

DETECTING DIVERSIFYING SELECTION FOR A TRAIT FROM WITHIN AND BETWEEN-SPECIES GENOTYPES AND PHENOTYPES

1

**T. Latrille¹ , M. Bastian² , T. Gaboriau¹ , N. Salamin¹ **

¹Department of Computational Biology, Université de Lausanne, Lausanne, Switzerland

²Laboratoire de Biométrie et Biologie Evolutive, UMR5558, Université Lyon 1, Villeurbanne, France

thibault.latrille@ens-lyon.org

October 2, 2023

Abstract

2 To quantify selection acting on a trait, methods have been developed using either within or
3 between-species variation. However, methods using within-species variation do not integrate
4 the changes at the macro-evolutionary scale. Conversely, current methods using between-
5 species variation usually discard within-species variation, thus not accounting for processes
6 at the micro-evolutionary scale. The main goal of this study is to define a neutrality index
7 for a quantitative trait, by combining within- and between-species variation. This neutrality
8 index integrates nucleotide polymorphism and divergence for normalizing trait variation.
9 As such, it does not require estimation of population size nor of time of speciation for
10 normalization. Our index can be used to seek deviation from the null model of neutral
11 evolution, and test for diversifying selection. Applied to brain mass and body mass at the
12 mammalian scale, we show that brain mass is under diversifying selection. Finally, we show
13 that our test is not sensitive to the assumption that population sizes, mutation rates and
14 generation time are constant across the phylogeny, and automatically adjust for it.

15 **Keywords** Quantitative genetics · Trait evolution · Selection · Phylogenetics · Population genetics

16 Introduction

17 Determining whether a trait is under a particular regime of selection has been a long-standing goal in evolu-
18 tionary biology. Fundamentally, distinguishing neutral evolution from selection requires determining which
19 selective regime is supported by the observed variation of traits or sequences. The variation of phenotypes
20 (traits) and genotypes (sequences) can be observed at different scales, across different development stages at
21 the individual level, across different individuals and populations at the species level, and finally across differ-
22 ent species at the phylogenetic level. All these systems require different assumptions and methodologies, and

23 the endeavor to determine the selective regime for a given trait has thus incorporated theories, methods, and
24 developments across various fields of evolutionary biology such as quantitative genetics, population genetics,
25 phylogenetics and comparative genomics (Lynch & Walsh, 1998; Walsh & Lynch, 2018).

26 Leveraging individual variations within the same species, Genome-Wide Association Studies (GWAS) in
27 humans have shown that traits are mostly polygenic (many loci associated with a given trait) and under
28 stabilizing selection, while the loci affecting those traits are mostly pleiotropic (many traits associated with
29 a given locus) with additive effects (Sella & Barton, 2019; Simons et al., 2018). Across several populations,
30 by contrasting both trait and genetic differentiation, Q_{ST} – F_{ST} methods have been used to determine the
31 selective regime and to quantify the strength of selection acting on a trait (Leinonen et al., 2008; Merilä
32 & Crnokrak, 2001). A trait differentiation (Q_{ST}) higher than genetic differentiation (F_{ST}) is interpreted
33 as a signature of diversifying selection due to adaptation in different optimum trait value in the different
34 populations (Lamy et al., 2012). Contrarily, Q_{ST} lower than F_{ST} is interpreted as a signature of stabilizing
35 selection. However, Q_{ST} – F_{ST} methods have been found to require many populations (O’Hara & Merilä,
36 2005), and that various factors can generate a spurious signal of selection (Edelaar et al., 2011; Pujol et al.,
37 2008). Moreover, the test for diversifying selection is limited to recent local adaptation since the test is
38 based on the variation observed within a single species. To disentangle selection from neutral evolution, trait
39 variation can also be observed at a larger time scale. For example, change in mean trait value accumulates
40 linearly with time of divergence from a sister species, and also proportionally to the trait variance (Lande,
41 1980a; Turelli, 1984). Empirically, this effect can be observed for genes with larger within-species variation in
42 gene expression level, which exhibits a faster accumulation of divergence in mean expression level (Khaitovich
43 et al., 2004). Altogether, both the trait variance and the evolution in mean value can be used to test for trait
44 selection in a pair of species (Walsh & Lynch, 2018).

45 To disentangle neutral evolution and selection, trait evolution can also be observed at a larger time
46 scale. For example, change in mean trait value accumulates linearly with time of divergence from a sister
47 species, and also proportionally to the trait variance (Lande, 1980a; Turelli, 1984). Gene expression exhibits
48 a similar accumulation as divergence in expression accumulates faster for genes with large within-species
49 variation (Khaitovich et al., 2004). Altogether, both the trait variance and the evolution in mean value can
50 be used to test for trait selection in a pair of species (Walsh & Lynch, 2018).

51 Alternatively, by accounting for the underlying relationships between several species, the selective regime
52 for a quantitative trait can also be tested at the phylogenetic scale (Felsenstein, 1985). Under neutral evolution,
53 the change in mean trait value along a given branch of the tree is normally distributed, with a variance
54 proportional to divergence time (Hansen & Martins, 1996). As a result, the mean trait value can be modeled
55 as a Brownian process branching at every node of the tree (Hansen & Martins, 1996; Harmon, 2018). Re-
56 constructing the trait variation along the whole phylogeny as a Brownian process can thus constitute a null
57 model of neutral trait evolution. Deviations from the assumptions of the Brownian process are however well
58 known. When trait variation is constraint because of optimum mean trait values across or between species,
59 the pattern of evolution can be modeled by the Ornstein-Uhlenbeck processes, which is often interpreted
60 as a signature of stabilizing selection (Catalán et al., 2019). Alternatively, a trend in the Brownian process

61 (the tendency of a trait to evolve in a certain direction without fixed optimum) is interpreted as a signature
62 of directional selection at the phylogenetic scale (Silvestro et al., 2019). However, studies have shown that
63 such comparative approaches are subject to different biases (Harmon, 2018). First, a trait under stabilizing
64 selection for which the optimal trait value is also evolving as a Brownian process will not deviate from a
65 Brownian process, and thus be wrongly classified as neutral (Hansen & Martins, 1996). In other words, the
66 better fit of a Brownian process does not necessarily constitute proof of the neutral model. Second, even for
67 a trait evolving under a neutral regime, the Ornstein-Uhlenbeck process might sometimes be statistically
68 preferred over a Brownian process due to sampling artifacts (Cooper et al., 2016; Price et al., 2022; Silvestro
69 et al., 2015). Those limitations, altogether with the use of mean trait estimates leaving out the variance in
70 traits between individuals, easily generate misclassification of selection from methods at the phylogenetic
71 scale.

72 At the frontier between micro and macroevolution, comparative methods at the phylogenetic scale have
73 acknowledged the importance of modeling within-species variation together with changes in mean trait
74 value to either describe measurement errors (Hansen & Bartoszek, 2012; Lynch, 1991), incorporate values
75 for individuals (Felsenstein, 2008) or to scale the rate of change in mean trait value (Gaboriau et al., 2020;
76 Gaboriau et al., 2023; Kostikova et al., 2016). Within-species variation has also been used to infer diversifying
77 selection by estimating the ratio of between to within variation of many traits and test for deviation from the
78 average ratio across traits (Rohlf et al., 2014; Rohlf & Nielsen, 2015). Here, our goal was again to use both
79 variances between and within species to determine the selective regime of a quantitative trait. We build a novel
80 framework that integrates trait variation at the phylogenetic and population scales together with estimates of
81 molecular divergence at both scales. It allowed us to define an expected ratio of normalized variance between
82 and within species while setting the threshold of this ratio for neutral, stabilizing, and diversifying selection.
83 The ratio that we propose can be considered as a neutrality index for a any quantitative trait articulating
84 trait and nucleotide variation within and between species. Importantly, our neutrality index also leverages
85 nucleotide divergence and polymorphism to normalize trait variation at both scales, such that it does not
86 require estimating population size (within-species) or speciation time (between species). From the field of
87 population genetics, our study can be seen as the macro-evolutionary generalization of Q_{ST} – F_{ST} methods
88 to account for phylogenetic relationships between species. From the field of phylogenetics, our study can be
89 seen as an alternative to the EVE model (Rohlf et al., 2014; Rohlf & Nielsen, 2015) for a single trait, where
90 we set a threshold for neutral evolution by leveraging species nucleotide polymorphism and divergence.

91 Materials and Methods

92 Neutrality index for a quantitative trait

93 Prior to developing our neutrality index, we review theoretical expectations for variations of quantitative
94 traits and genomic sequences under neutral evolution for both within- and between-species variation.

95 **Within-species trait variations**

For a given trait, the genetic architecture is mainly defined by the number of loci encoding the trait (L) and the random additive effect of a mutation on the trait (a). New mutations are generating trait variance and the average effect of a mutation on the trait is $\sigma_M^2 = L \cdot \mathbb{E}[a^2]$. At the individual level, the mutational variance (V_M) is the rate at which new mutations contribute to the trait variance per generation. As shown in Lande (1979, 1980b), V_M is a function of the mutation rate per loci per generation (μ) and σ_M^2 :

$$V_M = 2\mu \cdot \sigma_M^2. \quad (1)$$

While in an infinitesimal model mutations supply new genetic variants, random genetic drift depletes standing variation (Barton et al., 2017; Sella & Barton, 2019; Turelli, 2017). For a neutral trait at equilibrium between mutation and drift (Lynch et al., 1998), the additive genetic variance in a species (V_A) is a function of the mutational variance (V_M) and the effective number of individuals in the population (N_e):

$$V_A = 2N_e \cdot V_M, \quad (2)$$

$$= 4N_e \cdot \mu \cdot \sigma_M^2 \text{ from eq. 1.} \quad (3)$$

For any neutral genomic region of interest, the nucleotide diversity, π , is measured as the number of mutations segregating in the population divided by the length of the region. Any segregating mutations will eventually reach fixation or extinction due to random genetic drift and π is also at a balance between mutations and drift. As shown in Tajima (1989), π is a function of the mutation rate per loci per generation (μ) and the effective population size (N_e):

$$\pi = 4N_e \cdot \mu. \quad (4)$$

We define σ_W^2 as the ratio of additive genetic variance of the trait (V_A) over π of any neutral genomic region of interest. This ratio allows removing the effect of N_e and μ , which are parameters not related to the genetic architecture of the trait, giving σ_W^2 as a proxy of σ_M^2 :

$$\sigma_W^2 \stackrel{\text{def}}{=} \frac{V_A}{\pi}, \quad (5)$$

$$= \frac{4N_e \cdot \mu \cdot \sigma_M^2}{4N_e \cdot \mu} \text{ from eq. 1 and 4,} \quad (6)$$

$$= \sigma_M^2. \quad (7)$$

The additive genetic variance is also equal to the observed phenotypic variance (V_P) multiplied by narrow-sense heritability (h^2 ; (Hill et al., 2008)), which leads to σ_W^2 being a function of V_P and h^2 :

$$\sigma_W^2 = \frac{h^2 \cdot V_P}{\pi}. \quad (8)$$

96 **Between-species trait variations**

For a given species, we denote by \bar{P}_t the mean value of the trait across the individuals in the species at generation t . If the trait is neutral and encoded by many loci as assumed by the infinitesimal model, \bar{P}_t

evolves as a Brownian process (Felsenstein, 1985; Hansen & Martins, 1996). The variance of \bar{P}_t after t generations, $\text{Var}[\bar{P}_t]$ is given (Hansen & Martins, 1996) by:

$$\text{Var}[\bar{P}_t] = \frac{V_A}{N_e} \cdot t \quad (9)$$

$$= 4t \cdot \mu \cdot \sigma_M^2, \text{ from eq. 3,} \quad (10)$$

Moreover, for any genomic region under neutral evolution, some mutations will eventually reach fixation due to random genetic drift, resulting in a substitution of a nucleotide at the species level. The probability of fixation (P_{fix}) of a neutral mutation is $1/2N_e$ (Kimura, 1962). We can derive the substitution rate per generation q as the number of mutations per generation ($2N_e \cdot \mu$) multiplied by the probability of fixation for each newly arisen mutations P_{fix} (McCandlish & Stoltzfus, 2014), giving:

$$q = 2N_e \cdot \mu \cdot P_{\text{fix}}, \quad (11)$$

$$= 2N_e \cdot \mu \cdot \frac{1}{2N_e}, \quad (12)$$

$$= \mu. \quad (13)$$

97 That is, if mutations are neutral, the rate of substitution within a genomic region equals the rate at which
98 new mutations arise per generation for the same genomic region (Kimura, 1968).

