

1 **Lipopolsaccharides derived from *Porphyromonas gingivalis* and *Escherichia***
2 ***coli*: differential and interactive effects on novelty-induced hyperlocomotion,**
3 ****blood cytokine levels and TRL4-related processes****

4 Koji Saito¹, Yuri Aono², Arata Watanabe³, Tetsuro Kono³, Tomomi Hashizume-
5 Takizawa⁴, Hiroyuki Okada³, Yasuhiro Kosuge⁵, Hidenobu Senpuku⁴, John L.
6 Waddington⁶, Tadashi Saigusa^{1,2}

7 ¹Nihon University Graduate School of Dentistry at Matsudo, Oral Molecular
8 Pharmacology, 2-870-1 Sakaecho-Nishi, Matsudo, Chiba 271-8587, Japan

9 ²Department of Pharmacology, Nihon University School of Dentistry at Matsudo,
10 2-870-1 Sakaecho-Nishi, Matsudo, Chiba 271-8587, Japan

11 ³Department of Histology, Nihon University School of Dentistry at Matsudo,
12 2-870-1 Sakaecho-Nishi, Matsudo, Chiba 271-8587, Japan

13 ⁴Department of Microbiology and Immunology, Nihon University School of
14 Dentistry at Matsudo, 2-870-1 Sakaecho-Nishi, Matsudo, Chiba 271-8587, Japan

15 ⁵Laboratory of Pharmacology, Nihon University School of Pharmacy, 7-7-1
16 Narashinodai, Funabashi, Chiba 274-8555, Japan

17 ⁶School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and
18 Health Sciences, St. Stephen's Green, Dublin 2, Ireland

19 Corresponding author: Prof. Dr. Tadashi Saigusa,
20 Department of Pharmacology, Nihon University School of Dentistry at Matsudo,
21 2-870-1 Sakaecho-Nishi, Matsudo, Chiba 271-8587, Japan

22 Tel: +81-47-360-9344; Fax: +81-47-360-9348

23 E-mail address: saigusa.tadashi@nihon-u.ac.jp (T. Saigusa)

24 **Keywords:** *Porphyromonas gingivalis*; lipopolysaccharide; locomotion; Toll-like
25 receptor; IL-10; mouse

26 **Abbreviations:** LPS, lipopolysaccharide; *Pg*, *Porphyromonas gingivalis*; *Ec*,

27 *Escherichia coli*; TLR, Toll-like receptor; ANOVA, analysis of variance

28 **Short title:** LPS, locomotion and cytokines

29

30 Abstract

31 Lipopolysaccharide (LPS), a component of the Gram-negative bacterial cell
32 wall, activates Toll-like receptors (TLRs). *Porphyromonas gingivalis* (*Pg*) may be
33 involved in the progression of periodontal disease. Mice exposed to a novel
34 environment show hyperlocomotion that is inhibited by systemic administration of
35 LPS derived from *Escherichia coli* (*Ec*-LPS). However, whether *Pg*-LPS influences
36 novelty-induced locomotion is unknown. Accordingly, we carried out an open field
37 test to analyse the effects of *Pg*-LPS. For comparison, effects of *Ec*-LPS were also
38 studied. We also investigated the influence of systemic administration of *Pg*-LPS or
39 *Ec*-LPS on IL-6, TNF-alpha, and IL-10 levels in blood, as they could be involved in
40 the changes in locomotion. The TLR4 receptor antagonist TAK-242 was used to
41 study the involvement of TLR4. Since *Pg*-LPS may block TLR4 *in vitro*, we analysed
42 the effects of *Pg*-LPS on *Ec*-LPS-induced changes in behavioural and biochemical
43 parameters. Male ddY mice were used. Compounds were administered
44 intraperitoneally. *Ec*-LPS (840 µg/kg), but not *Pg*-LPS (100, 500 and 840 µg/kg),
45 inhibited novelty-induced locomotion, which was reversed by TAK-242 (3.0 mg/kg).
46 *Ec*-LPS (840 µg/kg) increased blood levels of IL-6 and IL-10, which was antagonized
47 by TAK-242 (3.0 mg/kg). However, TAK-242 did not inhibit *Ec*-LPS-induced
48 increases in TNF-alpha levels in blood. *Pg*-LPS (100, 500, and 840 µg/kg) did not
49 alter blood IL-6, TNF-alpha, or IL-10 levels. The *Ec*-LPS-induced increase in blood
50 IL-10, but not IL-6 and TNF-alpha, levels was inhibited by *Pg*-LPS (500 µg/kg).
51 These results suggest that TLR4 stimulation mediates the inhibition of novel
52 environment-induced locomotion in mice following systemic administration of *Ec*-
53 LPS, while also increasing blood IL-6 and IL-10 levels. In contrast, *Pg*-LPS did not
54 exhibit these effects. The present study also provides *in vivo* evidence that *Pg*-LPS

55 can inhibit TLR4-mediated increases in blood IL-10 levels, which is thought to

56 prevent the development of periodontal disease.

57

58 Introduction

59 *Porphyromonas gingivalis* (*Pg*) is a Gram-negative, rod-shaped bacterium
60 that may be involved in the progression of periodontal disease. Lipopolysaccharide
61 (LPS), a component of the Gram-negative bacterial cell wall derived from *Pg* (*Pg*-
62 LPS), has been implicated as a key molecule in the development of periodontitis.

63 *In vitro* studies using cultured cells from periodontal tissue have revealed
64 *Pg*-LPS to induce effects distinct from LPS derived from the prototype Gram-
65 negative, rod-shaped bacterium *Escherichia coli* (*Ec*-LPS). Notably, increases in
66 interleukin (IL)-6 expression observed in gingival fibroblasts [1] and periodontal
67 ligament cells [2] following treatment with *Pg*-LPS were reduced relative to those
68 following treatment with *Ec*-LPS. Additionally, treatment with *Pg*-LPS failed to alter
69 IL-6 and tumor necrosis factor (TNF)-alpha levels significantly in dental pulp stem
70 cells, while *Ec*-LPS treatment markedly increased these cytokines [3]. Moreover,
71 treatments with *Pg*-LPS had no significant effect on cytokine production in
72 monocyte-derived dendritic cells, whereas *Ec*-LPS treatment led to a significant
73 increase in IL-6 and IL-10 production [4].

74 Despite these observed differences in cytokine responses, the specific
75 mechanisms underlying the divergent effects of *Pg*-LPS and *Ec*-LPS on cytokine
76 production remain unclear. Nevertheless, it is plausible that variations in receptors
77 interacting with *Pg*-LPS and *Ec*-LPS may contribute to these discrepancies. Toll-like
78 receptors (TLRs) are well-known pattern recognition sites that bind pathogen-
79 associated molecules, ultimately activating immunity and host defense [5]. Notably,
80 LPS stimulates a subtype of TLR known as TLR4, which is expressed on the plasma
81 membrane and mediates various processes, including cytokine synthesis and
82 secretion. Studies using cultured monocytic cells have suggested that increases in IL-

83 6 and TNF-alpha levels induced by *Ec*-LPS are mediated via TLR4 activation. On the
84 other hand, the effects of *Pg*-LPS on IL-6 and TNF-alpha were proposed to be
85 mediated via TLR4 and/or another subtype of TLR known as TLR2 [6]. Moreover,
86 differences in the effects of *Pg*-LPS and *Ec*-LPS can be attributed to their differential
87 abilities to activate TLR4; previous research has shown that *Ec*-LPS strongly
88 stimulates TLR4, whereas *Pg*-LPS weakly stimulates [7-10] or blocks [11-14] TLR4.
89 *In vivo* studies in rats have demonstrated that *Pg*-LPS induces effects on extracellular
90 cytokine levels that differ from those induced by *Ec*-LPS. For example, our studies
91 using urethane-anesthetized rats indicated that intra-gingival administration of *Ec*-
92 LPS failed to alter cytokine levels, while *Pg*-LPS increased gingival extracellular
93 levels of TNF-alpha [15].

94 Systemic administration of *Ec*-LPS in mice is known to induce a variety of
95 sickness behaviors, such as reductions in water and food intake and loss of body
96 weight [16]. These behavioral changes are suggested to be mediated by increases in
97 the synthesis and release of cytokines that can be detected in the systemic circulation
98 [16]. Notably, the sickness behavior induced by systemic administration of *Ec*-LPS
99 also includes reduction in locomotor activity [17]. However, it remains unknown
100 whether systemic administration of *Pg*-LPS in mice produces inhibitory effects on
101 locomotion similar to those induced by *Ec*-LPS. Therefore, we conducted an open
102 field test to examine whether a single systemic administration of *Pg*-LPS in mice
103 affects locomotor activity in a novel environment, to further characterize the effects
104 of *Pg*-LPS *in vivo*. For comparison, we also analyzed the effects of *Ec*-LPS on
105 novelty-induced increases in locomotor activity under the same experimental
106 conditions. Additionally, we investigated the influence of systemic administration of
107 *Pg*-LPS or *Ec*-LPS on blood levels of cytokines, particularly IL-6, TNF-alpha and IL-

108 10, as these cytokines may have pro-inflammatory (IL-6 and TNF-alpha) or anti-
109 inflammatory (IL-10) effects that could be involved in the observed changes in mouse
110 behavior. Furthermore, animal experiments have shown that systemic inflammation
111 induces increases in spleen mass [18]. For example, repeated oral administration of
112 *Pg* has been found to increase spleen weight in mice [19]. The spleen plays a crucial
113 role in modulating immune responses by promoting the differentiation and activation
114 of T and B cells. Thus, we investigated the influence of systemic administration of
115 *Pg*-LPS or *Ec*-LPS on spleen weight, together with the numbers of T cells and B cells
116 using flow cytometry. To elucidate the involvement of TLR4 in the effects of LPS on
117 behavioral and biochemical parameters in mice, we co-administered TAK-242, a
118 selective TLR4 receptor antagonist [20]. Given the *in vitro* experiments suggesting
119 that *Pg*-LPS may exhibit partial agonist- or antagonist-like properties on TLR4, as
120 discussed above [7-14], we proceeded to analyse the effects of *Pg*-LPS on *Ec*-LPS-
121 induced changes in behavioural and biochemical parameters in mice.

