

Highlights

A mathematical framework for the emergence of winners and losers in cell competition

Thomas F. Pak, Joe M. Pitt-Francis, Ruth E. Baker

- Emergent winner/loser status tests for competitive outcomes in cell-based models
- Differences in biomechanical properties alone are not sufficient for cell competition
- Winners have both higher tolerance and higher emission of death signals than losers

A mathematical framework for the emergence of winners and losers in cell competition

Thomas F. Pak^a, Joe M. Pitt-Francis^b, Ruth E. Baker^a

^a*Mathematical Institute, University of Oxford, Andrew Wiles Building, Radcliffe Observatory Quarter, Woodstock Road, Oxford, OX2 6GG, UK*

^b*Department of Computer Science, University of Oxford, Wolfson Building, Parks Road, Oxford, OX1 3QD, UK*

Abstract

Cell competition is a process in multicellular organisms where cells interact with their neighbours to determine a “winner” or “loser” status. The loser cells are eliminated through programmed cell death, leaving only the winner cells to populate the tissue. Cell competition is context-dependent; the same cell type can win or lose depending on the cell type it is competing against. Hence, winner/loser status is an *emergent* property. A key question in cell competition is: how do cells acquire their winner/loser status? In this paper, we propose a mathematical framework for studying the emergence of winner/loser status based on a set of quantitative criteria that distinguishes competitive from non-competitive outcomes. We apply this framework in a cell-based modelling context, to both highlight the crucial role of active cell death in cell competition and identify the factors that drive cell competition.

Keywords: cell-based model, vertex-based model, programmed cell death, epithelial tissue

¹ 1. Introduction

² Cell competition is a process that occurs in multicellular organisms where cells com-
³ posing genetically heterotypic tissues interact to determine their relative fitness and
⁴ acquire a winner or loser status [1–6]. The loser cells are then eliminated through pro-
⁵ grammed cell death, leaving only winner cells to populate the tissue. Cell competition
⁶ is context-dependent: the competing cell types are both viable in homotypic conditions,

7 and acquire a winner/loser status only when exposed to each other in the same tissue.
8 The main function of cell competition is to improve the overall fitness of the tissue by
9 removing suboptimal cells. For example, during development of the *Drosophila* wing,
10 cell competition serves as a homeostatic mechanism that stabilises tissue growth and
11 ensures consistent wing shape [7]. It can also play a role in tumour suppression by elim-
12 inating cells with proto-oncogenic mutations [8]. However, this is not the case for all
13 proto-oncogenic mutations: overexpression of *Myc* results in mutants that outcompete
14 wild-type cells in a process known as super-competition [9]. This allows precancerous
15 cells to expand within a tissue at the expense of healthy cells, without producing de-
16 tectable morphological abnormalities. Cell competition can therefore also contribute to
17 the early stages of tumour development.

18 The underlying mechanisms of cell competition are not yet fully understood. While
19 progress has been made in identifying the drivers of cell competition and the path-
20 ways downstream of winner/loser identification, the intra- and intercellular processes
21 by which cells determine winner/loser status are still unclear. Mathematical mod-
22 elling, particularly cell-based modelling, has the potential to provide insight into the
23 mechanisms of cell competition. Cell-based models allow researchers to define the be-
24 haviours of individual cells and study their effects at the population level. Because cell
25 competition is a process that unfolds at the population level while being mediated by
26 interactions at the cellular level, cell-based models are potentially an effective tool for
27 exploring the most pertinent questions in cell competition. However, current cell-based
28 models of cell competition assume *a priori* winner/loser identities [10–13]. Although
29 such models can simulate processes occurring downstream of winner/loser identifica-
30 tion, they do not address *how* cells become winners or losers in the first place. In this
31 paper, we propose a mathematical framework to address precisely this question.

32 1.1. *Emergence of winner/loser status*

33 Our framework does not assume that certain cells are winners or losers *a priori*.
34 Instead, we consider cell-based models with two cell types that vary only in their pa-

35 parameters and investigate the conditions that lead to competitive outcomes. Because
36 this approach involves detecting rather than asserting winners and losers, we need a
37 stringent definition of what a “competitive outcome” entails. We consider two defin-
38 ing features of cell competition: (i) both of the competing cell types are viable when
39 grown in homotypic conditions; and (ii) the loser cells are completely eliminated in
40 heterotypic conditions. Therefore, to identify competitive outcomes between two com-
41 peting cell types in a cell-based model, we evaluate their viability in both homotypic
42 and heterotypic conditions. This evaluation can be made either using computational
43 simulation or through theoretical analysis, in which case viability can be analytically
44 predicted. An interaction between two cell types is thus classified as competitive if
45 both cell types are found to be viable in a homotypic environment and only one cell
46 type is observed to remain viable in a heterotypic environment. These are the **cell**
47 **competition criteria**, which we illustrate in Figure 1.

48 We can use these cell competition criteria to identify parameter regimes that are
49 associated with cell competition. Our approach has two important advantages over
50 modelling frameworks that hardcode winner/loser identities. Firstly, it allows us to
51 determine whether a given cell-based model is capable of displaying cell competition.
52 Secondly, characterising the parameter regimes that lead to competitive outcomes helps
53 us identify and analyse the factors that drive cell competition. Finally, we note that
54 our framework respects the context-dependent nature of cell competition; winner/loser
55 status is treated as an emergent property that exists only in the relationship between
56 two cell types and is not inherent to any particular cell type.

57 *1.2. Viability matrix*

58 Generally speaking, the most appropriate definition of viability to be used for the cell
59 competition criteria will depend on the model and the context. We assume, however,
60 that viability is a binary property: a cell type is either viable or nonviable. Enumerating
61 all combinations of homotypic and heterotypic viability for two competing cell types
62 therefore results in $2^{2 \times 2} = 16$ possible outcomes. In order to better contextualise the

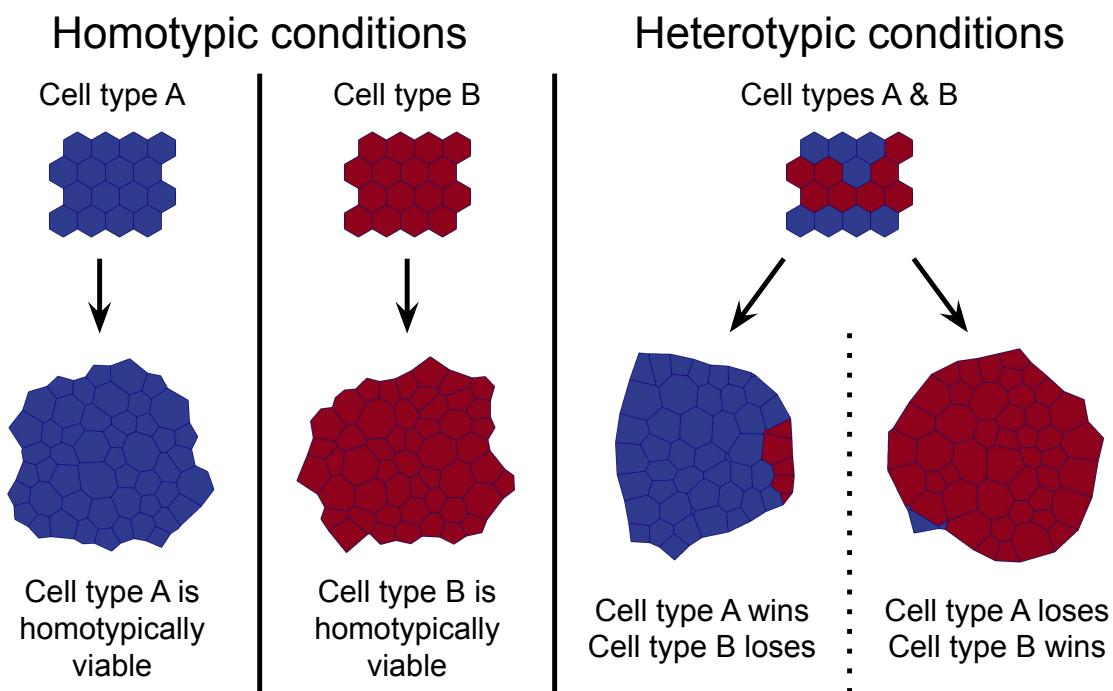


Figure 1: Illustration of the cell competition criteria. The two cell types A and B fulfil the cell competition criteria if (i) cell type A is homotypically viable, (ii) cell type B is homotypically viable, and (iii) cell type A is heterotypically viable and cell type B is heterotypically nonviable *or*, conversely, cell type A is heterotypically nonviable and cell type B is heterotypically viable.

63 cell competition criteria, we tabulate these outcomes in a **viability matrix** (Figure 2).

In this paper, we will assess the viability of a cell population based on its *survival frequency*, which is a statistic summarising cell population growth (or decline) in simulations of cell-based models. Later on, in Section 3.3, we introduce its analytical analogue, the survival probability. Suppose, for the sake of illustration, that we have two cell types, labelled A and B, and we want to determine whether they satisfy the cell competition criteria. As Figure 1 suggests, we need to run at least two homotypic simulations, one per cell type, and one heterotypic simulation in order to measure their viability in homotypic and heterotypic conditions. We compute the homotypic survival frequencies as

$$\hat{\lambda}_A = \frac{\# \text{ A divisions}}{\# \text{ A divisions} + \# \text{ A deaths}}, \quad (1)$$

$$\hat{\lambda}_B = \frac{\# \text{ B divisions}}{\# \text{ B divisions} + \# \text{ B deaths}}, \quad (2)$$

for cell types A and B from their respective homotypic simulations. Similarly, we compute the heterotypic survival frequencies from a heterotypic simulation as

$$\hat{\xi}_{A|B} = \frac{\# \text{ A divisions}}{\# \text{ A divisions} + \# \text{ A deaths}}, \quad (3)$$

$$\hat{\xi}_{B|A} = \frac{\# \text{ B divisions}}{\# \text{ B divisions} + \# \text{ B deaths}}, \quad (4)$$

64 for cell types A and B, respectively. The simulations thus yield four survival frequencies:
 65 $\hat{\lambda}_A$, $\hat{\lambda}_B$, $\hat{\xi}_{A|B}$, and $\hat{\xi}_{B|A}$. If a survival frequency is below one half, then the cell population
 66 has declined over the course of the simulation, so we consider the population nonviable.
 67 Conversely, if a survival frequency is greater or equal to one half, then the cell population
 68 has grown or stayed the same, so we consider the population viable.

69 The viability matrix is then constructed by arranging the homotypic viability out-
 70 comes along the horizontal axis, and arranging the heterotypic viability outcomes along
 71 the vertical axis in the same order, as illustrated in Figure 2. Every column thus cor-
 72 responds to a particular set of homotypic viability outcomes, every row corresponds
 73 to a particular set of heterotypic viability outcomes, and every element of the matrix
 74 represents a specific combination of homotypic and heterotypic viability outcomes.

