

1 **Effects of Developmental Lead and Phthalate Exposures on DNA Methylation in Adult Mouse**
2 **Blood, Brain, and Liver Identifies Tissue- and Sex-Specific Changes with Implications for Genetic**
3 **Imprinting**

4

5 **Rachel K. Morgan^{1,†}, Kai Wang^{2,†}, Laurie K. Svoboda¹, Christine A. Rygiel¹, Claudia Lalancette³,**
6 **Raymond Cavalcante³, Marissa S. Bartolomei⁴, Rexxi Prasasya⁴, Kari Neier¹, Bambarendage P.U.**
7 **Perera¹, Tamara R Jones¹, Justin A. Colacino^{1,5}, Maureen A. Sartor^{2,6}, Dana C. Dolinoy^{1,5*}**

8 ¹Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann
9 Arbor, MI 48109, USA

10 ²Department of Computational Medicine and Bioinformatics, School of Medicine, University of
11 Michigan, Ann Arbor, MI 48109, USA

12 ³Epigenomics Core, School of Medicine, University of Michigan, Ann Arbor, MI 48109, USA

13 ⁴Department of Cell and Developmental Biology, Center of Excellence in Environmental Toxicology,
14 Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA

15 ⁵Department of Nutritional Sciences, School of Public Health, University of Michigan, Ann Arbor, MI
16 48109, USA

17 ⁶Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, MI 48109,
18 USA

19

20 [†]These authors contributed equally

21 ***Correspondence:**

22 Dana C. Dolinoy
23 ddolinoy@umich.edu
24 6671 SPH I
25 1415 Washington Heights
26 Ann Arbor, MI 48109-2029

27
28 **Conflicts of Interest**

29 *The authors declare they have nothing to disclose.*

30

31 **Abstract**

32
33 **Background:** Maternal exposure to environmental chemicals can cause adverse health effects in
34 offspring. Mounting evidence supports that these effects are influenced, at least in part, by epigenetic
35 modifications.

36 **Objective:** We examined tissue- and sex-specific changes in DNA methylation (DNAm) associated with
37 human-relevant lead (Pb) and di(2-ethylhexyl) phthalate (DEHP) exposure during perinatal development
38 in cerebral cortex, blood, and liver.

39 **Methods:** Female mice were exposed to human relevant doses of either Pb (32ppm) via drinking water or
40 DEHP (5 mg/kg-day) via chow for two weeks prior to mating through offspring weaning. Whole genome
41 bisulfite sequencing (WGBS) was utilized to examine DNAm changes in offspring cortex, blood, and
42 liver at 5 months of age. Metilene and methylSig were used to identify differentially methylated regions
43 (DMRs). Annotatr and Chipenrich were used for genomic annotations and geneset enrichment tests of
44 DMRs, respectively.

45 **Results:** The cortex contained the majority of DMRs associated with Pb (69%) and DEHP (58%)
46 exposure. The cortex also contained the greatest degree of overlap in DMR signatures between sexes (n =
47 17 and 14 DMRs with Pb and DEHP exposure, respectively) and exposure types (n = 79 and 47 DMRs in
48 males and females, respectively). In all tissues, detected DMRs were preferentially found at genomic
49 regions associated with gene expression regulation (e.g., CpG islands and shores, 5' UTRs, promoters,
50 and exons). An analysis of GO terms associated with DMR-containing genes identified imprinted genes
51 to be impacted by both Pb and DEHP exposure. Of these, *Gnas* and *Grb10* contained DMRs across
52 tissues, sexes, and exposures. DMRs were enriched in the imprinting control regions (ICRs) of *Gnas* and
53 *Grb10*, with 15 and 17 ICR-located DMRs across cortex, blood, and liver in each gene, respectively. The
54 ICRs were also the location of DMRs replicated across target and surrogate tissues, suggesting epigenetic
55 changes these regions may be potentially viable biomarkers.

56 **Conclusions:** We observed Pb- and DEHP-specific DNAm changes in cortex, blood, and liver, and the
57 greatest degree of overlap in DMR signatures was seen between exposures followed by sex and tissue
58 type. DNAm at imprinted control regions was altered by both Pb and DEHP, highlighting the
59 susceptibility of genomic imprinting to these exposures during the perinatal window of development.

60

61 **Introduction**

62 The health impacts of toxicant exposures during early life, such as lead (Pb) and phthalates (e.g., di(2-
63 ethylhexyl) phthalate, DEHP) can be framed within the Developmental Origins of Health and Disease
64 (DOHaD) hypothesis.¹ This hypothesis postulates that exposures during sensitive periods of development
65 alter an organism's normal developmental programming, triggering a myriad of effects on growth and
66 maturation that can persist into adulthood. Developmental exposures can impact gene expression long-
67 term by altering the epigenome, which can have significant repercussions for health and disease.²
68 Epigenetics refers to mitotically heritable and potentially reversible mechanisms modulating gene
69 expression that are independent of the DNA sequence,³ with the most abundantly studied mechanism
70 being DNA methylation (DNAm). DNAm entails the addition of a methyl group to the fifth position of
71 cytosine base adjacent to a guanine (CpG, in the majority of cases), generating what are commonly
72 referred to as methylated cytosines (5mC), by DNA methyltransferases (DNMTs).⁴ Increased levels of
73 5mC within promoters and enhancers are typically associated with decreased transcription factor binding
74 and subsequent decreases in gene expression.⁵ Patterns of 5mC undergo waves of reprogramming (i.e.,
75 global demethylation and remethylation) during critical windows of *in utero* development, making these
76 periods susceptible targets of developmental exposures.⁶

77 Tight epigenetic regulation of imprinted genes is critical for early growth and development.^{7,8} Imprinted
78 genes are expressed in a mono-allelic fashion, determined in a parent-of-origin manner. For instance, a

79 paternally expressed gene will contain an active paternal allele and an inactive (e.g., methylated and thus
80 imprinted) maternal allele. The DNAm patterns of imprinted genes expressed at specific developmental
81 stages are important during growth and early development.^{9,10} Once DNAm patterns have been
82 established for these genes, often within imprinting control regions (ICRs) in gametes, they are
83 maintained through fertilization and extensive epigenetic reprogramming events.^{11,12} The specificity
84 required to maintain patterns of genomic imprinting and re-establish DNAm in a parent-of-origin manner
85 following waves of global demethylation make gestational periods particularly sensitive to environmental
86 exposures. Environmentally-induced disruption of epigenetic processes during early development have
87 been associated with changes in imprinted gene regulation and adverse health outcomes.^{13,14}

88 A variety of environmental exposures, including Pb and DEHP, have been associated with altered patterns
89 of DNAm in humans and mice.^{15,16} Pb is a known neurotoxicant, with developmental exposures linked to
90 neurological damage and cognition deficits in early life, as well as with increased risk of degenerative
91 neurological disease later in life.¹⁵ Although blood lead levels (BLLs) within the U.S. population have
92 fallen dramatically, nearly 94% between 1976-1980 and 2015-2016, there is still concern regarding
93 chronic low-levels of Pb exposure.¹⁷ This is especially true for early life exposures, as the developing
94 brain and other organ systems are particularly susceptible to the toxic effects of Pb.¹⁸ Common sources of
95 Pb exposure continue to be contaminated drinking water from lead pipes as well as dust and chipping
96 paint in older homes.^{19,20} Exposure to DEHP, a phthalate commonly used as a plasticizer, has become
97 ubiquitous, with most U.S. adults having detectable levels of DEHP metabolites in their urine.²¹ DEHP is
98 a known endocrine disruptor, with developmental exposures associated with altered metabolic
99 function.^{16,22} Common routes of DEHP exposure include personal care products, food and beverage
100 containers, and medical equipment, making gestational and developmental exposures common.²³ Despite
101 great progress over the years, gaps in knowledge remain as to whether perinatal Pb or DEHP exposure-
102 mediated changes in DNAm have implications for long-term disease risk, whether there are sex-specific
103 effects, and if these changes are conserved among tissues.

104 As a part of the Toxicant Exposures and Responses by Genomic and Epigenomic Regulators of
105 Transcription (TaRGET II) Consortium,²⁴ we utilized a mouse model of human-relevant perinatal Pb and
106 DEHP exposures to investigate genome-wide tissue- and sex-specific associations with changes in
107 DNAm. Whole genome bisulfite sequencing (WGBS) quantified DNAm changes in blood (an easily
108 accessible and therefore considered a “surrogate” tissue) as well as cortex and liver (two tissues often
109 difficult to access, representing “target” tissues) collected from male and female 5-month-old mice, with
110 and without perinatal Pb or DEHP exposures. We assessed whether perinatal Pb- or DEHP-exposed mice
111 displayed changes in DNAm across the genome and identified imprinted genes as a relevant gene class
112 common to these two exposures. We additionally tested whether DNAm patterns in the surrogate tissue
113 (blood) correlated with those seen in target tissues, to determine if blood provides a viable signature for
114 Pb- or DEHP-induced epigenetic changes in these two tissues, and how these patterns differed between
115 males and females.

116 **Methods**

117 *Animal exposure paradigm and tissue collection*

118 Wild-type non-agouti *a/a* mice were obtained from an over 230-generation colony of viable yellow agouti
119 (*A^{yy}*) mice, which are genetically invariant and 93% identical to the C57BL/6J strain.²⁵ Virgin *a/a* females
120 (6-8 weeks old) were randomly assigned to control, Pb-acetate water, or DEHP-chow two weeks prior to
121 mating with virgin *a/a* males (7-9 weeks old). Pb- and DEHP-exposure were conducted *ad libitum* via
122 distilled drinking water mixed with Pb-acetate or 7% corn oil chow mixed with DEHP. The Pb-acetate
123 concentration was set as 32ppm to model human relevant perinatal exposure, where we have previously
124 measured murine maternal BLLs around 16-60 ug/dL (mean: 32.1 ug/dL).²⁶ DEHP was dissolved in corn

125 oil from Envigo to create a customized stock solution, to produce 7% corn oil chow for experimentation.
126 The DEHP exposure level was selected based on a target maternal dose of 5 mg/kg-day and assumes that
127 a pregnant and nursing female mice weighs approximately 25 g and ingests roughly 5 g of chow per day.
128 This target dose was selected as previous literature demonstrates obesity-related phenotypes in offspring
129 exposed to 5 mg/kg-day DEHP during early development,^{22,27} and this dosage falls within the range of
130 exposures previously documented in humans.²⁸ All animals were maintained on a phytoestrogen-free
131 modified AIN-93 G diet (Td.95092, 7% corn oil diet, Envigo) while housed in polycarbonate-free cages.
132 Animal exposure to Pb or DEHP continued through gestation and lactation until weaning at post-natal day
133 21 (PND21) when pups were switched to either Pb-free drinking water or DEHP-free chow. Perinatal
134 exposure, thus, occurred in offspring throughout fetal development and the first three weeks after birth.
135 Offspring were maintained until 5 months of age. This study included n ≥ 5 males and n ≥ 5 females for
136 Pb-exposed, DEHP-exposed, and control groups, each containing 1 male and 1 female mouse per litter;
137 and a final samples size of n = 108 once tissues (i.e., cortex, blood, and liver) were collected. All animals
138 and collected tissues were included in subsequent analyses, with no exclusions necessary. Prior to
139 euthanasia, mice were fasted for 4 hours during the light cycle beginning in the morning, with euthanasia
140 and tissue collection occurring in the afternoon. Immediately following mouse euthanasia with CO₂
141 asphyxiation, blood was collected through cardiac puncture, followed by dissection of the cortex and
142 liver, which were immediately flash frozen in liquid nitrogen and stored at -80°C. Animal collection was
143 standardized to between 1pm to 3pm and collection order was randomized daily. For each mouse, one
144 investigator (KN) administered the treatment and was therefore aware of the treatment group allocation.
145 All investigators completing subsequent molecular assays were blinded to treatment group, until
146 treatment group was analyzed during bioinformatic analyses. All mouse procedures were approved by the
147 University of Michigan Institutional Animal Care and Use Committee (IACUC), and animals were treated
148 humanely and with respect. All experiments were conducted according to experimental procedures
149 outlined by the NIEHS TaRGET II Consortium.²⁴ In drafting this manuscript, ARRIVE reporting
150 guidelines were used to ensure quality and transparency of reported work.²⁹

