

Old foe, new host: epidemiology, genetic diversity and pathogenic characterization of maize streak virus in rice fields from Burkina Faso.

Noun Magdy Ibrahim Fouad¹, Mariam Barro², Martine Bangratz¹, Drissa Sérémé³, Denis Filloux¹, Emmanuel Fernandez¹, Charlotte Julian¹, Nignan Saïbou⁴, Abalo Itolou Kassankogno², Abdoul Kader Guigma², Philippe Roumagnac¹, Issa Wlonni², Charlotte Tollenaere¹, Nils Poulicard^{1*}

¹ PHIM, Univ Montpellier, IRD, INRAE, CIRAD, Institut Agro, Montpellier France

² INERA, Institut de l'Environnement et de Recherches Agricoles du Burkina Faso, Laboratoire de Phytopathologie, Bobo-Dioulasso, Burkina Faso

³ INERA, Institut de l'Environnement et de Recherches Agricoles du Burkina Faso, Laboratoire de Virologie et de Biologie Végétale, Kamboinsé, Burkina Faso

⁴ IRD, Laboratoire de Phytopathologie, LMI PathoBios, Bobo-Dioulasso, Burkina Faso

* Corresponding author: Nils Poulicard; E-mail: nils.poulicard@ird.fr

ABSTRACT

Rice is of critical significance regarding food security worldwide including in Africa. Only two viruses impacting rice production in Africa have been deeply investigated for decades: the rice yellow mottle virus (*Solemoviridae*) and the rice stripe necrosis virus (*Benyviridae*). Using viral metagenomics, we aimed at exploring the diversity of viruses circulating in Burkina Faso rice fields. We performed an epidemiological survey in this country between 2016 and 2019 involving 57 small farmer's rice fields under two production systems (rainfed lowlands and irrigated areas). More than 2700 rice samples were collected without *a priori* (not based on symptom observation) following a regular scheme. In addition, wild and cultivated (maize and sugarcane) *Poaceae* growing nearby rice fields were also collected. Unexpectedly, metagenomics detected maize streak virus (MSV, *Geminiviridae*) in analyzed rice samples. Further molecular analyses using RCA-PCR showed that MSV is widely distributed and highly

32 prevalent in both rainfed lowlands and irrigated rice areas. MSV-A and MSV-G strains were
33 identified. MSV-G, exclusively identified so far in wild grasses, was the most prevalent strain
34 while MSV-A, known to cause severe symptoms in maize, was sporadically identified. No
35 genetic differentiation was detected between MSV isolates either infecting wild or cultivated
36 plant species. Using infectious clones in experimental conditions, we confirmed the
37 pathogenicity of both MSV strains on rice. Thus, in addition to contribute to the
38 epidemiological surveillance of rice production in Africa, our results illuminate new
39 epidemiological and pathogenic aspects of one of the most studied plant viruses with
40 significant economic consequences in Africa.

41
42 **Keywords:** rice, virus, Africa, viral metagenomics, epidemiological survey, epidemiological
43 surveillance

44
45 **Funding:** French National Research Agency «Investissements d'avenir» program (ANR-10-
46 LABX-001-01), Agropolis Fondation (ANR-16-IDEX-006), French National Research Agency
47 “young researchers” program (ANR-20-CE35-0008-01), CGIAR Research Program on Rice
48 Agri-food Systems (RICE), Cooperation and cultural action department of the French
49 Embassy (SCAC) in Burkina Faso.

50
51
52 **INTRODUCTION**
53
54 Emergent crop diseases, a high proportion of which are caused by viruses, are a significant
55 burden on food security and economic stability of societies, especially in developing
56 countries (Anderson et al. 2004; Jones 2021). While the intensification of agriculture has
57 become one of the major priorities to provide food for people, the intensification programs
58 are threatened by climate and global changes (environmental, demographic and socio-
59 economic) which could subsequently favor the emergence of plant pathogens and increase
60 their impact on food production (Anderson et al. 2004; Baker et al. 2022).
61 Rice is the most important human staple food crop in the world, directly feeding nearly half
62 of world's population every day. In Africa, rice cultivation has historically involved two

63 species: the African rice *Oryza glaberrima* that was domesticated in West Africa ca. 3000
64 years ago and the Asian rice *O. sativa* that was introduced repeatedly since the 15th
65 centuries (Portères 1970). From the second half of the 20th century and more intensively
66 during the last decades, cultivated rice areas have drastically increased in Africa and this
67 crop has become important as a strategic commodity for food security, in particular for
68 facing the effects of recent acute demographic and societal changes (FAOSTAT 2022,
69 <https://data.un.org/Data.aspx?d=FAO&f=itemCode%3A27>; Demont 2013; Soullier et al.
70 2020). Such agricultural changes, including the preference and intensification of the Asian
71 rice cultivation (Cubry et al. 2018), could render the rice cultivation more exposed to
72 pathogen emergences and epidemics, particularly to viruses (Anderson et al. 2004). Our
73 capacity to ensure the sustainability of production systems against plant diseases strongly
74 depends on our ability to explore the vast diversity of microorganisms in the environment, to
75 understand how they interplay with the stability and productivity of ecosystems, and to
76 identify pathogens from their early stage of emergence thought epidemiological
77 surveillance.

78 Among the 19 viruses that have been so far reported to infect rice worldwide (Wang et al.
79 2022), five viruses have been occasionally identified in Africa (Abo and Sy 1997). Only two of
80 these five viruses detected in Africa have been genetically characterized and deeply
81 investigated, the rice stripe necrosis virus (RSNV, *Benyvirus*, *Benyviridae*; Bagayoko et al.
82 2021) and the rice yellow mottle virus (RYMV, *Sobemovirus*, *Sobemoviridae*; Hébrard et al.
83 2021). The three remaining viruses of rice reported in Africa that were poorly characterized
84 so far are the maize streak virus (MSV strain A, *Mastrevirus*, *Geminiviridae*), the African
85 cereal streak virus (ACSV, genus and family not determined) and the rice crinkle disease
86 (aetiology, genus and family not determined; Abo and Sy, 1997).

87 The recent methodological innovations in high-throughput sequencing (HTS) and
88 metagenomics give us the opportunity to explore the vast genetic and functional diversity of
89 viruses in wild and cultivated environments and to identify putative emergent viruses
90 (Bernardo et al. 2018; Edgar et al. 2022; Greninger 2018; Lefevre et al. 2019). However,
91 despite this continuous detection of partial or complete virus metagenome-assembled
92 genomes (MAGs) from wild or anthropized environments, few of these MAGs have
93 subsequently been subjected to more in-depth analyses, in most cases using Sanger

94 sequencing. In addition, this sequencing validation step has usually not been supplemented
95 with epidemiological or pathogenetic information on the related viruses (Koonin and Dolja
96 2018). Nevertheless, among the few novel viruses initially discovered using metagenomics-
97 based approaches and further partially or fully biologically characterized, geminiviruses were
98 among the most represented (see Table 4 in Moubset et al. 2022).

99

100 In this study, we intended to meet these expectations focusing on viruses circulating in rice
101 fields in Burkina Faso. For that, an epidemiological survey focusing on two rice production
102 systems (irrigated and rainfed lowland) was conducted in this West African country between
103 2016 and 2019 (Figure 1). In parallel, agricultural practices and the use or turnover of rice
104 varieties were followed as well as the diversity of microbiome associated to rice roots and
105 (known) rice pathogens (viral, bacterial and fungal) circulating in these fields (Barro et al.
106 2022, 2021a, b; Billard et al. 2023; Kaboré et al. 2022; Tollenaere et al. 2017). Based on these
107 samples and metadata, we performed viral metagenomics analyses on rice and wild grass
108 leaf samples collected in 2016-2017 (project MP1 in Moubset et al. 2022). Among the
109 thousands of contigs assigned to viral genomes (including RYMV), these analyses revealed
110 unexpected virus species infecting rice as maize streak virus (MSV, *Mastrevirus*,
111 *Geminiviridae*).

112 Geminiviruses are responsible for a large number of emerging crop diseases in the World,
113 with considerable impact on the yields of several cash and staple crops (maize, cassava,
114 tomato, cotton, beans and grain legumes) and constitute a major threat to the food security
115 of tropical and sub-tropical developing countries (Rybicki 2015; Rybicki and Pietersen 1999).
116 Specifically, maize streak virus (MSV), one of the most devastating viruses on maize in Africa
117 (Martin and Shepherd 2009; Savary et al. 2019) was first described in South Africa during the
118 1870's and later in 1896 during a serious outbreak (Fuller 1901; Shepherd et al. 2010). MSV
119 virion consists in twinned and quasi-icosahedral (geminate) capsid. Its monopartite circular
120 single-stranded DNA (ssDNA) genome of ca. 2.7kb, replicating by rolling circle encodes only
121 four proteins (Fiallo-Olivé et al. 2021; but see Gong et al. 2021). Bidirectional transcription
122 from a long intergenic region (LIR), specifically from the highly conserved origin of replication
123 at the top of a stem-loop structure of ca. 50 nucleotides (Heyraud et al. 1993), results in the
124 virion sense expression of a movement protein (MP) and a coat protein (CP) and the

125 complementary sense expression of the replication-associated proteins, Rep and RepA
126 (Fiallo-Olivé et al. 2021). MSV is transmitted naturally by 18 leafhopper species (Fiallo-Olivé
127 et al. 2021), some of which have been observed in the study area (personal communication)
128 and reported in rice fields of this region (Tra Bi et al. 2020). Alternatively, MSV is also
129 transmitted experimentally by agroinoculation of infectious clones (Boulton et al. 1989;
130 Grimsley et al. 1987). In addition to maize, MSV is characterized by a large
131 monocotyledonous host range including wild and cultivated *Poaceae* species, such as
132 sugarcane and sorghum (Kraberger et al. 2017). Restricted to Africa and surrounding islands,
133 11 strains (from A to K) have been identified. MSV-A is the only strain known to cause severe
134 symptoms on cultivated plants, whereas MSV-B, -C and -E, mainly detected in infected wild
135 grasses, can also produce mild infections in MSV-susceptible maize genotype (Claverie et al.
136 2019; Oyeniran et al. 2021; Shepherd et al. 2010). Previous studies showed that, as with
137 other geminiviruses, recombination played a decisive role in the evolution of MSV.
138 Particularly, a recombination event that occurred in the mid-19th century between ancestral
139 MSV-B and MSV-G/-F strains probably led to the emergence, the efficient dispersion across
140 Africa and the progressive adaptation of MSV-A strain to maize that became a major
141 pathogen to this crop (Harkins et al. 2009; Monjane et al. 2020, 2011; Varsani et al. 2008).
142 While MSV-A strain has recurrently been reported in maize from Burkina Faso (Kraberger et
143 al. 2017), it was only identified once in rice fields in this country (Konaté and Traoré 1992).
144 Noteworthy, MSV-A strain was also experimentally transmitted to rice by viruliferous
145 leafhoppers (Damsteegt 1983; Konaté and Traoré 1992). However, information on
146 geographical distribution, prevalence, genetic diversity and aggressiveness of this virus in
147 rice fields from Burkina Faso has never been reported to our knowledge. Thus, based on viral
148 metagenomics, epidemiological and experimental approaches, we intended in this study to
149 evaluate the epidemiological and pathogenic status of MSV in rice fields from this country. In
150 addition to contribute to the epidemiological surveillance of rice production in Africa, our
151 results participate to illuminate new epidemiological and pathogenic aspects of one of the
152 most studied plant viruses with significant economic consequences in Africa.

153

154 MATERIAL AND METHODS

155

156 **Study area and samplings**

157 The study area is located in western Burkina Faso, in a 100 x 100-km region in the Sudanian
158 bioclimatic area (Figure 1A; map based on MapChart website, <https://mapchart.net/>). Six
159 sites located within three geographical zones (Bama-BM/Badala-BL, Banzon-BZ/Senzon-SZ
160 and Karfiguela-KA/Tengrela-TG) have been surveyed between 2016 and 2019. Each
161 geographical zone comprised one irrigated (IR) site and a neighboring rainfed lowland (RL)
162 site (Figure 1B; field locations and delimitations based on GoogleEarth maps).

163 A regular and longitudinal rice leaves sampling in these six sites involving 57 rice fields have
164 already been performed as previously described in Barro et al. 2021a). Briefly, observations
165 and samplings were assessed at the maximum tillering/heading initiation stages, from
166 September to December each year. Each studied field was approximately a square of 25
167 meters on each side, with a regular sampling of 16 plants per field over a grid (Figure Supp1,
168 <https://doi.org/10.23708/8FDWIE>). This sampling approach did not consider the potential
169 disease symptoms (regular sampling without *a priori*), but the rice leaves were inspected
170 when sampled and disease symptoms were recorded when observed.

171 In addition to these rice samples, the diversity and the percentage of surface covering of
172 wild grass species growing in the rice field borders were estimated for 6 fields in 2017
173 (irrigated production system: BM02, BZ11, KA01; rainfed lowland production system: BL02,
174 SZ07, TG01; Figure Supp1). One plant of the five most frequent plant species was randomly
175 collected without *a priori* (*i.e.* independently to observation of disease symptoms) for
176 further analyses (see below). Finally, specific samplings of wild (*Poaceae* species) or
177 cultivated (rice, maize and sugarcane) plants presenting symptoms putatively related to virus
178 infection (leaf deformations, stripes, ...) was performed within or nearby the rice fields
179 involved in the longitudinal survey (Figure Supp1).

180 Thus, the total number of plant samples analyzed during this study is above 2800, with ca.
181 2750 rice plant samples (from 43, 42, 49 and 40 rice fields in 2016, 2017, 2018 and 2019,
182 respectively) and 30 wild grasses collected without *a priori*, and 4, 8, 7 and 15 symptomatic
183 samples of rice, maize, sugarcane and wild *Poaceae*, respectively. These samples were
184 therefore named according to the date, the site, the field and the host plant of collection
185 (*i.e.* 17TG01 and 17TG01w correspond respectively to rice and wild plant samples collected
186 in 2017 in/close to the rice field “01” of Tengrela).

187

188 ***Viral metagenomics***

189 Detection and identification of both DNA and RNA viruses were performed on rice and wild
190 *Poaceae* samples using virion-associated nucleic acid (VANA) metagenomics-based approach
191 (Moubset et al. 2022). Specifically, for each rice field surveyed in 2016 and 2017, a pooled
192 sample of 1g of the 16 sampled rice plants was grinded and prepared for analysis (*i.e.* 85
193 pooled rice samples were obtained to represent 85 rice fields: 43 fields in 2016 and 42 in
194 2017). Similarly, the 5 leaf samples of the 5 most frequent wild plant species collected
195 without *a priori* in each border of rice field were grinded and pooled (*i.e.* 6 pooled grass
196 samples were obtained to represent 6 rice field borders surveyed in 2017).

197 Each pooled sample of rice or wild grasses were processed using the VANA approach as
198 described by François et al., 2018). Briefly, we isolated viral particles by filtration and
199 ultracentrifugation. The nucleic acids not protected in virus-like particles were further
200 degraded by DNase and RNase and then the total RNAs and DNAs were extracted using a
201 NucleoSpin kit (Macherey Nagel, Bethlehem, PA, USA). Reverse transcription was performed
202 by SuperScript III reverse transcriptase (Invitrogen), cDNAs were purified by a QIAquick PCR
203 Purification Kit (Qiagen, Hilden, Germany) and complementary strands synthesised by
204 Klenow DNA polymerase I. Double-stranded DNA was amplified by random PCR
205 amplification. Samples were barcoded during reverse transcription and PCR steps using
206 homemade 26 nucleotide (nt) Dodeca Linkers and PCR multiplex identifier primers. PCR
207 products were purified using NucleoSpin gel and PCR clean-up (Macherey Nagel, Bethlehem,
208 PA, USA). Finally, libraries were prepared from purified amplicons and sequenced on an
209 Illumina HiSeq to generate 2x150nt paired-end reads (Genewiz, South Plainfield, NJ, USA).

210

211 ***Nucleic acid extractions, rolling circle amplification and MSV detection by specific PCR***

212 Total DNA extraction of each sample (100mg of plant material for pooled leaf samples, 20mg
213 for individual leaf sample) was performed according to the CTAB protocol and the
214 concentration and quality of extracted DNA were assessed with NanoDrop Microvolume
215 Spectrophotometers (ThermoFisher Scientific, Waltham, MA, USA).

