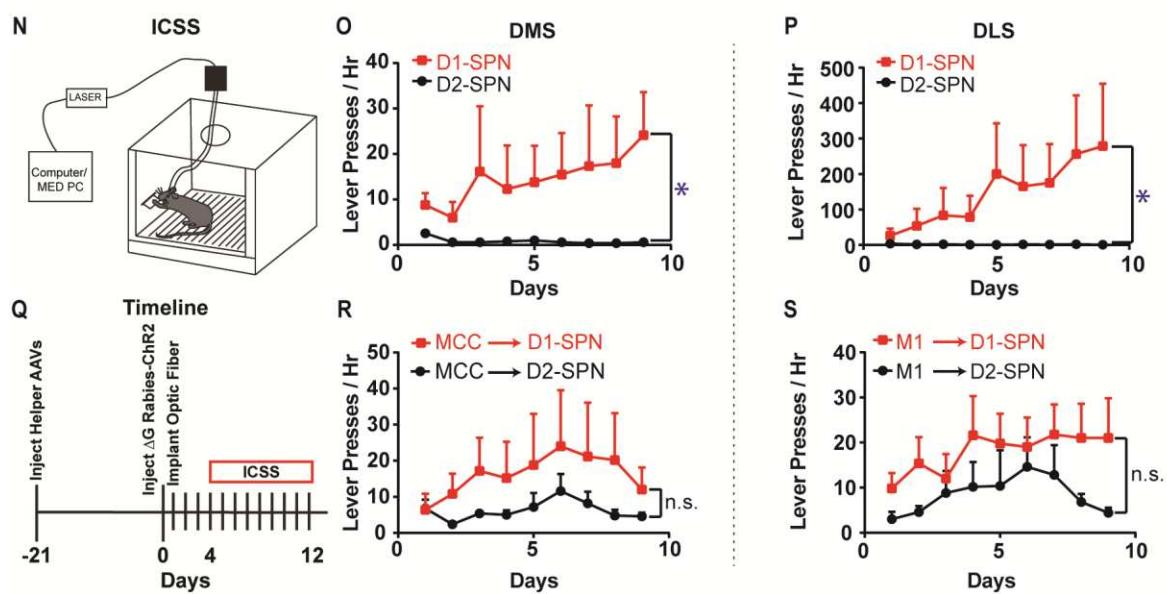
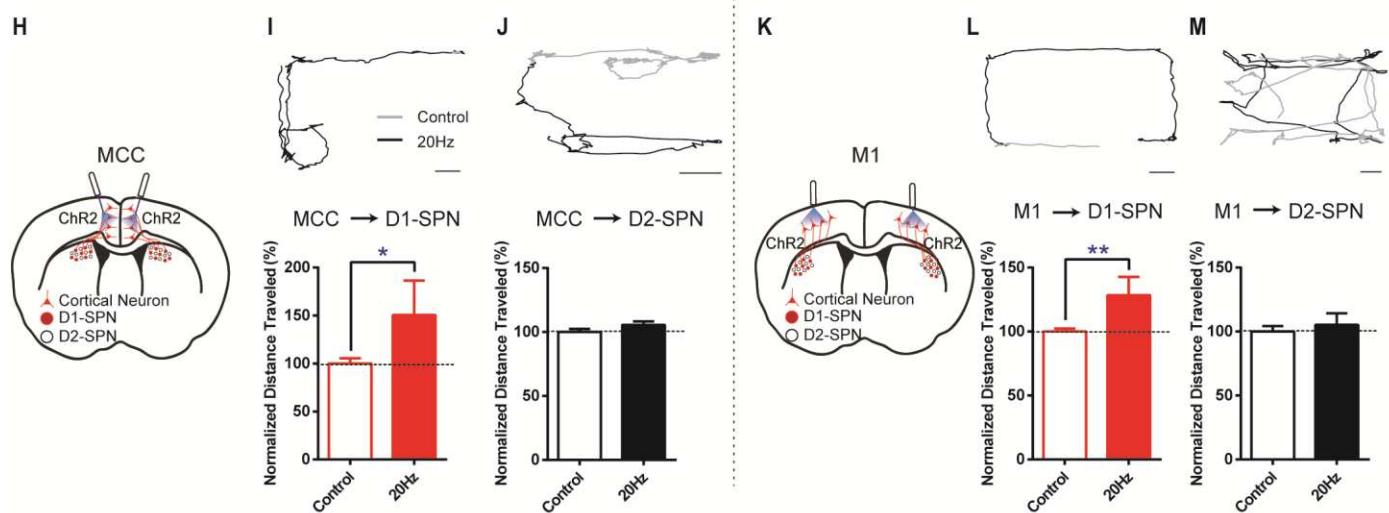
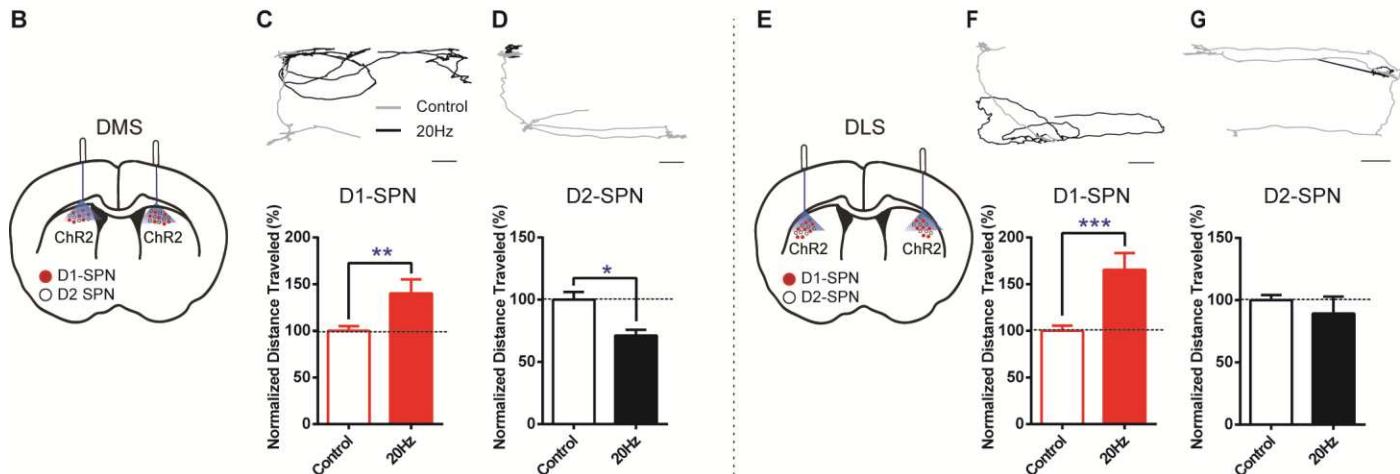
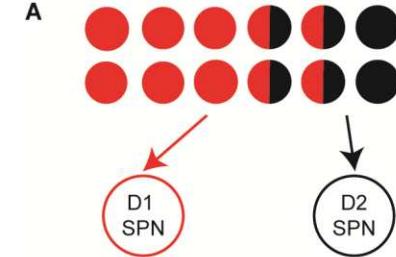
661 human homologies. *Brain Struct Funct* 219, 185-192.