122 Preliminary results from these investigations have been presented at the
123 Annual Meeting of the Japanese Pharmacological Society, 2022, and the Annual
124 Meeting of the Japanese Association for Oral Biology, 2023.

125 **Materials and Methods**

126

127 **Animals**

128 Male ddY mice (Sankyo Laboratory Service Co. Ltd., Tokyo, Japan),
129 weighing between 25 and 30 g were used. These were kept at constant room
130 temperature (23 ± 2 °C) and relative humidity ($55 \pm 5\%$) under a 12 h day:night cycle
131 (light on: 07.00 a.m.), with ad libitum access to food and water. All experiments were
132 approved by the Animal Experimentation Committee of Nihon University School of
133 Dentistry at Matsudo (AP19MAS015) and were performed in accordance with
134 national and international guidelines for the care and welfare of animals. All efforts
135 were made to minimise animal suffering and to reduce the number of animals used.

136

137 **Drugs and treatments**

138 Commercially available LPS derived from *Ec* and *Pg*, namely *Ec*-LPS
139 (O55:B5; Sigma-Aldrich, St. Louis, MO, USA) and *Pg*-LPS (LPS-PG Ultrapure;
140 InvivoGen, San Diego, CA, USA) were used. They were diluted with saline and
141 aliquots were stored at -20°C prior to use within two months. TAK-242 (Sigma-
142 Aldrich) was used as a TLR4 antagonist. It was diluted with saline and a small
143 amount of dimethyl sulfoxide (<0.1%) was added immediately prior to use. The doses
144 of these compounds were determined by a series of pilot experiments based on
145 previous behavioural studies (LPS: [17, 21]; TAK-242: [20]).

146 Compounds were injected i.p. in a volume of 0.1 ml per 10 g body weight,
147 with each mouse used only once. Mice were treated with LPS or its corresponding
148 vehicle 4 h prior to the open field test and the subsequent measurements of spleen

149 weight, flow cytometry, and blood cytokine levels. TAK-242 or its vehicle was
150 administered 1 h before designated procedures.

151

152 **Open field test**

153 On the day of experiments, each mouse was individually placed in a plastic
154 cage (length × width × height: 32 × 21 × 13 cm), the floor of which was covered with
155 sawdust to a depth of approximately 2 cm, and habituated to these conditions for at
156 least 60 min. Then, mice treated with LPS and/or TAK-242 or their corresponding
157 vehicles (see Drugs and treatments) was transferred to a Plexiglas box (length × width
158 × height: 30 × 30 × 20 cm) that was slightly larger and lacked floor sawdust.

159 Locomotion in the novel environment was recorded for a period of 30 min via a video
160 camera located above the Plexiglas box and total distance traveled (cm) was
161 determined by an automated system for behavioural assessment (SMART, Panlab,
162 Barcelona, Spain). In designated experiments we carried out additional analyses of
163 locomotion in the center (20 × 20 cm) *vs* the periphery (within 5 cm of each wall) of
164 the Plexiglas box, since avoiding the center zone of the novel environment is regarded
165 as a sign of anxiety that could be elicited by systemic administration of LPS. After
166 evaluation of each mouse the Plexiglas box was cleaned with ethanol followed by
167 water before proceeding to the next mouse.

168

169 **Measurement of spleen weight and flow cytometry**

170 After treatments with LPS and/or TAK-242 or their corresponding vehicles
171 (see Drugs and treatments) mice were euthanized by isoflurane (5%) inhalation. Their
172 spleens were collected and weighed by a precision electronic weighing scale and
173 single-cell suspensions were prepared in saline using a homogenizer.

174 Surface markers of splenocytes were identified using monoclonal antibodies in
175 conjunction with two immunofluorescence analysis with a flow cytometer (BD
176 Accuri C6 Plus: BD, Mountain View, CA, USA). Antibodies used were Fluoroscein
177 isothiocyanate (FITC)-conjugated anti-mouse CD4 and CD21/CD35 (CR2/CR1:
178 Biolegend, San Diego, CA, USA) and Phycoerythrin (PE)-conjugated anti-mouse
179 CD3 (17A2: Proteintech, Rosemont, IL, USA). Isotype controls used were FITC-
180 labelled Rat IgG2b Isotype Control (LTF-2) (Proteintech, Rosemont, IL, USA) and
181 PE-labelled Rat IgG2b Isotype Control (Becton Dickinson Pharmingen, San Jose,
182 CA, USA). Double-labelled surface phenotypes were CD4/CD3 and CD3/CD21.
183 Cells were pre-incubated with anti-CD16/CD32 antibody to block nonspecific
184 antibody binding. Then, cells were incubated with the above specific antibodies for
185 30 min and washed twice in 1% bovine serum albumin in phosphate buffered saline.
186 Seven-amino-actinomycin D (Biolegend, San Diego, CA, USA) was added before
187 analysis with a flow cytometer to exclude nonviable cells. Data were analyzed using
188 commercial software (FlowJo, BD Biosciences, Franklin Lakes, NJ, USA).
189

190 **Measurement of blood cytokine levels**

191 A disposable lancet (4 mm, Goldenrold Animal Lancet, MEDIPoint, Mineola
192 NY, USA) was used to take blood samples from the submandibular vein of mice
193 treated with LPS and/or TAK-242 or their corresponding vehicle (see Drugs and
194 treatments). Approximately 0.5 ml of blood was quickly collected without total
195 anesthesia [22]. Blood was allowed to coagulate for 10-15 min at room temperature,
196 then centrifuged at $1900 \times g$ for 10 min at 4°C, with separated sera then stored at -
197 70°C until further analysis.

198 Levels of IL-6, TNF-alpha and IL-10 in serum were determined using bead-
199 based Multi-Plex kits (MILLIPLEX® Mouse Cytokine/Chemokine Magnetic Bead
200 Panel 96-Well Plate Assay, Merck KGaA, Cat. No. MCYTOMAG-70K-03,
201 Rockland, MA, USA). In order to remove particulates, samples were centrifuged at
202 16000 × g for 4 min at 4°C before assay and diluted 2-fold using medium provided by
203 the kit manufacture. Twenty-five µl of diluted samples were then transferred into a
204 96-well plate and incubated overnight at 4°C with shaking to immobilize antibody
205 beads. Liquid was removed, followed by two washes, and detection beads were then
206 added into each well. The plate was then incubated for 1h at room temperature,
207 followed by addition of streptavidin-phycoeruthrin for 30 min with shaking. After the
208 supernatant was removed, 150 µl of drive fluid to resuspend the beads was added to
209 each well and the plate was read using MAGPIX plate reader with xPOINT software
210 (Luminex® 100/200™ System, Luminex Corp., Austin, TX, USA). Data were
211 analyzed using MILLIPLEX Analyst software.

212

213 **Statistical analysis**

214 All values are expressed as mean and S.E.M. Comparisons of (1) effects of
215 various doses of *Pg*- and *Ec*-LPS on distance travelled and (2) effects of TAK-242 or
216 *Pg*-LPS on *Ec*-LPS-induced changes in distance travelled, body weight, spleen
217 weight, cellular components of spleen and blood cytokine levels were performed
218 using one-way ANOVA followed by post hoc Scheffé's test where appropriate.
219 Effects of *Ec*-LPS on distance travelled in central *vs* peripheral zones of the novel
220 environment were compared using Student's *t*-test. Statistical significance was
221 considered to be *P* < 0.05.

222 **Results**

223 ***Ec*-LPS but not *Pg*-LPS inhibits novelty-induced locomotor**

224 **activity**

225 Locomotion in mice treated with vehicle and exposed to the open field was
226 not altered by *Pg*-LPS (100, 500 or 840 μ g/kg). In contrast, such locomotion was
227 inhibited by *Ec*-LPS (Fig. 1: one-way ANOVA, $F(3, 25) = 4.11, P < 0.05$). Post hoc
228 Sheffé's test revealed that the effects of 840 μ g/kg *Ec*-LPS differed significantly from
229 those of vehicle ($P < 0.05$).