After t generations and assuming that no multiple substitutions occurred at the same site, the nucleotide divergence d , which is the fraction of the genomic region that generated a substitution, will be t multiplied by the nucleotide substitution rate per generation (q):

$$d = t \cdot q \quad (14)$$

$$= t \cdot \mu \text{ from eq. 13.} \quad (15)$$

We define σ_B^2 as the variance in the mean trait value ($\text{Var}[\bar{P}_t]$) normalized by the nucleotide divergence of any neutral genomic region (d). This ratio allows removing the effect of t and μ , which are parameters not related to the genetic architecture of the trade, giving σ_B^2 as another proxy of σ_M^2 :

$$\sigma_B^2 \stackrel{\text{def}}{=} \frac{\text{Var}[\bar{P}_t]}{4d}, \quad (16)$$

$$= \frac{4t \cdot \mu \cdot \sigma_M^2}{4t \cdot \mu} \text{ from eq. 10 and 15,} \quad (17)$$

$$= \sigma_M^2. \quad (18)$$

99 Neutrality index

The variability between either individuals or species can be obtained for both quantitative traits and genomic sequences. At the population level, the variability of the trait between individuals can be combined with the nucleotide diversity of any neutrally evolving genomic region to obtain σ_W^2 , which equals σ_M^2 if the trait is neutrally evolving (see above). At the phylogenetic level, the variability of the mean trait value between species can be combined with the nucleotide divergence of any neutrally evolving genomic region to obtain σ_B^2 . Similarly, $\sigma_B^2 = \sigma_M^2$ if the trait is neutrally evolving and the genetic architecture of the trait has not

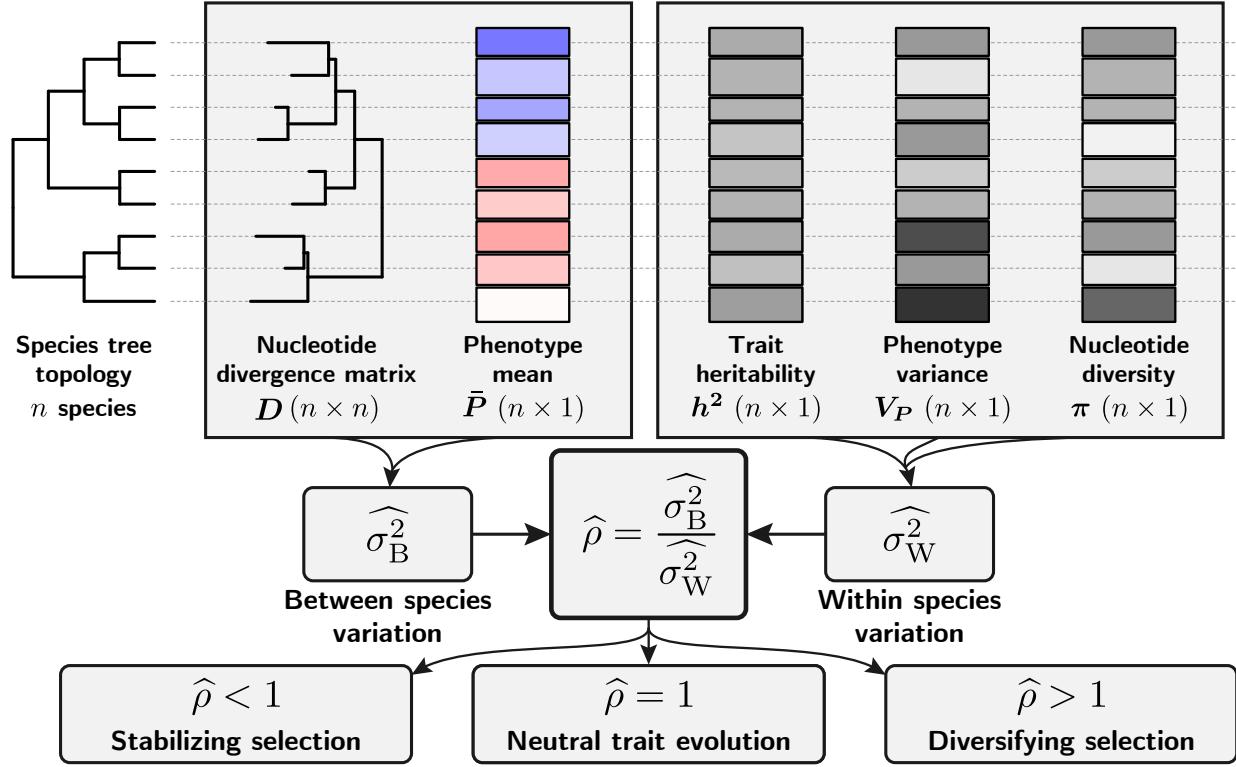


Figure 1: Between species, the change along the phylogeny of the mean phenotypic trait allows the estimation of between-species trait variation, $\widehat{\sigma}_B^2$, which is normalized by nucleotide divergence. Within species, the genetic variance allows the estimation of within-species trait variation, $\widehat{\sigma}_W^2$, which is normalized by nucleotide diversity. $\widehat{\rho}$ is the ratio of $\widehat{\sigma}_B^2$ over $\widehat{\sigma}_W^2$. Under neutral evolution, $\widehat{\rho}$ is expected to be equal to one. Under diversifying selection, the trait is heterogeneous between species, but homogeneous within species, leading to $\widehat{\rho}$ greater than one. Under stabilizing selection, the trait is homogeneous between species, leading to $\widehat{\rho}$ smaller than one. Importantly, the sequence from which nucleotide diversity and divergence are estimated should be neutrally evolving, but they are not necessarily linked to the quantitative trait under study, they allow for discarding the confounding effect on mutation rate diversity, population size and divergence time.

changed along the phylogenetic tree. We thus have, for a neutrally evolving trait:

$$\sigma_W^2 = \sigma_B^2 \text{ from eq. 7 and 18,} \quad (19)$$

$$\Rightarrow \rho \stackrel{\text{def}}{=} \frac{\sigma_B^2}{\sigma_W^2} = 1. \quad (20)$$

100 We define a neutrality index $\rho = \sigma_B^2 / \sigma_W^2$ that will equal 1 for a trait evolving neutrally. Both σ_B^2 and σ_W^2
 101 can be estimated using quantitative trait and genomic sequences within and between species, while neither
 102 the mutation rate (μ), nor the effective population size (N_e) or time of divergence (t) need to be estimated.
 103 Moreover, the sequence from which π and d are estimated should be neutrally evolving, but they are not
 104 necessarily linked to the quantitative trait under study.

105 **Estimate**

106 Based on the comparative framework that can account for phylogenetic inertia (Felsenstein, 1985; O'Meara
 107 et al., 2006), we provide a maximum likelihood estimate for ρ as well as a Bayesian estimate to derive
 108 posterior probabilities that the null model of neutrality (i.e. $\rho = 1$) is rejected.

109 **Maximum likelihood estimate**

At the phylogenetic scale, for n taxa in the tree, \mathbf{D} ($n \times n$) is the distance matrix computed from the branch lengths (d as nucleotide divergence in units of substitutions per site) and the topology of the phylogenetic tree. The diagonal $\mathbf{D}_{i,i}$ represents the total distances from the root of the tree to each taxon (i). The off-diagonal elements ($\mathbf{D}_{i,j} = \mathbf{D}_{j,i}$) are the distances between the root and the most recent common ancestor of taxa i and j . The state P_0 at the root of the tree for the trait can be estimated from the $n \times 1$ vector of mean trait values $\bar{\mathbf{P}}$ at the tips of the tree using maximum likelihood (O'Meara et al., 2006):

$$P_0 = (\mathbf{1}^\top \times \mathbf{D}^{-1} \times \mathbf{1})^{-1} \cdot (\mathbf{1}^\top \times \mathbf{D}^{-1} \times \bar{\mathbf{P}}), \quad (21)$$

110 where $\mathbf{1}$ is an $n \times 1$ column vector of ones.

