bioRxiv preprint doi: https://doi.org/10.1101/2023.09.29.560244; this version posted October 2, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

Pan-genome of pear provides insights into the fruit quality traits differentiation

between Asian and European pears

Baopeng Ding' 2" #, Haifei Hu®"#, Tingting Liu?", Muhammad Tahir ul Qamar*, Yujing Lin?,
Ruirui Xu®#, Zhiwen Chen', Yugin Song?, Guangqi He®, Youzhi Han’, Huangping Guo®,
Jun Qiao’, Jianguo Zhao': Xinxin Feng?, Sheng Yang®, Shaofang He®, Liulin Li?#, Rajeev
K.Varshney'®# Xuhu Guo' "' #

1. Engineering Research Center of Coal-Based Ecological Carbon Sequestration
Technology of the Ministry of Education and Key Laboratory of National Forest and Grass
Administration for the Application of Graphene in Forestry, Shanxi Datong University,
Datong, Shanxi, 037009, P.R. China

2. College of Horticulture, Shanxi Agricultural University, Taigu, Shanxi, 030801, P.R.
China

3. Rice Research Institute, Guangdong Academy of Agricultural Sciences & Key
Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-
construction by Ministry and Province), Ministry of Agriculture and Rural Affairs &
Guangdong Key Laboratory of New Technology in Rice Breeding & Guangdong Rice
Engineering Laboratory

4. Integrative Omics and Molecular Modeling Laboratory, Department of Bioinformatics
and Biotechnology, Government College University Faisalabad (GCUF), Faisalabad,
38000, Pakistan

5.College of Biology and Oceanography, Weifang University, Weifang, Shandong,
261061, P.R. China

6.State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences,
Zhejiang University, Hangzhou, Zhejiang, 310058, P. R. China

7.College of Forestry, Shanxi Agricultural University, Taigu, Shanxi, 030801, P.R. China
8.Pomology Institute, Shanxi Agricultural University, Taigu, Shanxi, 030801, P.R. China
9.Wuhan Tanma Technology and Shanxi Editor Technology, Wuhan&Taiyuan, Hubei
&Shanxi, 430206 & 030000, P.R. China

10.Centre for Crop & Food Innovation, State Agricultural Biotechnology Centre, Food


https://doi.org/10.1101/2023.09.29.560244
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.09.29.560244; this version posted October 2, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

Futures Institute, Murdoch University, Western Australia, Perth, 6000, Australia
11.School of Life Sciences, Shanxi Datong University, Datong, Shanxi, 037009, P.R.

China

1. Baopeng Ding: dingbaopeng2006@163.com

2. Haifei Hu: huhaifei@gdaas.cn
3. Tingting Liu: 229728082@qq.com

4. Muhammad Tahir ul Qamar: tahirulgamar@gcuf.edu.pk

5. Yujing Lin: linyujing0206@163.com

6. Ruirui Xu: xuruirui2006@163.com

7. Zhiwen Chen: b1301031@cau.edu.cn

8. Jun Qiao: giaojun nk@163.com

9. Yugin Song: songyugin@sxau.edu.cn

10. Xinxin Feng: fengxx@sxau.edu.cn

9. Guangqi He: guangqi@zju.edu.cn

10. Youzhi Han: hanyouzhi@sxau.edu.cn

11. Huangping Guo: ghping1959@163.com

13. Jianguo Zhao: jianguozhao9150@163.com

14. Sheng Yang: ys20080808@163.com

15. Shaofang He: heshaofang2021@163.com

16. Liulin Li: tgliulin@163.com

17. Rajeev K.Varshney: Rajeev.Varshney@murdoch.edu.au

18. Xuhu Guo: xhquo201010@126.com

Co-first author: Baopeng Ding: dingbaopeng2006@163.com; Haifei Hu:

huhaifei@gdaas.cn; Tingting Liu: 229728082@gg.com

Co-corresponding author: Baopeng Ding: dingbaopeng2006@163.com; Haifei Hu:

huhaifei@qgdaas.cn; Ruirui Xu: xuruirui2006@163.com; Liulin Li: tgliulin@163.com;

Rajeev K.Varshney: Rajeev.Varshney@murdoch.edu.au; Xuhu Guo:

xhquo201010@126.com



mailto:Dingbaopeng2006@163.com
mailto:tahirulqamar@gcuf.edu.pk
mailto:xuruirui2006@163.com
mailto:b1301031@cau.edu.cn
mailto:qiaojun_nk@163.com
mailto:songyuqin@sxau.edu.cn
mailto:fengxx@sxau.edu.cn
mailto:hanyouzhi@sxau.edu.cn
mailto:ghping1959@163.com
mailto:jianguozhao9150@163.com
mailto:ys20080808@163.com
mailto:heshaofang2021@163.com
mailto:tgliulin@163.com
mailto:xhguo201010@126.com
mailto:dingbaopeng2006@163.com;
mailto:huhaifei@gdaas.cn;
mailto:229728082@qq.com
mailto:dingbaopeng2006@163.com;
mailto:huhaifei@gdaas.cn;
mailto:xuruirui2006@163.com
mailto:tgliulin@163.com
mailto:Rajeev.Varshney@murdoch.edu.au;
mailto:xhguo201010@126.com
https://doi.org/10.1101/2023.09.29.560244
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.09.29.560244; this version posted October 2, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

Abstract:

The pear (Pyrus spp.) is a remarkable fruit, well known for its diverse flavors,
textures, culinary versatility, and global horticultural importance. However, the
genetic diversity responsible for its extensive phenotypic variations remains
largely unexplored. Here, we de novo assembled and annotated the genomes
of the maternal (PsbM) and paternal (PsbF) lines of the hybrid “Yuluxiang’
pear and constructed the first pear pangenome of 1.15Gb by combining these
two genomes with five previously published pear genomes. Using the
constructed pangenome, we identified 21,224 gene PAVs and 1,158,812
SNPs in the non-reference genome that were absent in the PsbM reference
genome. Compared with SNP markers, we found that PAV-based analysis
provides additional insights into the pear population structure. In addition, we
also revealed that some genes associated with pear fruit quality traits have
differential occurrence frequencies and differential gene expression between
Asian and European populations. Moreover, our analysis of the pear
pangenome revealed a mutated SNP and an insertion in the promoter region
of the gene PsbMGH3.1 potentially enhances sepal shedding in ‘Xuehual?’
which is vital for pear quality. This research helps further capture the genetic
diversity of pear populations and provides valuable genomic resources for

accelerating pear breeding.
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Introduction

The pear (Pyrus spp.), an illustrious member of the Rosaceae family, holds
global renown for its palatable taste, nutritional offerings, and significant
economic implications (Wang et al., 2023a). Pear is originally from China and
has diverse germplasm resources and a long cultivation history. Currently, at
least 22 distinct pear species are recognized, with over 5,000 accessions
preserved by researchers globally (Wu et al., 2018). This collection spans a
myriad of morphologies, a spectrum of physiological differences, and broad
adaptability to diverse ecological niches. Within this array of varieties, the
‘Yuluxiang’ pear emerges as a breeding marvel, representing three dedicated
breeder generations from the Fruit Research Institute at Shanxi Agricultural
University's Pear Research Group (Ding et al.,, 2021; Wu et al.,, 2019).
Accredited by the Ministry of Agriculture, this pear ascends in popularity,
characterized as a mid-maturing, shelf-stable red pear. Its distinguishing traits
include a robust size, inviting fruity aroma, vibrant red hue, minimal core,
rounded contour, and a succulent, crisp bite. Given these attributes, the
‘Yuluxiang’ pear merits its status as a pivotal genetic material, elucidating its

morphology, biology, and genetic nuances.