230 **Fig 1. Upper panel: Effects of intra-peritoneal injection of *Pg*-LPS on novel**
231 **environment-induced increases in locomotor activity in mice. Lower panel:**
232 **Effects of intra-peritoneal injection of *Ec*-LPS on novel environment-induced**
233 **increases in locomotor activity in mice.**

234 Vertical bars indicate S.E.M., $n = 7-8$ per group. * $P < 0.05$, *Pg*- or *Ec*-LPS vs vehicle.

235

236 ***Ec*-LPS-induced inhibition of novelty-induced locomotor**
237 **activity is antagonised by TAK-242 but not by *Pg*-LPS**

238 Pretreatment with the TLR4 antagonist TAK-242 (3.0 mg/kg), which did not
239 alter locomotion when given alone, antagonized the inhibition of locomotion induced
240 by 840 μ g/kg *Ec*-LPS (Fig. 2: one-way ANOVA, $F(3, 22) = 7.03, P < 0.01$). Post hoc
241 Sheffé's test revealed that the effect of 840 μ g/kg *Ec*-LPS pretreated with 3.0 mg/kg
242 TAK-242 differed significantly from the effect of 840 μ g/kg *Ec*-LPS pretreated with
243 vehicle ($P < 0.05$). Pretreatment with *Pg*-LPS (500 μ g/kg), which did not alter
244 locomotion when given alone, did not significantly influence the inhibition of
245 locomotion induced by 840 μ g/kg *Ec*-LPS.

246

247 **Fig 2. Effects of TAK-242 or Pg-LPS on *Ec*-LPS-induced reduction in novelty-
248 induced locomotor activity in mice.**

249 Vertical bars indicate S.E.M., n = 6-7 per group. * $P < 0.05$ vs *Ec*-LPS + vehicle.

250

251 ***Ec*-LPS-induced inhibition of novelty-induced locomotion is
252 evident in both the central and peripheral zones**

253 As differential effects on locomotion in the peripheral vs central zones of the
254 open field implicate anxiety-/depression-related processes [23], we analyzed the
255 effects of *Ec*-LPS (840 μ g/kg) on locomotion in these two zones. *Ec*-LPS treatment
256 inhibited locomotion in both the central and peripheral zones (Fig. 3: Student's *t*-
257 tests, *Ec*-LPS 840 μ g/kg vs vehicle: central zone: t (12) = 2.19, $P < 0.05$; peripheral
258 zone: t (12) = 3.93, $P < 0.01$).

259

260 **Fig 3. Effects of intra-peritoneal injection of *Ec*-LPS on novel environment-
261 induced increases in locomotor activity within central and peripheral zones of
262 the open field in mice.**

263 Vertical bars indicate S.E.M., n = 7 per group. * $P < 0.05$, ** $P < 0.01$, *Ec*-LPS vs
264 vehicle.

265

266 ***Ec*- and Pg-LPS treatments, with or without TAK-242
267 pretreatment, fail to alter spleen weight and T or B cell
268 subsets**

269 We measured the body and spleen weight of mice without any treatment,
270 vehicle alone, TAK-242 (3.0 mg/kg), *Pg*-LPS (500 or 840 µg/kg), *Ec*-LPS (840
271 µg/kg) alone, TAK242 (3.0 mg/kg) followed by administration of *Ec*-LPS (840
272 µg/kg), *Pg*-LPS (500 µg/kg) followed by administration of *Ec*-LPS (840 µg/kg).
273 Though there appeared to be some numerical variation, neither body nor spleen
274 weight differed significantly across these groups (Table 1).

275

276 **Table 1. Body weight (g) and spleen weight (mg) of mice receiving LPS and/or**
277 **TAK242 treatments.**

	Body weight (g)	Spleen weight (mg)
Without treatment	23.0 ± 0.0	125.8 ± 9.7
Vehicle	23.0 ± 0.0	136.7 ± 13.6
TAK-242 (3.0 mg/kg)	24.8 ± 1.3	130.8 ± 8.7
<i>Pg</i> -LPS (500 µg/kg)	22.3 ± 0.3	105.5 ± 2.4
<i>Pg</i> -LPS (840 µg/kg)	21.0 ± 0.0	147.0 ± 25.1
<i>Ec</i> -LPS (840 µg/kg)	22.0 ± 0.0	114.0 ± 3.0
TAK-242 (3.0 mg/kg) + <i>Ec</i> -LPS (840 µg/kg)	24.4 ± 1.2	132.6 ± 4.2
<i>Pg</i> -LPS (500 µg/kg) + <i>Ec</i> -LPS (840 µg/kg)	23.5 ± 2.1	145.4 ± 11.8

278 Mean and S.E.M., n = 3-6 per group.

279

280 Next, we assessed the cellular composition of the spleen in these same
281 experimental groups by flow cytometry and determined the numbers of CD4⁺ helper
282 T cell and CD21⁺ mature B cell subsets. Though there appeared to be some numerical

283 variation, neither the number of CD4⁺ T cells nor the number of CD21⁺ B cells
284 differed significantly across these groups (Table 2).

285

286 **Table 2**

287 **Cellular components of spleen in mice receiving LPS and/or TAK242**
288 **treatments.**

	CD4 ⁺ T cell ($\times 10^8$)	CD21 ⁺ B cell ($\times 10^8$)
Without treatment	5.3 \pm 0.7	24.4 \pm 3.5
Vehicle	5.7 \pm 0.5	30.6 \pm 7.1
TAK-242 (3.0 mg/kg)	7.2 \pm 1.3	19.9 \pm 5.2
<i>Pg</i> -LPS (500 μ g/kg)	8.1 \pm 1.0	10.9 \pm 1.3
<i>Pg</i> -LPS (840 μ g/kg)	5.1 \pm 0.7	23.7 \pm 5.5
<i>Ec</i> -LPS (840 μ g/kg)	4.5 \pm 0.6	22.0 \pm 1.9
TAK-242 (3.0 mg/kg) + <i>Ec</i> -LPS (840 μ g/kg)	9.7 \pm 1.4	27.8 \pm 2.7
<i>Pg</i> -LPS (500 μ g/kg) + <i>Ec</i> -LPS (840 μ g/kg)	10.8 \pm 2.6	25.8 \pm 2.9

289 Mean and S.E.M., n = 3-6 per group.

290

291 ***Ec*-LPS, but not *Pg*-LPS, increases blood IL-6 levels that are**
292 **antagonized by TAK-242 but not by *Pg*-LPS**

293 Baseline IL-6 levels in blood samples were 20.0 \pm 11.1 pg/ml (n = 6) and
294 these levels were not altered by administration of vehicle (Fig. 4). *Ec*-LPS (840
295 μ g/kg), but not *Pg*-LPS (840 μ g/kg), increased blood levels of IL-6 (Fig. 4: one-way
296 ANOVA, F (7, 34) = 8.51, P < 0.001). This *Ec*-LPS-induced increase in blood level

297 of IL-6 was antagonized by pretreatment with TAK-242 (3.0 mg/kg) that did not
298 influence blood IL-6 levels when given alone (Fig. 4). *Pg*-LPS (500 μ g/kg)
299 pretreatment failed to alter either baseline IL-6 or *Ec*-LPS (840 μ g/kg)-induced
300 increases in IL-6. Post hoc Sheffé's tests revealed that the effects of *Ec*-LPS (840
301 μ g/kg) differed significantly from those of vehicle ($P < 0.01$), 500 μ g/kg *Pg*-LPS (P
302 < 0.01), 840 μ g/kg *Pg*-LPS ($P < 0.01$) and 3.0 mg/kg TAK-242 + 840 μ g/kg *Ec*-LPS
303 ($P < 0.05$).

304

305 **Fig 4. Effects of intra-peritoneal injection of *Pg*- or *Ec*-LPS with TAK-242 and**
306 **of co-administration of *Pg*- and *Ec*-LPS on IL-6 levels (pg/ml) in blood samples**
307 **of mice.**

308 Vertical bars indicate S.E.M., n = 4-6 per group. * $P < 0.05$, ** $P < 0.01$ vs *Ec*-LPS +
309 vehicle.

310

311 ***Ec*-LPS, but not *Pg*-LPS, increases blood TNF-alpha levels**
312 **that are not antagonized by TAK-242 or *Pg*-LPS**

313 Baseline TNF-alpha levels in blood samples were 7.2 ± 1.2 pg/ml (n = 6) and
314 these levels were not altered by administration of vehicle (Fig. 5). *Ec*-LPS (840
315 μ g/kg), but not *Pg*-LPS (840 μ g/kg), increased blood levels of TNF-alpha (Fig. 5:
316 one-way ANOVA, $F(7, 34) = 9.36$, $P < 0.001$). This *Ec*-LPS-induced increase in
317 blood levels of TNF-alpha was not influenced by either TAK-242 (3.0 mg/kg) or *Pg*-
318 LPS (500 μ g/kg), neither of which influenced blood levels of TNF-alpha when given
319 alone (Fig. 5). Post hoc Sheffé's tests revealed that the effects of *Ec*-LPS (840 μ g/kg)
320 differed significantly from those of vehicle ($P < 0.01$), 500 μ g/kg *Pg*-LPS ($P < 0.01$)
321 and 840 μ g/kg *Pg*-LPS ($P < 0.01$).