216 The circular DNA genomes of MSV were first amplified by rolling circle amplification (RCA)
217 according to the manufacturer's protocol (TempliPhi™ kit, GE Healthcare, Munich,

218 Germany). Then, the presence of MSV-G and MSV-A at field or plant level was detected by
219 PCR using 1µl of RCA products, GoTaq Flexi (PROMEGA, Madison, WI, USA) according to the
220 manufacturer's protocol and primers targeting MSV-G (MSV-F559bp: 5'-
221 GGAGCATGTAAGCTTCGGGA-3', positions 1875-1889; MSV-R559bp: 5'-
222 GAGCTCGTTGGTCAGTGGAA-3', positions 2415-2434, Tm=57°C, amplification: 559bp) and
223 MSV-A (MSVg-2F: 5'-TCAGCCATGTCCACGTCCAAG-3', positions 478-498; MSVa-1R: 5'-
224 TCACCACGAAGCGATGACACA-3', positions 912-932; Tm=55°C; amplification: 454bp). The
225 PCR amplification of 559 and 454 nucleotides was checked on 1X agarose gel and amplicons
226 were sequenced for further analyses (see below). For inconclusive samples, *i.e.* included in
227 the uncertainly interval associated to the visualization method, a second PCR was performed
228 using the same protocol as previously except the use of 2µl of RCA products. The samples
229 still not conclusive after these two PCR reactions were then considered as negative for MSV.
230 For all negative samples, PCR reactions amplifying the S1 locus area of chromosome 6 of rice
231 were performed as internal control. Note that the amplicon size is used to discriminate the
232 Asian rice *Oryza sativa* and the African rice *O. glaberrima* (935bp and 1384bp for *O. sativa*
233 and *O. glaberrima*, respectively; Gnacadja et al. 2018).
234 Differences between percentage of MSV-positive fields or plants according to sites, rice
235 production systems or years were assessed from contingency tables using Fisher's exact test.
236

237 ***Partial and complete genome sequencing***

238 Amplicons obtained by detection PCR were sequenced by Sanger method (Genewiz-Azenta,
239 South Plainfield, NJ, USA). We obtained usable sequences of varying sizes (from 491 to 550
240 nucleotides-long) subsequently used to identify which MSV strain is present at field or plant
241 levels and to estimate the genetic diversity (see below) on the genetic fragment shared by all
242 samples (*i.e.* 491nt, which correspond to 18.3% of the complete genome of MSV).
243 Two approaches were used to obtain complete genome sequences of MSV. First, the RCA
244 products were digested with *Bam*H1 (New England Biolabs, Ipswich, MA, USA), inserted in
245 pGEM-T Easy Vector (Promega, Madison, WI, USA) and cloned in JM109 competent cells
246 (Promega) according to the manufacturer's protocols. Alternatively, we performed two
247 overlapping PCR on the RCA products with GoTaq Flexi (Promega) according to the
248 manufacturer's protocol to amplify the complete genome of MSV using primers targeting

249 MSV-G (PCR#1: MSVg-2F and MSV-R559bp, Tm=57°C, amplification of 1956bp; PCR#2: MSV-
250 F559bp and MSVg-2R: 5'-AGGCATGTCCGAACCGATGC-3' at positions 980-999, Tm=57°C,
251 amplification of 1811bp) and MSV-A (PCR#1: MSVg-2F and MSVa-3R: 5'-
252 ATTGGCTCCAGCCTAACATCTTCC-3' at positions 1898-1921, Tm=55°C, amplification of
253 1443bp; PCR#2: MSVa-1F: 5'-CGACGATGTAGAGGCTCTGCT-3' at positions 1761-1781, and
254 MSVa-1R, Tm=55°C, amplification of 1864bp). The obtained complete genomes sequences
255 were deposited in GenBank (Accession Nos. from OR258386 to OR258402; Table Supp4).
256 Two complete genome sequences of representative MSV isolates were used to obtain
257 infectious clones (see below).

258

259 ***Genetic diversity and phylogenetic analyses***

260 Partial and complete genome sequences of MSV obtained during this study were compared
261 to the 885 sequences described in (Kraberger et al. 2017). Multiple sequence alignments
262 were performed using MUSCLE (Edgar 2004) implemented in SEAVIEW v4.7 (Gouy et al.
263 2010). Sequence pairwise identities of a selection of MSV sequences were calculated with
264 SDT v1.2 (Muhire et al. 2014). Maximum likelihood phylogenetic trees were reconstructed
265 with SEAVIEW using the best-fitted nucleotide substitution models (Tamura 3-parameter+G
266 and GTR+G+I for the partial and the complete genome datasets, respectively) determined
267 with MEGAX (Kumar et al. 2018) and 100 bootstrap replications. Phylogenetic trees were
268 drawn using FigTree v1.3.1 (<http://tree.bio.ed.ac.uk/software/figtree/>). The genetic diversity
269 of partial genome dataset was estimated using the best-fitted nucleotide substitution model,
270 with standard errors of each measure based on 100 replicate bootstraps, as implemented in
271 MEGAX.

272 Genetic differentiation of MSV populations according fields, sites, years and rice production
273 systems were estimated by analysis of molecular variance (AMOVA) obtained by performing
274 1000 permutations as implemented in Arlequin v5.3.1.2 (Excoffier et al. 2005).
275 Recombination signals in MSV from Burkina Faso were identified using the seven algorithms
276 implemented in RDP v4.97 (Martin et al. 2015). Recombination events detected by at least 5
277 methods and with P -values below 10^{-5} were considered.

278

279 ***Infectious clones and agroinoculations on rice***

280 Three infectious clones of MSV-A and MSV-G were used during this study. First, the clone
281 pBC-KS::MSV-A|R2| was obtained in previous studies and was identified to be highly
282 pathogenic on maize (Isnard et al. 1998; Peterschmitt et al. 1996). Then, the clones
283 pCAMBIA0380::MSV-A|53| and pCAMBIA0380::MSV-G|61| were built by gene synthesis
284 (GENEWIZ-Azenta, South Plainfield, NJ, USA) of the genomic sequences obtained after PCR
285 amplifications or cloning RCA products, respectively. More precisely, the MSV genomic
286 sequences were synthetized based on the traditional technique of partial tandem repeats,
287 *i.e.* with the highly conserved stem-loop region of ca. 50 nucleotides corresponding to the
288 origin of replication repeated on both sides of the genomes (Urbino et al. 2008).
289 These infectious clones and the empty pCAMBIA0380 plasmid (as negative control,
290 thereafter named pCAMBIA0380::Ø) were introduced into two strains of *Agrobacterium*
291 *tumefaciens* (C58C1 and EHA105) by electroporation. Transformed *A. tumefaciens* colonies
292 were plated and cultivated at 28°C on LB medium containing 50µg/ml of kanamycin and
293 25µg/ml of rifampicin (and 100µg/ml gentamycin for C58C1) and used for agroinoculation as
294 described below after confirming the presence of inserts by PCR on colonies.
295 Agroinoculations were performed on two rice varieties representing the two cultivated rice
296 species in Africa (*Oryza sativa indica* cv. IR64 and *O. glaberrima* cv. Tog5673) and one variety
297 of maize (*Zea mays* cv. Golden Bantam). Plants were inoculated at the two-leaf stage (*i.e.* 7-
298 10 days after seedlings) by pricking the apical meristem three times at different levels with
299 the tip of 0.4mm needles previously dipped into agrobacterium colonies. Two independent
300 assays have been performed. Both *A. tumefaciens* strains and pCAMBIA0380::Ø, pBC-
301 KS::MSV-A|R2| and pCAMBIA0380::MSV-G|61| plasmids have been used for the first
302 experiment. As no significant difference of infection was detected between the two *A.*
303 *tumefaciens* strains ($X^2=1.101$, $P=0.294$), we used only EHA105 for the second experiment. In
304 addition, in this second experiment, the pathogenicity of the infectious clone
305 pCAMBIA0380::MSV-A|53| was evaluated. For both experiments, symptom initiation and
306 development have been monitored, and the number of leaves and the height of the
307 inoculated plants were measured at 28 days post-inoculations (dpi). The fresh weight of
308 inoculated plants was estimated only for the second experiment. Values were expressed for
309 each treatment and cultivar in percentage according to negative controls.

310 Statistical analyses on these phenotypic measurements were performed using the software
311 packages Statgraphics Centurion 15.1.02 (Stat Point technologies Inc., Warrenton, VA, USA).
312 As the distribution of the plant size, number of leaves and fresh biomass was not normal
313 according to Levene's test of equality of error variances, we first analyzed our results by
314 nonparametric (Kruskal-Wallis) test. However, as Kruskal-Wallis and ANOVA (parametric)
315 tests gave similar results, and since ANOVA is robust to the partial violation of its
316 assumptions and allows the analysis of factor interactions (post-hoc LSD, significance
317 threshold at $P<0.05$) while Kruskal-Wallis does not, we also presented the results obtained
318 with ANOVA analyses.

319

320

321 RESULTS

322

323 ***Identification of MSV in rice fields from Burkina Faso by viral metagenomics***

324 Eighty-five rice samples were analyzed by a VANA-Illumina HiSeq approach, representing 43
325 and 42 rice fields surveyed in 2016 and 2017, respectively. The Illumina sequencing
326 produced 288,971,924 raw sequences that were subsequently trimmed and corrected to
327 extract a total of 1,459,838 contig sequences corresponding to 109.67 Mbases (Moubset et
328 al., 2022). BlastN and BlastX analyses of these data showed that 1.9% of these contigs
329 matched with viral sequences (project MP1 in Moubset et al., 2022) and notably those of
330 maize streak virus detected in two fields surveyed in 2017. More precisely, 1490 MSV contigs
331 were obtained from 17BM11 (98 contigs) and 17TG05 (1392 contigs) fields, including two
332 long contigs from each field covering the complete genome of MSV. These long contigs
333 respectively shared 99.01% and 98.92% homologies with the genomic sequence of a MSV
334 isolate belonging to strain G collected in a wild *Poaceae* (*Urochloa lata*) from Nigeria
335 (accession number EU628635.1). In addition to rice samples, six pools of wild plants,
336 collected at the borders of one rice field per site, were analyzed by the same VANA-Illumina
337 HiSeq approach (Table Supp1; <https://doi.org/10.23708/1IPJAU>). MSV was only identified in
338 17TG01w pool. The contig obtained from this sample covered the complete genome of this
339 virus and Blast analyses revealed 99.37% homology with a MSV-G isolate from Nigeria
340 collected in 2007 on the wild grass *Digitaria horizontalis* (accession number EU628634.1).

341

342 ***Molecular detection of MSV in rice fields***

343 As only two years of samplings were analyzed by VANA-Illumina and as the number of fields
344 positive to MSV could be underestimated with this technique, we then opted for a targeted
345 MSV detection strategy. For that, we used specific primers to detect by RCA-PCR the
346 presence of this virus in rice fields: 43 fields in 2016, 40 in 2017, 49 in 2018 and 40 in 2019.
347 Thus, we analyzed a total of 172 rice samples, each representing 16 plants from the same
348 field collected the same year (Table Supp2).

349 A surprisingly high number (N=59) of rice samples were detected positive to MSV, suggesting
350 that 34.3% of the surveyed fields were infected by this virus (Table 1). In addition, we
351 noticed that MSV was detected in all localities and both production systems (*i.e.* irrigated
352 and rainfed lowland fields), but with no significative difference for the 2016-2019 period
353 ($X^2=6.424$, $P=0.267$ and $X^2=0.170$, $P=0.680$, respectively). However, the percentage of MSV-
354 positive fields is significantly higher in 2018 and 2019 than in 2016 and 2017 ($X^2=44.269$,
355 $P<0.001$; Table 1).

356

357 ***Detection of MSV in wild and cultivated plants***

358 In addition to rice samples, we first performed the MSV detection PCRs on the same pools of
359 wild plants used with the VANA-Illumina approach (Table Supp1). As reported with the
360 VANA-Illumina approach, MSV was detected in the 17TG01w. In addition, the detection PCR
361 revealed that MSV was also present in 17TG02w. Both pool of samples combined several
362 *Poaceae* plant species already described as host plants for MSV (as *Setaria palidefusca* Stapf
363 et Hubb. and *Dactyloctenium aegyptium* Beauv.; Table Supp3; Kraberger et al., 2017).

364 Then, we analyzed individually symptomatic wild plants (including the wild rice species *Oryza*
365 *longistaminata*) and cultivated *Poaceae* (maize and sugarcane) collected in 2016, 2017 and
366 2019 around and within the rice fields (Table Supp3). MSV was detected in a large
367 proportion of samples: all maize (100%, N=8), most sugarcane (87.5%, N= 7) and a large
368 fraction of wild plants (40% N=15), were identified MSV-positive (Table Supp3). More
369 specifically, among the wild plant species identified, MSV was detected in *Digitaria*
370 *horizontalis*, *Echinochloa colona*, *Eragrostis* sp. and *Oryza longistaminata*.

371

372 **Genetic diversity of MSV circulating in rice production areas**

373 In order to inform/understand more/estimate about the MSV genetic diversity circulating in
374 rice production areas from western Burkina Faso, we sequenced the amplicons obtained
375 from molecular detection PCRs performed on rice, wild plants and cultivated *Poaceae* (maize
376 and sugarcane). We obtained 29 sequences (Table Supp2) and phylogenetic reconstructions
377 indicated that most of these sequences belonged to the strain G of MSV (27 out of 29, *i.e.*
378 93.1%), while only two corresponded to the strain A (16BZ09 and 18TG01, 2 out of 29, *i.e.*
379 6.9%; Table Supp2, Figure Supp2).

380 In addition to rice, the presence of MSV was also tested on wild grasses and cultivated
381 *Poaceae* (maize and sugarcane) collected within or nearby the rice fields (Table Supp3). First,
382 MSV-A was detected in 19 out of 30 (*i.e.* 63.3%) of plants showing symptoms (Table Supp3).
383 Interestingly, MSV-G was only detected in one pool of symptomless wild grasses that were
384 randomly collected from one site (17TG01w).

385 The genetic diversity estimated based on these fragments was low (0.0956 ± 0.0164
386 substitution/site in total, 0.0023 ± 0.0007 subst./site and 0.0028 ± 0.0017 subst./site for
387 MSV-G and MSV-A, respectively). A genetic differentiation was observed between rice and
388 *Poaceae* ($F_{ST(Rice/Poaceae)} = 0.760$, $P < 0.001$), which reflects the over-representation of MSV-G
389 on rice and MSV-A on other *Poaceae*. However, taking each MSV strain separately, no
390 genetic differentiation was revealed between the MSV-G or MSV-A isolates identified on rice
391 or other *Poaceae* ($F_{ST(Rice/Poaceae)} < 0.001$, $P = 1.000$ and $F_{ST(Rice/Poaceae)} < 0.001$, $P = 0.809$ for MSV-
392 G and MSV-A, respectively). In addition, genetic differentiation was never detected on MSV
393 isolates according to rice production mode (All MSV: $F_{ST(IR/RL)} < 0.001$, $P = 1.000$; MSV-G:
394 $F_{ST(IR/RL)} < 0.001$, $P = 0.550$; MSV-A: $F_{ST(IR/RL)} = 0.147$, $P = 0.124$). Similar results were obtained on
395 other region of the genome (data not shown).

396

397 **Complete genomes of MSV**

398 Based on the detection PCR and partial sequencing results, we selected several MSV-positive
399 samples to obtain complete genomes sequences of MSV-A and MSV-G from different host
400 species. Thus, we achieved 16 MSV complete genomes, 4 from rice fields, 6 from wild
401 grasses, 2 from maize and 4 from sugarcane (Table Supp4). The sequence of 17BM11 MSV
402 isolate (MSV-G|61|) was obtained after the cloning of RCA products. In all other cases, direct

403 sequencing of PCR amplicons was performed. To these 16 sequences, we added the 3
404 complete genome sequences obtained by the VANA-Illumina approach (MSV-G on rice
405 17BM11|Contig1671| and 17TG05|Contig844|, MSV-G on wild grasses 17TG01|Contig711|) for
406 further analyses (Table Supp4). Note that the MSV-G complete genome sequences
407 obtained by Sanger and VANA-Illumina approaches on the same samples were highly similar
408 (11 and 1 variable sites for 17BM11 and 17TG01w, *i.e.* 99.6% and 100.0% genetic identity,
409 respectively).

410 The 19 sequences obtained during this study were compared to MSV complete genome
411 dataset gathering 885 sequences from all the MSV strains, including 8 MSV-G sequences
412 from West Africa (Nigeria and Mali) and Gran Canaria on wild grasses and 695 MSV-A
413 sequences from all over Africa with 5 MSV-A collected in 2008 in Burkina Faso on maize
414 (Krabberger et al. 2017). Analyses to detect recombination events on this sequence dataset
415 demonstrated that none of the 19 complete genome sequences obtained during this study
416 were recombinant. Phylogenetic analyses showed that the MSV-G isolates identified during
417 this study were closely genetically related (more than 98.9% of genetic identity; Figure 2). As
418 previously demonstrated with partial genome analyses, no genetic differentiation was
419 observed between MSV collected in rice or other *Poaceae* ($F_{ST(Rice/Poaceae)} = 0.362, P < 0.001$)
420 or between rice production mode ($F_{ST(IR/RL)} < 0.001, P = 1.000$). MSV-G isolates from western
421 Burkina Faso were genetically related to those identified in Nigeria in 2007 and Mali in 1987
422 (more than 99% of identity with EU628632.1 and EU628634.1). Similarly, we noted that the
423 MSV-A isolates identified in this study belong to a clade of isolates exclusively identified in
424 West Africa and were closely genetically related (more than 99.4% of identity), with no
425 genetic differentiation with those collected in rice or other *Poaceae* ($F_{ST(Rice/Poaceae)} < 0.001, P = 0.985$). Surprisingly, these isolates were more genetically related to MSV-A isolates
426 collected in Nigeria in 2015 (between 99.5% and 99.9% of genetic identity with KX787926.1
427 and KX787927.1 for instance, ca. 1250km distance between these isolates and those from
428 our study area) than with MSV-A identified in Burkina Faso in 2008 on maize (between
429 96.9% and 96.6% of genetic identity, ca. 300km distance between isolates; Figure 2).

431

432

433 **MSV prevalence in rice fields**

434 To assess MSV prevalence in rice fields, we analyzed individually the 16 plants of 12 rice
435 fields previously identified as MSV-positive in 2018 by detection PCR (Table Supp2). These
436 fields have been selected to represent different sites (BM, BZ, SZ, KA and TG), genetic
437 diversity of MSV in rice fields (MSV-G vs. MSV-A) and rice production mode (irrigated vs.
438 rainfed lowland). Badala (BL) site was not included in this analysis as no MSV-positive field
439 has been identified (Table Supp2).

440 We noticed that MSV-G was frequently detected (32.1% of the plants), with prevalence
441 varying between 25.0% and 62.5% according to the field (Figure 3, Figure Supp3, Table
442 Supp5) but with no significant difference between fields ($\chi^2 = 16.167$, $P = 0.135$).
443 Interestingly, no significant difference was also revealed between production system ($\chi^2 =$
444 0.185 , $P = 0.667$).

445 The genetic diversity estimated for MSV-G circulating within 18BM13, 18BZ14, 18SZ06 and
446 18KA08 with the detection PCR fragments was low (0.0058 ± 0.0048 subst./site,
447 0.0066 ± 0.0035 subst./site, 0.0060 ± 0.0059 subst./site and 0.0035 ± 0.0025 subst./site,
448 respectively), and no genetic differentiation between fields have been observed
449 ($F_{ST, fields} < 0.001$, $P = 1.000$).