Finally, between-species variation $\widehat{\sigma}_B^2$ is estimated as (O'Meara et al., 2006):

$$\widehat{\sigma}_B^2 = \frac{1}{4} \frac{(\bar{\mathbf{P}} - P_0 \cdot \mathbf{1})^\top \times \mathbf{D}^{-1} \times (\bar{\mathbf{P}} - P_0 \cdot \mathbf{1})}{n-1}. \quad (22)$$

For a given species i with inter-individual data available, additive genetic variance of a trait ($V_{A,i}$) is the product of heritability (h_i^2) and phenotypic variance ($V_{P,i}$). The ratio of $V_{A,i}$ over nucleotide diversity of neutrally evolving sequences (π_i) is a sample estimate of σ_W^2 . Averaged across all species, we obtain the estimate $\widehat{\sigma}_W^2$ as:

$$\widehat{\sigma}_W^2 = \frac{1}{n} \sum_{i=1}^n \frac{V_{A,i}}{\pi_i} = \frac{1}{n} \sum_{i=1}^n \frac{V_{P,i} \cdot h_i^2}{\pi_i}. \quad (23)$$

As depicted in fig. 1, the neutrality index is estimated as:

$$\widehat{\rho} = \frac{\widehat{\sigma}_B^2}{\widehat{\sigma}_W^2}. \quad (24)$$

111 **Bayesian estimate**

112 The Bayesian framework allows obtaining the posterior distribution of the neutrality index ($\widehat{\rho}$) for a given
 113 trait. Even though $\widehat{\rho}$ is estimated independently for each trait of interest in the maximum likelihood frame-
 114 work (previous section), here we generalize to K traits co-varying along the phylogenetic tree using the
 115 *BayesCode* software (Latrille et al., 2021). Trait variation along the phylogenetic tree is modeled as a K -
 116 dimensional Brownian process \mathbf{B} ($1 \times K$) starting at the root and branching along the tree topology (Huelsen-
 117 beck & Rannala, 2003; Lartillot & Poujol, 2011; Lartillot & Delsuc, 2012; Latrille et al., 2021). The rate
 118 of change of the Brownian process is determined by the positive semi-definite and symmetric covariance
 119 matrix between traits Σ ($K \times K$). The off-diagonal elements of Σ are the covariance between traits, and
 120 the diagonal elements are the variance of each trait, thus corresponding to $\widehat{\sigma}_B^2$ (see section S2.1). With an

121 inverse Wishart distribution as the prior on the covariance matrix, the posterior on Σ , conditional on \mathcal{B}
122 is also an invert Wishart distribution (see section S2.2). We used Metropolis-Hastings algorithm to sample
123 \mathcal{B} , while the posterior distribution of Σ is sampled using Gibbs sampling. For each trait and each species,
124 the prior on heritability (h^2) for each species is set as a uniform distribution with user-defined boundaries.
125 Heritability and phenotypic variance for each trait are combined with nucleotide diversity to compute $\widehat{\sigma_W^2}$ for
126 each species before being averaged across species (as in eq. 23). From $\widehat{\sigma_W^2}$ and Σ , the posterior distribution
127 of $\widehat{\rho}$ (as in eq. 24) is obtained for each trait. The posterior distribution of $\widehat{\rho}$ thus allows testing for deviation
128 from neutrality (Fig. 1), for example, by computing $\mathbb{P}[\widehat{\rho} > 1]$ to test for evidence of diversifying selection
129 and $\mathbb{P}[\widehat{\rho} < 1]$ to test for evidence of stabilizing selection.

130 **Applicability to empirical data**

131 Our method assumes that the narrow-sense heritability (h^2) of a trait is known such as to estimate additive
132 genetic variance (V_A) from phenotypic variance (V_P) as $V_A = h^2 \cdot V_P$. Fortunately, if heritability is not
133 known, the test for diversifying selection can still be performed, although it is underpowered. Indeed, if
134 the additive genetic variance is substituted by phenotypic variance, it is equivalent to assuming complete
135 heritability ($h^2 = 1$). Because $h^2 \leq 1$ by definition, we overestimate the within-species variation and thus
136 underestimate $\widehat{\rho}$. It is, however, possible to test for diversifying selection because testing for $\widehat{\rho} > 1$ while using
137 phenotypic variance instead of additive genetic variance means that knowing the additive genetic variance
138 would have only increased the evidence for diversifying selection. Similarly, using the broad-sense heritability
139 (H^2) instead of narrow-sense heritability (h^2) results in an underestimation of $\widehat{\rho}$ since $h^2 \leq H^2$. In contrast,
140 the test for stabilizing selection is invalid if $\widehat{\rho}$ is underestimated. Several assumptions made by our test might
141 not hold on empirical data and their consequences on the neutrality index and the test that can be performed
142 are shown in Table 2.

143 **Simulation**

144 We tested the performance of our neutrality index (ρ) to detect selection on a quantitative trait using
145 simulations. We performed simulations under different selective regimes (neutral, stabilizing, diversifying),
146 different demographic histories (constant or fluctuating population size) and different evolution of the mu-
147 tation rate (constant or fluctuating). Simulations were individual-based and followed a Wright-Fisher model
148 with mutation, selection and drift for a diploid population including speciation along a predefined ultrametric
149 phylogenetic tree (Fig. 2A&B). Each individual phenotypic value was the sum of genotypic value and an
150 environmental effect. The environmental effect was normally distributed with variance V_E . We assumed that
151 the genotypic value was encoded by $L = 5,000$ loci, with each locus contributing an additive effect that was
152 normally distributed with standard deviation $a = 1$ (Fig. 2A and section S1.1 for theoretical formulation).
153 We assumed a trait with a narrow-sense heritability of $h^2 = 0.2$ and computed the theoretical V_E accordingly
154 (see section S1.1). Assuming a diploid panmictic population of size $N_e = 50$ at the root of the tree, and with
155 non-overlapping generations, we simulated explicitly each generation along an ultrametric phylogenetic tree.
156 For each offspring, the number of mutations was drawn from a Poisson distribution with mean $2 \cdot \mu \cdot L$, with
157 the mutation rate per generation μ . From the empirical mammalian dataset (see next section), we computed

TRAIT SELECTION FROM WITHIN AND BETWEEN-SPECIES VARIATION

158 an average nucleotide divergence from the root to leaves of 0.18 and average genetic diversity of 0.00276.
159 We scaled parameters in our simulations to fit plausible values for mammals. We thus used a mutation rate
160 of $\mu = 0.00276/4N_e = 1.38 \times 10^{-5}$ per generation per locus and a total of $t = 0.18/1.38 \times 10^{-5} = 13,500$
161 generations from root to leaves, and the number of generations along each branch was proportional to the
162 branch length.

163 The changes in $\log-\mu$ and $\log-N_e$ along the lineages were both modeled by a geometric Brownian process
164 ($\mathcal{B}(0, \sigma_\mu = 0.0086)$ and $\mathcal{B}(0, \sigma_{N_e} = 0.0086)$), which led to a standard deviation of $0.0086 \cdot \sqrt{13,500} = 1.0$
165 in log-space from root to leaves. An Ornstein-Uhlenbeck process was overlaid to the instant value of $\log-$
166 N_e provided by the geometric Brownian process to account for short-term changes between generations
167 ($\text{OU}(0, \sigma_{N_e} = 0.1, \theta_{N_e} = 0.9)$). The geometric Brownian motion accounted for long-term fluctuations (low
168 rate of changes σ_{N_e} but unbounded), while the Ornstein-Uhlenbeck introduced short-term fluctuations (high
169 rate of changes σ_{N_e} but bounded and mean-reverting). The simulation started from an initial sequence at
170 equilibrium at the root of the tree and, at each node, the process was split until it finally reached the leaves
171 of the tree. From a speciation process perspective, this was equivalent to an allopatric speciation over one
172 generation.

173 A random genetic drift was introduced by resampling individuals at each generation, with each parent
174 having a probability of being sampled that was proportional to its fitness (W). Selection was modeled as a one-
175 dimensional Fisher's geometric landscape, with the fitness of an individual being a monotonously decreasing
176 function of the distance between the individual and the optimal phenotype (Blanquart & Bataillon, 2016;
177 Tenaillon, 2014). More specifically, the fitness of an individual was given by $W = e^{(P-\lambda)^2/\alpha}$, where P was
178 the trait value of the individual, $\lambda = 0.0$ was the optimal trait value, and $\alpha = 0.02$ was the strength of
179 selection. Mutations were considered as a displacement of the phenotype in the multidimensional space.
180 Beneficial mutations moved the phenotype closer to the optimum, while deleterious mutations moved it
181 further away. Stabilizing selection was implemented by fixing the optimum phenotype to a single value
182 ($\lambda = 0.0$). Diversifying selection was implemented by allowing the optimum phenotype to move along the
183 phylogenetic tree as a geometric Brownian process (Hansen, 1997) ($\lambda \sim \mathcal{B}(0, \sigma_\lambda = 1.0)$). Neutral evolution
184 was implemented by fixing the fitness landscape ($W = 1$), which meant that each individual had the same
185 probability of being sampled at each generation.

186 Nucleotide diversity (π) was measured as the heterozygosity of neutral markers that were simulated
187 along the phylogenetic tree but not linked to the trait simulated. Nucleotide divergence (d) was measured
188 as the number of substitutions per site of neutral markers along the branches of the phylogenetic tree. The
189 additive genetic variance was measured as phenotypic variance multiplied by heritability. Heritability was
190 estimated from the slopes of the regression of offspring's phenotypic trait values on parental phenotypic trait
191 values (Lynch & Walsh, 1998) averaged over the last 10 simulated generations. Heritability was thus not a
192 given parameter of the simulations, but rather measured as it would be in empirical data.

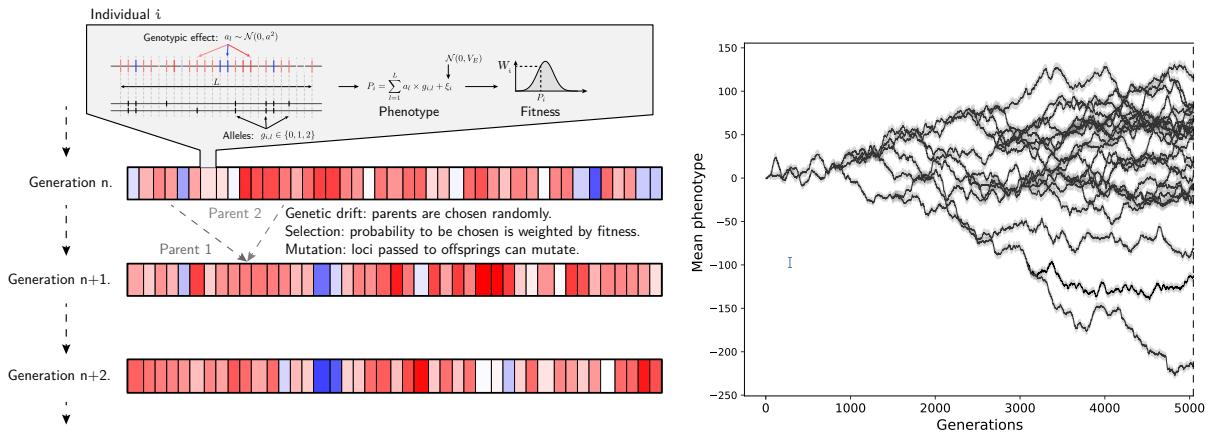


Figure 2: Wright-Fisher simulations with mutation, selection and drift. Left panel: For a given individual, the trait phenotypic value is the sum of genotypic value and a environmental effect (standard deviation V_E). The trait's genotypic value is encoded by L loci, with each locus contributing additively to the genotypic value. Parents are selected for reproduction to the next generation according to their phenotypic value, with a probability proportional to their fitness. Mutations are drawn from a Poisson distribution, with each locus having a probability μ to mutate. Drift is modeled by the resampling of parents. Right panel: examples of a trait evolving along a phylogenetic tree, with the mean phenotype (black line) and the variance of the trait genotypic value (gray area).

193 **Empirical dataset**

194 We analyzed a dataset of body and brain masses from mammals. The log-transformed values of body and
 195 brain masses were taken from Tsuboi et al. (2018). We removed individuals not marked as adults and split
 196 the data into males and females due to sexual dimorphism in body and brain masses. We discarded species
 197 with only one representative sample. The mammalian nucleotide diversity was obtained from the Zoonomia
 198 project (Genereux et al., 2020), with nucleotide divergence obtained on a set of neutral markers in Foley
 199 et al. (2023), and with nucleotide diversity measured as heterozygosity in Wilder et al. (2023).

