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Abstract

Hypergraphs are powerful tools for modeling complex interactions across various domains, includ-

ing biomedicine. However, learning meaningful node representations from hypergraphs remains a

challenge. Existing supervised methods often lack generalizability, thereby limiting their real-world

applications. We propose a new method, Pre-trained Hypergraph Convolutional Neural Networks

with Self-supervised Learning (PhyGCN), which leverages hypergraph structure for self-supervision

to enhance node representations. PhyGCN introduces a unique training strategy that integrates vari-

able hyperedge sizes with self-supervised learning, enabling improved generalization to unseen data.

Applications on multi-way chromatin interactions and polypharmacy side-effects demonstrate the

effectiveness of PhyGCN. As a generic framework for high-order interaction datasets with abundant

unlabeled data, PhyGCN holds strong potential for enhancing hypergraph node representations across

various domains.
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Introduction

Hypergraphs are essential data structures adept at modeling complex multi-entity relationships. Con-

ventional graph neural networks (GNNs), limited to pairwise interactions, cannot effectively capture

the higher-order interactions inherent to hypergraphs. This shortfall led to previous methods [1–3] ex-

panding hypergraphs to graphs using clique expansion [4]. More recent works [5–10] have adopted

GNN structure such as graph convolutional networks (GCNs) and extended them to the hypergraph set-

ting. HyperGCN [5] and HNHN [6], in particular, achieved state-of-the-art performances on hypergraph

benchmark datasets. However, these supervised methods heavily rely on labeled nodes, which are of-

ten scarce in practical scenarios. In situations with insufficient labels, these methods fail to fully utilize

the rich structural information of hypergraphs, leading to less effective and poorly generalizable node

representations.

Self-supervised learning (SSL), an approach that extract meaningful knowledge from abundant un-

labeled data to enhance model generalization [11, 12], presents a promising strategy to address these

challenges. SSL creates pretext tasks from unlabeled data to predict unobserved input based on the

observed part, enhancing the generalizability of models trained for computer vision (e.g., ImageNet pre-

training [13, 14]) and natural languages (e.g., BERT [15]). While SSL methods have been proposed for

GNNs [16–23], their application to hypergraph learning is underexplored. Noteworthy works [24–26]

have targeted specific applications such as recommender systems, while others [27] propose pre-training

GNNs on hypergraphs, primarily focusing on hyperedge prediction. A detailed discussion of related

works can be found in Supplementary Note A.

Here, we introduce PhyGCN to address the urgent need for a general method that can effectively

leverage unlabeled data from hypergraphs to enhance node representation learning. This self-supervised

method extracts knowledge from the hypergraph structure using self-supervised tasks, generating robust

node representations for diverse downstream tasks. Constructing self-supervised tasks in hypergraphs

poses a unique challenge due to the variable sizes of hyperedges. We tackle this challenge by designing

a self-supervised task that predicts masked hyperedges from observed ones and by incorporating an

attention mechanism into our model architecture [28] to predict variable-sized hyperedges.

Link prediction, an effective pre-training task for traditional graphs, typically involves designing a

neural network with fixed-length input to predict edges. Hyperedge prediction, however, is more chal-

lenging due to variable sizes. Simple average pooling of node embeddings has been found insufficient

to model a hyperedge [29]. Although some works [24–27] have explored the potential of self-supervised

learning on hypergraphs, our PhyGCN method is the first straightforward and effective approach to uti-

lize hypergraph structure and can be generally applied to many tasks.

We demonstrate the effectiveness of PhyGCN through various evaluations across multiple tasks and

datasets, showing its advantage over state-of-the-art hypergraph learning methods. Notably, PhyGCN

has been applied to study multi-way chromatin interactions and polypharmacy side-effect network data,

confirming its advantages in producing enhanced node embeddings and modeling higher-order inter-

actions. Together, PhyGCN, a self-supervised method for hypergraph representation learning, can be

applied broadly to a variety of problems.
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Figure 1: Overview of PhyGCN. a. The general workflow of PhyGCN begins with a hypergraph and its hy-

peredge information. Hyperedge prediction is employed as a self-supervised task for model pre-training. The

pre-trained embedding model is then used for downstream tasks. b. This illustration elaborates on PhyGCN’s

detailed workflow, which involves generating labeled data for self-supervised learning by randomly taking 80%

of the hyperedges as positive samples, and creating negative samples by changing the nodes in each positive

sample. This data facilitates the training of the base hypergraph convolutional network with the attention net-

work. The pre-trained base model is subsequently used for downstream tasks with a fully connected layer.