151 *DNA extraction and whole genome bisulfite sequencing*

152 DNA extraction was performed using the AllPrep DNA/RNA/miRNA Universal Kit (Qiagen, Cat.
153 #80224). Additional details about the animal exposures, blood collection, and blood DNA extraction can
154 be found in previously published protocols.³⁰ Genomic DNA (gDNA) was used in the preparation of
155 WGBS libraries at the University of Michigan Epigenomics Core. gDNA was quantified using the Qubit
156 BR dsDNA kit (Fisher, Cat. #Q32850), and quality assessed using Agilent's Genomic DNA Tapestation
157 Kit (Agilent, Cat. #A63880). For each sample, 200 ng of gDNA was spiked with 0.5% of unmethylated
158 lambda DNA and sheared using a Covaris S220 (10% Duty Factor, 140W Peak Incident Power, 200
159 Cycle/Burst, 55s). A 2 µl aliquot of processed gDNA was taken to assess shearing using an Agilent High
160 Sensitivity D1000 Kit (Agilent, Cat. #G2991AA). Once shearing was assessed, the remaining gDNA was
161 concentrated using a Qiagen PCR Purification column and processed for end-repair and A-tailing.
162 Ligation of cytosine-methylated adapters was done overnight at 16°C. Following this, ligation products
163 were cleaned using AMPure XP Beads (Fisher, Cat. #NC9933872) before processing for bisulfite
164 conversion using the Zymo EZ DNA Methylation Kit (Zymo, Cat. #D5001), and by amplifying the
165 bisulfite converted products over 55 cycles of 95°C for 30 seconds followed by 55°C for 15 minutes,
166 according to the manufacturer's guidelines. After cleanup of the bisulfite converted products, final
167 libraries were amplified over 10 cycles by PCR using KAPA Uracil+ Ready Mix (Fisher, Cat.
168 #501965287) and NEB dual indexing primers. Final libraries were cleaned with AMPure XP beads,
169 concentration assessed using the Qubit BR dsDNA Kit and library size assessed on the Agilent High
170 Sensitivity D1000 Tapestation Kit. Prior to pooling, each library was quantified using KAPA Library
171 Quantification Kit (Fisher, Cat. #501965234). We constructed four different pools of 18 libraries and each
172 pool was sequenced on an Illumina NovaSeq6000 S4 200 cycle flow cell (PE-100) at the University of
173 Michigan Advanced Genomics Core. Unless otherwise stated, all enzymes used in library generation were

174 purchased from New England Biolabs. Adapters with universally methylated cytosines were synthesized
175 by Integrated DNA Technologies (IDT).

176 *Data processing, quality control, and differential DNA methylation analysis*

177 FastQC³¹ (v0.11.5) and MultiQC³² (v1.8) were used to assess the quality of all sequenced samples.
178 Sequencing adapters and low-quality bases were removed by Trim Galore³³ (v0.4.5). After trimming,
179 reads shorter than 20 bp were removed from further analysis. Bismark³⁴ (v0.19.0) with Bowtie 2³⁵
180 (v2.3.4) as backend alignment software were used for read alignment and methylation calling with
181 Genome Reference Consortium Mouse Build 38 (mm10) as the reference genome. All alignments were
182 performed with 0 mismatches and multi-seed length of 20 bp. The bisulfite conversion rates were
183 calculated through the unmethylated lambda phage DNA spike-ins. Metilene³⁶ (v0.2.8) and R
184 Bioconductor package methylSig³⁷ (v1.4.0) were used to identify the differentially methylated regions
185 (DMRs) independently. CpG sites with less than 10 reads or more than 500 reads were excluded from
186 DMR detection. For methylSig, CpG sites that had reads covered in fewer than 4 samples within a
187 treatment group were filtered out for DMR identification. Tiling windows were used with methylSig to
188 identify DMRs, with a window size of 100 bp. For metilene, DMRs were identified *de novo* with at least
189 5 CpGs in a single DMR. For both methods, an FDR cutoff of < 0.15 and a DNAm difference of >5%
190 were applied to select significant DMRs. All overlapping DMRs from methylSig and metilene were
191 confirmed to be in the same direction and merged for downstream analysis (**Supplementary Table 1**). A
192 minimum overlap cutoff of ≥ 10 bp was applied to identify overlapping DMRs between tissues, sexes, and
193 exposures, based on DMR coordinates, with no specification of methylation change direction considered
194 for the purposes of initial comparisons. The annotatr Bioconductor package³⁸ was used to annotate all
195 significant DMRs associated with genes and genomic locations, including CpG islands, CpG shores, CpG
196 shelves, promoters, exons, introns, 5' UTRs, 3' UTRs, enhancers, and regions 1-5kb upstream of
197 transcription start sites (TSSs). Random genomic regions were generated and annotated with annotatr for
198 each tissue using the mm10 reference genome. These random regions were used as background
199 information to show the distribution of the genomic annotation of the DMRs if distributed purely by
200 chance. An overview of the complete methods is illustrated in **Figure 1**.

201 *Geneset enrichment test*

202 R Bioconductor package Chipenrich³⁹ (v2.16.0) was used to perform gene set enrichment testing of Gene
203 Ontology (GO) terms enriched with significant DMRs. Twelve analyses were performed stratified by
204 each tissue and sex (i.e., male cortex, male blood, male liver, female cortex, female blood, and female
205 liver) across each exposure group (i.e., Pb, DEHP, and control). Gene assignments were determined with
206 the *nearest_tss* locus definition in the *chipenrich* function to find all three categories of ontology (i.e.,
207 Biological Process (BP), Cellular Component (CC), and Molecular Function (MF)). An FDR cutoff of <
208 0.05 was applied for selecting significantly enriched GO terms. GO terms containing fewer than 15 genes
209 or more than 500 genes were removed from analysis.

210 *Mouse imprinted genes and imprinted control regions*

211 DMRs were compared to mouse imprinted genes and ICRs. We compiled a reference list of imprinted
212 genes using previously documented efforts⁴⁰⁻⁴² and obtained ICR coordinates from Wang et al.⁴³ The valr
213 R package⁴⁴ (0.6.4) was used to identify overlapping regions between the DMRs and ICRs. A Binomial
214 test was used to assess whether the DMRs were significantly enriched in ICRs and an adjusted p-value <
215 0.05 cutoff was utilized for identifying significant results.

216 **Results**

217 *Differentially methylated regions among perinatally Pb- and DEHP-exposed tissues*

218 Among Pb-exposed tissues, the majority of the DMRs were detected in the cortex (male (M) = 688,
219 female (F) = 746), followed by blood (M = 243, F = 292), and liver (M = 100, F = 36). A similar pattern
220 was observed in DEHP-exposed tissues, with the majority of DMRs detected in the cortex (M = 587, F =
221 661), followed by blood (M = 312, F = 477), and liver (M = 90, F = 40) (**Figure 2A**). There was limited
222 overlap in DMRs between each tissue type, relative to the total number detected in each tissue and sex
223 (**Figure 2B**). For instance, Pb-exposed animals had only few DMRs appear in multiple tissues. Males had
224 3 common DMRs among all three tissues, with 5 DMRs each overlapping between cortex and blood,
225 between cortex and liver, and between liver and blood. Females had 7 common DMRs between cortex
226 and blood, 3 between cortex and liver, and 1 between liver and blood, with no DMRs detected in all three
227 tissues. Similar patterns were presented in DEHP-exposed animals, wherein males had 1 DMR common
228 to all three tissues and 10 detected in cortex and blood, and no overlap among the remaining tissue pairs.
229 DEHP-exposed females had more overlapping DMRs compared to males, with 2 DMR common to all
230 tissues, 13 in both cortex and blood, 5 in cortex and liver, and 3 in liver and blood (**Figure 2B**).
231

232 Relative to the low overlap in exposure associated DMRs between tissues, there was more DMR
233 similarity between the sexes when stratified by tissue (**Figure 2C**), with the exception of the liver. In Pb-
234 exposed animals, 17 and 10 DMRs were common to both males and females in the cortex and blood,
235 respectively. Similarly, in DEHP-exposed animals, 14 and 11 DMRs were found in both males and
236 females in the cortex and blood, respectively (**Figure 2C**). Overall, the greatest degree of DMR overlap
237 was found between exposure types. Pb- and DEHP-exposed cortex has the greatest degree of overlap,
238 with 79 and 47 DMRs detected under both exposure conditions in males and females, respectively
239 (**Figure 2D**). 29 and 28 DMRs appeared in both exposure conditions in male and female blood,
240 respectively, whereas Pb- and DEHP-exposed liver shared 2 DMRs in each sex (**Figure 2D**).
241

242 Patterns in the direction of DNA methylation changes (DNA hyper or hypomethylation) were tissue, sex,
243 and exposure specific (**Figure 2E**). Among Pb- and DEHP-exposed cortex, the majority of DMRs
244 detected in males and females were hypomethylated, with slightly greater rates of hypomethylation seen
245 in males (Pb male = 80%, Pb female = 52%, DEHP male = 60%, DEHP female = 58%). DMRs in Pb-
246 exposed female blood, as well as DEHP-exposed male and female blood, tended to be hypermethylated
247 (Pb female = 71%, DEHP male = 63%, DEHP female = 64%). In contrast, among Pb-exposed male
248 blood, 56% of DMRs were hypomethylated. Patterns of directionality were more distinct between
249 exposure types in the liver. Pb-exposed male liver presented a high proportion of hypermethylated DMRs
250 (66%), whereas Pb-exposed female liver has slightly more hypomethylated DMRs (56%). DMR direction
251 was roughly evenly split in DEHP-exposed liver, with 50% and 53% of DMRs hypermethylated in males
252 and females, respectively (**Figure 2E**). **Supplementary Table 1** provides a summary of all DMRs
253 detected in this analysis.
254

255 *Prevalence of detected DMRs in mouse genomic regions*

256 The DMRs detected in this study occurred in specific genomic regions to a greater degree than would
257 have been expected by a random distribution generated for comparison, given known patterns of CpG
258 sites in the mouse genome (mm10). According to **Figure 3** and **Supplementary Table 2**, detected DMRs
259 mapped to CpG islands to a greater degree than would have been expected by chance (3.37-19.07% of all
260 DMRs across sex, tissues, and exposures, compared to 0.12-0.29% at random). In blood and cortex across
261 both sexes and exposures, more DMRs were detected in 5' UTRs than predicted 4.03-8.79%, compared to
262 0.18-0.4% under a random distribution), and a similar pattern was observed in liver of Pb-exposed males
263 and females (2.02-2.91%) as well as DEHP-exposed females (4.8%, compared to 0.29% under a random
264 distribution). Several transcriptional regulatory regions demonstrated significant derivation from what
265 would be expected by chance as well. DMRs were present in promoter regions 2.83-6.61 times more than

266 would have been predicted by chance across all conditions (7.3-14.41%, compared to 1.74-2.58% at
267 random). Exons were another notable location of DMRs, with 1.76-4.99 times more DMRs than what
268 would have been seen under a random distribution (6.74-18.65%, compared to 3.37-3.84% at random).
269 Conversely, there were fewer DMRs detected in the open sea (11.02-21.13% in blood, 18.40-44.94% in
270 liver, and 19.91-25.87% in cortex) than would be expected by chance (54.56-58.09%) (**Figure 3**,
271 **Supplementary Table 2**).