450 For MSV-A, in addition to not being frequently detected in rice fields, the prevalence of this
451 strain estimated in 18TG01 field was drastically lower than those of MSV-G (6.3%; Figure 3,
452 Figure Supp3). No coinfection between MSV-G and MSV-A was observed during this study.

453

454 ***Experimental validation of MSV pathogenicity on rice***

455 We performed two independent experiments to test the pathogenicity of three MSV
456 infectious clones: two obtained from the isolates identified during this study in rice plants
457 from Burkina Faso (pCAMBIA::MSV-G|61| and pCAMBIA::MSV-A|53|) and one from an
458 isolate identified in maize plant from Reunion Island (pBC-KS::MSV-A|R2|; Figure Supp4). For
459 both experiments, we observed the emergence of light streaks on leaves for some rice plants
460 after 14 days post-agroinoculation (dpi) of the infectious clones, in *Oryza sativa indica* cv.
461 IR64 and *O. glaberrima* cv. Tog5673. Then, these symptoms drastically evolved into clear and
462 marked streaks, both on the leaves where the streaks were first observed and on the
463 systemic and emergent leaves until 28 dpi, followed with drastic reduction of plant growth

464 (Figure 4). Correlation between symptoms and MSV accumulation in systemic leaves was
465 validated by PCR and Sanger sequencing (data not shown).

466 Unfortunately, most likely due to the versatility of the agroinoculation process on rice, only
467 few cases of successful infections have been observed, and not all agroinoculation
468 modalities (*i.e.* infectious clone *vs.* plant species) succeed during the same experiment.
469 Nevertheless, by clumping the results of the two experiments, the MSV agroinoculation led
470 to successful infection in 46 out of 770 plants (*i.e.* 6.0%; Table 2, Table Supp6). No significant
471 difference of MSV transmission efficiency was observed between the three infectious clones
472 on *O. sativa indica* cv. IR64 ($\chi^2=2.144$, $P=0.342$) and *O. glaberrima* cv. Tog5673 ($\chi^2=0.764$,
473 $P=0.682$). However, MSV was more efficiently transmitted to Tog5673 than to IR64 (42 out
474 of 392 plants, *i.e.* 10.7% and 4 out of 378 plants, *i.e.* 1.1% for Tog5673 and IR64, respectively;
475 $\chi^2=31.943$; $P<0.001$), and so whatever the infectious clone ($\chi^2=12.968$, $P<0.001$; $\chi^2=17.216$,
476 $P<0.001$ and $\chi^2=2.856$, $P=0.091$ for pCAMBIA::MSV-G|61|, pCAMBIA::MSV-A|53| and pBC-
477 KS::MSV-A|R2|, respectively; Table 2, Table Supp6).

478 Twenty-eight days after agroinoculation, we measured the height and the number of leaves
479 of MSV-infected and non-infected plants. We noticed that the earlier the emergence of
480 symptoms, the greater was the impact on plant growth, leading to high between-plant
481 heterogeneity in the dataset. While MSV infection did not systematically affect the number
482 of leaves per plant (Kruskal-Wallis: $F=32.706$, $P<0.001$; ANOVA: $F_{6,150}=7.750$, $P<0.001$; Figure
483 Supp5A), we showed that the height of plants was significantly reduced by MSV infection
484 (Kruskal-Wallis: $F=68.751$, $P<0.001$; ANOVA: $F_{6,150}=22.240$, $P<0.001$; Figure 5). In addition,
485 the evaluation of the plant fresh weight during the second experiment suggests that MSV
486 infection has an impact on the biomass production in rice (Kruskal-Wallis: $F=30.877$,
487 $P<0.001$; ANOVA: $F_{4,122}=4.850$, $P=0.001$; Figure Supp5B).

488 In parallel, the infectious clone pBC-KS::MSV-A|R2| was agroinoculated to maize as positive
489 control, and one symptomatic and MSV infected plant was obtained (1 out of 5 plants; Table
490 2, Figure 4). The emergence of typical symptom of MSV on maize was observed after 9 dpi
491 and MSV-A|R2| accumulation was validated by PCR and Sanger sequencing (data not
492 shown). By contrast, only one maize plant out of 68 (*i.e.* 1.5%) agroinoculated with
493 pCAMBIA0380::MSV-A|53| started to develop typical symptoms of MSV after 21 dpi (Table

494 2; Table Supp6). Successful infection was never obtained on maize with pCAMBIA0380::MSV-
495 G|61| agroinoculation (Table 2; Table Supp6).

496

497 ***Observation in fields of symptoms putatively associated to MSV-infection***

498 As phenotypes and symptoms of the collected plants in rice fields and pictures of plants have
499 been recorded during the sampling process, we tried *a posteriori* to associate the results of
500 MSV detection with the presence of the symptoms that could be associated to MSV infection
501 (based on the results of the experimental MSV agroinoculations). We first noticed that
502 “white stripes” were frequently observed in rice plants in 2018 and 2019, whereas it was
503 never reported in 2016 and 2017 (Table Supp2), which could parallel with the higher
504 frequency of MSV-positive fields on the last two years of the survey.

505 However, no significant association between “white stripes” phenotypes and MSV-positive
506 samples have been observed at the field level ($X^2=1.442$, $P=0.230$ for the 2016-2019 period;
507 $X^2=1.199$, $P=0.274$ and $X^2=2.063$, $P=0.151$ for 2018 and 2019, respectively), or at the
508 individual plant level (based on plant samples from 12 fields in 2018 used to estimate MSV
509 prevalence: $X^2=0.919$, $P=0.340$). Only a significant association between symptoms and MSV-
510 positive samples was noticed in the site Badala at the field level (BL: $X^2=8.864$, $P=0.003$).
511 Nevertheless, we identified 4 symptomatic rice plants in fields that we confirmed *a posteriori*
512 to be infected by MSV-G (detection PCR and Sanger sequencing; cf Figure Supp2).

513

514

515 **DISCUSSION**

516 By combining epidemiological surveys in fields (Barro et al. 2021a), viral metagenomics
517 approach (VANA-Illumina; Moubset et al. 2022), molecular epidemiology and experimental
518 infections, we described for the first time the epidemiology, the genetic diversity and the
519 pathogenicity of MSV that had never been reported before on rice (Table 1). Indeed,
520 although MSV has a very large host range infecting dozens of plant species of the *Poaceae*
521 family (Krabberger et al. 2017) and demonstrated to be transmitted experimentally on rice by
522 leafhoppers (Damsteegt 1983; Konaté and Traoré 1992), no study had shown until now the
523 extent of MSV epidemics in rice fields from Africa.

524

525 Based on rice and wild grasses samples collected in 2016 and 2017, sequences sharing
526 identity with MSV strain G were identified from two pools of rice plants and one pool of wild
527 plants using the VANA-Illumina approach. Although the VANA-Illumina approach is
528 extremely valuable for estimating the diversity of virus populations and for expanding the
529 knowledge about virus species circulating within the environment (Moubset et al. 2022), the
530 comparison of MSV detection by VANA-Illumina and RCA-PCR suggested that the detection
531 threshold was lower with RCA-PCR than VANA-Illumina. Indeed, while MSV was detected by
532 both methods for one rice field; 7 additional rice fields were identified positive to MSV in
533 2016 and 2017 by RCA-PCR (Table Supp2). Conversely, we noticed that one field was
534 detected positive to MSV by VANA-Illumina approach but not by RCA-PCR. As the plant
535 material used for these two approaches were not strictly identical (independent virion or
536 nucleic acid extractions), we can assume that we could generate some discrepancy between
537 extractions and so MSV detection if the virus is not uniformly distributed within the infected
538 plants. In addition, analysis by pool of several plants together could also contribute to
539 weaken our ability to consistently detect MSV in rice or wild grass samples. Altogether, we
540 can consider that the percentage of rice fields where MSV was circulating was potentially
541 underestimated in this study.

542
543 Despite all these putative biases of detection, MSV was surprisingly frequent in rice
544 landscape of western Burkina Faso, especially in 2018 and 2019 (Table 1, Table Supp2).
545 Indeed, the frequency of MSV-positive fields was similar to the frequency of symptoms
546 caused by another well-known virus, the rice yellow mottle virus (RYMV, *Solemoviridae*), in
547 these same fields and during the same time period (34.3% and 30.2% for MSV and RYMV,
548 respectively Barro et al. 2021a). In addition, similarly to RYMV, the production system
549 (irrigated vs. rainfed lowland) does not have a significant effect on the percentage of MSV-
550 positive fields (Table 1). However, we noticed a significant variation of the frequency of
551 MSV-positive fields between years (Table 1), which could be due to variations in climatic
552 conditions and insect vector populations (as suggested for MSV epidemiology in maize
553 cropping areas from Reunion Island; Reynaud et al. 2009).

554

555 Two MSV strains were identified in rice fields (MSV-G and MSV-A) and MSV-G was drastically
556 more frequent than MSV-A (Figure Supp2, Table Supp2). As far as we know, MSV-G has only
557 been identified on wild grasses, whereas MSV-A has been reported both on wild grasses and
558 cultivated *Poaceae*, such as maize and sugarcane (Kraberger et al. 2017). However, while
559 specific primers were used in this study to detect MSV-G and MSV-A by (RCA-)PCR, the
560 genuine diversity of MSV strains in rice agroecosystems could have been underestimated
561 even if no other MSV strain has been identified by metagenomic VANA-Illumina approach.

562

563 During this study, MSV-A was only identified in 2 fields (Table Supp2) for which rice and
564 maize were cultivated alongside or in rotation (data not shown). Interestingly, no genetic
565 differentiation between the MSV isolates collected in rice and other wild or cultivated
566 *Poaceae* growing around the rice fields was detected, suggesting that MSV-G and MSV-A
567 circulate indifferently between these host plant species. Nevertheless, we noticed in our
568 study that MSV-G was only detected in symptomless wild *Poaceae* that were randomly
569 sampled while MSV-A was only identified on plants specifically collected because presenting
570 symptoms of viral infection (Table Supp3). These results suggest that MSV-A could be more
571 aggressive, *i.e.* inducing more symptoms, than MSV-G. In parallel, these results imply that
572 the prevalence and the spatial distribution of MSV-G could be underestimated because of
573 probably more limited symptom induction compared to MSV-A and so a lower propensity to
574 be collected during plant pathology studies, especially within the wild compartment
575 (Lefeuvre et al. 2019).

576

577 Based on 12 MSV-positive rice fields surveyed in 2018, we estimated that MSV prevalence
578 within these fields was 32.1% on average and that MSV-A was overall less prevalent than
579 MSV-G (6.3% vs. 18.8-62.5%; Figure 3, Table Supp5). Note that, as previously discussed, the
580 high threshold of MSV detection at the field level (*i.e.* pool of 16 plant leaves from each field)
581 could imply that only fields with high proportion of MSV infected plants were detected
582 positive by RCA-PCR, and so that the average prevalence could be overestimated.
583 Nevertheless, the analysis of these 12 fields revealed the impressive MSV prevalence in rice
584 fields from Burkina Faso in 2018, with no significant difference between sites or rice
585 production system. These results suggested that MSV can circulate efficiently between these

586 agri-environment, probably because of the flight performance of the insect vector (Asanzi et
587 al. 1995) and the absence of varietal differentiation between irrigated and rainfed lowland
588 rice fields in this area (Barro et al. 2021b).

589

590 We validated in controlled conditions by agroinoculation the pathogenicity of MSV-G and
591 MSV-A isolates. Both MSV strains are able to infect both rice species cultivated in Africa
592 (*Oryza sativa* and *O. glaberrima*). Although the percentage of successful infection was
593 limited (1.1% and 10.7% on *O. sativa* cv. IR64 and *O. glaberrima* cv. Tog5673; Table 2, Table
594 Supp6), MSV infection induced severe symptoms (Figure 4) generally associated with a
595 significant reduction of the size (Figure 5) and biomass production (Figure Supp5B) of
596 infected rice plants. The efficiency of agroinoculation leading to infection was similar
597 between MSV-G and MSV-A on each rice variety/species (Table 2). However, the percentage
598 of successful infection of MSV-G, MSV-A or both strains combined was significantly higher in
599 *O. glaberrima* cv. Tog5673 than *O. sativa indica* cv. IR64 (Table 2). Thus, this result suggests
600 that, despite the restricted efficiency of agroinoculation method to transmit the virus in rice
601 or the restricted number of rice varieties used in this study, the fitness of MSV could be
602 higher on *O. glaberrima* than *O. sativa*. Further studies including more cultivars of each rice
603 species and insect vectors will be required to confirm this hypothesis.

604 Interestingly, similar symptoms to those induced by experimental MSV agroinoculation have
605 been observed in rice fields (Table Supp2, Table Supp5). However, no *a posteriori* significant
606 association has been identified between these symptoms and MSV detection by PCR, at field
607 or plant levels. This lack of association could be related to 1) the low detection threshold of
608 MSV by PCR at the field level (cf. above), and/or 2) the rice varieties used in Burkina Faso as
609 well as the environmental conditions that could reduce the intensity of symptoms in fields,
610 and/or 3) to the misinterpretation of specific symptoms of MSV infection and the confusion
611 with symptoms induced by other viral infections circulating in these area (Barro et al. 2021a;
612 Sereme et al. 2014). Nevertheless, association between symptoms, MSV detection and MSV
613 sequencing have been validated with 4 plants that have been specifically collected because
614 showing symptoms that could be attributed to viral infection (cf. Figure Supp2). Note that
615 the BD10 PCR amplifications, used as an internal control of the DNA extraction quality (cf.
616 Material & Methods), showed that all the rice samples collected in Burkina Faso for this

617 study exclusively correspond to *O. sativa* varieties, which is concordant with previous results
618 from the same area (Barro et al. 2021b).

619 In future, the use of quick and sensitive diagnostic tool for detection of MSV directly in rice
620 field, like loop-mediated isothermal amplification (LAMP) assays (Tembo et al. 2020), will
621 help to unraveled the association between MSV infection and symptoms in rice, and will
622 contribute to better know the MSV epidemiology in rice fields from Africa.

623

624 The MSV agroinoculation on maize led to successful infection for pBC-KS::MSV-A|R2| and
625 pCAMBIA0380::MSV-A|53| infectious clones. The isolate MSV-A|R2|, collected in the
626 Reunion Island and cloned after serial passages on almost resistant inbred maize lines, was
627 defined to be one of the most pathogenic isolates analyzed in Isnard et al. 1998). In
628 comparison, the isolate MSV-A|53|, collected in rice from Burkina Faso (16BZ09; Table
629 Supp2), was also able to infect maize. These results demonstrate the ability of these isolates
630 to infect both maize and rice whatever their host plant of origin, their geographical areas of
631 origin and their genetic divergence (Figure Supp4).

632 Interestingly, we never detected MSV-G infection on maize during our agroinoculation
633 assays (84 plants in total; Table 2). If this trend is confirmed (especially by assays involving
634 insect vectors in order to increase MSV transmission efficiency), the asymmetric pattern of
635 infection between MSV-G and MSV-A on rice and maize could shed light on the evolutionary
636 history and host adaptation of MSV. Indeed, MSV-G has so far only been identified in wild
637 grasses from West Africa while intensive analyses of MSV diversity in cultivated *Poaceae* as
638 maize, sorghum and sugarcane have been performed (Krabberger et al. 2017). The results
639 obtained in our study suggest the role of rice fields as boosters of MSV-G epidemics in the
640 environment because of the homogeneity, density and spatial distribution of this crop
641 (Anderson et al. 2004). Thus, as rice and maize are frequently grown within the same fields
642 or areas in Africa, rice could have played an indirect role on the MSV adaptation to maize by
643 increasing the probability of co-infections between MSV-G and MSV-B which subsequently
644 led to the emergence of MSV-A by recombination (Harkins et al. 2009).

645

646 Altogether, in addition to fulfill the Koch's postulates by experimental MSV inoculations on
647 two rice species cultivated in Africa, this study suggests that MSV could be a significant

648 pathogen for rice cultivation in Africa as it was found highly prevalent in rice fields from
649 Burkina Faso and induced severe symptoms on rice plants in controlled conditions. Actually,
650 MSV-G was, up to now, detected in wild grasses from West Africa including Nigeria and Mali.
651 As these two countries correspond to the most important rice producer countries in West
652 Africa (FAOSTAT 2022, <https://data.un.org/Data.aspx?d=FAO&f=itemCode%3A27>), we can
653 assume that MSV-G could be epidemic in these countries. In addition, we experimentally
654 confirmed that two MSV-A isolates genetically distinct and collected on rice in West Africa or
655 maize in East Africa are able to infect efficiently both rice species (Figure 4, Figure Supp4).
656 Thus, as MSV-A was reported almost everywhere in Africa (Kraberger et al. 2017) where rice
657 is produced at large scale (for instance, West Africa: Benin, Burkina Faso, Ghana, Nigeria;
658 Central Africa: Cameroon, Central African Republic, Chad; East Africa: Ethiopia, Kenya,
659 Madagascar, Tanzania, Uganda), our results suggest lurking MSV epidemics on rice across
660 the continent and promote constant and updated epidemiological surveillance of rice
661 production in Africa.

662

663

664 **ACKNOWLEDGEMENT**

665 This work was performed thanks to the facilities of the “International joint Laboratory LMI
666 PathoBios: Observatory of plant pathogens in West Africa: biodiversity and biosafety”
667 (www.pathobios.com; twitter.com/PathoBios). We are very grateful to Sylvain Zougrana,
668 Yacouba Kone, Edouard Kabore, Moustapha Koala, Manaka Douanio, Amadou Diallo, Fabrice
669 Nikiema, Bouda Zakaria, Ouedraogo Alassane, Fatoumata Gnacko, Daouda Hema, Drissa Tou,
670 Traoré Momouni, Dabire Roméo, Martial Kabore and Noël Ouattara for their contributions
671 to the fieldwork in Burkina Faso. We thank the rice farmers from Badala, Bama, Senzon,
672 Banzon, Tengrela and Karfiguela for their kind collaboration. We also thank Michel
673 Peterschmitt, Cica Urbino and Martine Granier for the valuable discussions and for kindly
674 providing us the infectious clone pBC-KS::MSV-A(R2), and Jamel Aribi for plant care in IRD
675 greenhouses.