Fig. 1 provides a detailed depiction of PhyGCN’s model architecture and general workflow. PhyGCN

aims to enhance node representation learning in hypergraphs by effectively leveraging abundant unla-

beled data. To this end, we propose 1) a self-supervised learning strategy that pre-trains the model

directly on the hypergraph structure before proceeding with any downstream tasks, and 2) a correspond-

ing model architecture comprising a base hypergraph convolutional network for representation learning,

and an attention network [28] for executing the self-supervised task.

As shown in Fig. 1a, to pre-train the model, we establish a self-supervised hyperedge prediction

task using randomly masked hyperedges (20%). The neural networks are then trained to reconstruct
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them using only the remaining hyperedges (80%). The pre-trained neural network can then be used

for downstream tasks such as node classification and continual signal prediction. See Methods for the

details of the pre-training scheme.

Fig. 1b details the architecture of the neural network model, consistent of a base hypergraph con-

volutional network and two end networks for different tasks. The base convolutional network computes

the embedding of each node in the hypergraph, which is then directed either to the attention network

for variable-sized hyperedge prediction, or to a fully connected layer for node-level downstream tasks.

During the pre-training phase, the base model and the attention network are trained while the fully con-

nected layer for downstream tasks remains randomly initialized. We select and retain the base model that

exhibits the best performance on the pre-training task (hyperedge prediction) on the validation set, and

subsequently fine-tune it with the fully connected layer for downstream tasks. During this stage, we in-

corporate the original hypergraph data with its complete hyperedge information, and use the downstream

task labels as the supervisory signals for training.

To calculate the embedding for a target node, the hypergraph convolutional network aggregates in-

formation from neighboring nodes connected to it via hyperedges, and combines it with the target node

embedding to output a final embedding. These computations are carried out at each layer of the net-

work. The base hypergraph convolutional network is a stack of such hypergraph convolutional layers

(see Methods). To mitigate over-smoothing [30] and enhance the performance of the base model, we

concatenate the output of each layer in the end to generate the final embeddings for the nodes. Fur-

thermore, we adapt DropEdge [31] and introduce DropHyperedge, where we randomly mask the values

of the adjacency matrix for the base hypergraph convolutional network during each training iteration to

prevent overfitting and improve generalization in the pre-training phase. By integrating the model archi-

tecture and pre-training scheme, PhyGCN effectively learns from a hypergraph structure and applies the

learned knowledge to downstream tasks.

Self-supervised learning improves performance

We start with the fundamental question: can PhyGCN more effectively utilize the structural information

in a hypergraph? To assess this, we benchmarked PhyGCN against the current state-of-the-art hyper-

graph learning methods, including HyperGCN [5] and HNHN [6]. We also established a baseline by

merely decomposing the hypergraphs into graphs and applying a standard GCN [32]. We evaluated

these methods using the benchmark node classification task on citation networks (including Citeseer,

Cora, DBLP, and PubMed) whose hyperedges denote either co-authorship or co-citation relationships.

Given that the baselines utilize different data splits for their evaluations, we consistently evaluated our

method along with all the baselines on the same random data splits across a range of training data ratios.

Detailed statistics, experiment settings, and results are provided in Supplementary Note B.2.

In order to ascertain how each hypergraph learning method performs with limited training data,

we first set the training data ratio to 0.5% across the five datasets. The results are shown in Fig. 2a.

Across 10 random data splits, we found that both HyperGCN and HNHN fail to outperform the standard

GCN model, which merely transforms the hypergraphs into conventional graphs. Conversely, PhyGCN,
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Figure 2: Evaluation of our model on node classification on citation networks with variable hyperedge sizes

(Citeseer, Cora (co-authorship), Cora (co-citation), DBLP, and PubMed). The baseline methods include HNHN

[6], HyperGCN [5], and vanilla GCN [32]. a. Comparison of PhyGCN’s accuracy with the baseline methods

when the training data is minimal (0.05%). b. On the Cora (co-citation) dataset, PhyGCN consistently outper-

forms the baselines across various training data ratios (0.05%, 1%, 2%, 4%).

equipped with pre-training on the self-supervisory signals obtained directly from the hypergraph, per-

forms significantly better when dealing with a small training data ratio. It outperforms GCN across all

datasets, particularly on small networks such as Citeseer and Cora. The improvement over GCN suggests

that PhyGCN in more adept at learning from the higher-order hypergraph structure as opposed to merely

decomposing it into a binary graph. Furthermore, the pre-training scheme allows PhyGCN to extract

more information for node representation learning, especially when dealing with small hypergraphs.