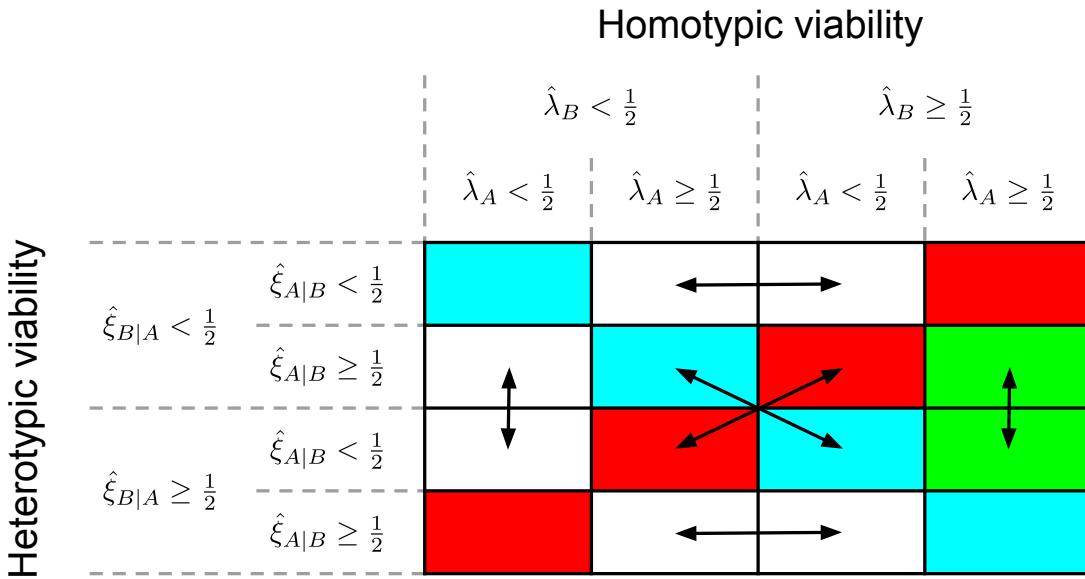


Figure 2: Viability matrix. The matrix is constructed by arranging the homotypic and heterotypic viability outcomes along the horizontal and vertical axes, respectively. Viability is measured in terms of survival frequency: see Equations (1) and (2) for the definitions of the homotypic survival frequencies $\hat{\lambda}_A$ and $\hat{\lambda}_B$, and Equations (3) and (4) for the definitions of the heterotypic survival frequencies $\hat{\xi}_{A|B}$ and $\hat{\xi}_{B|A}$. On the main diagonal (cyan) the viability is identical for heterotypic and homotypic conditions. On the antidiagonal (red), the heterotypic viability is the opposite of the homotypic viability. The competitive outcomes are coloured green. The double-sided arrows show the result of swapping cell type labels.

75 The last column satisfies the first part of the cell competition criteria, i.e. both cell
76 types are homotypically viable. Between the diagonal outcome (both cell types remain
77 viable) and antidiagonal outcome (both cell types become nonviable) of this column,
78 only one cell type remains viable in heterotypic conditions (green), thus completely
79 satisfying the cell competition criteria. We define these outcomes as **competitive**
80 **outcomes**. The surviving cell type is assigned the winner status, and the heterotyp-
81 ically nonviable cell type receives the loser status. The aim of our framework is to
82 study the emergence of cell competition and winner/loser status by investigating the
83 parameters and conditions that give rise to such competitive outcomes.

84 Finally, because we assume that the competing cell types differ only in their param-
85 eters, we note that the choice of cell type labels is arbitrary; swapping cell type labels
86 should have no effect on the behaviour of the model. The double-sided arrows show
87 which outcomes convert into each other as a result of swapping cell type labels, and
88 can therefore be considered equivalent.

89 *1.3. Outline*

90 In this paper, we demonstrate the utility of the proposed framework by applying
91 it to two different models: a mechanical model and a G2 death signal model. The
92 mechanical model is discussed and analysed in Section 2, where we investigate whether
93 differences in mechanical parameters between two cell types in a vertex-based model
94 constitute a sufficient mechanism for cell competition. We perform a large parameter
95 sweep to search for competitive outcomes, but we do not find significant evidence for
96 competitive behaviour, suggesting that an active mechanism of cell death is necessary
97 for cell competition. Motivated by these results, we introduce a modelling framework
98 in Section 3 that simulates the intercellular exchange of death signals and the intra-
99 cellular initiation of apoptosis: the “death clock” framework. Importantly, within this
100 framework we can derive expressions for the survival probability of cells, providing us
101 with an analytical tool for predicting the viability of cell populations. We also discuss
102 the implementation of the death clock framework in two concrete cell-based models:

103 the well-mixed model and the vertex-based model.

104 We use the death clock framework in Section 4 to construct the G2 death signal
105 model, where cells emit death signals in the G2 phase of the cell cycle. To investigate
106 the potential for competitive outcomes in this model, we predict the viability of cells in
107 homotypic and heterotypic conditions using analytical arguments based on the survival
108 probability, and validate the predictions with computational simulations of the well-
109 mixed and vertex-based models. We demonstrate that not only can the G2 death signal
110 model produce competitive outcomes, but also that it reveals additional biologically
111 relevant competition regimes that have the potential to refine and expand the current
112 theoretical understanding of cell competition. Finally, in Section 5, we discuss and
113 interpret the results of the G2 death signal model, and propose a conceptual model
114 of cell competition based on two key cellular properties: **tolerance** to, and **emission**
115 of, death signals. We examine the experimental evidence in support of this model,
116 suggest novel cell competition experiments inspired by it, and discuss potential avenues
117 for future research.

118 2. Cell competition via differing biomechanical properties

119 Mechanical cell competition is a special case of cell competition, observed specifically
120 in epithelia, that is mediated through mechanical interactions [14]. The losers in this
121 interaction are more sensitive to cell compression than the winners and initiate apoptosis
122 in response to cell crowding [15, 16]. In addition, we note that epithelial tissues shed
123 live cells in response to cell crowding under homotypic conditions [17, 18]. In this study,
124 cells undergo a “passive” form of cell death because they are extruded from the tissue
125 as a result of mechanical interactions, and only die after being removed from the tissue.
126 In this section, we investigate the question: are differences in biomechanical properties,
127 combined with passive cell extrusion, sufficient to engender cell competition? A suitable
128 cell-based framework for simulating the mechanical interactions in epithelial tissues is
129 vertex-based modelling, since it has been shown to reproduce the dynamics of epithelial
130 tissues in a variety of developmental processes [19].

131 The overall strategy of this section is therefore to construct a heterotypic vertex-
 132 based model that allows for the independent variation of mechanical parameters be-
 133 tween two cell types, and to test whether this variation is sufficient to give rise to
 134 competitive outcomes. We call this model the “mechanical model” because our aim is
 135 to search for competitive outcomes mediated through mechanical interactions alone. In
 136 Section 2.1, we introduce the general vertex-based model and adapt it for heterotypic
 137 populations. We then describe our methodology for systematically exploring its param-
 138 eter space in Section 2.2 and present the results in Section 2.3. As we will discuss in
 139 Section 2.4, we failed to find any significant evidence for competitive outcomes in the
 140 mechanical model, which motivates the construction of a model based on death signals
 141 in Section 3.

142 *2.1. Vertex-based model*

143 In vertex-based modelling, the epithelial tissue is represented by a polygonal mesh
 144 where each polygon corresponds to an epithelial cell, and the dynamics of the tissue
 145 is based on the motion of the mesh vertices. In particular, the equation of motion for
 146 vertex i with position \mathbf{r}_i , experiencing the total force \mathbf{F}_i , has the form [20]

$$\mu \frac{d\mathbf{r}_i}{dt} = \mathbf{F}_i, \quad (5)$$

147 where μ is the friction coefficient. The force acting on vertex i is given by

$$\mathbf{F}_i = \nabla_i E, \quad (6)$$

148 where ∇_i is the gradient of an energy function E with respect to the spatial coordinates
 149 of vertex i . We use the energy function presented in [21], which describes three major
 150 biomechanical properties: cell elasticity, cell contractility, and cell-cell adhesion;

$$E = \sum_{\alpha} \frac{K_{\alpha}}{2} (S_{\alpha} - S_{\alpha}^0)^2 + \sum_{\alpha} \frac{\Gamma_{\alpha}}{2} L_{\alpha}^2 + \sum_{\langle i,j \rangle} \Lambda_{ij} \ell_{ij}. \quad (7)$$

151 The first term represents cell elasticity, i.e. the cell’s resistance against deformation.
 152 The parameters K_{α} and S_{α}^0 are the elasticity constant and the target cell area of cell α ,

153 respectively, while S_α is the cell area of cell α . The second term models cell contractility,
 154 with Γ_α and L_α corresponding to the contractility constant and the cell perimeter of cell
 155 α , respectively. The final term represents cell-cell adhesion, which is implemented as
 156 a line tension acting on cell-cell interfaces. For each edge $\langle i, j \rangle$ connecting the vertices
 157 i and j , this line tension is the product of the line tension constant, Λ_{ij} , and the edge
 158 length, ℓ_{ij} .

159 In addition to vertex dynamics, the vertex-based model also evolves through mesh
 160 rearrangements that allow cells to exchange neighbours, proliferate, and be extruded
 161 from the tissue. During cell division, a new edge is formed that bisects the mother cell
 162 and results in two daughter cells. Cell extrusion, on the other hand, is achieved by the
 163 “T2 swap”, which removes cells when their cell area falls below a certain threshold.
 164 There are many technical details involved with mesh rearrangements, so we refer the
 165 reader to [22] for further details.

166 Motivated by experiments with *in vitro* cell cultures [23], we assume a two-phase
 167 cell cycle model. The first phase corresponds to the G1 phase, and we lump together
 168 the S, G2 and M phases in the second phase. For brevity, we refer to the second phase
 169 as the G2 phase. For cell α , the duration of G1 phase is exponentially distributed with
 170 mean $t_{G1,\alpha}$. The G2 phase lasts for the fixed duration $t_{G2,\alpha}$. At the end of the G2
 171 phase, cell division occurs as described above.

172 We divide the cell population into two non-overlapping sets that correspond to two
 173 distinct cell types, A and B. The mechanical and cell cycle constants for each cell are
 174 determined by its cell type. In particular, the elasticity constant K_α is given as

$$K_\alpha = \begin{cases} K_A & \text{for } \alpha \in A \\ K_B & \text{for } \alpha \in B \end{cases}, \quad (8)$$

175 and the target cell area S_α^0 , contractility constant Γ_α , and cell cycle constants $t_{G1,\alpha}$ and
 176 $t_{G2,\alpha}$ are determined analogously. Since the line tension parameter is dependent on the
 177 edge type, rather than the cell type, we need to specify values for every pairing of cell
 178 types. In addition, we need to account for edges at the boundary of the tissue, which

¹⁷⁹ border a cell on one side and empty space on the other. Denoting the two cells sharing
¹⁸⁰ the edge $\langle i, j \rangle$ as α and β , we write

$$\Lambda_{ij} = \begin{cases} \Lambda_{AA} & \text{for } \alpha, \beta \in A \\ \Lambda_{BB} & \text{for } \alpha, \beta \in B \\ \Lambda_{AB} & \text{for } \alpha \in A, \beta \in B, \\ \Lambda_A & \text{for } \alpha \in A, \beta \in \emptyset \\ \Lambda_B & \text{for } \alpha \in B, \beta \in \emptyset \end{cases} \quad (9)$$

¹⁸¹ where $\beta \in \emptyset$ signifies that $\langle i, j \rangle$ is a boundary edge. Furthermore, we impose that each
¹⁸² cell division results in cells that are of the same type as the mother cell, i.e. a cell of
¹⁸³ type A divides into two daughter cells of type A.

¹⁸⁴ We implemented the mechanical model within Chaste, an open-source simulation
¹⁸⁵ package for computational physiology and biology [24] that includes a range of cell-
¹⁸⁶ based models [25]. We refer the reader to the following GitHub repository for the code
¹⁸⁷ of the mechanical model: <https://github.com/ThomasPak/cell-competition>.

