

1 **RAG1 and RAG2 non-core regions are implicated in**
2 **the leukemogenesis and off-target V(D)J recombi-**
3 **tion in *BCR-ABL1*-driven B cell lineage lymphoblastic**
4 **leukemia.**

5 Xiaozhuo Yu^{1*}, Wen Zhou^{1*}, Xiaodong Chen¹, Shunyu He¹, Mengting
6 Qin¹, Meng Yuan¹, Yang Wang¹, Woodvine otieno Odhiambo¹, Yinsha
7 Miao^{2**} and Yanhong Ji^{1,2**}
8

9 ¹Department of Pathogenic Biology and Immunology. School of Basic Medical Sci-
10 ences, Xi'an Jiaotong University Health Science Center.

11 ² Department of Clinical laboratory, Xi'an No. 3 Hospital, the Affiliated Hospital of
12 Northwest University.

13 *Xiaozhuo Yu and Wen Zhou contributed equally to this work as cofirst anhlor

14 **Correspondences:

15 Yanhong Ji (jiyanhong@xjtu.edu.cn), Yinsha Miao (miaoyinsha@med.nwu.edu.cn),

16

17

18 **Running title:** RAG's non-core regions suppress leukemogenesis
19 and off-target V(D)J recombination

20

21 **Key words:** RAG, non-core regions, off-target V(D)J recombi-
22 nation, *BCR-ABL1*⁺ B-ALL, genomic stability

23

24 Abstract

25 The evolutionary conservation of non-core RAG regions suggests
26 significant roles that might involve quantitative or qualitative altera-
27 tions in RAG activity. Off-target V(D)J recombination contributes to
28 lymphomagenesis and is exacerbated by RAG2' C-terminus ab-
29 sence in $Tp53^{-/-}$ mice thymic lymphomas. However, the genomic
30 stability effects of non-core regions from both cRAG1 and cRAG2
31 in *BCR-ABL1⁺* B-lymphoblastic leukemia (*BCR-ABL1⁺* B-ALL), the
32 characteristics, and mechanisms of non-core regions in suppress-
33 ing off-target V(D)J recombination remains unclear. Here, we es-
34 tablished three mice models of *BCR-ABL1⁺* B-ALL in *full-length*
35 *RAG* (*fRAG*), *core RAG1* (*cRAG1*), and *core RAG2* (*cRAG2*) mice.
36 The *cRAG* (*cRAG1* and *cRAG2*) leukemia cells exhibited greater
37 malignant tumor characteristics compared to *fRAG* cells. Addition-
38 ally, *cRAG* cells showed higher frequency of off-target V(D)J re-
39 combination and oncogenic mutations than *fRAG*. We also re-
40 vealed decreased RAG binding accuracy in *cRAG* cells and a
41 smaller recombinant size in *cRAG1* cells, which could potentially
42 exacerbate off-target V(D)J recombination in *cRAG* cells. In con-
43 clusion, these findings indicate that the non-core RAG regions,
44 particularly the non-core region of RAG1, play a significant role in

45 preserving V(D)J recombination precision and genomic stability in
46 *BCR-ABL1*⁺ B-ALL.

47 **Introduction**

48 V(D)J recombination serves as the central process for early lym-
49 phocyte development and generates diversity in antigen receptors.
50 This process involves the double-strand DNA cleavage of gene
51 segments by the V(D)J recombinase, including RAG1 and RAG2.
52 RAG recognizes conserved recombination signal sequences
53 (RSSs) positioned adjacent to V, D, and J gene segments. A bona
54 fide RSS contains a conserved palindromic heptamer (consen-
55sus 5'-CACAGTG) and A-rich nonamer (consensus 5'-
56 ACAAAAAACC) separated by a degenerate spacer of either 12 or
57 23 base pairs (**Schatz and Ji, 2011; Hirokawa, et al., 2020**). The
58 process of efficient recombination is contingent upon the presence
59 of recombination signal sequences (RSSs) with differing spacer
60 lengths, as dictated by the "12/23 rule" (**Eastman, et al., 1996;**
61 **Banerjee and Schatz, 2014**). Following cleavage, the DNA ends
62 are joined via non-homologous end joining (NHEJ), resulting in the
63 precise alignment of the two coding segments and the signaling
64 segment (**Rooney, et al., 2004**). V(D)J recombination promotes B
65 cell development, but aberrant V(D)J recombination can lead to

66 precursor B-cell malignancies through RAG mediated off-target ef-
67 fects (**Thomson, et al.,2020; Mendes, et al.,2014; Onozawa and**
68 **Aplan,2012**).

69 The regulation of RAG expression and activity is multifactorial,
70 serving to ensure V(D)J recombination and B cell development
71 (**Gan, et al.,2021; Kumari, et al.,2021**). The RAGs consist of core
72 and non-core region. Although recombinant dispensability appears
73 evident, the non-core RAG regions are evolutionarily conserved,
74 indicating their potential significance in vivo that may involve quan-
75 titative or qualitative modifications in RAG activity and expression
76 (**Liu, et al.,2022; Curry and Schlissel,2008; Sekiguchi, et**
77 **al.,2001**). Specifically, the non-core RAG2 region (amino acids
78 384–527 of 527 residues) contains a plant homeodomain (PHD)
79 that can recognize histone H3K4 trimethylation, as well as a T490
80 locus that mediates a cell cycle-regulated protein degradation sig-
81 nal in proliferated pre-B cells stage (**Matthews, et al.,2007; Liu, et**
82 **al.,2007**). The off-target V(D)J recombination frequency is signifi-
83 cantly higher when RAG2 is C-terminally truncated, thereby estab-
84 lishing a mechanistic connection between the PHD domain,
85 H3K4me3-modified chromatin, and the suppression of off-target
86 V(D)J recombination (**Lu, et al.,2015; Mijušković, et al.,2015**).
87 RAG2 destruction is linked to the cell cycle through the cyclin-

88 dependent kinase cyclinA/Cdk2, which phosphorylates T490. Failure
89 to degrade RAG during the S stage poses a threat to the genome (Zhang, et al., 2011). A T490A mutation at the phosphorylation site contribute to lymphomagenesis in a p53-deficient background. The RAG1' non-core region (amino acids 1–383 of 1040 residues) has been identified as a RAG1 regulator. While the core RAG1 maintains its catalytic activity, its in vivo recombination efficiency and fidelity are reduced in comparison to the full-length RAG1 (fRAG1). In addition, the RAG binding to the genome is more indiscriminate (Silver, et al., 1993; Beilinson, et al., 2021; Sadofsky, et al., 1993). The N-terminal domain (NTD), which is evolutionarily conserved, is predicted to contain multiple zinc-binding motifs, including a Really Interesting New Gene (RING) domain (aa 287 to 351) that can ubiquitylate various targets, including RAG1 itself (Deng, et al., 2015). While the ubiquitylation activity has been characterized in vitro, its in vivo relevance to V(D)J recombination and off-target V(D)J recombination remains uncertain. Furthermore, the N-terminal domain (NTD) contains a specific region (amino acids 1 to 215) that facilitates interaction with DCAF1, leading to the degradation of RAG1 in a CRL4-dependent manner (Schabla, et al., 2018). Additionally, the NTD plays a role in chromatin binding and the genomic targeting of the

110 RAG complex (**Schatz and Swanson,2011**). Despite increased
111 evidence emphasizing the significance of non-core RAG regions,
112 particularly RAG1's non-core region, the function of non-core RAG
113 regions in off-target V(D)J recombination and the underlying
114 mechanistic basis have not been fully clarified.

115 Typically, genomic DNA is safeguarded against inappropriate
116 RAG cleavage by the inaccessibility of cryptic RSSs (cRSSs),
117 which are estimated to occur once per 600 base pairs (**Lewis, et
118 al.,1997; Teng, et al.,2015**). However, recent research has
119 demonstrated that epigenetic reprogramming in cancer can result
120 in heritable alterations in gene expression, including the accessibil-
121 ity of cRSSs (**Khoshchehreh, et al.,2019; Becker, et al.,2020;
122 Fatma, et al.,2022; Goel, et al.,2022**). We selected the *BCR-*
123 *ABL1*⁺ B-ALL model, which is characterized by ongoing V(D)J
124 recombinase activity and BCR-ABL1 gene rearrangement in pre-B
125 leukemic cells (**Schjerven, et al.,2017; Wong and Witte,2004**).
126 The genome structural variations (SVs) analysis was conducted on
127 leukemic cells from *fRAG*, *cRAG1*, and *cRAG2*, *BCR-ABL1*⁺ B-ALL
128 mice to examine the involvement of non-core RAG regions in off-
129 target V(D)J recombination events. The non-core domain deletion
130 in both *RAG1* and *RAG2* led to accelerated leukemia onset and
131 progression, as well as an increased off-target V(D)J recombina-

132 tion. Our analysis showed a reduction in RAG binding accuracy in
133 *cRAG* cells and a decrease in recombinant size in *cRAG1* cells,
134 which may be responsible for the increased off-target V(D)J re-
135 combination in *cRAG* leukemia cells. In conclusion, our results
136 highlight the potential importance of the non-core RAG region, par-
137 ticularly RAG1's non-core region, in maintaining accuracy of V(D)J
138 recombination and genomic stability in *BCR-ABL1*⁺ B-ALL.

139 **Method**

140 **Mice**

141 The C57BL/6 mice were procured from the Experimental Animal
142 Center of Xi'an Jiaotong University, while cRAG1 (amino acids
143 384-1040) and cRAG2 (amino acids 1-383) were obtained from
144 David G. Schatz (Yale University, New Haven, Connecticut, USA).
145 The mice were bred and maintained in a specific pathogen-free
146 (SPF) environment at the Experimental Animal Center of Xi'an
147 Jiaotong University. All animal-related procedures were in accord-
148 ance with the guidelines approved by the Xi'an Jiaotong University
149 Ethics Committee for Animal Experiments.

150 **Generation of Retrovirus Stocks**

151 The pMSCV-BCR-BAL1-IRES-GFP vector is capable of co-

152 expressing the human BCR-ABL1 fusion protein and green fluo-
153 rescence protein (GFP), while the pMSCV-GFP vector serves as a
154 negative control by solely expressing GFP. To produce viral parti-
155 cles, 293T cells were transfected with either the MSCV-BCR-
156 BAL1-IRES-GFP or MSCV-GFP vector, along with the packaging
157 vector PKAT2, utilizing the X-tremeGENE HP DNA Transfection
158 Reagent from Roche (Basel, Switzerland). After 48 hours, the viral
159 supernatants were collected, filtered, and stored at -80°C.

160 **Bone Marrow Transduction and Transplantation**

161 Experiments were conducted using mice aged between 6 to 10
162 weeks. *BCR-ABL1*⁺ B-ALL was induced by utilizing marrow from
163 donors who had not undergone 5-FU treatment. The donor mice
164 were euthanized through CO₂ asphyxiation, and the bone marrow
165 was harvested by flushing the femur and tibia with a syringe and
166 26-gauge needle. Erythrocytes were not removed, and 1 × 10⁶ cells
167 per well were plated in six-well plates. A single round of co-
168 sedimentation with retroviral stock was performed in medium con-
169 taining 5% WEHI-3B-conditioned medium and 10 ng/mL IL-7
170 (Peprotech, USA). After transduction, cells were either transplant-
171 ed into syngeneic female recipient mice (1 × 10⁶ cells each) that
172 had been lethally irradiated (2 × 450 cGy), or cultured in RPMI-

173 1640 (Hyclone, Logan, UT) medium supplemented with 10% fetal
174 calf serum (Hyclone), 200 mmol/L L-glutamine, 50 mmol/L 2-
175 mercaptoethanol (Sigma, St Louis, MO), and 1.0 mg/ml penicil-
176 lin/streptomycin (Hyclone). Subsequently, recipient mice were
177 monitored daily for indications of morbidity, weight loss, failure to
178 thrive, and splenomegaly. Weekly assessment of peripheral blood
179 GFP percentage was done using FACS analysis of tail vein blood.
180 Hematopoietic tissues and cells were utilized for histopathology, in
181 vitro culture, FACS analysis, secondary transplantation, genomic
182 DNA preparation, protein lysate preparation, or lineage analysis,
183 contingent upon the unique characteristics of mice under study.

184 **Secondary Transplants**

185 Thawed BM cells were sorted using a BD FACS Aria II (Becton
186 Dickinson, San Jose California, USA). GFP positive leukemic cells
187 (1×10^6 , 1×10^5 , 1×10^4 , and 1×10^3) were then resuspended in 0.4
188 mL Hank's Balanced Salt Solution (HBSS) and intravenously ad-
189 ministered to unirradiated syngeneic mice.

190 **Flow cytometry analysis and sorting**

191 Bone marrow, spleen cells, and peripheral blood were harvested
192 from leukemic mice. Red blood cells were eliminated using NH4Cl

193 RBC lysis buffer, and the remaining nucleated cells were washed
194 with cold PBS. In order to conduct in vitro cell surface receptor
195 staining, 1×10^6 cells were subjected to antibody staining for 20
196 minutes at 4°C in 1xphosphate buffer saline (1xPBS) containing 3%
197 BSA. Cells were then washed with 1xPBS and analyzed using a
198 CytoFLEX Flow Cytometer (Beckman Coulter, Miami, FL) or sorted
199 on a BD FACS Aria II. Apoptosis was analysed by resuspending
200 the cells in Binding Buffer (BD Biosciences, Baltimore, MD, USA),
201 and subsequent labeling with anti-annexin V-AF647 antibody (BD
202 Biosciences) and propidium iodide (BD Biosciences) for 15
203 minutes at room temperature. The lineage analysis was performed
204 using the following antibodies, which were procured from BD Bio-
205 sciences: anti-BP-1-PerCP-Cy7, anti-CD19-PerCP-CyTM^{5.5}, anti-
206 CD43-PE, anti-B220-APC, and anti- μ HC-APC.

207 **BrdU incorporation and analysis**

208 Cells obtained from primary leukemic mice were cultured in six-
209 well plates containing RPMI-1640 medium supplemented with 10%
210 FBS and 50 mg/ml BrdU. After a 30-minute incubation at 37°C,
211 cells were harvested and intranuclearly stained using anti-BrdU
212 and 7-AAD antibodies, as per the manufacturer's instructions.

