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Abstract

To quantify selection acting on a trait, methods have been developed using either within or2

between-species variation. However, methods using within-species variation do not integrate3

the changes at the macro-evolutionary scale. Conversely, current methods using between-4

species variation usually discard within-species variation, thus not accounting for processes5

at the micro-evolutionary scale. The main goal of this study is to define a neutrality index6

for a quantitative trait, by combining within- and between-species variation. This neutrality7

index integrates nucleotide polymorphism and divergence for normalizing trait variation.8

As such, it does not require estimation of population size nor of time of speciation for9

normalization. Our index can be used to seek deviation from the null model of neutral10

evolution, and test for diversifying selection. Applied to brain mass and body mass at the11

mammalian scale, we show that brain mass is under diversifying selection. Finally, we show12

that our test is not sensitive to the assumption that population sizes, mutation rates and13

generation time are constant across the phylogeny, and automatically adjust for it.14

Keywords Quantitative genetics · Trait evolution · Selection · Phylogenetics · Population genetics15

Introduction16

Determining whether a trait is under a particular regime of selection has been a long-standing goal in evolu-17

tionary biology. Fundamentally, distinguishing neutral evolution from selection requires determining which18

selective regime is supported by the observed variation of traits or sequences. The variation of phenotypes19

(traits) and genotypes (sequences) can be observed at different scales, across different development stages at20

the individual level, across different individuals and populations at the species level, and finally across differ-21

ent species at the phylogenetic level. All these systems require different assumptions and methodologies, and22
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Trait selection from within and between-species variation

the endeavor to determine the selective regime for a given trait has thus incorporated theories, methods, and23

developments across various fields of evolutionary biology such as quantitative genetics, population genetics,24

phylogenetics and comparative genomics (Lynch & Walsh, 1998; Walsh & Lynch, 2018).25

Leveraging individual variations within the same species, Genome-Wide Association Studies (GWAS) in26

humans have shown that traits are mostly polygenic (many loci associated with a given trait) and under27

stabilizing selection, while the loci affecting those traits are mostly pleiotropic (many traits associated with28

a given locus) with additive effects (Sella & Barton, 2019; Simons et al., 2018). Across several populations,29

by contrasting both trait and genetic differentiation, QST–FST methods have been used to determine the30

selective regime and to quantify the strength of selection acting on a trait (Leinonen et al., 2008; Merilä31

& Crnokrak, 2001). A trait differentiation (QST) higher than genetic differentiation (FST) is interpreted32

as a signature of diversifying selection due to adaptation in different optimum trait value in the different33

populations (Lamy et al., 2012). Contrarily, QST lower than FST is interpreted as a signature of stabilizing34

selection. However, QST–FST methods have been found to require many populations (O’Hara & Merilä,35

2005), and that various factors can generate a spurious signal of selection (Edelaar et al., 2011; Pujol et al.,36

2008). Moreover, the test for diversifying selection is limited to recent local adaptation since the test is37

based on the variation observed within a single species. To disentangle selection from neutral evolution, trait38

variation can also be observed at a larger time scale. For example, change in mean trait value accumulates39

linearly with time of divergence from a sister species, and also proportionally to the trait variance (Lande,40

1980a; Turelli, 1984). Empirically, this effect can be observed for genes with larger within-species variation in41

gene expression level, which exhibits a faster accumulation of divergence in mean expression level (Khaitovich42

et al., 2004). Altogether, both the trait variance and the evolution in mean value can be used to test for trait43

selection in a pair of species (Walsh & Lynch, 2018).44

To disentangle neutral evolution and selection, trait evolution can also be observed at a larger time45

scale. For example, change in mean trait value accumulates linearly with time of divergence from a sister46

species, and also proportionally to the trait variance (Lande, 1980a; Turelli, 1984). Gene expression exhibits47

a similar accumulation as divergence in expression accumulates faster for genes with large within-species48

variation (Khaitovich et al., 2004). Altogether, both the trait variance and the evolution in mean value can49

be used to test for trait selection in a pair of species (Walsh & Lynch, 2018).50

Alternatively, by accounting for the underlying relationships between several species, the selective regime51

for a quantitative trait can also be tested at the phylogenetic scale (Felsenstein, 1985). Under neutral evolu-52

tion, the change in mean trait value along a given branch of the tree is normally distributed, with a variance53

proportional to divergence time (Hansen & Martins, 1996). As a result, the mean trait value can be modeled54

as a Brownian process branching at every node of the tree (Hansen & Martins, 1996; Harmon, 2018). Re-55

constructing the trait variation along the whole phylogeny as a Brownian process can thus constitute a null56

model of neutral trait evolution. Deviations from the assumptions of the Brownian process are however well57

known. When trait variation is constraint because of optimum mean trait values across or between species,58

the pattern of evolution can be modeled by the Ornstein-Uhlenbeck processes, which is often interpreted59

as a signature of stabilizing selection (Catalán et al., 2019). Alternatively, a trend in the Brownian process60
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Trait selection from within and between-species variation

(the tendency of a trait to evolve in a certain direction without fixed optimum) is interpreted as a signature61

of directional selection at the phylogenetic scale (Silvestro et al., 2019). However, studies have shown that62

such comparative approaches are subject to different biases (Harmon, 2018). First, a trait under stabilizing63

selection for which the optimal trait value is also evolving as a Brownian process will not deviate from a64

Brownian process, and thus be wrongly classified as neutral (Hansen & Martins, 1996). In other words, the65

better fit of a Brownian process does not necessarily constitute proof of the neutral model. Second, even for66

a trait evolving under a neutral regime, the Ornstein-Uhlenbeck process might sometimes be statistically67

preferred over a Brownian process due to sampling artifacts (Cooper et al., 2016; Price et al., 2022; Silvestro68

et al., 2015). Those limitations, altogether with the use of mean trait estimates leaving out the variance in69

traits between individuals, easily generate misclassification of selection from methods at the phylogenetic70

scale.71

At the frontier between micro and macroevolution, comparative methods at the phylogenetic scale have72

acknowledged the importance of modeling within-species variation together with changes in mean trait73

value to either describe measurement errors (Hansen & Bartoszek, 2012; Lynch, 1991), incorporate values74

for individuals (Felsenstein, 2008) or to scale the rate of change in mean trait value (Gaboriau et al., 2020;75