662 Wall, N.R., De La Parra, M., Callaway, E.M., and Kreitzer, A.C. (2013). Differential innervation

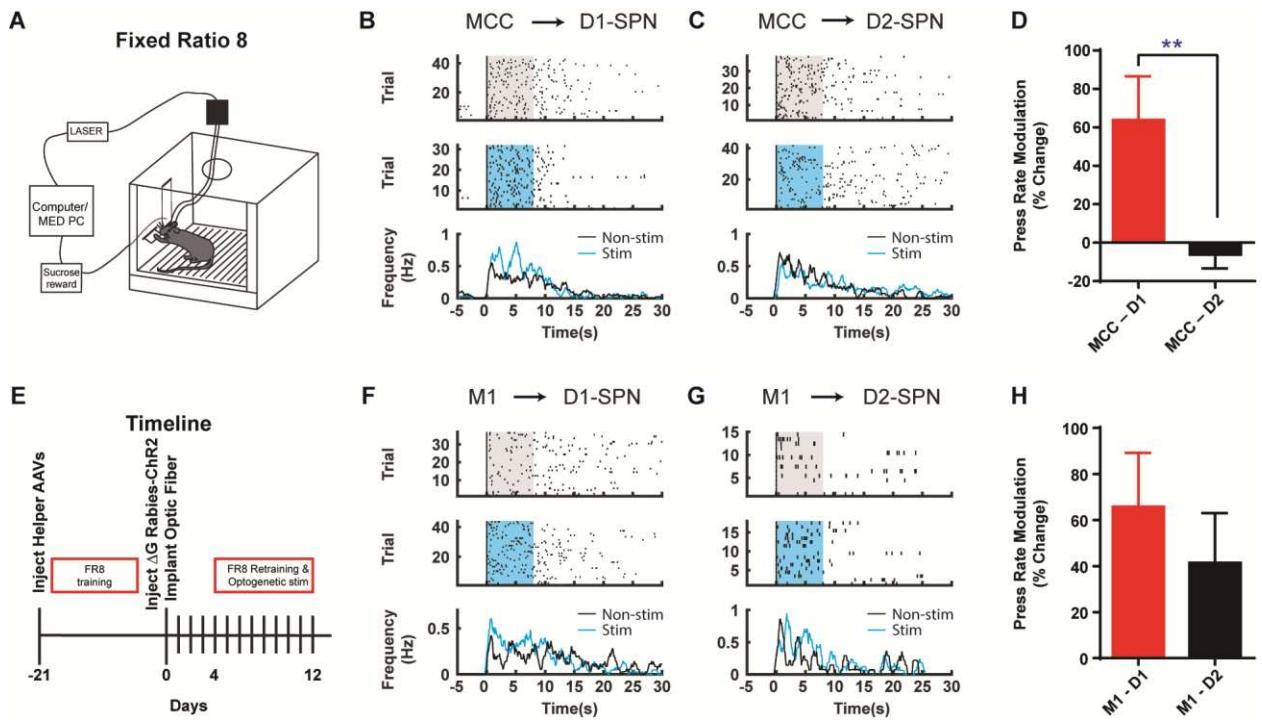
663 of direct- and indirect-pathway striatal projection neurons. *Neuron* 79, 347-360.