213 **Western blotting analysis**

214 Over 1×10^6 leukemic cells were centrifuged and washed with ice-
215 cold PBS. The cells were then treated with ice-cold RIPA buffer,
216 consisting of 50 mM Tris-HCl (pH 7.4), 0.15 M NaCl, 1% Triton X-
217 100, 0.5% NaDoc, 0.1% sodium dodecyl sulphide (SDS), 1 mM
218 ethylene diamine tetraacetic acid (EDTA), 1 mM phenylmethane
219 sulphony fluoride (PMSF) (Amresco), and fresh protease inhibitor
220 cocktail Pepstain A (Sigma). After sonication using a Bioruptor
221 TMUCD-200 (Diagenode, Seraing, Belgium), the suspension was
222 spined at 14,000 g for 3 minutes at 4°C. The total cell lysate was
223 either utilized immediately or stored at -80°C. Protein concentra-
224 tions were determined using DC Protein Assay (Bio-Rad Laborato-
225 ries, Hercules, California, USA). Subsequently, the protein sam-
226 ples (20 µg) were incubated with α -RAG1 (mAb 23) and α -RAG2
227 (mAb 39) antibodies, with GAPDH serving as the loading control.
228 The signal was further detected using secondary antibody of goat
229 anti-rabbit IgG conjugated with horseradish peroxidase (Thermo
230 Scientific, Waltham, MA). The band signal was developed with
231 Immobilon™ Western Chemiluminescent HRP substrate (Millipore,
232 Billerica, MA). The band development was analyzed using GEL-
233 PRO ANALYZER software (Media Cybernetics, Bethesda, MD).

234 **Genomic PCR**

235 Genomic PCR was performed using the following primers

236 (**Schlissel, et al., 1991**):

237 DhL-5'-GGAATTCGTTTGTSAAGGGATCTACTACTGTG-3';

238 J3-5'-GTCTAGATTCTCACAAAGAGTCCGATAGACCCTGG-3';

239 VQ52-5'-CGGTACCAAGACTGARCATCASCAAGGACAAYTCC-3';

240 Vh558-5'-CGAGCTCTCCARCACAGCCTWCATGCARCTCARC-3';

241 Vh7183-5'-CGGTACCAAGAASAMCCTGTWCCTGCAAATGASC-

242 3'.

243 **RNA-seq library preparation and sequencing**

244 GFP⁺CD19⁺ cells were sorted from the spleen of cRAG1 (n=3,

245 1×10⁶ cells /sample), cRAG2 (n=3, 1×10⁶ cells /sample), and fRAG

246 (n=3, 1×10⁶ cells /sample) B-ALL mice. Total RNA was extracted

247 using Trizol reagent (Invitrogen, CA, USA) following the manufac-

248 turer's guidelines. RNA quantity and purity analysis was done us-

249 ing Bioanalyzer 2100 and RNA 6000 Nano LabChip Kit (Agilent,

250 CA, USA) with RIN number >7.0. RNA-seq libraries were prepared

251 by using 200 ng total RNA with TruSeq RNA sample prep kit

252 (Illumina). Oligo(dT)-enriched mRNAs were fragmented randomly

253 with fragmentation buffer, followed by first- and second-strand

254 cDNA synthesis. After a series of terminal repair, the double-

255 stranded cDNA library was obtained through PCR enrichment and
256 size selection. cDNA libraries were sequenced with the Illumina
257 Hiseq 2000 sequencer (Illumina HiSeq 2000 v4 Single-Read 50 bp)
258 after pooling according to its expected data volume and effective
259 concentration. Two biological replicates were performed in the
260 RNA-seq analysis. Raw reads were then aligned to the mouse ge-
261 nome (GRCm38) using Tophat2 RNA-seq alignment software, and
262 unique reads were retained to quantify gene expression counts
263 from Tophat2 alignment files. The differentially expressed mRNAs
264 and genes were selected with \log_2 (fold change) >1 or \log_2 (fold
265 change) <-1 and with statistical significance (p value < 0.05) by R
266 package. Bioinformatic analysis was performed using the
267 OmicStudio tools at <https://www.omicstudio.cn/tool>.

268 **Preparation of tumor DNA samples**

269 GFP^+ CD19^+ splenic cells, tail and kidney tissue were obtained
270 from *cRAG1*, *cRAG2* and *fRAG BCR-ABL1*⁺ B-ALL mice, and ge-
271 nomic DNA was extracted using a TIANamp Genomic DNA Kit
272 (TIANGEN-DP304). Subsequently, paired-end libraries were con-
273 structed from 1 μg of the initial genomic material using the TruSeq
274 DNA v2 Sample Prep Kit (Illumina, #FC-121-2001) as per the
275 manufacturer's instructions. The size distribution of the libraries

276 was assessed using an Agilent 2100 Bioanalyzer (Agilent Tech-
277 nologies, #5067-4626), and the DNA concentration was quantified
278 using a Qubit dsDNA HS Assay Kit (Life Technologies, #Q32851).
279 The Illumina HiSeq 4000 was utilized to sequence the samples,
280 with two to four lanes allocated for sequencing the tumor and one
281 lane for the control DNA library of the kidney or liver, each with 150
282 bp paired end reads.

283 **Read alignment and structural variant calling**

284 Fastq files were generated using Casava 1.8 (Illumina), and BWA
285 37 was employed to align the reads to mm9. PCR duplicates were
286 eliminated using Picard's Mark Duplicates tool (source-
287 *forge.net/apps/mediawiki/picard*). Our custom scripts
288 (<http://sourceforge.net/projects/svdetection>) were utilized to elimi-
289 nate BWA-designated concordant and read pairs with low BWA
290 mapping quality scores. Intrachromosomal and inter-chromosomal
291 rearrangements were identified using SV Detect from discordant,
292 quality prefiltered read pairs. The mean insertion size and standard
293 deviation for this analysis were obtained through Picard's
294 InsertSizeMetrics tool (sourceforge.net/apps/mediawiki/picard).
295 Tumor-specific structural variants (SVs) were identified using the
296 manta software

297 (<https://github.com/Illumina/manta/blob/mater/docs/userGuide/REA>
298 *DME.md#introduction*).

299 **Validation of high confidence off-target candidates**

300 The elimination of non-specific structural mutations from the kidney
301 or tail was necessary for tumor-specific structural variants identifi-
302 cation. Subsequently, the method involving 21-bp CAC-to-
303 breakpoint was employed to filter RAG-mediated off-target gene.
304 The validation of high confidence off-target candidates was carried
305 out through PCR. Oligonucleotide primers were designed to hy-
306 bridize within the "linking" regions of SV Detect, in the appropriate
307 orientation. The PCR product was subjected to Sanger sequencing
308 and aligned to the mouse mm9 reference genome using BLAST
309 (<https://blast.ncbi.nlm.nih.gov/Blast.cgi>).

310 **Statistics.**

311 Statistical analysis was conducted using SPSS 20.0 (IBM Corp.)
312 and GraphPad Prism 6.0 (GraphPad Software). Descriptive statis-
313 tics were reported as means \pm standard deviation for continuous
314 variables. The equality of variances was assessed using Levene's
315 test. Two-group comparisons, multiple group comparisons, and
316 survival comparisons were performed using independent-samples

317 t-test, one-way analyses of variance (ANOVA) with post hoc Fish-
318 er's LSD test, and log-rank Mantel-Cox analysis, respectively.
319 Kaplan-Meier survival curves were utilized to depict the changes in
320 survival rate over time. Statistical significance was set at P<0.05.

321 **Results**

322 **cRAG give more aggressive leukemia in a mouse model of**
323 ***BCR-ABL1*⁺ B-ALL**

324 In order to assess the impact of RAG activity on the clonal evolu-
325 tion of *BCR-ABL1*⁺ B-ALL through a genetic experiment, we uti-
326 lized bone marrow transplantation (BMT) to compare disease pro-
327 gression in *fRAG*, *cRAG1*, and *cRAG2* *BCR-ABL1*⁺ B-ALL (**Yu, et**
328 **al., 2019**). Bone marrow cells transduced with a *BCR-ABL1/GFP*
329 retrovirus were administered into syngeneic lethally irradiated mice,
330 and *CD19*⁺ B cell leukemia developed within 30-80 days (Fig. 1A,
331 Fig. S1). Western blot results confirmed equivalent transduction
332 efficiencies of the retroviral *BCR-ABL1* in all three cohorts (Fig.
333 S2A). In order to investigate potential variances in leukemia out-
334 come across distinct genomic backgrounds, we used Mantel-Cox
335 estimation to assess survival rates in *fRAG*, *cRAG1*, or *cRAG2*
336 mice that were transplanted with *BCR-ABL1*-transformed bone

337 marrow cells. Our findings indicate that, compared to *fRAG BCR-*
338 *ABL1*⁺ B-ALL mice, *cRAG1* or *cRAG2 BCR-ABL1*⁺ B-ALL mice ex-
339 hibited reduced survival rates during the primary transplant phase
340 (median 74.5 days versus 39 or 57 days, $P < 0.0425$, Fig. 1A).
341 This survival rates discrepancy was also observed during the sec-
342 ondary transplant phase, wherein leukemic cells were extracted
343 from the spleens of primary recipients and subsequently purified
344 via GFP⁺ cell sorting. A total of 10⁵, 10⁴ and 10³ GFP⁺ leukemic
345 cells that originated from *fRAG*, *cRAG1*, or *cRAG2* leukemic mice
346 were transplanted into corresponding non-irradiated
347 immunocompetent syngenetic recipient mice (median survival
348 days 11-26, 10-16, 11-21 days, $P < 0.0023$ -0.0299, Fig. S2B). Ad-
349 ditionally, the *cRAG* mice exhibited a significantly higher leukemia
350 burden in the bone marrow, spleen, and peripheral blood com-
351 pared to the *fRAG* mice (Fig. 1B-D). In order to investigate the cel-
352 lular process underlying the increased growth rate in *cRAG BCR-*
353 *ABL1*⁺ B-ALL, a flow cytometry analysis was conducted to examine
354 the cell cycle and cell apoptosis status. The results demonstrated
355 that *cRAG BCR-ABL1*⁺ B-ALL had elevated proportion of cells in
356 S/G2-M phase compared to fRAG (Fig. 1E). Furthermore, we ob-
357 served increased growth due to decreased apoptosis in *cRAG* leu-
358 kemic cells (Fig. S2C). RNA-seq analysis revealed the changes of

359 cell differentiation and proliferation/apoptotic pathways (Fig. S3)
360 These results suggest that the absence non-core RAG regions of
361 expedites the progression of malignant transformation and leuke-
362 mic growth, resulting in aggressive disease phenotype in the
363 cRAG *BCR-ABL1*⁺ B-ALL model.

364 **The loss of non-core RAG regions corresponds to a less ma-**
365 **ture cell surface phenotype but does not impede IgH VDJ re-**
366 **combination**

367 To identify the B cells developmental stages from which the accu-
368 mulated B leukemic cells originated. We stained single cells with B
369 cell-specific surface markers and analyzed the samples on flow
370 cytometry. We observed that 91%-98% of GFP⁺ cells from *cRAG*
371 mice were CD19⁺BP-1⁺B220⁺CD43⁺, suggesting that the majority
372 of leukemic cells belonged to the large pre-B cell stage. However,
373 in *fRAG* leukemic mice, there were 65% large pre-B
374 (GFP⁺CD19⁺BP-1⁺B220⁺CD43⁺) and 35% small pre-B cells
375 (GFP⁺CD19⁺BP-1⁺B220⁺CD43⁻) (Fig. 2A). The lineage results in
376 accordance with the immunoglobulin μ heavy chain (μ HC) expres-
377 sion. Specifically, 5% of *fRAG* leukemic cells exhibited μ HC ex-
378 pression, while *cRAG* leukemic cells lacked μ HC expression, indi-
379 cating a deficiency in the pre-BCR checkpoint (Fig. 2B). These re-

380 sults suggest that leukemic cells derived from *cRAG* mice arrest at
381 early B cell developmental stage. Typically, *IgH* rearrangement ini-
382 tiates with *D-J* joining in pro-B cells, followed by *V-DJ* joining in
383 large pre-B cells, and ultimately, *V-J* rearrangements occur at the
384 *IgL* loci in small pre-B cells. Genomic PCR of GFP⁺CD19⁺ cell's
385 DNA was used to investigate *VDJ* rearrangement. Notably, *cRAG*
386 leukemic cells exhibited a high degree of oligoclonality, as all tu-
387 mors analyzed consistently displayed the rearrangement of a lim-
388 ited number of *VH* family members. In contrast, the *fRAG*
389 leukemias exhibited a significant degree of polyclonality, as con-
390 firmed by the recurrent rearrangement of multiple *VH* family mem-
391 bers investigated, each rearranged to all possible *JH1-3* segments
392 (Fig. S4AB). This finding is consistent with the more aggressive
393 disease phenotype observed in *cRAG BCR-ABL1⁺* B-ALL. The
394 progression of BCR-ABL-induced leukemia in *cRAG* mice necessi-
395 tates the selection of secondary oncogenic events, ultimately lead-
396 ing to the emergence of one or a few dominant leukemic clones.
397 Loss of the non-core RAG region results in the emergence of few-
398 er leukemic clones to generate oligoclonal tumors.

399 **400 The loss of non-core RAG regions highlights genomic DNA
damage**

401 The aforementioned findings indicate that leukemic cells derived

402 from three kind of mice were hindered in the large pre-B phase to
403 varying extents, instead of consistent development. During this
404 phase, typical B cells show reduced RAG1 expression to accom-
405 modate DNA replication and rapid cell proliferation. The non-core
406 RAG regions contain the RING finger domain and T490 residue,
407 which are responsible for regulating RAG degradation in B cell de-
408 velopment. Therefore, it is imperative to investigate the potential
409 consequences of non-core region deletion on RAG expression and
410 function in these leukemic cells. Western blotting was done to ad-
411 dress this question. The results revealed that RAG1 (cRAG1) and
412 RAG2 (cRAG2) were expressed in GFP⁺CD19⁺ splenic leukemic
413 cells derived from *BCR-ABL1*⁺ B-ALL mice with varying genetic
414 backgrounds (Fig. 3A). Notably, upregulation of the RAG1 (cRAG1)
415 protein was observed in *cRAG1* leukemic cells compared to *fRAG*
416 (Fig. 3A, Fig. S5A). The in vitro V(D)J recombination assay con-
417 firmed that rearrangements mediated by RSS occurred in leukemic
418 cells. This finding suggests that different forms of RAG exhibited
419 cleavage activity (Fig. 3B and Fig. S5B).