To evaluate PhyGCN against the baselines on a wider range of training data ratios, we generated data

splits with increasing training data ratios of 1%, 2%, and 4%. The results on the Cora (co-authorship)

dataset are shown in Fig. 2b, while comprehensive results of all models on the five datasets are provided

in Supplementary Note B.2. Overall, PhyGCN outperforms the other methods, demonstrating more

robust performance under random data splits. Across varying training data ratios, PhyGCN consistently

outperforms the three baselines. At training data ratios of 2% and 4%, PhyGCN’s performance is con-

siderably more stable than that of the baselines, as indicated by the significant decrease in the variance

of PhyGCN’s accuracy across 10 random data splits.

These observations suggest that the pre-training stage enables the model to more effectively gather

information from unlabeled data, allowing it to perform well even when a small amount of data is avail-

able. The results underscore the potential of PhyGCN in learning with higher-order interactions without

the strong requirement of ample labeled data for a specific task. By fully leveraging the hypergraph

structure for self-supervised training and designing a simple but effective model architecture, PhyGCN

can achieve superior and more stable performances on downstream tasks compared to existing baselines.
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Exploring multi-way chromatin interaction

To further demonstrate the advantages of PhyGCN, particularly its potential for advancing discover-

ies in biological data, we applied it to multi-way chromatin interaction datasets. Such datasets reflect

simultaneous interactions involving multiple genomic loci within the same nuclei, providing an opportu-

nity to probe higher-order genome organization within a single nucleus. However, due to the limitation

of current mapping technology and the exponentially growing combination space of genomic loci, these

datasets tend to be extremely sparse and noisy. We evaluated our method on a node classification problem

on the SPRITE [33] data from the GM12878 cell line, where the aim is to predict the Hi-C subcompart-

ment label for each genomic bin. The details of the experimental setup, including the tasks, baselines,

and datasets, can be found in Supplementary Note B.3.

Why pre-training? We first evaluated how the pre-training scheme improves the learned represen-

tations for the downstream tasks with a node classification problem on the SPRITE data. In this task,

we aim to predict the Hi-C subcompartment label for each genomic bin and we split the data by chro-

mosome indices. Fig. 3a shows the results of the node classification problem. Without pre-training,

our “plain” model is directly trained on the subcompartment labels to make predictions. With self-

supervised learning that extracts the hyperedge information, the pre-trained model performs much better

on the cross-chromosome subcompartment label prediction task.

Why the hypergraph convolutional network? In Fig. 3b, we investigate the effectiveness of

PhyGCN’s hypergraph convolutional architecture in learning multi-way chromatin interactions of vari-

able sizes, which is the pre-training task of the model. Specifically, we compared PhyGCN against

MATCHA [34], which uses an autoencoder to generate node representations. As in the same setting

in [34], we consider hyperedges with the size of 2, 3, and 4 and use the AUROC and AUPR scores as

the evaluation metrics. We found that, with the hypergraph convolutional architecture, PhyGCN outper-

forms MATCHA on the three different hyperedge sizes with a small fraction of training data provided. It

should be noted that the hyperedge prediction task aims to provide a pre-trained model for downstream

tasks. To further evaluate the effectiveness of our base model, we performed several other hyperedge

prediction tasks as a thorough ablation study. The results, detailed in Supplementary Note B.5, con-

firm that the introduced convolutional architecture enables the model to consistently and stably capture

hyperedge information across different datasets, providing a better pre-training stage.

Comparison with previous methods. To investigate whether our pre-trained model captures in-

formative patterns of multi-way chromatin interactions, we conducted a downstream regression task to

predict the DNA replication timing of each genomic bin using corresponding embeddings as input. We

fit the signals on even or odd chromosomes given the training labels on odd or even chromosomes. As

a baseline, we used A/B compartment scores [35]. The results are shown in Fig. 3c, where the x-axis

represents the Pearson correlation score of A/B compartment scores and Repli-seq signals, and the y-

axis denotes the Pearson correlation score of the output of PhyGCN and ground truth labels. Each data

point on Fig. 3c corresponds to a chromosome. Based on the downstream tasks, we found that with pre-

training on the hyperedge interactions, our model can effectively capture the underlying patterns of 3D

genome organization, generating more informative embeddings that are relevant to important biological
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Figure 3: Application to the SPRITE data of chromatin interactions. a. Classification accuracy for subcom-

partment labels of the GM12878 cell line. b. AUROC and AUPR scores for predicting multi-way chromatin

interactions, where we compare our method with MATCHA [34] across hyperedges of sizes 2, 3, and 4. c.