As bioinformatics assembly algorithms advanced and genome sequencing
costs decreased, Pyrus genomics studies have proliferated, yielding five
distinct genome assemblies from varied pear types. This includes the
European cultivar pear (P. communis) (Chagne et al., 2014), the Chinese
white pear (P. bretschneideri) (Wu et al., 2013), a Chinese wild pear (P.
betuleafolia) (Dong et al., 2020), a Japanese pear (P. pyrifolia) (Shirasawa et
al., 2021), and a dwarfing pear [(Pyrus ussuriensis x communis) X spp.] (Ou
et al.,, 2019). Among these, two genomes have undergone successful

assembly and haplotype separation. Yet, the currently published pear
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genomes are required to be further improved, especially in aspects of genome
completeness and contiguity. High-quality pear genomes facilitate further
studies into the pear's evolutionary history, adaptability, and potential for
genetic improvement. Long-read sequencing technology such as PacBio HiFi
(Cheng et al., 2021) is required to produce a high-quality genome by enabling
the assembly of complex regions, repetitive sequences, and structural
variations, leading to a more accurate and comprehensive representation of

the genome's architecture and functional elements.

Although several genomes from the Pyrus genus have been published, the
genetic diversity within the genus cannot be sufficiently represented by a
single species genome, potentially leaving crucial agronomic traits in non-
reference genome regions unexplored. Consequently, constructing a pan-
genome is imperative, enabling the encapsulation of the full spectrum of
genetic variations within a species. The dramatic reduction in sequencing
costs has facilitated the application of high-throughput sequencing
technologies to pan-genomes, as evidenced by the first soybean pan-genome
(Li et al., 2014). Recently, the focus on pangenomics has surged,
encompassing a range of plants, from crops to ornamentals and trees. This
approach has expanded from staple crops such as wheat (Walkowiak et al.,
2020), rice (Qin et al., 2021; Wang et al., 2023b), and potatoes (Tang et al.,
2022) to oil crops such as soybeans (Bayer et al., 2022; Liu et al., 2020),
rapeseed (Song et al., 2020), and sesame (Yu et al., 2019). It also covers
legumes such as peas (Yang et al., 2022), pigeon pea (Zhao et al., 2020) and
chickpeas (Varshney et al., 2021), horticultural plants such as apple (Sun et
al., 2020), tomatoes (Zhou et al., 2022), and extends to tree species such as
Amborella (Hu et al., 2022), pecan (Lovell et al., 2021) and yellowhorn (Wang
et al., 2023c). The growing emphasis on pan-genomic research is evident and
poised to continue (Tahir et al., 2020).

In this context, our study assembled two high-quality pear genomes from
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the maternal (PsbM) and paternal (PsbF) lines of the hybrid “Yuluxiang’ pear,
integrating PacBio and Hi-C sequencing datasets. Furthermore, we
constructed the first pear pangenome by merging the PsbM genome with the
PsbF genome and other previously released pear genomes, offering a more
comprehensive view of pear genetic resources. Leveraging this newly
constructed pangenome, we revisited the short-read sequencing data from
113 varied pear species, and pinpointed a plethora of gene PAVs which might
be linked to pear quality traits, revealing differential prevalence between Asian

and European pear groups.

Results

Chromosome-length assemblies of pear genomes

Using the PacBio CCS (HiFi) reads and lllumina short reads, we successfully
de novo assembled two parent genomes of the hybrid “Yuluxiang’ pear cultivar
from Taigu of Jinzhong city, China's Shanxi, including the paternal line PsbF (P,
sinkiangensis) from Korla city, China's Xinjiang, and the maternal line PsbM (P,
bretschneideri) from Shijiazhuang city, China's Hebei (Figure 1A). Following
correction for misjoins, the contigs were ordered, oriented, and anchored to
chromosomes using Hi-C sequencing (Figure 1 B, C and D). This allowed the
anchoring of approximately 96.2% and 98.8% of sequences to chromosomes
for PsbF and PsbM, respectively. Both genome assemblies demonstrated
near gapless qualities, with ten of seventeen chromosomes comprising only
one contig and the remaining chromosomes containing fewer than three
contigs (Table S1). Centromere and telomere-specific repeats were identified
across almost all chromosomes in both the PsbF and PsbM genomes (Table
S2), indicative of the high-quality assembly of these genomes. Moreover, at
least 44.5% of repeat sequences were identified within the assembled PsbF
and PsbM genomes, with long terminal repeat (LTR) retrotransposon
elements being the most prevalent class of transposable elements (TEs),

accounted for at least half of the TEs (Table S3). The assembly lengths of the
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PsbF and PsbM genomes are around 538 Mb and 510 Mb, respectively. Both
genome assemblies have a contig N50 over 26.6 Mb, which is higher than
previously published pear genomes (Figure 1E). Benchmarking Universal
Single-Copy Orthologs (BUSCO) and Cluster of Essential Genes (CEG)
evaluation confirmed the completeness of the PsbF and PsbM genomes to
exceed 96% and 98% (Table S4). These results illustrate a high level of

contiguity and completeness of our assembled pear genomes.

Through a combination of RNA-seq transcript mapping, ab initio prediction,
and homologous protein searches, we annotated 46,014 and 45,317 gene
models in the PsbF and PsbM assemblies, respectively (Figure 1E), wherein
around 90% of genes garnered functional annotation from at least one
functional protein database (Table S5). When examined from a genome-wide
perspective, gene models exhibited greater density in chromosome arms with
fewer repeat elements. Additionally, we annotated 8,514 and 7,402 non-
coding RNAs, including rRNAs, tRNAs, miRNAs, and snRNAs, in the PsbF
and PsbM genomes, respectively (Table S6).