420 To investigate the potential correlation between aberrant RAG
421 activities and increased DNA double-strand breaks (DSBs), we
422 evaluated the levels of phosphorylated H2AX (□-H2AX), a DSB
423 response factor, in *fRAG*, *cRAG1*, and *cRAG2* leukemic cells (gat-

424 ed on GFP⁺). This served as a measure of both DNA DSBs and
425 global genomic instability. Our flow cytometry findings revealed
426 that *cRAG* leukemic cells had increased □-H2AX compared to the
427 *fRAG* compartment (Fig. 3C). This suggests that *cRAG* play a
428 more significant role in mediating somatic structural variants in
429 *BCR-ABL1*⁺ B lymphocytes. These results indicate that the stalled
430 B-precursors exhibit high expression of RAG endonucleases and
431 increased DNA damage.

432 **Off-target recombination mediated by RAG in *BCR-ABL1*⁺ B
433 lymphocytes**

434 Genome-wide sequencing and analysis were performed to com-
435 pare somatic structural variants (SVs) in *BCR-ABL1*⁺ B lympho-
436 cytes derived from *fRAG*, *cRAG1*, and *cRAG2* mice. The leukemic
437 cells were sequenced with an average coverage of 25× (Table. S1).
438 The SVs generated by RAG were screened based on two criteria:
439 the presence of a CAC to the right (or GTG to the left) of both
440 breakpoints, and its occurrence within 21 bp from the breakpoint
441 (**Mijušković, et al., 2015**). Further elaboration on these criteria can
442 be found in Supplementary Figure 6. Consequently, aberrant V-to-
443 V junctions and V to intergenic regions were encompassed in five
444 validated abnormal rearrangements at *Ig* loci in *cRAG* leukemic
445 mice (Table. S2). Additionally, seven samples had 24 somatic

446 structural variations, with an average of 3.4 coding region muta-
447 tions per sample (range of 0-9), which is consistent with the limited
448 number of acquired somatic mutations observed in hematological
449 cancers and childhood malignancies (Fig. 4 and Table S3). The re-
450 sults of the study demonstrate that *fRAG* cells had low SVs (0-1
451 per sample), *cRAG1* cells exhibited higher SVs (6-9 per sample)
452 while *cRAG2* cells had moderate SVs incidence (1-4 per sample)
453 (Fig. 4, Table S3). These findings suggest that cRAG may lead to
454 an elevated off-target recombination, eventually posing a threat to
455 the *BCR-ABL1*⁺ B lymphocytes genome.

456 **Off-target V(D)J recombination characteristics in *BCR-ABL1*⁺
457 B lymphocytes**

458 We further analyzed the characteristics of the identified SVs. Spe-
459 cifically, an assessment of the exon-intron distribution profiles of 42
460 breakpoints engendered by 24 SVs was executed via genome
461 analysis. The results indicated that while 57% of the breakpoints
462 were situated on the gene body, 43% were enriched within the
463 flanking sequence, majority of which were identified as transcrip-
464 tional regulatory sequence (Figure 5A). P and N nucleotides are
465 recognized as distinctive characteristics of V(D)J recombination.
466 Consequently, the length of P and N nucleotides remains con-
467 sistent during RSS-to-RSS and cRSS-to-cRSS recombination.

468 However, the frequency of P and N sequences was 50%/50% (P/N)
469 in RSS-to-RSS recombination, while it was 4%/8% (P/N) in cRSS-
470 to-cRSS recombination (Fig. 5B). The notably reduced frequency
471 of P and N sequences indicating that off-target sites DNA repair in
472 *BCR-ABL1⁺* B lymphocytes differs from classical V(D)J recombi-
473 nation repair.

474 The hybrid joints were specifically pronounced in *cRAG1* and
475 *cRAG2* leukemic cells (100% and 93% respectively), indicating
476 that the non-core regions might be involved in suppressing poten-
477 tially harmful transposition events (Figure 5C). In order to ascertain
478 the potential impact of non-core RAG region deletion on the occur-
479 rence of oncogenic mutations, a comparative analysis of cancer
480 genes was performed across three distinct leukemic cell back-
481 grounds. The results revealed that the number of cancer genes
482 produced in the *cRAG1* leukemic cell was significantly higher than
483 the other two. This observation aligns with the manifestation of a
484 most aggressive leukemic phenotype and concurrent alterations in
485 mRNA transcription in *cRAG1 BCR-ABL1⁺* B-ALL mice.

486 **The non-core regions have effects on RAG binding accuracy**
487 **and off-target recombination size in *BCR-ABL1*⁺ B lympho-**
488 **cytes**

489 Sequence logos were used to visually compare the RSS and cRS
490 Ss in *Ig* loci and *non-Ig* loci respectively. The RSS elements in *Ig* lo
491 ci exhibited the closest match to the canonical RSS (CACAGTG [1
492 2/23 spacer] ACAAAAACC), particularly at functionally important p
493 ositions. It is noteworthy that the first 5 bases (underlined) of the p
494 erfect heptamer sequence CACAGTG served as the binding motif
495 of fRAG, while the first 4 bases of the heptamer sequence, the CA
496 CA tetranucleotide, were identified as the cRAG binding motif in le
497 ukemic cells (Fig. 6A). Although both motifs (CACAG and CACA) c
498 orresponding to the highly conserved portion of the RSS heptamer
499 sequence, variations in the cRSSs sequence among off-target gen
500 es in *fRAG* and *cRAG* mice indicate that the removal of RAG's non
501 -core region reduces binding precision and increases the off-target
502 recombination in *BCR-ABL1*⁺ B lymphocytes.

503 Antigen receptor genes are assembled by large-scale deletions
504 and inversions. Our investigation revealed that both *fRAG* and *cR*
505 *AG2* leukemic cells generated 100% and 92% off-target recombi
506 nation, respectively, exceeding 10000 bp. However, *cRAG1* leukemic
507 cells exhibited only 6% off-target recombination exceeding 10000

508 bp, with 48% being <1000bp, 46% being 1000-10000bp (Fig. 6BC).
509 The results indicate that cRAG1 generate minor size of off-target r
510 ecombination in *BCR-ABL 1⁺* B lymphocytes, and non-core RAG1 r
511 egion influences the off-target recombination magnitude. Additional
512 ly, non-core RAG1 region deletion results in reduced off-target reco
513 mbination size, which may account for the higher incidence of off-t
514 arget V(D)J recombination in *cRAG1* leukemic cells (Fig. 6D).

515 **Discussion**

516 In this study, we have demonstrated that non-core region deletion
517 of both RAG1 and RAG2 leads to accelerated development of leu-
518 kemia and increased off-target V(D)J recombination in *BCR-ABL 1⁺*
519 B lymphocytes. Furthermore, we report reduced cRAG binding ac-
520 curacy and off-target recombination size in cRAG1 leukemia cells,
521 which might contribute to exacerbated off-target V(D)J recombi-
522 nation of *cRAG BCR-ABL 1⁺* B lymphocytes. These findings suggest
523 that the non-core regions, particularly the non-core region of RAG1,
524 play a crucial role in maintaining accuracy of V(D)J recombination
525 and genomic stability in *BCR-ABL 1⁺* B lymphocytes.

526 Our observations indicate that cRAGs leukemic cells exhibit a
527 heightened production of hybrid joints, and that the non-core RAG
528 regions might suppress hybrid joint generation *in vivo*. Post-

529 cleavage synaptic complexes (PSCs) consist of the RAGs, coding
530 ends, and RSS ends (**Fugmann, et al.,2000; Libri, et al.,2021**). It
531 is likely that RAG evolution has resulted in the formation of PSCs
532 with optimal conformation and/or stability for standard coding and
533 RSS end-joining. Conversely, cRAGs PSCs may facilitate RAG-
534 mediated hybrid joints by enabling the close proximity of coding
535 and RS ends or increasing the PSC stability. Furthermore, it is
536 possible for fRAGs to enlist disassembly/remodeling factors to
537 PSCs, a process that may facilitate the involvement of NHEJ fac-
538 tors in the completion of the normal reaction (**Fugmann, et**
539 **al.,2000**). Within this context, cRAGs might exhibit reduced re-
540 cruitment capacity due to alterations in overall conformation or the
541 absence of specific motifs, resulting in the formation of more stable
542 PSCs and an increased potential for the accumulation of incom-
543 plete hybrid joints. However, our results showed that over 90%
544 junction were hybrid joints in cRAGs leukemic cells, surpassing the
545 frequency previously reported in literature (**Raghavan, et al.,2006;**
546 **Talukder, et al.,2004**). Studies have indicated that deficiency in
547 non-homologous end joining (NHEJ) may lead to chromosomal in-
548 stability and lymphomagenesis (**Wiegmans, et al.,2021; Gaymes,**
549 **et al.,2002; Rassool,2003; Scully, et al.,2019**). Notably, our find-
550 ings have revealed significant variations in the NHEJ repair path-

551 way among leukemic cells with different genetic backgrounds,
552 suggesting aberrant expression of DNA repair pathways in *cRAGs*
553 leukemic cells (Fig. S3B). This observation suggests the potential
554 for *cRAGs* to generate elevated levels of hybrid joints, particularly
555 in the absence of a competing normal pathway for efficient for-
556 mation of coding and RSS joins in a NHEJ-aberrant background.

557 The off-target V(D)J recombination process mediated by RAG
558 has the potential to generate oncogenic rearrangements
559 (**Mijušković, et al., 2015; Greaves, 2018; Thomson, et al., 2020**).

560 Our study reveals that non-core RAG regions deletion increased
561 the off-target oncogenic genes, particularly in *cRAG1* leukemic
562 cells. These genes have the capacity to influence cell proliferation,
563 differentiation, or survival. In line with this, the leukemic cells exhib-
564 it augmented cell proliferation and reduced cell apoptosis with al-
565 terations in the cell cycle pathway, particularly in *cRAG1* leukemic
566 cells (Fig. S3DF). *CDKN2B* is susceptible to recurrent breakage in
567 *cRAG1* leukemic cells, and its function in impeding proliferation
568 and enhancing leukemic cells apoptosis is attributed to its capacity
569 to block *CDK6* (**Lopes-Ventura, et al., 2019; Suzuki, et al., 1995**).

570 *CDKN2B* reduction and *CDK6* elevation in *cRAG1* leukemic cells
571 have been verified (Fig. S7AB), thereby suggesting that off-target
572 V(D)J recombination generates known or suspected oncogenic

573 mutations. Nevertheless, the degree to which RAG-mediated on-
574 cogenic recombination contributes to leukemia necessitates further
575 examination.

576 In human *ETV6-RUNX1* ALL, the *ETV6-RUNX1* fusion gene is
577 believed to initiate prenatally, yet the disease remains clinically la-
578 tent until critical secondary events occur, leading to leukemic trans-
579 formation—"pre-leukemia to leukemia" (**Mori, et al.,2002; Bateman,**
580 **et al.,2010; Bhojwani, et al.,2012**). Genomic rearrangement, me-
581 diated by aberrant RAG recombinase activity, is a frequent driver
582 of these secondary events in ETV6-RUNX1 ALL (**Papaemmanuil,**
583 **et al.,2014**). In contrast, RAG mediated off-target V(D)J recombi-
584 nation is also observed in *BCR-ABL1*⁺ B-ALL. These oncogenic
585 structural variations can also be considered as secondary events
586 that promote the transition -"leukemia to aggressive leukemia".
587 The enhancement of *BCR-ABL1*⁺ B-ALL deterioration and pro-
588 gression by cRAG in mouse model was consistent with our previ-
589 ous study that RAG enhances BCR-ABL1 positive leukemic cell
590 growth through its endonuclease activity. Additionally, we showed
591 that non-core RAG1 region deletion leads to increased cRAG1 ex-
592 pression and high RAG expression related to low survival in pedi-
593 atric acute lymphoid leukemia (Fig. 3A and Fig. S8). Therefore,
594 more attention should be be paid to the non-core RAG region mu-

595 tation in *BCR-ABL1*⁺ B-ALL for the role of non-core region in leu-
596 kemia suppression and off-target V(D)J recombination.

597 **Disclosure of Potential Conflicts of Interest**

598 The authors declare no potential conflicts of interest.

599 **Authors' Contributions**

600 Yanghong Ji: Conceptualization, resources, data curation, funding
601 acquisition, validation, writing-review, and editing. Xiaozhuo Yu
602 and Wen Zhou: Conceptualization, validation, visualization, meth-
603 odology, writing-original draft, writing-review, and editing. Xiaodong
604 Chen: validation, writing-review, and editing. Shunyu He: method-
605 ology, writing-review, and editing. Mengting Qin: writing-review,
606 and editing. Meng Yuan: validation, writing-review, and editing.
607 Yang Wang: validation, writing-review and editing. Woodvine
608 otieno Odhiambo: writing-review and editing. YinSha Miao: funding,
609 validation, writing-review, and editing.

610 **Acknowledgments**

611 This study was supported by grants (no. 31170821, no. 31370874
612 and no. 81670157) from the National Natural Scientific Foundation

613 of China and by a grant (no. 2016JZ030) from the Natural Scien-
614 tific Foundation of Shaanxi. The authors would like to thank Pro-
615 fessor Shaoguang Li from the Division of Hematology/Oncology,
616 University of Massachusetts Medical School, for providing the
617 MSCV-BCR-BAL1-IRES-GFP construct. The authors would also
618 like to thank Mr. Xiaofei Wang (Xi'an Jiaotong University Health
619 Science Centre) for providing expert technical assistance with cell
620 sorting.