322

323 **Fig 5. Effects of intra-peritoneal injection of *Pg-* or *Ec*-LPS with TAK-242 and**
324 **of co-administration of *Pg-* and *Ec*-LPS on TNF-alpha levels (pg/ml) in blood**
325 **samples of mice.**

326 Vertical bars indicate S.E.M., n = 4-6 per group. ** $P < 0.01$ vs *Ec*-LPS + vehicle.

327

328 ***Ec*-LPS, but not *Pg*-LPS, increases blood IL-10 levels that**
329 **are antagonized by TAK-242 and by *Pg*-LPS**

330 Baseline IL-10 levels in blood samples were 91.2 ± 58.7 pg/ml (n = 6) and
331 these levels were not altered by administration of vehicle (Fig. 6). *Ec*-LPS (840
332 $\mu\text{g/kg}$), but not *Pg*-LPS (840 $\mu\text{g/kg}$), increased blood levels of IL-10 (Fig. 6: one-way
333 ANOVA, $F(7, 34) = 7.22$, $P < 0.001$). This *Ec*-LPS (840 $\mu\text{g/kg}$)-induced increase in
334 blood levels of IL-10 levels was antagonized both by TAK-242 (3.0 mg/kg) and by
335 *Pg*-LPS (500 $\mu\text{g/kg}$), neither of which influenced blood levels of IL-10 when given
336 alone (Fig. 6). Post hoc Sheffé's tests revealed that the effects of *Ec*-LPS (840 $\mu\text{g/kg}$)
337 differed significantly from those of vehicle ($P < 0.01$), 500 $\mu\text{g/kg}$ *Pg*-LPS ($P < 0.01$),
338 840 $\mu\text{g/kg}$ *Pg*-LPS ($P < 0.01$), 3.0 mg/kg TAK-242 + 840 $\mu\text{g/kg}$ *Ec*-LPS ($P < 0.05$),
339 and 500 $\mu\text{g/kg}$ *Pg*-LPS + 840 $\mu\text{g/kg}$ *Ec*-LPS ($P < 0.05$).

340

341 **Fig 6. Effects of intra-peritoneal injection of *Pg-* or *Ec*-LPS with TAK-242 and**
342 **of co-administration of *Pg-* and *Ec*-LPS on IL-10 levels (pg/ml) in blood samples**
343 **of mice.**

344 Vertical bars indicate S.E.M., n = 4-6 per group. * $P < 0.05$, ** $P < 0.01$ vs *Ec*-LPS +
345 vehicle.

346

347 **Discussion**

348 The present study indicates that systemic administration of *Ec*-LPS inhibits
349 novel environment-induced increases in locomotor activity by activating TLR4, as
350 this effect was inhibited by the selective TLR4 antagonist TAK-242. To further
351 clarify this *Ec*-LPS-induced inhibition of locomotor activity, more detailed analysis
352 indicated this inhibition to be evident similarly in both the peripheral and central
353 zones of the open field. As anxiety- and/or depression-related processes are reflected
354 in differential effects between these zones [23], such processes are not implicated in
355 the present findings. Rather, they may reflect evidence that LPS-induced reductions
356 in locomotor activity, including spatial exploration, relate to prevention of the spread
357 of inflammation and promotion of healing [16].

358 In contrast to *Ec*-LPS, systemic administration of *Pg*-LPS did not influence
359 novel environment-induced increases in locomotor activity. Previous findings from
360 our intra-gingival injection study in urethane-anesthetized rats showed that *Pg*-LPS,
361 but not *Ec*-LPS, produced a transient increase in extracellular TNF-alpha levels at the
362 injection site [15]. The present findings provide further evidence that *Pg*-LPS can
363 elicit effects that differ from those of *Ec*-LPS not only in *in vitro* but also *in vivo*.
364 Several *in vitro* studies have indicated that TLR4 can be weakly stimulated [7-10] or
365 inhibited [11-14] by *Pg*-LPS. Based on these findings, it is plausible that the present
366 TLR4-mediated decrease in locomotion induced by *Ec*-LPS might be counteracted by
367 systemic administration of *Pg*-LPS. However, it should be noted that while co-
368 administration of *Pg*-LPS with *Ec*-LPS tended to inhibit *Ec*-LPS-induced changes in
369 locomotion, this failed to attain statistical significance.

370 It is conceivable that systemic administration of LPS may potentially
371 promote the differentiation of T cells and B cells. This is based on the belief that T

372 cells interact with antigen-presenting cells, including dendritic cells and macrophages
373 that recognize LPS, resulting in their activation and differentiation into specific
374 subtypes, such as helper T cells. Additionally, LPS activates B cells, leading to their
375 differentiation into B cells involved in antibody production, thereby enhancing their
376 ability to produce antibodies. Moreover, systemic administration of LPS is known to
377 induce systemic inflammation and increase spleen weight in experimental animals
378 [18]. However, contrary to these assumptions, the LPS treatments in this study did
379 not increase the number of T or B cells derived from mouse spleen, nor did they
380 increase spleen weight. These results indicate that systemic administration of not only
381 *Pg*-LPS but also *Ec*-LPS could not alter the compositions of lymphocytes, at least
382 within the experimental period of the present studies. Furthermore, the lack of
383 significant changes in spleen weight suggests that these LPS treatments are unlikely
384 to induce material systemic inflammation within this experimental period.

385 In agreement with an earlier report suggesting that an increase in cytokine
386 synthesis and release mediates the sickness behavior induced by systemic
387 administration of LPS, including decreased novelty-induced locomotion in
388 experimental animals [16], we observed marked increases in blood levels of IL-6,
389 TNF-alpha, and IL-10 in mice treated with *Ec*-LPS. Interestingly, the biological
390 processes involved in the increases in levels of TNF-alpha were not the same as those
391 for IL-6 and IL-10 under the present experimental conditions. Notably, the TLR4
392 antagonist TAK-242 inhibited *Ec*-LPS-induced increases in blood IL-6 and IL-10
393 levels but had no effect on TNF-alpha levels. This suggests that IL-6 and IL-10 are
394 likely increased by TAK-242-sensitive TLR4 activation.

395 Underlying reasons for the failure of TAK-242 to affect *Ec*-LPS-induced
396 increases in TNF-alpha levels are not yet known, but several possibilities may be

397 considered. Firstly, the contribution of intra-cellular TLR4, which may be less
398 accessible to compounds such as TAK-242, could explain its inactivity on TNF-alpha
399 levels [24]. Secondly, differences in TAK-242 concentrations at TLR4 may result in
400 differential blockade, influencing IL-6 and IL-10 levels differently from those of
401 TNF-alpha. For example, under the present *in vivo* conditions TAK-242 might attain
402 a higher concentration at TLR4 sites involved in IL-6 and IL-10 synthesis and release,
403 while attaining a lower concentration at TLR4 sites involved in TNF-alpha synthesis
404 and release. Further investigation would be necessary to clarify these possibilities and
405 gain deeper insights into the mechanisms underlying the differential effects of TAK-
406 242 on cytokine levels.

407 In contrast to *Ec*-LPS, systemic administration of *Pg*-LPS did not influence
408 novelty-induced locomotion in mice and did not alter basal levels of IL-6, TNF-alpha
409 or IL-10 in blood. These results align with previous *in vitro* findings using gingival
410 fibroblasts, which showed that increases in IL-6 expression induced by *Pg*-LPS were
411 smaller than those induced by *Ec*-LPS [1]. The present results provide *in vivo*
412 biochemical evidence for clear differences in the influences of *Pg*-LPS and *Ec*-LPS
413 on blood IL-6, TNF-alpha and IL-10 levels when administered systemically. Since *in*
414 *vitro* studies have shown that *Pg*-LPS weakly stimulates [7-10] or inhibits [11-14]
415 TLR4, we investigated the effects of co-administration of *Pg*-LPS on *Ec*-LPS-
416 induced increases in blood IL-6, TNF-alpha and IL-10 levels that appear mediated by
417 TLR4 activation. Distinct from *Ec*-LPS-induced increases in blood TNF-alpha levels,
418 which were not inhibited by TAK-242, *Ec*-LPS-induced increases in blood IL-10, but
419 not IL-6, were suppressed by co-administration of *Pg*-LPS. The reduction in novelty-
420 induced locomotor activity of mice induced by *Ec*-LPS is likely mediated by
421 increases in blood IL-6, as opposed to TNF-alpha and IL-10. This conclusion is

422 supported by the observation that TAK242, but not *Pg*-LPS, counteracted the effect
423 of *Ec*-LPS on mouse locomotion, which corresponded to changes in blood IL-6
424 levels.

425 The mechanisms underlying inhibition of *Ec*-LPS-induced increases in blood
426 IL-10 levels by *Pg*-LPS remain unclear. Nevertheless, previous *in vitro* data have
427 suggested that *Pg*-LPS may inhibit the stimulation of TLR4 by *Ec*-LPS [25, 26]. To
428 gain further insights, at least two key aspects require investigation: (1) whether
429 systemically administered *Pg*-LPS acts as a weak agonist or antagonist at TLR4, and
430 (2) the differential effect of *Pg*-LPS treatment on IL-6 and IL-10 levels in response to
431 *Ec*-LPS, considering the observed actions of TAK-242 to counteract these effects on
432 both IL-6 and IL-10. Despite these uncertainties, the present study provides
433 compelling biochemical evidence supporting the efficacy of systemically
434 administered *Pg*-LPS in preventing TLR4-mediated increases in blood IL-10 levels
435 induced by systemic administration of *Ec*-LPS. IL-10 is believed to hinder the
436 progression of periodontitis by regulating mRNA transcription of inflammatory
437 mediators [14] and controlling the production of IFN-gamma and IL-17 by T-cells
438 [27, 28]. Consequently, inhibition of TLR4-mediated increases in IL-10 levels
439 appears to contribute to the development of periodontal diseases triggered by *Pg*-LPS.
440 One of the challenges that should be addressed in future research is any association
441 between inhibition of TLR4, a pattern recognition site involved in the innate immune
442 system, by systemic administration of *Pg*-LPS and induction mechanisms in
443 periodontal diseases and related pathologies other than in periodontal tissue. This is
444 because the effects of *Pg* and *Pg*-LPS are presumed to extend beyond periodontal
445 tissues, potentially influencing various other cell types. For example, *Pg* and *Pg*-LPS
446 have been linked to alterations in neurons within the brain, raising concerns about

447 their potential contribution to the development of Alzheimer's disease [29]. Similarly,
448 the impact on cardiovascular cells is noteworthy, with possible implications for
449 atherosclerosis [30].