Large genomic variations in seven pear genomes

The high-quality pear enables the discovery of structural variations (SVs) that
are equal to or larger than 50 bp in size. Based on the PsbM genome, we
identified SVs in six other pear genomes including a European wild pear (P.
communis, Pco) (Chagne et al., 2014), a Chinese white pear (P.
bretschneideri) (Wu et al., 2013), a Chinese wild pear (P. betuleafolia, Pbe)
(Dong et al., 2020), a Japanese pear (P. pyrifolia, Ppy) (Shirasawa et al.,

2021), and a dwarfing pear [(Pyrus ussuriensis x communis) x spp. , Pdr] (Ou

et al.,, 2019). In total, 44,681 non-redundant SVs, including 247 inversions,
814 translocations, 431 duplications, 14,837 deletions, and 27,979 insertions
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were identified, with translocations and inversions having longer sequence
lengths than deletions and insertions (Figure 2A). Interestingly, compared
with other pear genomes, Pdr and Ppy contained the largest number of SVs
(Table S7). Furthermore, we detected 6,341 high-confident SVs across at
least two genomes, encompassing 7 inversions, 15 translocations, 3,989
deletions, and 2,330 insertions (Table S8). We also found 319 high-confident
SVs located in the gene exon regions that will potentially be affecting the gene

functions (Table S9).

Previous studies suggest that inversions are associated with local
recombination suppression, facilitating the selection of adaptive traits (Crow et
al., 2020; Hamala et al., 2021). For instance, an inversion spanned 646 kb,
located in chromosome 13 (PsbM13:19,118,031-19,764,319), was present in
Ppy and Pdr genomes but absent in PsbM, PsbF, Pco, Pbr, and Pbe genomes
(Figure 2B). This inverted region contains 27 gene models in the PsbM
genome, including two proline-serine-threonine phosphatase-interacting
protein genes (PsbM013G02206 and PsbM013G02206) functionally
associated with cell division and chromosome partitioning and located in the
inversion breakpoint at around 119Kb distance from the distal breakpoint
(Table S9). Moreover, deletions and insertions were reported to be related to
adaptation to varying pathogen pressures within different growing
environments (Dolatabadian et al., 2022; Hu et al.,, 2022; Zmienko et al.,
2014). In this study, we identified that 2 insertions and 9 deletions were
overlapped with the exon regions of genes which were functionally associated
with disease resistance (Table S9). For example, a 663 bp deletion leading to
three exons absent was identified in the gene PsbM006G00203 (homology of
Arabidopsis Disease resistance protein RPM1) and a 9,393 bp deletion
resulting in complete loss of two Arabidopsis disease resistance protein
homologous genes (PsbM015G01503 and PsbM015G01504) among the Pco,

Pdr, and PsbF genomes.
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Construction of the pear pangenome

Using the pangenome construction method similar to the pangenomics
studies of B.napus (Song et al., 2020), B.oleracea (Golicz et al., 2016), and
soybean (Torkamaneh et al., 2021), we constructed the first linear pear
pangenome by adding the PAV sequences from other six pear genomes to the
PsbM reference genome. The constructed pear pangenome is 1.15Gb in size,
containing an additional 635 Mb non-reference sequences and hosting 21,560
newly annotated high confidence genes which were missing in the reference
genome. A higher percentage (76.0%) of repetitive elements accounted for
the non-reference genome than the reference genome (54.3%) (Table S$10),
indicating that transposable elements might be the important driver of
presence/absence variations. By analyzing the read mapping of short-read
sequencing data (Figure 3A), we found that the read mapping rate aligned to
the constructed pear pangenome was higher than that aligned to the PsbM
reference genome (Figure 3B). The pear pangenome shows a further
improvement in BUSCOs evaluation with a higher complete BUSCOs score
(93.5%) and a lower missing (3.2%) and fragmented (3.3%) BUSCOs than the
PsbM genome (complete BUSCOs: 92.9%; missing BUSCOs: 3.4% and
fragmented BUSCOs: 3.4%) (Table S11). These findings demonstrate that
compared with a single reference genome, the pear pangenome can reduce
the reference bias and capture the missing genetic diversity. Moreover,
pangenome modeling revealed a closed pan-genome, suggesting our
constructed pear pangenome can capture nearly all the pear gene contents

(Figure 3C).

To detect the population-wide SNPs and PAVs in the pear pangenome, we
further aligned 113 pear resequencing data (Wu et al., 2018) to the pear

pangenome in which these pear accessions were from worldwide collections
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representing the genetic diversity of cultivated and wild pear species (Figure
3A). We identified 18,667,069 SNPs with 1,158,812 (5.4%) SNPs located in
the non-reference sequences and further performed the SNP variant
annotation to assess their functional effect. Subsequently, we found that SNPs
located in non-reference sequences were more likely to have significant
impacts on gene function, with 59.3% and 2.7% of the SNPs located in non-
reference sequences and a lower percentage of SNPs (51.2% and 0.9%)
located in reference sequences resulting in missense and nonsense
mutations respectively (Table S12). In addition, a total of 326,461 PAVs
ranging from 100 bp to 832.3 kb were identified across 113 diverse pear
accessions using the pear pangenome. Based on the PAVs detection result,
32,174 (48.4%) were core genes and present in all 113 pear accessions,
while 51.6% (34,367) of the genes were classified as dispensable, comprising
9,624 softcore, 22,885 shell, and 1,858 cloud genes, which were defined with
a present frequency of more than 99%, 1-99%, and less than 1% respectively
(Figure 3D). The proportion of dispensable genes observed in this study is
relatively higher compared with other fruit plants such as apple (18.7%) (Sun
et al., 2020), tomato (26%) (Gao et al., 2019), and watermelon (30.5%) (Wu et
al., 2023). However, the proportion is similar to cucumber (43.8%) (Li et al.,
2022) and smaller than citrus (64.6%) (Gao et al., 2023). Gene ontology (GO)
enrichment analysis shows that genes with essential biological functions,
including DNA-templated transcription, transmembrane transport and
response to cadmium ion were enriched in core genes (Table S13). By
contrast, genes with functions in pollen recognition, regulation of
photorespiration, biotic stimulus response, and disease resistance are
enriched in dispensable genes (Figure 3E and Table S14). Genes in
dispensable orthologous clusters have shorter gene lengths, lower gene
expression levels and higher non-synonymous/synonymous substitution ratio
(Ka/Ks) (Figure 3F-H). In line with the cucumber pangenome study (Li et al.,

2022), our results suggest dispensable genes are under stronger diversifying
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selection and a faster evolutionary rate than core genes and may be
associated with phenological changes and disease resistance variations

during selection for adaption to different environments.