Regression results on the GM12878 cell line, compared against the baseline A/B Compartments. d. Regres-

sion results on the HFFc6 cell line, where we compared our transferred PhyGCN results with the baseline A/B

Compartments. e. Browser shot on chromosome 1 for Repli-seq prediction task (regression on HFFc6). The

boxplot shows the MSE distribution between the ground truth and the result from PhyGCN or the baseline. MSE

is calculated within each region of 5 Mb.
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functions such as DNA replication.

Transferring knowledge to a different hypergraph structure. We further explored the potential of

PhyGCN on learning and adapting to new hypergraph structures. Specifically, we evaluated our method

on transferring the association between multi-way chromatin interactions and DNA replication timing

learned from the SPRITE data of the GM12878 cell line to that of the HFFc6 cell line. To achieve this,

we first pre-trained our base model and the attention network to predict multi-way chromatin interac-

tions of the GM12878 cell line using the self-supervised learning task. We then fixed the base model

and fine-tune the fully connected layer to predict replication timing of genomic loci in the GM12878

cell line. Next, with the attention network fixed, we fine-tuned the base model with the task of pre-

dicting multi-way chromatin interactions in the HFFc6 cell line using the hypergraph constructed from

the SPRITE data of HFFc6 following the same SSL setting as the dataset of the GM12878 cell line.

With an additional regularizer on the base model weights, we expect our base model to learn the subtle

knowledge in hypergraph structural differences and combined with the fixed fully connected layer to

make accurate predictions of Repli-seq signals in HFFc6 cell line. The results are shown in Fig. 3d,

where we use boxplots to show the Pearson and Spearman correlation scores on each chromosome and

compare them with the A/B compartment score calculated from the contact of SPRITE data in HFFc6.

In Fig. 3e, we show an example from chromosome 1 where we compared the ground truth Repli-seq

signals to the predictions from A/B compartments regression and PhyGCN with PhyGCN reaching an

overall smaller MSE. Together, our results demonstrate that PhyGCN can better learn the representation

based on multi-way chromatin interactions and utilize it to make downstream inferences.

Application to predicting polypharmacy side effect

Next, we sought to apply PhyGCN on the polypharmacy side effect dataset and demonstrate the ad-

vantages of learning such data as a hypergraph rather than a graph. Typically, the association between

drugs and side effects is represented as a pairwise drug-side-effect network. However, during disease

treatment, multiple drugs are often used in combination, and undesirable combinations can cause side

effects not known to either individual drug in the combination (polypharmacy side-effect) [36]. Recent

works like [36, 37] have used GNNs to predict polypharmacy side-effects with noteworthy performance.

These methods treat drugs as nodes and side effects associated with a drug pair as the attributes for

the corresponding edge. However, the number of unique side effects is comparable to or even exceeds

the number of unique drugs, making it inefficient to model the data as multiple graphs for each side

effect. Furthermore, real-world data likely involve drug combinations with more than two drugs that

cause side-effects, which GNN methods may not be able to handle. In contrast, hypergraph methods like

PhyGCN can easily adapt to such datasets. Since the polypharmacy side-effect data involves interactions

beyond pairwise, it can be naturally learned as a hypergraph with drugs and side effects as the nodes.

We investigated how PhyGCN learns such interactions and compared it with state-of-the-art methods, in-

cluding graph-based methods such as Decagon [36] and ComplEX [37], and hypergraph-based method

Hyper-SAGNN [28]. Further details are provided in Supplementary Note B.4.