Gaboriau et al., 2023; Kostikova et al., 2016). Within-species variation has also been used to infer diversifying76

selection by estimating the ratio of between to within variation of many traits and test for deviation from the77

average ratio across traits (Rohlfs et al., 2014; Rohlfs & Nielsen, 2015). Here, our goal was again to use both78

variances between and within species to determine the selective regime of a quantitative trait. We build a novel79

framework that integrates trait variation at the phylogenetic and population scales together with estimates of80

molecular divergence at both scales. It allowed us to define an expected ratio of normalized variance between81

and within species while setting the threshold of this ratio for neutral, stabilizing, and diversifying selection.82

The ratio that we propose can be considered as a neutrality index for a any quantitative trait articulating83

trait and nucleotide variation within and between species. Importantly, our neutrality index also leverages84

nucleotide divergence and polymorphism to normalize trait variation at both scales, such that it does not85

require estimating population size (within-species) or speciation time (between species). From the field of86

population genetics, our study can be seen as the macro-evolutionary generalization of QST–FST methods87

to account for phylogenetic relationships between species. From the field of phylogenetics, our study can be88

seen as an alternative to the EVE model (Rohlfs et al., 2014; Rohlfs & Nielsen, 2015) for a single trait, where89

we set a threshold for neutral evolution by leveraging species nucleotide polymorphism and divergence.90

Materials and Methods91

Neutrality index for a quantitative trait92

Prior to developing our neutrality index, we review theoretical expectations for variations of quantitative93

traits and genomic sequences under neutral evolution for both within- and between-species variation.94

3

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 3, 2023. ; https://doi.org/10.1101/2023.10.02.559886doi: bioRxiv preprint 

https://doi.org/10.1101/2023.10.02.559886
http://creativecommons.org/licenses/by/4.0/


Trait selection from within and between-species variation

Within-species trait variations95

For a given trait, the genetic architecture is mainly defined by the number of loci encoding the trait (L)

and the random additive effect of a mutation on the trait (a). New mutations are generating trait variance

and the average effect of a mutation on the trait is σ2
M = L · E[a2]. At the individual level, the mutational

variance (VM) is the rate at which new mutations contribute to the trait variance per generation. As shown

in Lande (1979, 1980b), VM is a function of the mutation rate per loci per generation (µ) and σ2
M:

VM = 2µ · σ2
M. (1)

While in an infinitesimal model mutations supply new genetic variants, random genetic drift depletes

standing variation (Barton et al., 2017; Sella & Barton, 2019; Turelli, 2017). For a neutral trait at equilibrium

between mutation and drift (Lynch et al., 1998), the additive genetic variance in a species (VA) is a function

of the mutational variance (VM) and the effective number of individuals in the population (Ne):

VA = 2Ne · VM, (2)

= 4Ne · µ · σ2
M from eq. 1. (3)

For any neutral genomic region of interest, the nucleotide diversity, π, is measured as the number of

mutations segregating in the population divided by the length of the region. Any segregating mutations

will eventually reach fixation or extinction due to random genetic drift and π is also at a balance between

mutations and drift. As shown in Tajima (1989), π is a function of the mutation rate per loci per generation

(µ) and the effective population size (Ne):

π = 4Ne · µ. (4)

We define σ2
W as the ratio of additive genetic variance of the trait (VA) over π of any neutral genomic

region of interest. This ratio allows removing the effect of Ne and µ, which are parameters not related to the

genetic architecture of the trait, giving σ2
W as a proxy of σ2

M:

σ2
W

def
=

VA

π
, (5)

=
4Ne · µ · σ2

M

4Ne · µ
from eq. 1 and 4, (6)

= σ2
M. (7)

The additive genetic variance is also equal to the observed phenotypic variance (VP ) multiplied by narrow-

sense heritability (h2; (Hill et al., 2008)), which leads to σ2
W being a function of VP and h2:

σ2
W =

h2 · VP

π
. (8)

Between-species trait variations96

For a given species, we denote by P̄t the mean value of the trait across the individuals in the species at

generation t. If the trait is neutral and encoded by many loci as assumed by the infinitesimal model, P̄t

4
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Trait selection from within and between-species variation

evolves as a Brownian process (Felsenstein, 1985; Hansen & Martins, 1996). The variance of P̄t after t

generations, Var
[
P̄t

]
is given (Hansen & Martins, 1996) by:

Var
[
P̄t

]
=

VA

Ne
· t (9)

= 4t · µ · σ2
M, from eq. 3, (10)

Moreover, for any genomic region under neutral evolution, some mutations will eventually reach fixation

due to random genetic drift, resulting in a substitution of a nucleotide at the species level. The probability

of fixation (Pfix) of a neutral mutation is 1/2Ne (Kimura, 1962). We can derive the substitution rate per

generation q as the number of mutations per generation (2Ne · µ) multiplied by the probability of fixation

for each newly arisen mutations Pfix (McCandlish & Stoltzfus, 2014), giving:

q = 2Ne · µ · Pfix, (11)

= 2Ne · µ · 1

2Ne
, (12)

= µ. (13)

That is, if mutations are neutral, the rate of substitution within a genomic region equals the rate at which97

new mutations arise per generation for the same genomic region (Kimura, 1968).98

After t generations and assuming that no multiple substitutions occurred at the same site, the nucleotide

divergence d, which is the fraction of the genomic region that generated a substitution, will be t multiplied

by the nucleotide substitution rate per generation (q):

d = t · q (14)

= t · µ from eq. 13. (15)

We define σ2
B as the variance in the mean trait value (Var

[
P̄t

]
) normalized by the nucleotide divergence of

any neutral genomic region (d). This ratio allows removing the effect of t and µ, which are parameters not

related to the genetic architecture of the trade, giving σ2
B as another proxy of σ2

M:

σ2
B

def
=

Var
[
P̄t

]

4d
, (16)

=
4t · µ · σ2

M

4t · µ
from eq. 10 and 15, (17)

= σ2
M. (18)

Neutrality index99

The variability between either individuals or species can be obtained for both quantitative traits and genomic

sequences. At the population level, the variability of the trait between individuals can be combined with

the nucleotide diversity of any neutrally evolving genomic region to obtain σ2
W, which equals σ2

M if the trait

is neutrally evolving (see above). At the phylogenetic level, the variability of the mean trait value between

species can be combined with the nucleotide divergence of any neutrally evolving genomic region to obtain

σ2
B. Similarly, σ2

B = σ2
M if the trait is neutrally evolving and the genetic architecture of the trait has not

5
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Trait selection from within and between-species variation

Phenotype
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divergence matrix

Species tree
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 species
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variation