621

622

623

References:

624 Banerjee JK, Schatz DG. 2014. Synapsis alters RAG-mediated nicking at Tcrb recombination signal
625 sequences: implications for the “beyond 12/23” rule. *MOL CELL BIOL* **34**:2566-2580.
626 doi:10.1128/MCB.00411-14

627 Bateman CM, Colman SM, Chaplin T, Young BD, Eden TO, Bhakta M, Gratias EJ, van Wering ER,
628 Cazzaniga G, Harrison CJ, Hain R, Ancliff P, Ford AM, Kearney L, Greaves M. 2010. Acquisition of
629 genome-wide copy number alterations in monozygotic twins with acute lymphoblastic leukemia.
630 *BLOOD* **115**:3553-3558. doi:10.1182/blood-2009-10-251413

631 Becker LM, O'Connell JT, Vo AP, Cain MP, Tampe D, Bizarro L, Sugimoto H, McGow AK, Asara
632 JM, Lovisa S, McAndrews KM, Zielinski R, Lorenzi PL, Zeisberg M, Raza S, LeBleu VS, Kalluri R.
633 2020. Epigenetic Reprogramming of Cancer-Associated Fibroblasts Deregulates Glucose Metabolism
634 and Facilitates Progression of Breast Cancer. *CELL REP* **31**:107701. doi:10.1016/j.celrep.2020.107701

635 Beilinson HA, Glynn RA, Yadavalli AD, Xiao J, Corbett E, Saribasak H, Arya R, Miot C,
636 Bhattacharyya A, Jones JM, Pongubala J, Bassing CH, Schatz DG. 2021. The RAG1 N-terminal region
637 regulates the efficiency and pathways of synapsis for V(D)J recombination. *J EXP MED*
638 **218** doi:10.1084/jem.20210250

639 Bhojwani D, Pei D, Sandlund JT, Jeha S, Ribeiro RC, Rubnitz JE, Raimondi SC, Shurtleff S, Onciu M,
640 Cheng C, Coustan-Smith E, Bowman WP, Howard SC, Metzger ML, Inaba H, Leung W, Evans WE,
641 Campana D, Relling MV, Pui CH. 2012. ETV6-RUNX1-positive childhood acute lymphoblastic leu-
642 kemia: improved outcome with contemporary therapy. *LEUKEMIA* **26**:265-270.
643 doi:10.1038/leu.2011.227

644 Curry JD, Schlissel MS. 2008. RAG2's non-core domain contributes to the ordered regulation of V(D)J
645 recombination. *NUCLEIC ACIDS RES* **36**:5750-5762. doi:10.1093/nar/gkn553

646 Deng Z, Liu H, Liu X. 2015. RAG1-mediated ubiquitylation of histone H3 is required for chromosomal
647 V(D)J recombination. *CELL RES* **25**:181-192. doi:10.1038/cr.2015.1

648 Eastman QM, Leu TM, Schatz DG. 1996. Initiation of V(D)J recombination in vitro obeying the 12/23
649 rule. *NATURE* **380**:85-88. doi:10.1038/380085a0

650 Fatma H, Maurya SK, Siddique HR. 2022. Epigenetic modifications of c-MYC: Role in cancer cell
651 reprogramming, progression and chemoresistance. *SEMIN CANCER BIOL* **83**:166-176.
652 doi:10.1016/j.semancer.2020.11.008

653 Fugmann SD, Lee AI, Shockett PE, Villey IJ, Schatz DG. 2000. The RAG proteins and V(D)J recom-
654 bination: complexes, ends, and transposition. *ANNU REV IMMUNOL* **18**:495-527.
655 doi:10.1146/annurev.immunol.18.1.495

656 Gan T, Wang Y, Liu Y, Schatz DG, Hu J. 2021. RAG2 abolishes RAG1 aggregation to facilitate V(D)J
657 recombination. *CELL REP* **37**:109824. doi:10.1016/j.celrep.2021.109824

658 Gaymes TJ, North PS, Brady N, Hickson ID, Mufti GJ, Rassool FV. 2002. Increased error-prone non
659 homologous DNA end-joining--a proposed mechanism of chromosomal instability in Bloom's syn-
660 drome. *ONCOGENE* **21**:2525-2533. doi:10.1038/sj.onc.1205331

661 Goel S, Bhatia V, Biswas T, Ateeq B. 2022. Epigenetic reprogramming during prostate cancer progres-
662 sion: A perspective from development. *SEMIN CANCER BIOL* **83**:136-151.
663 doi:10.1016/j.semancer.2021.01.009

664 Greaves M. 2018. A causal mechanism for childhood acute lymphoblastic leukaemia. *NAT REV CAN-*
665 *CER* **18**:471-484. doi:10.1038/s41568-018-0015-6

666 Hirokawa S, Chure G, Belliveau NM, Lovely GA, Anaya M, Schatz DG, Baltimore D, Phillips R. 2020.
667 Sequence-dependent dynamics of synthetic and endogenous RSSs in V(D)J recombination. *NUCLEIC*
668 *ACIDS RES* **48**:6726-6739. doi:10.1093/nar/gkaa418

669 Khoshchehreh R, Totonchi M, Carlos RJ, Torres R, Baharvand H, Aicher A, Ebrahimi M, Heeschen C.
670 2019. Epigenetic reprogramming of primary pancreatic cancer cells counteracts their in vivo
671 tumourigenicity. *ONCOGENE* **38**:6226-6239. doi:10.1038/s41388-019-0871-x

672 Kumari R, Roy U, Desai S, Nilavar NM, Van Nieuwenhuijze A, Paranjape A, Radha G, Bawa P,
673 Srivastava M, Nambiar M, Balaji KN, Liston A, Choudhary B, Raghavan SC. 2021. MicroRNA miR-
674 29c regulates RAG1 expression and modulates V(D)J recombination during B cell development.
675 *CELL REP* **36**:109390. doi:10.1016/j.celrep.2021.109390

676 Lewis SM, Agard E, Suh S, Czyzyk L. 1997. Cryptic signals and the fidelity of V(D)J joining. *MOL*
677 *CELL BIOL* **17**:3125-3136. doi:10.1128/MCB.17.6.3125

678 Libri A, Marton T, Deriano L. 2021. The (Lack of) DNA Double-Strand Break Repair Pathway Choice
679 During V(D)J Recombination. *FRONT GENET* **12**:823943. doi:10.3389/fgene.2021.823943

680 Liu C, Zhang Y, Liu CC, Schatz DG. 2022. Structural insights into the evolution of the RAG
681 recombinase. *NAT REV IMMUNOL* **22**:353-370. doi:10.1038/s41577-021-00628-6

682 Liu Y, Subrahmanyam R, Chakraborty T, Sen R, Desiderio S. 2007. A plant homeodomain in RAG-2
683 that binds Hypermethylated lysine 4 of histone H3 is necessary for efficient antigen-receptor-gene
684 rearrangement. *IMMUNITY* **27**:561-571. doi:10.1016/j.immuni.2007.09.005

685 Lopes-Ventura S, Pojo M, Matias AT, Moura MM, Marques IJ, Leite V, Cavaco BM. 2019. The effi-
686 cacy of HRAS and CDK4/6 inhibitors in anaplastic thyroid cancer cell lines. *J ENDOCRINOL IN-*
687 *VEST* **42**:527-540. doi:10.1007/s40618-018-0947-4

688 Lu C, Ward A, Bettridge J, Liu Y, Desiderio S. 2015. An autoregulatory mechanism imposes allosteric
689 control on the V(D)J recombinase by histone H3 methylation. *CELL REP* **10**:29-38.

690 doi:10.1016/j.celrep.2014.12.001

691 Matthews AG, Kuo AJ, Ramón-Maiques S, Han S, Champagne KS, Ivanov D, Gallardo M, Carney D,

692 Cheung P, Ciccone DN, Walter KL, Utz PJ, Shi Y, Kutateladze TG, Yang W, Gozani O, Oettinger MA.

693 2007. RAG2 PHD finger couples histone H3 lysine 4 trimethylation with V(D)J recombination. *NATURE* **450**:1106-1110. doi:10.1038/nature06431

694 Mendes RD, Sarmento LM, Canté-Barrett K, Zuurbier L, Buijs-Gladdines JG, Póvoa V, Smits WK,

695 Abecasis M, Yunes JA, Sonneveld E, Horstmann MA, Pieters R, Barata JT, Meijerink JP. 2014. PTEN

696 microdeletions in T-cell acute lymphoblastic leukemia are caused by illegitimate RAG-mediated re-

697 combination events. *BLOOD* **124**:567-578. doi:10.1182/blood-2014-03-562751

698 Mijušković M, Chou YF, Gigi V, Lindsay CR, Shestova O, Lewis SM, Roth DB. 2015. Off-Target

699 V(D)J Recombination Drives Lymphomagenesis and Is Escalated by Loss of the Rag2 C Terminus.

700 *CELL REP* **12**:1842-1852. doi:10.1016/j.celrep.2015.08.034

701 Mori H, Colman SM, Xiao Z, Ford AM, Healy LE, Donaldson C, Hows JM, Navarrete C, Greaves M.

702 2002. Chromosome translocations and covert leukemic clones are generated during normal fetal de-

703 velopment. *Proc Natl Acad Sci U S A* **99**:8242-8247. doi:10.1073/pnas.112218799

704 Onozawa M, Aplan PD. 2012. Illegitimate V(D)J recombination involving nonantigen receptor loci in

705 lymphoid malignancy. *Genes Chromosomes Cancer* **51**:525-535. doi:10.1002/gcc.21942

706 Papaemmanuil E, Rapado I, Li Y, Potter NE, Wedge DC, Tubio J, Alexandrov LB, Van Loo P, Cooke

707 SL, Marshall J, Martincorena I, Hinton J, Gundem G, van Delft FW, Nik-Zainal S, Jones DR, Rama-

708 krishna M, Titley I, Stebbings L, Leroy C, Menzies A, Gamble J, Robinson B, Mudie L, Raine K,

709 O'Meara S, Teague JW, Butler AP, Cazzaniga G, Biondi A, Zuna J, Kempski H, Muschen M, Ford AM,

710 Stratton MR, Greaves M, Campbell PJ. 2014. RAG-mediated recombination is the predominant driver

711 of oncogenic rearrangement in ETV6-RUNX1 acute lymphoblastic leukemia. *NAT GENET* **46**:116-

712 125. doi:10.1038/ng.2874

713 Raghavan SC, Tong J, Lieber MR. 2006. Hybrid joint formation in human V(D)J recombination re-

714 quires nonhomologous DNA end joining. *DNA Repair (Amst)* **5**:278-285.

715 doi:10.1016/j.dnarep.2005.09.008

716 Rassool FV. 2003. DNA double strand breaks (DSB) and non-homologous end joining (NHEJ) path-

717 ways in human leukemia. *CANCER LETT* **193**:1-9. doi:10.1016/s0304-3835(02)00692-4

718 Rooney S, Chaudhuri J, Alt FW. 2004. The role of the non-homologous end-joining pathway in lym-

719 phocyte development. *IMMUNOL REV* **200**:115-131. doi:10.1111/j.0105-2896.2004.00165.x

720 Sadofsky MJ, Hesse JE, McBlane JF, Gellert M. 1993. Expression and V(D)J recombination activity of

721 mutated RAG-1 proteins. *NUCLEIC ACIDS RES* **21**:5644-5650. doi:10.1093/nar/21.24.5644

722 Schabla NM, Perry GA, Palmer VL, Swanson PC. 2018. VprBP (DCAF1) Regulates RAG1 Expression

723 Independently of Dicer by Mediating RAG1 Degradation. *J IMMUNOL* **201**:930-939.

724 doi:10.4049/jimmunol.1800054

725 Schatz DG, Ji Y. 2011. Recombination centres and the orchestration of V(D)J recombination. *NAT*

726 *REV IMMUNOL* **11**:251-263. doi:10.1038/nri2941

727 Schatz DG, Swanson PC. 2011. V(D)J recombination: mechanisms of initiation. *ANNU REV GENET*

728 **45**:167-202. doi:10.1146/annurev-genet-110410-132552

729 Schjerven H, Ayongaba EF, Aghajanirefah A, McLaughlin J, Cheng D, Geng H, Boyd JR, Eggesbø

730 LM, Lindeman I, Heath JL, Park E, Witte ON, Smale ST, Fritze S, Müschen M. 2017. Genetic analy-

731 sis of Ikaros target genes and tumor suppressor function in BCR-ABL1(+) pre-B ALL. *J EXP MED*

732 **214**:793-814. doi:10.1084/jem.20160049

734 Schlisel MS, Corcoran LM, Baltimore D. 1991. Virus-transformed pre-B cells show ordered activation
735 but not inactivation of immunoglobulin gene rearrangement and transcription. *J EXP MED*
736 **173**:711-720. doi:10.1084/jem.173.3.711

737 Scully R, Panday A, Elango R, Willis NA. 2019. DNA double-strand break repair-pathway choice in
738 somatic mammalian cells. *Nat Rev Mol Cell Biol* **20**:698-714. doi:10.1038/s41580-019-0152-0

739 Sekiguchi JA, Whitlow S, Alt FW. 2001. Increased accumulation of hybrid V(D)J joins in cells ex-
740 pressing truncated versus full-length RAGs. *MOL CELL* **8**:1383-1390. doi:10.1016/s1097-
741 2765(01)00423-3

742 Silver DP, Spanopoulou E, Mulligan RC, Baltimore D. 1993. Dispensable sequence motifs in the
743 RAG-1 and RAG-2 genes for plasmid V(D)J recombination. *Proc Natl Acad Sci U S A* **90**:6100-6104.
744 doi:10.1073/pnas.90.13.6100

745 Suzuki H, Zhou X, Yin J, Lei J, Jiang HY, Suzuki Y, Chan T, Hannon GJ, Mergner WJ, Abraham JM,
746 Et A. 1995. Intragenic mutations of CDKN2B and CDKN2A in primary human esophageal cancers.
747 *HUM MOL GENET* **4**:1883-1887. doi:10.1093/hmg/4.10.1883

748 Talukder SR, Dudley DD, Alt FW, Takahama Y, Akamatsu Y. 2004. Increased frequency of aberrant
749 V(D)J recombination products in core RAG-expressing mice. *NUCLEIC ACIDS RES* **32**:4539-4549.
750 doi:10.1093/nar/gkh778

751 Teng G, Maman Y, Resch W, Kim M, Yamane A, Qian J, Kieffer-Kwon KR, Mandal M, Ji Y, Meffre
752 E, Clark MR, Cowell LG, Casellas R, Schatz DG. 2015. RAG Represents a Widespread Threat to the
753 Lymphocyte Genome. *CELL* **162**:751-765. doi:10.1016/j.cell.2015.07.009