In [36, 37], only side-effects known to be associated with more than 500 drug combinations were
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used for test data. In addition to this original setting, we report results on random data splits where any

side effect can be used for testing. Our findings, presented in Fig. 4a, indicate that modeling the data

as a hypergraph (using Hyper-SAGNN [28] and PhyGCN) yields better performance than modeling it as

graphs (using Decagon [36] and ComplEX [37]) in both the original and random settings. We conducted

Decagon
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Figure 4: Application to the polypharmacy side effects dataset. a. We display the AUROC score for polyphar-

macy side effect prediction across different data splits, distinguishing between performances on “expected” and

“unexpected” polypharmacy side effects. b. The AUROC score for polypharmacy side effect prediction across

different data splits under an enhanced negative sampling strategy. c. We concretely demonstrate our definition

of expected/unexpected relations. In the expected interactions, we have prior knowledge that one of the drugs

causes the side effect, as indicated by the red arrow. Furthermore, we illustrate the difference between the

original negative sampling and the enhanced negative sampling. The latter selects drug pairs that generate

other side effects to be combined with the current example.

additional experiments to investigate how PhyGCN benefits from learning the data as a hypergraph by

testing it on different types of data splits. Specifically, we considered interactions that involve a known

pairwise relationship as “expected” and those that do not involve any known relationship as “unexpected”

in the original dataset, as some side-effects are already known to be associated with a single drug (see

Supplementary Note B.4). We empirically studied how the baselines and our method performed when

testing only on expected or unexpected data. As shown in Fig. 4a, GNN methods such as Decagon and

ComplEX showed a drop in performance from “expected” to “unexpected”, while PhyGCN maintained

a consistent performance on both types of data. As the unexpected polypharmacy side-effect triplet does
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not contain any potential pairwise interactions (while “expected” ones have), the “unexpected” test data

serves as a useful indicator of how well a method captured such high-order interactions. The consistency

of PhyGCN and Hyper-SAGNN on the different data splits further demonstrates the advantage of model-

ing complex interactions as a hypergraph. Additionally, our results showed that PhyGCN outperformed

Hyper-SAGNN, indicating its superior capability to learn from hypergraphs.

Enhanced negative sampling strategy. To investigate the effect of negative sampling on the polyphar-

macy side effect dataset, we conducted an experiment to compare the traditional random negative sam-

pling method with our proposed negative sampling strategy. The traditional approach [36, 37] generates

negative samples by randomly sampling two drugs that do not cause the specific side effect in the train-

ing data. However, we hypothesize that this strategy may lead to a model that learns the bias of the

likelihood that a drug combination causes any side effect rather than the specific side effect in ques-

tion. To address this, we propose a stronger criterion for negative sampling, which involves sampling a

drug combination that is known to cause other side effects and combining it with the given side effect

as a negative sample. This strategy forces the model to differentiate between the positive and negative

samples and learn the subtle differences between them. In other words, the model is forced to make

distinctions for each side effect. The results of our experiment are presented in Fig. 4b. We found that

our proposed negative sampling strategy poses a greater challenge for all methods to perform well, with

an average test accuracy below 80%. However, we observed that PhyGCN outperforms the baselines and

performs stably well across different data splits. This strongly suggests that PhyGCN is better able to

grasp the complex interactions without bias, unlike the baselines. We further present detailed examples

in Fig. 4c to demonstrate the expected and unexpected side effect, and our enhanced negative sampling

strategy. Together, the results of this experiment highlight the importance of careful negative sampling

in achieving good performance in learning hypergraphs.

Discussion

In this paper, we introduced PhyGCN, a hypergraph convolutional network model with a self-supervised

pre-training scheme, designed to effectively capture higher-order information of hypergraphs. We demon-

strated the effectiveness of PhyGCN on node classification tasks of benchmark citation networks and

conduct comprehensive studies on a multi-way chromatin interaction dataset, highlighting the contribu-

tion of each component to capturing informative interaction patterns. We also showed the advantages of

modeling polypharmacy side effects as hypergraphs and propose an improved negative sampling scheme

to evaluate models with less bias.

While self-supervised training has been extensively studied for graphs with pairwise links [16–23],

few works have explored it for hypergraph representation learning [27]. Our focus is on leveraging the

attention mechanism [28] to predict hyperedges with arbitrary lengths and capture the indecomposiblity

of a hyperedge, allowing PhyGCN to extract useful information from complex hypergraph structures.