450

451 **Conclusion**

452 In summary, this study provides compelling *in vivo* evidence that *Ec*-LPS
453 and *Pg*-LPS exert differential effects on both locomotor activity and cytokine
454 responses in blood. The systemic administration of *Ec*-LPS inhibits novel
455 environment-induced locomotor activity in mice through TLR4 activation.
456 Conversely, *Pg*-LPS failed to affect such locomotion. *Ec*-LPS treatment leads to
457 elevated levels of IL-6, TNF-alpha and IL-10 in blood, likely mediated by TLR4
458 activation (IL-6 and IL-10) or other pathways distinct from activation of TAK-242-
459 sensitive TLR4 (TNF-alpha). Furthermore, *Pg*-LPS inhibits TLR4-mediated increases
460 in IL-10 levels, while increased levels of IL-6 remained unaffected. The present study
461 provides *in vivo* evidence that *Pg*-LPS can inhibit TLR4-mediated increases in IL-10,
462 which is believed to prevent the development of periodontal disease.

463

464 **Acknowledgements**

465 The authors would like to express their appreciation for the late Prof. Dr.
466 Mitsuhiro Ohshima, who encouraged us to conduct the present investigations before
467 his passing in 2020.

468

469 **Funding and disclosure**

470 This study was supported by Grant-in-Aid for Scientific Research (C)
471 (#21K10124 to Y.A.; #21K10081 to T.S.) from the Japan Society for the Promotion
472 of Science; a Nihon University Research Grant for 2022–2023 (#22Dokusen11 to
473 Y.A., Y.K., T.S.); Grant from The Nakatomi Foundation, Japan (J.L.W., T.S.); Grants
474 from Suzuki Fund, Nihon University School of Dentistry at Matsudo; Grants from
475 Research Institute of Oral Science, Nihon University School of Dentistry at Matsudo
476 (Y.A., T.S.). The authors report no conflict of interest.

477

478 **Conflict of interest**

479 Authors report no conflict of interest.

480

481 **Author contributions**

482 Conceptualization of study: H.S., J.L.W., T.S. Formal Analysis: K.S., Y.A.,
483 T.H.T., T.S. Funding Acquisition: K.S., Y.A., Y.K., J.L.W., T.S. Investigation: K.S.,
484 Y.A., A.W., T.K., T.H.T., T.S. Project Administration: H.O., Y.K., H.S., T.S.
485 Supervision: Y.A., T.H.T., H.S., J.L.W., T.S. Visualization: K.S., Y.A., T.H.T., T.S.
486 Writing – Original Draft Preparation: K.S., T.H.T., Y.K., H.S., J.L.W., T.S. Writing –
487 Review & Editing: K.S., T.H.T., Y.K., H.S., J.L.W., T.S.

488

489 **Data availability statement**

490 All data can be obtained upon reasonable request to the corresponding
491 author.

492

493 **ORCID**

494 Tadashi Saigusa

495 <https://orcid.org/0000-0001-6325-9616>

496

497

498

499 **References**

500

- 501 1. Andrukhover O, Ertlschweiger S, Moritz A, Bantleon HP, Rausch-Fan X.
502 Contrasting impact of *Porphyromonas gingivalis* and *Escherichia coli*
503 lipopolysaccharides on interleukin-6 expression in human gingival fibroblasts. *Acta*
504 *Odontol Scand.* 2014; 72: 337–345.
- 505
- 506 2. Nebel D, Nilsson BO, Arvidsson J, Holm A, Lillqvist J. Contrasting effects of
507 lipopolysaccharides from *Escherichia coli* and *Porphyromonas gingivalis* on IL-6
508 production in human periodontal ligament cells. *Acta Odontol Scand.* 2013; 71: 892–
509 898.
- 510
- 511 3. Lan, C., Chen, S., Jiang S, Lei H, Cai Z, Chen S, et al. Different inflammatory
512 cytokine expression patterns induced by lipopolysaccharides from *Escherichia coli* or
513 *Porphyromonas gingivalis* in human dental pulp stem cells. *BMC Oral Health.* 2022;
514 22: 121.
- 515
- 516 4. Mahanonda R, Champaiboon C, Subbalekha K, Sa-Ard-Iam N, Rattanathammata
517 W, Thawanaphong S, et al. Human Memory B Cells in Healthy Gingiva, Gingivitis,
518 and Periodontitis. *J Immunol.* 2016; 197: 715–725.
- 519
- 520 5. Fitzgerald KA, Kagan JC. Toll-like Receptors and Immunity Control. *Cell.* 2020;
521 180: 1044–1066.
- 522

- 523 6. Zhang D, Chen L, Li S, Gu Z, Yan J. Lipopolysaccharide (LPS) of *Porphyromonas*
524 *gingivalis* induces IL-1beta, TNF-alpha and IL-6 production by THP-1 cells in a way
525 different from that of *Escherichia coli* LPS. *Innate Immun.* 2008; 14: 99–107.
- 526
- 527 7. Ogawa T, Asai Y, Hashimoto M, Takeuchi O, Kurita T, Yoshikai Y, et al. Cell
528 activation by *Porphyromonas gingivalis* lipid A molecule through Toll-like receptor
529 4- and myeloid differentiation factor 88-dependent signaling pathway. *Int Immunol.*
530 2002; 14: 1325–1332.
- 531
- 532 8. Putnins EE, Sanaie AR, Wu Q, Firth JD. CD-14 and toll-like receptors 2 and 4
533 regulate LPS-induced keratinocyte growth factor 1 expression. *Infect Immun.* 2002;
534 70: 6541–6548.
- 535
- 536 9. Tabet K, Yamazaki K, Akashi S, Miyake K, Kumada H, Umemoto T, et al. Toll-
537 like receptors confer responsiveness to *Porphyromonas gingivalis* lipopolysaccharide
538 in human gingival fibroblasts. *Infect Immun.* 2000; 68: 3731–3735.
- 539
- 540 10. Wang PL, Ohura K. *Porphyromonas gingivalis* lipopolysaccharide signaling in
541 gingival fibroblasts - CD14 and toll-like receptors. *Crit Rev Oral Biol Med.* 2002; 13:
542 132–142.
- 543
- 544 11. Coats SR, Darveau RP, Bainbridge BW, Pham TT, Reife RA. *Porphyromonas*
545 *gingivalis* lipopolysaccharide antagonizes *Escherichia coli* lipopolysaccharide at toll-
546 like receptor 4 in human endothelial cells. *Infect Immun.* 2003; 71: 6799–6807.
- 547

- 548 12. Darveau RP, Cunningham MD, Bailey T, Seachord C, Ratcliffe K, Bainbridge B,
549 et al. Ability of bacteria associated with chronic inflammatory disease to stimulate E-
550 selectin expression and promote neutrophil adhesion. *Infect Immun.* 1995; 63: 1311–
551 1317.
- 552
- 553 13. Darveau RP, Arbabi S, Garcia I, Bainbridge B, Maier RV. *Porphyromonas*
554 *gingivalis* lipopolysaccharide is both agonist and antagonist for p38 mitogen-
555 activated protein kinase activation. *Infect Immun.* 2002; 70: 1867–1873.
- 556
- 557 14. Yoshimura A, Mori H, Ohishi M, Aki D, Hanada T. Negative regulation of
558 cytokine signaling influences inflammation. *Curr Opin Immunol.* 2003; 15: 704–708.
- 559
- 560 15. Taguchi H, Aono Y, Kawato T, Asano M, Shimizu N, Saigusa T. Intragingival
561 injection of *Porphyromonas gingivalis*-derived lipopolysaccharide induces a transient
562 increase in gingival tumour necrosis factor- α , but not interleukin-6, in anaesthetised
563 rats. *Int J Oral Sci.* 2015; 7: 155–160.
- 564
- 565 16. Engeland CG, Kavaliers M, Nielsen DV, Ossenkopp KP. Locomotor activity
566 changes following lipopolysaccharide treatment in mice: a multivariate assessment of
567 behavioral tolerance. *Physiol Behav.* 2001; 72: 481–491.
- 568
- 569 17. O'Connor JC, Lawson MA, André C, Moreau M, Lestage J, Castanon N, et al.
570 Lipopolysaccharide-induced depressive-like behavior mediated by indoleamine 2,3-
571 dioxygenase activation in mice. *Mol Psychiatry.* 2009; 14: 511–522.
- 572

- 573 18. Ma L, Zhang J, Fujita Y, Shinno-Hashimoto H, Shan J, Wan X, et al. Effects of
574 spleen nerve denervation on depression-like phenotype, systemic inflammation, and
575 gut microbiota in lipopolysaccharide-treated mice: Involvement of the brain-spleen
576 axis. *J Affect Disord.* 2022; 317: 156–165.
- 577
- 578 19. Liu Y, Huang W, Dai K, Liu N, Wang J, Lu X, et al. Inflammatory response of
579 gut, spleen, and liver in mice induced by orally administered *Porphyromonas*
580 *gingivalis*. *J Oral Microbiol.* 2022; 14: 2088936.
- 581
- 582 20. Rosa JM, Farré-Alins V, Ortega MC, Navarrete M, Lopez-Rodriguez AB,
583 Palomino-Antolín A, et al. TLR4 pathway impairs synaptic number and
584 cerebrovascular functions through astrocyte activation following traumatic brain
585 injury. *Br J Pharmacol.* 2021; 178: 3395–3413.
- 586
- 587 21. Mormède C, Palin K, Kelley KW, Castanon N, Dantzer R. Conditioned taste
588 aversion with lipopolysaccharide and peptidoglycan does not activate cytokine gene
589 expression in the spleen and hypothalamus of mice. *Brain Behav Immun.* 2004; 18:
590 186–200.
- 591
- 592 22. Golde WT, Gollobin P, Rodriguez LL. Rapid, simple, and humane submandibular
593 bleeding method for mice using a lancet. *Lancet Lab Anim.* 2005; 34: 39–43.
- 594
- 595 23. Powell WH, Annett LE, Depoortere R, Newman-Tancredi A, Iravani MM.
596 Anxiolytic-like effects of the selective 5-HT_{1A} receptor agonist NLX-
597 112 in mice. *Naunyn Schmiedebergs Arch Pharmacol.* 2022; 395: 149–157.