676

677

678 **CAPTIONS**

679

680 **Figure 1:** Study area for the spatiotemporal survey of rice fields in Burkina Faso. **A.** Burkina
681 Faso location in Africa, with a focus on western Burkina Faso where are located the six sites:
682 Bama (BM in the text), Badala (BL), Banzon (BZ), Senzon (SZ), Karfiguela (KA) and Tengrela
683 (TG). These sites are indicated with colored dots referring their rice production systems:
684 irrigated (IR, blue) and rainfed lowland (RL, red). **B.** Distribution area of irrigated (blue) and
685 rainfed lowland (red) rice production systems in the six sites and location of the rice fields
686 surveyed during this study.

687

688 **Figure 2:** Condensed phylogenetic tree reconstructed by maximum-likelihood based on
689 complete MSV genome sequences from western Burkina Faso obtained during this study
690 (names in red) and available from public database (in orange for those from Burkina Faso).
691 Numbers at each node correspond to bootstrap values based on 100 replicates (only values
692 above 0.70 are reported). The host plants from which these sequences were identified are
693 indicated by the colored circles (red: rice; dark green: maize; light green: sugarcane; blue:
694 wild grasses). The clades corresponding to MSV strains (from A to K) and the geographical
695 origin (CA: Central Africa; EA: East Africa; SA: Southern Africa; WA: West Africa) of the
696 sequences are mentioned.

697

698 **Figure 3:** Prevalence estimation of MSV-G and MSV-A in 12 rice fields representing two rice
699 production systems (IR: irrigated areas; RL: rainfed lowlands) based on the 15-16 individual
700 plants in each field collected without *a priori* over a grid in 2018. The numbers of rice fields
701 are indicated.

702

703 **Figure 4:** Symptom observation in rice (*Oryza sativa indica* cv. IR64 and *O. glaberrima* cv.
704 Tog5673) and maize (*Zea mays* cv. Goldem Bantam) associated to MSV infection after
705 agroinoculations of pCAMBIA::MSV-G|61|, pCAMBIA::MSV-A|53| and pBC-KS::MSV-A|R2|
706 infectious clones. Photos of the whole plants showing a negative control plant (left) and
707 infected plants (right) were taken 60 days post-inoculation (at 28dpi only for
708 pCAMBIA::MSV-A|53| on *O. glaberrima* cv. Tog5673), those of systemic and emergent
709 leaves at 28dpi. nd: not determined because no MSV infected plant was identified.

710

711 **Figure 5:** Maximal height of MSV infected plants (inoculated with pCAMBIA0380::MSV-
712 G|61|, pCAMBIA0380::MSV-A|53| and pBC-KS::MSV-A|R2|) normalized according to
713 negative control plants (inoculated with pCAMBIA0380::Ø) for *O. sativa indica* cv. IR64 (blue)
714 and *O. glaberrima* cv. Tog5673 (green). The numbers of plants used to obtain these data are
715 indicated. The statistically identical groups are mentioned (a,b,c). The value obtained with
716 the unique IR64 infected after pCAMBIA::MSV-A|R2| agroinoculations are reported with a
717 blue point.

718

719

720 **Figure Supp.1:** Schematic representation of the sampling protocol. The green circles labelled
721 from A1 to D4 represent the 16 rice plants regularly collected over a grid without *a priori*, *i.e.*
722 not based on their symptomatic status, in a rice field (green square). Wild grasses were
723 collected without *a priori* on the borders of the rice field (light brown area) and additional
724 plants (rice, maize, sugarcane or wild grasses; red crosses) presenting symptoms that could
725 be related to virus infection collected within or nearby the rice field.

726

727 **Figure Supp.2:** Phylogenetic tree reconstructed by maximum-likelihood based on partial
728 MSV genome sequences (491 nucleotides long) of reference (highlighted in grey) and
729 obtained with RCA-PCR (primers MSV-F559pb and MSV-R559pb) for MSV detection in rice
730 (red points) or other *Poaceae* (dark green: maize; light green: sugarcane; blue: wild grasses).
731 Sequences obtained from symptomatic rice plants are highlighted in red. Numbers at each
732 node correspond to bootstrap values based on 100 replicates (only values above 0.70 are
733 reported). The clades corresponding to MSV strains (from A to K) are indicated.

734

735 **Figure Supp.3:** Schematic representation of the spatial distribution of the MSV-positive rice
736 plants determined in 12 fields surveyed in 2018. The 16 rice plants regularly collected
737 without *a priori* over a grid correspond to the grey circles labelled from A1 to D4, the red
738 highlights show the MSV-positive ones. The rice field where MSV-A was detected is
739 highlighted in grey.

740

741 **Figure Supp.4:** MSV sequences used to build infectious clones (MSV-A|53|, MSV-A|R2|,
742 MSV-G|61|) located in the condensed phylogenetic tree reconstructed by maximum-
743 likelihood based on complete MSV genome sequences from western Burkina Faso obtained
744 during this study (names in red) and available from public database (in orange for those from
745 Burkina Faso). Numbers at each node correspond to bootstrap values based on 100
746 replicates (only values above 0.70 are reported). The host plants from which these
747 sequences were identified are indicated by the colored circles (red: rice; dark green: maize;
748 light green: sugarcane; blue: wild grasses). The clades corresponding to MSV strains (from A
749 to K) and the geographical origin (CA: Central Africa; EA: East Africa; SA: Southern Africa;
750 WA: West Africa) of the sequences are mentioned.

751
752 **Figure Supp.5:** Number of leaves at 28 days post-inoculation (dpi) (A) and fresh biomass at
753 60 dpi (B) of MSV infected plants (inoculated with pCAMBIA0380::MSV-G|61|,
754 pCAMBIA0380::MSV-A|53| and pBC-KS::MSV-A|R2|) normalized according to negative
755 control plants (inoculated with pCAMBIA0380::Ø) for *O. sativa indica* cv. IR64 (blue) and *O.*
756 *glaberrima* cv. Tog5673 (green). Values obtained from 2 independent experiments (A) or
757 only one experiment (B). The numbers of plants used to obtain these data are indicated
758 above. The statistically identical groups are mentioned (a,b,c). The values obtained with the
759 unique IR64 infected after pBC-KS::MSV-A|R2| and pCAMBIA0380::MSV-G|61|
760 agroinoculations are reported by blue points.

761
762
763 **REFERENCES**
764 Abo, M.E., Sy, A.A., 1997. Rice Virus Diseases: Epidemiology and Management Strategies. *Journal of*
765 *Sustainable Agriculture* 11, 113–134. https://doi.org/10.1300/J064v11n02_09
766 Anderson, P.K., Cunningham, A.A., Patel, N.G., Morales, F.J., Epstein, P.R., Daszak, P., 2004. Emerging
767 infectious diseases of plants: pathogen pollution, climate change and agrotechnology drivers.
768 *TRENDS in Ecology and Evolution* 19, 535–544. <https://doi.org/10.1016/j.tree.2004.07.021>
769 Asanzi, C.M., Bosque-Perez, N.A., Nault, L.R., 1995. Movement of Cicadulina storeyi (Homoptera:
770 Cicadellidae) in maize fields and its behaviour in relation to maize growth stage. *Insect sci. appl.* 16, 39–44. <https://doi.org/10.1017/S1742758400018300>
771 Bagayoko, I., Celli, M.G., Romay, G., Poulicard, N., Pinel-Galzi, A., Julian, C., Filloux, D., Roumagnac, P.,
772 Sérémé, D., Bragard, C., Hébrard, E., 2021. Genetic Diversity of Rice stripe necrosis virus and
773 New Insights into Evolution of the Genus Benyvirus. *Viruses* 13, 737.
774 <https://doi.org/10.3390/v13050737>
775 Baker, R.E., Mahmud, A.S., Miller, I.F., Rajeev, M., Rasambainarivo, F., Rice, B.L., Takahashi, S., Tatem,
776 A.J., Wagner, C.E., Wang, L.-F., Wesolowski, A., Metcalf, C.J.E., 2022. Infectious disease in an

778 era of global change. *Nat Rev Microbiol* 20, 193–205. <https://doi.org/10.1038/s41579-021-00639-z>

780 Barro, M., Kassankogno, A.I., Wonni, I., Sérémé, D., Somda, I., Kaboré, H.K., Béna, G., Brugidou, C.,
781 Tharreau, D., Tollenaere, C., 2021a. Spatiotemporal Survey of Multiple Rice Diseases in
782 Irrigated Areas Compared to Rainfed Lowlands in the Western Burkina Faso. *Plant Disease*
783 105, 3889–3899. <https://doi.org/10.1094/PDIS-03-21-0579-RE>

784 Barro, M., Konate, K.A., Wonni, I., Kassankogno, A.I., Sabot, F., Albar, L., Somda, I., Béna, G.,
785 Ghesquière, A., Kam, H., Sié, M., Cubry, P., Tollenaere, C., 2021b. Assessment of Genetic
786 Diversity of Rice in Registered Cultivars and Farmers' Fields in Burkina Faso. *Crops* 1, 129–
787 140. <https://doi.org/10.3390/crops1030013>

788 Barro, M., Wonni, I., Simonin, M., Kassankogno, A.I., Klonowska, A., Moulin, L., Béna, G., Somda, I.,
789 Brunel, C., Tollenaere, C., 2022. The impact of the rice production system (irrigated vs
790 lowland) on root-associated microbiome from farmer's fields in western Burkina Faso. *FEMS*
791 *Microbiology Ecology* 98, fiac085. <https://doi.org/10.1093/femsec/fiac085>

792 Bernardo, P., Charles-Dominique, T., Barakat, M., Ortet, P., Fernandez, E., Filloux, D., Hartnady, P.,
793 Rebelo, T.A., Cousins, S.R., Mesleard, F., Cohez, D., Yavercovski, N., Varsani, A., Harkins, G.W.,
794 Peterschmitt, M., Malmstrom, C.M., Martin, D.P., Roumagnac, P., 2018. Geometagenomics
795 illuminates the impact of agriculture on the distribution and prevalence of plant viruses at
796 the ecosystem scale. *ISME J* 12, 173–184. <https://doi.org/10.1038/ismej.2017.155>

797 Billard, E., Barro, M., Sérémé, D., Bangrätz, M., Wonni, I., Koala, M., Kassankogno, A.I., Hébrard, E.,
798 Thébaud, G., Brugidou, C., Poulicard, N., Tollenaere, C., 2023. Dynamics of the rice yellow
799 mottle disease in western Burkina Faso: epidemic monitoring, spatio-temporal variation of
800 viral diversity and pathogenicity in a disease hotspot (preprint). *Evolutionary Biology*.
801 <https://doi.org/10.1101/2023.03.27.534376>

802 Boulton, M.I., Buchholz, W.G., Marks, M.S., Markham, P.G., Davies, J.W., 1989. Specificity of
803 Agrobacterium-mediated delivery of maize streak virus DNA to members of the Gramineae.
804 *Plant Mol Biol* 12, 31–40. <https://doi.org/10.1007/BF00017445>

805 Claverie, S., Ouattara, A., Hoareau, M., Filloux, D., Varsani, A., Roumagnac, P., Martin, D.P., Lett, J.-
806 M., Lefevre, P., 2019. Exploring the diversity of Poaceae-infecting mastreviruses on Reunion
807 Island using a viral metagenomics-based approach. *Sci Rep* 9, 12716.
808 <https://doi.org/10.1038/s41598-019-49134-9>

809 Cubry, P., Tranchant-Dubreuil, C., Thuillet, A.-C., Monat, C., Ndjidjop, M.-N., Labadie, K., Cruaud,
810 C., Engelen, S., Scarcelli, N., Rhoné, B., Burgarella, C., Dupuy, C., Larmande, P., Wincker, P.,
811 François, O., Sabot, F., Vigouroux, Y., 2018. The Rise and Fall of African Rice Cultivation
812 Revealed by Analysis of 246 New Genomes. *Current Biology* 28, 2274–2282.e6.
813 <https://doi.org/10.1016/j.cub.2018.05.066>

814 Damsteegt, V.D., 1983. Maize Streak Virus: I. Host Range and Vulnerability of Maize Germ Plasm.
815 *Plant Dis.* 67, 734. <https://doi.org/10.1094/PD-67-734>

816 Demont, M., 2013. Reversing urban bias in African rice markets: A review of 19 National Rice
817 Development Strategies. *Global Food Security* 2, 172–181.
818 <https://doi.org/10.1016/j.gfs.2013.07.001>

819 Edgar, R.C., 2004. MUSCLE: multiple sequence alignment with high accuracy and high throughput.
820 *Nucleic Acids Research* 32, 1792–1797. <https://doi.org/10.1093/nar/gkh340>

821 Edgar, R.C., Taylor, J., Lin, V., Altman, T., Barbera, P., Meleshko, D., Lohr, D., Novakovsky, G.,
822 Buchfink, B., Al-Shayeb, B., Banfield, J.F., de la Peña, M., Korobeynikov, A., Chikhi, R.,
823 Babaian, A., 2022. Petabase-scale sequence alignment catalyses viral discovery. *Nature* 602,
824 142–147. <https://doi.org/10.1038/s41586-021-04332-2>

825 Excoffier, L., Laval, G., Schneider, S., 2005. Arlequin (version 3.0): integrated software package
826 population genetic. *Evolutionary Bioinformatics* 1, 47–50.

827 Fiallo-Olivé, E., Lett, J.-M., Martin, D.P., Roumagnac, P., Varsani, A., Zerbini, F.M., Navas-Castillo, J.,
828 2021. ICTV Virus Taxonomy Profile: Geminiviridae 2021: This article is part of the ICTV Virus

829 Taxonomy Profiles collection. *Journal of General Virology* 102.
830 <https://doi.org/10.1099/jgv.0.001696>

831 François, S., Filloux, D., Frayssinet, M., Roumagnac, P., Martin, D.P., Ogliastro, M., Froissart, R., 2018.
832 Increase in taxonomic assignment efficiency of viral reads in metagenomic studies. *Virus*
833 *Research* 244, 230–234. <https://doi.org/10.1016/j.virusres.2017.11.011>

834 Fuller, C., 1901. Mealie variegation In: *First Report of the Government Entomologist, Natal, 1899–*
835 *1900. Pietermaritzburg, Natal, South Africa: P. Davis & Sons, Government Printers.* 17–19.

836 Gnacadja, C., Berthouly-Salazar, C., Sall, S.N., Zekraoui, L., Sabot, F., Pegalepo, E., Baboucarr, M.,
837 Vieira-Dalode, G., Moreira, J., Soumanou, M.M., Azokpota, P., Sie, M., 2018. Phenotypic and
838 genetic characterization of African rice (*Oryza glaberrima* Steud). *IJAR* 6, 1389–1398.
839 <https://doi.org/10.2147/IJAR01/6569>

840 Gong, P., Tan, H., Zhao, S., Li, H., Liu, H., Ma, Y., Zhang, X., Rong, J., Fu, X., Lozano-Durán, R., Li, F.,
841 Zhou, X., 2021. Geminiviruses encode additional small proteins with specific subcellular
842 localizations and virulence function. *Nat Commun* 12, 4278. <https://doi.org/10.1038/s41467-021-24617-4>

843 Gouy, M., Guindon, S., Gascuel, O., 2010. SeaView Version 4: A Multiplatform Graphical User
844 Interface for Sequence Alignment and Phylogenetic Tree Building. *Molecular Biology and*
845 *Evolution* 27, 221–224. <https://doi.org/10.1093/molbev/msp259>

846 Greninger, A.L., 2018. A decade of RNA virus metagenomics is (not) enough. *Virus Research* 244,
847 218–229. <https://doi.org/10.1016/j.virusres.2017.10.014>

848 Grimsley, N., Hohn, T., Davies, J.W., Hohn, B., 1987. Agrobacterium-mediated delivery of infectious
849 maize streak virus into maize plants. *Nature* 325, 177–179.
850 <https://doi.org/10.1038/325177a0>

851 Harkins, G.W., Martin, D.P., Duffy, S., Monjane, A.L., Shepherd, D.N., Windram, O.P., Owor, B.E.,
852 Donaldson, L., van Antwerpen, T., Sayed, R.A., Flett, B., Ramusi, M., Rybicki, E.P.,
853 Peterschmitt, M., Varsani, A., 2009. Dating the origins of the maize-adapted strain of maize
854 streak virus, MSV-A. *Journal of General Virology* 90, 3066–3074.
855 <https://doi.org/10.1099/vir.0.015537-0>

856 Hébrard, E., Poulicard, N., Rakotomalala, M., 2021. Rice Yellow Mottle Virus (Solemoviridae), in:
857 *Encyclopedia of Virology*. Elsevier, pp. 675–680. <https://doi.org/10.1016/B978-0-12-809633-8.21244-2>

858 Heyraud, F., Matzeit, V., Schaefer, S., Schell, J., Gronenborn, B., 1993. The conserved nonanucleotide
859 motif of the geminivirus stem-loop sequence promotes replicational release of virus
860 molecules from redundant copies. *Biochimie* 75, 605–615. [https://doi.org/10.1016/0300-9084\(93\)90067-3](https://doi.org/10.1016/0300-9084(93)90067-3)

861 Isnard, M., Granier, M., Frutos, R., Reynaud, B., Peterschmitt, M., 1998. Quasispecies nature of three
862 maize streak virus isolates obtained through different modes of selection from a population
863 used to assess response to infection of maize cultivars. *Journal of General Virology* 79, 3091–
864 3099. <https://doi.org/10.1099/0022-1317-79-12-3091>