¹⁸⁸ *2.2. Methods*

¹⁸⁹ After constructing the heterotypic mechanical model, we now determine whether it
¹⁹⁰ can generate competitive outcomes. We first performed a systematic parameter grid
¹⁹¹ search varying the parameters of only one cell type, but we did not find any statis-
¹⁹² tically significant evidence for competitive behaviour (results not shown). We then
¹⁹³ expanded the parameter sweep to include the parameters of both cell types. Since this
¹⁹⁴ involves changing the properties of two cell types simultaneously, we needed to vary
¹⁹⁵ twice as many parameters compared to the grid search. Therefore, because of the large
¹⁹⁶ number of parameters, we used a Latin hypercube sampling (LHS) method to sam-
¹⁹⁷ ple parameter values. LHS methods are particularly useful when the parameter space
¹⁹⁸ is high-dimensional, since the number of samples required is independent of dimen-
¹⁹⁹ sion [26]. In particular, we used an LHS method based on orthogonal arrays, which is

Parameter	Lower	Default	Upper
S_A^0, S_B^0, K_A, K_B	0.5	1.0	1.5
Γ_A, Γ_B	0.01	0.04	0.07
$\Lambda_{AA}, \Lambda_{AB}, \Lambda_{BB}$	0.06	0.12	0.18
$t_{G1,A}, t_{G1,B}$	0	30	60
$t_{G2,A}, t_{G2,B}$	40	70	100
Simulation timestep			0.05
Simulation time			250
T1 threshold distance			0.1
Initial cell count			36

Table 1: Lower and upper bounds for parameter sweep of the mechanical model. The default parameter value is also given. Any remaining parameters were set to the default Chaste values. Each simulation was given a distinct seed for generating random numbers.

200 an additional optimisation that improves the dispersal of parameter values [27]. Con-
 201 cretely, we sampled a total of 2809 parameter sets. The lower and upper bounds for
 202 each parameter, as well as its default value, are given in Table 1.

203 Every parameter set thus sampled corresponds to a unique pair of cell types. For
 204 each pair, we conducted three simulations to sample the homotypic and heterotypic
 205 viabilities: two homotypic simulations (one for each cell type) and one heterotypic
 206 simulation. Each homotypic simulation has an initial population of 36 cells. For the
 207 heterotypic simulations, we split the population equally between the two cell types
 208 (18 cells each) and randomise their spatial distribution in the tissue. The homotypic
 209 and heterotypic viabilities were evaluated as described in Section 1.2, i.e. based on
 210 the homotypic survival frequency (Equations (1) and (2)) and heterotypic survival
 211 frequency (Equations (3) and (4)), respectively.

		$\hat{\lambda}_B < \frac{1}{2}$		$\hat{\lambda}_B \geq \frac{1}{2}$	
		$\hat{\lambda}_A < \frac{1}{2}$	$\hat{\lambda}_A \geq \frac{1}{2}$	$\hat{\lambda}_A < \frac{1}{2}$	$\hat{\lambda}_A \geq \frac{1}{2}$
$\hat{\xi}_{B A} < \frac{1}{2}$	$\hat{\xi}_{A B} < \frac{1}{2}$	305	17	11	0
	$\hat{\xi}_{A B} \geq \frac{1}{2}$	0	407	0	4
$\hat{\xi}_{B A} \geq \frac{1}{2}$	$\hat{\xi}_{A B} < \frac{1}{2}$	0	0	476	16
	$\hat{\xi}_{A B} \geq \frac{1}{2}$	4	105	128	1313

Table 2: Count of homotypic and heterotypic viability outcomes for the parameter sweep, summarised using the viability matrix (Figure 2).

212 *2.3. Results*

213 Out of 2 809 parameter sets, 23 resulted in simulation errors because the timestep
 214 was too large. Since this only represented a tiny proportion of the parameter sweep,
 215 we excluded these parameters from our analysis. We summarised the outcomes for the
 216 remaining parameters using a viability matrix in Table 2.

217 The majority of parameter sets resulted in outcomes on the main diagonal, account-
 218 ing for nearly 90% of all results, indicating that little to no interaction took place in
 219 most cell type pairings. We find the second most numerous outcome in the middle
 220 entries of the bottom row, comprising 8.4% of the observed outcomes. As discussed in
 221 Section 1.2, these entries are equivalent after swapping cell labels. In these outcomes,
 222 one cell type is nonviable in homotypic conditions, but becomes viable when exposed
 223 to a homotypically viable cell type. Therefore, the most commonly observed outcomes
 224 in the parameter sweep, accounting for over 98% of all observations, are the following:
 225 heterotypic conditions either engender no changes to viability, or enhance the viability
 226 of a nonviable cell type through its interaction with a viable cell type. The latter can be
 227 construed as the opposite of a competitive outcome; the viability criteria in homotypic
 228 and heterotypic conditions are inverted with respect to the cell competition criteria.

229 Of the remaining categories, the largest one consists of the middle entries of the
 230 top row, accounting for 1% of observations. Similarly to the middle entries of the

231 bottom row, only one cell type is homotypically viable. In contrast to the bottom row,
232 however, both cell types end up nonviable in heterotypic conditions. Only 20 outcomes
233 (roughly 0.7%) fall into the middle entries of the last column and thus fulfil the cell
234 competition criteria, the target of our search. Finally, the least observed outcome lies on
235 the antidiagonal (bottom left) with a total of four outcomes, or 0.1%, corresponding to
236 the case where two homotypically nonviable cell types both become viable in heterotypic
237 conditions.

238 It is important to note here that the mechanical model is stochastic, so we must
239 account for random noise in the data. Hence, we conducted additional simulations tar-
240 geting specifically those 20 parameter sets that satisfied the cell competition criteria,
241 and tested whether the competitive behaviour was statistically significant. We found
242 that only six out of the 20 targeted parameter sets showed statistically significant com-
243 petitive behaviour with a significance level of 5%. We also ran additional simulations
244 with segregated initial conditions to examine the influence of spatial segregation. We
245 found that this reduced the number of significant results further to one single parameter
246 set. We describe the methodology and results of the statistical analysis in more detail
247 in Section S1 of the supplementary material.

248 *2.4. Discussion*

249 In this section, we constructed a heterotypic vertex-based model, namely the me-
250 chanical model, to investigate whether differences in mechanical properties are sufficient
251 to give rise to cell competition. We performed a large parameter sweep and found that
252 we could only reliably reproduce competitive behaviour for a tiny fraction of the simu-
253 lated parameter sets. Most of the parameter sets resulted in no observable interactions,
254 and most of the interactions that did occur generated the opposite outcome of cell
255 competition.

256 We conclude that simply varying the parameters of the mechanical model is not
257 sufficient to reliably generate competitive behaviour. This agrees with experiments
258 suggesting that cell competition generally depends on an active mechanism of cell death,

259 such as apoptosis [28], and that mechanical cell competition is no exception in this
260 respect [15, 16]. We note that these results do not exclude the possibility of mechanical
261 interactions playing a role in cell competition. They do strongly suggest, however,
262 that passive cell death alone is an insufficient mechanism for cell competition and
263 that mechanical interactions must be paired with an active mechanism of cell death
264 to produce robust competitive behaviour.

265 **3. Cell competition via exchange of death signals**

266 The results of Section 2 suggest that cell competition requires an **active** and **non-**
267 **autonomous** mechanism of cell death. This observation is also supported experimen-
268 tally [7, 8, 28]. Therefore, the aim in this section is to develop a modelling framework
269 for cell competition implementing such an active and non-autonomous mechanism for
270 cell death. The core idea is that cells exchange “death signals” with their neighbours
271 and that these signals are accumulated by the cell into an abstract quantity called the
272 “death clock”. When the death clock reaches a threshold value, apoptosis is triggered.
273 We do not yet attach the death signal to a concrete biological mechanism because there
274 are multiple competing hypotheses regarding the mode of intercellular communication
275 that underlies cell competition, and because the mode of communication may depend
276 on the specific type of cell competition under consideration.

277 We first discuss our biological assumptions and modelling choices in Section 3.1,
278 before introducing the death clock framework in Section 3.2. In Section 3.3, we define
279 the survival probability and derive its analytic expression for a given death signal.
280 Crucially, the survival probability enables us to analyse the death clock framework
281 from a theoretical perspective and make predictions on the viability of cell populations.
282 Finally, in Section 3.4 we discuss the implementation of the death clock framework
283 in two computational cell-based models: the well-mixed model and the vertex-based
284 model. The analytical and computational tools presented in this section will be used
285 in Section 4 to conduct a thorough investigation of the G2 death signal model.

286 *3.1. Assumptions*

287 A series of studies involving mathematical modelling and experiments have revealed
288 the importance of threshold mechanisms in the initiation of apoptosis [29–32]. For
289 instance, it was shown that death ligand-induced apoptosis requires a threshold pro-
290 portion of ligand to receptor numbers to be reached [31, 32]. Given this precedent, we
291 propose a model in which competition-induced apoptosis is triggered by the accumula-
292 tion of death signals reaching a threshold value.

293 Furthermore, it has been established in the literature that apoptosis and the cell
294 cycle are closely coupled [33–36]. Notably, the regulatory protein *Myc* is known to
295 affect both cell cycle progression and apoptosis [37–39]. On the one hand, *Myc* is
296 necessary for the transition of G1 to S phase, and it induces cell cycle progression in
297 quiescent cells [37, 39]. On the other hand, *Myc* has been associated with increased
298 rates of cell death [38]. Coupled with the fact that differential *Myc* expression results
299 in cell competition [9], we hypothesise that apoptosis, competition, and the cell cycle
300 are interrelated. Concretely, we assume that the cell is only susceptible to competition-
301 induced apoptosis in G1 phase, and that the cell is committed to division from S phase
302 onwards. Similar to the vertex-based model in Section 2, we assume a two-phase cell
303 cycle model, where we treat the duration of the G1 phase as a random variable and
304 lump together the S, G2 and M phases into the G2 phase, which has a fixed duration.

305 *3.2. Death clock framework*

306 The death clock framework consists of two coupled cellular processes: the cell cycle
307 and the death clock, where the death clock governs the initiation of apoptosis in response
308 to death signals. We consider the cell cycle to be an **autonomous** process, meaning
309 that it is not affected by other cells. On the other hand, the death clock is a **non-**
310 **autonomous** process because it is driven by extracellular signals produced by other
311 cells. Together, these processes determine whether and when the cell divides or initiates
312 apoptosis.

313 At division, we sample a stochastic G1 duration, denoted as t^* , from the **G1 dura-**
 314 **tion distribution** \mathcal{C} , i.e.

$$t^* \sim \mathcal{C}, \quad (10)$$

315 where \mathcal{C} is subject to the constraints that (i) $t^* \in [0, \infty)$ and (ii) $E(t^*) = t_{G1}$, with
 316 t_{G1} the **autonomous G1 duration**. If apoptosis is not triggered by the death clock,
 317 the cell spends a duration t^* in G1 phase and then transitions into G2 phase. After
 318 spending a fixed duration, t_{G2} , in G2 phase, the cell divides and the process repeats for
 319 each of the daughter cells.