272
273 *Gene Ontology terms associated with differentially methylated region-containing genes*
274

275 DMRs were annotated using annotatr R Bioconductor package, and a summary of the overlap in DMR-
276 containing genes across sexes, tissues, and exposures can be found in **Supplementary Figure 1**.
277 Chipenrich was used to perform geneset enrichment tests and Gene Ontology (GO) Resource was used to
278 identify DMR-related GO terms. The number of DMR-containing genes associated with each GO result
279 from both Pb- and DEHP-exposed samples are summarized in **Supplementary Table 3**.
280 Within Pb-exposed tissues, cortex had the greatest number of Gene Ontology Biological Pathway
281 (GOBP)-related DMR-containing genes in both males (85) and females (94). DMR-associated GOBPs in
282 female cortex were dominated by metabolic processes (35 out of 94 genes), whereas male cortex
283 contained an abundance of DMR-containing genes related to gene expression regulation (e.g., DNA
284 methylation or demethylation and miRNA gene silencing) (16 out of 85). The most common biological
285 process associated with Pb exposure was genomic imprinting (GO:0071514), which appeared in male
286 cortex, blood, and liver, as well as female cortex. In total, DMRs were detected in 21 genes associated
287 with genomic imprinting in these tissues (**Figure 4**).
288

289 In DEHP-exposed samples, a greater number of DMR-containing genes were associated with various GO
290 terms compared to Pb-exposed, especially the female cortex, which contained 179 genes associated with
291 various GOBPs, most notably those associated with development (e.g., organ development,
292 differentiation, and morphogenesis) (148 of 179). Male cortex contained far fewer GO term-associated
293 DMRs compared to females (66 compared to 179), and there was an abundance of genes associated with
294 gene expression regulation (10) and cellular organization (20). As with Pb-exposed tissues, the only GO
295 term common to more than one tissue-sex combination among DEHP samples was genomic imprinting,
296 which was associated with DMRs in 9 genes across male blood and cortex (**Figure 5**).
297

298 *DNA methylation changes at imprinted loci*

299 The appearance of imprinted genes in both exposure models during pathway analysis (**Figures 4 and 5**)
300 was motivation to take a closer look at the effects of Pb and DEHP exposure on imprinted genes. All
301 tissue types, across both sexes and exposures had detectable changes in DNAm within imprinted genes
302 (**Supplementary Figures 2-5**). A reference list of imprinted genes used in this analysis can be found in
303 **Supplemental Table 4**, and genes that did not contain a DMR in any tissue were omitted from the final
304 figure. Cortex had the greatest number of DMRs as well as the greatest magnitude of methylation changes
305 in assessed imprinted genes. 73 Pb-associated DMRs were detected in cortex at imprinted genes (46 in
306 males and 27 in females with magnitude changes of 5.03-23.77%) and 67 were detected in DEHP-
307 exposed cortex (37 in males and 30 in females with magnitude changes of 5.2-24.9%). 36 Pb-associated
308 DMRs were detected in blood at imprinted genes (16 in males and 20 in females with magnitude changes
309 of 5.04-20.1%) and 55 were detected in DEHP-exposed blood (32 in males and 23 in females with
310 magnitude changes of 5.4-28.4%). Liver contained fewer changes in DNAm at imprinted genes,
311 compared to blood and cortex, for each sex-exposure combination, with 10 DMRs in Pb-exposed liver (9
312 in males and 1 in females with magnitude changes of 6.8-19.4%) and 11 DMRs in DEHP-exposed liver (3
313 in males and 8 in females with magnitude changes of 8.8-16.3%). Blood from Pb-exposed females largely
314 contained hypermethylated sites at imprinted genes (15/20 DMRs), while cortex from the same animals
315 was largely hypomethylated in the same gene class (20/27 DMRs). A similar pattern was seen in DEHP-

316 male tissues, with the bulk of detectable changes found in the blood and cortex, with the former being
317 largely hypermethylated (29/32 DMRs in blood) and the latter hypomethylated 23/37 DMRs in cortex)
318 (**Supplementary Table 5**).

319 Two imprinted genes, *Gnas* and *Grb10*, contained a notable number of exposure associated DMRs. A
320 complete overview of these DMRs is summarized in **Figure 6** and **Supplementary Table 6**. Among Pb-
321 exposed samples, 60% and 75% of DMRs in the *Gnas* locus were hypomethylated in males and females,
322 respectively. In Pb-exposed blood, DMRs within the *Gnas* locus were entirely hypermethylated in
323 females (1/1) and hypomethylated in males (3/3). In Pb-exposed liver, *Gnas* DMRs were hypermethylated
324 (2/2). Among Pb-exposed cortex, DMRs within the *Grb10* locus were largely hypermethylated in males
325 (66%) and hypomethylated in females (66%). A similar pattern presented in Pb-exposed blood, wherein
326 the entirety of *Grb10* DMRs in males were hypermethylated (2/2), whereas those in females were
327 hypomethylated (1/1). Male liver contained only hypermethylated sites (2/2) within the *Grb10* locus.
328

329 DEHP exposure was associated with more hypomethylation at the *Gnas* locus in male cortex (80%) than
330 in females (50%). In blood, DEHP exposure associated with more hypomethylation in females (75%) but
331 DMRs associated with this exposure in male blood were entirely hypermethylated (3/3). Regarding
332 *Grb10*, 2/3 DMRs identified in male cortex were hypomethylated whereas 2/2 identified in male blood
333 were hypermethylated. One hypermethylated DMR was detected in *Grb10* in DEHP-exposed female
334 liver.

335

336 *Exposure-associated changes in imprinting control regions*

337 Imprinted genes are regulated in part through imprinting control regions (ICRs), which are elements
338 whose methylation is set up in the germline and that regulate gene expression and subsequent functions of
339 imprinted gene clusters.³⁶ Changes in the DNAm status of these regions can impact the expression of
340 imprinted and non-imprinted genes within a given cluster, thus magnifying the regulatory effects of what
341 would otherwise be a single-gene effect.³⁷ *Gnas* contains two ICRs, the *Gnas* ICR and the *Nespas* ICR,
342 while *Grb10* contains one ICR.^{36,38} The current analysis identified multiple DMRs within the ICRs of
343 both *Gnas* (7 in ICR *Gnas* and 8 in ICR *Nespas*) and *Grb10* (17 in the *Grb10* ICR) across exposure and
344 tissue types (**Figure 7**). A binomial test was conducted to assess whether exposure-associated DMRs
345 occurred in these ICRs to a greater degree than would have been expected by random chance. Both the
346 *Gnas* and *Grb10* ICRs contained more DMRs than would have been expected by chance in multiple sex-
347 exposure-tissue combinations. A summary of these findings can be found in **Supplementary Table 6**.
348

349 Pb exposure was associated with relatively limited changes in DNAm in *Gnas* ICRs when compared to
350 *Grb10*. In the *Nespas* ICR, Pb exposure was associated with hypermethylation in female cortex (1/1
351 DMR) and a mix of hyper- (1/2 DMRs) and hypomethylation (1/2 DMRs) in male cortex. In the *Gnas*
352 ICR, Pb exposure was associated only with hypermethylation in male liver (1/1 DMR) (**Figure 7A** and
353 **Supplementary Table 7**). In the *Grb10* ICR, Pb exposure was associated again with an equal amount of
354 hyper- (3/6) and hypomethylated (3/6) DMRs, in both male and female cortex. Pb exposure was entirely
355 associated with hypermethylation in both male blood (2/2 DMRs) and liver (2/2 DMRs) but was
356 associated with hypomethylation in female blood (1/1 DMR) (**Figure 7B** and **Supplementary Table 7**).
357

358 There were comparatively more changes in DNAm in the *Gnas* ICRs associated with DEHP exposure. In
359 male cortex there was again a mix of hyper- (1/2) and hypomethylated (1/2) DMRs in the *Nespas* ICR.
360 Unlike Pb exposure, DEHP was associated only with hypomethylated DMRs (2/2) in female cortex in the
361 *Nespas* ICR. In male blood there was 1 and 2 hypermethylated DEHP-associated DMRs within the
362 *Nespas* and *Gnas* ICRs, respectively. Female cortex and blood both contained a mix of hyper- (1/2) and
363 hypomethylated (1/2) DMRs in the *Gnas* ICR associated with DEHP exposure (**Figure 7A** and
364 **Supplementary Table 8**). Within the *Grb10* ICR, DEHP exposure was associated with a mix of hyper-

365 (1/3) and hypomethylated (2/3) DMRs in male cortex, hypermethylated (2/2) DMRs in male blood, and 1
366 hypermethylated DMR in female liver (**Figure 7B** and **Supplementary Table 8**).

367
368

Discussion

369 Toxicant exposures that occur during critical periods of development can have ramifications for health
370 and well-being throughout the life-course.⁴⁵ Perinatal Pb and DEHP exposures have been linked to
371 aberrant brain development and metabolic function, respectively, at environmentally relevant doses.^{46,47}
372 With regard to epigenetic mechanisms governing gene expression, Pb and DEHP exposures have both
373 been associated with differential DNAm in human populations.^{48,49} Concurrently, it is unknown if
374 toxicant-induced changes in difficult-to-access tissues, such as brain and liver, are reflected in more easily
375 accessible (surrogate) tissues, such as blood. It is therefore pertinent to examine how two prominent
376 developmental exposures, Pb and DEHP, affect gene regulation by DNAm in these target and surrogate
377 tissues in order to assess whether DNAm could be used as a potential biomarker of changes in more
378 difficult to access tissues, as is being evaluated in the TaRGET II Consortium.²⁴

379 *Pb and DEHP Exposures are Associated with Sex, Tissue, and Exposure-Specific General Changes in*
380 *DNA Methylation.* Overall, Pb and DEHP exposures resulted in similar number of DMRs between the
381 sexes for each of the three tissues assessed (**Figure 2A**). The cortex contained the greatest number of
382 DMRs for each exposure, followed by blood and liver. Between the sexes, females had more DMRs
383 across both exposures in cortex and blood, while males had more DMRs in the liver (**Figure 2A**). This
384 overall DNAm pattern is consistent with previous reports, which showed significant changes in DNAm in
385 female brain following gestational Pb exposure as well as in male liver following DEHP exposure.^{50,51}
386 There was minimal overlap in DMRs between either cortex-blood (0.5-1.2% of total DMRs detected in
387 these tissues) or liver-blood (0.25-1.5% of total DMRs detected in these tissues) (**Figure 2B**). The largest
388 degree in DMR similarity between target-surrogate tissues was in DEHP-exposed female cortex and
389 blood (13 similar DMRs, 1.16% of all DMRs in those tissues), followed by DEHP-exposed male cortex
390 and blood (10 similar DMRs, 1.12% of all DMRs in those tissues). These findings suggest limited general
391 overlap in DNAm changes across surrogate and target tissues when stratified by sex and exposure.
392

393 When the similarity of DMR signatures between the sexes was assessed for Pb and DEHP exposures, the
394 greatest number of shared DMRs was seen in the cortex, followed by blood, with no common DMRs in
395 the liver (**Figure 2C**). The number of DMRs in common between the sexes did not exceed 2% of the total
396 DMRs detected in any tissue-exposure combination. These findings highlight the need to evaluate sex-
397 specific effects in toxicogenomic studies.^{52,53} A greater degree of DMR similarity was seen between
398 exposure types, with 1-7% of total DMRs appearing in both Pb and DEHP-exposed tissues, depending on
399 the sex and tissue (**Figure 2D**). General trends in DMR directionality were not conserved across tissue
400 types, adding complexity to comparisons of changes in DNAm patterns between target and surrogate
401 tissues (**Figure 2E**). As expected, many DMRs were located in CpG islands, areas of dynamic DNAm-
402 directed gene expression regulation.⁵⁴ Gene promoters and exons also contained more DMRs than would
403 have been predicted by chance (**Figure 3**).
404

405 *Exposure-Associated DMRs Occur to a Notable Degree in Imprinted Genes.* An analysis of GO terms
406 associated with DMR-containing genes identified genomic imprinting as a common category across most
407 tissues in both sexes and exposure types (**Figures 4 and 5**). Imprinted genes are an important class with
408 regard to early growth and development, and their epigenetically-controlled mono-allelic parent of origin
409 nature of expression may confer particular susceptibility to the impacts of environmental exposures.^{55,56}
410 Early disruption of imprinted gene expression and function can result in developmental disorders (e.g.,
411 pseudohypoparathyroidism type 1B and Silver-Russell syndrome, for which perturbations in gene
412 expression regulation of *Gnas* and *Grb10*, respectively, have been implicated.^{57,58} Additionally, changes
413 in the DNAm status of several imprinted genes have been associated with chronic conditions such as

414 diabetes, cardiovascular disease, and cancer.⁵⁹⁻⁶¹ The DNAm and hydroxymethylation status of imprinted
415 genes is particularly susceptible to environmental exposures during early development, including Pb and
416 DEHP.⁶²⁻⁶⁴ Epidemiological studies have linked early life Pb exposure to altered methylation in imprinted
417 genes including insulin-like growth factor 2 (*IGF2*), which is involved in some cases of Beckwith-
418 Wiedemann Syndrome and Silver-Russell Syndrome and maternally expressed gene 3 (*MEG3*), which is
419 implicated in Temple syndrome and Kagami-Ogata syndrome.).^{65,66}

420
421 *Imprinting Control Regions Contain Exposure- and Tissue-Specific Changes in DNA Methylation.* ICRs
422 are environmentally sensitive regulatory regions, and changes to their DNAm status can have
423 consequences for a cluster of imprinted genes.⁶⁷ The ICRs of both *Gnas* and *Grb10* contained numerous
424 Pb- and DEHP-associated DMRs, with *Gnas* ICR DMRs appearing largely in the cortex and to be more
425 prevalent with DEHP exposure, while the *Grb10* ICR contained about twice as many Pb-associated
426 DMRs than DEHP and with much more even distribution across the studied tissues.