Characterization of the pear population using the pear pangenome

We further used our constructed pangenome to characterize the pear
population. Calculation based on the SNPs makers, the nucleotide diversity (17)
of pear at the pangenome level across all 113 pear accessions (Wu et al.,
2018) was 4.84 x 10-3. Similar to the previous findings (Wu et al., 2018), the
cultivated Asian and European pears have similar levels of nucleotide
diversity (3.56 x 10-%) but lower than the wild Asian (4.23 x 10-%) and European
pears (3.92 x 10-®) (Figure 4A). Using PAVs as markers, we found that the
PAV diversity of cultivated (1.97 x 10%) and wild (2.42 x 10-%) European pears
was lower than cultivated (2.77 x 103) and wild (2.88 x 103) Asian pears
(Figure 4B), suggesting that European pears contained fewer PAVs than the
Asian pears at the pangenome level. In addition, using the pear pangenome,
we further studied the population structure of 113 diverse pears. The
cultivated and wild Asian and European pears can be separated into four
clusters at both the SNPs based and PAVs based PCA (Figure 4C and D,
Figure S1 and S2) and phylogeny results (Figure 4E and F). Interestingly, we
found that PAVs based PCA can better distinguish the cultivated and wild
European pears (Figure 4D). In the PAV-based phylogeny structure, wild
Asian pears P. calleryana, P. dimorphophylla, and P. phaeocarpa show a
closer phylogenetic relationship with cultivated Asian pear P. pyrifolia (Figure
F), which is not reflected in the SNP-based phylogeny structure (Figure D).
These results suggest that PAVs-based analysis at the pangenome level
provides additional insight into the characterization of population structure in

pears.
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Gene PAVs provide new insight into the selection footprints of European

and Asian pears

Analyzing gene content across diverse pear accessions demonstrated a
significant difference in average gene number per individual between
European pear and Asian pear. European pear contains a higher average
number of genes (56,842), with a reduction in Asian pear (56,118) (Figure
5A). Interestingly, different from previous findings that gene number reduction
was observed during crop domestication and breeding improvement (Bayer et
al., 2022; Gao et al., 2019), cultivated pears including cultivated European
pear and cultivated Asian pear do not have significantly different gene
numbers than wild European pear and wild Asian pear respectively (Figure
S3). The reduction in average gene numbers hides a more complex pattern of
increases and decreases in the frequency of specific genes across the
population. To identify gene PAV changes across diverse pear accessions, we
compared gene occurrence frequencies between European pear and Asian
pear and between their wild and cultivated individuals (Figure 5B). A total of
8,361 genes showed a higher occurrence frequency in European pears
(Table S$15), while 8,093 genes showed an increased occurrence frequency in
Asian pears (Table S16). GO enrichment analysis revealed that genes
showing a higher occurrence frequency in Asian pears are associated with the
function of defense response, response to biotic stimulus, vessel member cell

differentiation, and sterol biosynthesis (Table S$17).

To further investigate how PAVs affect fruit quality traits in pears, we
identified genes showing significant differences in PAV occurrence frequency
between Asian and European pear populations that are functionally
associated with fruit shape, aroma, color, stone cells, and fruit hardness. In
total, we identified 192 fruit quality traits associated genes (Table S18), with

homologous six genes exhibiting significant correlations with fruit shape
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development, including transcription repressor gene OFP16
(PsbM011G02493 and PsbM005G03117) (Snouffer et al., 2020), homeobox
protein knotted-1-like gene KNOX1 (Pco_Presence_Seq_006877) (Wang et
al., 2022), SUN domain-containing protein 5 gene
(Pdr_Presence_Seq_013651) (Ma et al., 2022), and TRM (PsbM003G00721
and Pco_Presence_Seq_003059) (Zhang et al., 2023). For example, the gene
PsbM005G03117 is present in all Asian pear accessions but less than half of
European pear accessions (Occurency frequency: 0.55) (Differential
occurrence frequency: 0.45, P-value: 1.54E-08), while PsbM011G02493
showing a different pattern than present in all European pear accessions and
near three-quarters of Asian pear accessions (Occurrency frequency: 0.72)
(Differential occurrence frequency: 0.28, P-value: 1.06E-05). Interestingly, the
largest differential occurrence frequency (0.67) between Asian and European
pears is observed in the gene SUNS (Pdr_Presence_Seq 013657)
(Occurrence frequency in Asian and European pear: 0.33 and 1, P-value:
1.56E-14). Besides, we identified 28 genes associated with fruit color
development, including 12 LOB domain-containing protein (LBD) genes, 10 B-
box zinc finger protein (BBX) genes (Bu et al.,, 2022) and 4 anthocyanin
regulatory (Myb_DNA-binding) protein genes (Jin et al., 2016). Among these
genes, a LOB domain-containing protein CRL gene (PsbM001G01311) shows
a significantly lower occurrence frequency in European pears compared with
Asian pears, especially cultivated European pear (Differential occurrence
frequency between cultivated Asian and European pears: 0.88, P-value:
5.00E-11), while a B-box zinc finger protein 22 gene
(Pdr_Presence_Seq_002427) is present in all cultivated European pear but
nearly absent in all cultivated Asian pear (Differential occurrence frequency
between cultivated Asian and European pears: 0.96, P-value: 8.40E-13).
Moreover, we identified 57, 3, and 102 genes playing important roles in the
development of fruit stone cells, fruit aroma, and firmness show differences in

PAV occurrence frequency. Additionally, we also observed that the UV-B-
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induced protein gene UVBIP (Pdr_Presence_Seq_004483) (Qian et al., 2014)
regulating photomorphogenic responses to UV-B and blue light shows higher
occurrence frequency in European pears (Differential occurrence frequency
between cultivated Asian and European pears: 0.92, P-value: 2.54E-24)

(Figure 5C).

We further performed gene expression analysis merging RNA-seq data
from five pear species and pear fruit tissues of seven different stages (Zhang
et al., 2016). Subsequently, we identified six fruit firmness and two aroma-
related genes showing significant PAV occurrence frequency as well as
significant differential gene expression between Asian and European pear
populations. Notably, compared with the Asian pears, the fruit hardness
development genes including the UDP-glycosyltransferase gene UGT87A1
(Wu et al, 2017) (Pco_Presence_Seq 002869, Differential occurrence
frequency between cultivated Asian and European pears: 0.43, P-value:
1.75E-05) and the auxin-responsive protein gene SAUR (Zhang et al., 2022)
(PsbM005G02020, Differential occurrence frequency between cultivated
Asian and European pears: -0.34, P-value: 5.76E-07) show a significant
downregulation in  expression in European pear fruit tissues
(log2FoldChange >3.46). However, the other four UDP-glycosyltransferase
genes (Pco_Presence_Seq_001484, PsbF _Presence Seq 007967,
PsbM015G01882 and PsbM017G01217) having a higher occurrence
frequency in European pears (Differential occurrence frequency between
cultivated Asian and European pears >0.22, P-value< 5.26E-04), showed an
upregulated expression in European pears (log2FoldChange >2). Among
these genes, the gene PsbF_Presence Seq 007967, a homolog of
Pbr011574, was reported to be located in the fruit firmness QTL according to
a previous study. In addition, two aroma-related genes alcohol
dehydrogenase (ADH) (Shi et al., 2019; Zhang et al., 2010) and Lipoxygenase
2 gene (LOX) (Luo et al.,, 2021) also show significant differential gene
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expression between Asian and European pear populations. For example, the
ADH gene (Pco_Presence_Seq _011843) displays a higher occurrence
frequency (Differential occurrence frequency between cultivated Asian and
European pears: 0.45, P-value: 3.17E-06) as well as an upregulated
expression in European pears (log2FoldChange>1.51). Furthermore, we
observed the UVBIP gene (Pdr_Presence_Seq 004483) with a higher
occurrence frequency in European pears, shows a significantly elevated
expression in European pears compared to Asian pears (Figure 5D). The
above results suggest that gene PAVs might play key roles in differentiating
pear quality traits between Asian and European pears by regulating the

expression of related genes.