Between species

variation

Neutral trait evolutionStabilizing selection Diversifying selection

Figure 1: Between species, the change along the phylogeny of the mean phenotypic trait allows the estimation

of between-species trait variation, σ̂2
B, which is normalized by nucleotide divergence. Within species, the

genetic variance allows the estimation of within-species trait variation, σ̂2
W, which is normalized by nucleotide

diversity. ρ̂ is the ratio of σ̂2
B over σ̂2

W. Under neutral evolution, ρ̂ is expected to be equal to one. Under

diversifying selection, the trait is heterogeneous between species, but homogeneous within species, leading

to ρ̂ greater than one. Under stabilizing selection, the trait is homogeneous between species, leading to ρ̂

smaller than one. Importantly, the sequence from which nucleotide diversity and divergence are estimated

should be neutrally evolving, but they are not necessarily linked to the quantitative trait under study, they

allow for discarding the confounding effect on mutation rate diversity, population size and divergence time.

changed along the phylogenetic tree. We thus have, for a neutrally evolving trait:

σ2
W = σ2

B from eq. 7 and 18, (19)

⇒ ρ
def
=

σ2
B

σ2
W

= 1. (20)

We define a neutrality index ρ = σ2
B/σ2

W that will equal 1 for a trait evolving neutrally. Both σ2
B and σ2

W100

can be estimated using quantitative trait and genomic sequences within and between species, while neither101

the mutation rate (µ), nor the effective population size (Ne) or time of divergence (t) need to be estimated.102

Moreover, the sequence from which π and d are estimated should be neutrally evolving, but they are not103

necessarily linked to the quantitative trait under study.104
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Trait selection from within and between-species variation

Estimate105

Based on the comparative framework that can account for phylogenetic inertia (Felsenstein, 1985; O’Meara106

et al., 2006), we provide a maximum likelihood estimate for ρ as well as a Bayesian estimate to derive107

posterior probabilities that the null model of neutrality (i.e. ρ = 1) is rejected.108

Maximum likelihood estimate109

At the phylogenetic scale, for n taxa in the tree, D (n × n) is the distance matrix computed from the branch

lengths (d as nucleotide divergence in units of substitutions per site) and the topology of the phylogenetic

tree. The diagonal Di,i represents the total distances from the root of the tree to each taxon (i). The off-

diagonal elements (Di,j = Dj,i) are the distances between the root and the most recent common ancestor

of taxa i and j. The state P0 at the root of the tree for the trait can be estimated from the n × 1 vector of

mean trait values P̄ at the tips of the tree using maximum likelihood (O’Meara et al., 2006):

P0 =
(
1ᵀ × D

−1 × 1
)

−1 ·
(
1ᵀ × D

−1 × P̄
)

, (21)

where 1 is an n × 1 column vector of ones.110

Finally, between-species variation σ̂2
B is estimated as (O’Meara et al., 2006):

σ̂2
B =

1

4

(
P̄ − P0 · 1

)ᵀ × D
−1 ×

(
P̄ − P0 · 1

)

n − 1
. (22)

For a given species i with inter-individual data available, additive genetic variance of a trait (VA,i) is

the product of heritability (h2
i ) and phenotypic variance (VP,i). The ratio of VA,i over nucleotide diversity

of neutrally evolving sequences (πi) is a sample estimate of σ2
W. Averaged across all species, we obtain the

estimate σ̂2
W as:

σ̂2
W =

1

n

n∑

i=1

VA,i

πi
=

1

n

n∑

i=1

VP,i · h2
i

πi
. (23)

As depicted in fig. 1, the neutrality index is estimated as:

ρ̂ =
σ̂2

B

σ̂2
W

. (24)

Bayesian estimate111

The Bayesian framework allows obtaining the posterior distribution of the neutrality index (ρ̂) for a given112

trait. Even though ρ̂ is estimated independently for each trait of interest in the maximum likelihood frame-113

work (previous section), here we generalize to K traits co-varying along the phylogenetic tree using the114

BayesCode software (Latrille et al., 2021). Trait variation along the phylogenetic tree is modeled as a K-115

dimensional Brownian process B (1×K) starting at the root and branching along the tree topology (Huelsen-116

beck & Rannala, 2003; Lartillot & Poujol, 2011; Lartillot & Delsuc, 2012; Latrille et al., 2021). The rate117

of change of the Brownian process is determined by the positive semi-definite and symmetric covariance118

matrix between traits Σ (K × K). The off-diagonal elements of Σ are the covariance between traits, and119

the diagonal elements are the variance of each trait, thus corresponding to σ̂2
B (see section S2.1). With an120
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Trait selection from within and between-species variation

inverse Wishart distribution as the prior on the covariance matrix, the posterior on Σ, conditional on B121

is also an invert Wishart distribution (see section S2.2). We used Metropolis-Hastings algorithm to sample122

B, while the posterior distribution of Σ is sampled using Gibbs sampling. For each trait and each species,123

the prior on heritability (h2) for each species is set as a uniform distribution with user-defined boundaries.124

Heritability and phenotypic variance for each trait are combined with nucleotide diversity to compute σ̂2
W for125

each species before being averaged across species (as in eq. 23). From σ̂2
W and Σ, the posterior distribution126

of ρ̂ (as in eq. 24) is obtained for each trait. The posterior distribution of ρ̂ thus allows testing for deviation127

from neutrality (Fig. 1), for example, by computing P[ρ̂ > 1] to test for evidence of diversifying selection128

and P[ρ̂ < 1] to test for evidence of stabilizing selection.129

Applicability to empirical data130

Our method assumes that the narrow-sense heritability (h2) of a trait is known such as to estimate additive131

genetic variance (VA) from phenotypic variance (VP ) as VA = h2 · VP . Fortunately, if heritability is not132

known, the test for diversifying selection can still be performed, although it is underpowered. Indeed, if133

the additive genetic variance is substituted by phenotypic variance, it is equivalent to assuming complete134

heritability (h2 = 1). Because h2 ≤ 1 by definition, we overestimate the within-species variation and thus135

underestimate ρ̂. It is, however, possible to test for diversifying selection because testing for ρ̂ > 1 while using136

phenotypic variance instead of additive genetic variance means that knowing the additive genetic variance137

would have only increased the evidence for diversifying selection. Similarly, using the broad-sense heritability138