427 The *Grb10* ICR contained DMRs across all three tissues examined, with a specific DMR replicated in Pb-
428 exposed male liver and blood. There was an additional DMR in common in DEHP-exposed male cortex
429 and blood, but they differed in directionality (cortex = hypomethylated, blood = hypermethylated). The
430 current study is one the few reports that examine the effects of environmental exposures on the *Grb10*
431 ICR, with a previous report highlighting the effects on hydroxymethylation,⁶⁴ though many more exist
432 pertaining to changes throughout the gene.^{68,69} Much of the published work is restricted to germ cells, and
433 so additional work is needed to assess whether *Grb10* regulation and function are impacted by the
434 environment in the soma.

435 *Differential Methylation of Gnas and Grb10 Occurred in Gene Expression Regulatory Regions.* *Gnas*
436 encodes for the G-protein alpha-subunit protein, which contributes to signal transduction via cAMP
437 generation⁷⁰, and its imprinting dysregulation has been associated with increased insulin sensitivity,
438 neural tube defects, and hypothyroidism.^{71,72} The imprinted expression of *Gnas* is complex, as this gene
439 gives rise to several maternal- and paternal-specific gene products, and these patterns of expression are
440 highly tissue-specific in mice and humans.⁷³⁻⁷⁵ In this work, *Gnas* contained a mix of hyper- and
441 hypomethylated DMRs in the cortex, under both exposure conditions (**Figure 6**), making the prediction
442 of the observed sustained DNAm effects at 5 months difficult to ascertain. However, given the
443 importance of maintained imprinted expression of this locus and its various gene products in the brain,
444 continued evaluation of the effects of exposure-induced changes in DNAm at this locus would help
445 elucidate the functional impacts on gene product expression and subsequent physiological effects.
446 Changes in DNAm within *Gnas* were much more uniform in blood and liver, where biallelic expression is
447 considered to be the norm in adult mice.⁷⁰ Distinct differences in *Gnas* DMR direction appeared between
448 the sexes in this study (**Figure 6**). In Pb-exposed blood, *Gnas* DMRs were entirely hypomethylated in
449 males and hypermethylated in females. Within DEHP-exposed blood, *Gnas* DMRs were entirely
450 hypermethylated in males and a mix of hyper- and hypomethylated in females (**Figure 6**). As this work
451 found hypomethylation in *Gnas* promoters of DEHP-exposed female cortex and blood, it would be
452 pertinent to expand this work to additional tissues such as the thyroid to ascertain whether this
453 relationship is consistent in an organ known to be significantly impacted by developmental changes in
454 *Gnas* DNAm status.

455 *Grb10* encodes for an insulin receptor-binding protein involved in growth and insulin response and is
456 imprinted in a tissue- and cell-type specific manner.^{76,77} This is especially true during development, as
457 changes in *Grb10* expression across time are tissue-specific. For example, in the brain, *Grb10* imprinting
458 status is cell-type specific during development until adulthood.⁷⁸ There were several DMRs detected in
459 *Grb10* in DEHP-exposed male cortex, as well as Pb-exposed male and female cortex. *Grb10* methylation
460 appears to be cell-type specific during early brain development, with paternal expression in cortical
461 neurons and maternal expression in glial cells.⁷⁷ While this study was unable to assess cell-type specific

462 changes in DNAm within the cortex, future single-cell analyses could help determine whether exposure-
463 associated DMRs are specific to certain cellular populations. *Grb10* expression also changes significantly
464 in the liver during development, as maternal expression is high during fetal development, but nearly all
465 *Grb10* expression is silenced in the liver in adulthood.^{79,80} Many of the DMRs seen in *Grb10* in the liver
466 were hypermethylated, suggesting these exposures may not result in the reactivation of this gene in
467 adulthood, but, alternatively, may reinforce its suppression through supplemental methylation. Whether
468 this trend was present during early development, when imprinted expression is the norm and whether that
469 had any deleterious effects on liver development, remains to be seen. Pb exposure, on the other hand, was
470 associated with hypomethylation of *Grb10* in female blood, another tissue in which *Grb10* is thought to
471 be maternally expressed during early development and completely repressed during adulthood,⁸⁰ meaning
472 that exposure may be related to reactivation of this gene during an inappropriate time point. Future
473 evaluation of the impact of *Grb10* expression in blood during adulthood would contribute to our
474 understanding of the potential functional impact of this change in methylation. *Grb10* is initially
475 expressed from the maternal allele in somatic lineages and exclusively in neurons, switches to paternal-
476 specific expression from an alternate promoter.⁷⁷

477 *Gnas* and *Grb10* Provide Evidence of DNA Methylation Signatures in Target-Surrogate Tissue Pairs. The
478 ICRs of both *Gnas* and *Grb10* displayed some changes in DNAm that were replicated in both target and
479 surrogate tissues, suggesting these regulatory regions may be of significance when attempting to identify
480 DNAm-related biomarkers of exposure (Figure 7). Among Pb-exposed samples, the *Grb10* ICR
481 contained hypermethylated DMRs in male cortex, liver, and blood, suggesting that, for this exposure, the
482 *Grb10* ICR may be a potential region to consider when exploring male-specific DNAm biomarkers of
483 exposure. Among DEHP-exposed samples, the *Gnas* ICR contained hyper- and hypomethylated DMRs
484 that were seen in female cortex and blood, while the *Nespas* ICR was the location of hypermethylated
485 DMRs in male cortex and blood. These findings suggest there may be ICR- and sex-specificity in terms
486 of DNAm biomarkers of DEHP exposure, and that they may be particularly applicable to the cortex and
487 blood. DEHP-associated hypermethylated DMRs were also replicated in male cortex and blood within the
488 *Grb10* ICR, suggesting this regulatory region may be an additional candidate as a DNAm biomarker for
489 DEHP exposure.

490 Limitations

491 DNAm patterns vary across cell types within a given tissue.^{81,82} This study was unable to account for cell
492 type and therefore, changes in DNAm as the result of Pb or DEHP exposure may be due to exposure-
493 induced changes in cell type proportions.⁸³ Additionally, we were not able to evaluate changes in DNA
494 hydroxymethylation (5hmC) in these samples. This study was conducted using bisulfite conversion,
495 which accounts for both 5mC and 5hmC, and the resulting data is unable to differentiate between these
496 two signatures.⁶⁴ Imprinted genes are typically 50% methylated (accounting for mono-allelic expression
497 or repression), and this data represents DNAm averages for both alleles. Thus, any allele-specific changes
498 in DNAm associated with Pb or DEHP cannot be detected.

499 Conclusion

500 This study systematically evaluated changes in DNAm for cortex, blood, and liver collected from mice at
501 5 months-of-age following developmental exposure to either Pb or DEHP. Pb- and DEHP-specific
502 DNAm changes were observed via DMRs, with the greatest DMR similarity seen between exposure
503 types, with less overlap between the sexes and tissues. Genomic imprinting was impacted by Pb and
504 DEHP exposure, as determined by GO term analysis, and imprinted genes *Gnas* and *Grb10* indicated
505 changes in DNAm at their respective ICRs. These results indicate that imprinted gene methylation can be
506 dysregulated by developmental environmental exposures such as Pb and DEHP and that ICRs may be
507 useful candidates when exploring DNAm-based biomarkers of environmental exposures.

508 **Acknowledgements**

509 We would like to acknowledge members of the University of Michigan Epigenomics Core and the
510 Advanced Genomics Core, as well as the Michigan Lifesstage Environmental Exposures and Disease
511 Center (M-LEEd) which facilitated the generation and analysis of WGBS data.

512 **Conflict of Interest**

513 The authors report there are no competing interests to declare.

514 **Funding**

515 This work was supported by funding from the following sources: National Institute of Environmental
516 Health Sciences (NIEHS) TaRGET II Consortium (ES026697), NIEHS Grant R35 (ES031686), NIEHS
517 Grant K01 (ES032048), NIEHS Grant R01 (ES028802), the Michigan Lifesstage Environmental
518 Exposures and Disease (M-LEEd) NIEHS Core Center (P30 ES017885), Institutional Training Grant
519 T32 (ES007062), Institutional Training Grant T32 (HD079342), and National Institute on Aging (NIA)
520 Grant R01 (AG072396).

521 **Data Sharing**

522 WGBS data will be uploaded to GEO. Additional data that support the findings of this study are available
523 from the corresponding author, DCD, upon reasonable request.

524

525 **Approval for Animal Use**

526

527 Work outlined in this manuscript was approved by the University of Michigan Institutional Animal Care
528 and Use Committee (IACUC) and conducted in accordance with the highest animal welfare standards.

529

530

531

532

533

534

535

536

537

538

539

540

541

542 **Figure 1: Overview of experimental workflow.** F0 generation females (6-8 weeks of age) were exposed
543 to either 32ppm of Pb via drinking water or 5mg/kg-day of DEHP via food, beginning two weeks prior to
544 mating using virgin males (8-10 weeks of age). Exposure to Pb or DEHP or control continued through
545 gestation and weaning, when F1 mice were removed from the dams and placed on control water or chow.
546 At 5 months of age, F1 mice were sacrificed, and genomic DNA was extracted from blood, liver, and
547 cortex tissues. DNA was used to prepare libraries for Whole Genome Bisulfite Sequencing (WGBS).
548 Following initial data processing, Differentially Methylated Regions (DMRs) were called using
549 MethylSig and metilene.

550 **Figure 2: Summary of detected Differentially Methylated Regions.** Differentially Methylated Regions
551 (DMRs) were categorized by tissue (blood, cortex, and liver), sex (F: female, M: male), and exposure
552 group (Pb, DEHP, and control) (2A), and DMRs found in more than one tissue type were further
553 categorized by sex and exposure (2B). DMRs shared by both sexes (2C) and by exposure group (2D)
554 were quantified and broken down by tissue type. Proportions of DMR directional changes were generally
555 summarized for each tissue-sex-exposure combination, designated by DNA hyper (more methylated) or
556 hypo (less methylated), in comparison to controls (2E).

557 **Figure 3: Genomic region of detected Differentially Methylated Regions.** Differentially Methylated
558 Regions (DMRs) were mapped to the mouse reference genome (mm10) and their genomic region
559 annotated as percentage of total DMRs (comparing control and exposed samples) for that sex and
560 exposure within each tissue. This distribution was compared to what would be expected in a random
561 distribution.

562 **Figure 4: GO-terms associated with Differentially Methylated Region-containing genes among Pb-
563 exposed tissues.** Differentially Methylated Region-containing genes found in Pb-exposed tissues were
564 submitted for Gene Ontology (GO) term analysis across three categories: Biological Process (GOBP),
565 Cellular Component (GOCC), and Molecular Function (GOMF).

566 **Figure 5: GO-terms associated with Differentially Methylated Region-containing genes among
567 DEHP-exposed tissues.** Differentially Methylated Region-containing genes found in DEHP-exposed
568 tissues were submitted for Gene Ontology (GO) term analysis across three categories: Biological Process
569 (GOBP), Cellular Component (GOCC), and Molecular Function (GOMF).

570 **Figure 6: Genomic location and direction of Pb and DEHP-associated Differentially Methylated
571 Regions in the *Gnas* and *Grb10* loci.** Differentially Methylated Regions (DMRs) detected in the *Gnas*
572 and *Grb10* loci were classified as to their genomic location within each gene. Percent change in
573 methylation is denoted by size and direction of methylation change by color (blue = hypermethylated
574 DMRs among DEHP samples, yellow = hypomethylation among DEHP samples, red = hypermethylation
575 among Pb samples, green = among hypomethylation among Pb samples).