754 Thomson DW, Shahrin NH, Wang P, Wadham C, Shanmuganathan N, Scott HS, Dinger ME, Hughes
755 TP, Schreiber AW, Branford S. 2020. Aberrant RAG-mediated recombination contributes to multiple
756 structural rearrangements in lymphoid blast crisis of chronic myeloid leukemia. *LEUKEMIA* **34**:2051-
757 2063. doi:10.1038/s41375-020-0751-y

758 Wiegmans AP, Ward A, Ivanova E, Duijf P, Adams MN, Najib IM, Van Oosterhout R, Sadowski MC,
759 Kelly G, Morrical SW, O'Byrne K, Lee JS, Richard DJ. 2021. Genome instability and pressure on non-
760 homologous end joining drives chemotherapy resistance via a DNA repair crisis switch in triple nega-
761 tive breast cancer. *NAR Cancer* **3**:b22. doi:10.1093/narcan/zcab022

762 Wong S, Witte ON. 2004. The BCR-ABL story: bench to bedside and back. *ANNU REV IMMUNOL*
763 **22**:247-306. doi:10.1146/annurev.immunol.22.012703.104753

764 Yu X, Zhang H, Yuan M, Zhang P, Wang Y, Zheng M, Lv Z, Odhiambo WO, Li C, Liu C, Ma Y, Ji Y.
765 2019. Identification and characterization of a murine model of BCR-ABL1+ acute B-lymphoblastic
766 leukemia with central nervous system metastasis. *ONCOL REP* **42**:521-532. doi:10.3892/or.2019.7184

767 Zhang L, Reynolds TL, Shan X, Desiderio S. 2011. Coupling of V(D)J recombination to the cell cycle
768 suppresses genomic instability and lymphoid tumorigenesis. *IMMUNITY* **34**:163-174.
769 doi:10.1016/j.immuni.2011.02.003

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790 **Figure legends**

791 **Figure 1. cRAGs give more aggressive leukemia in mice mod-**

792 **el of *BCR-ABL1*⁺ B-ALL**

793 (A) Kaplan-Meier survival curve for *fRAG* (n=8), *cRAG1* (n=6), and *cRAG2*

794 recipient mice. The survival was calculated by Mantel-Cox test

795 (P<0.0425). (B) The spleen weights of *fRAG*, *cRAG1* and *cRAG2* leukemic

796 mice (*fRAG*, n=8, *cRAG1*, n=7, *cRAG2*, n=9; *fRAG* vs *cRAG1*, P<0.0001,

797 *fRAG* vs *cRAG2*, $P=0.1352$). (C) The spleen cell numbers of *fRAG*, *cRAG1*
798 and *cRAG2* leukemic mice (*fRAG*, $n=7$, *cRAG1*, $n=8$, *cRAG2*, $n=13$; *fRAG* vs
799 *cRAG1*, $P=0.0047$, *fRAG* vs *cRAG2*, $P=0.0180$). (D) The percentage of GFP⁺
800 cells in peripheral blood (PB, *fRAG*, $n=6$, *cRAG1*, $n=6$, *cRAG2*, $n=6$; *fRAG* vs
801 *cRAG1*, $P=0.0003$, *fRAG* vs *cRAG2*, $P=0.0035$), bone marrow (BM, *fRAG*,
802 $n=5$, *cRAG1*, $n=5$, *cRAG2*, $n=6$; *fRAG* vs *cRAG1*, $P=0.0341$, *fRAG* vs *cRAG2*,
803 $P=0.0008$), and spleen (SP, *fRAG*, $n=9$, *cRAG1*, $n=4$, *cRAG2*, $n=9$; *fRAG* vs
804 *cRAG1*, $P=0.0016$, *fRAG* vs *cRAG2*, $P<0.0001$) of *fRAG*, *cRAG1* and *cRAG2*
805 leukemic mice. (E) Representative flow cytometry plots of cell cycle arrest of
806 leukemic cells in *fRAG*, *cRAG1* and *cRAG2* mice. In the graph, the percent-
807 ages of each phase of the cell cycle are summarized below (*fRAG*, $n=3$,
808 *cRAG1*, $n=5$, *cRAG2*, $n=5$; G0/G1, *fRAG* vs *cRAG1*, $P=0.0082$, *fRAG* vs
809 *cRAG2*, $P=0.0279$; S, *fRAG* vs *cRAG1*, $P=0.0146$, *fRAG* vs *cRAG2*, $P=0.0370$;
810 G2/M, *fRAG* vs *cRAG1*, $P=0.0134$, *fRAG* vs *cRAG2*, $P=0.1507$). In figures B,
811 C, D and J, error bars represent the mean \pm s.d., P values were calculated by
812 Student's t test and * $P<0.05$, ** $P<0.01$, *** $P<0.001$.

813

814 **Figure 2. The non-core RAG region loss corresponds to a less**
815 **mature cell surface phenotype**

816 (A) Flow cytometry analysis of the B cell markers CD19, BP-1, B220, and
817 CD43 on *BCR-ABL* 1-transformed *fRAG*, *cRAG1* and *cRAG2* leukemic bone
818 marrow cells. The percentages of each phase of the B cell stage are summa-
819 rized in the bottom graph (*fRAG*, $n=9$, *cRAG1*, $n=4$, *cRAG2*, $n=9$; Large-preB,
820 *fRAG* vs *cRAG1*, $P=0.0349$, *fRAG* vs *cRAG2*, $P=0.0017$; Small-pre-B, *fRAG*
821 vs *cRAG1*, $P=0.0141$, *fRAG* vs *cRAG2*, $P=0.0005$). The expression of the cy-
822 toplasmic μ chain was analyzed by flow cytometry. Representative samples
823 are shown in (B), and the results from multiple samples analyzed in inde-
824 pendent experiments are summarized in the bottom graph as the fraction of
825 cells expressing cytoplasmic factors (*fRAG*, $n=11$, *cRAG1*, $n=8$, *cRAG2*, $n=8$;

826 *fRAG* vs *cRAG1*, $P=0.3020$, *fRAG* vs *cRAG2*, $P=0.2267$). Error bars represent
827 the mean \pm s.d., P values were calculated by Student's t test and $^*P < 0.05$,
828 $^{**}P < 0.01$, $^{***}P < 0.001$.

829

830 **Figure 3. The non-core RAG region loss highlights genomic**
831 **DNA damage**

832 (A) Western blotting analysis showed RAG1 and RAG2 expression in
833 GFP⁺CD19⁺ leukemic cells originating from *BCR-ABL1*⁺ B-ALL in different ge-
834 netic backgrounds. (B) Rearrangement substrate retrovirus was transduced
835 into leukemic cells. Flow cytometry was used to analyze the percentage of
836 CD90.1 and hCD4 positive cells, and the percentage populations are shown
837 in the bottom graph (*fRAG*, $n=3$, *cRAG1*, $n=3$, *cRAG2*, $n=3$; *fRAG* vs *cRAG1*,
838 $P=0.0002$, *fRAG* vs *cRAG2*, $P=0.5865$). (C) Flow cytometry analysis of □-
839 H2AX levels in *fRAG*, *cRAG1* and *cRAG2* leukemic cells and the percentage
840 of □-H2AX-positive cell populations shown in the bottom graph (*fRAG*, $n=11$,
841 *cRAG1*, $n=8$, *cRAG2*, $n=8$; *fRAG* vs *cRAG1*, $P=0.0505$, *fRAG* vs *cRAG2*,
842 $P=0.0094$). Error bars represent the mean \pm s.d., P values were calculated by
843 Student's t test and $^*P < 0.05$, $^{**}P < 0.01$, $^{***}P < 0.001$.

844

845 **Figure 4. Structural alterations in *BCR-ABL1*⁺ B lymphocytes**

846 (A-C) Circos plot representation of all off-target recombination detected in the
847 genome-wide analyses of *fRAG*, *cRAG1* and *cRAG2* leukemic cells. See also
848 Table S3.

849

850 **Figure 5. Overview and characteristics of off-target recombi-**
851 **nation in *BCR-ABL1*⁺ B-ALL leukemic cells from *fRAG* and**
852 ***cRAG* mice**

853 (A)Exon-intron distribution profiles of 42 breakpoints generated by 24 SVs.
854 Gene body includes exon (n = 9; 17.3%) and intron (n = 20; 38.5%). Flanking
855 sequence includes 3'UTR (n = 6; 11.5%), 5'UTR (n = 2; 3.8%), promoter (n =
856 6; 11.5%), and downstream (n = 9; 17.3%). (B) the off-target recombination
857 was filtered and verified by whole genomic sequence and PCR respectively. P
858 nucleotides and N nucleotides of RSS to RSS and cRSS to cRSS were calcu-
859 lated in *BCR-ABL1*⁺ B-ALL. (C) Hybrid joint percentage generated by either
860 *fRAG*, *cRAG1* or *cRAG2* in *BCR-ABL1*⁺ B-ALL. It was 0, 100%, and 93% in
861 *fRAG*, *cRAG1* or *cRAG2* leukemic cells respectively. (D)The 24 off-target re-
862 combination genes were retrieved by COSMIC Cancer Gene Census
863 (<http://cancer.sanger.ac.uk/census/>). 0.5 genes and 0.5 cancers gene average
864 sample in *fRAG* leukemic cells; 8 genes and 4.5 cancer genes average sam-
865 ple in *cRAG1* leukemic cells; 3.3 genes and 0.3 cancer genes average sam-
866 ple in *cRAG2* leukemic cells.

867

868 **Figure 6. The non-core regions have effects on RAG binding**
869 **accuracy and recombinat size in *BCR-ABL1*⁺ B lymphocytes**

870 (A) Sequence logos were used to compare the RSS and cRSS in Ig loci and
871 non-Ig loci. Top panel: V(D)J recombination at *Ig* locus; the next three panels:
872 RAG-mediated off-target recombination at non-Ig locus from *fRAG*, *cRAG1*
873 and *cRAG2* leukemic cells respectively. The scale of recombinant size was
874 categorized into three ranges: <1000bp, 1000-10000bp, and >10000bp. The
875 distribution of different recombinant sizes in *fRAG*, *cRAG1*, and *cRAG2* leu-
876 kemic cells was presented in (B), while the number of different recombinant
877 sizes in *fRAG*, *cRAG1*, and *cRAG2* leukemic cells was displayed in (C). (D) A
878 schematic depiction of the mechanism of cRAG-accelerated off-target V(D)J
879 recombination was provided. Both RAG1 and RAG2's non-core region dele-
880 tion decreases RAG binding accuracy in *cRAG1* and *cRAG2*, *BCR-ABL1*⁺ B

881 ALL. Additionally, RAG1's non-core region deletion significantly reduces the
882 size and scale of off-target V(D)J recombination in *cRAG1*, *BCR-ABL1*⁺ B ALL.
883

884 **Supplementary Figure 1. Construction of *fRAG*, *cRAG1* and**

885 *cRAG2*, *BCR-ABL1*⁺ B-ALL mice models using bone marrow

886 transplantation (BMT)

887 In the establishment of *BCR-ABL1*⁺ B-ALL mice models, *fRAG*, *cRAG1* and
888 *cRAG2* recipient mice after syngeneic lethal irradiation were transplanted with
889 corresponding donor bone marrow cells transduced by *MSCV-BCR-BAL1-*
890 *IRES-GFP* or *MSCV-GFP* retroviral supernatants. (A) Gross appearance of
891 the spleen in *fRAG*, *cRAG1*, and *cRAG2* leukemic mice and corresponding
892 control mice. (B) Peripheral blood (PB) and bone marrow (BM) lymphoblastic
893 cells were stained by Wright-Giemsa. The scale bars represent 10 μ m. (C)
894 Bone marrow cells from *fRAG*, *cRAG1* and *cRAG2* leukemic mice were exam-
895 ined by flow cytometry for the expression of GFP and CD19.

896

897 **Supplementary Figure 2. Biological behavior of leukemia in**
898 ***fRAG*, *cRAG1* and *cRAG2* *BCR-ABL1*⁺ B-ALL mouse model**

899 (A) *BCR-ABL1* expressions in GFP+CD19+ leukemic cells were determined
900 by western. GAPDH protein was used as a loading control. The K562 and
901 293T cell lines served as the positive control and negative controls, respec-
902 tively. (B) Survival of secondary transplant setting. Leukemia cells from prima-
903 ry recipients were recovered from the spleens and purified by GFP⁺ cell sort-
904 ing. A total of 10⁵, 10⁴ and 10³ GFP⁺ leukemia cells originating from *fRAG*,
905 *cRAG1* or *cRAG2* *BCR-ABL1*⁺ B-ALL were transplanted into correspondingly
906 nonirradiated immunocompetent syngenic recipient mice (*fRAG*, n=3,
907 *cRAG1*, n=3, *cRAG2*, n=3; $P < 0.0023-0.0299$ by Mantel-Cox test). (C) Apop-

908 tosis was measured by flow cytometry (Annexin V and 7-AAD). The Annexin
909 V+ and 7-AAD- cells were defined as early apoptotic cells, while Annexin V+
910 and 7-AAD+ cells were late apoptotic cells (*fRAG*, n=11, *cRAG1*, n=6, *cRAG2*,
911 n=9; early apoptotic cells: *fRAG* vs *cRAG1*, $P=0.0002$, *fRAG* vs *cRAG2*,
912 $P=0.0026$; late apoptotic cells, *fRAG* vs *cRAG1*, $P=0.0026$, *fRAG* vs *cRAG2*,
913 $P<0.0001$). Error bars represent the mean \pm s.d. P values were calculated by
914 Student's t test and $^*P < 0.05$, $^{**}P < 0.01$, $^{***}P < 0.001$, $^{****}P < 0.0001$.

