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Abstract

Cell competition is a process in multicellular organisms where cells interact with

their neighbours to determine a “winner” or “loser” status. The loser cells are elim-

inated through programmed cell death, leaving only the winner cells to populate the

tissue. Cell competition is context-dependent; the same cell type can win or lose de-

pending on the cell type it is competing against. Hence, winner/loser status is an

emergent property. A key question in cell competition is: how do cells acquire their

winner/loser status? In this paper, we propose a mathematical framework for studying

the emergence of winner/loser status based on a set of quantitative criteria that dis-

tinguishes competitive from non-competitive outcomes. We apply this framework in a

cell-based modelling context, to both highlight the crucial role of active cell death in

cell competition and identify the factors that drive cell competition.

Keywords: cell-based model, vertex-based model, programmed cell death, epithelial

tissue

1. Introduction1

Cell competition is a process that occurs in multicellular organisms where cells com-2

posing genetically heterotypic tissues interact to determine their relative fitness and3

acquire a winner or loser status [1–6]. The loser cells are then eliminated through pro-4

grammed cell death, leaving only winner cells to populate the tissue. Cell competition5

is context-dependent: the competing cell types are both viable in homotypic conditions,6
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and acquire a winner/loser status only when exposed to each other in the same tissue.7

The main function of cell competition is to improve the overall fitness of the tissue by8

removing suboptimal cells. For example, during development of the Drosophila wing,9

cell competition serves as a homeostatic mechanism that stabilises tissue growth and10

ensures consistent wing shape [7]. It can also play a role in tumour suppression by elim-11

inating cells with proto-oncogenic mutations [8]. However, this is not the case for all12

proto-oncogenic mutations: overexpression of Myc results in mutants that outcompete13

wild-type cells in a process known as super-competition [9]. This allows precancerous14

cells to expand within a tissue at the expense of healthy cells, without producing de-15

tectable morphological abnormalities. Cell competition can therefore also contribute to16

the early stages of tumour development.17

The underlying mechanisms of cell competition are not yet fully understood. While18

progress has been made in identifying the drivers of cell competition and the path-19

ways downstream of winner/loser identification, the intra- and intercellular processes20

by which cells determine winner/loser status are still unclear. Mathematical mod-21

elling, particularly cell-based modelling, has the potential to provide insight into the22

mechanisms of cell competition. Cell-based models allow researchers to define the be-23

haviours of individual cells and study their effects at the population level. Because cell24

competition is a process that unfolds at the population level while being mediated by25

interactions at the cellular level, cell-based models are potentially an effective tool for26

exploring the most pertinent questions in cell competition. However, current cell-based27

models of cell competition assume a priori winner/loser identities [10–13]. Although28

such models can simulate processes occurring downstream of winner/loser identifica-29

tion, they do not address how cells become winners or losers in the first place. In this30

paper, we propose a mathematical framework to address precisely this question.31

1.1. Emergence of winner/loser status32

Our framework does not assume that certain cells are winners or losers a priori.33

Instead, we consider cell-based models with two cell types that vary only in their pa-34
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rameters and investigate the conditions that lead to competitive outcomes. Because35

this approach involves detecting rather than asserting winners and losers, we need a36

stringent definition of what a “competitive outcome” entails. We consider two defin-37

ing features of cell competition: (i) both of the competing cell types are viable when38

grown in homotypic conditions; and (ii) the loser cells are completely eliminated in39

heterotypic conditions. Therefore, to identify competitive outcomes between two com-40

peting cell types in a cell-based model, we evaluate their viability in both homotypic41

and heterotypic conditions. This evaluation can be made either using computational42

simulation or through theoretical analysis, in which case viability can be analytically43

predicted. An interaction between two cell types is thus classified as competitive if44

both cell types are found to be viable in a homotypic environment and only one cell45

type is observed to remain viable in a heterotypic environment. These are the cell46

competition criteria, which we illustrate in Figure 1.47

We can use these cell competition criteria to identify parameter regimes that are48

associated with cell competition. Our approach has two important advantages over49

modelling frameworks that hardcode winner/loser identities. Firstly, it allows us to50

determine whether a given cell-based model is capable of displaying cell competition.51

Secondly, characterising the parameter regimes that lead to competitive outcomes helps52

us identify and analyse the factors that drive cell competition. Finally, we note that53

our framework respects the context-dependent nature of cell competition; winner/loser54

status is treated as an emergent property that exists only in the relationship between55

two cell types and is not inherent to any particular cell type.56

1.2. Viability matrix57

Generally speaking, the most appropriate definition of viability to be used for the cell58

competition criteria will depend on the model and the context. We assume, however,59

that viability is a binary property: a cell type is either viable or nonviable. Enumerating60

all combinations of homotypic and heterotypic viability for two competing cell types61

therefore results in 22×2 = 16 possible outcomes. In order to better contextualise the62
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Homotypic conditions Heterotypic conditions
Cell type A Cell type B Cell types A & B

Cell type A is 
homotypically 

viable

Cell type B is 
homotypically 

viable

Cell type A wins
Cell type B loses

Cell type A loses
Cell type B wins

Figure 1: Illustration of the cell competition criteria. The two cell types A and B fulfil the cell

competition criteria if (i) cell type A is homotypically viable, (ii) cell type B is homotypically viable,

and (iii) cell type A is heterotypically viable and cell type B is heterotypically nonviable or, conversely,

cell type A is heterotypically nonviable and cell type B is heterotypically viable.
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cell competition criteria, we tabulate these outcomes in a viability matrix (Figure 2).63

In this paper, we will assess the viability of a cell population based on its sur-

vival frequency, which is a statistic summarising cell population growth (or decline) in

simulations of cell-based models. Later on, in Section 3.3, we introduce its analytical

analogue, the survival probability. Suppose, for the sake of illustration, that we have

two cell types, labelled A and B, and we want to determine whether they satisfy the

cell competition criteria. As Figure 1 suggests, we need to run at least two homotypic

simulations, one per cell type, and one heterotypic simulation in order to measure their

viability in homotypic and heterotypic conditions. We compute the homotypic survival

frequencies as

λ̂A =
# A divisions

# A divisions + # A deaths
, (1)

λ̂B =
# B divisions

# B divisions + # B deaths
, (2)

for cell types A and B from their respective homotypic simulations. Similarly, we

compute the heterotypic survival frequencies from a heterotypic simulation as

ξ̂A|B =
# A divisions

# A divisions + # A deaths
, (3)

ξ̂B|A =
# B divisions

# B divisions + # B deaths
, (4)

for cell types A and B, respectively. The simulations thus yield four survival frequencies:64

λ̂A, λ̂B, ξ̂A|B, and ξ̂B|A. If a survival frequency is below one half, then the cell population65

has declined over the course of the simulation, so we consider the population nonviable.66

Conversely, if a survival frequency is greater or equal to one half, then the cell population67

has grown or stayed the same, so we consider the population viable.68

The viability matrix is then constructed by arranging the homotypic viability out-69

comes along the horizontal axis, and arranging the heterotypic viability outcomes along70

the vertical axis in the same order, as illustrated in Figure 2. Every column thus cor-71

responds to a particular set of homotypic viability outcomes, every row corresponds72

to a particular set of heterotypic viability outcomes, and every element of the matrix73

represents a specific combination of homotypic and heterotypic viability outcomes.74
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Figure 2: Viability matrix. The matrix is constructed by arranging the homotypic and heterotypic

viability outcomes along the horizontal and vertical axes, respectively. Viability is measured in terms of

survival frequency: see Equations (1) and (2) for the definitions of the homotypic survival frequencies

λ̂A and λ̂B , and Equations (3) and (4) for the definitions of the heterotypic survival frequencies ξ̂A|B and

ξ̂B|A. On the main diagonal (cyan) the viability is identical for heterotypic and homotypic conditions.

On the antidiagonal (red), the heterotypic viability is the opposite of the homotypic viability. The

competitive outcomes are coloured green. The double-sided arrows show the result of swapping cell

type labels.
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The last column satisfies the first part of the cell competition criteria, i.e. both cell75

types are homotypically viable. Between the diagonal outcome (both cell types remain76

viable) and antidiagonal outcome (both cell types become nonviable) of this column,77

only one cell type remains viable in heterotypic conditions (green), thus completely78

satisfying the cell competition criteria. We define these outcomes as competitive79

outcomes. The surviving cell type is assigned the winner status, and the heterotyp-80

ically nonviable cell type receives the loser status. The aim of our framework is to81

study the emergence of cell competition and winner/loser status by investigating the82

parameters and conditions that give rise to such competitive outcomes.83

Finally, because we assume that the competing cell types differ only in their param-84

eters, we note that the choice of cell type labels is arbitrary; swapping cell type labels85

should have no effect on the behaviour of the model. The double-sided arrows show86

which outcomes convert into each other as a result of swapping cell type labels, and87

can therefore be considered equivalent.88

1.3. Outline89

In this paper, we demonstrate the utility of the proposed framework by applying90

it to two different models: a mechanical model and a G2 death signal model. The91

mechanical model is discussed and analysed in Section 2, where we investigate whether92

differences in mechanical parameters between two cell types in a vertex-based model93

constitute a sufficient mechanism for cell competition. We perform a large parameter94

sweep to search for competitive outcomes, but we do not find significant evidence for95

competitive behaviour, suggesting that an active mechanism of cell death is necessary96

for cell competition. Motivated by these results, we introduce a modelling framework97

in Section 3 that simulates the intercellular exchange of death signals and the intra-98

cellular initiation of apoptosis: the “death clock” framework. Importantly, within this99

framework we can derive expressions for the survival probability of cells, providing us100

with an analytical tool for predicting the viability of cell populations. We also discuss101

the implementation of the death clock framework in two concrete cell-based models:102
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the well-mixed model and the vertex-based model.103

We use the death clock framework in Section 4 to construct the G2 death signal104

model, where cells emit death signals in the G2 phase of the cell cycle. To investigate105

the potential for competitive outcomes in this model, we predict the viability of cells in106

homotypic and heterotypic conditions using analytical arguments based on the survival107

probability, and validate the predictions with computational simulations of the well-108

mixed and vertex-based models. We demonstrate that not only can the G2 death signal109

model produce competitive outcomes, but also that it reveals additional biologically110

relevant competition regimes that have the potential to refine and expand the current111

theoretical understanding of cell competition. Finally, in Section 5, we discuss and112

interpret the results of the G2 death signal model, and propose a conceptual model113

of cell competition based on two key cellular properties: tolerance to, and emission114

of, death signals. We examine the experimental evidence in support of this model,115

suggest novel cell competition experiments inspired by it, and discuss potential avenues116

for future research.117

2. Cell competition via differing biomechanical properties118

Mechanical cell competition is a special case of cell competition, observed specifically119

in epithelia, that is mediated through mechanical interactions [14]. The losers in this120

interaction are more sensitive to cell compression than the winners and initiate apoptosis121

in response to cell crowding [15, 16]. In addition, we note that epithelial tissues shed122

live cells in response to cell crowding under homotypic conditions [17, 18]. In this study,123

cells undergo a “passive” form of cell death because they are extruded from the tissue124

as a result of mechanical interactions, and only die after being removed from the tissue.125