(H2) instead of narrow-sense heritability (h2) results in an underestimation of ρ̂ since h2 ≤ H2. In contrast,139

the test for stabilizing selection is invalid if ρ̂ is underestimated. Several assumptions made by our test might140

not hold on empirical data and their consequences on the neutrality index and the test that can be performed141

are shown in Table 2.142

Simulation143

We tested the performance of our neutrality index (ρ) to detect selection on a quantitative trait using144

simulations. We performed simulations under different selective regimes (neutral, stabilizing, diversifying),145

different demographic histories (constant or fluctuating population size) and different evolution of the mu-146

tation rate (constant or fluctuating). Simulations were individual-based and followed a Wright-Fisher model147

with mutation, selection and drift for a diploid population including speciation along a predefined ultrametric148

phylogenetic tree (Fig. 2A&B). Each individual phenotypic value was the sum of genotypic value and an149

environmental effect. The environmental effect was normally distributed with variance VE. We assumed that150

the genotypic value was encoded by L = 5, 000 loci, with each locus contributing an additive effect that was151

normally distributed with standard deviation a = 1 (Fig. 2A and section S1.1 for theoretical formulation).152

We assumed a trait with a narrow-sense heritability of h2 = 0.2 and computed the theoretical VE accordingly153

(see section S1.1). Assuming a diploid panmictic population of size Ne = 50 at the root of the tree, and with154

non-overlapping generations, we simulated explicitly each generation along an ultrametric phylogenetic tree.155

For each offspring, the number of mutations was drawn from a Poisson distribution with mean 2 · µ · L, with156

the mutation rate per generation µ. From the empirical mammalian dataset (see next section), we computed157

8
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Trait selection from within and between-species variation

an average nucleotide divergence from the root to leaves of 0.18 and average genetic diversity of 0.00276.158

We scaled parameters in our simulations to fit plausible values for mammals. We thus used a mutation rate159

of µ = 0.00276/4Ne = 1.38 × 10−5 per generation per locus and a total of t = 0.18/1.38 × 10−5 = 13, 500160

generations from root to leaves, and the number of generations along each branch was proportional to the161

branch length.162

The changes in log-µ and log-Ne along the lineages were both modeled by a geometric Brownian process163

(B (0, σµ = 0.0086) and B (0, σNe
= 0.0086), which led to a standard deviation of 0.0086 ·

√
13, 500 = 1.0164

in log-space from root to leaves. An Ornstein-Uhlenbeck process was overlaid to the instant value of log-165

Ne provided by the geometric Brownian process to account for short-term changes between generations166

(OU (0, σNe
= 0.1, θNe

= 0.9)). The geometric Brownian motion accounted for long-term fluctuations (low167

rate of changes σNe
but unbounded), while the Ornstein-Uhlenbeck introduced short-term fluctuations (high168

rate of changes σNe
but bounded and mean-reverting). The simulation started from an initial sequence at169

equilibrium at the root of the tree and, at each node, the process was split until it finally reached the leaves170

of the tree. From a speciation process perspective, this was equivalent to an allopatric speciation over one171

generation.172

A random genetic drift was introduced by resampling individuals at each generation, with each parent173

having a probability of being sampled that was proportional to its fitness (W ). Selection was modeled as a one-174

dimensional Fisher’s geometric landscape, with the fitness of an individual being a monotonously decreasing175

function of the distance between the individual and the optimal phenotype (Blanquart & Bataillon, 2016;176

Tenaillon, 2014). More specifically, the fitness of an individual was given by W = e(P −λ)2/α, where P was177

the trait value of the individual, λ = 0.0 was the optimal trait value, and α = 0.02 was the strength of178

selection. Mutations were considered as a displacement of the phenotype in the multidimensional space.179

Beneficial mutations moved the phenotype closer to the optimum, while deleterious mutations moved it180

further away. Stabilizing selection was implemented by fixing the optimum phenotype to a single value181

(λ = 0.0). Diversifying selection was implemented by allowing the optimum phenotype to move along the182

phylogenetic tree as a geometric Brownian process (Hansen, 1997) (λ ∼ B (0, σλ = 1.0)). Neutral evolution183

was implemented by fixing the fitness landscape (W = 1), which meant that each individual had the same184

probability of being sampled at each generation.185

Nucleotide diversity (π) was measured as the heterozygosity of neutral markers that were simulated186

along the phylogenetic tree but not linked to the trait simulated. Nucleotide divergence (d) was measured187

as the number of substitutions per site of neutral markers along the branches of the phylogenetic tree. The188

additive genetic variance was measured as phenotypic variance multiplied by heritability. Heritability was189

estimated from the slopes of the regression of offspring’s phenotypic trait values on parental phenotypic trait190

values (Lynch & Walsh, 1998) averaged over the last 10 simulated generations. Heritability was thus not a191

given parameter of the simulations, but rather measured as it would be in empirical data.192
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Generation n+1.

Generation n.

Generation n+2.

Parent 1

Parent 2 Genetic drift: parents are chosen randomly.

Selection: probability to be chosen is weighted by �tness.

Mutation: loci passed to o�springs can mutate.

Individual i

Fitness

W
i

Alleles:

Genotypic effect:

Phenotype

Figure 2: Wright-Fisher simulations with mutation, selection and drift. Left panel: For a given individual,

the trait phenotypic value is the sum of genotypic value and a environmental effect (standard deviation VE).

The trait’s genotypic value is encoded by L loci, with each locus contributing additively to the genotypic

value. Parents are selected for reproduction to the next generation according to their phenotypic value, with

a probability proportional to their fitness. Mutations are drawn from a Poisson distribution, with each locus

having a probability µ to mutate. Drift is modeled by the resampling of parents. Right panel: examples of a

trait evolving along a phylogenetic tree, with the mean phenotype (black line) and the variance of the trait

genotypic value (gray area).