200 We also analyzed a dataset of primate species, with the nucleotide variation obtained from Kuderna
 201 et al. (2023) and the quantitative trait variation also from Tsuboi et al. (2018), using the same filtering as
 202 for the mammalian dataset. However, the primate nucleotide divergence was not obtained on a set of neutral
 203 markers as for the mammalian dataset, but across the whole genome.

204 **Results**

205 **Neutrality index**

206 For a neutral trait, the genetic architecture, meaning the number of loci encoding the trait and the average
 207 effect of a mutation on the trait, is formally related to both within and between-species variation of the
 208 trait. We defined the neutrality index as $\rho = \sigma_B^2 / \sigma_W^2$, which equals 1 for a neutral trait (see Materials
 209 and Methods), suggesting that traits for which this relationship was not verified were putatively under

selection. Under stabilizing selection, the variation between species is depleted because the mean trait value is maintained similar between different species, which leads to $\rho < 1$. In contrast, under diversifying selection, the variation between species is inflated because species will have potentially different trait values (Hansen, 1997), which leads to $\rho > 1$. Our neutrality index for a quantitative trait leveraged the data for any number of species, and took advantage of the signal over the whole phylogenetic tree, while at the same time taking into account phylogenetic inertia and addressing the non-independence between species (Fig. 1). This statistic was obtained as a maximum likelihood estimate ($\hat{\rho}$), from eq. 23 and 22. We also devised a Bayesian estimate to obtain the posterior distribution of the neutrality index, and test for diversifying selection as $\mathbb{P}[\hat{\rho} > 1]$, and stabilizing selection as $\mathbb{P}[\hat{\rho} < 1]$.

Our neutrality index made a series of assumptions that we described in details in the Material and Methods section. Table 2 summarized these assumptions and outlined possible consequences for the neutrality test that we proposed.

Results against simulations

The inference framework was first tested on independently simulated datasets matching an empirically relevant mammalian empirical regime (see Materials and Methods). Under constant population size (N_e) and constant mutation rate (μ) across the phylogenetic tree (fig. 3, top row), we found no false negative for simulations of stabilizing ($\mathbb{P}[\hat{\rho} < 1] > 0.975$; blue in fig. 3) or diversifying ($\mathbb{P}[\hat{\rho} > 1] > 0.975$; red in fig. 3) selection. For simulations under neutral evolution, 77% of those were correctly identified ($0.025 \leq \mathbb{P}[\hat{\rho} > 1] \leq 0.975$; yellow in fig. 3), while 21% and 2% were wrongly detected as stabilizing or diversifying selection, respectively. Once we introduced fluctuating N_e and μ (Fig. 3, bottom row), our ability to identify simulations under either diversifying or stabilizing selection remained the same with all cases detected correctly. For simulations under neutral evolution, 51% of the simulations were correctly detected ($0.025 \leq \mathbb{P}[\hat{\rho} > 1] \leq 0.975$), while 49% were detected as stabilizing selection ($\mathbb{P}[\hat{\rho} < 1] > 0.975$) and none as diversifying selection.

Results on empirical data

For mammalian body and brain mass, we obtained male (σ) and female (φ) trait variations. Combined with nucleotide diversity and divergence, we estimated $\hat{\rho}$ and posterior probabilities of diversifying selection under different assumptions for trait heritability as shown in the Table 1. Assuming complete heritability, brain mass was found to be under diversifying selection with posterior probabilities of 0.0 for both males and females. If we assumed that heritability (h^2) of body mass was uniformly distributed between 20% and 40% (Hu et al., 2022), posterior probabilities of diversifying selection became 0.635 for males and 0.324 for females. Mammalian brain mass was found to be under diversifying selection with posterior probabilities of 0.877 for males and 0.972 for females when complete heritability was assumed. Assuming a uniform distribution between 20% and 40% for heritability led to posterior probabilities of diversifying selection of 1.0 for both males and females.

We also analyzed a similar dataset for body mass focusing this time only at Primates (Table 1). For primates body mass, we found posterior probabilities of diversifying selection of 1.0 for males and 0.914

TRAIT SELECTION FROM WITHIN AND BETWEEN-SPECIES VARIATION

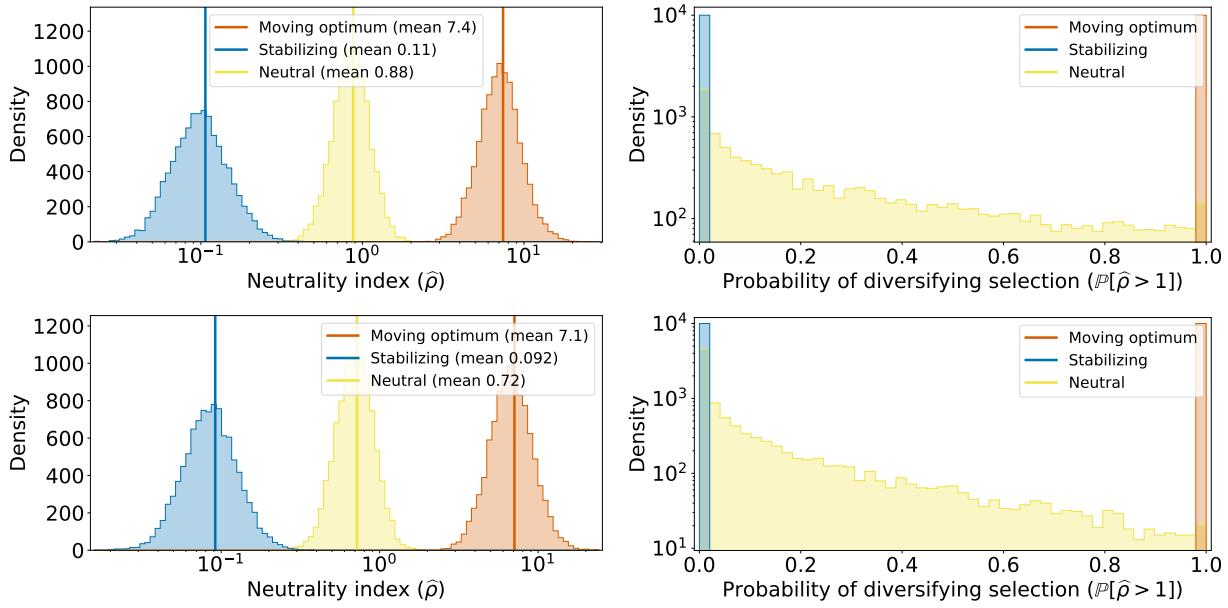


Figure 3: 10,000 simulations of trait evolution along a phylogenetic tree under different selection regimes. Traits simulated under stabilizing selection (blue), under a neutral evolution (yellow), and under a moving optimum (red). Histogram of ratio of between-species trait variation ($\widehat{\sigma}_B^2$) over within-species trait variation $\widehat{\sigma}_W^2$ with $\widehat{\rho} = \widehat{\sigma}_B^2 / \widehat{\sigma}_W^2$ estimated from each simulated data (left) and probabilities of $\widehat{\rho}$ being greater than 1 (right). Effective population size (N_e) and mutation rate (μ) were either constant (top row), or fluctuating as a Brownian process along the phylogenetic tree (bottom row).

246 for females when assuming a uniform distribution for the heritability of body mass between 20% and 40%.
 247 Assuming complete heritability of body mass did not change the posterior probability for males, but increased
 248 the one for female to 1.0. Evidence for diversifying selection on body mass was therefore more pronounced in
 249 Primates than in mammals. However, the genetic markers used to normalize trait variance with nucleotide
 250 divergence were not necessarily neutral, which could create spurious false positives by artificially inflating $\widehat{\rho}$
 251 (Table 2 and methods).

252 Discussion

253 In this study, we proposed a neutrality index for a quantitative trait that can be used within a statistical
 254 framework to test for selection. Our neutrality index for a trait, ρ , is calculated as the ratio of the normalized
 255 within- to between-species variation and it allowed the identification of the evolutionary regime of a quanti-
 256 tative trait. At the phylogenetic scale, trait variation between species was normalized by sequence divergence
 257 obtained from a neutral set of markers. Similarly, trait variation within species was normalized by sequence
 258 polymorphism obtained also from a neutral set of markers. Our estimate of $\widehat{\rho}$ could be tested for deviation
 259 from the value of 1.0 expected under the null hypothesis of neutrality. Technically, the neutrality index can
 260 be estimated either as a maximum likelihood point estimate, or as a mean posterior estimate from a Bayesian
 261 implementation (see section S3). The latter also enabled the estimation of the posterior credible interval to

TRAIT SELECTION FROM WITHIN AND BETWEEN-SPECIES VARIATION

Dataset	Trait	h^2	Sex	n	$\hat{\rho}$	95% CI for $\hat{\rho}$	$\mathbb{P}[\hat{\rho} > 1]$
Mammals	Body mass	1.0	σ	36	0.340	0.217-0.523	0.000
Mammals	Body mass	1.0	φ	26	0.277	0.160-0.490	0.000
Mammals	Body mass	$\mathcal{U}(0.2, 0.4)$	σ	36	1.124	0.721-1.754	0.635
Mammals	Body mass	$\mathcal{U}(0.2, 0.4)$	φ	26	0.936	0.523-1.715	0.324
Mammals	Brain mass	1.0	σ	36	1.351	0.851-2.173	0.877
Mammals	Brain mass	1.0	φ	26	1.727	0.991-2.938	0.972
Mammals	Brain mass	$\mathcal{U}(0.2, 0.4)$	σ	36	4.527	2.831-7.091	1.000
Mammals	Brain mass	$\mathcal{U}(0.2, 0.4)$	φ	26	6.001	3.288-10.941	1.000
Primates	Body mass	1.0	σ	71	0.558	0.401-0.784	0.000
Primates	Body mass	1.0	φ	65	0.389	0.278-0.547	0.000
Primates	Body mass	$\mathcal{U}(0.2, 0.4)$	σ	71	1.875	1.288-2.695	1.000
Primates	Body mass	$\mathcal{U}(0.2, 0.4)$	φ	65	1.296	0.899-1.821	0.914
Primates	Brain mass	1.0	σ	71	1.929	1.395-2.616	1.000
Primates	Brain mass	1.0	φ	65	1.950	1.399-2.790	1.000
Primates	Brain mass	$\mathcal{U}(0.2, 0.4)$	σ	71	6.479	4.658-8.944	1.000
Primates	Brain mass	$\mathcal{U}(0.2, 0.4)$	φ	65	6.522	4.664-9.294	1.000

Table 1: Test of diversifying selection on a mammal and a primate dataset, by splitting males (σ) and females (φ). Traits considered were body mass or brain mass (log-transformed). Heritability (h^2) was either assumed complete ($h^2 = 1.0$) or uniformly distributed between 20% and 40% ($h^2 \sim \mathcal{U}(0.2, 0.4)$). n was the number of species in the dataset. $\hat{\rho}$ was the posterior estimate of our neutrality index, with the 95% credible interval (CI) for $\hat{\rho}$ also computed. $\mathbb{P}[\hat{\rho} > 1]$ was the estimated posterior probability of diversifying selection.