Exploring Structural Variation, Expression, and Functional Validation of

the Sepal Abscission Zone Pear Gene GH3.1

Based on the previous studies (Guo et al., 2022; Qi et al.,, 2013), GH3.1
(PsbM002G01431), encodes an indole-3-acetate synthetase which is a pear
sepal development candidate gene and plays an important role in early auxin
response Analysis of allele-specific structural variations within the gene
GH3.1 promoter unveiled a 104bp insertion (SV104) in the genome of PsbM
compared to the genome of PsbF, Pbr and Ppy, spanning from position
11,287,633 to 11,407,583 on the upstream promoter of GH3.7 (Figure 6A). In
addition, an SNP1 (G= A) in the first intron of the gene GH3 potentially
affecting gene alternative splicing was identified in PsbM and Pbe (Mature
fruit with completely shedding of sepals). We conducted a further examination
of the distribution of both the insertion and SNP in a diverse collection of 113
pear accessions. Intriguingly, we identified a total of five accessions
(comprising 4 from cultivated and wild Asian pears, namely Pyc_br1, Pyc_br5,
Pyw_us5, Pyw_xe1, and 1 from wild European pear Pyw_cau1) (Table S$19)

that harbored the same SNP as PsbM, while an additional six accessions
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(including four from Asian cultivated pears Pyc _py5, Pyc py7, Pyc_sif,
Pyc_us1, and two from wild pears Pyw_pa1l and Pyw_pa3) (Table S20)
exhibited the insertion. Furthermore, the expression of the PsbMGH3.1 gene
in the sepal abscission zone of the paternal haplotype genome PsbM
(‘Xuehuali’) was five times higher than that in the maternal haplotype genome
PsbF (‘Kuerlexiangli’, mature fruit with incompletely shedding of sepals)
(Figure 6B and Table S21). Notably, these shared genetic variants aligned
precisely with the paternal genotype of the “Yuluxiang’ pear haploid genome,

providing insights into the genetic diversity of this distinct lineage.

We further designed primers based on the flanking sequences of the
insertion for validation, confirming the precise alignment of cloned variant
sites in the “Yuluxiang’ pear genome and its parental genome with those in the
assembled doubled haploid genomes (PsbF and PsbM) (Figure 6C and D).
Utilizing the protein crystal structure of VvGH3.1 (Peat et al., 2012; Wang et
al., 2015) from grape (PDB ID: 4B2G) and IAA (PubChem ID: 802), we
constructed a molecular docking model, revealing the active pocket and
binding site predictions of PsbMGH3.1 with IAA. Among nine identified binding
modes, the final docking conformation with an optimal binding energy of -7.0
kcal/mol was selected (Table S22 and Figure 6E). The interactions between
IAA and PsbMGH3.1 were primarily characterized by hydrogen bonding with
Asp308 and Tyr177, with spatial distances of 2.97 A and 3.13 A, respectively.
Notably, overexpression of the sepal shedding gene PsbMGH3.1 in rice led to
noticeable alterations in transgenic plant phenotypes, including significantly
reduced adventitious root length, longest leaf length, and plant height

compared to wild plants (Table S23, Figure S4, and Figure S5).

Discussion

In this study, we de novo assembled and annotated the genomes of the
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maternal (PsbM) and paternal (PsbF) lines of the hybrid “Yuluxiang’ pear using
the PacBio long read and Hi-C sequencing. Compared with other published
pear genomes, our pear genome assemblies show significant completeness
and accuracy, allowing the characterization of complex centromere and
telomere regions in nearly all chromosomes. Our high-quality genome
assemblies also enable a comprehensive structural variation discovery among
genomes of different pear species, leading to the identification of 6,341 high-
confident SVs (7 inversions, 15 translocations, 3,989 deletions, and 2,330
insertions). Along with previous studies of Brassicaceae (Dolatabadian et al.,
2022) and soybean (Bayer et al., 2021), we found that deletions detected in
Pco, Pdr and PsbF genomes result in a complete loss of two copies of
disease-resistance related genes, reflecting the differentiation of disease
resistance in pear species. Hence, these two high-quality reference genomes
provide valuable genomic resources for detecting genomic variations in

diverse pear species.

To capture the complete genetic diversity of pears, we constructed the first
pear pangenome using the PsbM reference genome as the backbone
genome and identified 21,224 novel genes in the non-reference genome. By
aligning the read sequencing data to the PsbM reference and the pear
pangenome, we identified a higher mapping rate, and a larger number of
SNPs in the pear pangenome, reflecting that the pear pangenome can
effectively reduce the single reference bias for mapping and variant calling. In
contrast to SNP markers, our analysis based on PAVs provides additional
insights into the population structure of pears, which is similar to previous
findings in Arabidopsis (Jiao and Schneeberger, 2020), Amborella (Hu et al.,
2022), and rice (Wang et al., 2023a). Furthermore, based on the pangenome,
we first report distinct PAV occurrence frequencies and gene expression
patterns in Asian and European populations for genes linked to pear fruit

quality traits, including fruit shape, stone cells, aroma and fruit firmness. For
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instance, The ADH gene (Shi et al., 2019; Zhang et al, 2010)
(Pco_Presence_Seq_011843) exhibits a higher frequent occurrence in
European populations, alongside upregulated expression in European pears.
These results are consistent with previous findings that SVs have significant
impacts on fruit quality traits such as shape, flesh color, and sucrose content
(Song et al., 2020; Zhou et al., 2019; Lyu et al., 2023). While the association
between the PAV gene and gene expression levels remains unclear,
additional research is required to elucidate the regulatory mechanisms of how
PAV influences gene expression.

Using the constructed pear pangenome, a 104bp structural variation
upstream of the PsbMGH3.1 gene promoter was identified, contrasting with
the corresponding position in PsbFGH3.1. This variation has the potential to
augment gene expression responsible for sepal abscission, potentially leading
to increased sepal shedding in ‘Xuehuali’. Furthermore, we investigated the
functional role of PsbMGH 3.1, an auxin nicotinamide synthase gene,
recognized as an early responder in the indole-3-acetic acid (IAA) signaling
pathway, critical in plant organ shedding encompassing biosynthesis,
transportation, and catabolism processes (El Houari et al., 2023; Guo et al.,
2022; Pencik et al., 2013; Qi et al., 2013). Additionally, IAA’'s binding to amino
acids such as IAA-leucine, IAA-alanine, and |IAA-phenylalanine through amide
bonds, as well as its storage in a bound state with amino acids, indirectly
reducing intracellular free |IAA content, is highlighted. Our study predicted
potential hydrogen bond formation between indole-3-acetic acid (IAA) and
Tyr177 and Asp308 of PsbMGH3.1, indicating the likelihood of PsbGH3.1
interaction with |IAA. Notably, PsbMGH3.1 displayed upregulation in the
detached zone of the paternal haplotype genomic cultivar ‘Xuhuali’, leading to
a characteristic low-concentration auxin phenotype in heterologously
overexpressing transgenic plants. We propose that PsbMGH3.1 potentially
influences pear sepal formation by modulating IAA content in plant cells, a

critical aspect given the impact of persistent sepals on pear fruit quality and


https://doi.org/10.1101/2023.09.29.560244
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.09.29.560244; this version posted October 2, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

the significance of understanding sepal shedding at the molecular level for the

cultivation of sepal-shedding fruits.