Empirical dataset193

We analyzed a dataset of body and brain masses from mammals. The log-transformed values of body and194

brain masses were taken from Tsuboi et al. (2018). We removed individuals not marked as adults and split195

the data into males and females due to sexual dimorphism in body and brain masses. We discarded species196

with only one representative sample. The mammalian nucleotide diversity was obtained from the Zoonomia197

project (Genereux et al., 2020), with nucleotide divergence obtained on a set of neutral markers in Foley198

et al. (2023), and with nucleotide diversity measured as heterozygosity in Wilder et al. (2023).199

We also analyzed a dataset of primate species, with the nucleotide variation obtained from Kuderna200

et al. (2023) and the quantitative trait variation also from Tsuboi et al. (2018), using the same filtering as201

for the mammalian dataset. However, the primate nucleotide divergence was not obtained on a set of neutral202

markers as for the mammalian dataset, but across the whole genome.203

Results204

Neutrality index205

For a neutral trait, the genetic architecture, meaning the number of loci encoding the trait and the average206

effect of a mutation on the trait, is formally related to both within and between-species variation of the207

trait. We defined the neutrality index as ρ = σ2
B/σ2

W, which equals 1 for a neutral trait (see Materials208

and Methods), suggesting that traits for which this relationship was not verified were putatively under209
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selection. Under stabilizing selection, the variation between species is depleted because the mean trait value210

is maintained similar between different species, which leads to ρ < 1. In contrast, under diversifying selection,211

the variation between species is inflated because species will have potentially different trait values (Hansen,212

1997), which leads to ρ > 1. Our neutrality index for a quantitative trait leveraged the data for any number of213

species, and took advantage of the signal over the whole phylogenetic tree, while at the same time taking into214

account phylogenetic inertia and addressing the non-independence between species (Fig. 1). This statistic215

was obtained as a maximum likelihood estimate (ρ̂), from eq. 23 and 22. We also devised a Bayesian estimate216

to obtain the posterior distribution of the neutrality index, and test for diversifying selection as P[ρ̂ > 1],217

and stabilizing selection as P[ρ̂ < 1].218

Our neutrality index made a series of assumptions that we described in details in the Material and219

Methods section. Table 2 summarized these assumptions and outlined possible consequences for the neutrality220

test that we proposed.221

Results against simulations222

The inference framework was first tested on independently simulated datasets matching an empirically rel-223

evant mammalian empirical regime (see Materials and Methods). Under constant population size (Ne) and224

constant mutation rate (µ) across the phylogenetic tree (fig. 3, top row), we found no false negative for simu-225

lations of stabilizing (P[ρ̂ < 1] > 0.975; blue in fig. 3) or diversifying (P[ρ̂ > 1] > 0.975; red in fig. 3) selection.226

For simulations under neutral evolution, 77% of those were correctly identified (0.025 ≤ P[ρ̂ > 1] ≤ 0.975;227

yellow in fig. 3), while 21% and 2% were wrongly detected as stabilizing or diversifying selection, respectively.228

Once we introduced fluctuating Ne and µ (Fig. 3, bottom row), our ability to identify simulations under229

either diversifying or stabilizing selection remained the same with all cases detected correctly. For simulations230

under neutral evolution, 51% of the simulations were correctly detected (0.025 ≤ P[ρ̂ > 1] ≤ 0.975), while231

49% were detected as stabilizing selection (P[ρ̂ < 1] > 0.975) and none as diversifying selection.232

Results on empirical data233

For mammalian body and brain mass, we obtained male (|) and female (~) trait variations. Combined234

with nucleotide diversity and divergence, we estimated ρ̂ and posterior probabilities of diversifying selection235

under different assumptions for trait heritability as shown in the Table 1. Assuming complete heritability,236

brain mass was found to be under diversifying selection with posterior probabilities of 0.0 for both males237

and females. If we assumed that heritability (h2) of body mass was uniformly distributed between 20% and238

40% (Hu et al., 2022), posterior probabilities of diversifying selection became 0.635 for males and 0.324 for239

females. Mammalian brain mass was found to be under diversifying selection with posterior probabilities240

of 0.877 for males and 0.972 for females when complete heritability was assumed. Assuming a uniform241

distribution between 20% and 40% for heritability led to posterior probabilities of diversifying selection of242

1.0 for both males and females.243

We also analyzed a similar dataset for body mass focusing this time only at Primates (Table 1). For244

primates body mass, we found posterior probabilities of diversifying selection of 1.0 for males and 0.914245
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Figure 3: 10, 000 simulations of trait evolution along a phylogenetic tree under different selection regimes.

Traits simulated under stabilizing selection (blue), under a neutral evolution (yellow), and under a moving

optimum (red). Histogram of ratio of between-species trait variation (σ̂2
B) over within-species trait variation

σ̂2
W with ρ̂ = σ̂2

B/σ̂2
W estimated from each simulated data (left) and probabilities of ρ̂ being greater than 1

(right). Effective population size (Ne) and mutation rate (µ) were either constant (top row), or fluctuating

as a Brownian process along the phylogenetic tree (bottom row).

for females when assuming a uniform distribution for the heritability of body mass between 20% and 40%.246

Assuming complete heritability of body mass did not change the posterior probability for males, but increased247

the one for female to 1.0. Evidence for diversifying selection on body mass was therefore more pronounced in248

Primates than in mammals. However, the genetic markers used to normalize trait variance with nucleotide249

divergence were not necessarily neutral, which could create spurious false positives by artificially inflating ρ̂250

(Table 2 and methods).251

Discussion252

In this study, we proposed a neutrality index for a quantitative trait that can be used within a statistical253

framework to test for selection. Our neutrality index for a trait, ρ, is calculated as the ratio of the normalized254

within- to between-species variation and it allowed the identification of the evolutionary regime of a quanti-255

tative trait. At the phylogenetic scale, trait variation between species was normalized by sequence divergence256

obtained from a neutral set of markers. Similarly, trait variation within species was normalized by sequence257

polymorphism obtained also from a neutral set of markers. Our estimate of ρ̂ could be tested for deviation258

from the value of 1.0 expected under the null hypothesis of neutrality. Technically, the neutrality index can259

be estimated either as a maximum likelihood point estimate, or as a mean posterior estimate from a Bayesian260

implementation (see section S3). The latter also enabled the estimation of the posterior credible interval to261
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Dataset Trait h2 Sex n ρ̂ 95% CI for ρ̂ P[ρ̂ > 1]