262 test for departure from a neutrally evolving trait (e.g. $\mathbb{P}[\hat{\rho} > 1]$). We tested our statistical procedure against
 263 simulated data and showed that our test was able to correctly detect simulations under diversifying selection
 264 (test of $\hat{\rho} > 1$) or under stabilizing selection (test of $\hat{\rho} < 1$). However, our test detected a spurious signal
 265 of stabilizing selection ($\hat{\rho} < 1$) when we simulated the evolution of a neutral trait. We thus argue that our
 266 method should be used to detect diversifying selection, but that it had low accuracy to detect stabilizing
 267 selection due to false positives.

268 Our results showed that our method significantly improved over currently available methods to detect
 269 selection acting on a trait at the phylogenetic scale. Current methods relying on evolution of the mean trait
 270 value between species also tend to statistically prefer a model of stabilizing selection over a Brownian process
 271 when the trait is neutral (Cooper et al., 2016; Price et al., 2022; Silvestro et al., 2015). Our approach could
 272 in theory be applied to detect stabilizing selection at the phylogenetic scale, but we showed that it did
 273 not have the statistical power to identify those cases. In contrast, we showed that our method was able to

TRAIT SELECTION FROM WITHIN AND BETWEEN-SPECIES VARIATION

Broken assumption	Consequences	$\widehat{\sigma}_W^2$	$\widehat{\sigma}_B^2$	Test $\rho > 1$	Test $\rho < 1$
Trait encoded by few loci	Between-species trait variation is underestimated	–	Underestimated	Conservative	Invalid
Sexual dimorphism	Within-species trait variation is overestimated	Overestimated	–	Conservative	Invalid
Inbreeding	Nucleotide diversity (π) is underestimated	Overestimated	–	Conservative	Invalid
Markers for polymorphism are negatively selected	Nucleotide diversity (π) is underestimated	Overestimated	–	Conservative	Invalid
Markers for polymorphism are positively selected	Nucleotide diversity (π) is underestimated	Overestimated	–	Conservative	Invalid
Markers for divergence are positively selected	Nucleotide divergence (d) is overestimated	–	Underestimated	Conservative	Invalid
Markers for polymorphism under balanced selection	Nucleotide diversity (π) is overestimated	Underestimated	–	Invalid	Conservative
Markers for divergence are negatively selected	Nucleotide divergence (d) is underestimated	–	Overestimated	Invalid	Conservative
Multiple nucleotide substitutions at the same locus	Nucleotide divergence (d) is underestimated	–	Overestimated	Invalid	Conservative

Table 2: Assumptions breaks and their consequences on the estimation of within-species variation ($\widehat{\sigma}_W^2$), between-species variation ($\widehat{\sigma}_B^2$), and on the neutrality index $\rho = \widehat{\sigma}_B^2/\widehat{\sigma}_W^2$. The last two columns indicate whether the test for diversifying selection ($\rho > 1$) and for stabilizing selection $\rho < 1$ are conservative or invalid due to violated assumptions.

274 identify correctly cases of diversifying selection, which is a clear an improvement over current methods that
 275 model only mean trait value. Indeed, under diversifying selection, mean trait value will not deviate from
 276 a Brownian process, and thus cannot be distinguished from neutral evolution (Hansen & Martins, 1996;
 277 Harmon, 2018). For example, testing the selective regime in the expression level of the majority of genes
 278 led to the selection of a Brownian process as the prefered model and the interpretation that the expression
 279 was evolving neutrally (Catalán et al., 2019). Our diversity index has the advantage to discriminate the
 280 alternative model of diversifying selection from the neutral case by comparing within- and between-species
 281 variation correctly normalized to remove confounding factors. Our approach is not the first one to normalize
 282 between-species variation to detect selection, but this was done by using within-species variations (Rohlf
 283 et al., 2014; Rohlf & Nielsen, 2015) and not estimates of neutral molecular divergence as done in our study.
 284 These studies have further compared their statistic across a pool of traits, which allowed them to identify
 285 outlier traits putatively under diversifying selection but without testing for selection on a single trait at a
 286 time (Gillard et al., 2021; Rohlf & Nielsen, 2015). Instead, our procedure can be applied to a single trait,
 287 estimating the neutrality index and giving a statistical test for departures from the null model of neutral
 288 evolution for a single test. Our diversity index opens new avenues to revisit these studies and better test
 289 for the selective regime affecting the quantitative traits, assuming we have access to genomic datasets to
 290 estimate nucleotide divergence and polymorphism.

291 The main novelty of our study was to use the nucleotide divergence and polymorphism to normalize trait
 292 variation between and within species. In the context of within species variation, $Q_{ST}-F_{ST}$ tests have been
 293 developed to compare trait and sequence across several populations to test for selection (Leinonen et al., 2013;
 294 Martin et al., 2008). Our neutrality index also used the genetic sequences from which nucleotide divergence
 295 and polymorphism are estimated. Although the sequences should be neutrally evolving, they do not have to be
 296 necessarily linked to the quantitative trait under study. Nucleotide variation allows normalizing for diversity
 297 driven by confounding factors such as population sizes (N_e), mutation rates (μ) and generation time (Hansen
 298 & Martins, 1996; Harmon, 2018). Thus our test avoids the estimation of the parameters, which are complex
 299 to correctly infer, and it also bypasses the estimation of divergence time, which was necessary in previous

TRAIT SELECTION FROM WITHIN AND BETWEEN-SPECIES VARIATION

300 approaches (Walsh & Lynch, 2018). But importantly, by normalizing with sequence variation, we also showed
301 using simulated data that our test was not sensitive to the assumption that N_e , μ and generation time were
302 constant across the phylogenetic tree, an unmet assumption empirically (Bergeron et al., 2023; Wilder et al.,
303 2023). Indeed, under the neutral case of evolution, changes in N_e , μ and generation time impacted similarly
304 trait and sequence variation. The normalization by nucleotide divergence and polymorphism automatically
305 absorbed long-term and short-term changes in N_e , μ and generation time, which canceled out in the ratio
306 of trait variation $\hat{\rho}$.

307 Even though our test was developed for a quantitative trait, analogies with other tests of selection
308 developed for molecular sequences also provided insight into its behavior. First, we acknowledge that our
309 test took inspiration from the McDonald and Kreitman (1991) test devised for protein-coding DNA sequences,
310 where synonymous mutations were used to determine the neutral expectation, and the inflation of divergence
311 was compared to polymorphism within species. Second, because ρ was compared to 1, our test ultimately bear
312 analogy to the codon-based test of selection, where the ratio of non-synonymous to synonymous substitutions
313 (ω) is compared to 1 (Goldman & Yang, 1994; Muse & Gaut, 1994). As $\omega < 1$ is interpreted as purifying
314 selection acting on the protein, $\rho < 1$ is interpreted as stabilizing selection acting on the trait. Similarly, the
315 interpretation of adaptation for $\omega > 1$ is analogous to diversifying selection for $\rho > 1$. With this analogy
316 in mind, we could leverage the vast literature discussing and interpreting the results of these tests and
317 their pitfalls (Anisimova & Kosiol, 2009; Jensen et al., 2019; Nielsen, 2005). First, not rejecting the neutral
318 null model of $\rho = 1$ did not necessarily imply that the trait was effectively neutral, since diversifying and
319 stabilizing selection could compensate each other resulting in $\rho = 1$, analogously to $\omega = 1$ under a mix
320 of adaptation and purifying selection (Nielsen, 2005). Second, empirical evidence for $\rho < 1$ did not rule
321 out diversifying selection, but rather that this diversifying selection was not strong enough to overcome the
322 stabilizing selection, similarly to strong purifying selection resulting $\omega < 1$ even though those genes and
323 sites are under adaptation (Latrille et al., 2023). By explicitly modeling stabilizing selection as a moving
324 optimum, it would theoretically be possible to tease apart the effect of diversifying and stabilizing selection
325 in the context of quantitative traits to obtain a statistically more powerful test.

326 In the context of detecting diversifying selection on a trait, we argue that the main drawback of our
327 method is that the additive genetic variance of the trait is required instead of the phenotypic variance. If
328 phenotypic variance was used instead of additive genetic variance to estimate $\hat{\rho}$, meaning that we assumed
329 complete heritability, the neutrality index $\hat{\rho}$ was ultimately underestimated. Similarly, using broad-sense
330 heritability instead of narrow-sense heritability would result in underestimated $\hat{\rho}$. In such context, the test
331 of stabilizing selection ($\hat{\rho} < 1$) would be statistically invalid. However, the test of diversifying selection
332 ($\hat{\rho} > 1$) was underpowered although not invalidated, meaning that absence of evidence would not be evidence
333 of absence. As an example, even though we assumed complete heritability for brain mass, we uncovered
334 diversifying selection in mammals since $\hat{\rho} > 1$.

335 The development of our neutrality index was also based on several assumptions that could be relaxed
336 in future studies. First, we cannot predict the behavior of our test in the context of population structures,
337 gene flow and introgression. These factors should be thoroughly investigated using simulations. Second, loci

338 were assumed to contribute additively to the phenotype. Although the effects of dominance and epistasis
339 is typically weak compared to the additive effects on the quantitative traits, their influence should be as-
340 sessed (Crow, 2010; Hill et al., 2008). Third, the genetic architecture of the trait was assumed to be constant
341 across the phylogenetic tree, whereas it might actually be variable among individuals and species (Huber
342 et al., 2015; Tung et al., 2015). Such an assumption can theoretically be relaxed and changes in genetic
343 architecture along the phylogenetic tree could jointly be estimated (Arnold et al., 2008; Gaboriau et al.,
344 2020; Hohenlohe & Arnold, 2008; Kostikova et al., 2016). Finally, our Bayesian estimation could integrate
345 uncertainty from the estimation of genetic variation, using sequences as input instead of estimated values of
346 nucleotide diversity and divergence.

347 From an empirical point of view, our method required integrating genomic and trait variation, which
348 could reduce the possible datasets to be used. However, such datasets will become more and more accessible
349 and we showed the applicability of our method by applying it to the illustrative example of mammals brain
350 and body mass. Because our test was also based on several assumptions that might not hold on empirical
351 data, we also provided a table containing the main assumptions and their consequences on the neutrality
352 index and the test that can be performed (Table 2). For example, at the primate scale, the evidence for $\hat{\rho} > 1$
353 does not necessarily imply that the brain mass was evolving under diversifying selection since the markers
354 used for nucleotide divergences were not neutral, which can lead to a spurious $\hat{\rho} > 1$. In conclusion, our
355 study provided a statistical framework to test for diversifying selection acting on a quantitative trait while
356 integrating the trove of genomic data available both within and between species, and we believe that our
357 new approach is a promising tool to investigate the evolution of quantitative traits.