320 We model the accumulation of death signals using an ordinary differential equation
 321 (ODE) model in which the **death clock**, denoted by $\tau(t)$, evolves according to the
 322 ODE

$$\frac{d\tau}{dt} = f(t), \quad (11)$$

where $f(t) \geq 0$ is the **death signal** experienced by the cell. At birth, the death clock
 of a cell is initialised to zero, i.e. $\tau(t = 0) = 0$. The apoptosis rule is then

Cell is in G1 phase **and** $\tau(t)$ reaches T_\dagger

⇓

initiate apoptosis,

323 where T_\dagger is the **death threshold**. We define the **survival condition** as

$$\tau(t^*) < T_\dagger. \quad (12)$$

324 We note that there are two potential sources of uncertainty in the death clock
 325 framework: variability in G1 duration and in the death signal. The former originates
 326 from the cell cycle, the latter from intercellular interactions, and both contribute to
 327 the decision of the cell to initiate apoptosis. Our framework can thus be regarded
 328 as a minimalist model of autonomous and non-autonomous processes interacting to
 329 govern competition-induced apoptosis. The death clock framework is summarised by
 330 the flowchart in Figure 3.

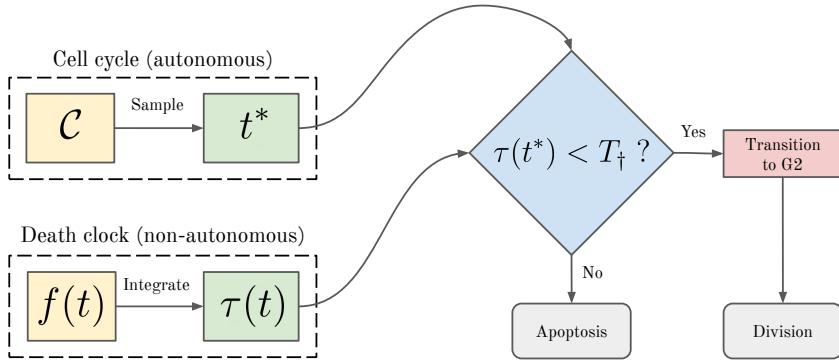


Figure 3: Death clock flowchart. The “Sample” step corresponds to Equation (10), and the “Integrate” step corresponds to Equation (11). The condition in the decision block is the survival condition, corresponding to Equation (12).

331 3.3. *Survival probability*

332 In order to predict the viability of a cell population, we must determine the proba-
 333 bility of cells surviving. This problem is intractable when considering the uncertainty
 334 in the death signal and in the cell cycle simultaneously. To make analytic progress, we
 335 fix the death signal and consider exclusively the variance in the cell cycle, which lets us
 336 derive an expression for the “survival probability”. We define this survival probability,
 337 which we denote by θ , as the probability that the survival condition (Equation (12)) is
 338 satisfied, i.e.

$$\theta \equiv P(\tau(t^*) < T_{\dagger}). \quad (13)$$

339 Assuming that $f(t)$ is a non-negative integrable function, we define

$$F(t) \equiv \int_0^t f(t') dt', \quad (14)$$

340 such that the value of the death clock at time t^* is $F(t^*)$. This lets us write the survival
 341 condition as $F(t^*) < T_{\dagger}$. We define the pseudoinverse function of $F(t)$ as

$$F^{-1}(\tau) \equiv \min\{t \in [0, \infty) : F(t) = \tau\}, \quad (15)$$

342 so that we can reformulate the survival condition as

$$t^* < F^{-1}(T_{\dagger}). \quad (16)$$

343 Substituting this into Equation (13), and denoting the cumulative distribution function
 344 for the distribution of t^* as $\Psi(t)$, we obtain

$$\theta = P(t^* < F^{-1}(T_\dagger)) = \Psi(F^{-1}(T_\dagger)). \quad (17)$$

345 As a special case, consider the constant death signal $f(t) = c$, where $c > 0$ is a positive
 346 constant. We then have $F(t) = ct \Rightarrow F^{-1}(\tau) = \tau/c \Rightarrow \theta = \Psi(T_\dagger/c)$.

347 *3.4. Cell-based death clock models*

348 So far, we have described the processes leading to competition-induced apoptosis
 349 from the perspective of a single cell. The death clock framework can be embedded in any
 350 cell-based model that (i) provides cells with an extracellular environment from which
 351 to derive a death signal and (ii) includes a cellular operation for initiating apoptosis.
 352 In this paper, we implement the death clock mechanism in two particular cell-based
 353 models: the vertex-based model (Section 2.1), and a well-mixed model. In the vertex-
 354 based model, a cell interacts only with cells in its local neighbourhood. In the well-mixed
 355 model, on the other hand, each cell interacts with all other cells on an equal basis. In
 356 Section 4, we use both models in a complementary manner. Here, we present a high-
 357 level outline of the well-mixed and vertex-based models. For a detailed discussion of
 358 their numerical implementations, see Sections S2 and S3 in the supplementary material.
 359 We provide the code for both models in the following GitHub repository: <https://github.com/ThomasPak/cell-competition>.

361 *3.4.1. Well-mixed model*

362 For each cell α , we represent its state with the cell vector $\mathbf{y}_\alpha(t)$, where $\alpha =$
 363 $1, \dots, N(t)$, and $N(t)$ is the number of cells at time t . We write the cell vector as
 364

$$\mathbf{y}_\alpha(t) \equiv \begin{bmatrix} \tau_\alpha(t) & t_\alpha^* & t_\alpha^0 & \mathcal{C}_\alpha & t_{G2,\alpha} & f_\alpha(\cdot) & T_{\dagger,\alpha} \end{bmatrix}, \quad (18)$$

365 and summarise its contents in Table 3. The state of the system, denoted $S(t)$, is then

$$S(t) \equiv \{ \mathbf{y}_1(t), \mathbf{y}_2(t), \dots, \mathbf{y}_{N(t)}(t) \}. \quad (19)$$

Symbol	Description
$\tau_\alpha(t)$	Death clock
t_α^*	Sampled G1 duration
t_α^0	Birth time
\mathcal{C}_α	G1 duration distribution
$t_{G2,\alpha}$	G2 duration
$f_\alpha(\cdot)$	Death signal function
$T_{\dagger,\alpha}$	Death threshold

Table 3: Summary of cell vector elements.

366 We evolve the death clock for each cell α as

$$\frac{d\tau_\alpha}{dt} = f_\alpha(\mathbf{x}_\alpha(t)), \quad (20)$$

367 where $f_\alpha(\cdot)$ is the death signal function and $\mathbf{x}_\alpha(t)$ is the “input vector” representing the
368 extracellular environment. Since the cell population is well-mixed, this environment is
369 composed of every cell except itself, i.e. $\mathbf{x}_\alpha(t) = [\mathbf{y}_1(t), \dots, \mathbf{y}_{\alpha-1}(t), \mathbf{y}_{\alpha+1}(t), \dots, \mathbf{y}_{N(t)}(t)]$.

370 In addition, we define two discrete operations: cell division and cell death. When a
371 cell’s age reaches its total cell cycle duration, the division operation is triggered which
372 constructs two daughter cells; one in a new cell vector and one reusing the mother cell
373 vector. When a cell’s death clock reaches the death threshold in G1 phase, the cell is
374 removed from the population. See Section S2 in the supplementary material for further
375 implementation details.

376 *3.4.2. Vertex-based model*

377 We implemented the vertex-based death clock model by augmenting the basic
378 vertex-based model, introduced in Section 2, with the death clock mechanism. Briefly,
379 this involves equipping every cell with a death clock that can trigger apoptosis. The
380 death clock for each cell is evolved similarly to the well-mixed model using Equa-
381 tion (20). However, the input vector $\mathbf{x}_\alpha(t)$ is constrained to contain only information

382 about the local extracellular environment of cell α , for instance the states of its direct
383 neighbours. Apoptosis is implemented in the vertex-based model by shrinking the tar-
384 get cell area, S_α^0 , to zero, which causes the cell to contract until it is extruded from the
385 tissue. See Section S3 in the supplementary material for implementation details.

386 **4. The G2 death signal model**

387 Having introduced the death clock framework, as well as the analytical and com-
388 putational tools to investigate its dynamics, we now turn our attention to a particular
389 form of the death signal, namely the G2 death signal. In the G2 death signal model,
390 cells emit death signals to their neighbours while they are in G2 phase. This choice is
391 motivated by the observation that cell competition often manifests as patches of prolif-
392 erating cells inducing apoptosis in neighbouring cells to make room for themselves. In
393 the death clock framework, cells in G2 phase are committed to division, so we decided
394 to associate the death signal with the decision to proliferate. Moreover, experimen-
395 tal evidence suggests a link between cell cycle progression and death signals [40, 41].

396 Concretely, the G2 death signal is defined as

$$f(t) = cg(t), \quad (21)$$

397 where $g(t)$ is the proportion of neighbouring cells in G2 phase, i.e.

$$g(t) = \begin{cases} \frac{\# \text{ neighbours in G2}}{\# \text{ neighbours}} & \text{if } \# \text{ neighbours} > 0 \\ 0 & \text{otherwise} \end{cases}, \quad (22)$$

398 and c is a positive constant.

399 We first investigate the effect that the G2 death signal model has on homotypic pop-
400 ulations in Section 4.1. This is done by deriving an expression for the homotypic sur-
401 vival probability (Section 4.1.1), which further enables us to characterise the parameter
402 space in terms of homotypic viability (Section 4.1.2). For heterotypic populations (Sec-
403 tion 4.2), we similarly characterise the heterotypic survival probability (Section 4.2.1)
404 and use it to derive the conditions for viability in each subpopulation (Section 4.2.5).

⁴⁰⁵ We also describe and classify the different types of competitive interactions encountered
⁴⁰⁶ in the G2 death signal model in Section 4.2.4.

⁴⁰⁷ The cell competition criteria are based on both the homotypic and heterotypic
⁴⁰⁸ viabilities, so the results of Sections 4.1 and 4.2 are combined in Section 4.3 to identify
⁴⁰⁹ biologically relevant competition regimes. Notably, we demonstrate that the G2 death
⁴¹⁰ signal model is capable of producing competitive outcomes. Furthermore, our detailed
⁴¹¹ investigation of the parameter space reveals additional competition regimes that refine
⁴¹² and generalise the classical competition regimes defined in the literature. Finally, in
⁴¹³ Section 5 we provide a detailed discussion of our findings and their implications for cell
⁴¹⁴ competition.

⁴¹⁵ 4.1. *Homotypic populations*

⁴¹⁶ We defined the survival probability in Section 3.3 for a given death signal, but in
⁴¹⁷ general the death signal received by any particular cell is not known *a priori*. Fortu-
⁴¹⁸ nately, as we will see in Section 4.1.1, we can derive a useful approximation of the death
⁴¹⁹ signal in the G2 death signal model and use this to characterise the homotypic survival
⁴²⁰ probability. In Section 4.1.2, we build on this result to characterise the *proliferation*
⁴²¹ *regimes*, which we define as the parameter regimes in which cells are viable or nonviable.
⁴²² Finally, we validate these proliferation regimes using simulations of the well-mixed and
⁴²³ vertex-based models in Section 4.1.3.

⁴²⁴ 4.1.1. *Homotypic survival probability*

⁴²⁵ In order to derive the homotypic survival probability, we need to obtain an expres-
⁴²⁶ sion for the G2 death signal under homotypic conditions. But first, we highlight the
⁴²⁷ critical role of the cell cycle in the G2 death signal model to motivate the definition of
⁴²⁸ an important dimensionless parameter.