Mammals Body mass 1.0 | 36 0.340 0.217-0.523 0.000

Mammals Body mass 1.0 ~ 26 0.277 0.160-0.490 0.000

Mammals Body mass U(0.2, 0.4) | 36 1.124 0.721-1.754 0.635

Mammals Body mass U(0.2, 0.4) ~ 26 0.936 0.523-1.715 0.324

Mammals Brain mass 1.0 | 36 1.351 0.851-2.173 0.877

Mammals Brain mass 1.0 ~ 26 1.727 0.991-2.938 0.972

Mammals Brain mass U(0.2, 0.4) | 36 4.527 2.831-7.091 1.000

Mammals Brain mass U(0.2, 0.4) ~ 26 6.001 3.288-10.941 1.000

Primates Body mass 1.0 | 71 0.558 0.401-0.784 0.000

Primates Body mass 1.0 ~ 65 0.389 0.278-0.547 0.000

Primates Body mass U(0.2, 0.4) | 71 1.875 1.288-2.695 1.000

Primates Body mass U(0.2, 0.4) ~ 65 1.296 0.899-1.821 0.914

Primates Brain mass 1.0 | 71 1.929 1.395-2.616 1.000

Primates Brain mass 1.0 ~ 65 1.950 1.399-2.790 1.000

Primates Brain mass U(0.2, 0.4) | 71 6.479 4.658-8.944 1.000

Primates Brain mass U(0.2, 0.4) ~ 65 6.522 4.664-9.294 1.000

Table 1: Test of diversifying selection on a mammal and a primate dataset, by splitting males (|) and

females (~). Traits considered were body mass or brain mass (log-transformed). Heritability (h2) was either

assumed complete (h2 = 1.0) or uniformly distributed between 20% and 40% (h2
∼ U(0.2, 0.4)). n was the

number of species in the dataset. ρ̂ was the posterior estimate of our neutrality index, with the 95% credible

interval (CI) for ρ̂ also computed. P[ρ̂ > 1] was the estimated posterior probability of diversifying selection.

test for departure from a neutrally evolving trait (e.g. P[ρ̂ > 1]). We tested our statistical procedure against262

simulated data and showed that our test was able to correctly detect simulations under diversifying selection263

(test of ρ̂ > 1) or under stabilizing selection (test of ρ̂ < 1). However, our test detected a spurious signal264

of stabilizing selection (ρ̂ < 1) when we simulated the evolution of a neutral trait. We thus argue that our265

method should be used to detect diversifying selection, but that it had low accuracy to detect stabilizing266

selection due to false positives.267

Our results showed that our method significantly improved over currently available methods to detect268

selection acting on a trait at the phylogenetic scale. Current methods relying on evolution of the mean trait269

value between species also tend to statistically prefer a model of stabilizing selection over a Brownian process270

when the trait is neutral (Cooper et al., 2016; Price et al., 2022; Silvestro et al., 2015). Our approach could271

in theory be applied to detect stabilizing selection at the phylogenetic scale, but we showed that it did272

not have the statistical power to identify those cases. In contrast, we showed that our method was able to273
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Trait selection from within and between-species variation

Broken assumption Consequences σ̂2
W σ̂2

B Test ρ > 1 Test ρ < 1

Trait encoded by few loci Between-species trait variation is underestimated – Underestimated Conservative Invalid

Sexual dimorphism Within-species trait variation is overestimated Overestimated – Conservative Invalid

Inbreeding Nucleotide diversity (π) is underestimated Overestimated – Conservative Invalid

Markers for polymorphism are negatively selected Nucleotide diversity (π) is underestimated Overestimated – Conservative Invalid

Markers for polymorphism are positively selected Nucleotide diversity (π) is underestimated Overestimated – Conservative Invalid

Markers for divergence are positively selected Nucleotide divergence (d) is overestimated – Underestimated Conservative Invalid

Markers for polymorphism under balanced selection Nucleotide diversity (π) is overestimated Underestimated – Invalid Conservative

Markers for divergence are negatively selected Nucleotide divergence (d) is underestimated – Overestimated Invalid Conservative

Multiple nucleotide substitutions at the same locus Nucleotide divergence (d) is underestimated – Overestimated Invalid Conservative

Table 2: Assumptions breaks and their consequences on the estimation of within-species variation (σ̂2
W),

between-species variation (σ̂2
B), and on the neutrality index ρ = σ̂2

B/σ̂2
W. The last two columns indicate

whether the test for diversifying selection (ρ > 1) and for stabilizing selection ρ < 1 are conservative or

invalid due to violated assumptions.

identify correctly cases of diversifying selection, which is a clear an improvement over current methods that274

model only mean trait value. Indeed, under diversifying selection, mean trait value will not deviate from275

a Brownian process, and thus cannot be distinguished from neutral evolution (Hansen & Martins, 1996;276

Harmon, 2018). For example, testing the selective regime in the expression level of the majority of genes277

led to the selection of a Brownian process as the prefered model and the interpretation that the expression278

was evolving neutrally (Catalán et al., 2019). Our diversity index has the advantage to discriminate the279

alternative model of diversifying selection from the neutral case by comparing within- and between-species280

variation correctly normalized to remove confounding factors. Our approach is not the first one to normalize281

between-species variation to detect selection, but this was done by using within-species variations (Rohlfs282

et al., 2014; Rohlfs & Nielsen, 2015) and not estimates of neutral molecular divergence as done in our study.283

These studies have further compared their statistic across a pool of traits, which allowed them to identify284

outlier traits putatively under diversifying selection but without testing for selection on a single trait at a285

time (Gillard et al., 2021; Rohlfs & Nielsen, 2015). Instead, our procedure can be applied to a single trait,286

estimating the neutrality index and giving a statistical test for departures from the null model of neutral287

evolution for a single test. Our diversity index opens new avenues to revisit these studies and better test288

for the selective regime affecting the quantitative traits, assuming we have access to genomic datasets to289

estimate nucleotide divergence and polymorphism.290

The main novelty of our study was to use the nucleotide divergence and polymorphism to normalize trait291

variation between and within species. In the context of within species variation, QST–FST tests have been292

developed to compare trait and sequence across several populations to test for selection (Leinonen et al., 2013;293

Martin et al., 2008). Our neutrality index also used the genetic sequences from which nucleotide divergence294

and polymorphism are estimated. Although the sequences should be neutrally evolving, they do not have to be295

necessarily linked to the quantitative trait under study. Nucleotide variation allows normalizing for diversity296

driven by confounding factors such as population sizes (Ne), mutation rates (µ) and generation time (Hansen297

& Martins, 1996; Harmon, 2018). Thus our test avoids the estimation of the parameters, which are complex298

to correctly infer, and it also bypasses the estimation of divergence time, which was necessary in previous299
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approaches (Walsh & Lynch, 2018). But importantly, by normalizing with sequence variation, we also showed300

using simulated data that our test was not sensitive to the assumption that Ne, µ and generation time were301

constant across the phylogenetic tree, an unmet assumption empirically (Bergeron et al., 2023; Wilder et al.,302