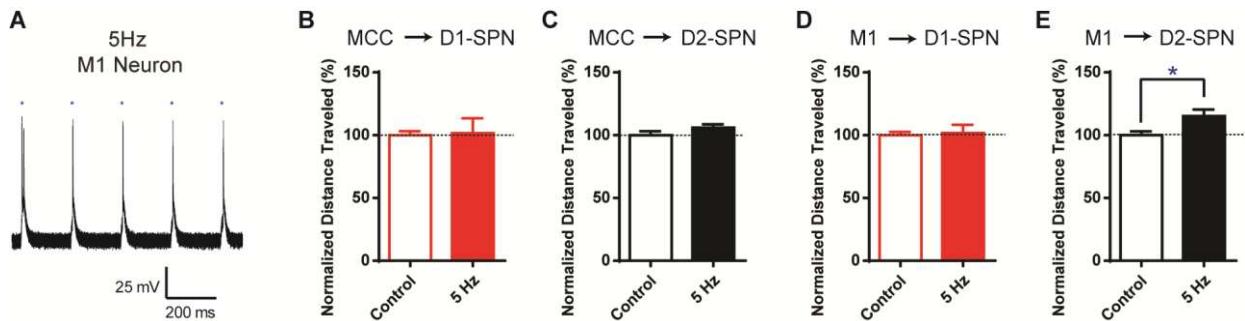

664 Yin, H.H., and Knowlton, B.J. (2006). The role of the basal ganglia in habit formation. *Nat Rev*

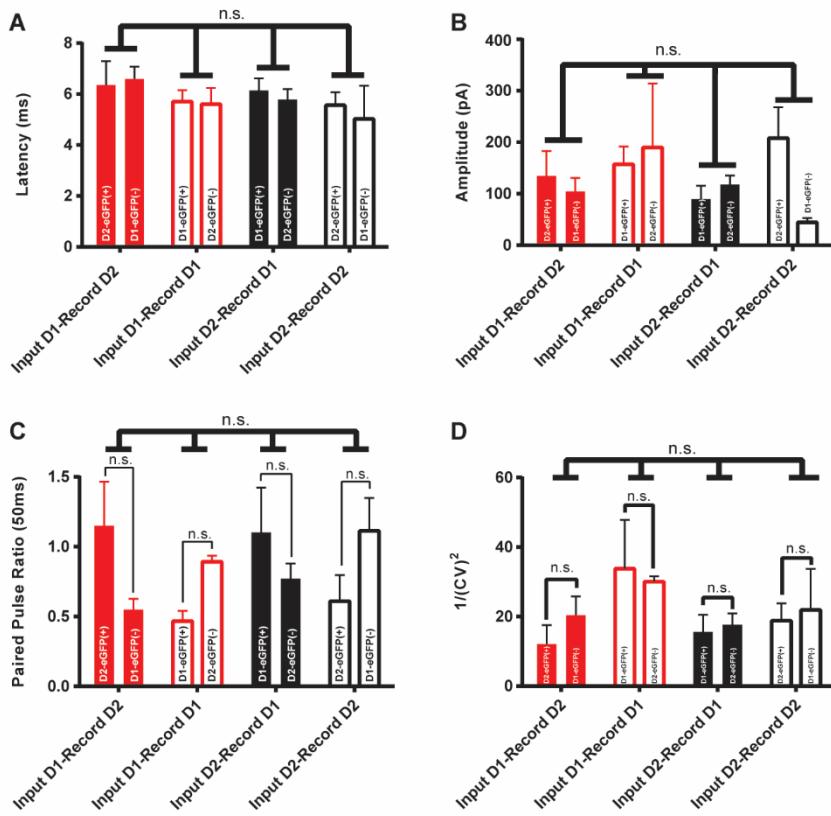
665 *Neurosci* 7, 464-476.





666

A**N****P****M****L****G**(EnvA)SAD- Δ G-Rabies-
ChR2-mCherry**B****C****D****E****F****G****H****I**20 Hz
M1 Neuron


Figure 1. Selective labeling and functional expression of ChR2 in specific cortical neurons projecting to striatal D1- vs. D2-SPNs. **(A)** Schematic of SAD- Δ G-Rabies-ChR2-mCherry construct with the glycoprotein deleted and replaced with ChR2-mCherry. **(B)** Timeline of viral injections of Cre-dependent helper viruses and the modified rabies virus for slice and behavioral experiments. **(C)** Example of coronal brain section with rabies-eGFP injection in the dorsal medial striatum of D1-Cre (top) or A2a-Cre (bottom) mouse shows enriched eGFP expression in the MCC. Scale bar, 1 mm. Inset (right): Higher magnification of retrogradely-labeled striatal D1- or D2-SPN projecting neurons in the MCC expressing eGFP. Dotted lines demarcate cortical lamina. Scale bar, 200 μ m. **(D)** Similar experiments of labeling striatal D1- vs. D2-SPN projecting neurons in M1 with rabies-eGFP. **(E)** Example of coronal brain section with rabies-ChR2-mCherry injection in the dorsal lateral striatum of A2a-Cre mouse. Scale bar, 1 mm. Inset (right): Higher magnification of retrogradely-labeled striatal D2-SPN projecting neurons in the M1 showed clear membrane expression of ChR2-mCherry. Scale bar, 200 μ m. **(F)** Cartoon brain schematic of ChR2-mCherry expressing M1 neurons projecting to D1-SPNs (red) during whole-cell patch clamp recordings. **(G)** (left) 10x epifluorescent (red channel) of ChR2-mCherry positive neurons in M1. Scale bar, 250 μ m. (middle) 40x image of a patched layer 5 pyramidal neuron under DIC optics. Scale bar, 50 μ m. (right) Epifluorescent image (red channel) showing patched layer 5 pyramidal neuron somas expressing ChR2-mCherry signal. Red dotted line denotes patched neuron. Scale bar, 50 μ m. **(H)** Current-voltage traces of a ChR2-mCherry positive layer 5 M1 neuron under current clamp responding to hyperpolarizing and depolarizing current injection steps. Scale bars, 200 ms, 25 mV. **(I)** Optogenetic stimulation (20 Hz) elicits robust action potentials with high fidelity in a ChR2-mCherry positive D1-SPN projecting M1 neuron in layer 5. Scale bars, 100 ms, 20 mV.