⁴²⁹ In the G2 death signal model, cells only emit death signals in G2 phase and this leads
⁴³⁰ to an important trade-off; cells in G1 phase are vulnerable to death signals and do not
⁴³¹ generate death signals, whereas cells in G2 phase are impervious to death signals but
⁴³² do generate death signals. This raises the question: what is the impact of changing the

433 proportion of the cell cycle that is spent in G1 or G2 phase on the survival probability,
 434 given a fixed total cell cycle duration? In order to investigate this question, we denote
 435 the total cell cycle duration as t_G , and define β as the fraction of the cell cycle that is
 436 spent, on average, in G1 phase, so that

$$t_{G1} = \beta t_G, \quad t_{G2} = (1 - \beta)t_G. \quad (23)$$

437 Even though cell cycle phases are stochastic in the G2 death signal model, we found
 438 that the death signal is not only relatively stable, but also predictable. In particular,
 439 we observe that the system is **ergodic**, in the sense that the average proportion of cells
 440 in G2 phase relative to the population well approximates the average proportion of the
 441 cell cycle spent in G2 phase. More precisely, we state that the system is ergodic if, on
 442 average,

$$\frac{\# \text{ cells in G2}}{\# \text{ cells}} \approx \frac{\text{G2 duration}}{\text{cell cycle duration}}. \quad (24)$$

443 Furthermore, if the system is well-mixed, then we can approximate $g(t)$ as

$$g(t) \approx \frac{\# \text{ cells in G2}}{\# \text{ cells}}. \quad (25)$$

444 Combining Equations (24) and (25), we have

$$g(t) \approx \frac{\text{G2 duration}}{\text{cell cycle duration}} = 1 - \beta, \quad (26)$$

445 so that the death signal is

$$f(t) = cg(t) \approx c(1 - \beta). \quad (27)$$

446 Applying the methodology of Section 3.3, we use this result to derive the **homotypic**
 447 **survival probability**, denoted λ , as

$$\lambda = \Psi \left(\frac{T_\dagger}{c(1 - \beta)} \right). \quad (28)$$

448 For an exponential cell cycle model more specifically, this becomes

$$\lambda = 1 - \exp \left(-\frac{T_\dagger}{ct_G \beta (1 - \beta)} \right). \quad (29)$$

⁴⁴⁹ In order to simplify the notation, we introduce the dimensionless parameter η ,

$$\eta \equiv \frac{T_{\dagger}}{ct_G}, \quad (30)$$

⁴⁵⁰ which can be interpreted as a normalised death threshold. Hence, we write the homotypic survival probability as a function of two dimensionless parameters:

$$\lambda(\beta, \eta) = 1 - \exp\left(-\frac{\eta}{\beta(1-\beta)}\right). \quad (31)$$

⁴⁵² We validate this expression via simulation in Section S4 of the supplementary material.

⁴⁵³ *4.1.2. Homotypic proliferation regimes*

⁴⁵⁴ Based on the homotypic survival probability λ , we distinguish between two proliferation regimes for homotypic populations¹:

⁴⁵⁶ **Nonviable Regime** $\{\lambda \leq \frac{1}{2}\}$. Cells are equally or more likely to die than to proliferate, hence the population declines. We say that cell types in this regime are **nonviable**.

⁴⁵⁹ **Viable Regime** $\{\lambda > \frac{1}{2}\}$. Cells are more likely to proliferate than to die, hence the population grows. We say that cell types in this regime are **viable**.

⁴⁶¹ We define the **homotypic viability curve** as the curve satisfying $\lambda = 1/2$. This curve separates the Nonviable Regime from the Viable Regime. For the exponential cell cycle model, the homotypic viability curve is given by

$$\eta = \ln(2)\beta(1-\beta). \quad (32)$$

⁴⁶⁴ This analysis therefore predicts that a population is viable for all $\eta > \ln(2)/4$, and for ⁴⁶⁵ $\eta \leq \ln(2)/4$ it is viable for extreme values of β and nonviable otherwise (Figure 4(a)).

¹The astute reader may note the discrepancy between the definition of viability based on survival probability versus the definition based on survival frequency (Section 1.2): $\lambda = 1/2$ is considered nonviable, whereas $\hat{\lambda} = 1/2$ is considered viable. This subtle distinction is rooted in the theory of birth-death Markov chains but bears no significance on our argument so we will not go into it further.

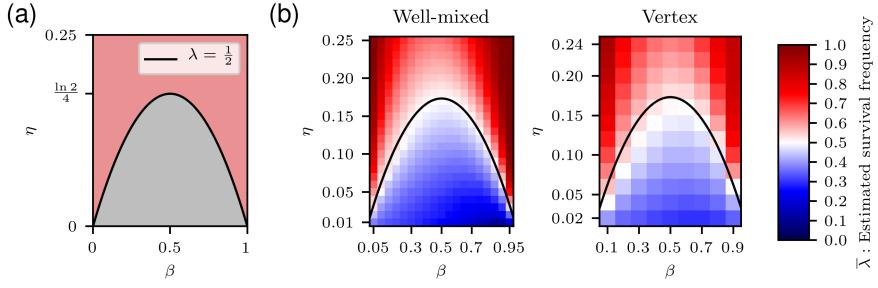


Figure 4: Homotypic proliferation regimes. (a) Diagram of homotypic proliferation regimes. The homotypic viability curve is given by Equation (32). Red: Viable Regime. Grey: Nonviable Regime. (b) Estimated homotypic survival frequency, $\bar{\lambda}$, defined in Equation (33), for the well-mixed and vertex-based models. The homotypic viability curve is plotted using a black line.

466 4.1.3. Computational validation of homotypic proliferation regimes

467 We use computational simulation to determine whether the viability of homotypic
 468 populations *in silico* matches the homotypic proliferation regimes as predicted by the
 469 homotypic viability curve. Further details are provided in Section S5 of the supplemen-
 470 tary material.

471 For each simulation k , we computed the homotypic survival frequency, denoted by
 472 $\hat{\lambda}_k$, using Equation (1). For every unique parameter set, we averaged the homotypic
 473 survival frequency as

$$\bar{\lambda} = \frac{1}{N_{\text{sim}}} \sum_{k=1}^{N_{\text{sim}}} \hat{\lambda}_k, \quad (33)$$

474 where N_{sim} is the number of simulations for the given parameter set.

475 We expect that nonviable populations tend to have a survival frequency below a
 476 half, i.e. $\hat{\lambda}_k < 1/2$, and vice versa for viable populations. Figure 4(a) predicts that
 477 cell types below the homotypic viability curve are nonviable and cell types above the
 478 curve are viable. To verify these predictions, we visualise $\bar{\lambda}$ in Figure 4(b) for both the
 479 well-mixed and vertex-based models.

480 The left-hand plot in Figure 4(b) shows that the observed border between nonviable
 481 and viable regimes closely matches predictions for the well-mixed model. We see that for
 482 small η values, the survival frequency is asymmetrical with respect to β , with higher
 483 survival frequencies for $\beta < 1/2$ than $\beta > 1/2$. The reason for this discrepancy is

484 discussed in Section S4.5. In short, for low η values, the rate of apoptosis is so high
485 that the limiting factor is the number of cells susceptible to apoptosis, rather than
486 the survival probability. For small β values, cells spend less time in G1 phase and are
487 therefore susceptible for a shorter amount of time.

488 The right-hand plot in Figure 4(b) also shows good agreement between theory and
489 simulations for the vertex-based model, although the border is less finely resolved than
490 in the well-mixed case. We also observe the same asymmetry for small η values as seen
491 in the well-mixed model.

492 4.2. *Heterotypic populations*

493 In Section 4.1, we derived an expression for the survival probability of cells in a
494 homotypic population and used it to characterise the homotypic proliferation regimes.
495 We take a similar approach to heterotypic populations in this section, deriving the
496 heterotypic survival probability (Section 4.2.1) in order to map out the heterotypic
497 proliferation regimes. However, unlike the homotypic case, the heterotypic survival
498 probability cannot be approximated by a constant. We therefore need to define two ad-
499 ditional quantities before we can characterise the dynamics of heterotypic populations.

500 Specifically, in Section 4.2.2 we define the *heterotypic survival difference*, which
501 quantifies the difference in survival probability between competing cell types with re-
502 spect to each other, and in Section 4.2.3, we define the *homotypic survival difference*,
503 which quantifies the difference in survival probability of cells in heterotypic conditions
504 with respect to homotypic conditions. We make use of both quantities in Section 4.2.4
505 to classify the different types of interactions that can occur in heterotypic populations.
506 After analysing these derived quantities, we are able to derive the heterotypic prolif-
507 eration regimes in Section 4.2.5, which we validate computationally using the well-mixed
508 and vertex-based models in Section 4.2.6. Finally, in Section 4.3, we pull together the
509 analyses from Section 4.1 and this section to characterise the competition regimes.

510 Similarly to Section 2, we create a heterotypic population in the G2 death signal
511 model by splitting the cell population into two cell types, denoted A and B. Each cell

512 type has its own cell cycle model, $\Psi_A(t)$ and $\Psi_B(t)$, death signal function, $f_A(t)$ and
 513 $f_B(t)$, and death threshold, $T_{\dagger,A}$ and $T_{\dagger,B}$. We assume that the cell cycle models and
 514 death signal functions are identical in both cell types, except in their parameters. With
 515 $\Psi(\cdot)$ as the common cell cycle model, the cell cycle models are thus parameterised
 516 as $\Psi_A(t) = \Psi(t; t_{G1,A})$, $\Psi_B(t) = \Psi(t; t_{G1,B})$. Similarly, the death signal functions are
 517 parameterised as $f_A(t) = c_A g(t)$, $f_B(t) = c_B g(t)$, with $g(t)$ as defined in Equation (22).

518 *4.2.1. Heterotypic survival probability*

In this section, we generalise the ergodic approximation, introduced in Section 4.1.1, to obtain expressions for the heterotypic survival probabilities of cell types A and B. We demonstrated for homotypic populations that the proportion of the cell cycle spent in G1 phase, β , is an important nondimensional parameter in determining the survival probability. Hence, in analogy with Equation (23), we define β_A and β_B for heterotypic populations such that:

$$t_{G1,A} = \beta_A t_{G,A}, \quad t_{G2,A} = (1 - \beta_A) t_{G,A}; \quad (34)$$

$$t_{G1,B} = \beta_B t_{G,B}, \quad t_{G2,B} = (1 - \beta_B) t_{G,B}. \quad (35)$$

Furthermore, we assume that the ergodic property holds for both cell types separately.