2023). Indeed, under the neutral case of evolution, changes in Ne, µ and generation time impacted similarly303

trait and sequence variation. The normalization by nucleotide divergence and polymorphism automatically304

absorbed long-term and short-term changes in Ne, µ and generation time, which canceled out in the ratio305

of trait variation ρ̂.306

Even though our test was developed for a quantitative trait, analogies with other tests of selection307

developed for molecular sequences also provided insight into its behavior. First, we acknowledge that our308

test took inspiration from the McDonald and Kreitman (1991) test devised for protein-coding DNA sequences,309

where synonymous mutations were used to determine the neutral expectation, and the inflation of divergence310

was compared to polymorphism within species. Second, because ρ was compared to 1, our test ultimately bear311

analogy to the codon-based test of selection, where the ratio of non-synonymous to synonymous substitutions312

(ω) is compared to 1 (Goldman & Yang, 1994; Muse & Gaut, 1994). As ω < 1 is interpreted as purifying313

selection acting on the protein, ρ < 1 is interpreted as stabilizing selection acting on the trait. Similarly, the314

interpretation of adaptation for ω > 1 is analogous to diversifying selection for ρ > 1. With this analogy315

in mind, we could leverage the vast literature discussing and interpreting the results of these tests and316

their pitfalls (Anisimova & Kosiol, 2009; Jensen et al., 2019; Nielsen, 2005). First, not rejecting the neutral317

null model of ρ = 1 did not necessarily imply that the trait was effectively neutral, since diversifying and318

stabilizing selection could compensate each other resulting in ρ = 1, analogously to ω = 1 under a mix319

of adaptation and purifying selection (Nielsen, 2005). Second, empirical evidence for ρ < 1 did not rule320

out diversifying selection, but rather that this diversifying selection was not strong enough to overcome the321

stabilizing selection, similarly to strong purifying selection resulting ω < 1 even though those genes and322

sites are under adaptation (Latrille et al., 2023). By explicitly modeling stabilizing selection as a moving323

optimum, it would theoretically be possible to tease apart the effect of diversifying and stabilizing selection324

in the context of quantitative traits to obtain a statistically more powerful test.325

In the context of detecting diversifying selection on a trait, we argue that the main drawback of our326

method is that the additive genetic variance of the trait is required instead of the phenotypic variance. If327

phenotypic variance was used instead of additive genetic variance to estimate ρ̂, meaning that we assumed328

complete heritability, the neutrality index ρ̂ was ultimately underestimated. Similarly, using broad-sense329

heritability instead of narrow-sense heritability would result in underestimated ρ̂. In such context, the test330

of stabilizing selection (ρ̂ < 1]) would be statistically invalid. However, the test of diversifying selection331

(ρ̂ > 1) was underpowered although not invalided, meaning that absence of evidence would not be evidence332

of absence. As an example, even though we assumed complete heritability for brain mass, we uncovered333

diversifying selection in mammals since ρ̂ > 1.334

The development of our neutrality index was also based on several assumptions that could be relaxed335

in future studies. First, we cannot predict the behavior of our test in the context of population structures,336

gene flow and introgression. These factors should be thoroughly investigated using simulations. Second, loci337
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were assumed to contribute additively to the phenotype. Although the effects of dominance and epistasis338

is typically weak compared to the additive effects on the quantitative traits, their influence should be as-339

sessed (Crow, 2010; Hill et al., 2008). Third, the genetic architecture of the trait was assumed to be constant340

across the phylogenetic tree, whereas it might actually be variable among individuals and species (Huber341

et al., 2015; Tung et al., 2015). Such an assumption can theoretically be relaxed and changes in genetic342

architecture along the phylogenetic tree could jointly be estimated (Arnold et al., 2008; Gaboriau et al.,343

2020; Hohenlohe & Arnold, 2008; Kostikova et al., 2016). Finally, our Bayesian estimation could integrate344

uncertainty from the estimation of genetic variation, using sequences as input instead of estimated values of345

nucleotide diversity and divergence.346

From an empirical point of view, our method required integrating genomic and trait variation, which347

could reduce the possible datasets to be used. However, such datasets will become more and more accessible348

and we showed the applicability of our method by applying it to the illustrative example of mammals brain349

and body mass. Because our test was also based on several assumptions that might not hold on empirical350

data, we also provided a table containing the main assumptions and their consequences on the neutrality351

index and the test that can be performed (Table 2). For example, at the primate scale, the evidence for ρ̂ > 1352

does not necessarily imply that the brain mass was evolving under diversifying selection since the markers353

used for nucleotide divergences were not neutral, which can lead to a spurious ρ̂ > 1. In conclusion, our354

study provided a statistical framework to test for diversifying selection acting on a quantitative trait while355

integrating the trove of genomic data available both within and between species, and we believe that our356

new approach is a promising tool to investigate the evolution of quantitative traits.357
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1 Genetic architecture of the trait578

1.1 Genotype-phenotype map579

• L is the number of loci encoding the trait.580

• al ∼ N (0, a2) is the effect of a mutation on the trait at locus l ∈ {1, . . . , L}.581

• Ne is the effective number of individuals.582

• gi,l ∈ {0, 1, 2} is the genotypic value at locus l for individual i ∈ {1, . . . , Ne}.583

• Gi =
∑L

l=1
al × gi,l is the genotypic value for individual i.584

• ξi ∼ N (0, VE) is the effect of environment on the trait for individual i.585

• Pi = Gi + ξi is the phenotype for individual i.586

Figure S1: summary of trait’s genetic architecture.587

Alleles:

Genotypic effect:

Phenotype

588

within-species, the mean (Ḡ) and variance (VA) of the genotype are:589

Ḡ =
1

Ne

Ne
∑

i=1

Gi and VA =
1

Ne

Ne
∑

i=1

(

Gi − Ḡ
)2

(25)

The theoretical additive genetic variance (VA) is a function of the number of loci (L) and the effect of a590

mutation (a) as:591

VA = 4Ne · µ · L · a2 (26)

The mean (P̄ ) and variance (VP ) of the phenotype are:592

P̄ =
1

Ne

Ne
∑

i=1

Pi and VP =
1

Ne

Ne
∑

i=1

(

Pi − P̄
)2

(27)

Heritability (h2) is defined as:593

h2 =
VA

VP

=
VA

VA + VE

(28)

Altogether, effective population size (Ne), the number of loci (L) and the effect of a mutation (a), we can594

compute the variance of the environment (VE) that is required to reach a given heritability (h2) as:595

VE = VA ·

(

1

h2
− 1

)

= 4Ne · µ · L · a2 ·

(

1

h2
− 1

)