Materials and Methods

Materials

Plant sequencing materials

The prevalent cultivar “Yuluxiang’ (P. sinkiangensis xP. bretschneideri ) (Ding
et al., 2021) grown in the Fruit Tree Research Institute of Shanxi Agricultural
University (N37.21 °, E112.30 °) of China was used for doubled haploid de
novo sequencing. The collected leaves were used for HiFi sequencing and
HiC fixation and library construction, the collected leaves of “Yuluxiang’ parent
were used for lllumina sequencing to assist genome assembly, and the mixed
collected tissues of leaves, flowers (including pistils and stamens), sepals,
stems, and young fruits were used for ONT library construction to assist in
predicting the genes of ‘Yuluxiang’ pear. Two weeks after the flowering period,
sepal abscission zone from the parents of “Yuluxiang’ pear (‘Kuerlexiangli’ and
‘Xuehuali’) were collected for cloning the target fragment of GH3.1 gene and

fluorescence quantitative PCR.

Methods

DNA and RNA extraction

Total genomic DNA and RNA were extracted from the sepals of the abscission
zone of ‘Yuluxiang' pear and its parent plants, using the CTAB method.
Extracted nucleic acids were then quantified using a Nanodrop
spectrophotometer and assessed for fragment integrity using an Agilent 2100
Bioanalyzer, to ensure their suitability for subsequent genotype cloning (Table

S24).

For ‘Kuerlexiangli’ and ‘Xuehuali’, RNA was isolated from the sepals of the

abscission zone at the end of their developmental stage using the CTAB
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method. This RNA was then reverse transcribed into double-stranded cDNA.
The cDNA was used in quantitative fluorescence PCR according to the
previously published research (Ding et al., 2021) (Table S$25) and for gene
cloning procedures (Table S 26).

lllumina, ONT, PacBio and Hi-C library construction and sequencing

The qualified 350 bp fragment of DNA was selected to perform pair ended
sequencing according to the lllumina library of according to the lllumina HiSeq
X ten (150bp) system standard process (Wright et al., 2017). Qualified RNA
from various tissues was extracted and mixed equally for ONT library. After
breaking the RNA into an average of 8 kb fragments for library construction
and ONT sequencing based on the structural differences of nucleotide
sequences (Leger et al., 2021). The genomic DNA was broken into 15 kb
fragments by the Megaruptor ® 2 and the SMRT bell library was constructed
using SMRT bell Express Template Prep kit 2.0 (Pacific Biosciences), 10 ug of
DNA was taken to perform SMRT sequencing on the Sequel Il system. After
correcting the sequencing error high fidelity HiFi reads were obtained. More
than 2 g of fresh and completely natural condition of growing ‘“Yuluxiang’
pear’s young branches (cleaned with distilled water in advance) was collected
and qualified for Hi-C library. DNA products was obtained through
fragmentation, fixation, cell lysis, and enzyme digestion, end labeling, flat end
connection, purification, etc. Afterwards, 2 ug of DNA samples were taken and
interrupted using the Covaris S 220 interrupter. According to the BMK plant
Hi-C SOP (BMK190227, Biomarker Technologies, Beijing) reaction system,
the DNA ends were repaired, fragments from 300 bp to 700 bp were selected
and subjected to quality testing (Qubit3.0 and qPCR were used to detect
fragment integrity and concentration). After constructing the library,

sequencing was performed using the ilumina platform (PE150).
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De novo genome assembly and Hi-C scaffolding

Based on hifiasm software (Conesa et al., 2005) and incorporating the
resequencing data from “Yuluxiang' pear parents, kmer files for both parent
strains were generated. This was achieved using the yak software, with the
command hifiasm -o hifiasm.asm -t 64 -1 RO1.yak -2 R02.yak ccs.fastq.gz.
Subsequently, the resulting data were bifurcated into two distinct haplotype
genomes: PsbM and PsbF. The subsequent genome scaffolding employed the
LACHESIS software (Burton et al., 2013) to facilitate the grouping, ordering,
and orientation of genomic sequences. Manual mapping and meticulous
scrutiny were then performed, culminating in the acquisition of a

chromosome-level, doubled genome.

Repetitive sequence prediction

The assembled ‘Yuluxiang’ pear’s dual haplotype genome sequences were
initially processed using LTR_Harves (Flynn et al., 2020). Subsequently, the
LTR_Finder program (Ellinghaus et al., 2008) was employed for the prediction
of long terminal repeat (LTR) sequences. The outputs from the
aforementioned software were consolidated using LTR_Retriever (Ou and
Jiang, 2018), employing a neutral mutation rate of u=1.3e-8 per base pair per
year. Following this, both haplotype genome sequences were subjected to
Misa.pl (Ou and Jiang, 2018) and the trf program (Tarailo-Graovac and Chen,
2009). The objective was to forecast microsatellite sequences (SSRs) and
tandem repeat sequences (Benson, 1999). This process culminated in the
generation of an integrated repetitive sequence library file for the dual
haplotype genome. Finally, the RepeatMasker software (Flynn et al., 2020)
utilized the library file, invoking the -lib parameter. This produced the ultimate
repetitive sequence, wherein repetitive sequence regions were substituted
with ‘N’. Post this, repetitive sequences were excised, streamlining the

prediction of the doubled haplotype genes.

Gene annotation
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Extract high-quality full-length transcripts of “Yuluxiang’ pear were used for
gene prediction model training based on Nanopore full-length transcriptome
data of mixed tissues (leaves, flowers, sepals, stems, fruits, etc.). The raw
sequencing data of Nanopore were filtered and obtained by Pychopper

(https://github.com/friend0/pyChopper) , then the filtered data were treated

by the Pinfish (https://github.com/nanoporetech/pipeline-pinfish-

analysis)package, Transdecoder (Perina et al., 2017), maker2 (Holt and
Yandell, 2011), AUGUSTUS (Stanke et al., 2006) to train the gene prediction
model of “Yuluxiang’ pear, and produced a standard .gff format file by EVM
(Haas et al., 2008). Finally, the optimal alignment of genes function were
inferred using diamond (Buchfink et al., 2015) against KEGG database
(Kanehisa et al., 2012), E=1E-5, NCBI non redundant (NR) database (Pruitt et
al., 2007), EggNOG (Huerta-Cepas et al., 2019), TrEMBL [205] (O'Donovan et
al., 2002), InterPro (Mitchell et al., 2015), and SwissProt (Boeckmann et al.,
2003) protein databases.