915

916 **Supplementary Figure 3. The genetic pathways in *fRAG*,**
917 ***cRAG1*, and *cRAG2 BCR-ABL1*⁺ lymphocytes.**

918 mRNA sequence was performed in GFP and CD19 double positive cells. (A)
919 Principal Component Analysis (PCA) showing the distribution of differentially
920 expressed samples of *fRAG*, *cRAG1*, and *cRAG2*, *BCR-ABL1*⁺ B-ALL. (B)
921 Heatmap of representative different expressed genes related to non-
922 homologous end repair. The scale ranges from minimum (blue) to medium
923 (yellow) to maximum (red) relative expression. (C) Volcano plot depicting log2
924 (fold change) (x-axis) and $-\log_{10}$ (p value) (y-axis) for differentially expressed
925 genes ($FC > 2$, $p < 0.05$) in GFP⁺ CD19⁺ leukemic cells sorted from *fRAG* and
926 *cRAG1*, *BCR-ABL1*⁺ B-ALL mice; upregulated (red) and downregulated (blue).
927 n = 3 per group. (D) The Kyoto Encyclopedia of Genes and Genomes (KEGG)
928 analysis was conducted to identify the differentially expressed genes in
929 *cRAG1 BCR-ABL1*⁺ B-ALL. The top 15 pathways that exhibited significant dif-
930 ferences were listed in this paragraph. The cell proliferation, apoptosis, and
931 differentiation related pathway were highlighted in red squares. (E) Volcano
932 plot depicting log2 (fold change) (x-axis) and $-\log_{10}$ (p value) (y-axis) for dif-
933 ferentially expressed genes ($FC > 2$, $p < 0.05$) in GFP⁺ CD19⁺ leukemic cells
934 sorted from *fRAG* and *cRAG2*, *BCR-ABL1*⁺ B-ALL mice; upregulated (red)
935 and downregulated (blue). n = 3 per group. (D) KEGG analysis was conduct-
936 ed to identify the differentially expressed genes in *cRAG2 BCR-ABL1*⁺ ALL.

937 The top 15 pathways that exhibited significant differences were listed in this
938 paragraph. The cell proliferation, apoptosis, and differentiation related path-
939 way were highlighted in red squares.

940

941 **Supplementary Figure 4. VDJ recombination in leukemic cells
942 with different genetic backgrounds**

943 (A) VDJ recombination was analyzed by genomic PCR in GFP⁺CD19⁺ cell's
944 DNA from *fRAG*, *cRAG1* or *cRAG2* leukemic cells. Genomic DNA from RAG1-
945 /- bone marrow cells and WT spleen was used as negative and positive con-
946 trol respectively.

947

948 **Supplementary Figure 5. RAG protein expression levels and
949 schematic diagram of the recombinant substrate vector**

950 (A) RAG1/cRAG1 and RAG2 protein levels were compared by western blot
951 and ImageJ software in *fRAG1* and *cRAG1*, B-ALL cells. Error bars represent
952 the mean \pm s.d. The *P* value was calculated by t test, ****P*<0.001, ns *P*>0.05.

953 (B) The B-ALL cells were subjected to transformation with the recombinant
954 substrate vector. In the event of expression of RAG recombinase in the leu-
955 kemic cells, the RSS sequences flanking CD90.1 would be cleaved by RAG,
956 thereby facilitating the positioning and expression of both CD90.1 and hCD4.
957 In the absence of RAG expression, only hCD4 would be expressed.

958

959 **Supplementary Figure 6. The criteria for identifying off-target
960 recombination.**

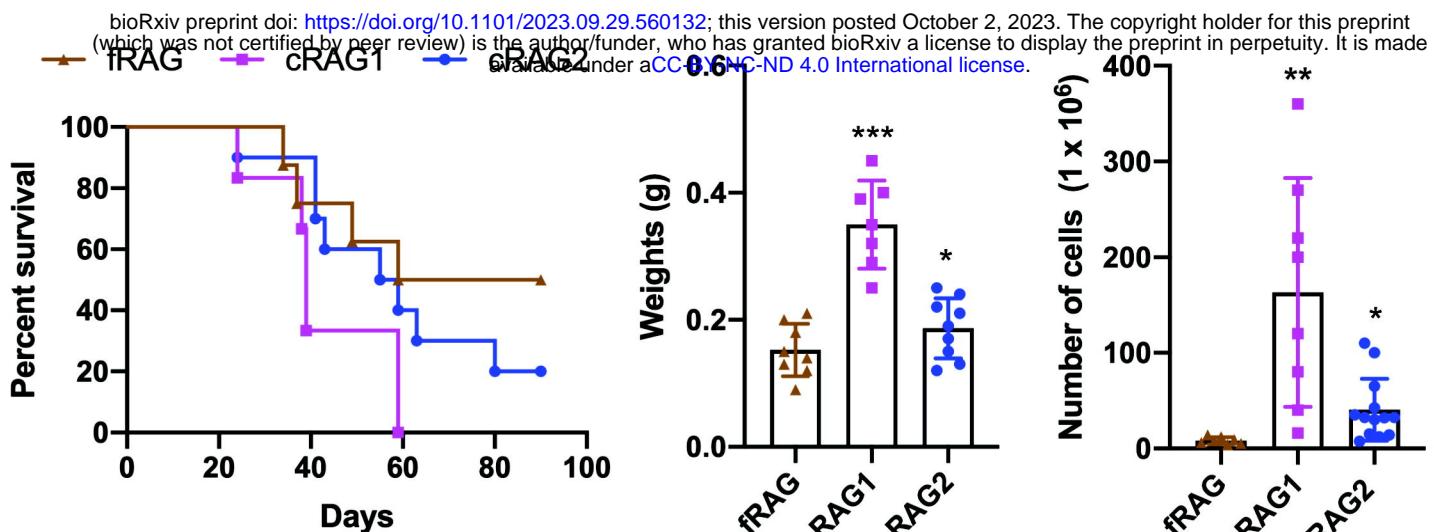
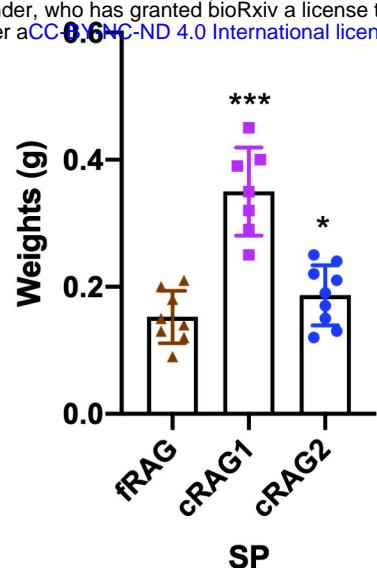
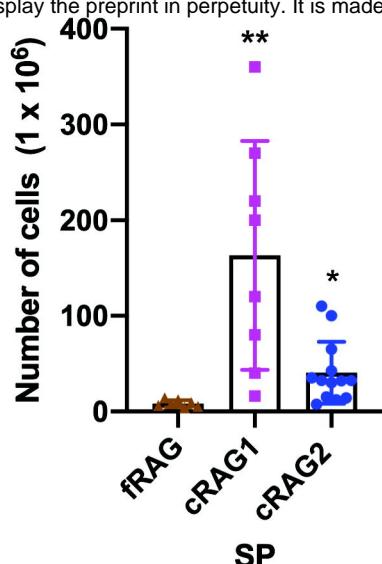
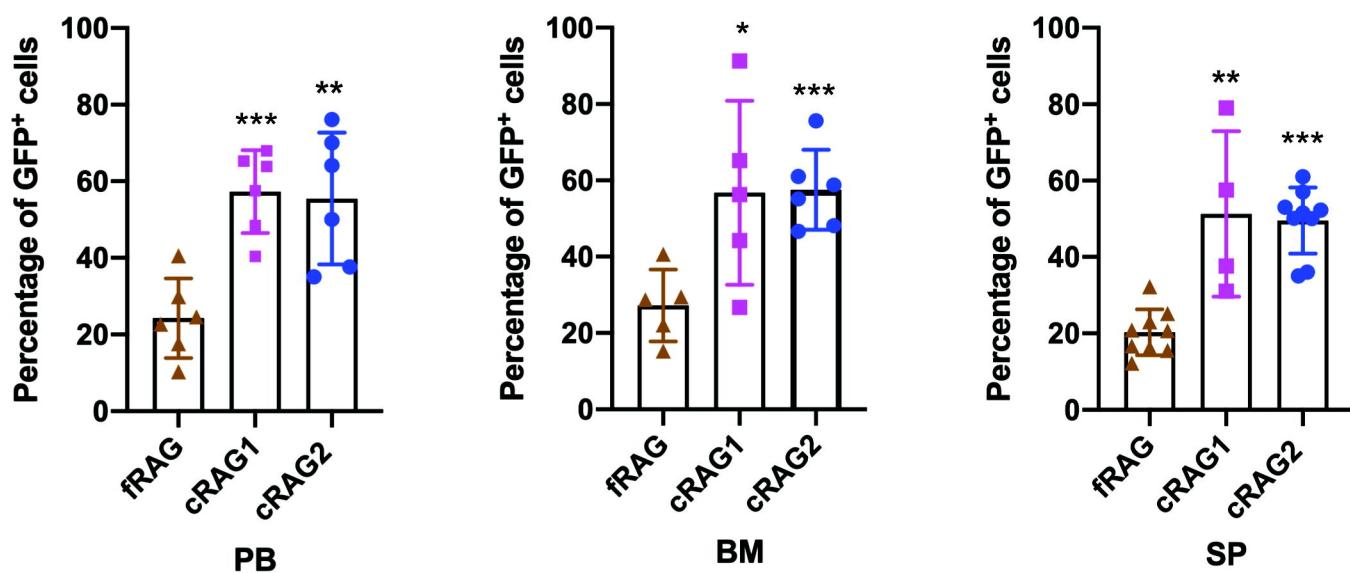
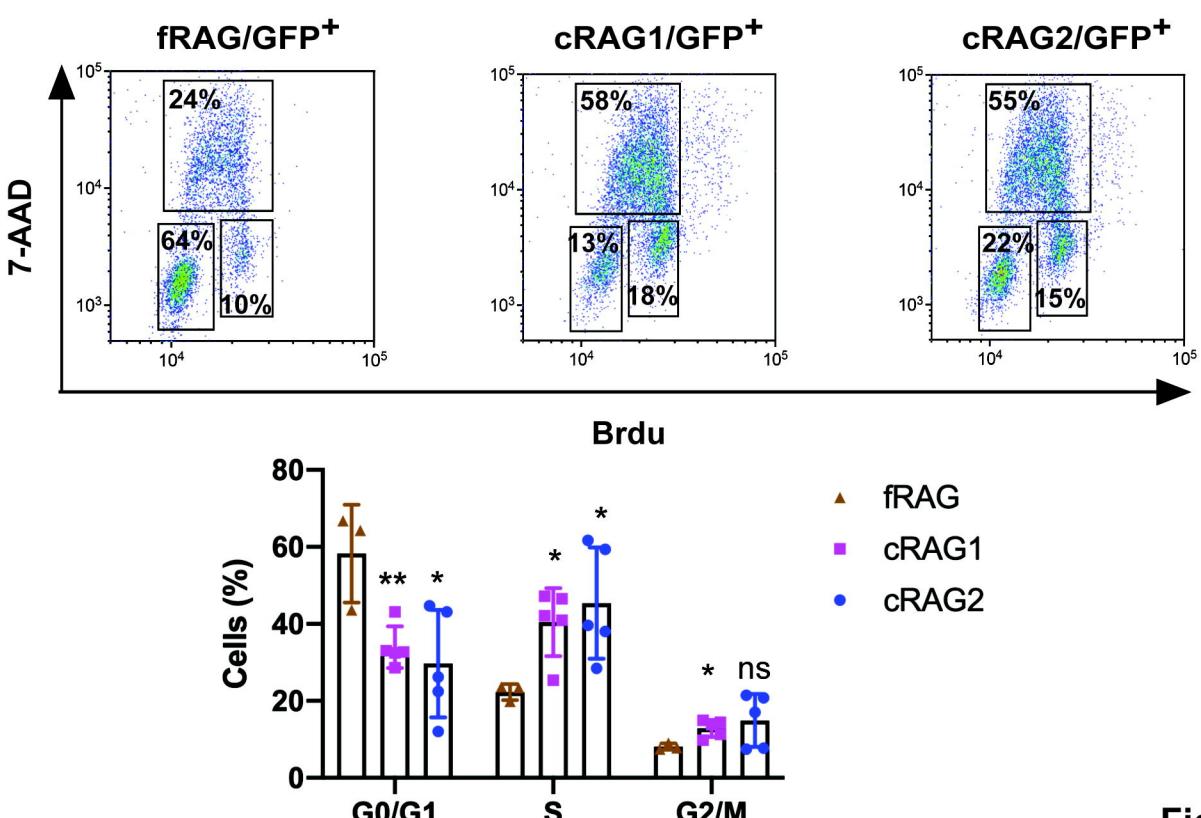
961 We adopted the criteria used in previous studies. First, a CAC must exist to
962 the right (or GTG to the left) of both breakpoints, which includes the four RAG-
963 mediated DNA fragmentation cases mentioned above, and second, it must