With its ability to model higher-order interactions in various graph-structured data, such as social

networks with group interactions, PhyGCN has great potential for a wide range of applications. Many
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real-world graph-structured data possess higher-order interactions. For example, social networks have

group interactions that are inherently hypergraph-structured, and decomposing them into pairwise in-

teractions may lose valuable information. By modeling such graph data as hypergraph, PhyGCN can

provide valuable node representations by extracting information from the structure. This offers opportu-

nities for leveraging the method in various applications, from drug discovery to social network analysis,

where complex, multi-way interactions play a critical role.
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Methods

Preliminaries

Graph Neural Networks

We denote a graph by G = (V,E), where V is the vertex set with node v ∈ V and E is the edge set with

pairwise edge (u, v) ∈ E. Graph neural networks (GNNs) mostly follow the following scheme [38]:

x
l
v = COMBINE(l)

(
x
(l−1)
v ,AGG(l)

({
x
(l−1)
u : u ∈ N (v)

}))
, (1)

where x
(l)
v is the embedding vector of node v at layer l of the network, x

(0)
v is the input data, and N (v)

is the set of nodes that are adjacent to v. Here AGG(·) and COMBINE(·) are two functions usually used

to aggregate the neighboring embeddings and combine the aggregated embedding with the original node

embedding to output the embedding of a given node. Different GNN models may have different choices

of COMBINE(·) and AGG(·) functions. As a most popular approach to aggregate and combine the node

vectors, GCN [32] averages over all the first-order neighboring nodes including the node itself. Let X(l)

represent the embedding matrix of all nodes at layer l, and the equation boils down to

X
(l) = σ

(
ÂX

(l−1)
Θ

(l−1)
)
, (2)

where σ is some activation function, Â ∈ R
N×N is the normalized adjacency matrix with N denoting the

number of nodes. Θ ∈ R
hl−1×hl is the weight matrix at layer l − 1 where hl as the hidden embedding

size at each layer l. And X
(0) ∈ R

N×d0 is the input node features of all nodes where d0 is the size of the

input node feature size.

Hypergraph Convolutional Networks

In an attempt to adapt GCN for tasks on hypergraph, the problem naturally arises: how do we appropri-

ately adapt the adjacency matrix for hypergraphs? Adjacency matrix is natural to construct for graphs:

setting the entry Aij = 1 for each edge (vi, vj). However, hyperedge involve more than two nodes and

constructing A will thus be tricky. As [39] proposed, for a hypergraph G = (V,E), a hypergraph can be

represented by an incidence matrix H ∈ R
N×M , with N as the number of nodes and M as the number

of hyperedges. When a hyperedge ej ∈ E is incident with a vertex vi ∈ V , Hij = 1, otherwise equals

0. We denote W as the hyperedge weight matrix, and then a straightforward definition for the adjacency

matrix will be A = HWH
¦. And to normalize it similarly as in GCN, we take

Â = D
−1/2
v HWD

−1
e H

¦
D

−1/2
v , (3)

where the diagonal matrices De ∈ R
M×M ,Dv ∈ R

N×N respectively represent the degree of hyperedges

and the degree of vertices [39] and Â ∈ R
N×N . A layer of such hypergraph GCN model will then be

similar to the regular GCN but with a different adjacency matrix

X
(l) = σ

(
ÂX

(l−1)
Θ

(l−1)
)
. (4)
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Similarly, Θ ∈ R
hl−1×hl is the weight matrix at layer l − 1 and X

(0) ∈ R
N×d0 is the input node features

of all nodes. We adopt such simple architectures in our work, along with several techniques in GNNs to

enhance the model’s learning on both self-supervised and main tasks.

Our Method

Base Hypergraph Convolutional Network

...

...

...

......

...

...

...

...

...

...

......

...

...

...

DropHyperedge

. . . . . .: . . . ... . . . . . .:

Skip/Dense 

Connection

CONCAT

Validation data

...

...

80%

20%

(masked to 

the network)

Hyperedges

...

Negative samples

Hyperedges

...

Negative samples

Training data

Negative

Samplingp:                    ? ...

...

...

Node

representation
Fully-connected layer

Self-attention

... ... ...

Static embeddings

Dynamic embeddings

... ... ...

(s - d )i i

2 Average

a.

b.

c.

Figure 5: Illustration of the method. a. For the base hypergraph convolutional network, we propose two adapted

strategies (DropHyperedge and Skip/Dense Connection) to further improve the pre-training of PhyGCN. b. For

the self-supervised pre-training task, we randomly mask 20% of the hyperedges in the hypergraph and generate

negative samples with regard to each positive training example. c. The pre-training scheme requires prediction

of hyperedges that are arbitrarily sized. Therefore, we adopt an attention network [28] to fulfill the task.