358 Acknowledgements

359 We gratefully acknowledge the help of Nicolas Lartillot, Philippe Veber, Isabela Jeronimo do Ó, Anna
360 Marcionetti, Julien Clavel, and Daniele Silvestro for their insightful discussions and Julien Joseph for his
361 advice and reviews concerning this manuscript.

362 Competing interests:

363 The authors declare no conflicts of interest.

364 Data and materials availability:

365 The data that support the findings of this study are openly available in GitHub at
366 github.com/ThibaultLatrille/MicMac. Snakemake pipeline, analysis scripts and documentation are
367 available in the repository to replicate the study.

368 **References**

369 Anisimova, M., & Kosiol, C. (2009). Investigating protein-coding sequence evolution with probabilistic codon
370 substitution models. *Molecular Biology and Evolution*, 26(2), 255–271. <https://doi.org/10.1093/molbev/msn232>

372 Arnold, S. J., Bürger, R., Hohenlohe, P. A., Ajie, B. C., & Jones, A. G. (2008). Understanding the evolution
373 and stability of the G-Matrix. *Evolution*, 62(10), 2451–2461. <https://doi.org/10.1111/j.1558-5646.2008.00472.x>

375 Barton, N. H., Etheridge, A. M., & Véber, A. (2017). The infinitesimal model: Definition, derivation, and
376 implications. *Theoretical Population Biology*, 118, 50–73. <https://doi.org/10.1016/j.tpb.2017.06.001>

377 Bergeron, L. A., Besenbacher, S., Zheng, J., Li, P., Bertelsen, M. F., Quintard, B., Hoffman, J. I., Li, Z.,
378 St. Leger, J., Shao, C., Stiller, J., Gilbert, M. T. P., Schierup, M. H., & Zhang, G. (2023). Evolution
379 of the germline mutation rate across vertebrates. *Nature*, 1–7. <https://doi.org/10.1038/s41586-023-05752-y>

381 Blanquart, F., & Bataillon, T. (2016). Epistasis and the structure of fitness landscapes: Are experimental
382 fitness landscapes compatible with fisher's geometric model? *Genetics*, 203(2), 847–862. <https://doi.org/10.1534/genetics.115.182691>

384 Catalán, A., Briscoe, A. D., & Höhna, S. (2019). Drift and directional selection are the evolutionary forces
385 driving gene expression divergence in eye and brain tissue of Heliconius butterflies. *Genetics*, 213(2),
386 581–594. <https://doi.org/10.1534/genetics.119.302493>

387 Cooper, N., Thomas, G. H., Venditti, C., Meade, A., & Freckleton, R. P. (2016). A cautionary note on the
388 use of Ornstein Uhlenbeck models in macroevolutionary studies. *Biological Journal of the Linnean
389 Society*, 118(1), 64–77. <https://doi.org/10.1111/bij.12701>

390 Crow, J. F. (2010). On epistasis: Why it is unimportant in polygenic directional selection. *Philosophical
391 Transactions of the Royal Society B: Biological Sciences*, 365(1544), 1241–1244. <https://doi.org/10.1098/rstb.2009.0275>

393 Edelaar, P., Burraco, P., & Gomez-Mestre, I. (2011). Comparisons between QST and FST—how wrong have
394 we been? *Molecular Ecology*, 20(23), 4830–4839. <https://doi.org/10.1111/j.1365-294X.2011.05333.x>

395 Felsenstein, J. (1985). Phylogenies and the Comparative Method. *The American Naturalist*, 125(1), 1–15.
396 <https://doi.org/10.1086/284325>

397 Felsenstein, J. (2008). Comparative methods with sampling error and within-species variation: Contrasts
398 revisited and revised. *The American Naturalist*, 171(6), 713–725. <https://doi.org/10.1086/587525>

399 Foley, N. M., Mason, V. C., Harris, A. J., Bredemeyer, K. R., Damas, J., Lewin, H. A., Eizirik, E., Gatesy,
400 J., Karlsson, E. K., Lindblad-Toh, K., Zoonomia Consortium, Springer, M. S., & Murphy, W. J.
401 (2023). A genomic timescale for placental mammal evolution. *Science*, 380(6643), eabl8189. <https://doi.org/10.1126/science.abl8189>

403 Gaboriau, T., Mendes, F. K., Joly, S., Silvestro, D., & Salamin, N. (2020). A multi-platform package for
404 the analysis of intra- and interspecific trait evolution. *Methods in Ecology and Evolution*, 11(11),
405 1439–1447. <https://doi.org/10.1111/2041-210X.13458>

406 Gaboriau, T., Tobias, J. A., Silvestro, D., & Salamin, N. (2023, March 1). *Exploring the Macroevolutionary*
407 *Signature of Asymmetric Inheritance at Speciation*. <https://doi.org/10.1101/2023.02.28.530448>

408 Genereux, D. P., Serres, A., Armstrong, J., Johnson, J., Marinescu, V. D., Murén, E., Juan, D., Bejerano, G.,
409 Casewell, N. R., Chemnick, L. G., Damas, J., Di Palma, F., Diekhans, M., Fiddes, I. T., Garber, M.,
410 Gladyshev, V. N., Goodman, L., Haerty, W., Houck, M. L., ... Zoonomia Consortium. (2020). A
411 comparative genomics multitool for scientific discovery and conservation. *Nature*, 587(7833), 240–
412 245. <https://doi.org/10.1038/s41586-020-2876-6>

413 Gillard, G. B., Grønvold, L., Røsæg, L. L., Holen, M. M., Monsen, Ø., Koop, B. F., Rondeau, E. B.,
414 Gundappa, M. K., Mendoza, J., Macqueen, D. J., Rohlfs, R. V., Sandve, S. R., & Hvidsten, T. R.
415 (2021). Comparative regulomics supports pervasive selection on gene dosage following whole genome
416 duplication. *Genome Biology*, 22(1), 103. <https://doi.org/10.1186/s13059-021-02323-0>

417 Goldman, N., & Yang, Z. (1994). A codon-based model of nucleotide substitution for protein-coding DNA
418 sequences. *Molecular Biology and Evolution*, 11(5), 725–736.

419 Hansen, T. F. (1997). Stabilizing selection and the comparative analysis of adaptation. *Evolution*, 51(5),
420 1341–1351. <https://doi.org/10.1111/j.1558-5646.1997.tb01457.x>

421 Hansen, T. F., & Bartoszek, K. (2012). Interpreting the evolutionary regression: The interplay between
422 observational and biological errors in phylogenetic comparative studies. *Systematic Biology*, 61(3),
423 413–425. <https://doi.org/10.1093/sysbio/syr122>

424 Hansen, T. F., & Martins, E. P. (1996). Translating between microevolutionary process and macroevolu-
425 tionary patterns: The correlation structure of interspecific data. *Evolution*, 50(4), 1404–1417. <https://doi.org/10.1111/j.1558-5646.1996.tb03914.x>

427 Harmon, L. (2018). Phylogenetic comparative methods: Learning from trees.

428 Hill, W. G., Goddard, M. E., & Visscher, P. M. (2008). Data and Theory Point to Mainly Additive Genetic
429 Variance for Complex Traits. *PLOS Genetics*, 4(2), e1000008. <https://doi.org/10.1371/journal.pgen.1000008>

431 Hohenlohe, P. A., & Arnold, S. J. (2008). MiPoD: A hypothesis-testing framework for microevolutionary
432 inference from patterns of divergence. *The American Naturalist*, 171(3), 366–385. <https://doi.org/10.1086/527498>

434 Hu, Z.-L., Park, C. A., & Reecy, J. M. (2022). Bringing the Animal QTLdb and CorrDB into the future:
435 Meeting new challenges and providing updated services. *Nucleic Acids Research*, 50(D1), D956–
436 D961. <https://doi.org/10.1093/nar/gkab1116>

437 Huber, B., Whibley, A., Poul, Y. L., Navarro, N., Martin, A., Baxter, S., Shah, A., Gilles, B., Wirth,
438 T., McMillan, W. O., & Joron, M. (2015). Conservatism and novelty in the genetic architecture of
439 adaptation in *Heliconius* butterflies. *Heredity*, 114(5), 515–524. <https://doi.org/10.1038/hdy.2015.22>

440 Huelsenbeck, J. P., & Rannala, B. (2003). Detecting correlation between characters in a comparative analysis
441 with uncertain phylogeny. *Evolution*, 57(6), 1237–1247. <https://doi.org/10.1111/j.0014-3820.2003.tb00332.x>

TRAIT SELECTION FROM WITHIN AND BETWEEN-SPECIES VARIATION

443 Jensen, J. D., Payseur, B. A., Stephan, W., Aquadro, C. F., Lynch, M., Charlesworth, D., & Charlesworth,
444 B. (2019). The importance of the Neutral Theory in 1968 and 50 years on: A response to Kern and
445 Hahn 2018. *Evolution*, 73(1), 111–114. <https://doi.org/10.1111/evo.13650>

446 Khaitovich, P., Weiss, G., Lachmann, M., Hellmann, I., Enard, W., Muetzel, B., Wirkner, U., Ansorge,
447 W., & Pääbo, S. (2004). A neutral model of transcriptome evolution. *PLOS Biology*, 2(5), e132.
448 <https://doi.org/10.1371/journal.pbio.0020132>

449 Kimura, M. (1962). On the probability of fixation of mutant genes in a population. *Genetics*, 47(6), 713–719.

450 Kimura, M. (1968). Evolutionary rate at the molecular level. *Nature*, 217(5129), 624–626.

451 Kostikova, A., Silvestro, D., Pearman, P. B., & Salamin, N. (2016). Bridging inter- and intraspecific trait
452 evolution with a hierarchical bayesian approach. *Systematic Biology*, 65(3), 417–431. <https://doi.org/10.1093/sysbio/syw010>

453 Kuderna, L. F. K., Gao, H., Janiak, M. C., Kuhlwil, M., Orkin, J. D., Bataillon, T., Manu, S., Valenzuela,
454 A., Bergman, J., Rousselle, M., Silva, F. E., Agueda, L., Blanc, J., Gut, M., de Vries, D., Goodhead,
455 I., Harris, R. A., Raveendran, M., Jensen, A., ... Marques Bonet, T. (2023). A global catalog of
456 whole-genome diversity from 233 primate species. *Science*, 380(6648), 906–913. <https://doi.org/10.1126/science.abn7829>

457 Lamy, J.-B., Plomion, C., Kremer, A., & Delzon, S. (2012). QST < FST As a signature of canalization.
458 *Molecular Ecology*, 21(23), 5646–5655. <https://doi.org/10.1111/mec.12017>

459 Lande, R. (1979). Quantitative genetic analysis of multivariate evolution, applied to brain: Body size allom-
460 etry. *Evolution*, 33(1), 402–416. <https://doi.org/10.2307/2407630>

461 Lande, R. (1980a). Genetic variation and phenotypic evolution during allopatric speciation. *The American
462 Naturalist*, 116(4), 463–479.