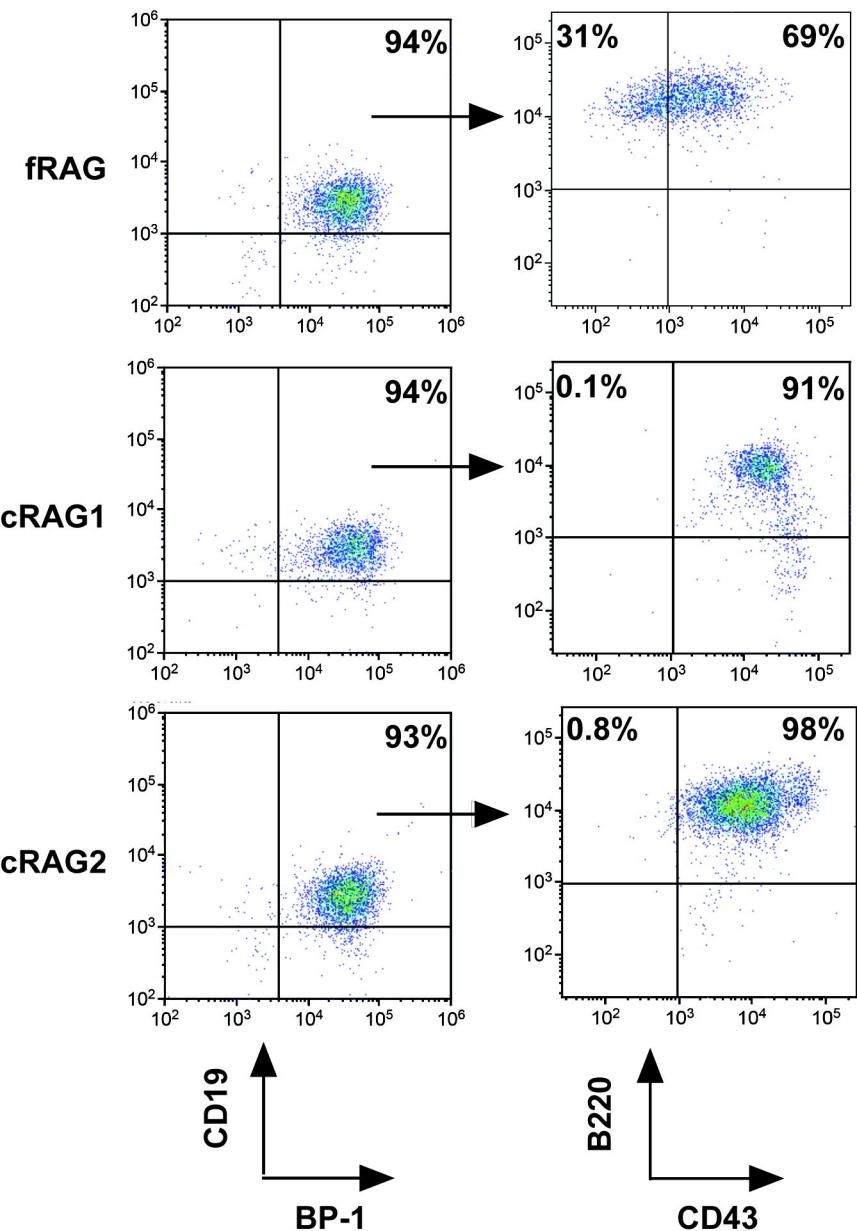
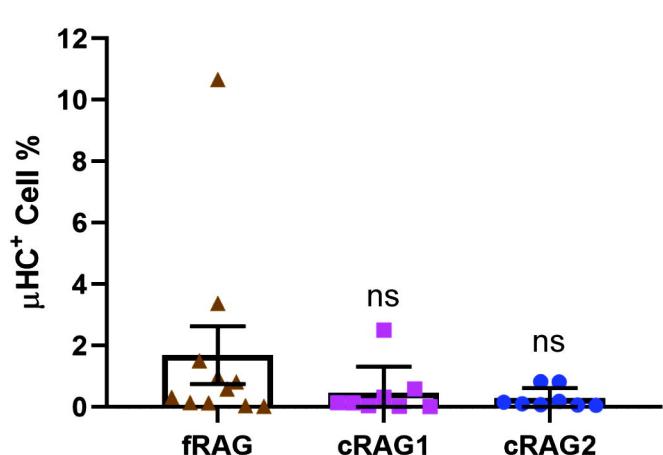
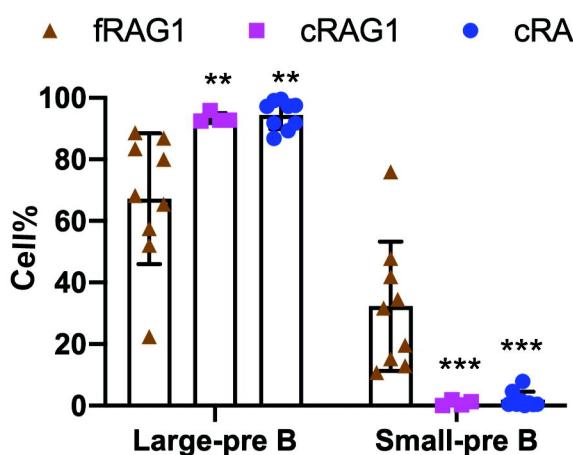
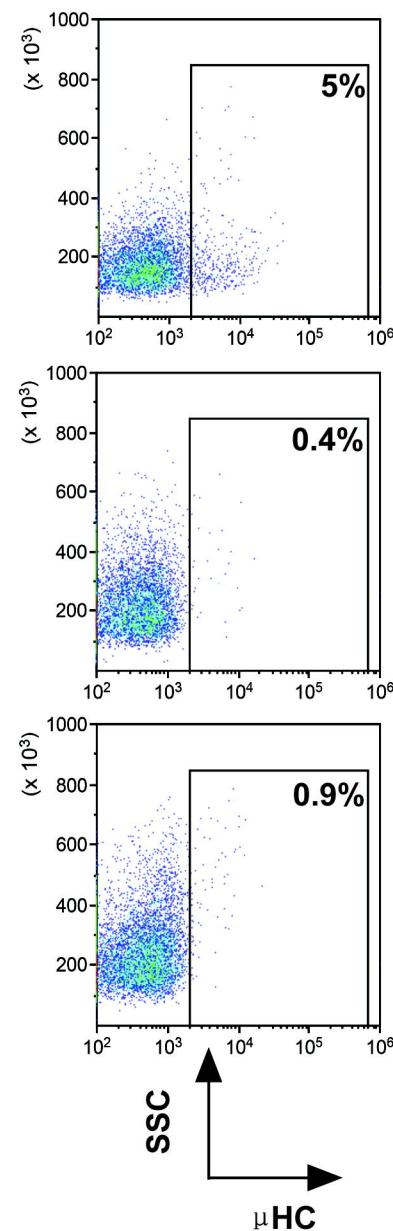
964 occur within a specified distance from the breakpoint and the CAC distance-
965 to-breakpoint value was set at 21 bp.

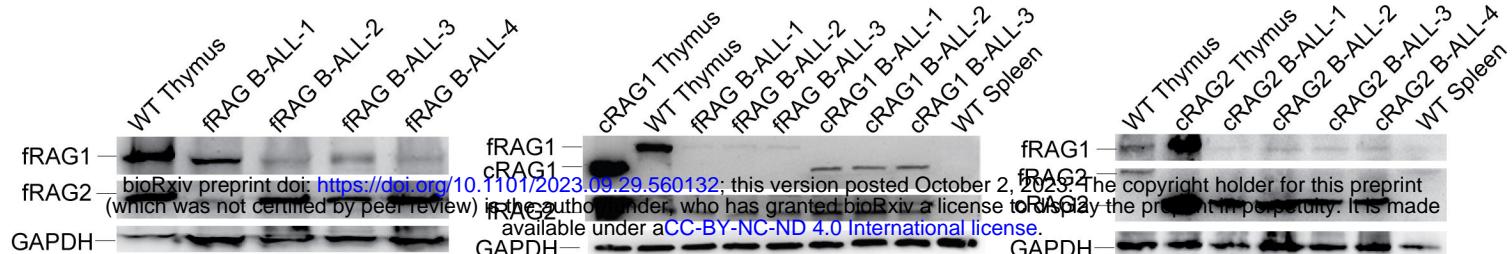
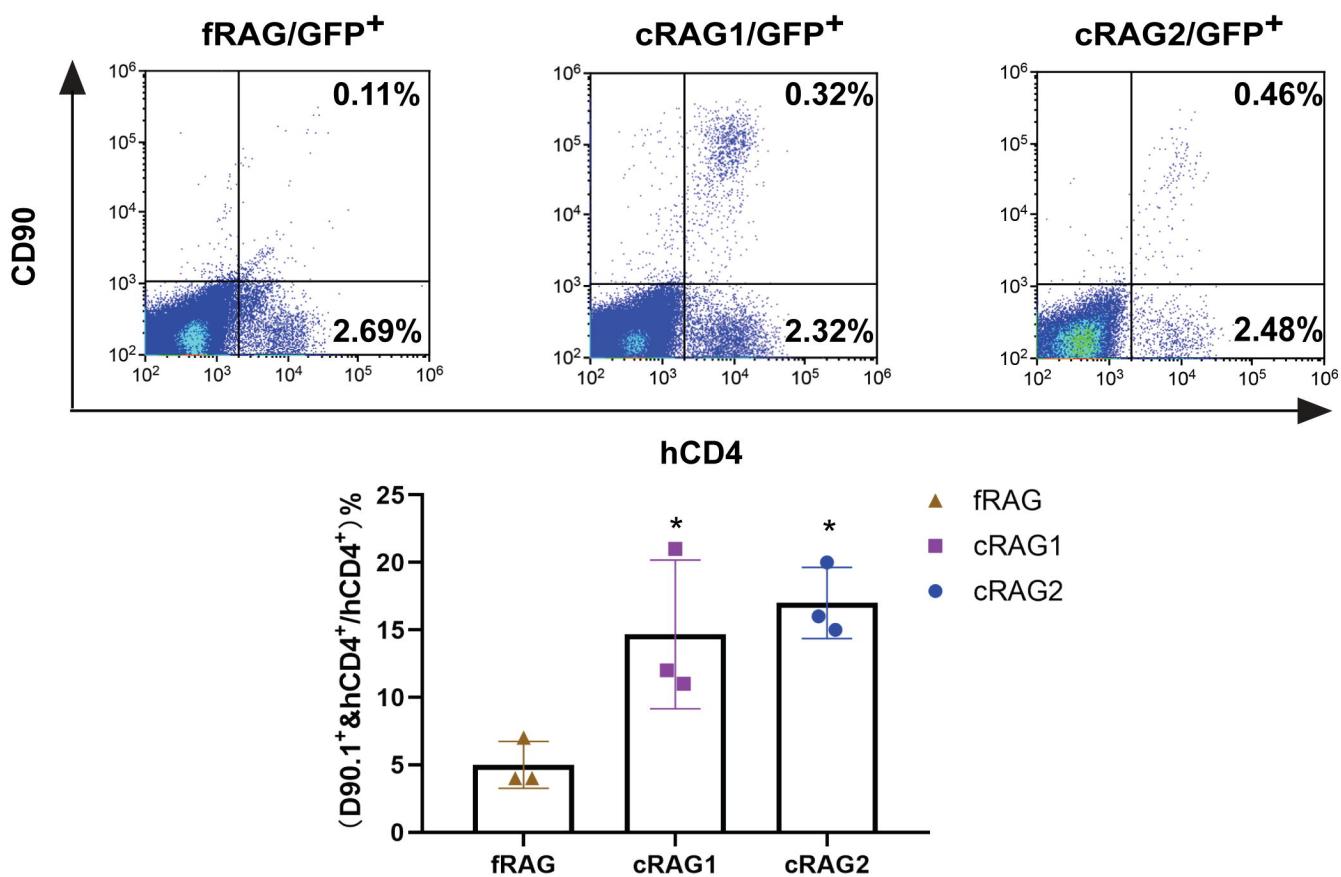
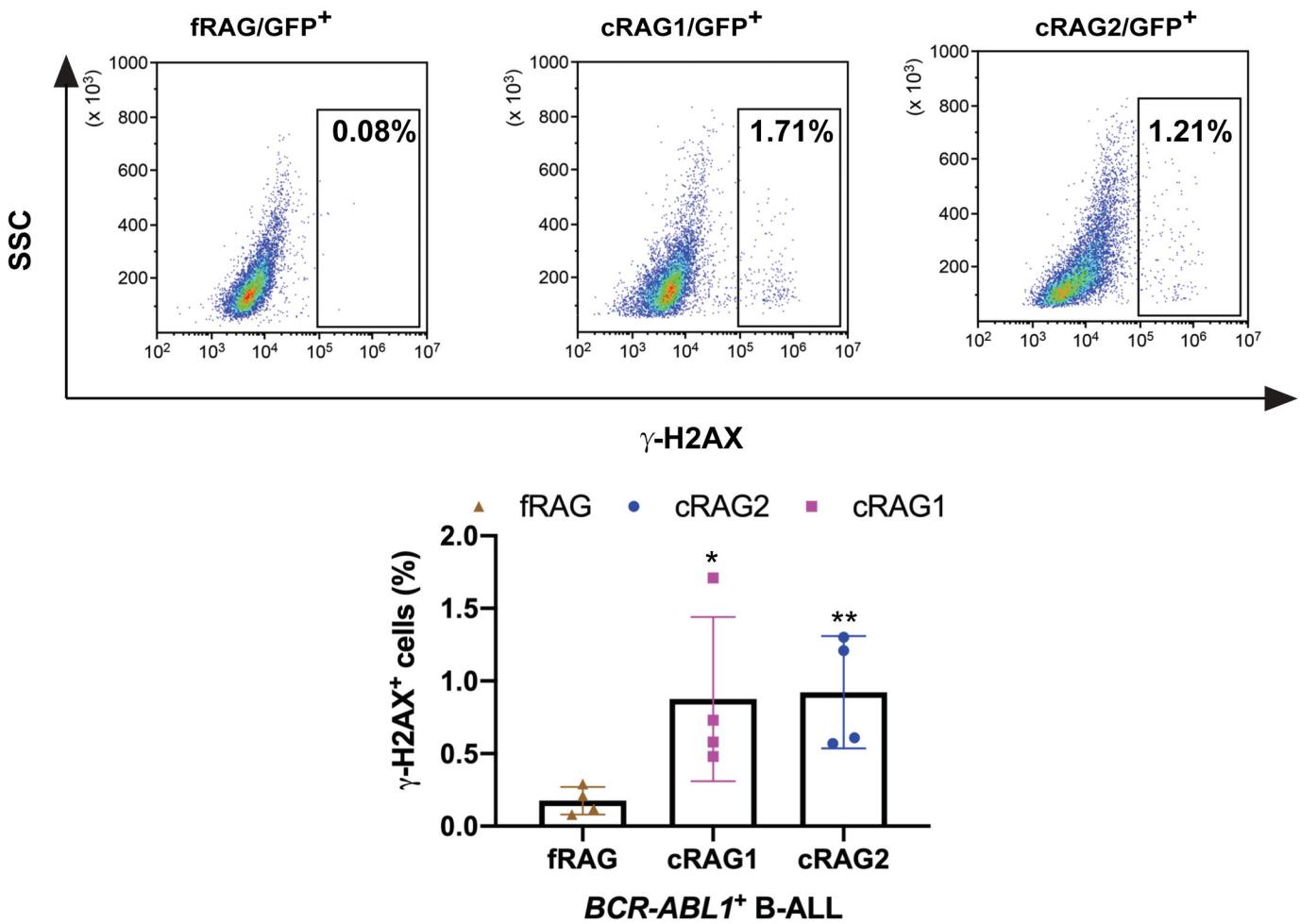
966