865 Jones, R.A.C., 2021. Global Plant Virus Disease Pandemics and Epidemics. *Plants* 10, 233.
866 <https://doi.org/10.3390/plants10020233>

867 Kaboré, K.H., Kassankogno, A.I., Adreit, H., Milazzo, J., Guillou, S., Blondin, L., Chopin, L., Ravel, S.,
868 Charriat, F., Barro, M., Tollenaere, C., Lebrun, M.-H., Tharreau, D., 2022. Genetic diversity
869 and structure of Bipolaris oryzae and Exserohilum rostratum populations causing brown spot
870 of rice in Burkina Faso based on genotyping-by-sequencing. *Front. Plant Sci.* 13, 1022348.
871 <https://doi.org/10.3389/fpls.2022.1022348>

872 Konaté, G., Traoré, O., 1992. Les hôtes réservoirs du virus de la striure du maïs (MSV) en zone
873 soudano-sahélienne : identification et distribution spatio-temporelle. *Phyto* 73, 111–117.
874 <https://doi.org/10.7202/706027ar>

875 Koonin, E.V., Dolja, V.V., 2018. Metaviromics: a tectonic shift in understanding virus evolution. *Virus*
876 *Research* 246, A1–A3, <https://doi.org/10.1016/j.virusres.2018.02.001>

880 Kraberger, S., Saumtally, S., Pande, D., Khoodoo, M.H.R., Dhayan, S., Dookun-Saumtally, A.,
881 Shepherd, D.N., Hartnady, P., Atkinson, R., Lakay, F.M., Hanson, B., Redhi, D., Monjane, A.L.,
882 Windram, O.P., Walters, M., Oluwafemi, S., Michel-Lett, J., Lefevre, P., Martin, D.P., Varsani,
883 A., 2017. Molecular diversity, geographic distribution and host range of monocot-infecting
884 mastreviruses in Africa and surrounding islands. *Virus Research* 238, 171–178.
885 <https://doi.org/10.1016/j.virusres.2017.07.001>

886 Kumar, S., Stecher, G., Li, M., Knyaz, C., Tamura, K., 2018. MEGA X: Molecular Evolutionary Genetics
887 Analysis across Computing Platforms. *Molecular Biology and Evolution* 35, 1547–1549.
888 <https://doi.org/10.1093/molbev/msy096>

889 Lefevre, P., Martin, D.P., Elena, S.F., Shepherd, D.N., Roumagnac, P., Varsani, A., 2019. Evolution and
890 ecology of plant viruses. *Nat Rev Microbiol* 17, 632–644. <https://doi.org/10.1038/s41579-019-0232-3>

891 Martin, D.P., Murrell, B., Golden, M., Khoosal, A., Muhire, B., 2015. RDP4: Detection and analysis of
892 recombination patterns in virus genomes. *Virus Evolution* 1.
893 <https://doi.org/10.1093/ve/vev003>

894 Martin, D.P., Shepherd, D.N., 2009. The epidemiology, economic impact and control of maize streak
895 disease. *Food Sec.* 1, 305–315. <https://doi.org/10.1007/s12571-009-0023-1>

896 Monjane, A.L., Dellicour, S., Hartnady, P., Oyeniran, K.A., Owor, B.E., Bezuidenhout, M., Linderme, D.,
897 Syed, R.A., Donaldson, L., Murray, S., Rybicki, E.P., Kvarneden, A., Yazdkasti, E., Lefevre,
898 P., Froissart, R., Roumagnac, P., Shepherd, D.N., Harkins, G.W., Suchard, M.A., Lemey, P.,
899 Varsani, A., Martin, D.P., 2020. Symptom evolution following the emergence of maize streak
900 virus. *eLife* 9, e51984. <https://doi.org/10.7554/eLife.51984>

901 Monjane, A.L., Harkins, G.W., Martin, D.P., Lemey, P., Lefevre, P., Shepherd, D.N., Oluwafemi, S.,
902 Simuyandi, M., Zinga, I., Komba, E.K., Lakoutene, D.P., Mandakombo, N., Mboukoulida, J.,
903 Semballa, S., Tagne, A., Tiendrebeogo, F., Erdmann, J.B., van Antwerpen, T., Owor, B.E., Flett,
904 B., Ramusi, M., Windram, O.P., Syed, R., Lett, J.-M., Briddon, R.W., Markham, P.G., Rybicki,
905 E.P., Varsani, A., 2011. Reconstructing the History of Maize Streak Virus Strain A Dispersal To
906 Reveal Diversification Hot Spots and Its Origin in Southern Africa. *Journal of Virology* 85,
907 9623–9636. <https://doi.org/10.1128/JVI.00640-11>

908 Moubset, O., François, S., Maclot, F., Palanga, E., Julian, C., Claude, L., Fernandez, E., Rott, P.,
909 Daugrois, J.-H., Antoine-Lorquin, A., Bernardo, P., Blouin, A.G., Temple, C., Kraberger, S.,
910 Fontenele, R.S., Harkins, G.W., Ma, Y., Marais, A., Candresse, T., Chéhida, S.B., Lefevre, P.,
911 Lett, J.-M., Varsani, A., Massart, S., Ogliastro, M., Martin, D.P., Filloux, D., Roumagnac, P.,
912 2022. Virion-Associated Nucleic Acid-Based Metagenomics: A Decade of Advances in
913 Molecular Characterization of Plant Viruses. *Phytopathology* 112, 2253–2272.
914 <https://doi.org/10.1094/PHYTO-03-22-0096-RVW>

915 Muhire, B.M., Varsani, A., Martin, D.P., 2014. SDT: A Virus Classification Tool Based on Pairwise
916 Sequence Alignment and Identity Calculation. *PLoS ONE* 9, e108277.
917 <https://doi.org/10.1371/journal.pone.0108277>

918 Oyeniran, K.A., Hartnady, P., Claverie, S., Lefevre, P., Monjane, A.L., Donaldson, L., Lett, J.-M.,
919 Varsani, A., Martin, D.P., 2021. How virulent are emerging maize-infecting mastreviruses?
920 *Arch Virol* 166, 955–959. <https://doi.org/10.1007/s00705-020-04906-x>

921 Peterschmitt, M., Granier, M., Frutos, R., Reynaud, B., 1996. Infectivity and complete nucleotide
922 sequence of the genome of a genetically distinct strain of maize streak virus from Reunion
923 Island. *Archives of Virology* 141, 1637–1650. <https://doi.org/10.1007/BF01718288>

924 Portères, R., 1970. Primary cradles of agriculture in the African continent. *Papers in African
925 Prehistory*, Cambridge University Press Fage, J&Olivier, R editions, 43–58.

926 Reynaud, B., Delatte, H., Peterschmitt, M., Fargette, D., 2009. Effects of temperature increase on the
927 epidemiology of three major vector-borne viruses. *Eur J Plant Pathol* 123, 269–280.
928 <https://doi.org/10.1007/s10658-008-9363-5>

930 Rybicki, E.P., 2015. A Top Ten list for economically important plant viruses. *Arch Virol* 160, 17–20.
931 <https://doi.org/10.1007/s00705-014-2295-9>

932 Rybicki, E.P., Pietersen, G., 1999. Plant Virus Disease Problems in The Developing World, in: *Advances*
933 in Virus Research. Elsevier, pp. 127–175. [https://doi.org/10.1016/S0065-3527\(08\)60346-2](https://doi.org/10.1016/S0065-3527(08)60346-2)

934 Savary, S., Willocquet, L., Pethybridge, S.J., Esker, P., McRoberts, N., Nelson, A., 2019. The global
935 burden of pathogens and pests on major food crops. *Nat Ecol Evol* 3, 430–439.
936 <https://doi.org/10.1038/s41559-018-0793-y>

937 Sereme, D., Neya, B.J., Bangratz, M., Brugidou, C., Ouedraogo, I., 2014. First Report of Rice stripe
938 necrosis virus Infecting Rice in Burkina Faso. *Plant Disease* 98, 1451–1451.
939 <https://doi.org/10.1094/PDIS-06-14-0626-PDN>

940 Shepherd, D.N., Martin, D.P., Van Der Walt, E., Dent, K., Varsani, A., Rybicki, E.P., 2010. Maize streak
941 virus: an old and complex 'emerging' pathogen. *Molecular Plant Pathology* 11, 1–12.
942 <https://doi.org/10.1111/j.1364-3703.2009.00568.x>

943 Soullier, G., Demont, M., Arouna, A., Lançon, F., Mendez del Villar, P., 2020. The state of rice value
944 chain upgrading in West Africa. *Global Food Security* 25, 100365.
945 <https://doi.org/10.1016/j.gfs.2020.100365>

946 Tembo, M., Adediji, A.O., Bouvaine, S., Chikoti, P.C., Seal, S.E., Silva, G., 2020. A quick and sensitive
947 diagnostic tool for detection of Maize streak virus. *Sci Rep* 10, 19633.
948 <https://doi.org/10.1038/s41598-020-76612-2>

949 Tollenaere, C., Lacombe, S., Wonni, I., Barro, M., Ndougonna, C., Gnacko, F., Sérémé, D., Jacobs, J.M.,
950 Hebrard, E., Cunnac, S., Brugidou, C., 2017. Virus-Bacteria Rice Co-Infection in Africa: Field
951 Estimation, Reciprocal Effects, Molecular Mechanisms, and Evolutionary Implications. *Front. Plant Sci.* 8, 645. <https://doi.org/10.3389/fpls.2017.00645>

952 Tra Bi, S.C., Dje, K.T., Coulibaly, T., Soumahoro, B., Tano, Y., 2020. Entomofaune du riz (*Oryza sativa*
953 L.) en fonction des stades phénologiques dans un bas-fond, Daloa, Côte d'Ivoire. *Afrique
954 SCIENCE* 16, 98–113.

955 Urbino, C., Thébaud, G., Granier, M., Blanc, S., Peterschmitt, M., 2008. A novel cloning strategy for
956 isolating, genotyping and phenotyping genetic variants of geminiviruses. *Virol J* 5, 135.
957 <https://doi.org/10.1186/1743-422X-5-135>

958 Varsani, A., Shepherd, D.N., Monjane, A.L., Owor, B.E., Erdmann, J.B., Rybicki, E.P., Peterschmitt, M.,
959 Briddon, R.W., Markham, P.G., Oluwafemi, S., Windram, O.P., Lefevre, P., Lett, J.-M.,
960 Martin, D.P., 2008. Recombination, decreased host specificity and increased mobility may
961 have driven the emergence of maize streak virus as an agricultural pathogen. *Journal of
962 General Virology* 89, 2063–2074. <https://doi.org/10.1099/vir.0.2008/003590-0>

963 Wang, P., Liu, J., Lyu, Y., Huang, Z., Zhang, X., Sun, B., Li, P., Jing, X., Li, H., Zhang, C., 2022. A Review
964 of Vector-Borne Rice Viruses. *Viruses* 14, 2258. <https://doi.org/10.3390/v14102258>

965

966

967

968 **TABLES**

969

Sites	2016		2017		2018		2019		Total		
	-	+	-	+	-	+	-	+	%MSV	%MSV	Prod ^o
BM	7	3	6	1	5	4	5	2	23	10	30,3
BZ	6	2	7	0	5	6	5	1	23	9	28,1
KA	9	0	7	0	2	6	1	7	19	13	40,6
BL	5	1	7	0	7	0	2	4	21	5	19,2
SZ	5	0	6	0	0	7	3	4	14	11	44,0
TG	5	0	5	1	3	4	0	6	13	11	45,8

Total	37	6	38	2	22	27	16	24	113	59	34,3
%MSV			14,0		5,0		55,1		60,0		34.3

970

971 **Table 1:** Detection of MSV in rice fields from 6 sites (BM: Bama; BZ: Banzon; KA: Karfiguela;
 972 BL: Badala; SZ: Senzon; TG: Tengrela) representing two rice production systems (IR: irrigated;
 973 RL: rainfed lowland) in 2016, 2017, 2018 and 2019. Percentage of MSV-positive fields are
 974 indicated (%MSV).

975

976

Infectious clone	<i>O. sativa</i> indica cv. IR64			<i>O.</i> <i>glaberrima</i> cv. Tog5673			<i>Zea mays</i> cv. Golden Bantam		
	-	+	%(+)	-	+	%(+)	-	+	%(+)
Ø	16	0	0.0	20	0	0.0	3	0	0.0
pCAMBIA0380::MSV-G 61	198	3	1.5	185	20	9.8	84	0	0.0
pCAMBIA0380::MSV-A 53	127	0	0.0	110	16	12.7	67	1	1.5
pBC-KS::MSV-A R2	49	1	2.0	55	6	9.8	4	1	20.0
Total MSV-G/A	374	4	1.1	350	42	10.7	155	2	1.3

977

978 **Table 2:** Total number of non-symptomatic (-) and symptomatic (+) plants observed 28 days
 979 post-inoculation (dpi) of pCAMBIA0380::Ø (negative control), pCAMBIA0380::MSV-G|61|,
 980 pCAMBIA0380::MSV-A|53| and pBC-KS::MSV-A|R2| in *Oryza sativa indica* cv. IR64, *O.*
 981 *glaberrima* cv. Tog5673 and *Zea mays* cv. Golden Bantam. Percentages of symptomatic
 982 plants are indicated with %(+).

983

Family	Species	17BM02	17BL02	17BZ11	17SZ07	17KA01	17TG01
Acanthaceae	<i>Nelsonia canescens</i> (Lam.) Spreng.	0.5	0	0.5	1	0.5	0
Adiantaceae	<i>Ceratopteris cornuta</i> (Bauv.) Lepr.	0	1	0	0	0	0
Amaranthaceae	<i>Alternanthera sessilis</i> (Lin.) R. BR..	0	0	0.5	0	0	0
Amaranthaceae	<i>Amaranthus graecizans</i> Lin.	0	0	0.5	0	0	0
Amaranthaceae	<i>Gomphrena celosioides</i> Mart	0	0	0.5	2	0	0
Asteraceae	<i>Acmella caulirhiza</i> Delile	0.5	0.5	0	0	0.5	0
Asteraceae	<i>Ageratum conyzoides</i> Lin.	1	0	0	1	0.5	0
Asteraceae	<i>Tridax procumbens</i> Lin.	0.5	0	1	0	0.5	0
Boraginaceae	<i>Heliotropium indicum</i> Dc.	0	0	0.5	0	0	0
Caesalpiniaceae	<i>Cassia mimosoides</i> Lin.	0	0	0	0.5	0	0
Caesalpiniaceae	<i>Cassia tora</i> Lin.	0	0	0.5	0.5	0	0
Campanulaceae	<i>Sphenoclea zeylanica</i> Gaertn.	0.5	0.5	0	0	0	0
Capridaceae	<i>Cleome rutidosperma</i> DC.	0.5	0	0	0	0	0
Capridaceae	<i>Cleome viscasa</i> Lin.	0	0	0.5	0	0	0

<i>Commelinaceae</i>	<i>Aneilema umbrosum</i> Kunth.	0	0	0	0	0	0.5
<i>Commelinaceae</i>	<i>Commelina benghalensis</i> Lin.	0	0	0	0.5	0.5	0
<i>Commelinaceae</i>	<i>Commelina forskalaei</i> Vahl.	0.5	0	0	0.5	0	0
<i>Convolvulaceae</i>	<i>Ipomoea aquatica</i> Forsk.	0.5	0	0	0	0.5	0
<i>Convolvulaceae</i>	<i>Ipomoea eriocarpa</i> R. Br.	0.5	0	0.5	0.5	0	0.5
<i>Cyperaceae</i>	<i>Cyperus haspan</i> Lin.	0	2	0	0	0	0
<i>Cyperaceae</i>	<i>Cyperus iria</i> Lin.	0	0.5	0	0.5	0	0
<i>Cyperaceae</i>	<i>Cyperus rotundus</i> Lin.	0	0	0	0	0.5	0
<i>Cyperaceae</i>	<i>Fimbristylis dichotoma</i> (Lin.) Vahl.	0.5	3	0.5	2	0.5	0
<i>Cyperaceae</i>	<i>Kyllinga erecta</i> Schum. Et Thonn.	0	0	0	0	0.5	0
<i>Cyperaceae</i>	<i>Scleria naumanniana</i> Böck.	0	1	0	0	0	0
<i>Euphorbiaceae</i>	<i>Euphorbia heterophylla</i> Lin.	0	0	0	0	0.5	0
<i>Euphorbiaceae</i>	<i>Euphorbia hirta</i> Lin.	0.5	0	0.5	0.5	0.5	0
<i>Euphorbiaceae</i>	<i>Euphorbia prostrata</i> Ait.	0	0	0.5	0	0	0
<i>Euphorbiaceae</i>	<i>Phyllanthus amarus</i> Schum. Et Thonn.	0.5	0	0	0	0.5	0
<i>Fabaceae</i>	<i>Aeschynomene sensitiva</i> Sw.	2	0.5	0	2	0.5	0.5
<i>Fabaceae</i>	<i>Alysicarpus ovalifolius</i> (S. & Th.)Léon	0	0	0	0.5	0	0
<i>Fabaceae</i>	<i>Crotalaria retusa</i> Lin.	0	0	0	0.5	0	0
<i>Fabaceae</i>	<i>Desmodium incanum</i>	3	0	0	0	0	0
<i>Fabaceae</i>	<i>Desmodium salicifolium</i> (Poir) D C.	0	0	0	0.5	0.5	0
<i>Fabaceae</i>	<i>Desmodium triflorum</i> (Lin.) DC	3	0	0	0	0	0
<i>Fabaceae</i>	<i>Sesbania sesban</i> (Lin.) Merril	0	0.5	0	0	0	0
<i>Lamiaceae</i>	<i>Hyptis specigera</i> Lam.	0	0.5	0	2	0	0.5
<i>Lamiaceae</i>	<i>Ocimum Americanum</i> Lin.	0	0	0.5	0.5	0	0.5
<i>Malvaceae</i>	<i>Sida acuta</i> Burm. F.	0.5	0	0	0.5	0	0
<i>Malvaceae</i>	<i>Sida alba</i> Lin.	0.5	0	0	0	0	0
<i>Malvaceae</i>	<i>Sida ovata</i> Forsk.	1	0	0	0.5	0	0
<i>Malvaceae</i>	<i>Sida urens</i> Lin.	0	0	0.5	0.5	0	0
<i>Nyctaginaceae</i>	<i>Boehraavia vulvarifolia</i> Poir	0	0	1	0	0	0
<i>Oenotheraceae</i>	<i>Ludwigia decurrens</i> Wal.	0.5	1	0	0.5	0	0
<i>Oenotheraceae</i>	<i>Ludwigia erecta</i>	0.5	1	0	1	0.5	0
<i>Passifloraceae</i>	<i>Passiflora foetida</i> Lin.	0	0	0	0	1	0
<i>Pedaliaceae</i>	<i>Ceratotheca sesamoides</i> Endl.	0	0	0	0	0	0.5
<i>Poaceae</i>	<i>Andropogon pseudapricus</i> sStapf.	0	0	0	0	0	0.5
<i>Poaceae</i>	<i>Brachiaria lata</i> (Chum.) Hubb.	0	0	0	0	0	0.5
<i>Poaceae</i>	<i>Brachiaria xantholeuca</i> Stapf	0	0	0	0	0.5	0
<i>Poaceae</i>	<i>Dactyloctenium aegyptium</i> Beauv.	0	0	0	1	0	0.5
<i>Poaceae</i>	<i>Digitaria horizontalis</i>	0	0	0	0	0	0.5
<i>Poaceae</i>	<i>Echinochloa colona</i> Link.	0	0	0.5	0.5	0.5	0
<i>Poaceae</i>	<i>Echinochloa stagnina</i> P. Beauv.	1	0.5	0	0	0	0
<i>Poaceae</i>	<i>Eichhornia crassipes</i> (Mart.) Solms.	0	0.5	0	0	0	0
<i>Poaceae</i>	<i>Eleusine indica</i> Gaertn.	0	0.5	1	0	0.5	0
<i>Poaceae</i>	<i>Eragrostis gangetica</i> Steud.	0	2	0	0	0	0
<i>Poaceae</i>	<i>Eragrostis tremula</i> Hochst.	0	0	0	0	0	0.5
<i>Poaceae</i>	<i>Imperata cylindrica</i> (Lin.) Raeusch.	0	0	1	0	0.5	0
<i>Poaceae</i>	<i>Leersia hexandra</i>	0.5	0	0	0	0	0