463 Lande, R. (1980b). Sexual dimorphism, sexual selection, and adaptation in polygenic characters. *Evolution*,
464 34(2), 292–305. <https://doi.org/10.2307/2407393>

465 Lartillot, N., & Poujol, R. (2011). A phylogenetic model for investigating correlated evolution of substitution
466 rates and continuous phenotypic characters. *Molecular Biology and Evolution*, 28(1), 729–744. <https://doi.org/10.1093/molbev/msq244>

467 Lartillot, N., & Delsuc, F. (2012). Joint reconstruction of divergence times and life-history evolution in
468 placental mammals using a phylogenetic covariance model. *Evolution*, 66(6), 1773–1787. <https://doi.org/10.1111/j.1558-5646.2011.01558.x>

469 Latrille, T., Rodrigue, N., & Lartillot, N. (2023). Genes and sites under adaptation at the phylogenetic
470 scale also exhibit adaptation at the population-genetic scale. *Proceedings of the National Academy of
471 Sciences of the United States of America*, 120(11), e2214977120. <https://doi.org/10.1073/pnas.2214977120>

472 Latrille, T., Lanore, V., & Lartillot, N. (2021). Inferring long-term effective population size with muta-
473 tion-selection models. *Molecular Biology and Evolution*, 38(10), 4573–4587. <https://doi.org/10.1093/molbev/msab160>

474

475

476

477

478

479

480 Leinonen, T., O'hara, R. B., Cano, J. M., & Merilä, J. (2008). Comparative studies of quantitative trait and
481 neutral marker divergence: A meta-analysis. *Journal of Evolutionary Biology*, 21(1), 1–17. <https://doi.org/10.1111/j.1420-9101.2007.01445.x>

482 Leinonen, T., McCairns, R. J. S., O'Hara, R. B., & Merilä, J. (2013). QST–FST comparisons: Evolutionary
483 and ecological insights from genomic heterogeneity. *Nature Reviews Genetics*, 14(3), 179–190. <https://doi.org/10.1038/nrg3395>

484 Lynch, M. (1991). Methods for the analysis of comparative data in evolutionary biology. *Evolution*, 45(5),
485 1065–1080. <https://doi.org/10.1111/j.1558-5646.1991.tb04375.x>

486 Lynch, M., Latta, L., Hicks, J., & Giorgianni, M. (1998). Mutation, selection, and the maintenance of life-
487 history variation in a natural population. *Evolution*, 52(3), 727–733. <https://doi.org/10.1111/j.1558-5646.1998.tb03697.x>

488 Lynch, M., & Walsh, B. (1998). *Genetics and analysis of quantitative traits* (Vol. 1). Sinauer Sunderland,
489 MA.

490 Martin, G., Chapuis, E., & Goudet, J. (2008). Multivariate Qst–Fst Comparisons: A Neutrality Test for the
491 Evolution of the G Matrix in Structured Populations. *Genetics*, 180(4), 2135–2149. <https://doi.org/10.1534/genetics.107.080820>

492 McCandlish, D. M., & Stoltzfus, A. (2014). Modeling evolution using the probability of fixation: History and
493 implications. *Quarterly Review of Biology*, 89(3), 225–252. <https://doi.org/10.1086/677571>

494 McDonald, J. H., & Kreitman, M. (1991). Adaptative protein evolution at Adh locus in Drosophila. *Nature*,
495 351(6328), 652–654. <https://doi.org/10.1038/351652a0>

496 Merilä, J., & Crnokrak, P. (2001). Comparison of genetic differentiation at marker loci and quantitative traits.
497 *Journal of Evolutionary Biology*, 14(6), 892–903. <https://doi.org/10.1046/j.1420-9101.2001.00348.x>

498 Muse, S. V., & Gaut, B. S. (1994). A likelihood approach for comparing synonymous and nonsynonymous
499 nucleotide substitution rates, with application to the chloroplast genome. *Molecular Biology and
500 Evolution*, 1(5), 715–724.

501 Nielsen, R. (2005). Molecular signatures of natural selection. *Annual Review of Genetics*, 39(1), 197–218.
502 <https://doi.org/10.1146/annurev.genet.39.073003.112420>

503 O'Hara, R. B., & Merilä, J. (2005). Bias and Precision in QST Estimates: Problems and Some Solutions.
504 *Genetics*, 171(3), 1331–1339. <https://doi.org/10.1534/genetics.105.044545>

505 O'Meara, B. C., Ané, C., Sanderson, M. J., & Wainwright, P. C. (2006). Testing for Different Rates of
506 Continuous Trait Evolution Using Likelihood. *Evolution*, 60(5), 922–933. <https://doi.org/10.1111/j.0014-3820.2006.tb01171.x>

507 Price, P. D., Palmer Drogue, D. H., Taylor, J. A., Kim, D. W., Place, E. S., Rogers, T. F., Mank, J. E.,
508 Cooney, C. R., & Wright, A. E. (2022). Detecting signatures of selection on gene expression. *Nature
509 Ecology & Evolution*, 1–11. <https://doi.org/10.1038/s41559-022-01761-8>

510 Pujol, B., Wilson, A. J., Ross, R. I. C., & Pannell, J. R. (2008). Are QST–FST comparisons for natural
511 populations meaningful? *Molecular Ecology*, 17(22), 4782–4785. <https://doi.org/10.1111/j.1365-294X.2008.03958.x>

512

513

514

515

516

517

518 Rohlf, R. V., Harrigan, P., & Nielsen, R. (2014). Modeling gene expression evolution with an extended Orn-
519 stein–Uhlenbeck process accounting for within-species variation. *Molecular Biology and Evolution*,
520 31(1), 201–211. <https://doi.org/10.1093/molbev/mst190>

521 Rohlf, R. V., & Nielsen, R. (2015). Phylogenetic ANOVA: The expression variance and evolution model for
522 quantitative trait evolution. *Systematic Biology*, 64(5), 695–708. <https://doi.org/10.1093/sysbio/syv042>

523 Sella, G., & Barton, N. H. (2019). Thinking about the evolution of complex traits in the era of genome-
524 wide association studies. *Annual Review of Genomics and Human Genetics*, 20(1), 461–493. <https://doi.org/10.1146/annurev-genom-083115-022316>

525 Silvestro, D., Kostikova, A., Litsios, G., Pearman, P. B., & Salamin, N. (2015). Measurement errors should
526 always be incorporated in phylogenetic comparative analysis. *Methods in Ecology and Evolution*,
527 6(3), 340–346. <https://doi.org/10.1111/2041-210X.12337>

528 Silvestro, D., Tejedor, M. F., Serrano-Serrano, M. L., Loiseau, O., Rossier, V., Rolland, J., Zizka, A., Höhna,
529 S., Antonelli, A., & Salamin, N. (2019). Early Arrival and Climatically-Linked Geographic Expansion
530 of New World Monkeys from Tiny African Ancestors. *Systematic Biology*, 68(1), 78–92. <https://doi.org/10.1093/sysbio/syy046>

531 Simons, Y. B., Bullaughey, K., Hudson, R. R., & Sella, G. (2018). A population genetic interpretation of
532 GWAS findings for human quantitative traits. *PLOS Biology*, 16(3), e2002985. <https://doi.org/10.1371/journal.pbio.2002985>

533 Tajima, F. (1989). Statistical method for testing the neutral mutation hypothesis by DNA polymorphism.
534 *Genetics*, 123(3), 585–595. <https://doi.org/10.1093/genetics/123.3.585>

535 Tenaillon, O. (2014). The utility of fisher’s geometric model in evolutionary genetics. *Annual Review of
536 Ecology, Evolution, and Systematics*, 45(1), 179–201. <https://doi.org/10.1146/annurev-ecolsys-120213-091846>

537 Tsuboi, M., van der Bijl, W., Kopperud, B. T., Erritzøe, J., Voje, K. L., Kotrschal, A., Yopak, K. E.,
538 Collin, S. P., Iwaniuk, A. N., & Kolm, N. (2018). Breakdown of brain–body allometry and the
539 encephalization of birds and mammals. *Nature Ecology & Evolution*, 2(9), 1492–1500. <https://doi.org/10.1038/s41559-018-0632-1>

540 Tung, J., Zhou, X., Alberts, S. C., Stephens, M., & Gilad, Y. (2015). The genetic architecture of gene
541 expression levels in wild baboons (E. T. Dermitzakis, Ed.). *eLife*, 4, e04729. <https://doi.org/10.7554/eLife.04729>

542 Turelli, M. (1984). Heritable genetic variation via mutation-selection balance: Lerch’s zeta meets the ab-
543 dominal bristle. *Theoretical Population Biology*, 25(2), 138–193. [https://doi.org/10.1016/0040-5809\(84\)90017-0](https://doi.org/10.1016/0040-
544 5809(84)90017-0)

545 Turelli, M. (2017). Commentary: Fisher’s infinitesimal model: A story for the ages. *Theoretical Population
546 Biology*, 118, 46–49. <https://doi.org/10.1016/j.tpb.2017.09.003>

547 Walsh, B., & Lynch, M. (2018, June 21). *Evolution and Selection of Quantitative Traits*. Oxford University
548 Press.

TRAIT SELECTION FROM WITHIN AND BETWEEN-SPECIES VARIATION

556 Wilder, A. P., Supple, M. A., Subramanian, A., Mudide, A., Swofford, R., Serres-Armero, A., Steiner, C.,
557 Koepfli, K.-P., Genereux, D. P., Karlsson, E. K., Lindblad-Toh, K., Marques-Bonet, T., Munoz
558 Fuentes, V., Foley, K., Meyer, W. K., Zoonomia Consortium, Ryder, O. A., & Shapiro, B. (2023).
559 The contribution of historical processes to contemporary extinction risk in placental mammals.
560 *Science*, 380(6643), eabn5856. <https://doi.org/10.1126/science.abn5856>

DETECTING DIVERSIFYING SELECTION FOR A TRAIT FROM WITHIN AND BETWEEN-SPECIES GENOTYPES AND PHENOTYPES

561

**T. Latrille¹ , M. Bastian² , T. Gaboriau¹ , N. Salamin¹ **

¹Department of Computational Biology, Université de Lausanne, Lausanne, Switzerland

²Laboratoire de Biométrie et Biologie Evolutive, UMR5558, Université Lyon 1, Villeurbanne, France

thibault.latrille@ens-lyon.org

October 2, 2023

562 **Supplementary materials**

563 **Contents**

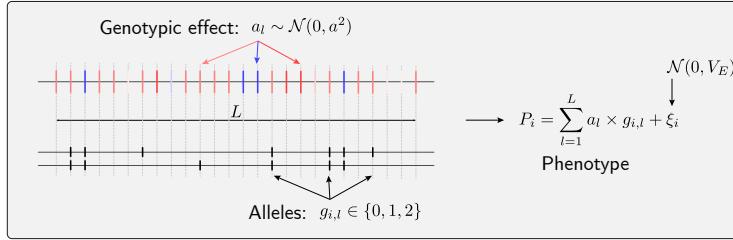
564 1	Genetic architecture of the trait	24
565	1.1 Genotype-phenotype map	24
566 2	Bayesian estimate	25
567	2.1 Multivariate Brownian process	25
568	2.2 Sampling the covariance matrix	25
569 3	Bayesian and Maximum-likelihood implementation	26
570	3.1 Data formatting	26
571	3.1.1 Phylogenetic tree	26
572	3.1.2 Mean trait for each species	26
573	3.1.3 Trait variation for each species	27
574	3.2 Bayesian estimation	28
575	3.2.1 Running the model	28
576	3.2.2 Reading the results	28
577	3.3 Maximum likelihood estimation	28

578 **1 Genetic architecture of the trait**

579 **1.1 Genotype-phenotype map**

- 580 • L is the number of loci encoding the trait.
- 581 • $a_l \sim \mathcal{N}(0, a^2)$ is the effect of a mutation on the trait at locus $l \in \{1, \dots, L\}$.
- 582 • N_e is the effective number of individuals.
- 583 • $g_{i,l} \in \{0, 1, 2\}$ is the genotypic value at locus l for individual $i \in \{1, \dots, N_e\}$.
- 584 • $G_i = \sum_{l=1}^L a_l \times g_{i,l}$ is the genotypic value for individual i .
- 585 • $\xi_i \sim \mathcal{N}(0, V_E)$ is the effect of environment on the trait for individual i .
- 586 • $P_i = G_i + \xi_i$ is the phenotype for individual i .