576 **Figure 7: Differentially Methylated Regions detected within *Gnas* and *Grb10* Imprinting Control
577 Regions (ICRs) among Pb and DEHP exposed tissues.** (A) Differentially Methylated Regions (DMRs)
578 overlap with *Gnas*. (B) DMRs overlap with *Grb10*. DMRs only represents the related genomic locations
579 corresponding to the genomic coordinates of ICRs. The genomic coordinates of these DMRs can be found
580 in Supplementary Table 4.

581

586 **References**

- 587 1 Gillman MW. Developmental origins of health and disease. *The New England Journal of Medicine* 2005; **353**:1848.
- 588 2 Bernal AJ, Jirtle RL. Epigenomic disruption: the effects of early developmental exposures. *Birth Defects Research Part A: Clinical and Molecular Teratology* 2010; **88**:938–44.
- 589 3 Bollati V, Baccarelli A. Environmental epigenetics. *Heredity* 2010; **105**:105–12.
- 590 4 Lyko F. The DNA methyltransferase family: a versatile toolkit for epigenetic regulation. *Nature Reviews Genetics* 2018; **19**:81–92.
- 591 5 Siegfried Z, Simon I. DNA methylation and gene expression. *Wiley Interdisciplinary Reviews: Systems Biology and Medicine* 2010; **2**:362–71.
- 592 6 Zeng Y, Chen T. DNA methylation reprogramming during mammalian development. *Genes* 2019; **10**:257.
- 593 7 SanMiguel JM, Bartolomei MS. DNA methylation dynamics of genomic imprinting in mouse development. *Biol Reprod* 2018; **99**:252–62. <https://doi.org/10.1093/biolre/foy036>.
- 594 8 Tucci V, Isles AR, Kelsey G, Ferguson-Smith AC, Bartolomei MS, Benvenisty N, et al. Genomic imprinting and physiological processes in mammals. *Cell* 2019; **176**:952–65.
- 595 9 Piedrahita JA. The role of imprinted genes in fetal growth abnormalities. *Birth Defects Res A Clin Mol Teratol* 2011; **91**:682–92. <https://doi.org/10.1002/bdra.20795>.
- 596 10 Moore GE, Ishida M, Demetriou C, Al-Olabi L, Leon LJ, Thomas AC, et al. The role and interaction of imprinted genes in human fetal growth. *Philos Trans R Soc Lond B Biol Sci* 2015; **370**:20140074. <https://doi.org/10.1098/rstb.2014.0074>.
- 597 11 Jima DD, Skaar DA, Planchart A, Motsinger-Reif A, Cevik SE, Park SS, et al. Genomic map of candidate human imprint control regions: the imprintome. *Epigenetics* 2022;1–24.
- 598 12 Horsthemke B. Mechanisms of Imprint Dysregulation.
- 599 13 Faulk C, Dolinoy DC. Timing is everything: the when and how of environmentally induced changes in the epigenome of animals. *Epigenetics* 2011; **6**:791–7.
- 600 14 Angers B, Castonguay E, Massicotte R. Environmentally induced phenotypes and DNA methylation: how to deal with unpredictable conditions until the next generation and after. *Molecular Ecology* 2010; **19**:1283–95.
- 601 15 Senut M-C, Cingolani P, Sen A, Kruger A, Shaik A, Hirsch H, et al. Epigenetics of early-life lead exposure and effects on brain development. *Epigenomics* 2012; **4**:665–74. <https://doi.org/10.2217/epi.12.58>.
- 602 16 Parasanathan R, Karundevi B. Phthalate exposure in utero causes epigenetic changes and impairs insulin signalling. *Journal of Endocrinology* 2014; **223**:47–66. <https://doi.org/10.1530/JOE-14-0111>.
- 603 17 Dignam T, Kaufmann RB, LeStourgeon L, Brown MJ. Control of Lead Sources in the United States, 1970–2017: Public Health Progress and Current Challenges to Eliminating Lead Exposure. *J Public Health Manag Pract* 2019; **25**:S13–22. <https://doi.org/10.1097/PHH.0000000000000889>.
- 604 18 Zhou F, Yin G, Gao Y, Liu D, Xie J, Ouyang L, et al. Toxicity assessment due to prenatal and lactational exposure to lead, cadmium and mercury mixtures. *Environ Int* 2019; **133**:105192. <https://doi.org/10.1016/j.envint.2019.105192>.

- 628 19 Kamenov GD, Swaringen BF, Cornwell DA, McTigue NE, Roberts SM, Bonzongo J-CJ.
629 High-precision Pb isotopes of drinking water lead pipes: Implications for human exposure to
630 industrial Pb in the United States. *Sci Total Environ* 2023;871:162067.
631 <https://doi.org/10.1016/j.scitotenv.2023.162067>.
- 632 20 Dietrich M, Barlow CF, Entwistle JA, Meza-Figueroa D, Dong C, Gunkel-Grillon P, *et al.*
633 Predictive modeling of indoor dust lead concentrations: Sources, risks, and benefits of
634 intervention. *Environ Pollut* 2023;319:121039. <https://doi.org/10.1016/j.envpol.2023.121039>.
- 635 21 Wang Y, Qian H. Phthalates and Their Impacts on Human Health. *Healthcare (Basel)*
636 2021;9:603. <https://doi.org/10.3390/healthcare9050603>.
- 637 22 Lin Y, Wei J, Li Y, Chen J, Zhou Z, Song L, *et al.* Developmental exposure to di(2-
638 ethylhexyl) phthalate impairs endocrine pancreas and leads to long-term adverse effects on
639 glucose homeostasis in the rat. *American Journal of Physiology-Endocrinology and Metabolism*
640 2011;301:E527–38. <https://doi.org/10.1152/ajpendo.00233.2011>.
- 641 23 Erythropel HC, Maric M, Nicell JA, Leask RL, Yargeau V. Leaching of the plasticizer di(2-
642 ethylhexyl)phthalate (DEHP) from plastic containers and the question of human exposure.
643 *Appl Microbiol Biotechnol* 2014;98:9967–81. <https://doi.org/10.1007/s00253-014-6183-8>.
- 644 24 Wang T, Pehrsson EC, Purushotham D, Li D, Zhuo X, Zhang B, *et al.* The NIEHS TaRGET II
645 Consortium and environmental epigenomics. *Nature Biotechnology* 2018;36:225–7.
- 646 25 Dou JF, Farooqui Z, Faulk CD, Barks AK, Jones T, Dolinoy DC, *et al.* Perinatal Lead (Pb)
647 Exposure and Cortical Neuron-Specific DNA Methylation in Male Mice. *Genes (Basel)*
648 2019;10:E274. <https://doi.org/10.3390/genes10040274>.
- 649 26 Faulk C, Barks A, Liu K, Goodrich JM, Dolinoy DC. Early-life lead exposure results in dose-
650 and sex-specific effects on weight and epigenetic gene regulation in weanling mice.
651 *Epigenomics* 2013;5:487–500. <https://doi.org/10.2217/epi.13.49>.
- 652 27 Schmidt J-S, Schaedlich K, Fiandanese N, Pocar P, Fischer B. Effects of di(2-ethylhexyl)
653 phthalate (DEHP) on female fertility and adipogenesis in C3H/N mice. *Environ Health Perspect*
654 2012;120:1123–9. <https://doi.org/10.1289/ehp.1104016>.
- 655 28 Neier K, Cheatham D, Bedrosian LD, Dolinoy DC. Perinatal exposures to phthalates and
656 phthalate mixtures result in sex-specific effects on body weight, organ weights and
657 intracisternal A-particle (IAP) DNA methylation in weanling mice. *J Dev Orig Health Dis*
658 2019;10:176–87. <https://doi.org/10.1017/S2040174418000430>.
- 659 29 Percie du Sert N, Hurst V, Ahluwalia A, Alam S, Avey MT, Baker M, *et al.* The ARRIVE
660 guidelines 2.0: Updated guidelines for reporting animal research. *PLoS Biol* 2020;18:e3000410.
661 <https://doi.org/10.1371/journal.pbio.3000410>.
- 662 30 Svoboda LK, Neier K, Wang K, Cavalcante RG, Rygiel CA, Tsai Z, *et al.* Tissue and sex-
663 specific programming of dna methylation by perinatal lead exposure: implications for
664 environmental epigenetics studies. *Epigenetics* 2021;16:1102–22.
665 <https://doi.org/10.1080/15592294.2020.1841872>.
- 666 31 Andrews. *FastQCA Quality Control tool for High Throughput Sequence Data*. 2010. URL:
667 <https://www.bioinformatics.babraham.ac.uk/projects/fastqc/> (Accessed 15 February 2023).
- 668 32 Ewels P, Magnusson M, Lundin S, Käller M. MultiQC: summarize analysis results for
669 multiple tools and samples in a single report. *Bioinformatics* 2016;32:3047–8.
670 <https://doi.org/10.1093/bioinformatics/btw354>.

- 671 33 Krueger F. *Trim Galore*. 2015. URL:
672 https://www.bioinformatics.babraham.ac.uk/projects/trim_galore/ (Accessed 15 February
673 2023).
- 674 34 Krueger F, Andrews SR. Bismark: a flexible aligner and methylation caller for Bisulfite-
675 Seq applications. *Bioinformatics* 2011; **27**:1571–2.
676 <https://doi.org/10.1093/bioinformatics/btr167>.
- 677 35 Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. *Nat Methods*
678 2012; **9**:357–9. <https://doi.org/10.1038/nmeth.1923>.
- 679 36 Jühling F, Kretzmer H, Bernhart SH, Otto C, Stadler PF, Hoffmann S. metilene: fast and
680 sensitive calling of differentially methylated regions from bisulfite sequencing data. *Genome*
681 *Res* 2016; **26**:256–62. <https://doi.org/10.1101/gr.196394.115>.
- 682 37 Park Y, Figueroa ME, Rozek LS, Sartor MA. MethylSig: a whole genome DNA methylation
683 analysis pipeline. *Bioinformatics* 2014; **30**:2414–22.
684 <https://doi.org/10.1093/bioinformatics/btu339>.
- 685 38 Cavalcante RG, Sartor MA. annotatr: genomic regions in context. *Bioinformatics*
686 2017; **33**:2381–3. <https://doi.org/10.1093/bioinformatics/btx183>.
- 687 39 Welch RP, Lee C, Imbriano PM, Patil S, Weymouth TE, Smith RA, et al. ChIP-Enrich: gene
688 set enrichment testing for ChIP-seq data. *Nucleic Acids Res* 2014; **42**:e105.
689 <https://doi.org/10.1093/nar/gku463>.
- 690 40 Williamson CM, Blake A, Thomas S, Beechey CV, Hancock J, Cattanach BM, et al. World
691 Wide Web Site-Mouse Imprinting Data and References. *Oxfordshire: MRC Hartwell* 2013.
- 692 41 Tucci V, Isles AR, Kelsey G, Ferguson-Smith AC, Tucci V, Bartolomei MS, et al. Genomic
693 Imprinting and Physiological Processes in Mammals. *Cell* 2019; **176**:952–65.
694 <https://doi.org/10.1016/j.cell.2019.01.043>.
- 695 42 Juan AM, Foong YH, Thorvaldsen JL, Lan Y, Leu NA, Rurik JG, et al. Tissue-specific
696 Grb10/Ddc insulator drives allelic architecture for cardiac development. *Mol Cell*
697 2022; **82**:3613–3631.e7. <https://doi.org/10.1016/j.molcel.2022.08.021>.
- 698 43 Wang L, Zhang J, Duan J, Gao X, Zhu W, Lu X, et al. Programming and inheritance of
699 parental DNA methylomes in mammals. *Cell* 2014; **157**:979–91.
700 <https://doi.org/10.1016/j.cell.2014.04.017>.
- 701 44 Riemony KA, Sheridan RM, Gillen A, Yu Y, Bennett CG, Hesselberth JR. valr:
702 Reproducible genome interval analysis in R. *F1000Res* 2017; **6**:1025.
703 <https://doi.org/10.12688/f1000research.11997.1>.
- 704 45 Dolinoy DC, Weidman JR, Jirtle RL. Epigenetic gene regulation: linking early
705 developmental environment to adult disease. *Reprod Toxicol* 2007; **23**:297–307.
706 <https://doi.org/10.1016/j.reprotox.2006.08.012>.
- 707 46 Thomason ME, Hect JL, Rauh VA, Trentacosta C, Wheelock MD, Eggebrecht AT, et al.
708 Prenatal lead exposure impacts cross-hemispheric and long-range connectivity in the human
709 fetal brain. *Neuroimage* 2019; **191**:186–92.
710 <https://doi.org/10.1016/j.neuroimage.2019.02.017>.
- 711 47 Neier K, Montrose L, Chen K, Malloy MA, Jones TR, Svoboda LK, et al. Short- and long-
712 term effects of perinatal phthalate exposures on metabolic pathways in the mouse liver.
713 *Environ Epigenet* 2020; **6**:dvaa017. <https://doi.org/10.1093/eep/dvaa017>.