(29)
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2 Bayesian estimate596

2.1 Multivariate Brownian process597

Here we generalize to K traits evolving along the phylogeny and are correlated between them. Their variation598

along the phylogeny is modeled as a K-dimensional Brownian process B (1 × K) starting at the root and599

branching along the tree topology. The rate of change of the Brownian process is determined by the positive600

semi-definite and symmetric covariance matrix between traits Σ (K × K). Along branch j with length dj ,601

the Brownian process start at the ancestral node A(j) with value B(A(j)), and ends at node R(j) with value602

B(R(j)). The independent contrast Cj defined as change in trait along the branch normalized by
√

dj is a603

multivariate Gaussian:604

Cj =
B(R(j)) − B(A(j))

√

dj

∼ N (0, Σ) . (30)

2.2 Sampling the covariance matrix605

From the independent contrast at each branch of the tree (Cj), we can define the K × K scatter matrix, A,606

as:607

A =
2n−2
∑

j=1

Cj × [Cj ]
ᵀ

, (31)

where 2n − 2 is the number of branches in the tree and n the number of taxa.608

The prior on the covariance matrix is an inverse Wishart distribution, with K + 1 degrees of freedom:609

Σ ∼ Wishart−1(I, K + 1). (32)

By Bayes theorem, the posterior on Σ, conditional on a particular realization of B (and thus of C) is an610

invert Wishart distribution, of parameter I + A and with 2n + 1 degrees of freedom.611

Σ ∼ Wishart−1 (I + A, 2n + 1) (33)

This invert Wishart distribution can be obtained by sampling 2n+1 independent and identically distributed612

multivariate normal random variables Zk defined by613

Zk ∼ N
(

0, [I + A]
−1
)

. (34)

And from these multivariate samples, Σ is Gibbs sampled as:614

Σ =

(

2n+1
∑

k=1

Zk × [Zk]
ᵀ

)

−1

(35)
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Trait selection from within and between-species variation

3 Bayesian and Maximum-likelihood implementation615

Implementation is included within the BayesCode software, available at https://github.com/616

ThibaultLatrille/bayescode.617

3.1 Data formatting618

Running the analysis on your dataset and compute posterior probabilities requires three files:619

1. A phylogenetic tree in newick format, with branch lengths in number of substitutions per site (neutral620

markers).621

2. A file containing the mean trait values for each species.622

3. A file containing the variation within-species for each trait and the genetic variation within-species623

(neutral markers).624

3.1.1 Phylogenetic tree625

The phylogenetic tree must be in newick format, with branch lengths in substitutions per site (neutral626

markers).627

3.1.2 Mean trait for each species628

The file containing mean trait values for each species must be in a tab-delimited file with the following629

format:630

TaxonName Body mass Brain mass

Panthera tigris 12.26 5.676

Pithecia pithecia 7.256 3.436

Colobus angolensis 9.176 4.284

Saimiri boliviensis 6.845 3.279

...
...

...

631

The columns are:632

• TaxonName: the name of the taxon matching the name in the alignment and the tree.633

• As many columns as traits, without spaces or special characters in the trait.634

• The values can be NaN to indicate that the trait is not available for that taxon.635
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3.1.3 Trait variation for each species636

The file containing trait variation for each species must be in a tab-delimited file with the following format:637

638

TaxonName Nucleotide diversity Body mass variance Body mass heritability Brain mass variance Brain mass heritability

Pithecia pithecia 0.0016 0.22871 0.2 0.00737 0.2

Colobus angolensis 0.0017 0.00393 0.2 0.00416 0.2

Saimiri boliviensis 0.0013 0.00022 0.2 0.00045 0.2

Pygathrix nemaeus 0.0016 0.00347 0.2 0.00097 0.2

...
...

...
...

...
...

639

• TaxonName: the name of the taxon matching the name in the alignment and the tree.640

• Nucleotide diversity: the nucleotide diversity within-species (neutral markers), cannot be NaN.641

• As many columns as traits, without spaces or special characters in the trait.642

• TraitName variance: the phenotypic variance of the trait within-species, can be NaN to indicate that643

the trait variance is not available for that taxon.644

• TraitName heritability (optional): the heritability of the trait within-species, between 0 and 1, cannot645

be NaN.646

• The columns with the suffix variance and heritability are repeated for each trait.647

• TraitName heritability lower (optional): the lower bound of the heritability of the trait within-648

species, between 0 and 1, cannot be NaN.649

• TraitName heritability upper (optional): the upper bound of the heritability of the trait within-650

species, between 0 and 1, cannot be NaN.651

• If the columns with the suffix heritability lower and heritability upper are present, the652

heritability is randomly drawn from a uniform distribution between the lower and upper bounds.653

• If the columns with the suffix heritability is present, it is taken as is.654

• If the additive genetic variance (instead of phenotypic variance) is available for a trait, the heritability655

can be omitted and will automatically be set to 1.0.656
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3.2 Bayesian estimation657

The executable nodetraits from BayesCode is used to run the Bayesian estimation of the model, and the658

executable readnodetraits is used to read the results.659

Assuming that the file data/body size/mammals.male.tsv contains the mean trait values for660

each species, the file data/body size/mammals.male.var trait.tsv contains the variation within-661

species for each trait and the genetic variation within-species (neutral markers), and the file662

data/body size/mammals.male.tree contains the phylogenetic tree, the following commands are used to663

run the model and read the results.664

3.2.1 Running the model665

nodetraits is run with the following command:666

nodetraits --until 2000667

--tree data/ body_size / mammals .male.tree668

--traitsfile data/ body_size / mammals .male.tsv669

run_mammals_male670

3.2.2 Reading the results671

Once the model has run, the chain run mammals male is used to compute the posterior distribution of the672

ratio of between-species variation over within-species variation with readnodetraits:673

readnodetraits --burnin 1000674

--var_within data/ body_size / mammals .male. var_trait .tsv675

--output results_mammals_male .tsv676

run_mammals_male677

The file data empirical/chain name.ratio.tsv then contains the posterior mean of the ratio of between-678

species variation over within-species variation, the 95% and 99% credible interval, and the posterior proba-679

bility that the ratio is greater than 1.680

3.3 Maximum likelihood estimation681

To obtain the ratio (without the posterior credible interval and probability) using maximum likelihood682

computation, the following python script can be used:683

python3 utils / neutrality_index .py --tree data/ body_size / mammals .male.tree684

--traitsfile data/ body_size / mammals .male.tsv685

--var_within data/ body_size / mammals .male. var_trait .tsv686

--output results_ML_mammals_male .tsv687
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