Non coding RNA prediction

tRNA and rRNA sequences were annotated utilizing tRNAscan SE (Lowe and
Eddy, 1997) and the barrnap algorithm (v0.9) and both were executed with
default parameters. For the identification of miRNAs and snRNAs, the PRfam
database (Finn et al., 2014) (v14.5) was employed, leveraging the Infernal

software (Nawrocki and Eddy, 2013) (v1.1.1) under default settings.

Structural variations detection

We used the PsbM genome as the reference for SV detection. A European
wild pear, a Chinese wild pear, a Xinjiang Pear (PbsF), a Japanese pear, a
Chinese white pear and a dwarfing pear were aligned to the PsbM genome,
respectively, using Mummer (Marcais et al., 2018) v4.0 with the parameters (-

50 -c 100 -maxmatch). The initial alignment results were filtered using delta-
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filter with parameters (-m -i 90 -1 100). The resulting filtered delta files were
used as the input for the SyRI pipeline with default parameters (Goel et al.,
2019). The detected variations from SyRI comprise genome rearrangements
and sequential variations, which can occur in both rearrangement and
syntenic regions. Therefore, the sequential variants embedded in the
rearrangements were not included for further analysis. According to the
definitions of sequence variation in SyRI outputs, we converted these
variations into four types of SVs: Insertion (INS and CPG variants), Deletion
(DEL and CPL variants), Inversion (INV and INVDP variants), and
Translocation (TRANS variants). SyRI results were visualized using the plotsr
package. SURVIVOR (Jeffares et al., 2017) was used to merge (with
parameters: 1000 2 1 1 0 50) the individual genotyped VCF files.

Pangenome construction

The pear pangenome was constructed using a similar method described in
Song et al.'s (2020) and Tahir ul Qamar M. et al.'s (2019) studies. In detail, the
PAV sequences in the other seven pear genomes relative to the PsbM
reference genome were identified using the Mummer 'show-diff function
(Marcais et al., 2018). Initially, sequences intersecting with gap regions within
the respective genome were excluded from consideration. Additionally,
sequences aligning with gap-start or gap-end boundaries were filtered out. To
pinpoint unique sequences within each genome, candidate PAV sequences
were aligned to the PsbM genome using minimap2 (Li, 2018) with the
parameter setting '-x asm10'. Redundant sequences (PAV sequences
showing larger than 80% similarity and coverage with the PsbM genome)
were filtered out. The rest of the PAV sequences were retained and linked with
100 Ns bases as the final PAV regions. Genes with at least 80% coding
sequence region overlapping with PAV regions were designated as novel

genes.
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SNPs calling

Clean reads of 113 diverse pear accessions (Wu et al., 2018) were mapped to
the constructed pear pangenome using BWA MEM (Li, 2013) v0.7.17. Default
settings were used and duplicates were removed by Picard tools
(http://broadinstitute.github.io/picard/). Reads were realigned by GATK v3.8-1-
0 RealignerTargetCreator and IndelRealigner (McKenna et al., 2010), followed
by variant calling using GATK HaplotypeCaller. The resulting SNPs were
filtered (QD < 2.0 || MQ < 40.0 || FS > 60.0 || QUAL < 60.0 || MQrankSum <
-12.5 || Read- PosRankSum < -8.0) to remove low-quality SNPs. High-
confidence SNPs were obtained by further filtering out the SNPs with minor
allele frequency <0.05 and missing genotype rate > 10% using VCFtools

(Danecek et al., 2011).

Gene PAV analysis

Short-read sequencing data of 113 diverse pear accessions were aligned to
the constructed pear pangenome using Bowtie2 v2.3.3.1 (Langmead and
Salzberg, 2012) (—end-to-end —sensitive -1 0 -X 1000). We used the gene PAV
detection approach described in Hu et al's study (2020). A gene was
classified as absent when the horizontal coverage across exons of the gene
was <20% and the vertical coverage was <2x. A gene PAV matrix was
generated using this threshold, with each gene classified as presence or
absence for each accession. Statistical significance of PAV frequency
changes between European and Asian pear populations was determined by
Fisher's exact test. P-values were adjusted for multiple comparisons using the
Bonferroni method. PAVs with an adjusted p-value < 0.01 and differential
occurrence frequency between groups 20.2 were identified as under

significant occurrence frequency changes between populations.

Population analysis

The SNP and PAV genotype matrices were used to perform the SNP and PAV
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based population analysis. Nucleotide diversity values (1) were calculated
using Pixy (Korunes and Samuk, 2021) using a 100-kb window. The
phylogenetic trees of 113 diverse pear accessions were constructed using 1Q-
tree using a maximum likelihood method (with the parameters -alrt 1000 -bb
1000) and visualized using ITOL (Letunic and Bork, 2019). Principal
component analysis (PCA) was performed using the gcta (Yang et al., 2011)

v1.94.

GO analysis

Gene function annotation was performed using Blast2GO (Conesa et al.,
2005) v2.5. Genes in the pangenome were aligned to the proteins in the
Viridiplantae database using BLASTP (Camacho et al., 2009) (E-values <1 x
10-5). Gene ontology (GO) analysis was conducted using topGO (Raudvere
et al., 2019) and Fisher's exact test with 'elim' used to correct for multiple

comparisons.

RNA-seq differential expression analysis

Clean RNA sequencing reads (Zhang et al., 2016) were generated by
removing low-quality reads, adapters, and reads containing poly-N using the
fastp (Chen et al.,, 2018) v0.20 with default parameters. Clean reads were
further mapped to the constructed pear pangenome using Hisat2 (Pertea et
al., 2016) v2.1.0 with default parameters, and the number of mapped reads
was counted using HTSeq (Anders et al., 2015) v0.6.1. RNA-Seq reads were
normalized to TPM (Transcripts Per Kilobase Million) and low expression
reads (TPM <1) were removed. Differential expression analysis was
performed using the DESeq2 (Love et al., 2014) R package 1.18.0 between
the European pear population (RC: Red Clapp’s Favorite mutant, P
communis) and the Asian pear populations (HS: Hosui, P. pyrifolia; YL: Yali, P.
bretschneideri; KRLXL: Kuerlexiangli, P. sinkiangensis; NG: Nanguo, P

ussuriensis).
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Functional validation of the heterologous overexpression

Sterilization was carried out on rice seeds at the grain-filling stage using the
following steps. Seeds with full grains were selected and then rinsed
thoroughly with clean water. The selected seeds were placed in a beaker and
sterilized using 70% alcohol for two minutes. Subsequently, a 30% NaCIlO
solution was added until the beaker was filled, and the seeds were left in the
solution for 90 minutes. After discarding the NaClO solution, the sterilized
seeds were rinsed at least four times with deionized water (ddH20) to remove

any remaining surface residues

Gene cloning, quantification, and transgenic materials

The abscission zone tissues of the pear variety ‘Yuluxiang’ pear and its
parents of ‘Kuerlexiangli’ (Pyrus sinkiangensis, represented maternal
haplotype genome PsbF) and ‘Xuehuali’ (Pyrus bretschneideri, represented
paternal haplotype genome PsbM) were collected at the end of sepal
development (two weeks after blooming) in the pear resource garden (Taigu)
of the Fruit Tree Research Institute of Shanxi Agricultural University (E112°48'
N37°38'). Seeds at the grain-filling stage were used in rice (Oryza sativa L. cv.
Nipponbare).
Methods

Construction of overexpressed vector of the pEGOEP35S-H-PsbMGH3.1-
GFP

According to the designed cloning primers, after PCR amplification of target
fragments, ligation-mediated restriction, recombinant plasmid transformation,

and colony plasmid extraction, the quality of the extracted plasmids was

measured by agarose gel electrophoresis at a concentration of 1% (Figure

S6 and S7). Finally, Sanger sequencing was performed based on the primer
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eGFP-cx, and the target genes were aligned with the de novo assembled

doubled haploid genomes.