In this section, we investigate the question: are differences in biomechanical properties,126

combined with passive cell extrusion, sufficient to engender cell competition? A suitable127

cell-based framework for simulating the mechanical interactions in epithelial tissues is128

vertex-based modelling, since it has been shown to reproduce the dynamics of epithelial129

tissues in a variety of developmental processes [19].130
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The overall strategy of this section is therefore to construct a heterotypic vertex-131

based model that allows for the independent variation of mechanical parameters be-132

tween two cell types, and to test whether this variation is sufficient to give rise to133

competitive outcomes. We call this model the “mechanical model” because our aim is134

to search for competitive outcomes mediated through mechanical interactions alone. In135

Section 2.1, we introduce the general vertex-based model and adapt it for heterotypic136

populations. We then describe our methodology for systematically exploring its param-137

eter space in Section 2.2 and present the results in Section 2.3. As we will discuss in138

Section 2.4, we failed to find any significant evidence for competitive outcomes in the139

mechanical model, which motivates the construction of a model based on death signals140

in Section 3.141

2.1. Vertex-based model142

In vertex-based modelling, the epithelial tissue is represented by a polygonal mesh143

where each polygon corresponds to an epithelial cell, and the dynamics of the tissue144

is based on the motion of the mesh vertices. In particular, the equation of motion for145

vertex i with position ri, experiencing the total force Fi, has the form [20]146

µ
dri
dt

= Fi , (5)

where µ is the friction coefficient. The force acting on vertex i is given by147

Fi = ∇iE , (6)

where ∇i is the gradient of an energy function E with respect to the spatial coordinates148

of vertex i. We use the energy function presented in [21], which describes three major149

biomechanical properties: cell elasticity, cell contractility, and cell–cell adhesion;150

E =
∑

α

Kα

2

(

Sα − S0
α

)2
+
∑

α

Γα

2
L2
α +

∑

〈i,j〉

Λij`ij . (7)

The first term represents cell elasticity, i.e. the cell’s resistance against deformation.151

The parameters Kα and S0
α are the elasticity constant and the target cell area of cell α,152
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respectively, while Sα is the cell area of cell α. The second term models cell contractility,153

with Γα and Lα corresponding to the contractility constant and the cell perimeter of cell154

α, respectively. The final term represents cell–cell adhesion, which is implemented as155

a line tension acting on cell–cell interfaces. For each edge 〈i, j〉 connecting the vertices156

i and j, this line tension is the product of the line tension constant, Λij, and the edge157

length, `ij.158

In addition to vertex dynamics, the vertex-based model also evolves through mesh159

rearrangements that allow cells to exchange neighbours, proliferate, and be extruded160

from the tissue. During cell division, a new edge is formed that bisects the mother cell161

and results in two daughter cells. Cell extrusion, on the other hand, is achieved by the162

“T2 swap”, which removes cells when their cell area falls below a certain threshold.163

There are many technical details involved with mesh rearrangements, so we refer the164

reader to [22] for further details.165

Motivated by experiments with in vitro cell cultures [23], we assume a two-phase166

cell cycle model. The first phase corresponds to the G1 phase, and we lump together167

the S, G2 and M phases in the second phase. For brevity, we refer to the second phase168

as the G2 phase. For cell α, the duration of G1 phase is exponentially distributed with169

mean tG1,α. The G2 phase lasts for the fixed duration tG2,α. At the end of the G2170

phase, cell division occurs as described above.171

We divide the cell population into two non-overlapping sets that correspond to two172

distinct cell types, A and B. The mechanical and cell cycle constants for each cell are173

determined by its cell type. In particular, the elasticity constant Kα is given as174

Kα =











KA for α ∈ A

KB for α ∈ B

, (8)

and the target cell area S0
α, contractility constant Γα, and cell cycle constants tG1,α and175

tG2,α are determined analogously. Since the line tension parameter is dependent on the176

edge type, rather than the cell type, we need to specify values for every pairing of cell177

types. In addition, we need to account for edges at the boundary of the tissue, which178
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border a cell on one side and empty space on the other. Denoting the two cells sharing179

the edge 〈i, j〉 as α and β, we write180

Λij =























































ΛAA for α, β ∈ A

ΛBB for α, β ∈ B

ΛAB for α ∈ A, β ∈ B

ΛA for α ∈ A, β ∈ ∅

ΛB for α ∈ B, β ∈ ∅

, (9)

where β ∈ ∅ signifies that 〈i, j〉 is a boundary edge. Furthermore, we impose that each181

cell division results in cells that are of the same type as the mother cell, i.e. a cell of182

type A divides into two daughter cells of type A.183

We implemented the mechanical model within Chaste, an open-source simulation184

package for computational physiology and biology [24] that includes a range of cell-185

based models [25]. We refer the reader to the following GitHub repository for the code186

of the mechanical model: https://github.com/ThomasPak/cell-competition.187

2.2. Methods188

After constructing the heterotypic mechanical model, we now determine whether it189

can generate competitive outcomes. We first performed a systematic parameter grid190

search varying the parameters of only one cell type, but we did not find any statis-191

tically significant evidence for competitive behaviour (results not shown). We then192

expanded the parameter sweep to include the parameters of both cell types. Since this193

involves changing the properties of two cell types simultaneously, we needed to vary194

twice as many parameters compared to the grid search. Therefore, because of the large195

number of parameters, we used a Latin hypercube sampling (LHS) method to sam-196

ple parameter values. LHS methods are particularly useful when the parameter space197

is high-dimensional, since the number of samples required is independent of dimen-198

sion [26]. In particular, we used an LHS method based on orthogonal arrays, which is199
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Parameter Lower Default Upper

S0
A, S

0
B, KA, KB 0.5 1.0 1.5

ΓA,ΓB 0.01 0.04 0.07

ΛAA,ΛAB,ΛBB 0.06 0.12 0.18

tG1,A, tG1,B 0 30 60

tG2,A, tG2,B 40 70 100

Simulation timestep 0.05

Simulation time 250

T1 threshold distance 0.1

Initial cell count 36

Table 1: Lower and upper bounds for parameter sweep of the mechanical model. The default

parameter value is also given. Any remaining parameters were set to the default Chaste values. Each

simulation was given a distinct seed for generating random numbers.

an additional optimisation that improves the dispersal of parameter values [27]. Con-200

cretely, we sampled a total of 2 809 parameter sets. The lower and upper bounds for201

each parameter, as well as its default value, are given in Table 1.202

Every parameter set thus sampled corresponds to a unique pair of cell types. For203

each pair, we conducted three simulations to sample the homotypic and heterotypic204

viabilities: two homotypic simulations (one for each cell type) and one heterotypic205

simulation. Each homotypic simulation has an initial population of 36 cells. For the206

heterotypic simulations, we split the population equally between the two cell types207

(18 cells each) and randomise their spatial distribution in the tissue. The homotypic208

and heterotypic viabilities were evaluated as described in Section 1.2, i.e. based on209

the homotypic survival frequency (Equations (1) and (2)) and heterotypic survival210

frequency (Equations (3) and (4)), respectively.211
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λ̂B < 1
2

λ̂B ≥ 1
2

λ̂A < 1
2

λ̂A ≥ 1
2

λ̂A < 1
2

λ̂A ≥ 1
2

ξ̂B|A < 1
2

ξ̂A|B < 1
2

305 17 11 0

ξ̂A|B ≥ 1
2

0 407 0 4

ξ̂B|A ≥ 1
2

ξ̂A|B < 1
2

0 0 476 16

ξ̂A|B ≥ 1
2

4 105 128 1 313

Table 2: Count of homotypic and heterotypic viability outcomes for the parameter sweep, summarised

using the viability matrix (Figure 2).

2.3. Results212

Out of 2 809 parameter sets, 23 resulted in simulation errors because the timestep213

was too large. Since this only represented a tiny proportion of the parameter sweep,214

we excluded these parameters from our analysis. We summarised the outcomes for the215

remaining parameters using a viability matrix in Table 2.216

The majority of parameter sets resulted in outcomes on the main diagonal, account-217

ing for nearly 90% of all results, indicating that little to no interaction took place in218

most cell type pairings. We find the second most numerous outcome in the middle219

entries of the bottom row, comprising 8.4% of the observed outcomes. As discussed in220

Section 1.2, these entries are equivalent after swapping cell labels. In these outcomes,221

one cell type is nonviable in homotypic conditions, but becomes viable when exposed222

to a homotypically viable cell type. Therefore, the most commonly observed outcomes223

in the parameter sweep, accounting for over 98% of all observations, are the following:224

heterotypic conditions either engender no changes to viability, or enhance the viability225

of a nonviable cell type through its interaction with a viable cell type. The latter can be226

construed as the opposite of a competitive outcome; the viability criteria in homotypic227

and heterotypic conditions are inverted with respect to the cell competition criteria.228

Of the remaining categories, the largest one consists of the middle entries of the229

top row, accounting for 1% of observations. Similarly to the middle entries of the230

13

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 2, 2023. ; https://doi.org/10.1101/2023.03.14.531164doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.14.531164
http://creativecommons.org/licenses/by/4.0/


bottom row, only one cell type is homotypically viable. In contrast to the bottom row,231

however, both cell types end up nonviable in heterotypic conditions. Only 20 outcomes232

(roughly 0.7%) fall into the middle entries of the last column and thus fulfil the cell233

competition criteria, the target of our search. Finally, the least observed outcome lies on234

the antidiagonal (bottom left) with a total of four outcomes, or 0.1%, corresponding to235

the case where two homotypically nonviable cell types both become viable in heterotypic236

conditions.237

It is important to note here that the mechanical model is stochastic, so we must238

account for random noise in the data. Hence, we conducted additional simulations tar-239

geting specifically those 20 parameter sets that satisfied the cell competition criteria,240

and tested whether the competitive behaviour was statistically significant. We found241

that only six out of the 20 targeted parameter sets showed statistically significant com-242

petitive behaviour with a significance level of 5%. We also ran additional simulations243

with segregated initial conditions to examine the influence of spatial segregation. We244

found that this reduced the number of significant results further to one single parameter245

set. We describe the methodology and results of the statistical analysis in more detail246

in Section S1 of the supplementary material.247

2.4. Discussion248

In this section, we constructed a heterotypic vertex-based model, namely the me-249

chanical model, to investigate whether differences in mechanical properties are sufficient250

to give rise to cell competition. We performed a large parameter sweep and found that251

we could only reliably reproduce competitive behaviour for a tiny fraction of the simu-252

lated parameter sets. Most of the parameter sets resulted in no observable interactions,253

and most of the interactions that did occur generated the opposite outcome of cell254

competition.255

We conclude that simply varying the parameters of the mechanical model is not256

sufficient to reliably generate competitive behaviour. This agrees with experiments257

suggesting that cell competition generally depends on an active mechanism of cell death,258
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such as apoptosis [28], and that mechanical cell competition is no exception in this259

respect [15, 16]. We note that these results do not exclude the possibility of mechanical260

interactions playing a role in cell competition. They do strongly suggest, however,261

that passive cell death alone is an insufficient mechanism for cell competition and262

that mechanical interactions must be paired with an active mechanism of cell death263

to produce robust competitive behaviour.264

3. Cell competition via exchange of death signals265

The results of Section 2 suggest that cell competition requires an active and non-266

autonomous mechanism of cell death. This observation is also supported experimen-267

tally [7, 8, 28]. Therefore, the aim in this section is to develop a modelling framework268

for cell competition implementing such an active and non-autonomous mechanism for269

cell death. The core idea is that cells exchange “death signals” with their neighbours270

and that these signals are accumulated by the cell into an abstract quantity called the271