<i>Poaceae</i>	<i>Oryza barthii</i> A. Chev.	0	3	0	0.5	0	0
<i>Poaceae</i>	<i>Paspalum scrobiculatum</i> Lin.	0.5	2	0.5	3	0.5	0
<i>Poaceae</i>	<i>Pennisetum pedicellatum</i> Trin.	0	0	0	0.5	0.5	0.5
<i>Poaceae</i>	<i>Rottboellia exaltata</i> Lin.	0.5	0	0	2	0	0
<i>Poaceae</i>	<i>Sacciolepsis africana</i> Hubb. Et Snowden	0	2	0	0	0	0
<i>Poaceae</i>	<i>Schizachyrium brevifolium</i> Nees.	0	1	0	3	0	0
<i>Poaceae</i>	<i>Setaria palleifusca</i> Stapf et Hubb.	0	0	0	0	0.5	0.5
<i>Portulacaceae</i>	<i>Portulaca oleracea</i> Lin	0	0	0.5	0	0	0
<i>Rubiaceae</i>	<i>Mitracarpus scaber</i> Zucc.	0	0	0	0	0	0.5
<i>Rubiaceae</i>	<i>Oldenlandia herbacea</i> (Lin.) Roxb.	0	0	0	0.5	0	0.5
<i>Rubiaceae</i>	<i>Spermacoce stachydea</i> DC.	0	0	0.5	0	0	0
<i>Rubiaceae</i>	<i>Spermacoce vertillata</i> Lin.	3	0	0	2	0.5	0
<i>Scrophulariaceae</i>	<i>Rhamphicarpa fistulosa</i> (Hochst.) Benth.	0	0.5	0	0	0	0
<i>Solanaceae</i>	<i>Physalis angulata</i> Lin.	0	0	0	0	0.5	0
<i>Solanaceae</i>	<i>Schwenckia americana</i> Lin.	0	0	0	0	0	0
<i>Sterculiaceae</i>	<i>Melochia cordifolia</i> Lin.	0	1	0	0.5	0	0
<i>Tiliaceae</i>	<i>Corchorus olitorius</i> Lin.	0	0	0	0.5	0	0
<i>Tiliaceae</i>	<i>Triumfetta rhomboidea</i> Jacq	0	0	0	0.5	0	0
<i>Verbenaceae</i>	<i>Stachytarpheta angustifolia</i> (Mill.) Vahl.	0	0	0	0	0.5	0

984

985 **Table Supp.1:** List of wild plant species identified in the borders of 6 rice fields from 2017.

986 The frequency of each plant species was estimated (0: absent; 0.5: rare; 1: covering area <
987 10%; 2: covering area between 10% and 20%; 3: covering area between 20% and 30%).
988 Samples from the five more frequent plant species have been collected for each field for
989 further analyses.

990

991

Field	Prod ^o	2016			2017			2018			2019		
		MSV	Strain	Symptoms									
BL01	RL	+	nd	-	-		-	-		+	-		+
BL02	RL	-		-	-		-	-		-	nd		nd
BL03	RL	-		-	-		-	-		+	+		+
BL04	RL	-		-	-		-	-		-	+		+
BL05	RL	-		-	-		-	-		-	+		+
BL06	RL	-		-	-		-	-		-	nd		nd
BL07	RL	nd		nd	-		-	nd		nd	nd		nd
BL08	RL	nd		nd	nd		-	-		-	+		+
BL09	RL	nd		nd	nd		nd	nd		nd	-		+
BM01	IR	-		-	-		-	-		-	+	MSV-G	-
BM02	IR	+	MSV-G	-	-		-	+	MSV-G	-	nd		nd
BM03	IR	+	nd	-	nd		nd	nd		nd	-		+
BM08	IR	-		-	-		-	-		-	-		-

BM09	IR	+	nd	-	nd	-	-	-	nd	nd	
BM10	IR	-		-	-	-	-	-	nd	nd	
BM11	IR	-		-	-	-	-	-	nd	nd	
BM12	IR	-		-	-	-	nd	nd	-	+	
BM13	IR	-		-	nd	nd	+*	MSV-G	-	+	-
BM14	IR	-		-	+ MSV-G	-	+*	MSV-G	-	-	-
BM15	IR	nd		nd	nd	nd	+	MSV-G	-	-	-
BZ02	IR	-		-	-	-	+	MSV-G	-	-	-
BZ03	IR	nd		nd	nd	nd	+	nd	-	nd	nd
BZ04	IR	+	nd	-	-	-	-	-	+	+	
BZ05	IR	nd		nd	nd	nd	-	-	nd	nd	
BZ06	IR	-		-	-	-	-	-	nd	nd	
BZ07	IR	-		-	-	-	+*	MSV-G	-	nd	nd
BZ09	IR	+	MSV-A	-	-	-	+*	MSV-G	-	-	+
BZ10	IR	-		-	-	-	-	-	-	+	
BZ11	IR	-		-	nd	-	-	-	-	+	
BZ12	IR	-		-	-	-	+	MSV-G	-	nd	nd
BZ14	IR	nd		nd	nd	nd	+*	MSV-G	-	-	+
KA01	IR	-		-	-	-	+	nd	nd	+	-
KA02	IR	-		-	nd	-	+*	MSV-G	-	+	MSV-G
KA03	IR	-		-	nd	nd	nd	nd	nd	-	
KA04	IR	-		-	-	-	-	-	+	MSV-G	+
KA05	IR	-		-	-	-	nd	nd	+	MSV-G	-
KA06	IR	nd		nd	nd	nd	-	-	+	-	
KA07	IR	nd		nd	nd	nd	nd	-	+	MSV-G	-
KA08	IR	-		-	-	-	+*	MSV-G	-	nd	nd
KA09	IR	-		-	-	-	+	nd	-	nd	nd
KA10	IR	-		-	-	-	+	nd	-	-	-
KA11	IR	nd		nd	nd	nd	+	nd	-	+	-
KA12	IR	-		-	-	-	nd	nd	nd	nd	nd
SZ01	RL	-		-	-	-	+	MSV-G	-	+	-
SZ02	RL	-		-	-	-	+*	MSV-G	+	+	-
SZ03	RL	-		-	-	-	+*	MSV-G	-	+	-
SZ04	RL	-		-	-	-	+*	MSV-G	-	-	+
SZ05	RL	-		-	-	-	+*	MSV-G	-	-	+
SZ06	RL	nd		nd	nd	-	+*	MSV-G	-	-	-
SZ07	RL	nd		nd	-	-	+*	MSV-G	-	+	MSV-G
TG01	RL	-		-	-	-	+*	MSV-A	-	+	-
TG02	RL	-		-	-	-	+	nd	-	+	+
TG03	RL	-		-	-	-	-	-	nd	nd	
TG04	RL	-		-	-	-	-	-	+	+	+
TG05	RL	-		-	+ MSV-G	-	-	-	+	+	-
TG06	RL	nd		nd	-	-	+*	nd	+	+	+
TG07	RL	nd		nd	nd	-	+	nd	-	+	-

993 **Table Supp.2:** Detection of MSV in rice fields from 6 sites (BM: Bama; BZ: Banzon; KA:
994 Karfiguela; BL: Badala; SZ: Senzon; TG: Tengrela) representing two rice production systems
995 (IR: irrigated; RL: rainfed lowland) in 2016, 2017, 2018 and 2019. The MSV strain (MSV-G or
996 MSV-A) is indicated when identified, and the observation of presence (+) or absence (-) of
997 symptoms putatively related to MSV infection in each rice field is reported. The fields for
998 which the MSV prevalence has been estimated are indicated (*). nd: not determined.

999

Sample type	Year	Prod°	Symptoms	Detect.MSV	Sequence
individual	2019	IR	+	+	MSV-A
individual	2019	RL	+	+	MSV-A
individual	2019	RL	+	+	MSV-A
individual	2019	RL	+	+	MSV-A
individual	2019	RL	+	+	MSV-A
individual	2019	IR	+	+	MSV-A
individual	2019	IR	+	+	MSV-A
individual	2019	IR	+	+	MSV-A
individual	2019	IR	+	+	MSV-A
individual	2019	IR	+	+	MSV-A
individual	2019	IR	+	+	MSV-A
individual	2019	IR	+	+	MSV-A
individual	2019	IR	+	+	MSV-A
individual	2019	IR	+	+	MSV-A
individual	2019	IR	+	-	
individual	2019	IR	+	+	MSV-A
individual	2016	IR	+	+	nd
individual	2019	IR	+	-	
individual	2019	IR	+	+	MSV-A
individual	2016	IR	+	-	
individual	2016	IR	+	-	
individual	2016	RL	+	+	MSV-A
individual	2016	RL	+	+	MSV-A
individual	2017	RL	+	-	
individual	2016	IR	+	-	
individual	2016	RL	+	-	
individual	2017	IR	+	-	
pool	2017	RL	-	-	
pool	2017	IR	-	-	
pool	2017	IR	-	-	
pool	2017	RL	-	+	MSV-G
pool	2017	IR	-	-	
pool	2017	RL	-	-	
individual	2019	RL	+	-	
individual	2019	IR	+	+	MSV-A
individual	2016	RL	+	-	

individual 2019 RL + + MSV-A

1000

1001 **Table Supp.3:** Samples of cultivated (maize, sugarcane) and wild grasses analyzed during this
 1002 study. The sample type (individual: from an individual plant; pool: mixed leaf samples from
 1003 several plants), the rice production systems where these plants were collected (IR: irrigated;
 1004 RL: rainfed lowland), the presence (+) or absence (-) of symptoms putatively related to MSV
 1005 infection, the results of PCR detection of MSV and the MSV strain (MSV-G or MSV-A)
 1006 identified for each sample are indicated. nd: not determined.

1007

Sample name	Host species	Compartment	Year	Sample type	MSV	Seq. Method	Accession n°
16BZ09 53	<i>Oryza sativa</i>	cultivated	2016	pool	MSV-A	Sanger	OR258397
17BM11 m61	<i>Oryza sativa</i>	cultivated	2017	pool	MSV-G	Cloning, Sanger	OR258400
17BM11 Contig1671	<i>Oryza sativa</i>	cultivated	2017	pool	MSV-G	VANA-Illumina	-
17TG05 Contig844	<i>Oryza sativa</i>	cultivated	2017	pool	MSV-G	VANA-Illumina	OR258402
18TG01 110	<i>Oryza sativa</i>	cultivated	2018	pool	MSV-A	Sanger	OR258399
18BZ14 102	<i>Oryza sativa</i>	cultivated	2018	pool	MSV-G	Sanger	OR258398
19BL 5 Maize	<i>Zea mays</i>	cultivated	2019	individual	MSV-A	Sanger	OR258387
19BL 7 Maize	<i>Zea mays</i>	cultivated	2019	individual	MSV-A	Sanger	OR258388
19KA 12 Sugarcane	<i>Saccharum sp.</i>	cultivated	2019	individual	MSV-A	Sanger	OR258390
19KA 13 Sugarcane	<i>Saccharum sp.</i>	cultivated	2019	individual	MSV-A	Sanger	OR258391
19KA 16 Sugarcane	<i>Saccharum sp.</i>	cultivated	2019	individual	MSV-A	Sanger	OR258393
19KA 17 Sugarcane	<i>Saccharum sp.</i>	cultivated	2019	individual	MSV-A	Sanger	OR258394
16SZ 22 Eragrostis	<i>Eragrostis sp.</i>	wild	2016	individual	MSV-A	Sanger	OR258396
19BM 2 Echinochloa	<i>Echinochloa colona</i>	wild	2019	individual	MSV-A	Sanger	OR258386
16SZ 21 O.longistaminata	<i>Oryza longistaminata</i>	wild	2016	individual	MSV-A	Sanger	OR258395
19KA 8 Poaceae	<i>Poaceae ?</i>	wild	2019	individual	MSV-A	Sanger	OR258389
19SZ 14 Poaceae	<i>Poaceae ?</i>	wild	2019	individual	MSV-A	Sanger	OR258392
17TG01 m96	<i>Poaceae ?</i>	wild	2017	pool	MSV-G	Sanger	OR258401
17TG01 Contig711	<i>Poaceae ?</i>	wild	2017	pool	MSV-G	VANA-Illumina	-

1008

1009 **Table Supp.4:** Isolate names, origins, sequencing methods and accession numbers of
 1010 complete MSV genomes obtained during this study.

1011

n° plant	Field	Position	Prod°	Detected	MSV	Symptoms
MP2808	18-BM13	A1	IR	-	-	
MP2809	18-BM13	A2	IR	+ (MSV - G)		+
MP2810	18-BM13	A3	IR	+ (MSV - G)		+
MP2811	18-BM13	A4	IR	-		+
MP2812	18-BM13	B1	IR	-		-
MP2813	18-BM13	B2	IR	-		-

MP2814	18-BM13	B3	IR	-	-
MP2815	18-BM13	B4	IR	-	-
MP2816	18-BM13	C1	IR	+ (MSV - G)	-
MP2817	18-BM13	C2	IR	-	-
MP2818	18-BM13	C3	IR	+	-
MP2819	18-BM13	C4	IR	-	-
MP2820	18-BM13	D1	IR	+ (MSV - G)	-
MP2821	18-BM13	D2	IR	-	+
MP2822	18-BM13	D3	IR	-	-
MP2823	18-BM13	D4	IR	+	+
MP2824	18-BM14	A1	IR	-	-
MP2825	18-BM14	A2	IR	-	-
MP2826	18-BM14	A3	IR	+	-
MP2827	18-BM14	A4	IR	+	-
MP2828	18-BM14	B1	IR	+	-
MP2829	18-BM14	B2	IR	-	-
MP2830	18-BM14	B3	IR	+	-
MP2831	18-BM14	B4	IR	-	-
MP2832	18-BM14	C1	IR	+	-
MP2833	18-BM14	C2	IR	-	-
MP2834	18-BM14	C3	IR	-	-
MP2835	18-BM14	C4	IR	-	-
MP2836	18-BM14	D1	IR	-	-
MP2837	18-BM14	D2	IR	-	-
MP2838	18-BM14	D3	IR	-	-
MP2839	18-BM14	D4	IR	-	-
MP2936	18-BZ07	A1	IR	-	-
MP2937	18-BZ07	A2	IR	-	-
MP2938	18-BZ07	A3	IR	+	-
MP2939	18-BZ07	A4	IR	+	-
MP2940	18-BZ07	B1	IR	-	-
MP2941	18-BZ07	B2	IR	+	-
MP2942	18-BZ07	B3	IR	+	-
MP2943	18-BZ07	B4	IR	-	-
MP2944	18-BZ07	C1	IR	-	-
MP2945	18-BZ07	C2	IR	-	-
MP2946	18-BZ07	C3	IR	nd	-
MP2947	18-BZ07	C4	IR	-	-
MP2948	18-BZ07	D1	IR	-	-
MP2949	18-BZ07	D2	IR	-	-
MP2950	18-BZ07	D3	IR	-	-
MP2951	18-BZ07	D4	IR	-	-
MP2952	18-BZ09	A1	IR	+	-
MP2953	18-BZ09	A2	IR	+	-
MP2954	18-BZ09	A3	IR	-	-
MP2955	18-BZ09	A4	IR	+	-