Callus induction and Subculture

Using sterilized tweezers, the pre-treated seeds were handled carefully.
Young rice embryos were then isolated using sterilized steel hooks and placed
on sterile filter paper. These embryos were transferred onto an induction
culture medium. Afterward, the Petri dish was sealed with plastic wrap and
incubated under dark conditions at 25°C for five days. After that the
embryogenic callus tissues were selected for further subculturing over a
three-day period. Subsequently, the constructed Agrobacterium vectors were
co-cultured with the induced tissue and subjected to antibiotic screening,
induced differentiation, and rooting steps to obtain a preliminary positive

transgenic seedling (Tie et al., 2012).

Molecular docking
The crystal structure of the VVGH3.1 protein from grape (PDB ID: 4B2G)
was obtained from the Protein Data Bank (PDB) database

(https://www.rcsb.org/). Similarly, the chemical structure of IAA (PubChem ID:

802) was downloaded from the PubChem database. These structures were
then used in docking studies conducted using Autodock (Li et al., 2022). The
study involved docking IAA with the protein encoded by the gene PsbMGH3.1
(Peat et al., 2012). Among the various conformations generated during
docking, the one demonstrating the highest binding affinity was selected as

the final docking conformation.
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Type PsbF PsbM Pbe Pbr Pco Pdr Ppy
Total assembly size (Mb) 538.0 510.3 532.7 512.0 SOI:3 511.3 503.9
Contig number 626 122 595 25312 182196 1242 114
Contig N50(Mb) 26.62 28.58 1.57 <0.001 <0.0001 1.20 7.68
Sequence anchored 498.4 498.4 500.7 386.7 171.4 427.2 481.4
% Sequence anchored 92.6 97.7 94.0 75.5 29.7 83.5 95.5
Gene number 46014 45317 59552 42767 43419 43120 44876
Repeat sequence (Mb) 257.9 227.5 247.3 271.9 199.4 309.9 280.3
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Figure 1 Genome assembly of PsbM and PsbF pear genomes. ‘Yuluxiang’ Pear and
Its maternal Kuerlexiangli (PsbF) and paternal Xuehuali(PsbM). (B) Genome-wide
characteristics of the PsbM and PsbF pear genomes. (C) and (D) Chromosome contact maps
across the seven chromosome-length scaffolds of the PsbM and PsbF pear genomes. (E)
Genome assembly and annotation statistics for the PsbM and PsbF pear genome assemblies
compared to a Chinese wild pear (Pbe-SD, Pbe), a Japanese pear (Ppy), the Chinese white
pear (DSHS, Pbr), the European cultivar pear (Bartlett,Pco) and a dwarfing pear (Zhonggai1,
Pdr).
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Figure 2 Structural variations across seven pear genome assemblies. (A) The size of
SVs (insertions, deletions, translocations and inversions) by comparing six different genomes
to the PsbM genome. (B) Synteny map showing the structure of Chromosome 13. Red dots
between 25 Mbp to 30 Mbp show the position of two proline-serine-threonine phosphatase-
interacting protein genes (PsbM013G02206 and PsbM013G02206) functionally associated
with cell division.
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Figure 3 Pangenome of pear. (A) Geographical distribution of 113 pear resources. (B)
Alignment ratio of 113 pear resources based on pangenome and single genome. (C) Pan-
genome modeling. The pan-genome modeling shows no more dramatic increases when the
number of accession genomes is over 30, indicating that the pear pangenome is sufficient to
capture the majority of PAVs within pears. The upper and lower lines represent the pan-
genome number and core-genome number, respectively. (D) Pangenome gene classification.
(E) Word cloud of the GO enrichment of biological process for variable genes. (F) Boxplots
show the median and upper and lower quartiles of gene length. (G) the RNA-seq expression
level (H) Non-synonymous/synonymous substitution ratio (Ka/Ks) of core and dispensable
orthologous gene clusters.
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Figure 4 Characterization of the pear population basing on the pear pangenome.

(A) and (B) represented the calculation of nucleotide diversity based on PAVs and SNPs.
Nucleotide diversity (17) across 113 pear accessions at the pangenome level was 4.84 x 10"-3,
with cultivated Asian and European pears showing similar levels (3.56 x 107-3), which are
lower than their wild species, while PAV diversity indicated European pears (both cultivated
and wild) have lower diversity than Asian pears.(C) and (D) represented the PCA analysis
based on SNPs and PAVs reveals different patterns in the pear population structure.(E) and
(F) denoted the phylogenetic trees constructed based on SNPs and PAVs reveal different
patterns in the pear population structure.
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Figure 5 Gene PAVs between European and Asian pears. (A) The gene number
between Asian and European pear genomes. (B) Change of gene PAV occurrence
frequency between Asian and European pear genomes. (C) The change of PAV
occurrence frequency of nine genes between Asian and European pear genomes. These
nine genes may play key roles in fruit quality trait differentiation between Asian and
European pear genomes. (D) The differentiation of gene expression among nine key
genes between Asian and European pear genomes.
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Figure 6 The characterization of the sepal abscission zone pear gene GH3.1 from
structural variation, expression to functional validation. (A) The variation of gene GH3
in Pyrus. (B) XS and KS represent the late stage of sepal development of ‘Xuehuali’ and
‘Kuerlexiangli’ respectively, n=3,* P < 0.05. (C) The left part: The inserted mutation sites of
‘Yuluxiang’ pear and its parents, M: Marker, HYm and MH, and HYf and FK, represent the
cloning fragments of the allele PsbMGH3.1 from upstream to downstream of the mutation
sites of ‘“Yuluxiangli’ and ‘Xuehuali’, respectively, and the cloning fragments of the allele
PsbFGH3.1 from upstream to downstream of ‘Yuluxiang’ pear and ‘Kuerlexiangli’; The right
part: Detection of genotyping of mutation sites. (D) The left part: The mutated sites of
‘Yuluxiang’ pear and its parents. (E) The left part: Simulation of molecular docking between
PsbMGH3.1 and IAA, and local amplification of active pocket; The middle part: IAA chemical
structure formula; The right part: Hydrogen bond force between PsbMGH3.1 and IAA.
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