“death clock”. When the death clock reaches a threshold value, apoptosis is triggered.272

We do not yet attach the death signal to a concrete biological mechanism because there273

are multiple competing hypotheses regarding the mode of intercellular communication274

that underlies cell competition, and because the mode of communication may depend275

on the specific type of cell competition under consideration.276

We first discuss our biological assumptions and modelling choices in Section 3.1,277

before introducing the death clock framework in Section 3.2. In Section 3.3, we define278

the survival probability and derive its analytic expression for a given death signal.279

Crucially, the survival probability enables us to analyse the death clock framework280

from a theoretical perspective and make predictions on the viability of cell populations.281

Finally, in Section 3.4 we discuss the implementation of the death clock framework282

in two computational cell-based models: the well-mixed model and the vertex-based283

model. The analytical and computational tools presented in this section will be used284

in Section 4 to conduct a thorough investigation of the G2 death signal model.285
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3.1. Assumptions286

A series of studies involving mathematical modelling and experiments have revealed287

the importance of threshold mechanisms in the initiation of apoptosis [29–32]. For288

instance, it was shown that death ligand-induced apoptosis requires a threshold pro-289

portion of ligand to receptor numbers to be reached [31, 32]. Given this precedent, we290

propose a model in which competition-induced apoptosis is triggered by the accumula-291

tion of death signals reaching a threshold value.292

Furthermore, it has been established in the literature that apoptosis and the cell293

cycle are closely coupled [33–36]. Notably, the regulatory protein Myc is known to294

affect both cell cycle progression and apoptosis [37–39]. On the one hand, Myc is295

necessary for the transition of G1 to S phase, and it induces cell cycle progression in296

quiescent cells [37, 39]. On the other hand, Myc has been associated with increased297

rates of cell death [38]. Coupled with the fact that differential Myc expression results298

in cell competition [9], we hypothesise that apoptosis, competition, and the cell cycle299

are interrelated. Concretely, we assume that the cell is only susceptible to competition-300

induced apoptosis in G1 phase, and that the cell is committed to division from S phase301

onwards. Similar to the vertex-based model in Section 2, we assume a two-phase cell302

cycle model, where we treat the duration of the G1 phase as a random variable and303

lump together the S, G2 and M phases into the G2 phase, which has a fixed duration.304

3.2. Death clock framework305

The death clock framework consists of two coupled cellular processes: the cell cycle306

and the death clock, where the death clock governs the initiation of apoptosis in response307

to death signals. We consider the cell cycle to be an autonomous process, meaning308

that it is not affected by other cells. On the other hand, the death clock is a non-309

autonomous process because it is driven by extracellular signals produced by other310

cells. Together, these processes determine whether and when the cell divides or initiates311

apoptosis.312
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At division, we sample a stochastic G1 duration, denoted as t∗, from the G1 dura-313

tion distribution C, i.e.314

t∗ ∼ C , (10)

where C is subject to the constraints that (i) t∗ ∈ [0,∞) and (ii) E(t∗) = tG1, with315

tG1 the autonomous G1 duration. If apoptosis is not triggered by the death clock,316

the cell spends a duration t∗ in G1 phase and then transitions into G2 phase. After317

spending a fixed duration, tG2, in G2 phase, the cell divides and the process repeats for318

each of the daughter cells.319

We model the accumulation of death signals using an ordinary differential equation320

(ODE) model in which the death clock, denoted by τ(t), evolves according to the321

ODE322

dτ

dt
= f(t) , (11)

where f(t) ≥ 0 is the death signal experienced by the cell. At birth, the death clock

of a cell is initialised to zero, i.e. τ(t = 0) = 0. The apoptosis rule is then

Cell is in G1 phase and τ(t) reaches T†

⇓

initiate apoptosis ,

where T† is the death threshold. We define the survival condition as323

τ(t∗) < T† . (12)

We note that there are two potential sources of uncertainty in the death clock324

framework: variability in G1 duration and in the death signal. The former originates325

from the cell cycle, the latter from intercellular interactions, and both contribute to326

the decision of the cell to initiate apoptosis. Our framework can thus be regarded327

as a minimalist model of autonomous and non-autonomous processes interacting to328

govern competition-induced apoptosis. The death clock framework is summarised by329

the flowchart in Figure 3.330
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Cell cycle (autonomous)

Death clock (non-autonomous)

Sample

Integrate

Apoptosis Division

Transition 
to G2

Yes

No

Figure 3: Death clock flowchart. The “Sample” step corresponds to Equation (10), and the “Integrate”

step corresponds to Equation (11). The condition in the decision block is the survival condition,

corresponding to Equation (12).

3.3. Survival probability331

In order to predict the viability of a cell population, we must determine the proba-332

bility of cells surviving. This problem is intractable when considering the uncertainty333

in the death signal and in the cell cycle simultaneously. To make analytic progress, we334

fix the death signal and consider exclusively the variance in the cell cycle, which lets us335

derive an expression for the “survival probability”. We define this survival probability,336

which we denote by θ, as the probability that the survival condition (Equation (12)) is337

satisfied, i.e.338

θ ≡ P (τ(t∗) < T†) . (13)

Assuming that f(t) is a non-negative integrable function, we define339

F (t) ≡

∫ t

0

f(t′) dt′ , (14)

such that the value of the death clock at time t∗ is F (t∗). This lets us write the survival340

condition as F (t∗) < T†. We define the pseudoinverse function of F (t) as341

F−1(τ) ≡ min{t ∈ [0,∞) : F (t) = τ} , (15)

so that we can reformulate the survival condition as342

t∗ < F−1 (T†) . (16)
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Substituting this into Equation (13), and denoting the cumulative distribution function343

for the distribution of t∗ as Ψ(t), we obtain344

θ = P
(

t∗ < F−1 (T†)
)

= Ψ
(

F−1 (T†)
)

. (17)

As a special case, consider the constant death signal f(t) = c, where c > 0 is a positive345

constant. We then have F (t) = ct ⇒ F−1(τ) = τ/c ⇒ θ = Ψ(T†/c).346

3.4. Cell-based death clock models347

So far, we have described the processes leading to competition-induced apoptosis348

from the perspective of a single cell. The death clock framework can be embedded in any349

cell-based model that (i) provides cells with an extracellular environment from which350

to derive a death signal and (ii) includes a cellular operation for initiating apoptosis.351

In this paper, we implement the death clock mechanism in two particular cell-based352

models: the vertex-based model (Section 2.1), and a well-mixed model. In the vertex-353

based model, a cell interacts only with cells in its local neighbourhood. In the well-mixed354

model, on the other hand, each cell interacts with all other cells on an equal basis. In355

Section 4, we use both models in a complementary manner. Here, we present a high-356

level outline of the well-mixed and vertex-based models. For a detailed discussion of357

their numerical implementations, see Sections S2 and S3 in the supplementary material.358

We provide the code for both models in the following GitHub repository: https:359

//github.com/ThomasPak/cell-competition.360

3.4.1. Well-mixed model361

For each cell α, we represent its state with the cell vector yα(t), where α =362

1, . . . , N(t), and N(t) is the number of cells at time t. We write the cell vector as363

364

yα(t) ≡
[

τα(t) t∗α t0α Cα tG2,α fα(·) T†,α

]

, (18)

and summarise its contents in Table 3. The state of the system, denoted S(t), is then365

S(t) ≡
{

y1(t) , y2(t) , . . . , yN(t)(t)
}

. (19)
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Symbol Description

τα(t) Death clock

t∗α Sampled G1 duration

t0α Birth time

Cα G1 duration distribution

tG2,α G2 duration

fα(·) Death signal function

T†,α Death threshold

Table 3: Summary of cell vector elements.

We evolve the death clock for each cell α as366

dτα
dt

= fα(xα(t)) , (20)

where fα(·) is the death signal function and xα(t) is the “input vector” representing the367

extracellular environment. Since the cell population is well-mixed, this environment is368

composed of every cell except itself, i.e. xα(t) =
[

y1(t), . . . ,yα−1(t),yα+1(t), . . . ,yN(t)(t)
]

.369

In addition, we define two discrete operations: cell division and cell death. When a370

cell’s age reaches its total cell cycle duration, the division operation is triggered which371

constructs two daughter cells; one in a new cell vector and one reusing the mother cell372

vector. When a cell’s death clock reaches the death threshold in G1 phase, the cell is373

removed from the population. See Section S2 in the supplementary material for further374

implementation details.375

3.4.2. Vertex-based model376

We implemented the vertex-based death clock model by augmenting the basic377

vertex-based model, introduced in Section 2, with the death clock mechanism. Briefly,378

this involves equipping every cell with a death clock that can trigger apoptosis. The379

death clock for each cell is evolved similarly to the well-mixed model using Equa-380

tion (20). However, the input vector xα(t) is constrained to contain only information381
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about the local extracellular environment of cell α, for instance the states of its direct382

neighbours. Apoptosis is implemented in the vertex-based model by shrinking the tar-383

get cell area, S0
α, to zero, which causes the cell to contract until it is extruded from the384

tissue. See Section S3 in the supplementary material for implementation details.385

4. The G2 death signal model386

Having introduced the death clock framework, as well as the analytical and com-387

putational tools to investigate its dynamics, we now turn our attention to a particular388

form of the death signal, namely the G2 death signal. In the G2 death signal model,389

cells emit death signals to their neighbours while they are in G2 phase. This choice is390

motivated by the observation that cell competition often manifests as patches of prolif-391

erating cells inducing apoptosis in neighbouring cells to make room for themselves. In392

the death clock framework, cells in G2 phase are committed to division, so we decided393

to associate the death signal with the decision to proliferate. Moreover, experimen-394

tal evidence suggests a link between cell cycle progression and death signals [40, 41].395

Concretely, the G2 death signal is defined as396

f(t) = cg(t) , (21)

where g(t) is the proportion of neighbouring cells in G2 phase, i.e.397

g(t) =











# neighbours in G2

# neighbours
if # neighbours > 0

0 otherwise

, (22)

and c is a positive constant.398

We first investigate the effect that the G2 death signal model has on homotypic pop-399

ulations in Section 4.1. This is done by deriving an expression for the homotypic sur-400

vival probability (Section 4.1.1), which further enables us to characterise the parameter401

space in terms of homotypic viability (Section 4.1.2). For heterotypic populations (Sec-402

tion 4.2), we similarly characterise the heterotypic survival probability (Section 4.2.1)403

and use it to derive the conditions for viability in each subpopulation (Section 4.2.5).404
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We also describe and classify the different types of competitive interactions encountered405

in the G2 death signal model in Section 4.2.4.406

The cell competition criteria are based on both the homotypic and heterotypic407

viabilities, so the results of Sections 4.1 and 4.2 are combined in Section 4.3 to identify408

biologically relevant competition regimes. Notably, we demonstrate that the G2 death409

signal model is capable of producing competitive outcomes. Furthermore, our detailed410

investigation of the parameter space reveals additional competition regimes that refine411

and generalise the classical competition regimes defined in the literature. Finally, in412