For cell type A, we have

$$\begin{aligned} \frac{\# \text{ A cells in G2}}{\# \text{ A cells}} &\approx \frac{\text{G2 duration of A cells}}{\text{cell cycle duration of A cells}} \\ &= 1 - \beta_A, \end{aligned} \quad (36)$$

519 and an analogous expression can be derived for cell type B. We denote the number of
 520 A-type and B-type cells with $n_A(t)$ and $n_B(t)$, respectively, so that we can write the
 521 fraction of cells in G2 phase for the whole population as

$$\frac{\# \text{ cells in G2}}{\# \text{ cells}} = \frac{\# \text{ A cells in G2} + \# \text{ B cells in G2}}{n_A(t) + n_B(t)}. \quad (37)$$

522 We substitute Equation (36) and its analogue for cell type B to obtain

$$\frac{\# \text{ cells in G2}}{\# \text{ cells}} \approx \frac{n_A(t)(1 - \beta_A) + n_B(t)(1 - \beta_B)}{n_A(t) + n_B(t)}. \quad (38)$$

523 To simplify notation, we define the weighted average

$$\langle 1 - \beta \rangle(t) \equiv \frac{n_A(t)(1 - \beta_A) + n_B(t)(1 - \beta_B)}{n_A(t) + n_B(t)}. \quad (39)$$

524 Assuming that the population is well-mixed, i.e. that Equation (25) holds, we can
 525 approximate $g(t)$ as

$$g(t) \approx \frac{\# \text{ cells in G2}}{\# \text{ cells}} \approx \langle 1 - \beta \rangle(t). \quad (40)$$

526 For cell type A, the death signal is thus approximated as $f_A(t) = c_A g(t) \approx c_A \langle 1 - \beta \rangle(t)$.
 527 Note that the quantity $\langle 1 - \beta \rangle(t)$ is not constant with respect to time because it depends
 528 on $n_A(t)$ and $n_B(t)$. This is unlike the homotypic case (Section 4.1.1), where the death
 529 signal is approximated by the constant quantity $1 - \beta$. Therefore, even with the ergodic
 530 approximation we cannot derive an exact heterotypic survival probability. Nonetheless,
 531 we can define the *instantaneous* heterotypic survival probability at time t as the survival
 532 probability of a cell *assuming* a constant death signal of magnitude $f_A(t)$, i.e.

$$\xi_{A|B}(t) = \Psi_A \left(\frac{T_{\dagger,A}}{c_A \langle 1 - \beta \rangle(t)} \right), \quad (41)$$

533 where we use the symbol $\xi_{A|B}(t)$ to denote the instantaneous survival probability at
 534 time t for cell type A in a heterotypic population with cell type B. Similarly, for cell
 535 type B, we have

$$\xi_{B|A}(t) = \Psi_B \left(\frac{T_{\dagger,B}}{c_B \langle 1 - \beta \rangle(t)} \right). \quad (42)$$

536 In order to derive the instantaneous heterotypic survival probability for the exponential
 537 cell cycle model in particular, we first define the dimensionless parameters

$$\eta_A \equiv \frac{T_{\dagger,A}}{c_A t_{G,A}}, \quad \eta_B \equiv \frac{T_{\dagger,B}}{c_B t_{G,B}}, \quad (43)$$

in analogy with Equation (30). We can then derive that the instantaneous heterotypic
 survival probabilities are

$$\xi_{A|B}(t) = 1 - \exp \left(-\frac{\eta_A}{\beta_A \langle 1 - \beta \rangle(t)} \right), \quad (44)$$

$$\xi_{B|A}(t) = 1 - \exp \left(-\frac{\eta_B}{\beta_B \langle 1 - \beta \rangle(t)} \right), \quad (45)$$

538 for cell types A and B, respectively. For brevity, we omit the word “instantaneous”
539 going forward and use the symbols $\langle 1 - \beta \rangle$ and $\xi_{A|B}$ instead of $\langle 1 - \beta \rangle(t)$ and $\xi_{A|B}(t)$,
540 except when we wish to emphasise their time dependence. Furthermore, in the rest of
541 the paper we will assume an exponential cell cycle model, unless stated otherwise.

542 Comparing the expressions for the heterotypic survival probability and the homo-
543 typic survival probability (Equation (31)), we see that they are almost identical, except
544 that the weighted average $\langle 1 - \beta \rangle$ is used instead of $1 - \beta$. We note that if $n_B = 0$,
545 then $\langle 1 - \beta \rangle = 1 - \beta_A$ and vice versa for $n_A = 0$. In other words, when one cell type is
546 absent, we recover the homotypic survival probability of the other cell type.

547 *4.2.2. Heterotypic survival difference*

548 Even though the instantaneous heterotypic survival probabilities $\xi_{A|B}(t)$ and $\xi_{B|A}(t)$
549 change over time, in this section we show that the sign of their difference is invariant
550 with respect to system state, and only depends on model parameters. This enables us to
551 predict which cell type in a heterotypic population has the highest survival probability.

552 We define the **heterotypic survival difference** between cell types A and B as

$$\Delta_{A|B}^{\neq} \equiv \xi_{A|B} - \xi_{B|A}. \quad (46)$$

553 The sign of the heterotypic survival difference tells us which cell type is at a proliferative
554 advantage. If $\Delta_{A|B}^{\neq} > 0$, then we say that A-type cells are **winner cells** and B-type
555 cells are **loser cells**, and vice versa for $\Delta_{A|B}^{\neq} < 0$. Moreover, if $\Delta_{A|B}^{\neq} = 0$, we say that
556 the cell types are in **coexistence**, since neither cell type has a proliferative advantage
557 over the other.

558 We define winners and losers here in a weak sense; if the population were to repro-
559 duce indefinitely, the winner cells would come to dominate the heterotypic population.
560 It is not specified whether the loser population is eliminated. The classical definition
561 of winners and losers, however, is based on the stronger condition of loser elimination.
562 In Section 4.3, we will refine our terminology and differentiate winners and losers into
563 more precise categories, which include classical winners and losers.

564 We also note that this definition of winners and losers relies on the assumption
 565 that $t_{G,A} = t_{G,B}$, such that differences in survival probability alone determine relative
 566 proliferative success. In the general case, however, differences in the total cell cycle
 567 duration can also affect the dynamics of heterotypic populations. For instance, a cell
 568 type with a lower survival probability may become more abundant than the competing
 569 cell type by dividing more rapidly. However, for the sake of simplicity we do not consider
 570 such cases in this paper, and instead characterise population dynamics solely in terms
 571 of survival probabilities.

572 To obtain an expression for the sign of $\Delta_{A|B}^{\neq}$, we substitute Equations (44) and (45)
 573 into Equation (46) and rearrange to give

$$\Delta_{A|B}^{\neq} = \exp\left(-\frac{\eta_B}{\beta_B\langle 1 - \beta \rangle}\right) - \exp\left(-\frac{\eta_A}{\beta_A\langle 1 - \beta \rangle}\right). \quad (47)$$

Since $\exp(\cdot)$ is a monotonically increasing function, we have $\text{sgn}(\exp(x) - \exp(y)) = \text{sgn}(x - y)$. Applying the sign function thus yields

$$\begin{aligned} \text{sgn}\left(\Delta_{A|B}^{\neq}\right) &= \text{sgn}\left(\frac{\eta_A}{\beta_A\langle 1 - \beta \rangle} - \frac{\eta_B}{\beta_B\langle 1 - \beta \rangle}\right) \\ &= \text{sgn}\left(\frac{\eta_A}{\beta_A} - \frac{\eta_B}{\beta_B}\right). \end{aligned} \quad (48)$$

574
 575 To interpret Equation (48), we note that η and β both affect a cell's sensitivity to
 576 the death signal. Increasing η corresponds to a higher death threshold, and thus a lower
 577 sensitivity, and decreasing β shortens the time spent in G1 phase, during which a cell is
 578 vulnerable to competition-induced apoptosis. This suggests that we can interpret η/β
 579 as a cell's tolerance to death signals. Therefore, Equation (48) states that the relative
 580 tolerance to death signals determines winner/loser status, with the most tolerant cell
 581 type becoming the winner.

582 Since the sign of $\Delta_{A|B}^{\neq}$ depends only on model parameters, we can partition the
 583 parameter space into two regions in which $\Delta_{A|B}^{\neq} > 0$ and $\Delta_{A|B}^{\neq} < 0$, respectively. We
 584 define the **coexistence curve** for fixed β_B and η_B as the curve in (β_A, η_A) -space that

585 satisfies $\Delta_{A|B}^{\neq} = 0$. From Equation (48), we derive that the coexistence curve is given
586 by

$$\frac{\eta_A}{\beta_A} - \frac{\eta_B}{\beta_B} = 0. \quad (49)$$

587 We validate this result using simulations of the well-mixed and vertex-based models in
588 Section S6 of the supplementary material.

589 4.2.3. *Homotypic survival difference*

590 The heterotypic survival difference does not indicate that a competitive interaction,
591 or indeed any interaction, is taking place. After all, co-culturing two cell types that do
592 not interact at all but have different intrinsic survival probabilities would result in a
593 nonzero heterotypic survival difference. In this section, however, we describe a metric
594 that quantifies changes in survival probability resulting from heterotypic interactions.

595 In particular, we define the **homotypic survival difference** as

$$\Delta_{A|B}^{\equiv} \equiv \xi_{A|B} - \lambda_A, \quad \Delta_{B|A}^{\equiv} \equiv \xi_{B|A} - \lambda_B, \quad (50)$$

596 for cell types A and B, respectively. The homotypic survival difference compares the
597 fitness of a cell type in a heterotypic environment to its fitness in a homotypic environment.
598

599 The sign of the homotypic survival difference indicates whether a cell type is more
600 or less fit as a result of the heterotypic interaction, compared to homotypic conditions.
601 If $\Delta_{A|B}^{\equiv} > 0$, then we say that cell type A is more fit when competing with cell type
602 B, and vice versa for $\Delta_{A|B}^{\equiv} < 0$. A positive homotypic survival difference indicates
603 that the cell type benefits from the interaction. This does not mean, however, that
604 the interaction is mutualistic, since in that case both cell types would need to benefit
605 from the interaction (i.e. $\Delta_{A|B}^{\equiv}, \Delta_{B|A}^{\equiv} > 0$). We show below that such an interaction is
606 impossible in the G2 death signal model. Finally, if $\Delta_{A|B}^{\equiv} = 0$, then we say that cell
607 type A is in **neutral competition** with cell type B, since the presence of cell type B
608 does not produce a net change in the fitness of cell type A.

609 Focusing our derivation on the homotypic survival difference of cell type A, we apply
 610 the sign function to give

$$\text{sgn}(\Delta_{A|B}^{\pm}) = \text{sgn}\left(\frac{1}{\langle 1 - \beta \rangle} - \frac{1}{1 - \beta_A}\right). \quad (51)$$

We expand $\langle 1 - \beta \rangle(t)$ to give

$$\frac{1}{\langle 1 - \beta \rangle(t)} - \frac{1}{1 - \beta_A} = \frac{n_B(t)(\beta_B - \beta_A)}{[n_A(t)(1 - \beta_A) + n_B(t)(1 - \beta_B)](1 - \beta_B)}. \quad (52)$$

611 The denominator of the right-hand side is strictly positive, so we only need to consider
 612 the sign of the numerator. Equation (52) indicates that the sign of $\Delta_{A|B}^{\pm}$ is dependent
 613 on the system state. In the degenerate case of $n_B(t) = 0$, we are reduced to a homotypic
 614 population composed solely of A-type cells, and thus $\Delta_{A|B}^{\pm} = 0$. However, if we limit
 615 our scope to the heterotypic case, i.e. $n_A(t), n_B(t) > 0$, we can rewrite Equation (51)

616 as

$$\text{sgn}(\Delta_{A|B}^{\pm}) = \text{sgn}(\beta_B - \beta_A). \quad (53)$$

617 For cell type B, we derive an analogous expression:

$$\text{sgn}(\Delta_{B|A}^{\pm}) = \text{sgn}(\beta_A - \beta_B). \quad (54)$$

618 Comparing Equations (53) and (54), we derive the following identity:

$$\text{sgn}(\Delta_{A|B}^{\pm}) = -\text{sgn}(\Delta_{B|A}^{\pm}). \quad (55)$$

619 In other words, the homotypic survival differences of two competing cell types have
 620 opposite signs. Hence, one cell type's loss is another cell type's gain, and a mutualistic
 621 relationship is impossible.