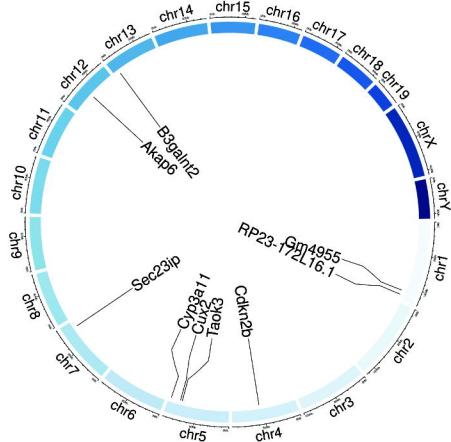
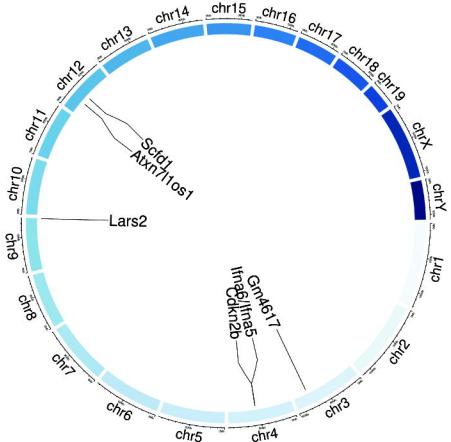
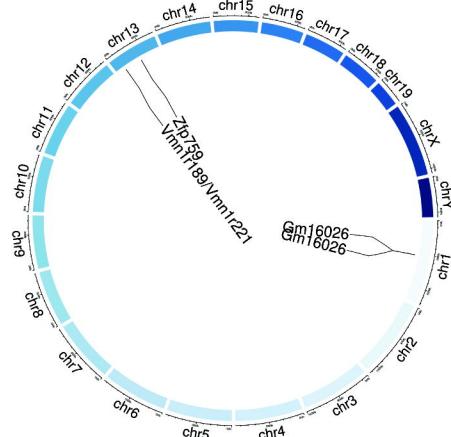
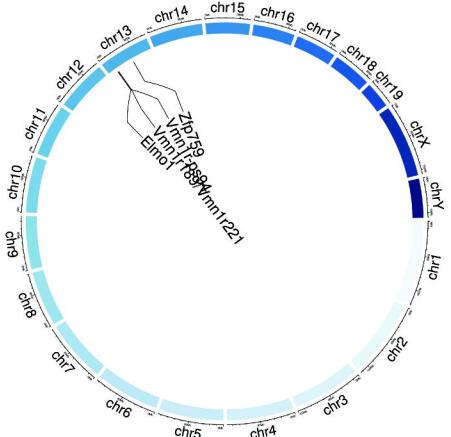
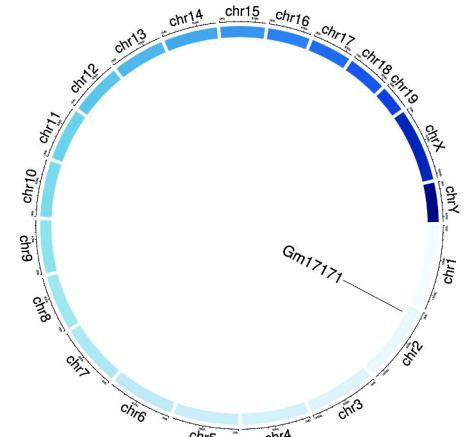
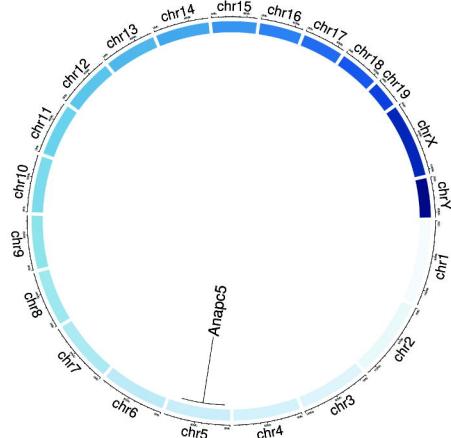
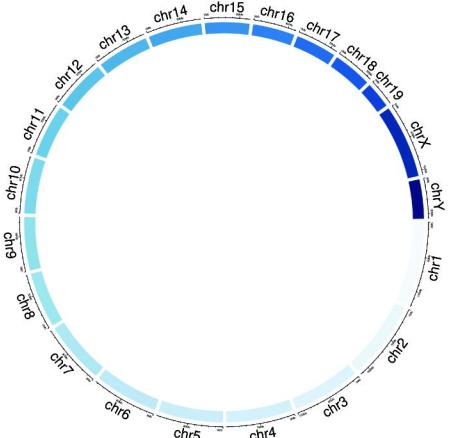
967 **Supplementary Figure 7. *CDKN2B* and *CDK6* mRNA levels in**
968 **leukemic cells.**

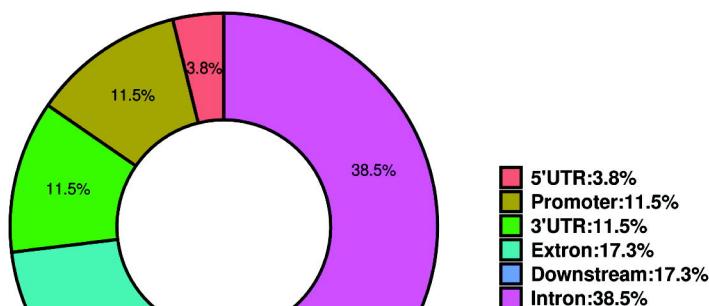
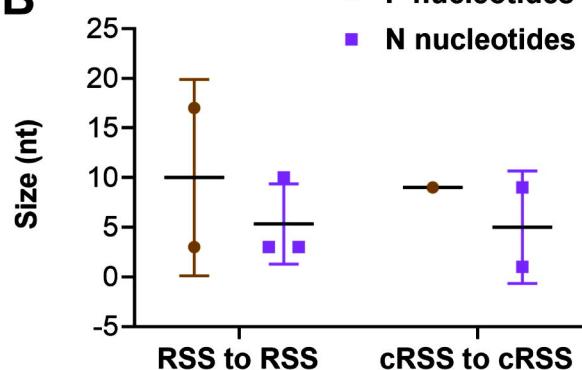
969 (AB) Leukemic cells were harvested from *fRAG* and *cRAG1* B-ALL mice with
970 *CDKN2B* deletion. *CDKN2B* and *CDK6* were determined by mRNA sequence.
971 Error bars represent the mean \pm s.d., *fRAG* B-ALL mice, n = 3; *cRAG1* B-ALL
972 mice n=3. **P* < 0.05, ***P* < 0.01






973

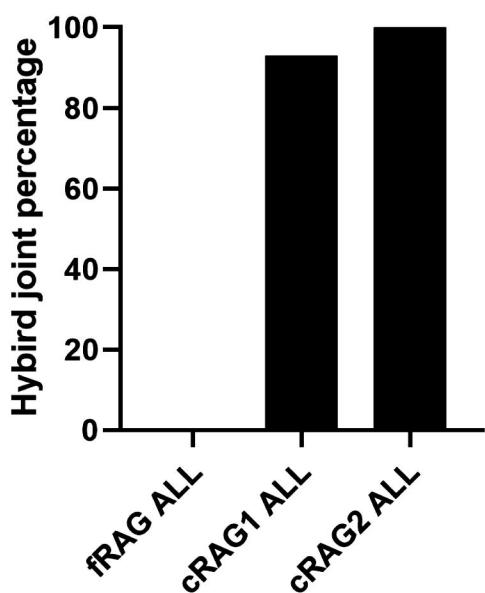
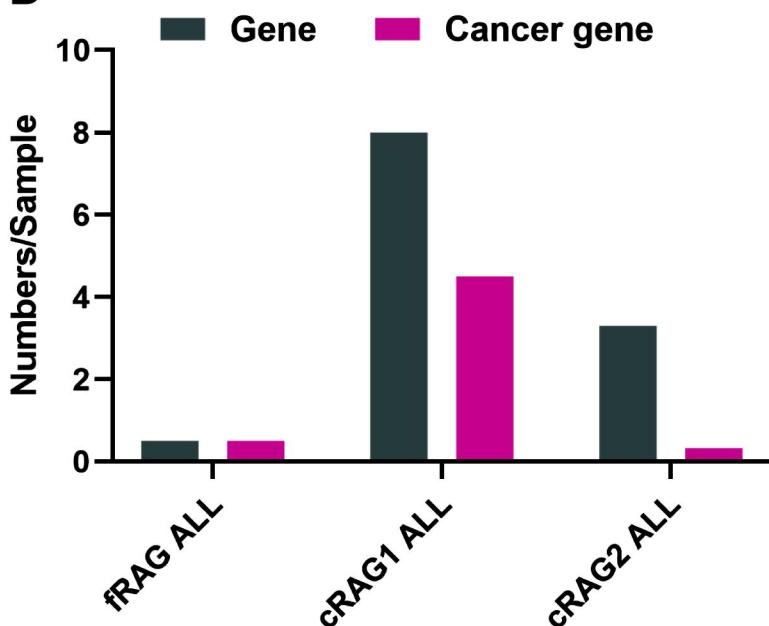




974 **Supplementary Figure 8. The relationship of RAG1 mRNA lev-**
975 **els and survival of pediatric acute lymphoid leukemia.**




976 The relationship of RAG1 mRNA levels and survival of pediatric acute lym-
977 phoid leukemia was research by cBioPortal (<https://www.cbioportal.org/>).
978 *RAG1* mRNA levels were studied in pediatric patients with ALL at the time of
979 diagnosis. The patients were separated into two groups based on mRNA lev-
980 els of *RAG1* (mRNA expression z score relative to diploid sample, RNA se-
981 quence RPKM, *RAG1* upregulated group, n=8; *RAG1* unaltered group,
982 n=146). The *P* values were calculated from the log-rank test, *P*=0.0732.








983



984

A**B****C****D****E****Figure 1**



A**GFP⁺****B****GFP⁺****Figure 2**

A**B****C****Figure 3**

A**cRAG1 B-ALL-3F****cRAG1 B-ALL-6F****B****cRAG2 B-ALL-3F****cRAG2 B-ALL-6F****cRAG2 B-ALL-10F****C****fRAG B-ALL-1F****fRAG B-ALL-11F****Figure 4**

A**B**

	RSS to RSS	cRSS to cRSS
P nucleotides (mean length)	7	9
Incidence	3/6	1/25
N nucleotides (mean length)	5	5
Incidence	3/6	2/25

C**D****Figure 5**

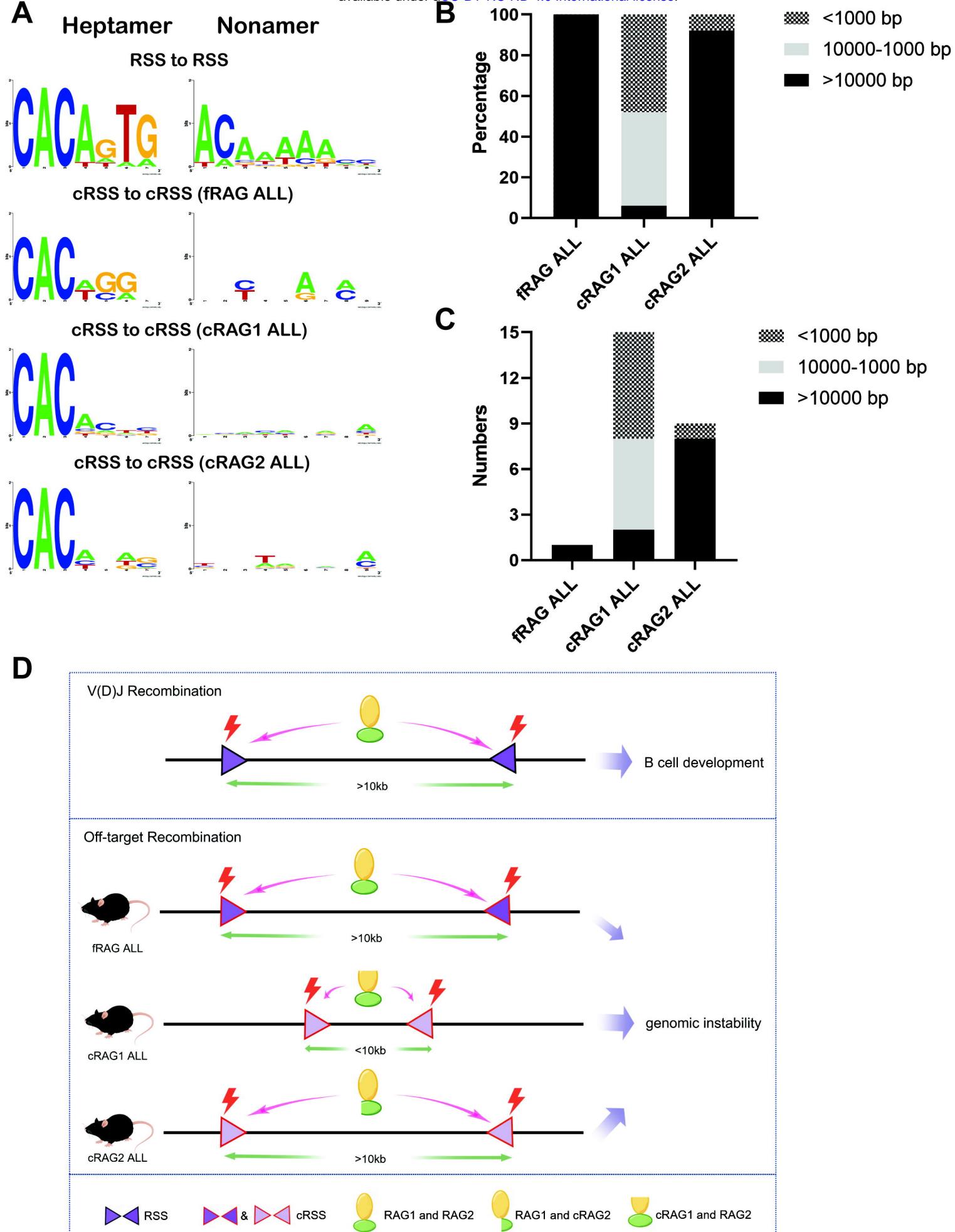


Figure 6