Section 5 we provide a detailed discussion of our findings and their implications for cell413

competition.414

4.1. Homotypic populations415

We defined the survival probability in Section 3.3 for a given death signal, but in416

general the death signal received by any particular cell is not known a priori. Fortu-417

nately, as we will see in Section 4.1.1, we can derive a useful approximation of the death418

signal in the G2 death signal model and use this to characterise the homotypic survival419

probability. In Section 4.1.2, we build on this result to characterise the proliferation420

regimes, which we define as the parameter regimes in which cells are viable or nonviable.421

Finally, we validate these proliferation regimes using simulations of the well-mixed and422

vertex-based models in Section 4.1.3.423

4.1.1. Homotypic survival probability424

In order to derive the homotypic survival probability, we need to obtain an expres-425

sion for the G2 death signal under homotypic conditions. But first, we highlight the426

critical role of the cell cycle in the G2 death signal model to motivate the definition of427

an important dimensionless parameter.428

In the G2 death signal model, cells only emit death signals in G2 phase and this leads429

to an important trade-off; cells in G1 phase are vulnerable to death signals and do not430

generate death signals, whereas cells in G2 phase are impervious to death signals but431

do generate death signals. This raises the question: what is the impact of changing the432
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proportion of the cell cycle that is spent in G1 or G2 phase on the survival probability,433

given a fixed total cell cycle duration? In order to investigate this question, we denote434

the total cell cycle duration as tG, and define β as the fraction of the cell cycle that is435

spent, on average, in G1 phase, so that436

tG1 = βtG , tG2 = (1− β)tG . (23)

Even though cell cycle phases are stochastic in the G2 death signal model, we found437

that the death signal is not only relatively stable, but also predictable. In particular,438

we observe that the system is ergodic, in the sense that the average proportion of cells439

in G2 phase relative to the population well approximates the average proportion of the440

cell cycle spent in G2 phase. More precisely, we state that the system is ergodic if, on441

average,442

# cells in G2

# cells
≈

G2 duration

cell cycle duration
. (24)

Furthermore, if the system is well-mixed, then we can approximate g(t) as443

g(t) ≈
# cells in G2

# cells
. (25)

Combining Equations (24) and (25), we have444

g(t) ≈
G2 duration

cell cycle duration
= 1− β , (26)

so that the death signal is445

f(t) = cg(t) ≈ c(1− β) . (27)

Applying the methodology of Section 3.3, we use this result to derive the homotypic446

survival probability, denoted λ, as447

λ = Ψ

(

T†

c(1− β)

)

. (28)

For an exponential cell cycle model more specifically, this becomes448

λ = 1− exp

(

−
T†

ctGβ(1− β)

)

. (29)
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In order to simplify the notation, we introduce the dimensionless parameter η,449

η ≡
T†

ctG
, (30)

which can be interpreted as a normalised death threshold. Hence, we write the homo-450

typic survival probability as a function of two dimensionless parameters:451

λ(β, η) = 1− exp

(

−
η

β(1− β)

)

. (31)

We validate this expression via simulation in Section S4 of the supplementary material.452

4.1.2. Homotypic proliferation regimes453

Based on the homotypic survival probability λ, we distinguish between two prolif-454

eration regimes for homotypic populations1:455

Nonviable Regime
{

λ ≤ 1
2

}

. Cells are equally or more likely to die than to prolif-456

erate, hence the population declines. We say that cell types in this regime are457

nonviable.458

Viable Regime
{

λ > 1
2

}

. Cells are more likely to proliferate than to die, hence the459

population grows. We say that cell types in this regime are viable.460

We define the homotypic viability curve as the curve satisfying λ = 1/2. This461

curve separates the Nonviable Regime from the Viable Regime. For the exponential462

cell cycle model, the homotypic viability curve is given by463

η = ln(2)β(1− β) . (32)

This analysis therefore predicts that a population is viable for all η > ln(2)/4, and for464

η ≤ ln(2)/4 it is viable for extreme values of β and nonviable otherwise (Figure 4(a)).465

1The astute reader may note the discrepancy between the definition of viability based on survival

probability versus the definition based on survival frequency (Section 1.2): λ = 1/2 is considered

nonviable, whereas λ̂ = 1/2 is considered viable. This subtle distinction is rooted in the theory of

birth–death Markov chains but bears no significance on our argument so we will not go into it further.
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Figure 4: Homotypic proliferation regimes. (a) Diagram of homotypic proliferation regimes. The

homotypic viability curve is given by Equation (32). Red: Viable Regime. Grey: Nonviable Regime.

(b) Estimated homotypic survival frequency, λ, defined in Equation (33), for the well-mixed and

vertex-based models. The homotypic viability curve is plotted using a black line.

4.1.3. Computational validation of homotypic proliferation regimes466

We use computational simulation to determine whether the viability of homotypic467

populations in silico matches the homotypic proliferation regimes as predicted by the468

homotypic viability curve. Further details are provided in Section S5 of the supplemen-469

tary material.470

For each simulation k, we computed the homotypic survival frequency, denoted by471

λ̂k, using Equation (1). For every unique parameter set, we averaged the homotypic472

survival frequency as473

λ =
1

Nsim

Nsim
∑

k=1

λ̂k , (33)

where Nsim is the number of simulations for the given parameter set.474

We expect that nonviable populations tend to have a survival frequency below a475

half, i.e. λ̂k < 1/2, and vice versa for viable populations. Figure 4(a) predicts that476

cell types below the homotypic viability curve are nonviable and cell types above the477

curve are viable. To verify these predictions, we visualise λ in Figure 4(b) for both the478

well-mixed and vertex-based models.479

The left-hand plot in Figure 4(b) shows that the observed border between nonviable480

and viable regimes closely matches predictions for the well-mixed model. We see that for481

small η values, the survival frequency is asymmetrical with respect to β, with higher482

survival frequencies for β < 1/2 than β > 1/2. The reason for this discrepancy is483
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discussed in Section S4.5. In short, for low η values, the rate of apoptosis is so high484

that the limiting factor is the number of cells susceptible to apoptosis, rather than485

the survival probability. For small β values, cells spend less time in G1 phase and are486

therefore susceptible for a shorter amount of time.487

The right-hand plot in Figure 4(b) also shows good agreement between theory and488

simulations for the vertex-based model, although the border is less finely resolved than489

in the well-mixed case. We also observe the same asymmetry for small η values as seen490

in the well-mixed model.491

4.2. Heterotypic populations492

In Section 4.1, we derived an expression for the survival probability of cells in a493

homotypic population and used it to characterise the homotypic proliferation regimes.494

We take a similar approach to heterotypic populations in this section, deriving the495

heterotypic survival probability (Section 4.2.1) in order to map out the heterotypic496

proliferation regimes. However, unlike the homotypic case, the heterotypic survival497

probability cannot be approximated by a constant. We therefore need to define two ad-498

ditional quantities before we can characterise the dynamics of heterotypic populations.499

Specifically, in Section 4.2.2 we define the heterotypic survival difference, which500

quantifies the difference in survival probability between competing cell types with re-501

spect to each other, and in Section 4.2.3, we define the homotypic survival difference,502

which quantifies the difference in survival probability of cells in heterotypic conditions503

with respect to homotypic conditions. We make use of both quantities in Section 4.2.4504

to classify the different types of interactions that can occur in heterotypic populations.505

After analysing these derived quantities, we are able to derive the heterotypic prolifer-506

ation regimes in Section 4.2.5, which we validate computationally using the well-mixed507

and vertex-based models in Section 4.2.6. Finally, in Section 4.3, we pull together the508

analyses from Section 4.1 and this section to characterise the competition regimes.509

Similarly to Section 2, we create a heterotypic population in the G2 death signal510

model by splitting the cell population into two cell types, denoted A and B. Each cell511
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type has its own cell cycle model, ΨA(t) and ΨB(t), death signal function, fA(t) and512

fB(t), and death threshold, T†,A and T†,B. We assume that the cell cycle models and513

death signal functions are identical in both cell types, except in their parameters. With514

Ψ(·) as the common cell cycle model, the cell cycle models are thus parameterised515

as ΨA(t) = Ψ(t ; tG1,A),ΨB(t) = Ψ(t ; tG1,B). Similarly, the death signal functions are516

parameterised as fA(t) = cAg(t), fB(t) = cBg(t), with g(t) as defined in Equation (22).517

4.2.1. Heterotypic survival probability518

In this section, we generalise the ergodic approximation, introduced in Section 4.1.1,

to obtain expressions for the heterotypic survival probabilities of cell types A and B.

We demonstrated for homotypic populations that the proportion of the cell cycle spent

in G1 phase, β, is an important nondimensional parameter in determining the survival

probability. Hence, in analogy with Equation (23), we define βA and βB for heterotypic

populations such that:

tG1,A = βAtG,A , tG2,A = (1− βA)tG,A ; (34)

tG1,B = βBtG,B , tG2,B = (1− βB)tG,B . (35)

Furthermore, we assume that the ergodic property holds for both cell types separately.