Figure 2. The excitatory inputs to striatal D1- vs. D2-SPNs are partially segregated with asymmetrical overlapping. (A) Schematic for the possible organization of the excitatory inputs to striatal D1- vs. D2-SPNs from completely segregated (left), totally overlapping (middle), to partially mixed (right). The red and black filled circles indicate the individual neurons projecting to D1- vs. D2-SPNs, respectively. The half red and half black circles imply the neurons projecting to both. (B) (left) Schematic of rabies-ChR2 labeling of the inputs to D1-SPNs and whole-cell recordings of rabies-negative striatal D1-SPNs with local optogenetic stimulation. (right) Example of the average EPSC trace showing short latency response to paired pulses (50 ms ISI) stimulation (black), that is blocked by AMPAR and NMDAR antagonists (gray). All recordings were conducted in the presence of picrotoxin (PTX) to isolate excitatory transmission. Scale bar, 25 ms, 100 pA. Same conditions applied to all following recordings. (C) Whole-cell recording of rabies-negative striatal D2-SPNs with local optogenetic stimulation with rabies-ChR2 labeling of the inputs to D2-SPNs. (D) The likelihood of the inputs to D1-SPNs form a functional connection with nearby non-starter D1-SPNs, and the likelihood of the D2-SPN situation. Numbers above the bars denote number of cells that show functional connectivity within total recorded. Fisher's exact test, $P = 0.3137$. (E-F) Whole-cell recording of rabies-negative striatal D2-SPNs with local optogenetic stimulation with rabies-ChR2 labeling of the inputs to D1-SPNs (E), and recording of rabies-negative D1-SPNs with stimulation of inputs to D2-SPNs (F). (G) The likelihood of the inputs to D1-SPNs form a functional connection with nearby non-starter D2-SPNs, and the likelihood of the inputs to D2-SPNs form a functional connection with nearby non-starter D1-SPNs. Fisher's exact test, $P = 0.0079$. **, $P < 0.01$.