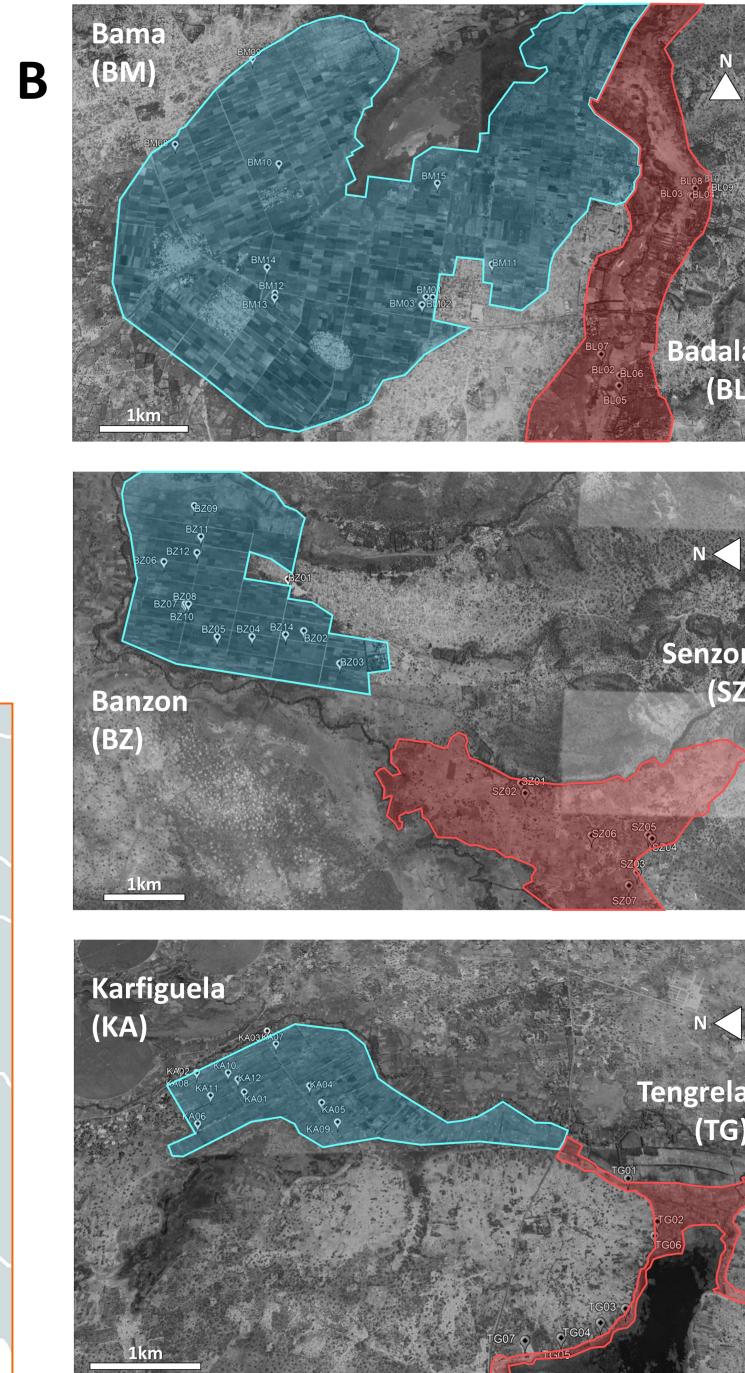
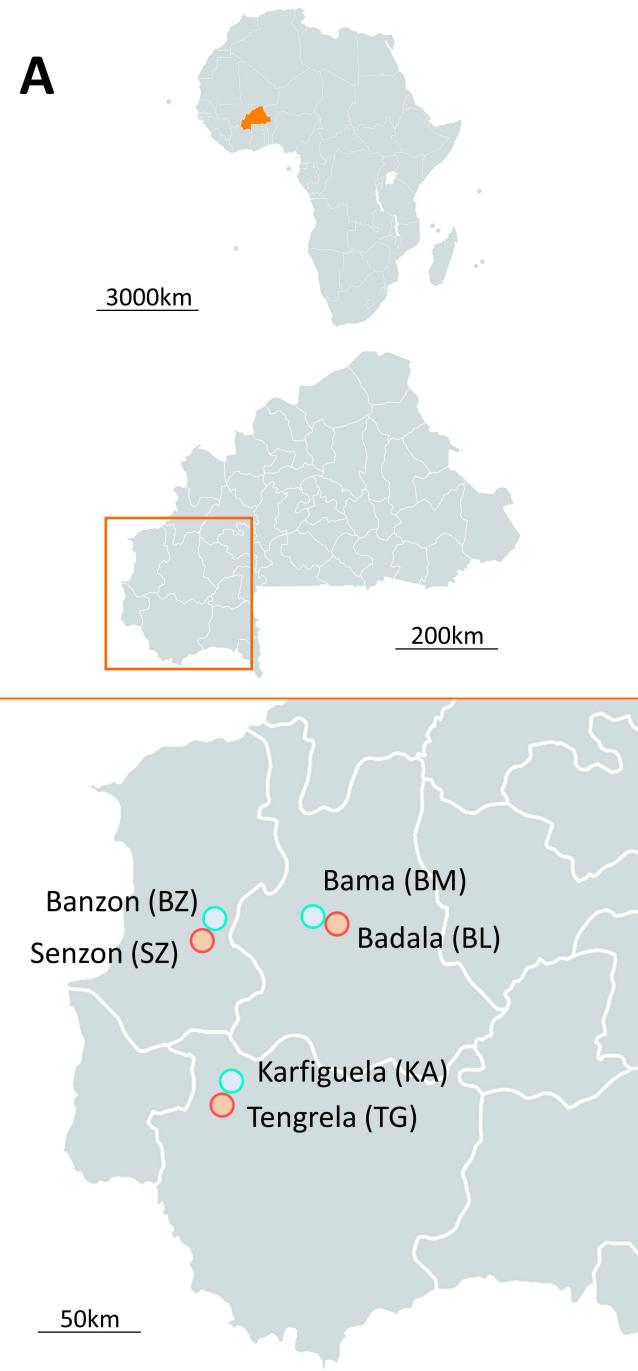
MP2956	18-BZ09	B1	IR	-	-
MP2957	18-BZ09	B2	IR	+	-
MP2958	18-BZ09	B3	IR	+	-
MP2959	18-BZ09	B4	IR	+	-
MP2960	18-BZ09	C1	IR	+	-
MP2961	18-BZ09	C2	IR	+	-
MP2962	18-BZ09	C3	IR	-	-
MP2963	18-BZ09	C4	IR	+	-
MP2964	18-BZ09	D1	IR	-	-
MP2965	18-BZ09	D2	IR	-	-
MP2966	18-BZ09	D3	IR	+	-
MP2967	18-BZ09	D4	IR	-	-
MP3016	18-BZ14	A1	IR	+	-
MP3017	18-BZ14	A2	IR	-	-
MP3018	18-BZ14	A3	IR	-	-
MP3019	18-BZ14	A4	IR	-	-
MP3020	18-BZ14	B1	IR	-	-
MP3021	18-BZ14	B2	IR	-	-
MP3022	18-BZ14	B3	IR	-	-
MP3023	18-BZ14	B4	IR	+ (MSV - G)	-
MP3024	18-BZ14	C1	IR	-	-
MP3025	18-BZ14	C2	IR	-	-
MP3026	18-BZ14	C3	IR	-	-
MP3027	18-BZ14	C4	IR	-	-
MP3028	18-BZ14	D1	IR	-	-
MP3029	18-BZ14	D2	IR	-	-
MP3030	18-BZ14	D3	IR	-	-
MP3031	18-BZ14	D4	IR	+ (MSV - G)	-
MP3064	18-SZ04	A1	RL	+	-
MP3065	18-SZ04	A2	RL	-	-
MP3066	18-SZ04	A3	RL	-	-
MP3067	18-SZ04	A4	RL	-	-
MP3068	18-SZ04	B1	RL	+	-
MP3069	18-SZ04	B2	RL	+	-
MP3070	18-SZ04	B3	RL	-	-
MP3071	18-SZ04	B4	RL	+	-
MP3072	18-SZ04	C1	RL	+	-
MP3073	18-SZ04	C2	RL	-	-
MP3074	18-SZ04	C3	RL	-	-
MP3075	18-SZ04	C4	RL	-	-
MP3076	18-SZ04	D1	RL	+	-
MP3077	18-SZ04	D2	RL	-	-
MP3078	18-SZ04	D3	RL	+	-
MP3079	18-SZ04	D4	RL	+	-
MP3096	18-SZ06	A1	RL	-	-
MP3097	18-SZ06	A2	RL	-	-

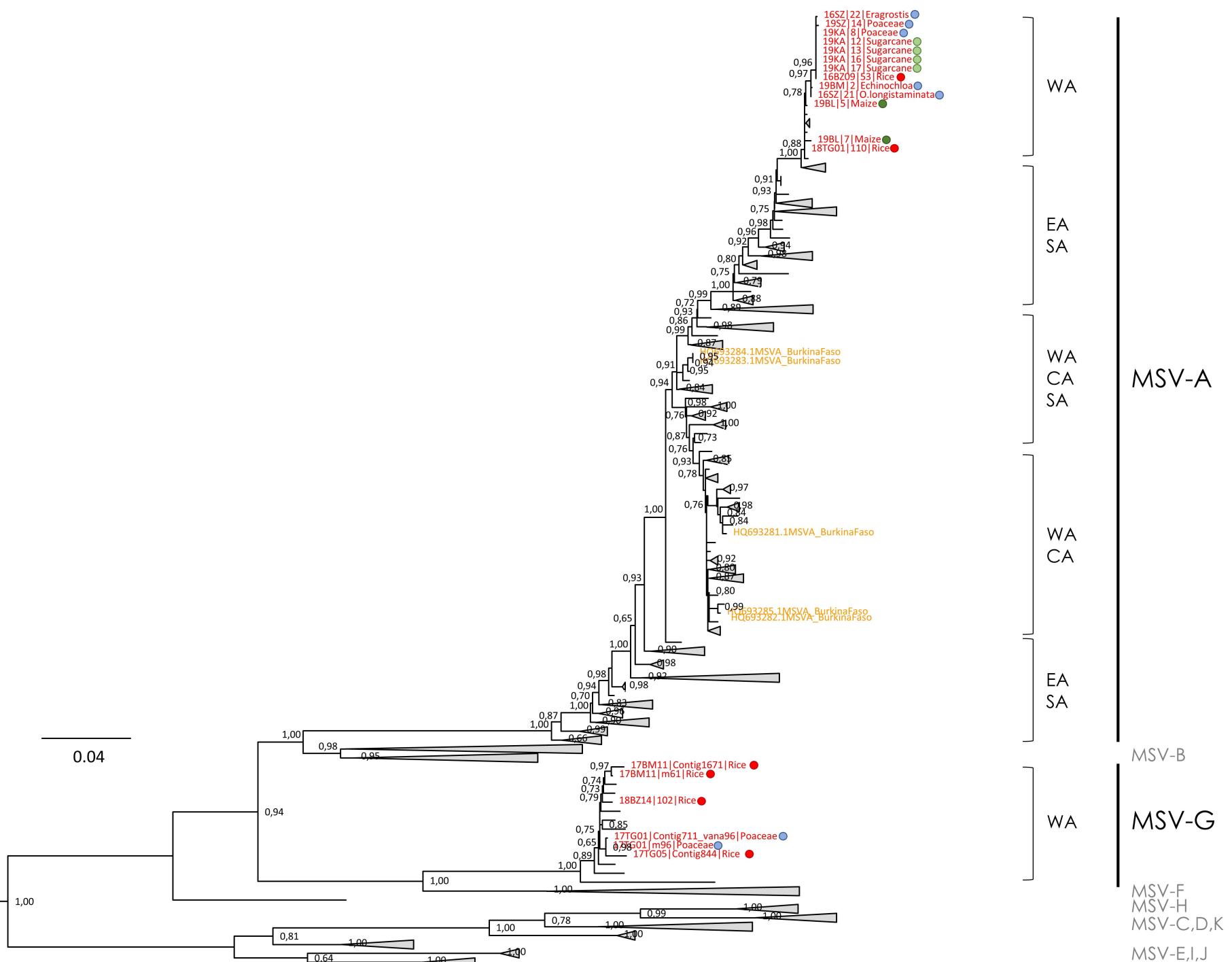
MP3098	18-SZ06	A3	RL	-	-
MP3099	18-SZ06	A4	RL	+ (MSV - G)	-
MP3100	18-SZ06	B1	RL	-	-
MP3101	18-SZ06	B2	RL	-	-
MP3102	18-SZ06	B3	RL	-	-
MP3103	18-SZ06	B4	RL	-	-
MP3104	18-SZ06	C1	RL	-	-
MP3105	18-SZ06	C2	RL	+ (MSV - G)	-
MP3106	18-SZ06	C3	RL	-	-
MP3107	18-SZ06	C4	RL	-	-
MP3108	18-SZ06	D1	RL	-	-
MP3109	18-SZ06	D2	RL	+	-
MP3110	18-SZ06	D3	RL	+	-
MP3111	18-SZ06	D4	RL	+	-
MP3112	18-SZ07	A1	RL	nd	-
MP3113	18-SZ07	A2	RL	-	-
MP3114	18-SZ07	A3	RL	-	-
MP3115	18-SZ07	A4	RL	-	-
MP3116	18-SZ07	B1	RL	-	-
MP3117	18-SZ07	B2	RL	-	-
MP3118	18-SZ07	B3	RL	+	-
MP3119	18-SZ07	B4	RL	-	-
MP3120	18-SZ07	C1	RL	-	-
MP3121	18-SZ07	C2	RL	+	-
MP3122	18-SZ07	C3	RL	-	-
MP3123	18-SZ07	C4	RL	-	-
MP3124	18-SZ07	D1	RL	+	-
MP3125	18-SZ07	D2	RL	+	-
MP3126	18-SZ07	D3	RL	+	-
MP3127	18-SZ07	D4	RL	-	-
MP3160	18-KA02	A1	IR	-	-
MP3161	18-KA02	A2	IR	+	-
MP3162	18-KA02	A3	IR	+	-
MP3163	18-KA02	A4	IR	-	-
MP3164	18-KA02	B1	IR	-	-
MP3165	18-KA02	B2	IR	-	-
MP3166	18-KA02	B3	IR	+	-
MP3167	18-KA02	B4	IR	-	-
MP3168	18-KA02	C1	IR	-	-
MP3169	18-KA02	C2	IR	-	-
MP3170	18-KA02	C3	IR	-	-
MP3171	18-KA02	C4	IR	-	-
MP3172	18-KA02	D1	IR	-	-
MP3173	18-KA02	D2	IR	-	-
MP3174	18-KA02	D3	IR	-	-
MP3175	18-KA02	D4	IR	+	-

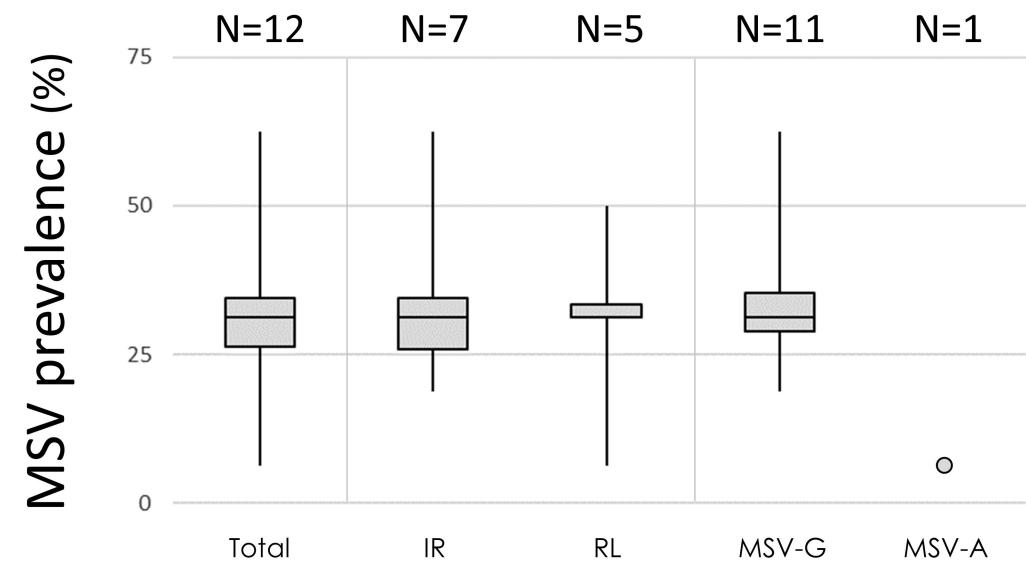
MP3224	18-KA08	A1	IR	-	-
MP3225	18-KA08	A2	IR	+	-
MP3226	18-KA08	A3	IR	+ (MSV - G)	-
MP3227	18-KA08	A4	IR	-	-
MP3228	18-KA08	B1	IR	-	-
MP3229	18-KA08	B2	IR	-	-
MP3230	18-KA08	B3	IR	-	-
MP3231	18-KA08	B4	IR	-	-
MP3232	18-KA08	C1	IR	+ (MSV - G)	-
MP3233	18-KA08	C2	IR	-	-
MP3234	18-KA08	C3	IR	+ (MSV - G)	-
MP3235	18-KA08	C4	IR	-	-
MP3236	18-KA08	D1	IR	+ (MSV - G)	-
MP3237	18-KA08	D2	IR	-	-
MP3238	18-KA08	D3	IR	-	-
MP3239	18-KA08	D4	IR	-	-
MP3288	18-TG01	A1	RL	-	-
MP3289	18-TG01	A2	RL	-	-
MP3290	18-TG01	A3	RL	-	-
MP3291	18-TG01	A4	RL	-	-
MP3292	18-TG01	B1	RL	-	-
MP3293	18-TG01	B2	RL	-	-
MP3294	18-TG01	B3	RL	+	-
MP3295	18-TG01	B4	RL	-	-
MP3296	18-TG01	C1	RL	-	-
MP3297	18-TG01	C2	RL	-	-
MP3298	18-TG01	C3	RL	-	-
MP3299	18-TG01	C4	RL	-	-
MP3300	18-TG01	D1	RL	-	-
MP3301	18-TG01	D2	RL	-	-
MP3302	18-TG01	D3	RL	-	-
MP3303	18-TG01	D4	RL	-	-
MP3368	18-TG06	A1	RL	-	-
MP3369	18-TG06	A2	RL	-	-
MP3370	18-TG06	A3	RL	-	-
MP3371	18-TG06	A4	RL	-	-
MP3372	18-TG06	B1	RL	-	-
MP3373	18-TG06	B2	RL	-	-
MP3374	18-TG06	B3	RL	-	-
MP3375	18-TG06	B4	RL	+	-
MP3376	18-TG06	C1	RL	-	-
MP3377	18-TG06	C2	RL	+	-
MP3378	18-TG06	C3	RL	-	+
MP3379	18-TG06	C4	RL	-	-
MP3380	18-TG06	D1	RL	+	-
MP3381	18-TG06	D2	RL	-	-

MP3382	18-TG06	D3	RL	+	-
MP3383	18-TG06	D4	RL	+	-

1012



1013 **Table Supp.5:** Detection of MSV (MSV-G or MSV-A) in the 15-16 individual plants collected
 1014 without *a priori* over a grid in 2018 in 12 rice fields. The position of each sample over the grid
 1015 (cf. Figure Supp1), the rice production systems (IR: irrigated; RL: rainfed lowland), the results
 1016 of MSV detection by PCR and the symptom putatively related to MSV infection and observed
 1017 for each plant in field are indicated.