For cell type A, we have

# A cells in G2

# A cells
≈

G2 duration of A cells

cell cycle duration of A cells

= 1− βA , (36)

and an analogous expression can be derived for cell type B. We denote the number of519

A-type and B-type cells with nA(t) and nB(t), respectively, so that we can write the520

fraction of cells in G2 phase for the whole population as521

# cells in G2

# cells
=

# A cells in G2 + # B cells in G2

nA(t) + nB(t)
. (37)

We substitute Equation (36) and its analogue for cell type B to obtain522

# cells in G2

# cells
≈

nA(t)(1− βA) + nB(t)(1− βB)

nA(t) + nB(t)
. (38)
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To simplify notation, we define the weighted average523

〈1− β〉(t) ≡
nA(t)(1− βA) + nB(t)(1− βB)

nA(t) + nB(t)
. (39)

Assuming that the population is well-mixed, i.e. that Equation (25) holds, we can524

approximate g(t) as525

g(t) ≈
# cells in G2

# cells
≈ 〈1− β〉(t) . (40)

For cell type A, the death signal is thus approximated as fA(t) = cAg(t) ≈ cA〈1−β〉(t).526

Note that the quantity 〈1−β〉(t) is not constant with respect to time because it depends527

on nA(t) and nB(t). This is unlike the homotypic case (Section 4.1.1), where the death528

signal is approximated by the constant quantity 1−β. Therefore, even with the ergodic529

approximation we cannot derive an exact heterotypic survival probability. Nonetheless,530

we can define the instantaneous heterotypic survival probability at time t as the survival531

probability of a cell assuming a constant death signal of magnitude fA(t), i.e.532

ξA|B(t) = ΨA

(

T†,A

cA〈1− β〉(t)

)

, (41)

where we use the symbol ξA|B(t) to denote the instantaneous survival probability at533

time t for cell type A in a heterotypic population with cell type B. Similarly, for cell534

type B, we have535

ξB|A(t) = ΨB

(

T†,B

cB〈1− β〉(t)

)

. (42)

In order to derive the instantaneous heterotypic survival probability for the exponential536

cell cycle model in particular, we first define the dimensionless parameters537

ηA ≡
T†,A

cAtG,A

, ηB ≡
T†,B

cBtG,B

, (43)

in analogy with Equation (30). We can then derive that the instantaneous heterotypic

survival probabilities are

ξA|B(t) = 1− exp

(

−
ηA

βA〈1− β〉(t)

)

, (44)

ξB|A(t) = 1− exp

(

−
ηB

βB〈1− β〉(t)

)

, (45)
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for cell types A and B, respectively. For brevity, we omit the word “instantaneous”538

going forward and use the symbols 〈1 − β〉 and ξA|B instead of 〈1 − β〉(t) and ξA|B(t),539

except when we wish to emphasise their time dependence. Furthermore, in the rest of540

the paper we will assume an exponential cell cycle model, unless stated otherwise.541

Comparing the expressions for the heterotypic survival probability and the homo-542

typic survival probability (Equation (31)), we see that they are almost identical, except543

that the weighted average 〈1 − β〉 is used instead of 1 − β. We note that if nB = 0,544

then 〈1− β〉 = 1− βA and vice versa for nA = 0. In other words, when one cell type is545

absent, we recover the homotypic survival probability of the other cell type.546

4.2.2. Heterotypic survival difference547

Even though the instantaneous heterotypic survival probabilities ξA|B(t) and ξB|A(t)548

change over time, in this section we show that the sign of their difference is invariant549

with respect to system state, and only depends on model parameters. This enables us to550

predict which cell type in a heterotypic population has the highest survival probability.551

We define the heterotypic survival difference between cell types A and B as552

∆ 6=
A|B ≡ ξA|B − ξB|A . (46)

The sign of the heterotypic survival difference tells us which cell type is at a proliferative553

advantage. If ∆ 6=
A|B > 0, then we say that A-type cells are winner cells and B-type554

cells are loser cells, and vice versa for ∆ 6=
A|B < 0. Moreover, if ∆ 6=

A|B = 0, we say that555

the cell types are in coexistence, since neither cell type has a proliferative advantage556

over the other.557

We define winners and losers here in a weak sense; if the population were to repro-558

duce indefinitely, the winner cells would come to dominate the heterotypic population.559

It is not specified whether the loser population is eliminated. The classical definition560

of winners and losers, however, is based on the stronger condition of loser elimination.561

In Section 4.3, we will refine our terminology and differentiate winners and losers into562

more precise categories, which include classical winners and losers.563
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We also note that this definition of winners and losers relies on the assumption564

that tG,A = tG,B, such that differences in survival probability alone determine relative565

proliferative success. In the general case, however, differences in the total cell cycle566

duration can also affect the dynamics of heterotypic populations. For instance, a cell567

type with a lower survival probability may become more abundant than the competing568

cell type by dividing more rapidly. However, for the sake of simplicity we do not consider569

such cases in this paper, and instead characterise population dynamics solely in terms570

of survival probabilities.571

To obtain an expression for the sign of ∆ 6=
A|B, we substitute Equations (44) and (45)572

into Equation (46) and rearrange to give573

∆ 6=
A|B = exp

(

−
ηB

βB〈1− β〉

)

− exp

(

−
ηA

βA〈1− β〉

)

. (47)

Since exp(·) is a monotonically increasing function, we have sgn(exp(x) − exp(y)) =

sgn(x− y). Applying the sign function thus yields

sgn
(

∆ 6=
A|B

)

= sgn

(

ηA
βA〈1− β〉

−
ηB

βB〈1− β〉

)

= sgn

(

ηA
βA

−
ηB
βB

)

. (48)

574

To interpret Equation (48), we note that η and β both affect a cell’s sensitivity to575

the death signal. Increasing η corresponds to a higher death threshold, and thus a lower576

sensitivity, and decreasing β shortens the time spent in G1 phase, during which a cell is577

vulnerable to competition-induced apoptosis. This suggests that we can interpret η/β578

as a cell’s tolerance to death signals. Therefore, Equation (48) states that the relative579

tolerance to death signals determines winner/loser status, with the most tolerant cell580

type becoming the winner.581

Since the sign of ∆ 6=
A|B depends only on model parameters, we can partition the582

parameter space into two regions in which ∆ 6=
A|B > 0 and ∆ 6=

A|B < 0, respectively. We583

define the coexistence curve for fixed βB and ηB as the curve in (βA, ηA)–space that584
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satisfies ∆ 6=
A|B = 0. From Equation (48), we derive that the coexistence curve is given585

by586

ηA
βA

−
ηB
βB

= 0 . (49)

We validate this result using simulations of the well-mixed and vertex-based models in587

Section S6 of the supplementary material.588

4.2.3. Homotypic survival difference589

The heterotypic survival difference does not indicate that a competitive interaction,590

or indeed any interaction, is taking place. After all, co-culturing two cell types that do591

not interact at all but have different intrinsic survival probabilities would result in a592

nonzero heterotypic survival difference. In this section, however, we describe a metric593

that quantifies changes in survival probability resulting from heterotypic interactions.594

In particular, we define the homotypic survival difference as595

∆=
A|B ≡ ξA|B − λA , ∆=

B|A ≡ ξB|A − λB , (50)

for cell types A and B, respectively. The homotypic survival difference compares the596

fitness of a cell type in a heterotypic environment to its fitness in a homotypic environ-597

ment.598

The sign of the homotypic survival difference indicates whether a cell type is more599

or less fit as a result of the heterotypic interaction, compared to homotypic conditions.600

If ∆=
A|B > 0, then we say that cell type A is more fit when competing with cell type601

B, and vice versa for ∆=
A|B < 0. A positive homotypic survival difference indicates602

that the cell type benefits from the interaction. This does not mean, however, that603

the interaction is mutualistic, since in that case both cell types would need to benefit604

from the interaction (i.e. ∆=
A|B,∆

=
B|A > 0). We show below that such an interaction is605

impossible in the G2 death signal model. Finally, if ∆=
A|B = 0, then we say that cell606

type A is in neutral competition with cell type B, since the presence of cell type B607

does not produce a net change in the fitness of cell type A.608
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Focusing our derivation on the homotypic survival difference of cell type A, we apply609

the sign function to give610

sgn
(

∆=
A|B

)

= sgn

(

1

〈1− β〉
−

1

1− βA

)

. (51)

We expand 〈1− β〉(t) to give

1

〈1− β〉(t)
−

1

1− βA

=

nB(t)(βB − βA)

[nA(t)(1− βA) + nB(t)(1− βB)] (1− βB)
. (52)

The denominator of the right-hand side is strictly positive, so we only need to consider611

the sign of the numerator. Equation (52) indicates that the sign of ∆=
A|B is dependent612

on the system state. In the degenerate case of nB(t) = 0, we are reduced to a homotypic613

population composed solely of A-type cells, and thus ∆=
A|B = 0. However, if we limit614

our scope to the heterotypic case, i.e. nA(t), nB(t) > 0, we can rewrite Equation (51)615

as616

sgn
(

∆=
A|B

)

= sgn(βB − βA) . (53)

For cell type B, we derive an analogous expression:617

sgn
(

∆=
B|A

)

= sgn(βA − βB) . (54)

Comparing Equations (53) and (54), we derive the following identity:618

sgn
(

∆=
A|B

)

= −sgn
(

∆=
B|A

)

. (55)

In other words, the homotypic survival differences of two competing cell types have619

opposite signs. Hence, one cell type’s loss is another cell type’s gain, and a mutualistic620

relationship is impossible.621

For the heterotypic survival difference (Section 4.2.2), we factored out the death622

signal, 〈1− β〉, to find an expression for the sign of ∆ 6=
A|B and found that winner/loser623

status is determined by the difference in tolerance to death signals. Here, in contrast, we624

factored out the tolerance to death signals, η/β, to find that the sign of the homotypic625
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survival difference depends on the difference in β. Under the ergodic approximation626

(Sections 4.1.1 and 4.2.1), a larger value of 1− β corresponds to a greater death signal.627

This is because the amount of time spent in G2 phase, during which cells emit death628

signals, is proportional to 1− β. This suggests that we can interpret 1− β as the cell’s629

emission rate of death signals. Rewriting Equation (53) as630

sgn
(

∆=
A|B

)

= sgn
(

(1− βA)− (1− βB)
)

, (56)

shows that the sign of the homotypic survival difference is determined by the difference631

in emission of death signals. In particular, cell type A fares better in heterotypic632

conditions if cell type B has a lower emission of death signal than cell type A, and vice633

versa.634

Equations (53) and (54) show that the signs of ∆=
A|B and ∆=

B|A are independent of635

the system state, except in the degenerate homotypic cases nA(t) = 0 and nB(t) = 0.636

We can therefore partition the parameter space into two regions: one where ∆=
A|B > 0 ∧637

∆=
B|A < 0, and one where ∆=

A|B < 0 ∧ ∆=
B|A > 0. We define the neutral competition638

curve as the curve in (βA, ηA)–space that satisfies ∆=
A|B = 0 for fixed values of βB and639

ηB. From Equation (53), we derive that the neutral competition curve is given by640

βB − βA = 0 . (57)

We validate this result using simulations of the well-mixed and vertex-based models in641

Section S7 of the supplementary material.642

4.2.4. Classification of competitive interactions643

In Sections 4.2.2 and 4.2.3, we defined the heterotypic and homotypic survival dif-644

ferences, respectively. The former relates the difference in survival probability between645

competing cell types in heterotypic conditions, while the latter relates the difference646

compared to homotypic conditions. In this section, we construct a classification of647

competitive interactions based on these quantities.648

Enumerating the signs of the homotypic and heterotypic survival differences, com-649

bined with the identity sgn(∆ 6=
A|B) = −sgn(∆ 6=

B|A) (see Equation (55)), we obtain nine650
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∆ 6=
A|B

∆=
A|B + 0 −

+
A direct winner A neutral winner A indirect winner

B direct loser B neutral loser B indirect loser

0 Coexistence Neutral coexistence Coexistence

−
A indirect loser A neutral loser A direct loser

B indirect winner B neutral winner B direct winner

Table 4: Classification of competitive interactions based on the heterotypic survival difference, ∆6=
A|B ,

defined in Section 4.2.2, and the homotypic survival difference, ∆=

A|B , defined in Section 4.2.3.

types of competitive interactions (Table 4). After accounting for the fact that cell type651

labels are arbitrary, we can group these types into five distinct categories:652

Neutral coexistence
{

∆ 6=
A|B = 0, ∆=

A|B = 0
}

. This is the degenerate case where nei-653

ther cell type has a relative survival advantage, and both cell types have the same654

survival probability as in homotypic conditions. The competitive interaction is655

neutral because there is no effect on either cell type’s absolute fitness, and the656

cell types coexist because they have the same fitness.657

Coexistence
{

∆ 6=
A|B = 0, ∆=

A|B 6= 0
}

. The cells experience a change in absolute fit-658

ness compared to the homotypic environment, but there is no relative survival659

advantage for either cell type. Therefore, neither cell type dominates.660

Neutral competition
{

∆ 6=
A|B 6= 0, ∆=

A|B = 0
}

. The nonzero heterotypic survival dif-661

ference means that there is a difference in relative fitness. Thus, winners and662

losers emerge, with the winner cell type dominating the population. However,663

neither cell type experiences a difference in absolute fitness compared to homo-664

typic conditions.665
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Figure 5: Diagram situating the different types of competitive interactions in (βA, ηA)–space, given

fixed values for βB and ηB . The full and dashed lines correspond to the coexistence and neutral

competition curves, respectively. The green dot corresponds to the neutral coexistence point.