We thus propose a self-supervised learning strategy, along with a simple but effective hypergraph

convolutional network architecture, to better capture the structural knowledge of a hypergraph. Our base

convolutional model follows from the previous setup of a hypergraph convolutional network, where

X
(l) = σ

(
ÂX

(l−1)
Θ

(l−1)
)
. (5)

And we further introduce the following modifications to the base hypergraph convolutional model.

Skip/Dense Connection. GCNs have been known to the have vanishing gradient problem where stacking

multiple convolution layers in a GCN model causes the derivative of the loss function to approach zero

and thus hard to train [40]. To make GCNs deeper and prevent the vanishing gradient problem, [41]

proposes several adapted strategies based on the methods frequently used for CNNs. Similar vanishing

gradient problems have also been observed in hypergraph convolutional networks [42]. Therefore, we
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design a similar but more computing-efficient strategy where we concatenate the outputs of all layers of

the model only after the last layer (instead of concatenating the previous outputs at each layer as in [41]),

as illustrated in Figure 5a. That is, we keep all the previous layers unchanged and set the last layer of the

convolutional model as:

X
(n) =

[
σ(ÂX

(n−1)
Θ

(n−1)),X(n−1), ...,X(0)
]
. (6)

And we denote x
(l)
j as the j-th row of X(l), which is the embedding at layer l for node j. Such design

helps us save computation time while preventing the model’s performance from dropping with more

layers. The eventual base model we use is then the n-layer convolutional model with concatenation at

the last layer. We either add an attention layer for the self-supervised task or an MLP layer for the main

task.

DropHyperedge. Overfitting is a common issue in the use of neural networks, where the network learns

to fit the training data too well and fails to generalize to test data. To mitigate such an effect, dropout

has been a popular technique for many fields and is also commonly used for GCNs. To further reduce

overfitting and improve generalization in GCNs, [31] introduced a new regularization technique designed

for GCNs called DropEdge, which randomly mask the edges of the graph at each iteration. In this work,

to address the over-fitting issues with PhyGCN and encourage better generalization in the pre-training

stage, we adapt the DropEdge strategy to our model by randomly masking the values on the adjacency

matrix Â at each iteration (as illustrated in Figure 5a). Note that such a strategy is only used for the

self-supervised hyperedge prediction task. We use the same dropout strategy in the main task as the

other baselines.

Pre-training with Self-supervisory Signals

Self-supervised task. As shown in Figure 5b, given a hypergraph G = (V,E), we randomly divide the

set of hyperedges E into the positive training set Etrain and the positive validation set Evalid. Moreover,

we generate 5 negative samples for each hyperedge in Etrain and Evalid, and denote the negative sample

sets as E ′
valid and E ′

valid. The final training and validation set is then

Strain =

{
(Ei, zi)

∣∣∣∣∣
Ei ∈ Etrain, zi = 1

Ei ∈ E ′
train, zi = 0

}
,

and

Svalid =

{
(Ei, zi)

∣∣∣∣∣
Ei ∈ Evalid, zi = 1

Ei ∈ E ′
valid, zi = 0

}
,

where Ei = {v1, . . . , vk} is a set of nodes of arbitrary size k. We then train the model by the hyperedge

prediction task: given a set of node features {x(0)
j }j∈[Ei] with arbitrary size k and x

(0)
j ∈ R

d0 , the goal is

to predict zi ∈ {0, 1}: whether the nodes form a hyperedge. Therefore, given the training set Strain, we

aim to minimize the following cross-entropy loss with regard to each training batch S:

Lpretrain = −
1

|S|

∑

i∈[S],S∈Strain

zi · log

(
g
({

f(x
(0)
j )
}
j∈[Ei]

))
. (7)
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Here, f(·) : Rd0 → R
d1 denotes the base hypergraph convolution model, where d0 is the input feature

size and d1 is the size of the output embedding x
(n)
j of the network. Moreover, g(·) :

{
R

d1
}
|Ei|

→ [0, 1]

denotes the attention network, which takes a arbitrary-size set of node embeddings x
(n)
j and output the

probability p of whether the nodes form a hyperedge. The base hypergraph convolutional model f(·) and

attention network g(·) are trained together, and the base model’s weight parameters are saved for further

fine-tuning in downstream tasks.