Figure 3. Different effects of optogenetic stimulation of D1- vs. D2-SPN projecting cortical neurons on locomotion and reinforcement learning. **(A)** Schematic of largely segregated yet partially overlapping excitatory inputs to striatal D1- vs. D2-SPNs. **(B)** Schematic of dorsal medial striatum (DMS) injection of Cre-dependent AAV-ChR2 and optogenetic stimulation in D1- or A2a-Cre mice. **(C)** (top) Example of locomotion path under control (black) and following 20Hz optogenetic stimulation (gray) of DMS D1-SPNs in open field. Scale bar, 5cm, same for below. (bottom) Stimulation of D1-SPNs in DMS facilitates locomotion ($n = 5$, unpaired two-tailed t -test, $t = 3.386$, $P = 0.0046$). **, $P < 0.01$. **(D)** 20Hz stimulation of D2-SPNs in DMS suppresses locomotion ($n = 5$, unpaired two-tailed t -test, $t = 2.559$, $P = 0.0227$). *, $P < 0.05$. **(E)** Schematic for dorsal lateral striatum (DLS) optogenetics. **(F-G)** 20Hz stimulation of D1-SPNs in DLS facilitates locomotion (F, $n = 5$, unpaired two-tailed t -test, $t = 4.736$, $P = 0.0003$), while stimulation of D2-SPNs in DLS does not significantly suppress locomotion in open field (G, $n = 5$, unpaired two-tailed t -test, $t = 1.026$, $P = 0.3224$). ***, $P < 0.001$. **(H)** Schematic of rabies-ChR2 labeling of the inputs to D1 or D2-SPNs and optogenetic stimulation in MCC. **(I-J)** 20Hz stimulation of MCC neurons projecting to D1-SPNs facilitates locomotion (I, $n = 9$, unpaired two-tailed t -test, $t = 2.344$, $P = 0.0344$), while stimulation of MCC neurons projecting to D2-SPNs does not alter locomotion (J, $n = 10$, unpaired two-tailed t -test, $t = 1.214$, $P = 0.2447$). *, $P < 0.05$. **(K)** Schematic of rabies-ChR2 labeling of the inputs to D1 or D2-SPNs and optogenetic stimulation in M1. **(L-M)** 20Hz stimulation of the M1 neurons projecting to D1-SPNs facilitates locomotion (L, $n = 7$, Unpaired two-tailed t -test, $t = 3.276$, $P = 0.0055$), while stimulation of the M1 neurons projecting to D2-SPNs does not significantly alter locomotion (M, $n = 8$, Unpaired two-tailed t -test, $t = 0.5796$, $P = 0.5714$). **, $P < 0.01$. **(N)** Schematic of a mouse performing intracranial self-stimulation (ICSS) behavior. **(O-P)** D1-SPN (red) but not D2-SPN stimulation (black) drives ICSS behavior in either DMS (O, D1, $n = 6$; D2, $n = 5$; Mann Whitney test, Day 9 D1 vs. A2a, $P = 0.0130$) or DLS (P, D1, $n = 6$; D2, $n = 5$; Mann Whitney test, Day 9 D1 vs. A2a, $P = 0.0433$). *, $P < 0.05$. **(Q)** Timeline of helper virus injections, rabies-ChR2 injections and optogenetic stimulation for ICSS behavior. **(R-S)** Optogenetic stimulation of the cortical neurons projecting to either D1- or D2-SPNs drive ICSS behavior in both MCC (R, $n = 5$ per group, no significant effect of genotype $F(1,8) = 1.074$, $P = 0.3303$) and M1 (S, $n = 5$ per group, no significant effect genotype $F(1,8) = 2.767$, $P = 0.1348$). n.s., not statistical significant.