622 For the heterotypic survival difference (Section 4.2.2), we factored out the death
 623 signal, $\langle 1 - \beta \rangle$, to find an expression for the sign of $\Delta_{A|B}^{\neq}$ and found that winner/loser
 624 status is determined by the difference in *tolerance* to death signals. Here, in contrast, we
 625 factored out the tolerance to death signals, η/β , to find that the sign of the homotypic

626 survival difference depends on the difference in β . Under the ergodic approximation
 627 (Sections 4.1.1 and 4.2.1), a larger value of $1 - \beta$ corresponds to a greater death signal.
 628 This is because the amount of time spent in G2 phase, during which cells emit death
 629 signals, is proportional to $1 - \beta$. This suggests that we can interpret $1 - \beta$ as the cell's
 630 emission rate of death signals. Rewriting Equation (53) as

$$\text{sgn}(\Delta_{A|B}^{\equiv}) = \text{sgn}((1 - \beta_A) - (1 - \beta_B)), \quad (56)$$

631 shows that the sign of the homotypic survival difference is determined by the difference
 632 in *emission* of death signals. In particular, cell type A fares better in heterotypic
 633 conditions if cell type B has a lower emission of death signal than cell type A, and vice
 634 versa.

635 Equations (53) and (54) show that the signs of $\Delta_{A|B}^{\equiv}$ and $\Delta_{B|A}^{\equiv}$ are independent of
 636 the system state, except in the degenerate homotypic cases $n_A(t) = 0$ and $n_B(t) = 0$.
 637 We can therefore partition the parameter space into two regions: one where $\Delta_{A|B}^{\equiv} > 0 \wedge$
 638 $\Delta_{B|A}^{\equiv} < 0$, and one where $\Delta_{A|B}^{\equiv} < 0 \wedge \Delta_{B|A}^{\equiv} > 0$. We define the **neutral competition**
 639 **curve** as the curve in (β_A, η_A) -space that satisfies $\Delta_{A|B}^{\equiv} = 0$ for fixed values of β_B and
 640 η_B . From Equation (53), we derive that the neutral competition curve is given by

$$\beta_B - \beta_A = 0. \quad (57)$$

641 We validate this result using simulations of the well-mixed and vertex-based models in
 642 Section S7 of the supplementary material.

643 4.2.4. Classification of competitive interactions

644 In Sections 4.2.2 and 4.2.3, we defined the heterotypic and homotypic survival dif-
 645 ferences, respectively. The former relates the difference in survival probability between
 646 competing cell types in heterotypic conditions, while the latter relates the difference
 647 compared to homotypic conditions. In this section, we construct a classification of
 648 competitive interactions based on these quantities.

649 Enumerating the signs of the homotypic and heterotypic survival differences, com-
 650 bined with the identity $\text{sgn}(\Delta_{A|B}^{\neq}) = -\text{sgn}(\Delta_{B|A}^{\neq})$ (see Equation (55)), we obtain nine

		$\Delta_{A B}^=$		
		+	0	-
		A direct winner	A neutral winner	A indirect winner
+		B direct loser	B neutral loser	B indirect loser
		Coexistence	Neutral coexistence	Coexistence
-		A indirect loser	A neutral loser	A direct loser
		B indirect winner	B neutral winner	B direct winner

Table 4: Classification of competitive interactions based on the heterotypic survival difference, $\Delta_{A|B}^{\neq}$, defined in Section 4.2.2, and the homotypic survival difference, $\Delta_{A|B}^=$, defined in Section 4.2.3.

651 types of competitive interactions (Table 4). After accounting for the fact that cell type
 652 labels are arbitrary, we can group these types into five distinct categories:

653 **Neutral coexistence** $\{\Delta_{A|B}^{\neq} = 0, \Delta_{A|B}^= = 0\}$. This is the degenerate case where ne-
 654 ther cell type has a relative survival advantage, and both cell types have the same
 655 survival probability as in homotypic conditions. The competitive interaction is
 656 neutral because there is no effect on either cell type's absolute fitness, and the
 657 cell types coexist because they have the same fitness.

658 **Coexistence** $\{\Delta_{A|B}^{\neq} = 0, \Delta_{A|B}^= \neq 0\}$. The cells experience a change in absolute fit-
 659 ness compared to the homotypic environment, but there is no relative survival
 660 advantage for either cell type. Therefore, neither cell type dominates.

661 **Neutral competition** $\{\Delta_{A|B}^{\neq} \neq 0, \Delta_{A|B}^= = 0\}$. The nonzero heterotypic survival dif-
 662 ference means that there is a difference in relative fitness. Thus, winners and
 663 losers emerge, with the winner cell type dominating the population. However,
 664 neither cell type experiences a difference in absolute fitness compared to homo-
 665 typic conditions.

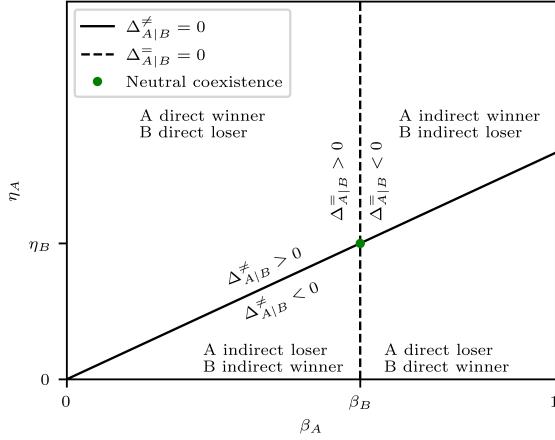


Figure 5: Diagram situating the different types of competitive interactions in (β_A, η_A) -space, given fixed values for β_B and η_B . The full and dashed lines correspond to the coexistence and neutral competition curves, respectively. The green dot corresponds to the neutral coexistence point.

666 **Indirect competition** $\left\{ \Delta_{A|B}^{\neq} \neq 0, \operatorname{sgn} \left(\Delta_{A|B}^{\neq} \right) = -\operatorname{sgn} \left(\Delta_{A|B}^{\equiv} \right) \right\}$. As in neutral competition, winners and losers emerge from the competitive interaction. The sign of 667 the homotypic survival difference is nonzero and opposite to the sign of the heterotypic survival difference, which means that the losers experience an increase in 668 absolute fitness compared to homotypic conditions, and the winners experience a 669 decrease. 670

672 **Direct competition** $\left\{ \Delta_{A|B}^{\neq} \neq 0, \operatorname{sgn} \left(\Delta_{A|B}^{\neq} \right) = \operatorname{sgn} \left(\Delta_{A|B}^{\equiv} \right) \right\}$. Similar to the other 673 types of competition, the population splits into winner and loser cells. In contrast 674 to indirect competition, however, the homotypic survival difference has the same 675 sign as the heterotypic survival difference, meaning that the winners are fitter 676 than in the homotypic environment, and the losers less fit.

677 All types of competition involve one cell type (the winners) becoming more abundant 678 than the other cell type (the losers). The distinction between types is based on 679 the change in fitness experienced by the winners and losers compared to homotypic 680 conditions. In neutral competition, there is no change in fitness for either the winners 681 or losers. In indirect competition, the winners become less fit and the losers more fit,

682 potentially leading to a scenario where a previously nonviable loser cell type is “rescued”
683 by the interaction with the winner cell type and becomes viable. In direct competition,
684 the winners become more fit and the losers less fit, potentially leading to a previously
685 viable loser cell type becoming nonviable as a result of the interaction, which is one of
686 the cell competition criteria. We therefore expect any competitive outcomes to be the
687 result of direct competition.

688 As discussed previously, we can partition cross sections of parameter space using the
689 coexistence curve and the neutral competition curve. In Figure 5, we plot these curves
690 in (β_A, η_A) -space for fixed values of β_B and η_B . The curves translate to straight lines,
691 on which we find the coexistence and neutral competition regimes. Furthermore, we
692 find the **neutral coexistence point** at their intersection, i.e. $\beta_A = \beta_B$ and $\eta_A = \eta_B$,
693 which corresponds to the degenerate case where the competing cell types have identical
694 parameters. Finally, we see that the curves divide the cross section into four sectors,
695 with the top left and bottom right sectors corresponding to direct competition, and the
696 top right and bottom left sectors corresponding to indirect competition.

697 4.2.5. *Heterotypic proliferation regimes*

698 While introducing the heterotypic survival difference in Section 4.2.2, we defined
699 winners and losers in a weak sense based on which cell type is more prolific. Although
700 this is an important precondition for cell competition, the cell competition criteria, as
701 defined in Section 1.1, are based on the viability of the competing cell types, not their
702 relative abundance. Thus, in this section we investigate the viability of winners and
703 losers, ultimately deriving the heterotypic proliferation regimes. In Section 4.3, we use
704 these results to arrive at a more comprehensive definition of winners and losers.

705 Regardless of the type of competitive interaction, winners (in the proliferative sense)
706 become the dominant species in the population over time by definition. Therefore, we
707 expect that the population-weighted average death signal, $\langle 1 - \beta \rangle(t)$, approaches the
708 intrinsic death signal of the winning cell type. Assuming for now that cell type A is

709 the winner, i.e. $\Delta_{A|B}^{\neq} > 0$, we have

$$\langle 1 - \beta \rangle(t) \rightarrow 1 - \beta_A \quad \text{as } t \rightarrow \infty. \quad (58)$$

Hence, when considering the long-term behaviour of the population, we can substitute $1 - \beta_A$ for $\langle 1 - \beta \rangle$ into the heterotypic survival probability for cell types A and B to obtain the **asymptotic survival probabilities**:

$$\xi_{A|B}(t \rightarrow \infty) = 1 - \exp\left(-\frac{\eta_A}{\beta_A(1 - \beta_A)}\right), \quad (59)$$

$$\xi_{B|A}(t \rightarrow \infty) = 1 - \exp\left(-\frac{\eta_B}{\beta_B(1 - \beta_A)}\right). \quad (60)$$

710 Comparing Equation (59) with Equation (31), we find that the asymptotic survival
 711 probability of cell type A is equal to its homotypic survival probability, λ_A . The het-
 712 erotypic viability of winners is thus determined by their homotypic viability. We denote
 713 the right-hand side of Equation (60) as

$$\xi_{B|A}^{\infty} \equiv 1 - \exp\left(-\frac{\eta_B}{\beta_B(1 - \beta_A)}\right), \quad (61)$$

so that we can write the asymptotic survival probabilities more succinctly as

$$\xi_{A|B}(t \rightarrow \infty) = \lambda_A, \quad (62)$$

$$\xi_{B|A}(t \rightarrow \infty) = \xi_{B|A}^{\infty}. \quad (63)$$

Conversely, if cell type B is the winner, i.e. $\Delta_{A|B}^{\neq} < 0$, we have

$$\xi_{A|B}(t \rightarrow \infty) = \xi_{A|B}^{\infty}, \quad (64)$$

$$\xi_{B|A}(t \rightarrow \infty) = \lambda_B, \quad (65)$$

714 where $\xi_{A|B}^{\infty}$ is defined analogously to Equation (61).

715 We can now use the asymptotic survival probability to characterise the viability of
 716 competing cell types in a heterotypic population. Assuming that cell type A is the
 717 winner, we distinguish between the following outcomes:

718 **Case** $\{\lambda_A \leq \frac{1}{2}\}$. If the winner cells are not viable, then the losers are also not viable,
719 since they have, by definition, a lower survival probability than the winners. Thus,
720 both winners and losers go extinct.

721 **Case** $\{\lambda_A > \frac{1}{2}\}$. The winner cells are homotypically viable and therefore remain viable.
722 Whether or not the losers are viable depends on $\xi_{B|A}^\infty$.