- 714 48 Rygiel CA, Goodrich JM, Solano-González M, Mercado-García A, Hu H, Téllez-Rojo MM,
715 *et al.* Prenatal Lead (Pb) Exposure and Peripheral Blood DNA Methylation (5mC) and
716 Hydroxymethylation (5hmC) in Mexican Adolescents from the ELEMENT Birth Cohort. *Environ
717 Health Perspect* 2021;129:67002. <https://doi.org/10.1289/EHP8507>.
- 718 49 Chen C-H, Jiang SS, Chang I-S, Wen H-J, Sun C-W, Wang S-L. Association between fetal
719 exposure to phthalate endocrine disruptor and genome-wide DNA methylation at birth.
720 *Environ Res* 2018;162:261–70. <https://doi.org/10.1016/j.envres.2018.01.009>.
- 721 50 Sobolewski M, Varma G, Adams B, Anderson DW, Schneider JS, Cory-Slechta DA.
722 Developmental Lead Exposure and Prenatal Stress Result in Sex-Specific Reprograming of
723 Adult Stress Physiology and Epigenetic Profiles in Brain. *Toxicol Sci* 2018;163:478–89.
724 <https://doi.org/10.1093/toxsci/kfy046>.
- 725 51 Liu S, Wang K, Svoboda LK, Rygiel CA, Neier K, Jones TR, *et al.* Perinatal DEHP exposure
726 induces sex- and tissue-specific DNA methylation changes in both juvenile and adult mice.
727 *Environ Epigenet* 2021;7:dvab004. <https://doi.org/10.1093/EEP/dvab004>.
- 728 52 Svoboda LK, Ishikawa T, Dolinoy DC. Developmental toxicant exposures and sex-specific
729 effects on epigenetic programming and cardiovascular health across generations. *Environ
730 Epigenet* 2022;8:dvac017. <https://doi.org/10.1093/EEP/dvac017>.
- 731 53 Singh G, Singh V, Sobolewski M, Cory-Slechta DA, Schneider JS. Sex-Dependent Effects of
732 Developmental Lead Exposure on the Brain. *Front Genet* 2018;9:89.
733 <https://doi.org/10.3389/fgene.2018.00089>.
- 734 54 Smallwood SA, Tomizawa S-I, Krueger F, Ruf N, Carli N, Segonds-Pichon A, *et al.* Dynamic
735 CpG island methylation landscape in oocytes and preimplantation embryos. *Nat Genet*
736 2011;43:811–4. <https://doi.org/10.1038/ng.864>.
- 737 55 Kang E-R, Iqbal K, Tran DA, Rivas GE, Singh P, Pfeifer GP, *et al.* Effects of endocrine
738 disruptors on imprinted gene expression in the mouse embryo. *Epigenetics* 2011;6:937–50.
739 <https://doi.org/10.4161/epi.6.7.16067>.
- 740 56 Krishnamoorthy M, Gerwe BA, Scharer CD, Heimburg-Molinaro J, Gregory F, Nash RJ, *et
741 al.* GABRB3 gene expression increases upon ethanol exposure in human embryonic stem cells.
742 *J Recept Signal Transduct Res* 2011;31:206–13.
743 <https://doi.org/10.3109/10799893.2011.569723>.
- 744 57 Bastepe M, Fröhlich LF, Hendy GN, Indridason OS, Josse RG, Koshiyama H, *et al.*
745 Autosomal dominant pseudohypoparathyroidism type Ib is associated with a heterozygous
746 microdeletion that likely disrupts a putative imprinting control element of *GNAS*. *J Clin Invest*
747 2003;112:1255–63. <https://doi.org/10.1172/JCI19159>.
- 748 58 Eggermann T, Begemann M, Kurth I, Elbracht M. Contribution of GRB10 to the prenatal
749 phenotype in Silver-Russell syndrome? Lessons from 7p12 copy number variations. *Eur J Med
750 Genet* 2019;62:103671. <https://doi.org/10.1016/j.ejmg.2019.103671>.
- 751 59 Wallace C, Smyth DJ, Maisuria-Armer M, Walker NM, Todd JA, Clayton DG. The
752 imprinted DLK1-MEG3 gene region on chromosome 14q32.2 alters susceptibility to type 1
753 diabetes. *Nat Genet* 2010;42:68–71. <https://doi.org/10.1038/ng.493>.
- 754 60 Tahara S, Tahara T, Horiguchi N, Okubo M, Terada T, Yoshida D, *et al.* Lower LINE-1
755 methylation is associated with promoter hypermethylation and distinct molecular features in
756 gastric cancer. *Epigenomics* 2019;11:1651–9. <https://doi.org/10.2217/epi-2019-0091>.

- 757 61 Ito Y, Koessler T, Ibrahim AEK, Rai S, Vowler SL, Abu-Amro S, *et al.* Somatically acquired
758 hypomethylation of IGF2 in breast and colorectal cancer. *Hum Mol Genet* 2008;17:2633–43.
759 <https://doi.org/10.1093/hmg/ddn163>.
- 760 62 Nye MD, King KE, Darrah TH, Maguire R, Jima DD, Huang Z, *et al.* Maternal blood lead
761 concentrations, DNA methylation of MEG3 DMR regulating the DLK1/MEG3 imprinted domain
762 and early growth in a multiethnic cohort. *Environ Epigenet* 2016;2:dvv009.
763 <https://doi.org/10.1093/EEP/DVV009>.
- 764 63 Li L, Zhang T, Qin X-S, Ge W, Ma H-G, Sun L-L, *et al.* Exposure to diethylhexyl phthalate
765 (DEHP) results in a heritable modification of imprint genes DNA methylation in mouse
766 oocytes. *Mol Biol Rep* 2014;41:1227–35. <https://doi.org/10.1007/s11033-013-2967-7>.
- 767 64 Kochmanski JJ, Marchlewicz EH, Cavalcante RG, Perera BPU, Sartor MA, Dolinoy DC.
768 Longitudinal Effects of Developmental Bisphenol A Exposure on Epigenome-Wide DNA
769 Hydroxymethylation at Imprinted Loci in Mouse Blood. *Environmental Health Perspectives*
770 n.d.;126:077006. <https://doi.org/10.1289/EHP3441>.
- 771 65 Kalish JM, Jiang C, Bartolomei MS. Epigenetics and imprinting in human disease. *Int J
772 Dev Biol* 2014;58:291–8. <https://doi.org/10.1387/ijdb.140077mb>.
- 773 66 Prasasya R, Grotheer KV, Siracusa LD, Bartolomei MS. Temple syndrome and Kagami-
774 Ogata syndrome: clinical presentations, genotypes, models and mechanisms. *Hum Mol Genet*
775 2020;29:R107–16. <https://doi.org/10.1093/hmg/ddaa133>.
- 776 67 Doshi T, D'souza C, Vanage G. Aberrant DNA methylation at Igf2-H19 imprinting control
777 region in spermatozoa upon neonatal exposure to bisphenol A and its association with post
778 implantation loss. *Mol Biol Rep* 2013;40:4747–57. <https://doi.org/10.1007/s11033-013-2571-x>.
- 780 68 Schrott R, Greeson KW, King D, Symosko Crow KM, Easley CA, Murphy SK. Cannabis
781 alters DNA methylation at maternally imprinted and autism candidate genes in spermatogenic
782 cells. *Syst Biol Reprod Med* 2022;68:357–69.
783 <https://doi.org/10.1080/19396368.2022.2073292>.
- 784 69 Soubry A, Hoyo C, Butt CM, Fieuws S, Price TM, Murphy SK, *et al.* Human exposure to
785 flame-retardants is associated with aberrant DNA methylation at imprinted genes in sperm.
786 *Environmental Epigenetics* 2017;3:dvx003. <https://doi.org/10.1093/EEP/DVX003>.
- 787 70 Weinstein LS, Xie T, Zhang Q-H, Chen M. Studies of the regulation and function of the
788 Gsα gene Gnas using gene targeting technology. *Pharmacol Ther* 2007;115:271–91.
789 <https://doi.org/10.1016/j.pharmthera.2007.03.013>.
- 790 71 Wang L, Chang S, Wang Z, Wang S, Huo J, Ding G, *et al.* Altered GNAS imprinting due to
791 folic acid deficiency contributes to poor embryo development and may lead to neural tube
792 defects. *Oncotarget* 2017;8:110797–810. <https://doi.org/10.18632/oncotarget.22731>.
- 793 72 Hanna P, Francou B, Delemer B, Jüppner H, Linglart A. A Novel Familial PHP1B Variant
794 With Incomplete Loss of Methylation at GNAS-A/B and Enhanced Methylation at GNAS-AS2. *J
795 Clin Endocrinol Metab* 2021;106:2779–87. <https://doi.org/10.1210/clinem/dgab136>.
- 796 73 Turan S, Bastepé M. The GNAS complex locus and human diseases associated with loss-
797 of-function mutations or epimutations within this imprinted gene. *Horm Res Paediatr*
798 2013;80:10.1159/000355384. <https://doi.org/10.1159/000355384>.