Negative sampling. We generate negative samples similarly to [28, 29], where the negative samples

are 5 times the number of positive samples provided by the hypergraph structure. Specifically, given a

existing hyperedge Ei = {v1, . . . , vk} ∈ Etrain, we generate E ′
i by randomly alternating one or multiple

of the node in Ei such that the new set does not belong to the existing hypergedge set, as shown in

Figure 5b. Moreover, the sampling strategy varies for different hypergraphs. For hypergraph with only

one node type (for example, citation network), we have

E ′
i = {v1, . . . , v

′
j, . . . , vk} : E ′

i ̸∈ ∪{Etrain, Evalid}.

For hypergraphs with different node types (for example, polypharmacy side-effect data), we randomly

alternate a node within its node type. Take hypergraph with two node types v and u for example, the

hyperedge is Ei = {v1, . . . , vk, u1, . . . , ul}. The negative samples are then

E ′
i = {v1, . . . , v

′
j, . . . , vk, u1, . . . , ul} : E ′

i ̸∈ ∪{Etrain, Evalid},

E ′
i = {v1, . . . , vk, u1, . . . , u

′
j, . . . , ul} : E ′

i ̸∈ ∪{Etrain, Evalid}.

Furthermore, for hypergraphs with fixed-length hyperedges like the polypharmacy dataset [36], we pro-

pose an enhanced negative sampling strategy. Let the fixed length k = 3 and Ei = {v1, v2, v3}, we

generate the negative sample as

E ′
i = {v′1, v

′
2, v3} : E ′

i ̸∈ ∪{Etrain, Evalid}, Ej = {v′1, v
′
2, v

′
3} ∈ ∪{Etrain, Evalid}.

so that the altered nodes in the negative sample are guaranteed to interact in another hyperedge.

Attention Network. As in Figure 5c, the attention network follows the design in [28] with weight

matrices WQ ∈ R
d1×dα , WK ∈ R

d1×dα , and WV ∈ R
d1×d2 . Given the a node set E of size k and the

node embeddings
{
x
(n)
j = f

(
x
(0)
j

)}
vj∈E

, the normalized attention coeffcient αil regarding node vi and

node vl is computed as

αil =
exp

((
W

¦
Qx

(n)
i

)¦(
W

¦
Kx

(n)
l

))

∑k
j=1 exp

((
W¦

Qx
(n)
i

)¦(
W¦

Kx
(n)
j

)) . (8)

Then, the dynamic embedding of each node vi ∈ E is computed as

di = tanh

( k∑

l=1

αilW
¦
V xl

)
∈ R

d2 . (9)

And with weight matrix WS ∈ R
d1×d2 , the static embedding of each node vi ∈ E is computed as

si = W
¦
Sxi ∈ R

d2 . (10)
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Finally, with another layer WO ∈ R
d2 , the output of the attention network is then the probability that the

node set is a hyperedge:

p =
1

k

k∑

i=0

σ
(
W

¦
O

(
di − si

)◦2
+ b
)
. (11)

where σ is the sigmoid function and b ∈ R. Notation ◦ denotes element-wise power operation.

Downstream Tasks

We evaluate how well the model learns node representation through node-level downstream tasks. Load-

ing the saved base model and adding a fully connected layer for prediction, we fine-tune the model by

the downstream task. Based on the pre-trained model f(·) that generates node embeddings with the in-

formation it leveraged from the pre-training task, we can utilize it to do node-level downstream tasks in

a wide range of applications.

Let h(·) denote the fully connected layer that is task-specific for different data. For node classification

tasks with C classes as in Section , we have h(·) : Rd1 → R
C . Given the training set Strain with input

feature x
(0)
i ∈ R

d0 for each node i the label yi ∈ [C] representing the node class, we minimize the

following cross-entropy loss with regard to each training batch S:

Lmain = −
1

|S|

∑

i∈[S],S∈Strain

log

(
exp

(
h
(
f(x

(0)
i )
)
yi

)

exp
(∑C

c=1 h
(
f(x

(0)
i )
)
c

)
)
. (12)

For continual signal prediction tasks as in Section , we have h(·) : Rd1 → R. Given the training set

Strain with input feature x
(0)
i ∈ R

d0 for each node i the label yi ∈ R, we minimize the following mean

squared error with regard to each training batch S:

Lmain =
1

|S|

∑

i∈[S],S∈Strain

(
h
(
f(x

(0)
i )
)
− yi

)2
. (13)

In the downstream tasks, we keep fine-tuning the base convolutional network f(·) with the task-

specific fully connected layer h(·).
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