598

599 24. Haziot A, Hijiya N, Gangloff SC, Silver J, Goyert SM. Induction of a novel
600 mechanism of accelerated bacterial clearance by lipopolysaccharide in CD14-
601 deficient and Toll-like receptor 4-deficient mice. *J Immunol.* 2001; 166: 1075–1078.

602

603 25. Hajishengallis G, Martin M, Schifferle RE, Genco RJ. Modulating interactions
604 between lipopolysaccharide molecules with varying toll-like receptor activation.
605 *Infect Immun.* 2002; 70: 6658–6664.

606

607 26. Reife RA, Coats SR, Al-Qutub M, Dixon DM, Braham PA, Billharz RJ, et al.
608 Heterogeneity of *Porphyromonas gingivalis* lipopolysaccharide lipid A: distinct
609 activities of tetra- and penta-acylated structures on E-selectin expression and TLR4
610 recognition. *Cell Microbiol.* 2006; 8: 857–868.

611

612 27. Jovanovic DV, Di Battista JA, Martel-Pelletier J, Jolicoeur FC, He Y, Zhang M,
613 et al. IL-17 stimulates the production and expression of proinflammatory cytokines,
614 IL-beta and TNF-alpha, by human macrophages. *J Immunol.* 1998; 160: 3513–3521.

615

616 28. Naundorf S, Schroder M, Hoflich C, Suman N, Volk HD, Grutz G. IL-10
617 interferes directly with TCR-induced IFN-gamma but not IL-17 production in
618 memory T cells. *Eur J Immunol.* 2009; 39: 1066–1077.

619

620 29. Costa MJF, de Araújo IDT, da Rocha Alves L, da Silva RL, Dos Santos Calderon
621 P, Borges BCD, et al. *Porphyromonas gingivalis* and Alzheimer's disease: A
622 systematic review of pre-clinical studies. *Clin Oral Investig.* 2021; 25: 797–806.

623

624 30. Olsen I, Progulske-Fox A. Invasion of *Porphyromonas gingivalis* strains into

625 vascular cells and tissue. *J Oral Microbiol.* 2015; 7: 28788.