Indirect competition
{

∆ 6=
A|B 6= 0, sgn

(

∆ 6=
A|B

)

= −sgn
(

∆=
A|B

)}

. As in neutral com-666

petition, winners and losers emerge from the competitive interaction. The sign of667

the homotypic survival difference is nonzero and opposite to the sign of the het-668

erotypic survival difference, which means that the losers experience an increase in669

absolute fitness compared to homotypic conditions, and the winners experience a670

decrease.671

Direct competition
{

∆ 6=
A|B 6= 0, sgn

(

∆ 6=
A|B

)

= sgn
(

∆=
A|B

)}

. Similar to the other672

types of competition, the population splits into winner and loser cells. In contrast673

to indirect competition, however, the homotypic survival difference has the same674

sign as the heterotypic survival difference, meaning that the winners are fitter675

than in the homotypic environment, and the losers less fit.676

All types of competition involve one cell type (the winners) becoming more abun-677

dant than the other cell type (the losers). The distinction between types is based on678

the change in fitness experienced by the winners and losers compared to homotypic679

conditions. In neutral competition, there is no change in fitness for either the winners680

or losers. In indirect competition, the winners become less fit and the losers more fit,681
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potentially leading to a scenario where a previously nonviable loser cell type is “rescued”682

by the interaction with the winner cell type and becomes viable. In direct competition,683

the winners become more fit and the losers less fit, potentially leading to a previously684

viable loser cell type becoming nonviable as a result of the interaction, which is one of685

the cell competition criteria. We therefore expect any competitive outcomes to be the686

result of direct competition.687

As discussed previously, we can partition cross sections of parameter space using the688

coexistence curve and the neutral competition curve. In Figure 5, we plot these curves689

in (βA, ηA)–space for fixed values of βB and ηB. The curves translate to straight lines,690

on which we find the coexistence and neutral competition regimes. Furthermore, we691

find the neutral coexistence point at their intersection, i.e. βA = βB and ηA = ηB,692

which corresponds to the degenerate case where the competing cell types have identical693

parameters. Finally, we see that the curves divide the cross section into four sectors,694

with the top left and bottom right sectors corresponding to direct competition, and the695

top right and bottom left sectors corresponding to indirect competition.696

4.2.5. Heterotypic proliferation regimes697

While introducing the heterotypic survival difference in Section 4.2.2, we defined698

winners and losers in a weak sense based on which cell type is more prolific. Although699

this is an important precondition for cell competition, the cell competition criteria, as700

defined in Section 1.1, are based on the viability of the competing cell types, not their701

relative abundance. Thus, in this section we investigate the viability of winners and702

losers, ultimately deriving the heterotypic proliferation regimes. In Section 4.3, we use703

these results to arrive at a more comprehensive definition of winners and losers.704

Regardless of the type of competitive interaction, winners (in the proliferative sense)705

become the dominant species in the population over time by definition. Therefore, we706

expect that the population-weighted average death signal, 〈1 − β〉(t), approaches the707

intrinsic death signal of the winning cell type. Assuming for now that cell type A is708
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the winner, i.e. ∆ 6=
A|B > 0, we have709

〈1− β〉(t) → 1− βA as t → ∞ . (58)

Hence, when considering the long-term behaviour of the population, we can substitute

1 − βA for 〈1 − β〉 into the heterotypic survival probability for cell types A and B to

obtain the asymptotic survival probabilities:

ξA|B(t → ∞) = 1− exp

(

−
ηA

βA(1− βA)

)

, (59)

ξB|A(t → ∞) = 1− exp

(

−
ηB

βB(1− βA)

)

. (60)

Comparing Equation (59) with Equation (31), we find that the asymptotic survival710

probability of cell type A is equal to its homotypic survival probability, λA. The het-711

erotypic viability of winners is thus determined by their homotypic viability. We denote712

the right-hand side of Equation (60) as713

ξ∞B|A ≡ 1− exp

(

−
ηB

βB(1− βA)

)

, (61)

so that we can write the asymptotic survival probabilities more succinctly as

ξA|B(t → ∞) = λA , (62)

ξB|A(t → ∞) = ξ∞B|A . (63)

Conversely, if cell type B is the winner, i.e. ∆ 6=
A|B < 0, we have

ξA|B(t → ∞) = ξ∞A|B , (64)

ξB|A(t → ∞) = λB , (65)

where ξ∞A|B is defined analogously to Equation (61).714

We can now use the asymptotic survival probability to characterise the viability of715

competing cell types in a heterotypic population. Assuming that cell type A is the716

winner, we distinguish between the following outcomes:717
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Case
{

λA ≤ 1
2

}

. If the winner cells are not viable, then the losers are also not viable,718

since they have, by definition, a lower survival probability than the winners. Thus,719

both winners and losers go extinct.720

Case
{

λA > 1
2

}

. The winner cells are homotypically viable and therefore remain viable.721

Whether or not the losers are viable depends on ξ∞B|A.722

Subcase
{

ξ∞B|A ≤ 1
2

}

. The loser cells are heterotypically nonviable and are elim-723

inated from the tissue.724

Subcase
{

ξ∞B|A > 1
2

}

. The losers are heterotypically viable and persist in the725

tissue.726

We thus have three distinct proliferation regimes for ∆ 6=
A|B > 0. Three analogous pro-727

liferation regimes exist for ∆ 6=
A|B < 0, for a total of six proliferation regimes overall. We728

cannot visualise four-dimensional (βA, ηA, βB, ηB)–space directly, so we first provide an729

outline of the proliferation regimes, and then sketch them in cross sections for particular730

values of βB and ηB.731

Firstly, the coexistence hypersurface ∆ 6=
A|B = 0 divides the parameter space into732

two subspaces, ∆ 6=
A|B > 0 and ∆ 6=

A|B < 0, where cell types A and B are the respective733

winners. Secondly, for ∆ 6=
A|B > 0, we have two regions where λA > 1/2 and λA < 1/2,734

respectively. The boundary is given by the A winner viability hypersurface λA =735

1/2. The region in which the winner is viable, i.e. λA > 1/2, is further split into two736

parts, based on whether the loser is viable (ξ∞B|A > 1/2) or nonviable (ξ∞B|A < 1/2), by737

the B loser viability hypersurface ξ∞B|A = 1/2. We divide the subspace ∆ 6=
A|B < 0,738

where cell type B is the winner, in an analogous manner. Hence, in total there are739

five hypersurfaces that delineate the heterotypic proliferation regimes: the coexistence740

hypersurface, two winner viability hypersurfaces and two loser viability hypersurfaces.741

We visualise the heterotypic proliferation regimes using cross sections for particular

values of βB and ηB in (βA, ηA)–space. In these cross sections, the hypersurfaces become
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the following curves:

Coexistence curve: ∆ 6=
A|B = 0 ⇔ ηA =

ηB
βB

βA , (66)

A winner curve: λA =
1

2
⇔ ηA = ln(2)βA(1− βA) , (67)

B loser curve: ξ∞B|A =
1

2
⇔ βA = 1−

ηB
ln(2)βB

, (68)

A loser curve: ξ∞A|B =
1

2
⇔ ηA = ln(2)(1− βB)βA . (69)

The B winner viability hypersurface does not map onto a curve in (βA, ηA)–space be-742

cause it depends only on βB and ηB. We therefore consider the cases λB < 1/2 and743

λB > 1/2 in separate cross sections.744

If ηB/βB > ln(2), then Equation (68) does not have a solution for positive βA, hence745

the B loser viability curve does not appear in cross sections for which this is the case.746

We therefore consider this case in a separate cross section. It can be easily verified747

that ηB/βB > ln(2) implies λB > 1/2, so we only need to consider three distinct cross748

sections (Figure 6(a)):749

Cross Section I {βB = 0.2, ηB = 0.2}. This cross section satisfies ηB/βB > ln(2). We750

see three distinct regimes. Above the coexistence curve, both cell types are viable, with751

cell type A as the winner. Between the coexistence curve and the A loser viability curve,752

cell type B is the winner and both cell types are viable. Below the A loser viability753

curve, only cell type B is viable. We note that there are no values of βA and ηA for754

which cell type B is nonviable. Therefore, regardless of the competing cell type, cell755

type B is always viable.756

Cross Section II {βB = 0.8, ηB = 0.2}. This cross section satisfies ηB/βB < ln(2) and757

λB > 1/2. We identify five distinct regimes. Below the coexistence curve, we see758

the same two regimes as in Cross Section I. The wedge-shaped region between the759

coexistence curve and the A loser viability curve is particularly interesting because it760

partly overlaps with the area under the homotypic viability curve of cell type A. The A-761

type cells in this region are nonviable under homotypic conditions, but are viable when762
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Figure 6: Heterotypic proliferation regimes: diagram and well-mixed results. (a) Diagrams for

Cross Sections I, II, and III, situating the different heterotypic proliferation regimes. The green dot

corresponds to the neutral coexistence point. Grey: cell types A and B are nonviable. Green: cell type

A is nonviable, cell type B is viable. Orange: cell type A is viable, cell type B is nonviable. Red: cell

types A and B are viable. (b) Estimated heterotypic survival frequency of cell types A and B using the

well-mixed model. The top row displays the estimated heterotypic survival frequency of cell type A,

ξA|B , defined in Equation (70). The bottom row displays the estimated heterotypic survival frequency

of cell type B, ξB|A, also defined in Equation (70). All curves are the same as in (a).
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interacting with cell type B and are therefore “rescued” by the competitive interaction.763

This is also present in Cross Section I, but it is more visible here. We note that this764

region is contained within the indirect competition sector because only an indirect765

competitive interaction can increase the fitness of loser cells.766

We see three regimes above the coexistence curve. Below the A winner viability767

curve, the winning A-type cells are nonviable, which renders both cell types nonviable.768

Above this curve, the winner A-type cells are viable. In this subspace, the survival of769

cell type B depends on βA. To the left of the B loser viability curve, the death signal770

emitted by cell type A is sufficiently high to eliminate cell type B, whereas, on the other771

side, the death signal is too weak to eliminate cell type B, so cell type B survives.772

Cross Section III {βB = 0.4, ηB = 0.1}. This cross section satisfies ηB/βB < ln(2) and773