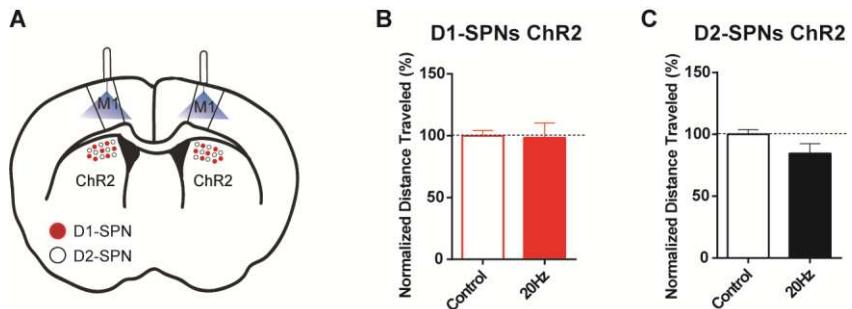

Figure 4. Optogenetic stimulation of D1- vs. D2-SPN projecting cortical neurons differently modulates action sequence execution. (A) Schematic of a mouse performing FR8 sequence. (B) Optogenetic stimulation (20Hz) of the D1-SPN projecting MCC neurons during FR8 sequence. Example lever pressing (black bar) in control (top) vs. stimulation (middle) trials aligned to the first press, where the blue transparent rectangle corresponds to the window of optogenetic stimulation (20Hz, 8s). The black and blue lines in the PETH (bottom) indicate the lever press rate for control and stimulation conditions, respectively, same for below. (C) Optogenetic stimulation (20Hz) of the D2-SPN projecting MCC neurons during FR8 sequence. (D) Average percent lever press rate change during optogenetic stimulation of D1- vs. D2-SPN projecting MCC neurons compared to control (MCC – D1, $n = 8$; MCC – D2, $n = 7$; Unpaired two-tailed t -test, $t = 2.774$, $P = 0.0097$). **, $P < 0.01$. (E) Timeline of helper virus injections, rabies-ChR2 injections and optogenetic stimulation during action sequence performance. (F-G) Optogenetic stimulation (20Hz) of the D1- (F) or D2-SPN (G) projecting M1 neurons during FR8 sequence. (H) Average percent lever press rate change during optogenetic stimulation of D1- vs. D2-SPN projecting M1 neurons compared to control (M1 – D1, $n = 6$; M1 – D2, $n = 7$; Unpaired two-tailed t -test, $t = 0.7651$, $P = 0.4511$).

Figure S1. Low-frequency (5 Hz) optogenetic stimulation of cortical neurons projecting to striatal D1- or D2-SPNs has little effect on locomotion activity. (A) 5 Hz optogenetic stimulation elicits action potentials with high fidelity in a ChR2-mCherry positive M1 pyramidal neuron in layer 5 projecting to striatal D1-SPNs. Scale bars, 200 ms, 25 mV. **(B-C)** 5 Hz optogenetic stimulation on MCC neurons projecting to either D1- or D2-SPNs didn't change the locomotion activity. MCC – D1, $n = 9$, unpaired two-tailed t -test, $t = 0.1906$, $P = 0.8516$. MCC – D2, $n = 10$, unpaired two-tailed t -test, $t = 1.015$, $P = 0.3275$. **(D)** 5 Hz optogenetic stimulation of M1 neurons projecting to D1-SPNs didn't change the locomotion activity. $n = 7$, unpaired two-tailed t -test, $t = 0.276$, $P = 0.7866$. **(E)** 5 Hz optogenetic stimulation of M1 neurons projecting to D2-SPNs slightly increased locomotion activity. $n = 8$, unpaired two-tailed t -test, $t = 2.48$, $P = 0.0265$. *, $P < 0.05$.

Figure S2. The synaptic properties of projections from D1- or D2-SPN retrogradely-labeled cortical inputs to striatal D1- or D2-SPNs. (A-D) The EPSC latency (A), amplitudes (B), paired pulse ratio (C) and variation (D) of whole-cell recordings of rabies-negative striatal D1- or D2-SPNs, with optogenetic stimulation of the terminals of D1- or D2-SPN retrogradely-labeled cortical neurons. n.s., $P > 0.05$, not statistical significant.

Figure S3. No effects of optogenetic stimulation of M1 on locomotion in mice with ChR2 expression in either D1- or D2-SPNs of DMS. (A) Schematic of dorsal medial striatum (DMS) injection of Cre-dependent AAV-ChR2 in D1- and A2a-Cre mice with optogenetic stimulation in M1. (B) 20Hz optogenetic stimulation of M1 in mice expressing ChR2 in striatal D1-SPNs didn't change the locomotion activity. $n = 5$, unpaired two-tailed t -test, $t = 0.1016$, $P = 0.9194$. (C) 20Hz optogenetic stimulation of M1 in mice expressing ChR2 in striatal D2-SPNs didn't alter the locomotion activity. $n = 5$, unpaired two-tailed t -test, $t = 1.155$, $P = 0.2525$.