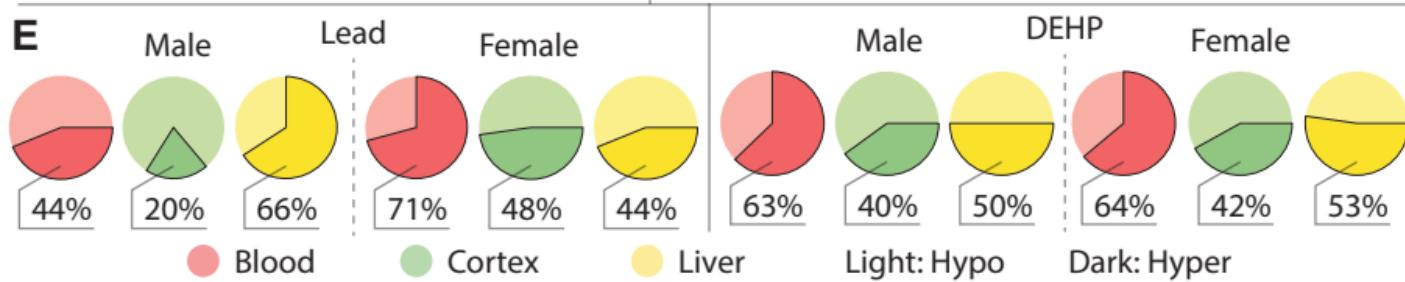
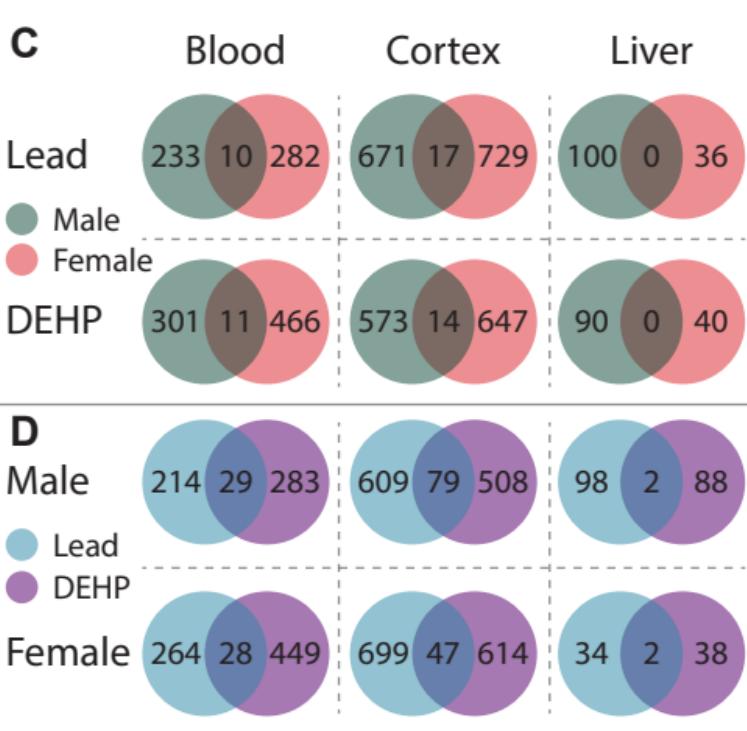
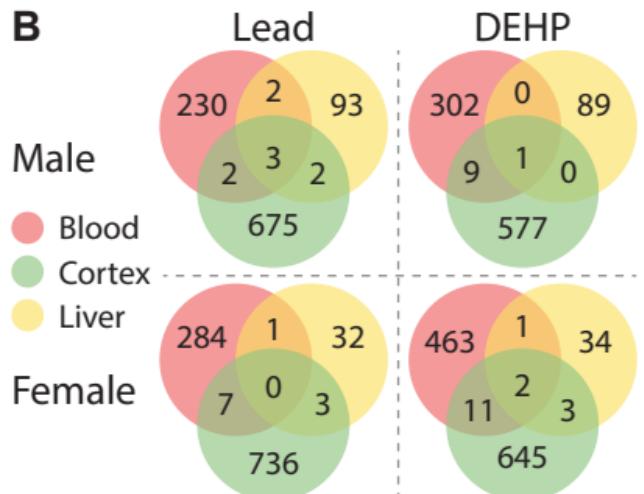
- 799 74 Wroe SF, Kelsey G, Skinner JA, Bodle D, Ball ST, Beechey CV, *et al.* An imprinted
800 transcript, antisense to *Nesp*, adds complexity to the cluster of imprinted genes at the mouse
801 *Gnas* locus. *Proc Natl Acad Sci U S A* 2000;97:3342–6. <https://doi.org/10.1073/pnas.97.7.3342>.
- 802 75 Hayward BE, Kamiya M, Strain L, Moran V, Campbell R, Hayashizaki Y, *et al.* The human
803 *GNAS1* gene is imprinted and encodes distinct paternally and biallelically expressed G
804 proteins. *Proc Natl Acad Sci U S A* 1998;95:10038–43.
<https://doi.org/10.1073/pnas.95.17.10038>.
- 805 76 Desbuquois B, Carré N, Burnol A-F. Regulation of insulin and type 1 insulin-like growth
806 factor signaling and action by the Grb10/14 and SH2B1/B2 adaptor proteins. *FEBS J*
807 2013;280:794–816. <https://doi.org/10.1111/febs.12080>.
- 808 77 Plasschaert RN, Bartolomei MS. Tissue-specific regulation and function of Grb10 during
809 growth and neuronal commitment. *Proc Natl Acad Sci U S A* 2015;112:6841–7.
<https://doi.org/10.1073/pnas.1411254111>.
- 810 78 Hikichi T, Kohda T, Kaneko-Ishino T, Ishino F. Imprinting regulation of the murine
811 *Meg1*/Grb10 and human GRB10 genes; roles of brain-specific promoters and mouse-specific
812 CTCF-binding sites. *Nucleic Acids Res* 2003;31:1398–406. <https://doi.org/10.1093/nar/gkg232>.
- 813 79 Luo L, Jiang W, Liu H, Bu J, Tang P, Du C, *et al.* De-silencing Grb10 contributes to acute
814 ER stress-induced steatosis in mouse liver. *J Mol Endocrinol* 2018;60:285–97.
<https://doi.org/10.1530/JME-18-0018>.
- 815 80 Blagitko N, Mergenthaler S, Schulz U, Wollmann HA, Craigen W, Eggermann T, *et al.*
816 Human GRB10 is imprinted and expressed from the paternal and maternal allele in a highly
817 tissue- and isoform-specific fashion. *Human Molecular Genetics* 2000;9:1587–95.
<https://doi.org/10.1093/hmg/9.11.1587>.
- 818 81 Bakulski KM, Feinberg JI, Andrews SV, Yang J, Brown S, L. McKenney S, *et al.* DNA
819 methylation of cord blood cell types: Applications for mixed cell birth studies. *Epigenetics*
820 2016;11:354–62. <https://doi.org/10.1080/15592294.2016.1161875>.
- 821 82 Armand EJ, Li J, Xie F, Luo C, Mukamel EA. Single-Cell Sequencing of Brain Cell
822 Transcriptomes and Epigenomes. *Neuron* 2021;109:11–26.
<https://doi.org/10.1016/j.neuron.2020.12.010>.
- 823 83 Campbell KA, Colacino JA, Park SK, Bakulski KM. Cell types in environmental epigenetic
824 studies: Biological and epidemiological frameworks. *Curr Environ Health Rep* 2020;7:185–97.
<https://doi.org/10.1007/s40572-020-00287-0>.
- 831

Genomic DNA/RNA from tissues + Library preparation for WGBS → Illumina NovaSeq 6000 → Quality control (FastQC & MultiQC) + Trimming (trim_galore) Alignment (bowtie2) + CpG methylation calls (Bismark)

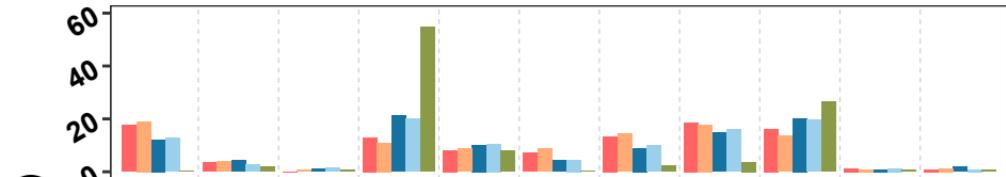
MethylSig

- Filter out CpGs by coverage ($10 < cov < 500$)
- Filter out CpGs with reads covered in less than 4 samples per group; Define tiling windows 100 bps
- Select regions with $FDR < 0.15$ and methylation difference $> 5\%$

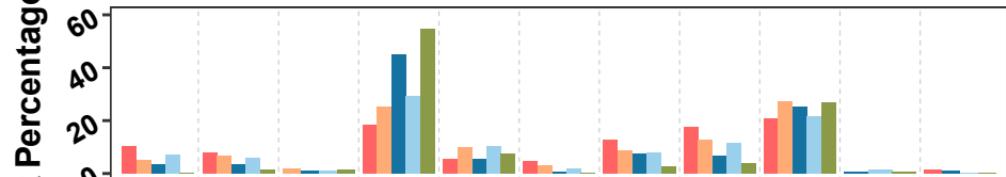
DMRs

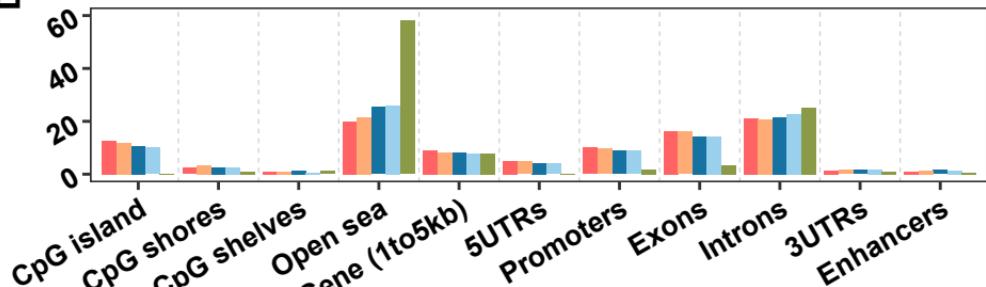



- Combine DMRs from MethylSig and metilene for downstream analysis
- Any overlapped DMRs will be merged together as one DMR

metilene

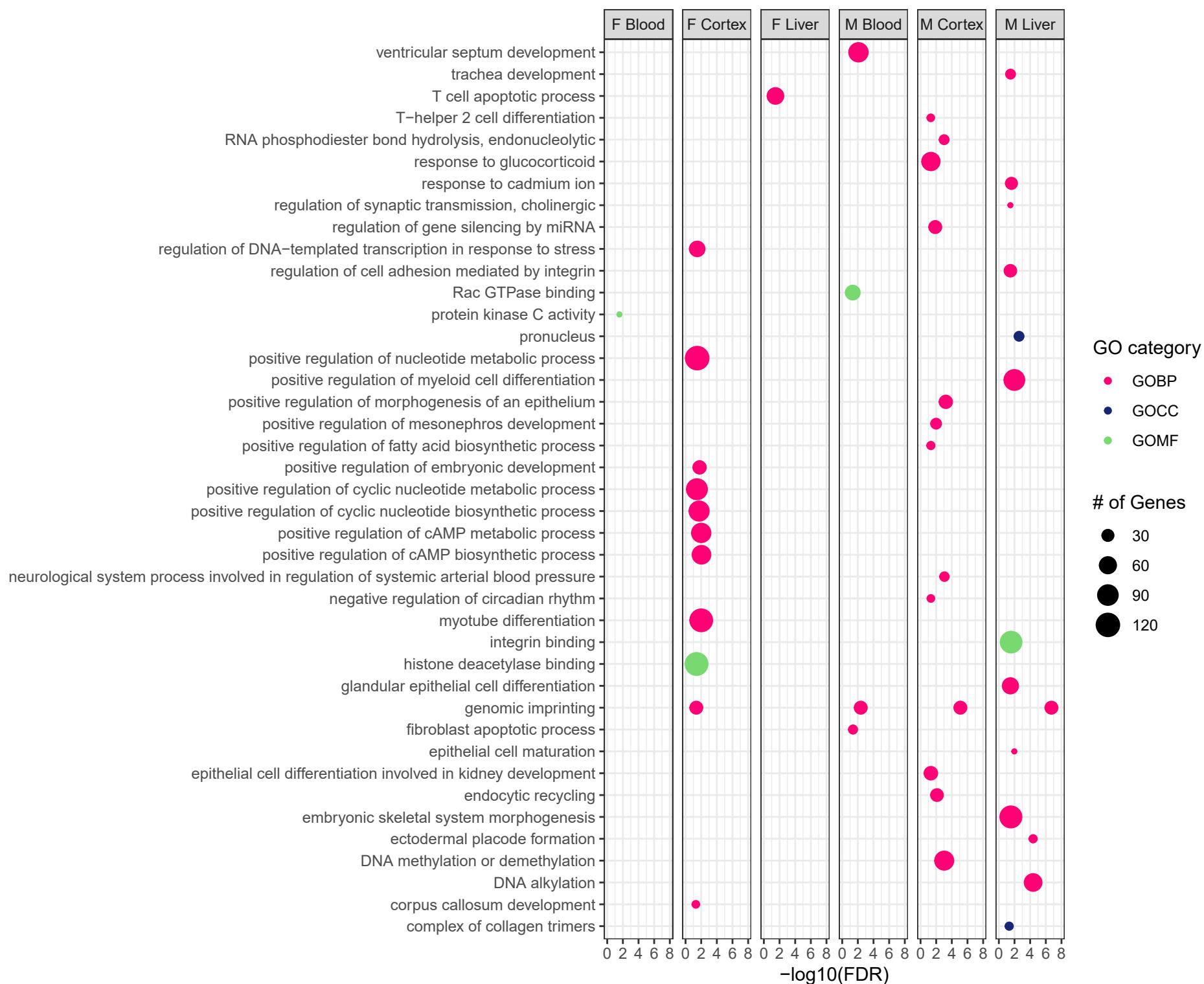

- Filter out CpGs by coverage ($10 < cov < 500$)
- Generate input data with metilene_input.pl
- Run metilene with ≥ 5 CpGs in a DMR
- Select regions with $FDR < 0.15$ and methylation difference $> 5\%$