λB < 1/2. Below the coexistence curve, where cell type B is the winner, both cell types774

are nonviable because cell type B is homotypically nonviable. Above the coexistence775

curve, we find the same regimes as in Cross Section II. Since cell type B is homotypically776

nonviable in this cross section, we note that the top right triangular region, where cell777

type B is heterotypically viable, corresponds to nonviable loser rescue, and thus is778

analogous to the wedge-shaped area discussed in Cross Section II. Similarly, this area779

is fully contained within the indirect competition sector.780

4.2.6. Computational validation of heterotypic proliferation regimes781

In this section, we validate the predicted heterotypic proliferation regimes of Sec-782

tion 4.2.5 by conducting simulations of the well-mixed and vertex-based models. For the783

vertex-based model, we conducted simulations with both segregated and random initial784

conditions. Further details are provided in Section S8 of the supplementary material.785

To estimate the survival frequency for a particular parameter set, we averaged the786

heterotypic survival frequencies across repeated simulations as787

ξA|B =
1

Nsim

Nsim
∑

k=1

ξ̂A|B,k , ξB|A =
1

Nsim

Nsim
∑

k=1

ξ̂B|A,k . (70)
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Figure 7: Heterotypic proliferation regimes: vertex-based results. (a–b) Estimated heterotypic sur-

vival frequency of cell types A and B using the vertex-based model with random and segregated initial

conditions. See Figure 6(b) for legend. (a) Random initial conditions. (b) Segregated initial conditions.
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The results for the well-mixed model are given in Figure 6(b). The top and bottom788

rows show the survival frequency for cell types A and B, respectively. When comparing789

the results to Figure 6(a), we see an excellent agreement between the simulations and790

predictions.791

The results for the vertex-based model with random and segregated initial conditions792

are provided in Figures 7(a) and 7(b), respectively. In Figure 7(a), we can see similar793

proliferation regimes as in the well-mixed case, except that the contours do not align794

perfectly with the predicted curves. In Cross Section II, for cell type A, we expect to795

see a sequence of red–blue–red–blue regions from top left to bottom right, but instead796

we see a gradual transition from red to blue. In addition, for high βA, we see red regions797

for cell type A that extend below their predicted limits in all cross sections.798

In Figure 7(b), we see significant deviations from the predicted proliferation regimes.799

When comparing the plots for cell type A with the results for the homotypic proliferation800

regimes in Figure 4(b), we see that A-type cells essentially behave as if they were in a801

homotypic environment. Similarly, the heterotypic viability of cell type B matches its802

viability in homotypic conditions, regardless of the parameters of cell type A. These803

results suggest that segregated cell types behave like homotypic populations.804

4.3. Classification of competition regimes805

So far, we have systematically characterised the proliferation regimes of homotypic806

populations (Section 4.1.2) and heterotypic populations (Section 4.2.5). In addition,807

we have described and classified the different types of competitive interactions in het-808

erotypic populations (Section 4.2.4). In this section, we integrate all these classifications809

into the competition regimes of the G2 death signal model, allowing us to not only apply810

the cell competition criteria, but also to refine and expand the known cell competition811

regimes.812

The first condition of the cell competition criteria is that both cell types are homo-813

typically viable, i.e. λA, λB > 1/2. In order to satisfy λA > 1/2, we only consider the814

parameter space above the homotypic viability curve, as shown in Figure 8. To sat-815
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Regime λW , λL ∆ 6=
W |L ξ∞L|W ∆=

L|W Legend

Homotypic viability > 1/2 - - -

Coexistence > 1/2 = 0 - -

Competition > 1/2 > 0 - - -

Loser elimination > 1/2 > 0 ≤ 1/2 < 0 -

Loser survival > 1/2 > 0 > 1/2 - -

Cell competition > 1/2 > 0 - < 0

Complete cell competition > 1/2 > 0 < 1/2 < 0

Critical cell competition > 1/2 > 0 = 1/2 < 0

Incomplete cell competition > 1/2 > 0 > 1/2 < 0

Neutral competition > 1/2 > 0 > 1/2 = 0

Indirect competition > 1/2 > 0 > 1/2 > 0

Table 5: Classification of competition regimes. The competition regime (bolded) can be subdivided

in two ways: loser elimination and loser survival regimes (top section), or cell competition, neutral

competition, and indirect competition regimes (bottom section). The underlined conditions are implied

by the other conditions on the same row. The legend column maps the regimes onto areas and curves

plotted in Figure 8.
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Figure 8: Diagrams of competition regimes for Cross Sections I and II. The green dot corresponds to

the neutral coexistence point. The labels W and L are used to refer to the winner and loser cell types,

respectively, i.e. W = A, L = B for ∆ 6=
A|B > 0 and W = B, L = A for ∆6=

A|B < 0. The symbol ξ∞
L|W

refers to the asymptotic survival probability of the loser cell type. Linear hatch: homotypic viability.

Cross hatch: cell competition. Red: complete cell competition. Orange: incomplete cell competition.

Green: indirect cell competition. See also Table 5 for the legend.

isfy the viability condition for cell type B, we only consider cross sections that satisfy816

λB > 1/2. In particular, Cross Section III does not satisfy this condition, so we only817

plot Cross Sections I and II in Figure 8. We define the homotypic viability regime818

as819

λA, λB >
1

2
. (71)

The second condition is that only one cell type remains viable when the two cell types820

compete. This implies a nonzero heterotypic survival difference, i.e. ∆ 6=
A|B 6= 0, splitting821

the homotypic viability regime into the coexistence regime822

λA, λB >
1

2
∧ ∆ 6=

A|B = 0 , (72)

and the competition regime823

λA, λB >
1

2
∧ ∆ 6=

A|B 6= 0 . (73)

The competition regime is further subdivided according to which cell type is the winner.824

The G2 death signal model is symmetric with respect to swapping cell type labels, so825
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the choice of winner or loser is arbitrary. Therefore, for ease of notation, we henceforth826

label the winner cell type with W and the loser cell type with L, such that ∆ 6=
W |L > 0827

by construction.828

As we saw in Section 4.2.5, the viability of the winner cell type is determined by its829

homotypic viability, which is guaranteed by Equation (71). Therefore, we only need to830

impose further that the loser cell type is heterotypically nonviable, i.e. ξ∞L|W ≤ 1/2. We831

define the loser elimination regime as832

λW , λL >
1

2
∧ ∆ 6=

W |L > 0 ∧ ξ∞L|W ≤
1

2
, (74)

and the loser survival regime as833

λW , λL >
1

2
∧ ∆ 6=

W |L > 0 ∧ ξ∞L|W >
1

2
. (75)

The loser elimination regime satisfies the cell competition criteria and is non-empty for834

the G2 death signal model. In addition, we have validated the predicted proliferation835

regimes with computational simulations. We therefore conclude that the G2 death836

signal model is capable of producing competitive outcomes.837

We can further refine the competition regimes by considering, in addition, the type of838

competitive interaction. Figure 8 shows that the neutral competition curve, defined by839

∆=
L|W = 0, runs through the loser survival regime. We define the neutral competition840

regime as841

λW , λL >
1

2
∧ ∆ 6=

W |L > 0 ∧ ∆=
L|W = 0 . (76)

The neutral competition curve separates the loser survival regime into two subregimes842

where ∆=
L|W < 0 and ∆=

L|W > 0, respectively. In the case of ∆=
L|W < 0, the fitness of843

losers is reduced by the winners, but not enough to cause loser elimination. We define844

this as the incomplete cell competition regime845

λW , λL >
1

2
∧ ∆ 6=

W |L > 0 ∧ ξ∞L|W >
1

2
∧ ∆=

L|W < 0 . (77)

In addition, we can partition the loser elimination regime into the complete cell846

competition regime847

λW , λL >
1

2
∧ ∆ 6=

W |L > 0 ∧ ξ∞L|W <
1

2
, (78)
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and the critical cell competition regime848

λW , λL >
1

2
∧ ∆ 6=

W |L > 0 ∧ ξ∞L|W =
1

2
, (79)

which is the threshold regime between complete and incomplete cell competition. The849

common feature of complete, critical, and incomplete cell competition is that the win-850

ners negatively impact the losers. We group these regimes under the cell competition851

regime852

λW , λL >
1

2
∧ ∆ 6=

W |L > 0 ∧ ∆=
L|W < 0 . (80)

Finally, on the other side of the neutral competition curve we have ∆=
L|W > 0, where853

loser cells have a higher fitness than in homotypic conditions. We denote this as the854

indirect competition regime855

λW , λL >
1

2
∧ ∆ 6=

W |L > 0 ∧ ∆=
L|W > 0 . (81)

We plot the competition regimes in Figure 8 for Cross Sections I and II, and summarise856

them in Table 5.857

The competition regimes let us discriminate between different types of winners and858

losers. We define complete winners, critical winners, incomplete winners, neutral win-859

ners, and indirect winners as the winner cell types in the respective competition regimes,860

and define different types of losers analogously. In this terminology, complete and criti-861

cal winners and losers correspond to the classical definition of winners and losers in the862

cell competition literature.863

5. Discussion864

We stated in the introduction (Section 1) that there are two important advantages in865

treating winner/loser status as an emergent property rather than hardcoded identities:866

(i) we can test whether a given cell-based model is capable of producing competitive867

outcomes; and (ii), if so, analyse the conditions that give rise to competitive outcomes868

in that model. We demonstrated the first capability in Section 2 by showing that869
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differences in mechanical properties alone (i.e. without a mechanism for active cell870

death) are insufficient to robustly generate competitive outcomes in a vertex-based871

model of an epithelial tissue, which agrees with experimental observations that cell872

competition depends on the initiation of cell death in loser cells [28].873

This negative result motivated our decision to propose a modelling framework for874

cell competition with an active mechanism of cell death that is triggered by the exchange875

of death signals (Section 3). In Section 4, we introduced the G2 death signal model, in876

which cells only emit death signals in the G2 phase. We systematically investigated its877

behaviour for homotypic (Section 4.1) and heterotypic populations (Section 4.2), study-878

ing their proliferation regimes through a combination of (i) theoretical analysis based879

on the survival probability and (ii) computational simulation using the well-mixed and880

vertex-based models, ultimately culminating in the characterisation of the competition881

regimes in Section 4.3. Importantly, our analysis allows for a direct examination of882

the conditions and parameters that lead to competitive outcomes. In this section, we883

will interpret and discuss our findings, propose specific ideas for novel cell competition884

experiments, and outline potential future research directions.885

5.1. Spatial mixing is required for cell competition886

In Section 4.2.6, we observed that the occurrence of competitive outcomes in the887

vertex-based model depends on the initial spatial patterning of cell types. When the888

cell types are distributed randomly, we observe competitive outcomes, but when they889

are segregated, we do not. In fact, the behaviour of the segregated cell types is virtually890

identical to that of isolated homotypic populations. This result agrees with experimen-891

tal observations that spatial mixing is required for cell competition [42], and has been892

replicated in other cell-based models of cell competition [13].893

Our derivation of heterotypic proliferation regimes is based on the assumption that894

the population is well-mixed, which is only true locally at heterotypic clone boundaries895

in the vertex-based model, where cells sample the death signal of both cell types. Within896

clones, however, cells interact only with cells of the same type, so they behave more like897
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a homotypic population. The degree of competition therefore depends on the amount898

of heterotypic contact between cell types, which is modulated by the level of spatial899

mixing.900

5.2. Tolerance and emission901

When we derived the heterotypic survival difference in Section 4.2.2, we found that902

the relative abundance of cell types in a tissue is determined by their tolerance to death903

signals (i.e. η/β). Furthermore, when we derived the homotypic survival difference in904