626

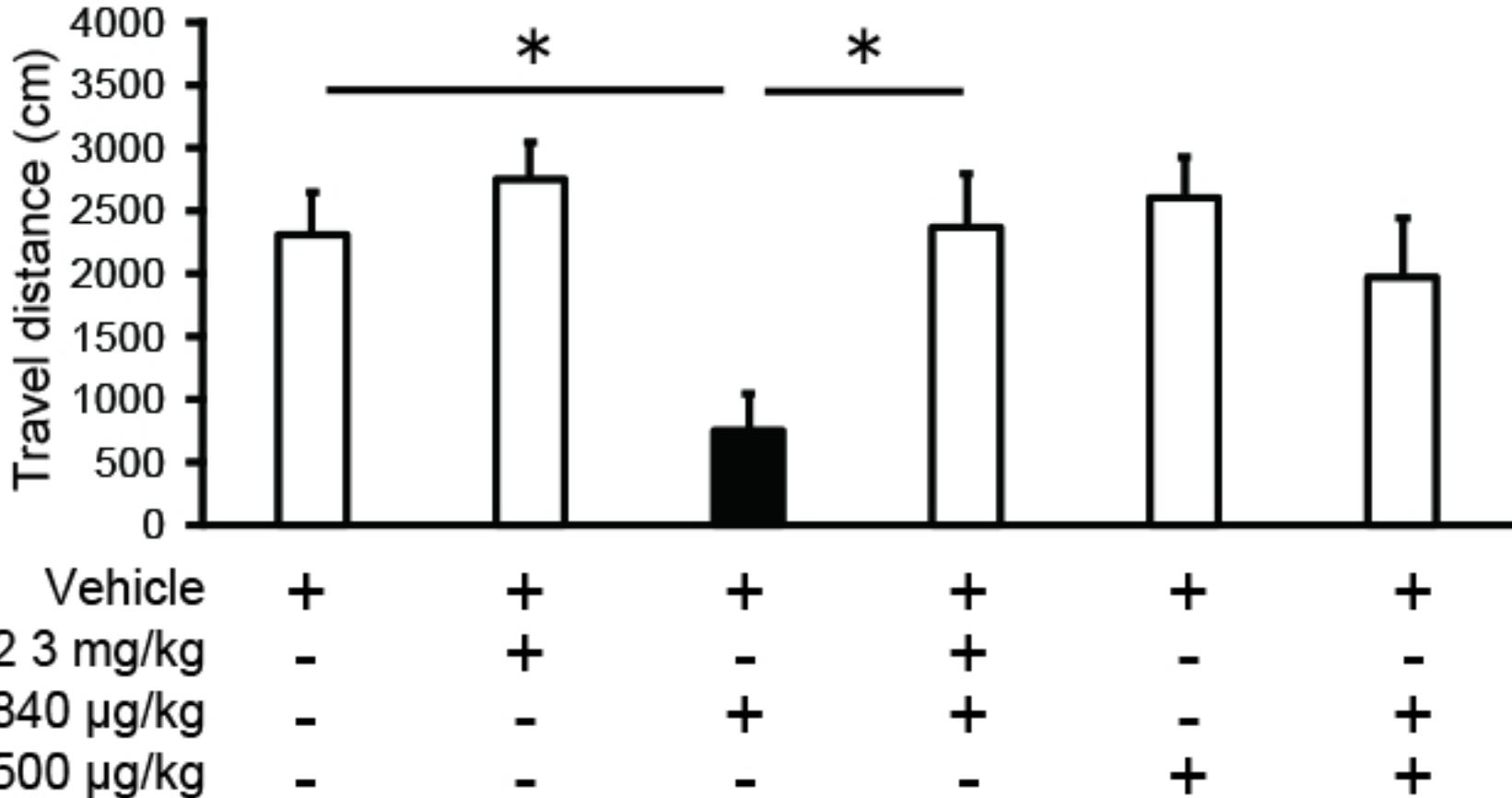


Fig 2

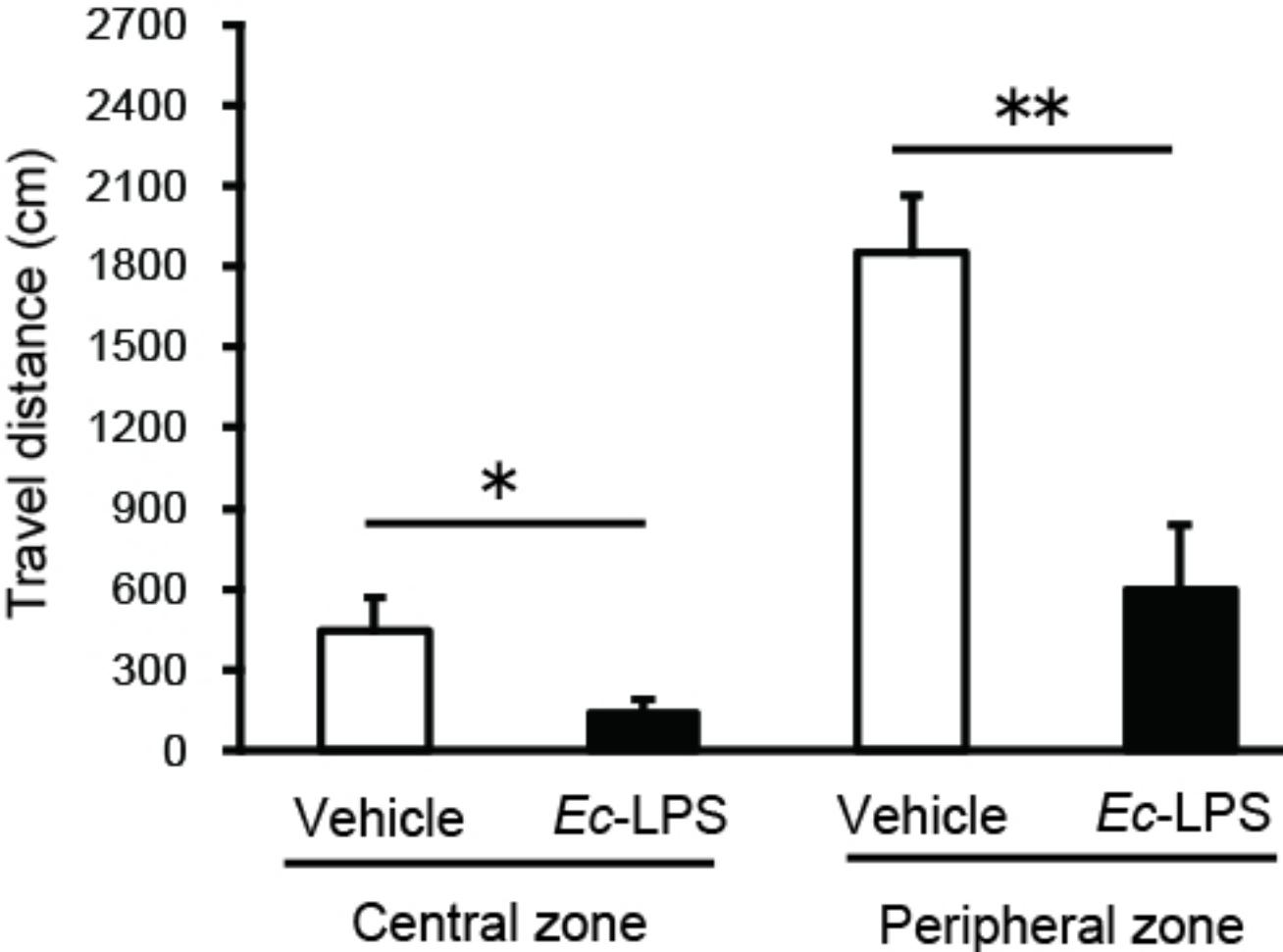


Fig 3

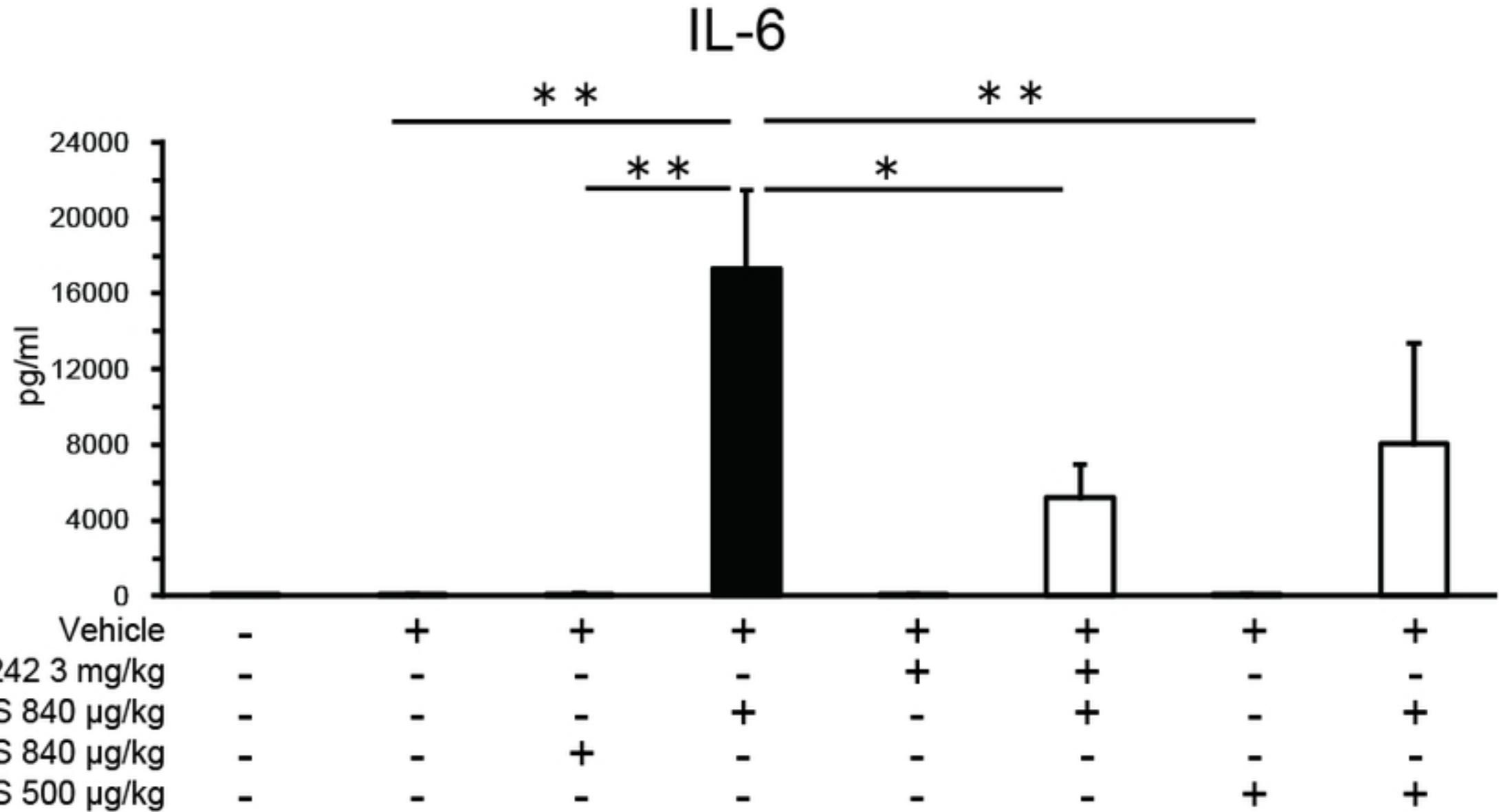


Fig 4