587 Figure S1: summary of trait's genetic architecture.



588

589 within-species, the mean (\bar{G}) and variance (V_A) of the genotype are:

$$590 \quad \bar{G} = \frac{1}{N_e} \sum_{i=1}^{N_e} G_i \quad \text{and} \quad V_A = \frac{1}{N_e} \sum_{i=1}^{N_e} (G_i - \bar{G})^2 \quad (25)$$

590 The theoretical additive genetic variance (V_A) is a function of the number of loci (L) and the effect of a
591 mutation (a) as:

$$592 \quad V_A = 4N_e \cdot \mu \cdot L \cdot a^2 \quad (26)$$

592 The mean (\bar{P}) and variance (V_P) of the phenotype are:

$$593 \quad \bar{P} = \frac{1}{N_e} \sum_{i=1}^{N_e} P_i \quad \text{and} \quad V_P = \frac{1}{N_e} \sum_{i=1}^{N_e} (P_i - \bar{P})^2 \quad (27)$$

593 Heritability (h^2) is defined as:

$$594 \quad h^2 = \frac{V_A}{V_P} = \frac{V_A}{V_A + V_E} \quad (28)$$

594 Altogether, effective population size (N_e), the number of loci (L) and the effect of a mutation (a), we can
595 compute the variance of the environment (V_E) that is required to reach a given heritability (h^2) as:

$$595 \quad V_E = V_A \cdot \left(\frac{1}{h^2} - 1 \right) = 4N_e \cdot \mu \cdot L \cdot a^2 \cdot \left(\frac{1}{h^2} - 1 \right) \quad (29)$$

596 **2 Bayesian estimate**

597 **2.1 Multivariate Brownian process**

598 Here we generalize to K traits evolving along the phylogeny and are correlated between them. Their variation
 599 along the phylogeny is modeled as a K -dimensional Brownian process \mathcal{B} ($1 \times K$) starting at the root and
 600 branching along the tree topology. The rate of change of the Brownian process is determined by the positive
 601 semi-definite and symmetric covariance matrix between traits Σ ($K \times K$). Along branch j with length d_j ,
 602 the Brownian process start at the ancestral node $\mathcal{A}(j)$ with value $\mathcal{B}(\mathcal{A}(j))$, and ends at node $\mathcal{R}(j)$ with value
 603 $\mathcal{B}(\mathcal{R}(j))$. The independent contrast \mathbf{C}_j defined as change in trait along the branch normalized by $\sqrt{d_j}$ is a
 604 multivariate Gaussian:

$$C_j = \frac{\mathcal{B}(\mathcal{R}(j)) - \mathcal{B}(\mathcal{A}(j))}{\sqrt{d_j}} \sim \mathcal{N}(\mathbf{0}, \Sigma). \quad (30)$$

605 **2.2 Sampling the covariance matrix**

606 From the independent contrast at each branch of the tree (\mathbf{C}_j), we can define the $K \times K$ scatter matrix, \mathbf{A} ,
 607 as:

$$\mathbf{A} = \sum_{j=1}^{2n-2} \mathbf{C}_j \times [\mathbf{C}_j]^\top, \quad (31)$$

608 where $2n - 2$ is the number of branches in the tree and n the number of taxa.

609 The prior on the covariance matrix is an inverse Wishart distribution, with $K + 1$ degrees of freedom:

$$\Sigma \sim \text{Wishart}^{-1}(\mathbf{I}, K + 1). \quad (32)$$

610 By Bayes theorem, the posterior on Σ , conditional on a particular realization of \mathcal{B} (and thus of \mathbf{C}) is an
 611 invert Wishart distribution, of parameter $\mathbf{I} + \mathbf{A}$ and with $2n + 1$ degrees of freedom.

$$\Sigma \sim \text{Wishart}^{-1}(\mathbf{I} + \mathbf{A}, 2n + 1) \quad (33)$$

612 This invert Wishart distribution can be obtained by sampling $2n + 1$ independent and identically distributed
 613 multivariate normal random variables \mathbf{Z}_k defined by

$$\mathbf{Z}_k \sim \mathcal{N}(\mathbf{0}, [\mathbf{I} + \mathbf{A}]^{-1}). \quad (34)$$

614 And from these multivariate samples, Σ is Gibbs sampled as:

$$\Sigma = \left(\sum_{k=1}^{2n+1} \mathbf{Z}_k \times [\mathbf{Z}_k]^\top \right)^{-1} \quad (35)$$

615 3 Bayesian and Maximum-likelihood implementation

616 Implementation is included within the *BayesCode* software, available at <https://github.com/ThibaultLatrille/bayescode>.

618 3.1 Data formatting

619 Running the analysis on your dataset and compute posterior probabilities requires three files:

620 1. A phylogenetic tree in newick format, with branch lengths in number of substitutions per site (neutral
621 markers).

622 2. A file containing the mean trait values for each species.

623 3. A file containing the variation within-species for each trait and the genetic variation within-species
624 (neutral markers).

625 3.1.1 Phylogenetic tree

626 The phylogenetic tree must be in newick format, with branch lengths in substitutions per site (neutral
627 markers).

628 3.1.2 Mean trait for each species

629 The file containing mean trait values for each species must be in a tab-delimited file with the following
630 format:

TaxonName	Body_mass	Brain_mass
Panthera_tigris	12.26	5.676
Pithecia_pithecia	7.256	3.436
Colobus_angolensis	9.176	4.284
Saimiri_boliviensis	6.845	3.279
:	:	:

632 The columns are:

633 • *TaxonName*: the name of the taxon matching the name in the alignment and the tree.

634 • As many columns as traits, without spaces or special characters in the trait.

635 • The values can be NaN to indicate that the trait is not available for that taxon.

636 **3.1.3 Trait variation for each species**

637 The file containing trait variation for each species must be in a tab-delimited file with the following format:

638

TaxonName	Nucleotide_diversity	Body_mass_variance	Body_mass_heritability	Brain_mass_variance	Brain_mass_heritability
Pithecia_pithecina	0.0016	0.22871	0.2	0.00737	0.2
Colobus_angolensis	0.0017	0.00393	0.2	0.00416	0.2
Saimiri_boliviensis	0.0013	0.00022	0.2	0.00045	0.2
Pygathrix_nemaeus	0.0016	0.00347	0.2	0.00097	0.2
:	:	:	:	:	:

639

- 640 • *TaxonName*: the name of the taxon matching the name in the alignment and the tree.
- 641 • *Nucleotide_diversity*: the nucleotide diversity within-species (neutral markers), cannot be `NaN`.
- 642 • As many columns as traits, without spaces or special characters in the trait.
- 643 • *TraitName_variance*: the phenotypic variance of the trait within-species, can be `NaN` to indicate that
- 644 the trait variance is not available for that taxon.
- 645 • *TraitName_heritability* (optional): the heritability of the trait within-species, between 0 and 1, cannot
- 646 be `NaN`.
- 647 • The columns with the suffix `_variance` and `_heritability` are repeated for each trait.
- 648 • *TraitName_heritability_lower* (optional): the lower bound of the heritability of the trait within-
- 649 species, between 0 and 1, cannot be `NaN`.
- 650 • *TraitName_heritability_upper* (optional): the upper bound of the heritability of the trait within-
- 651 species, between 0 and 1, cannot be `NaN`.
- 652 • If the columns with the suffix `_heritability_lower` and `_heritability_upper` are present, the
- 653 heritability is randomly drawn from a uniform distribution between the lower and upper bounds.
- 654 • If the columns with the suffix `_heritability` is present, it is taken as is.
- 655 • If the additive genetic variance (instead of phenotypic variance) is available for a trait, the heritability
- 656 can be omitted and will automatically be set to 1.0.

657 **3.2 Bayesian estimation**

658 The executable `nodetraits` from *BayesCode* is used to run the Bayesian estimation of the model, and the
659 executable `readnodetraits` is used to read the results.

660 Assuming that the file `data/body_size/mammals.male.tsv` contains the mean trait values for
661 each species, the file `data/body_size/mammals.male.var_trait.tsv` contains the variation within-
662 species for each trait and the genetic variation within-species (neutral markers), and the file
663 `data/body_size/mammals.male.tree` contains the phylogenetic tree, the following commands are used to
664 run the model and read the results.

665 **3.2.1 Running the model**

666 `nodetraits` is run with the following command:

```
667 nodetraits --until 2000
668     --tree data/body_size/mammals.male.tree
669     --traitsfile data/body_size/mammals.male.tsv
670     run_mammals_male
```

671 **3.2.2 Reading the results**

672 Once the model has run, the chain `run_mammals_male` is used to compute the posterior distribution of the
673 ratio of between-species variation over within-species variation with `readnodetraits`:

```
674 readnodetraits --burnin 1000
675     --var_within data/body_size/mammals.male.var_trait.tsv
676     --output results_mammals_male.tsv
677     run_mammals_male
```

678 The file `data.empirical/chain_name.ratio.tsv` then contains the posterior mean of the ratio of between-
679 species variation over within-species variation, the 95% and 99% credible interval, and the posterior proba-
680 bility that the ratio is greater than 1.

681 **3.3 Maximum likelihood estimation**

682 To obtain the ratio (without the posterior credible interval and probability) using maximum likelihood
683 computation, the following python script can be used:

```
684 python3 utils/neutral_index.py --tree data/body_size/mammals.male.tree
685     --traitsfile data/body_size/mammals.male.tsv
686     --var_within data/body_size/mammals.male.var_trait.tsv
687     --output results_ML_mammals_male.tsv
```