Section 4.2.3, we showed that the difference in death signal emission (i.e. 1−β) between905

two competing cell types determines the impact of the heterotypic interaction compared906

to homotypic conditions. Also, in Section 4.2.5, we demonstrated that loser elimination907

depends on the relationship between the tolerance of the loser and the emission of the908

winner. From these observations, we infer that tolerance to, and emission of, death909

signals are the fundamental cell properties driving cell competition in the G2 death910

signal model. Here, we present a transformation of parameters that explicitly describes911

the behaviour of the model in terms of tolerance and emission. We also show that the912

transformed parameters allow us to describe the competition regimes using intuitive913

and elegant expressions.914

We define the tolerance and emission of cell type X, respectively denoted η̃X and915

dX , as follows:916

η̃X ≡
ηX

ln(2)βX

, dX ≡ 1− βX . (82)

We can formulate the homotypic viability condition, 1/2 < λX , using η̃X and dX by917

substituting the homotypic survival probability (Equation (31)) and rearranging:918

1

2
< λX ⇔ 1− βX <

ηX
ln(2)βX

⇔ dX < η̃X . (83)

The last inequality reads as the condition that cells must have a higher tolerance than919

emission to be homotypically viable. The biological interpretation is that cells must920

be capable of tolerating the death signal that they themselves emit in order to survive921

as a group. The loser elimination condition, ξ∞L|W < 1/2, can also be expressed922
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using tolerance and emission. Denoting the winner and loser cell types using the labels923

W and L, respectively, we substitute the asymptotic survival probability of the loser924

(Equation (61)) to obtain925

ξ∞L|W <
1

2
⇔

ηL
ln(2)βL

< 1− βW ⇔ η̃L < dW . (84)

This means that winner cells must emit death signals at a rate that loser cells cannot926

tolerate in order to eliminate the loser cell type from the tissue.927

To satisfy the cell competition criteria, we require that both cell types are homo-928

typically viable, i.e. dW < η̃W and dL < η̃L, and that the loser is eliminated, i.e.929

η̃L < dW . Combining these expressions, we can summarise the conditions on the model930

parameters such that the cell competition criteria are satisfied in a single statement:931

dL < η̃L < dW < η̃W , (85)

which can be read as

loser emission < loser tolerance <

winner emission < winner tolerance . (86)

This corresponds to the complete cell competition regime that we defined earlier932

in Section 4.3. In a similar manner, we can express all the competition regimes defined933

in Section 4.3 in terms of tolerance and emission (compare the following with the bottom934

section of Table 5):935

Cell competition: dL < η̃L < η̃W ∧ dL < dW .936

Complete cell competition: dL < η̃L < dW < η̃W .937

Critical cell competition: dL < η̃L = dW < η̃W .938

Incomplete cell competition: dL < dW < η̃L < η̃W .939

Neutral competition: dL = dW < η̃L < η̃W .940
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Figure 9: Diagram of competition regimes using the transformed parameters η̃X and dX , defined in

Equation (82). The green dot corresponds to the neutral coexistence point. The same conventions

apply as in Figure 8. See Table 5 for the legend.

Indirect competition: dW < dL < η̃L < η̃W .941

These relationships can be verified visually in Figure 9, which shows the competition942

regimes in transformed parameter space.943

5.3. The tolerance–emission model of cell competition944

Based on Equation (86), we make the following biological prediction: cell compe-945

tition requires that winner cells have a higher tolerance to death signals and946

a higher rate of death signal emission than loser cells. The implicit assumption947

in this statement is that cells emit and tolerate some form of death signal, which can948

be contact-based, ligand-based, mechanical stress-based, etc. Intuitively, regardless of949

the type of death signal, winners must expose losers to a sufficiently high level of death950

signal to eliminate them, while still being able to withstand it themselves.951

Importantly, this model implies that mutations resulting in cell competition, such952

as Minutes and Myc, are pleiotropic because they simultaneously alter the tolerance953

to, and emission of, death signals. As a corollary, mutations which affect only one or954

neither, do not engender cell competition. This potentially explains why some muta-955

tions related to proliferation rates result in cell competition, and others do not [7]. In956

this view, the inhibition of apoptosis can be regarded as a mutation that results in an957
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infinite tolerance, without affecting emission. Indeed, it has been shown in experiments958

that inhibiting apoptosis prevents cell competition [7, 28].959

This observation raises the question: do mutations exist that increase the emission960

of death signals, without affecting tolerance? If so, they would be challenging to culture,961

since such mutants would not tolerate their own death signal and thus be homotypically962

nonviable. However, the tolerance–emission model suggests that such a mutation would963

be viable if it were paired with apoptosis inhibition. Our model therefore predicts that964

a hypothetical emission-enhancing mutation combined with apoptosis inhibition would965

result in a novel species of super-competitors.966

5.3.1. Experimental support967

Experimental evidence from Myc-based cell competition supports the tolerance–968

emission hypothesis. In [43], the authors demonstrated that the ligand Spätzle is nec-969

essary for the elimination of loser cells in the Drosophila wing disc, forming what the970

authors term a “killing signal”. They also observed that Spätzle is produced in wild-971

type conditions at a rate that is tolerated by the wild-type cells, and that the production972

of Spätzle is upregulated in Myc super-competitors without inducing cell death in Myc973

mutants. Myc mutants therefore emit more death signal than wild-type cells, while974

simultaneously being less sensitive to it.975

In this experiment, the death signal takes on the form of a diffusible death ligand.976

While the principles of tolerance and emission should still apply, there is an important977

difference with the contact-based G2 death signal discussed in Section 4; namely that978

death ligands can diffuse away from the site of heterotypic contact. This could poten-979

tially explain why we observe loser cell death at a distance in Myc-based cell competi-980

tion [7], but not inMinutes-based cell competition. According to the tolerance–emission981

model, death ligand secretion is upregulated in mutant winner cells in the former case,982

and downregulated in mutant loser cells in the latter case.983

We also find support for the tolerance–emission model in mechanical cell competi-984

tion, specifically in cultures of Madine–Darby canine kidney (MDCK) cells [10]. The985
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authors discovered that cell proliferation is in part modulated by the composition of986

cell types in the cellular neighbourhood. In particular, winner cells are more prolific987

when they are specifically surrounded by loser cells. This agrees with our observations988

that winner cells benefit from proximity to loser cells because loser cells emit a lower989

level of death signal.990

5.3.2. Experimental validation991

To validate the tolerance–emission hypothesis, we must extrapolate the model pre-992

dictions to experimental conditions that have not yet been tested. We predicted in993

Section 4.2.5 that homotypically nonviable loser cells can be rescued through indirect994

competition. This occurs when a winner cell type has a lower emission rate than the995

loser cell type, creating an environment in which losers can proliferate even if they996

are not viable on their own. The challenge in producing this outcome experimentally,997

however, is that we would first need to identify an intrinsically nonviable mutant cell998

type to assume the role of the loser. We therefore propose an alternative experiment999

that could potentially simulate this behaviour with known cell types.1000

Consider a triple co-culture where cell type A outcompetes cell type B and cell type1001

B outcompetes cell type C. Cell types B and C are both eliminated in a background of1002

cell type A, which mimics the intrinsic nonviability of cell types B and C. The tolerance–1003

emission model predicts that the emission of death signals by cell type C is tolerated1004

by cell type B. Therefore, if we inhibit apoptosis in cell type C, we expect to see: (i)1005

C-type clones forming in an A-type background; and (ii) the survival of B-type cells1006

exclusively inside the C-type clones. This outcome would be analogous to the rescue1007

of a homotypically nonviable loser by indirect competition, with cell types B and C1008

corresponding to the indirect losers and winners, respectively.1009

5.4. The function of cell competition1010

The prevalent hypothesis is that cell competition is a mechanism for maintaining1011

tissue health by eliminating unfit cells. However, what is meant by “fitness” in this1012

context is not clear [44]. The classical definition of fitness is based on reproductive1013
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success and early experiments indeed linked reproductive fitness to cell competition,1014

with winner cells having higher intrinsic proliferation rates than losers [45, 46]. However,1015

not all mutations that increase proliferation rates result in cell competition [7]. In cell1016

competition, fitness is perhaps more accurately defined as a measure of competitive1017

success, which can determined by pairwise contests between cell types. In the tolerance–1018

emission model, competitive success is a combination of tolerance and emission, and1019

lacks a causal relationship with proliferation rates.1020

Competitive fitness is therefore not the same as reproductive fitness, but then why1021

are they often linked in practice? We speculate that differential proliferation rates1022

are not the mechanism of cell competition, but the target of cell competition. Cell1023

competition evolved to optimise reproductive fitness, but uses competitive fitness as1024

an imperfect means to communicate it. In other words, competitive fitness serves as a1025

proxy for reproductive fitness and evolved in a trade-off with other factors such as the1026

costs involved in cell competition.1027

Furthermore, we expect that the target of cell competition depends on the function1028

of the host tissue. In the Drosophila wing disc, the tissue expands from 50 to 50 0001029

cells in the span of four days, so the function of cell competition in this context is to1030

optimise for reproductive fitness. MDCK cells, on the other hand, were derived from1031

kidney tubules, so their function is to form a mechanically resilient barrier. In this case,1032

cell competition is linked to mechanical cell compression, which we hypothesise acts as1033

a proxy for the cell’s ability to contribute to the structural integrity of the tissue.1034

5.5. Future work1035

The framework presented in this paper can be applied to any cell-based model to1036

study hypothetical mechanisms of cell competition. Moreover, the cell competition1037

criteria are sufficiently abstract that they can potentially be translated to models of1038

cell competition that are not cell-based, such as Lotka–Volterra models [47].1039

We emphasise that the death clock framework is agnostic with respect to the death1040

signal, and that it can be used to represent different kinds of cell competition mecha-1041
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nisms. Of particular interest are diffusible ligands and mechanical compression as death1042

signals. Studies show that cell competition in the Drosophila wing disc involves the use1043

of diffusible death ligands [43, 48, 49]. A death clock model based on the secretion1044

(i.e. emission) and recognition of death ligands is therefore an obvious next step toward1045

a more biologically accurate representation of the cell competition process. Section 21046

suggests that differences in mechanical properties alone do not robustly generate com-1047

petitive outcomes in a heterotypic vertex-based model. However, they may still play1048

a role in cell competition when paired with an active mechanism for cell death. Re-1049

search indicates that mechanical compression triggers apoptosis in loser cells during1050

mechanical cell competition [16], hence cell compression may be an appropriate death1051

signal in this context. Further research is needed to investigate models that incorporate1052

diffusible ligands or mechanical compression as death signals.1053
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