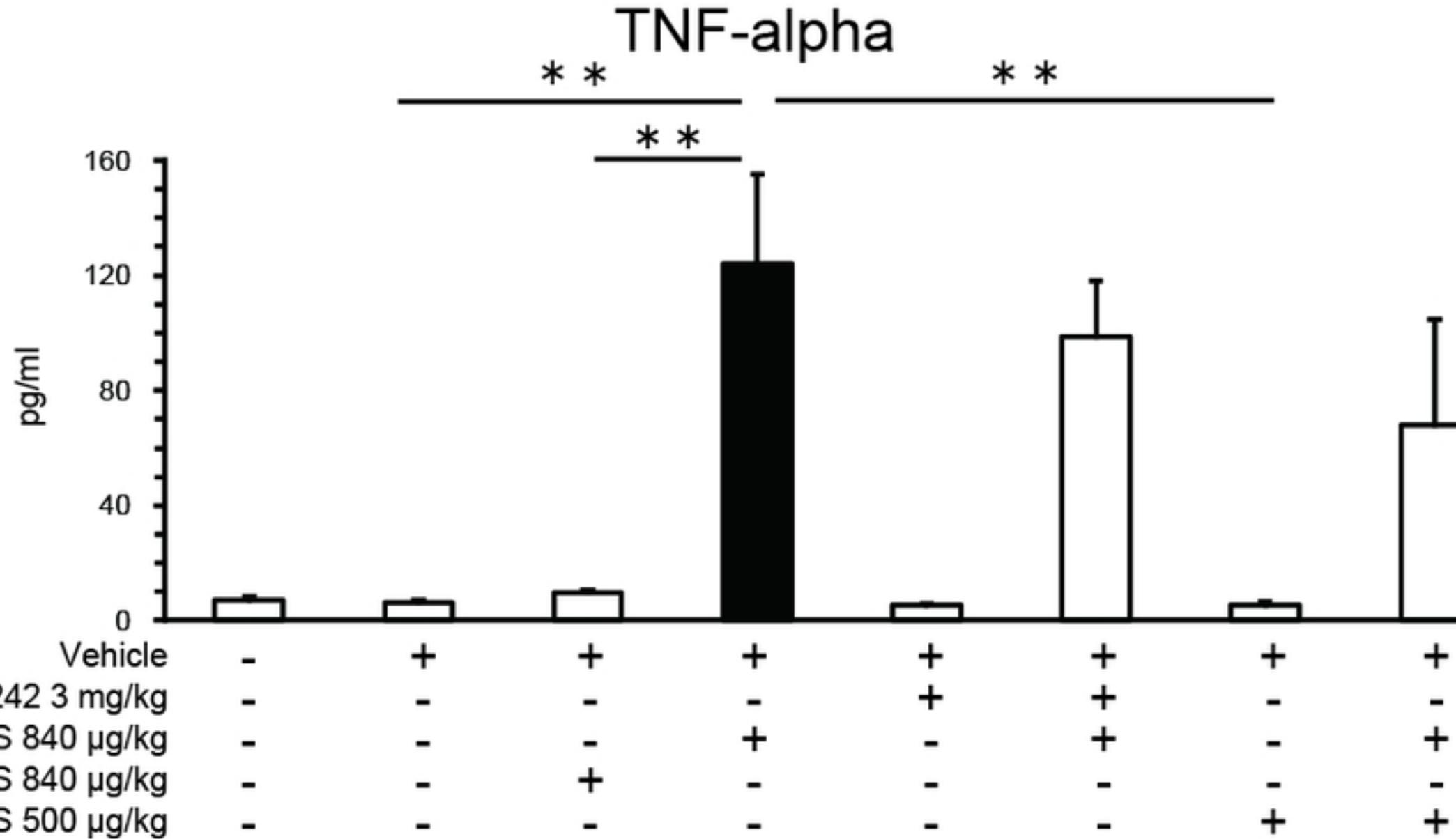


Fig 5

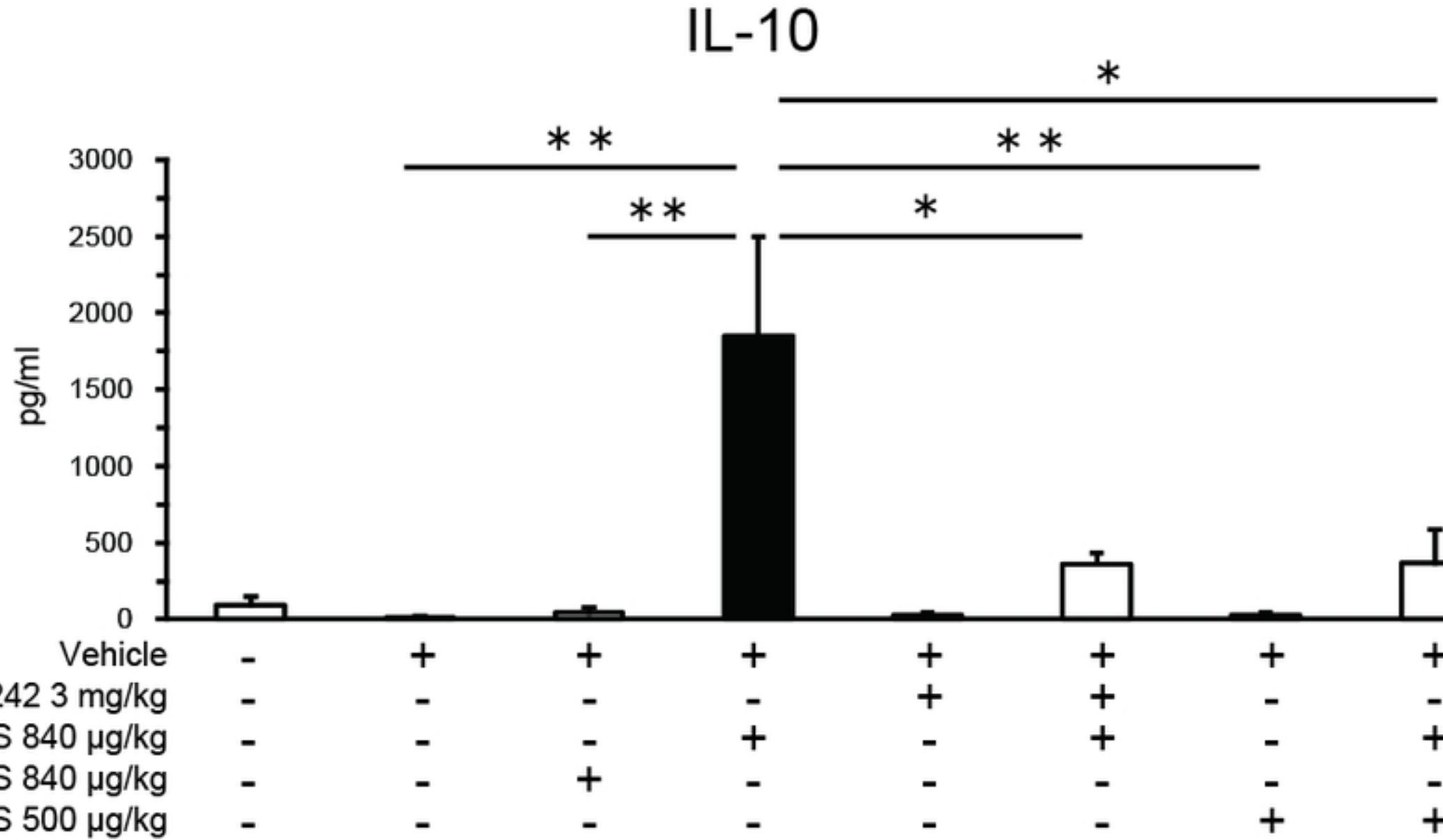


Fig 6

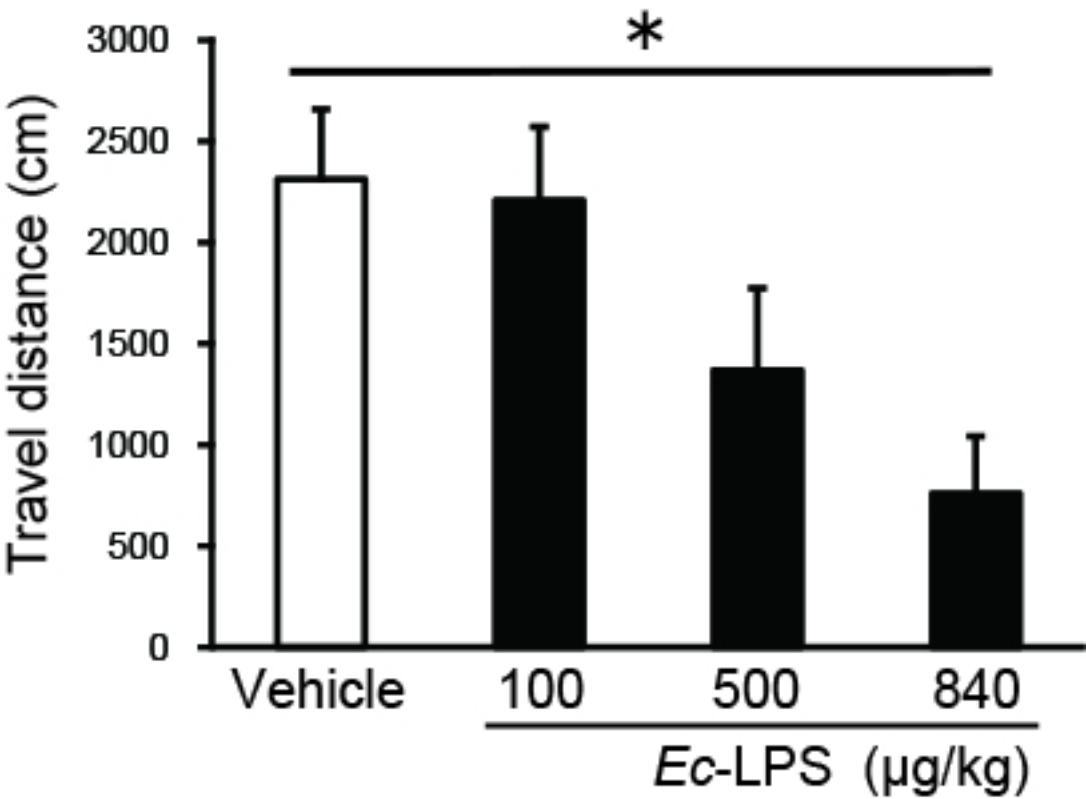
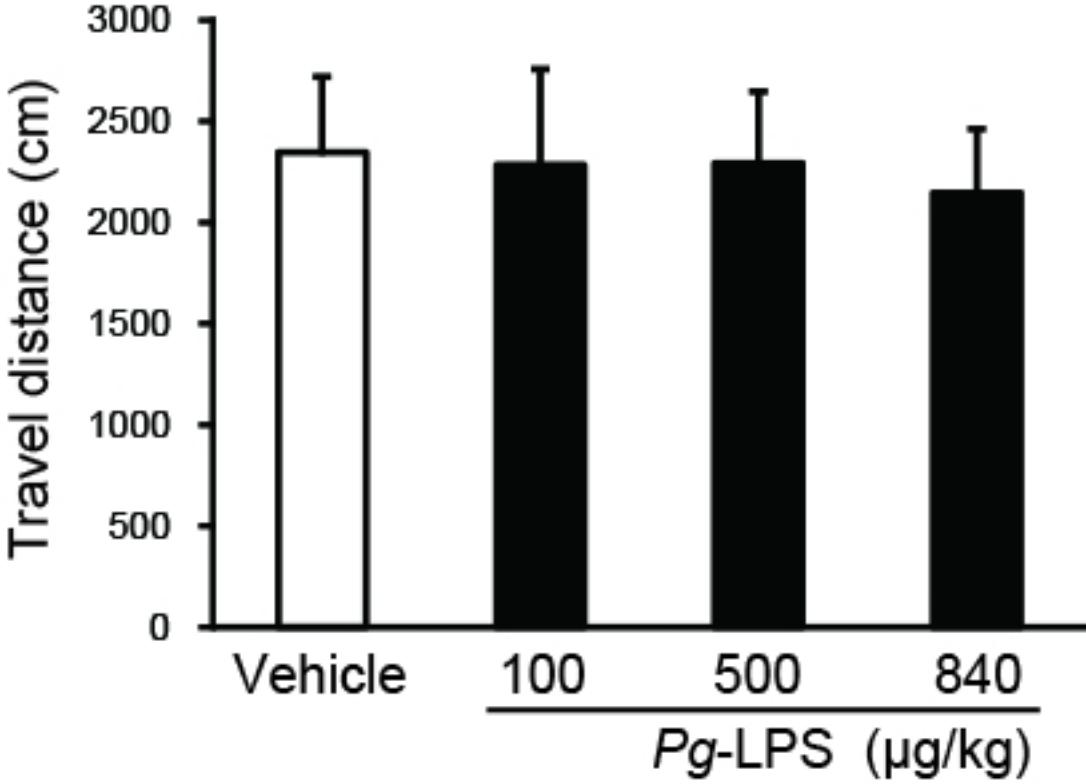



Fig 1