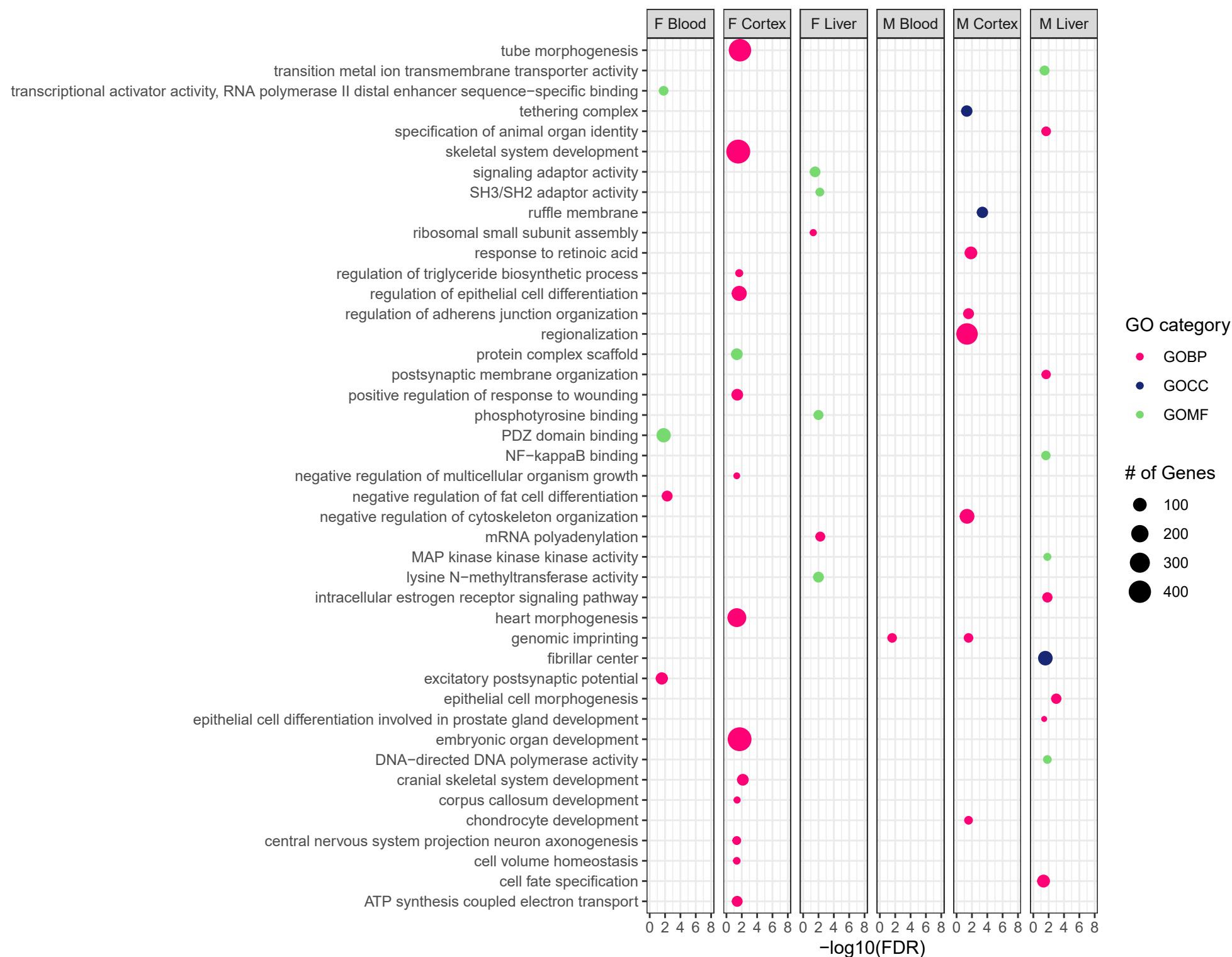
A

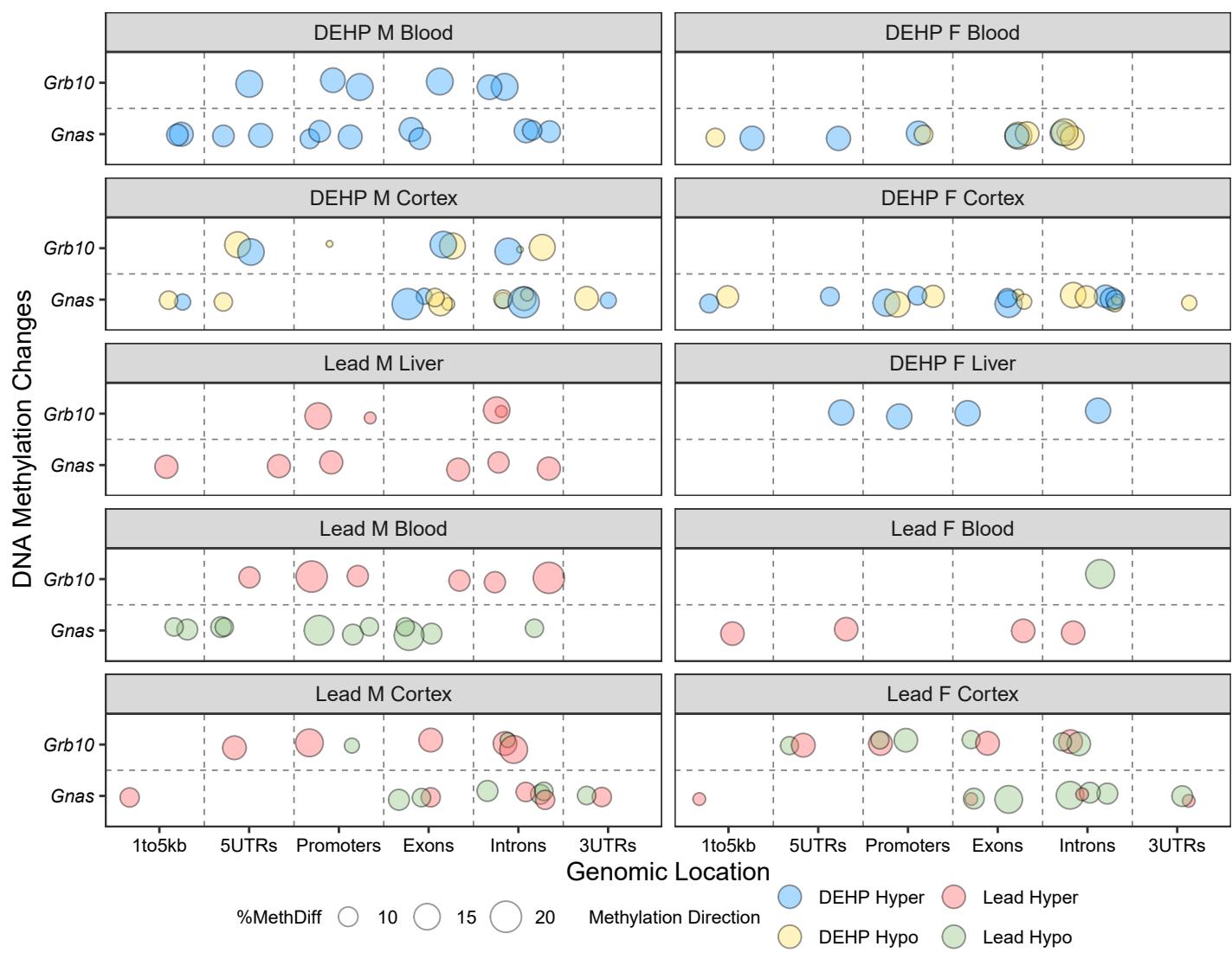

	Blood		Cortex		Liver	
	M	F	M	F	M	F
lead	243	292	688	746	100	36
DEHP	312	477	587	661	90	40


Blood

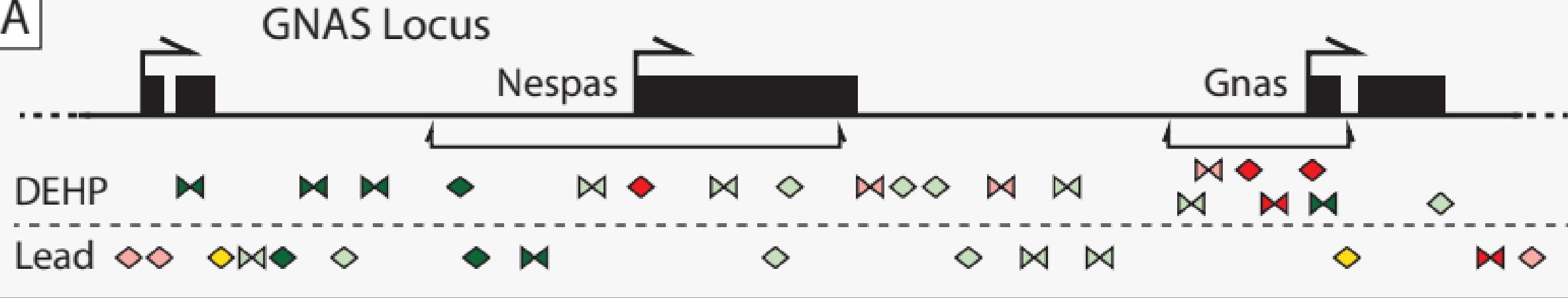
Liver

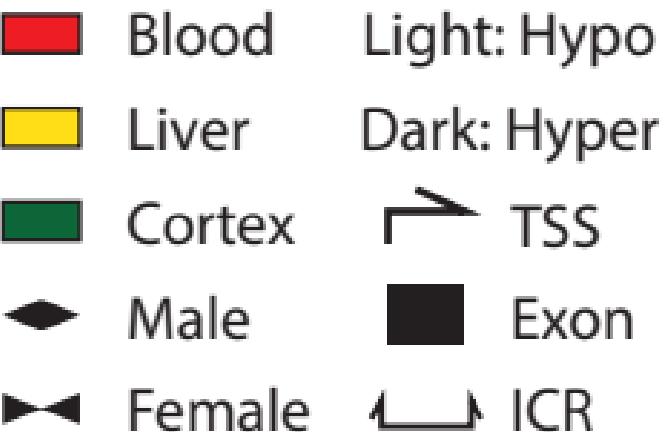
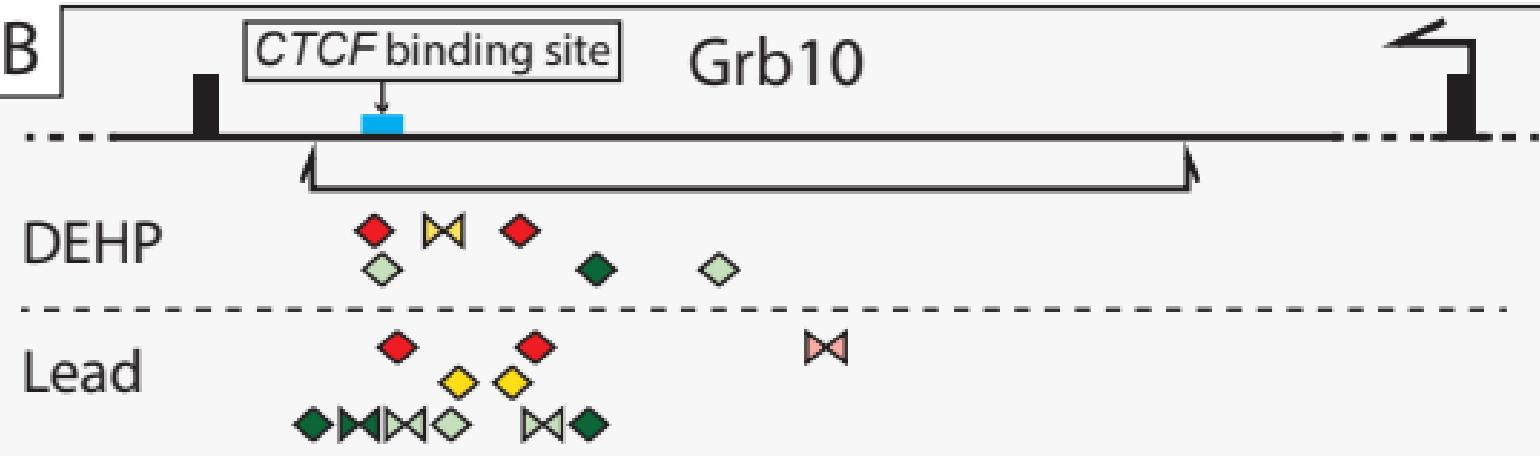



Cortex



Genomic Region



A

B