1018


Infectious clones	Agro.	#Exp.	<i>O. sativa indica</i> cv. IR64			<i>O. glaberrima</i> cv. Tog5673			<i>Zea mays</i> cv. Golden Bantam		
			-	t+	%(+)	-	+	%(+)	-	+	%(+)
pCAMBIA0380::Ø	C58C1	1	5	0	0.0	4	0	0.0	nd	nd	nd
pCAMBIA0380::Ø	EHA105	1	6	0	0.0	5	0	0.0	nd	nd	nd
pCAMBIA0380::Ø	EHA105	2	5	0	0.0	11	0	0.0	3	0	0.0
pCAMBIA0380::MSV-G 61	C58C1	1	33	0	0.0	30	1	3.2	2	0	0.0
pCAMBIA0380::MSV-G 61	EHA105	1	34	2	5.6	36	1	2.7	2	0	0.0
pCAMBIA0380::MSV-G 61	EHA105	2	131	1	0.8	119	18	13.1	80	0	0.0
pCAMBIA0380::MSV-A 53	EHA105	2	127	0	0.0	110	16	12.7	67	1	1.5
pBCKS::MSV-A R2	C58C1	1	26	0	0.0	27	5	15.6	2	1	33.3
pBCKS::MSV-A R2	EHA105	1	23	1	4.2	28	1	3.4	2	0	0.0
MSV-G 61		1+2	198	3	1.5	185	20	9.8	84	0	0.0
MSV-A 53		2	127	0	0.0	110	16	12.7	67	1	1.5
MSV-A R2		1	49	1	2.0	55	6	9.8	4	1	20.0
MSV-G 61		1+2	198	3	1.5	185	20	9.8	84	0	0.0
MSV-A 53+R2		1+2	176	1	0.6	165	22	11.8	71	2	2.7
Total MSV-G/A		1+2	374	4	1.1	350	42	10.7	155	2	1.3

1019

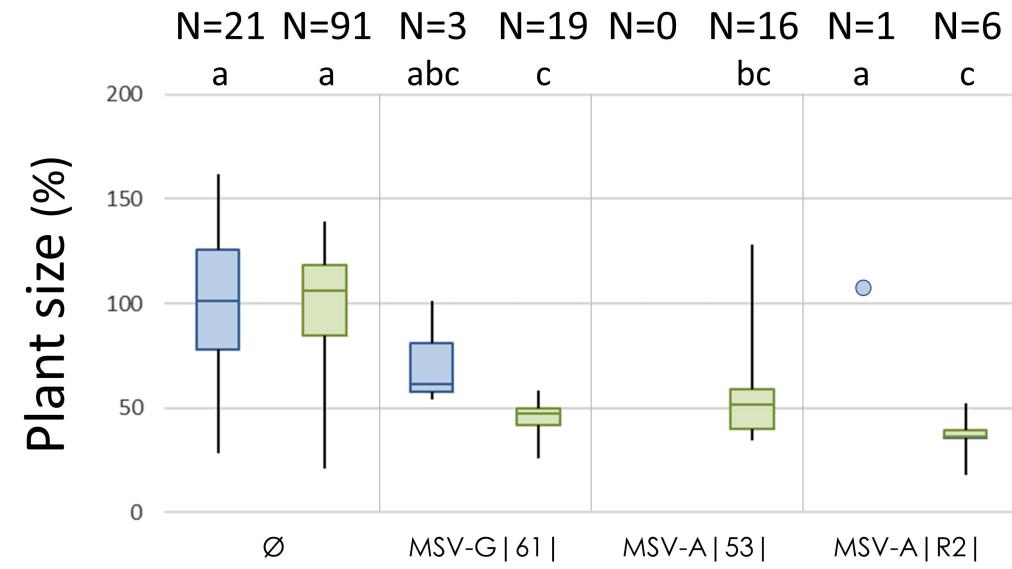
1020 **Table Supp.6:** Number of non-symptomatic (-) and symptomatic (+) plants observed 28 days
 1021 post-inoculation (dpi) of *Agrobacterium tumefaciens* strains C58C1 and EHA105 transformed
 1022 with pCAMBIA0380::Ø (negative control), pCAMBIA0380::MSV-G|61|, pCAMBIA0380::MSV-
 1023 A|53| and pBC-KS::MSV-A|R2| in *Oryza sativa indica* cv. IR64, *O. glaberrima* cv. Tog5673
 1024 and *Zea mays* cv. Golden Bantam during two independent experiments. Percentages of
 1025 symptomatic plants are indicated with %(+). nd: not determined.

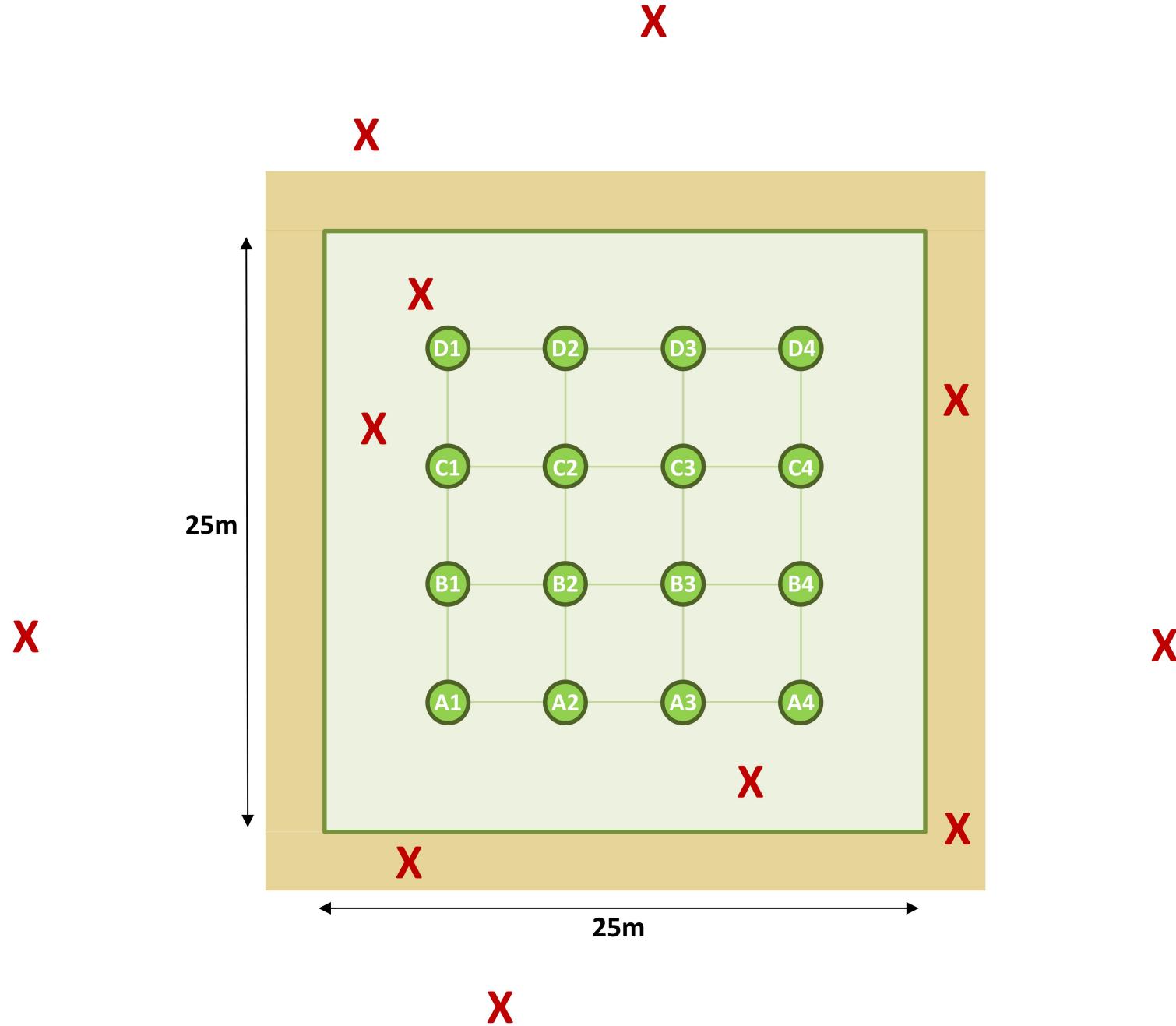
Oryza sativa indica
cv. IR64

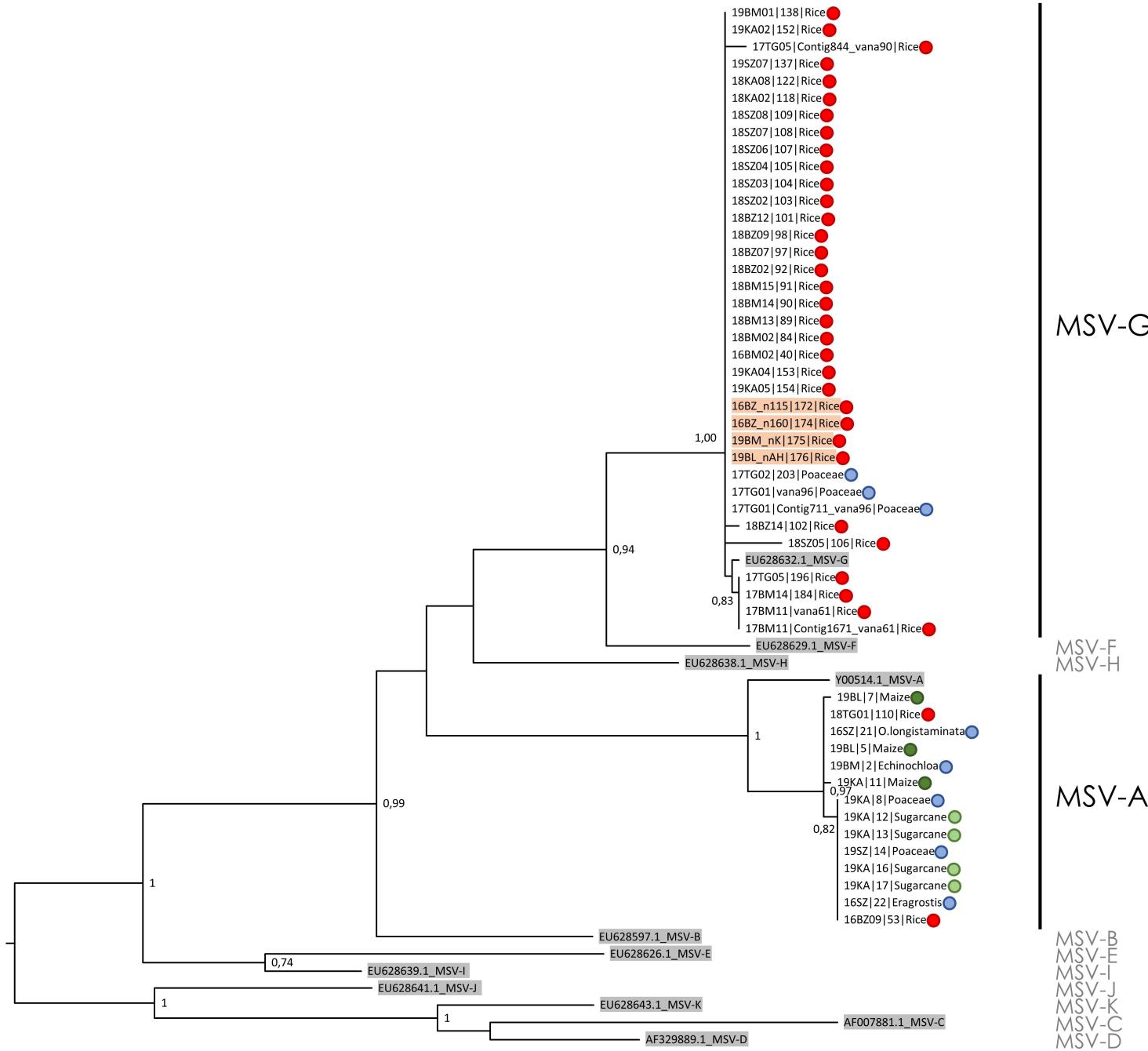
pCAMBIA0380::MSV-A | 53 |

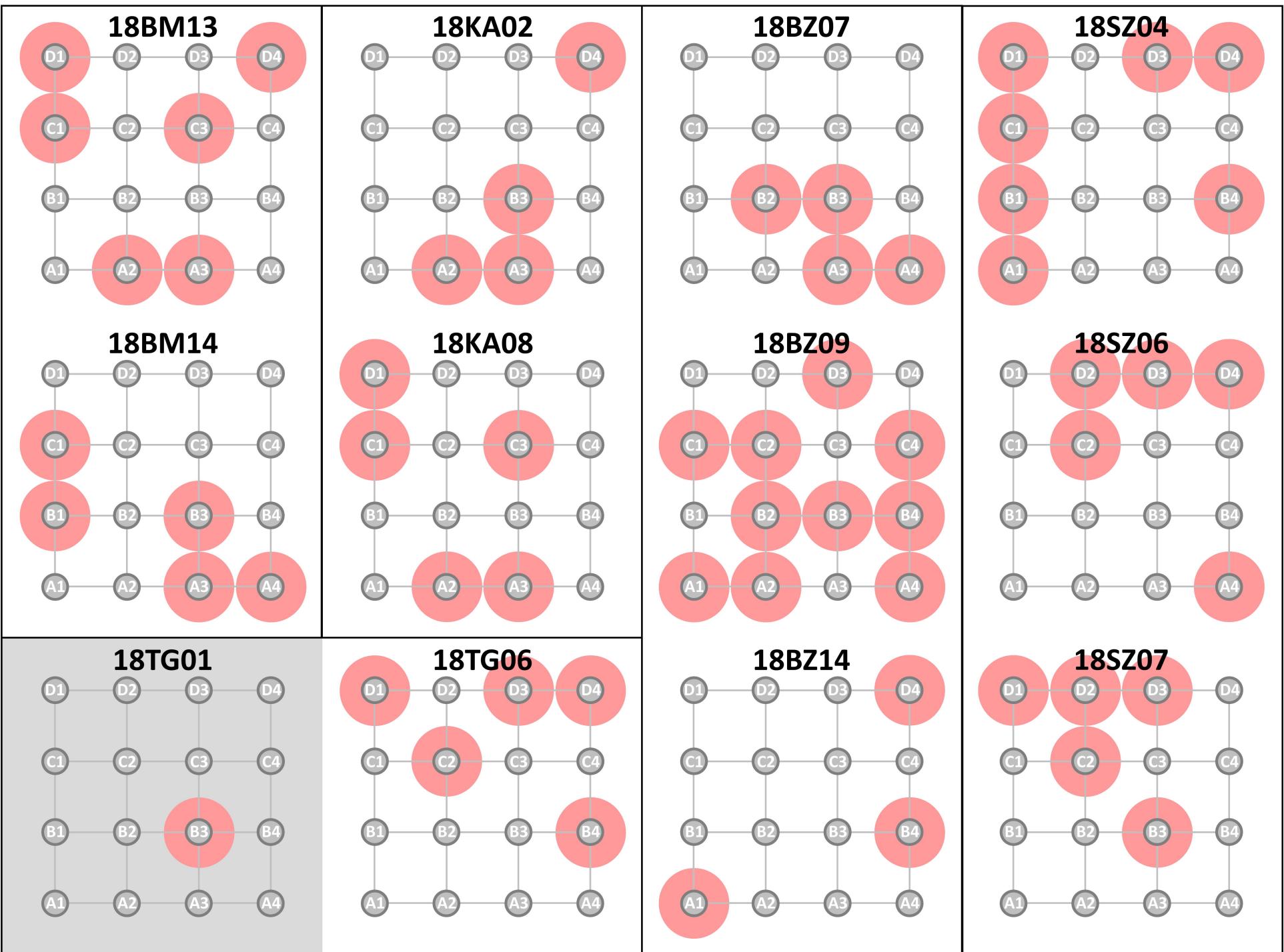
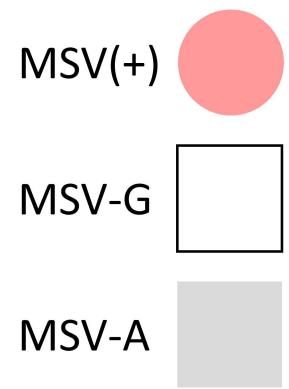
nd

Oryza glaberrima
cv. Tog5673




Zea mays
cv. Golden Bantam





nd