723 **Subcase** $\{\xi_{B|A}^\infty \leq \frac{1}{2}\}$. The loser cells are heterotypically nonviable and are eliminated from the tissue.
724

725 **Subcase** $\{\xi_{B|A}^\infty > \frac{1}{2}\}$. The losers are heterotypically viable and persist in the
726 tissue.

727 We thus have three distinct proliferation regimes for $\Delta_{A|B}^\neq > 0$. Three analogous proliferation regimes exist for $\Delta_{A|B}^\neq < 0$, for a total of six proliferation regimes overall. We
728 729 730 731 cannot visualise four-dimensional $(\beta_A, \eta_A, \beta_B, \eta_B)$ -space directly, so we first provide an outline of the proliferation regimes, and then sketch them in cross sections for particular values of β_B and η_B .

732 Firstly, the **coexistence hypersurface** $\Delta_{A|B}^\neq = 0$ divides the parameter space into
733 734 735 736 737 738 739 740 741 two subspaces, $\Delta_{A|B}^\neq > 0$ and $\Delta_{A|B}^\neq < 0$, where cell types A and B are the respective winners. Secondly, for $\Delta_{A|B}^\neq > 0$, we have two regions where $\lambda_A > 1/2$ and $\lambda_A < 1/2$, respectively. The boundary is given by the **A winner viability hypersurface** $\lambda_A = 1/2$. The region in which the winner is viable, i.e. $\lambda_A > 1/2$, is further split into two parts, based on whether the loser is viable ($\xi_{B|A}^\infty > 1/2$) or nonviable ($\xi_{B|A}^\infty < 1/2$), by the **B loser viability hypersurface** $\xi_{B|A}^\infty = 1/2$. We divide the subspace $\Delta_{A|B}^\neq < 0$, where cell type B is the winner, in an analogous manner. Hence, in total there are five hypersurfaces that delineate the heterotypic proliferation regimes: the coexistence hypersurface, two winner viability hypersurfaces and two loser viability hypersurfaces.

We visualise the heterotypic proliferation regimes using cross sections for particular values of β_B and η_B in (β_A, η_A) -space. In these cross sections, the hypersurfaces become

the following curves:

$$\text{Coexistence curve: } \Delta_{A|B}^{\neq} = 0 \Leftrightarrow \eta_A = \frac{\eta_B}{\beta_B} \beta_A, \quad (66)$$

$$\text{A winner curve: } \lambda_A = \frac{1}{2} \Leftrightarrow \eta_A = \ln(2) \beta_A (1 - \beta_A), \quad (67)$$

$$\text{B loser curve: } \xi_{B|A}^{\infty} = \frac{1}{2} \Leftrightarrow \beta_A = 1 - \frac{\eta_B}{\ln(2) \beta_B}, \quad (68)$$

$$\text{A loser curve: } \xi_{A|B}^{\infty} = \frac{1}{2} \Leftrightarrow \eta_A = \ln(2) (1 - \beta_B) \beta_A. \quad (69)$$

742 The B winner viability hypersurface does not map onto a curve in (β_A, η_A) -space be-
 743 cause it depends only on β_B and η_B . We therefore consider the cases $\lambda_B < 1/2$ and
 744 $\lambda_B > 1/2$ in separate cross sections.

745 If $\eta_B/\beta_B > \ln(2)$, then Equation (68) does not have a solution for positive β_A , hence
 746 the B loser viability curve does not appear in cross sections for which this is the case.
 747 We therefore consider this case in a separate cross section. It can be easily verified
 748 that $\eta_B/\beta_B > \ln(2)$ implies $\lambda_B > 1/2$, so we only need to consider three distinct cross
 749 sections (Figure 6(a)):

750 *Cross Section I* $\{\beta_B = 0.2, \eta_B = 0.2\}$. This cross section satisfies $\eta_B/\beta_B > \ln(2)$. We
 751 see three distinct regimes. Above the coexistence curve, both cell types are viable, with
 752 cell type A as the winner. Between the coexistence curve and the A loser viability curve,
 753 cell type B is the winner and both cell types are viable. Below the A loser viability
 754 curve, only cell type B is viable. We note that there are no values of β_A and η_A for
 755 which cell type B is nonviable. Therefore, regardless of the competing cell type, cell
 756 type B is always viable.

757 *Cross Section II* $\{\beta_B = 0.8, \eta_B = 0.2\}$. This cross section satisfies $\eta_B/\beta_B < \ln(2)$ and
 758 $\lambda_B > 1/2$. We identify five distinct regimes. Below the coexistence curve, we see
 759 the same two regimes as in Cross Section I. The wedge-shaped region between the
 760 coexistence curve and the A loser viability curve is particularly interesting because it
 761 partly overlaps with the area under the homotypic viability curve of cell type A. The A-
 762 type cells in this region are nonviable under homotypic conditions, but are viable when

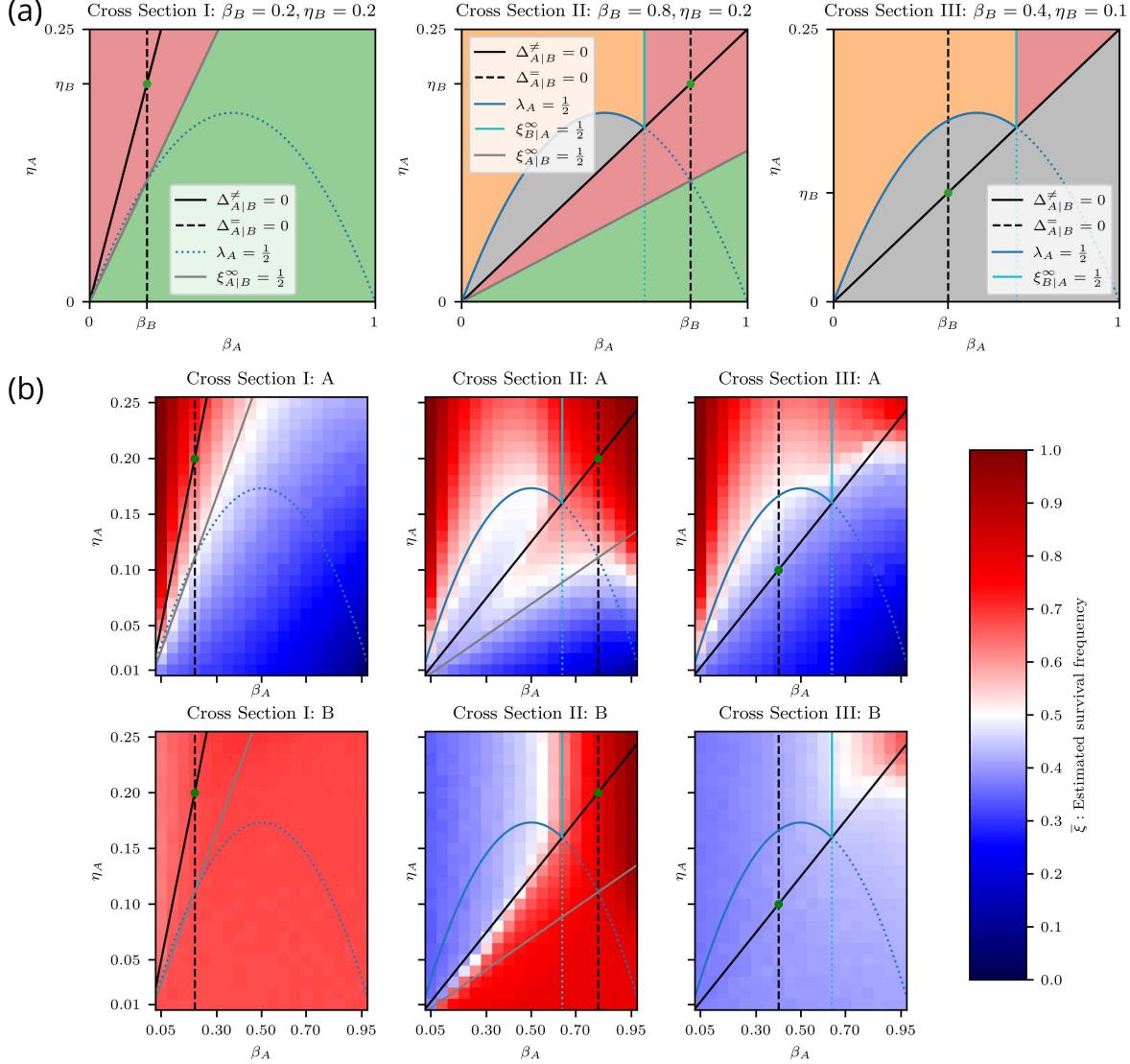


Figure 6: Heterotypic proliferation regimes: diagram and well-mixed results. (a) Diagrams for Cross Sections I, II, and III, situating the different heterotypic proliferation regimes. The green dot corresponds to the neutral coexistence point. Grey: cell types A and B are nonviable. Green: cell type A is nonviable, cell type B is viable. Orange: cell type A is viable, cell type B is nonviable. Red: cell types A and B are viable. (b) Estimated heterotypic survival frequency of cell types A and B using the well-mixed model. The top row displays the estimated heterotypic survival frequency of cell type A, $\xi_{A|B}$, defined in Equation (70). The bottom row displays the estimated heterotypic survival frequency of cell type B, $\xi_{B|A}$, also defined in Equation (70). All curves are the same as in (a).

763 interacting with cell type B and are therefore “rescued” by the competitive interaction.
764 This is also present in Cross Section I, but it is more visible here. We note that this
765 region is contained within the indirect competition sector because only an indirect
766 competitive interaction can increase the fitness of loser cells.

767 We see three regimes above the coexistence curve. Below the A winner viability
768 curve, the winning A-type cells are nonviable, which renders both cell types nonviable.
769 Above this curve, the winner A-type cells are viable. In this subspace, the survival of
770 cell type B depends on β_A . To the left of the B loser viability curve, the death signal
771 emitted by cell type A is sufficiently high to eliminate cell type B, whereas, on the other
772 side, the death signal is too weak to eliminate cell type B, so cell type B survives.

773 *Cross Section III* $\{\beta_B = 0.4, \eta_B = 0.1\}$. This cross section satisfies $\eta_B/\beta_B < \ln(2)$ and
774 $\lambda_B < 1/2$. Below the coexistence curve, where cell type B is the winner, both cell types
775 are nonviable because cell type B is homotypically nonviable. Above the coexistence
776 curve, we find the same regimes as in Cross Section II. Since cell type B is homotypically
777 nonviable in this cross section, we note that the top right triangular region, where cell
778 type B is heterotypically viable, corresponds to nonviable loser rescue, and thus is
779 analogous to the wedge-shaped area discussed in Cross Section II. Similarly, this area
780 is fully contained within the indirect competition sector.

781 4.2.6. Computational validation of heterotypic proliferation regimes

782 In this section, we validate the predicted heterotypic proliferation regimes of Sec-
783 tion 4.2.5 by conducting simulations of the well-mixed and vertex-based models. For the
784 vertex-based model, we conducted simulations with both segregated and random initial
785 conditions. Further details are provided in Section S8 of the supplementary material.

786 To estimate the survival frequency for a particular parameter set, we averaged the
787 heterotypic survival frequencies across repeated simulations as

$$\overline{\xi_{A|B}} = \frac{1}{N_{\text{sim}}} \sum_{k=1}^{N_{\text{sim}}} \hat{\xi}_{A|B,k}, \quad \overline{\xi_{B|A}} = \frac{1}{N_{\text{sim}}} \sum_{k=1}^{N_{\text{sim}}} \hat{\xi}_{B|A,k}. \quad (70)$$

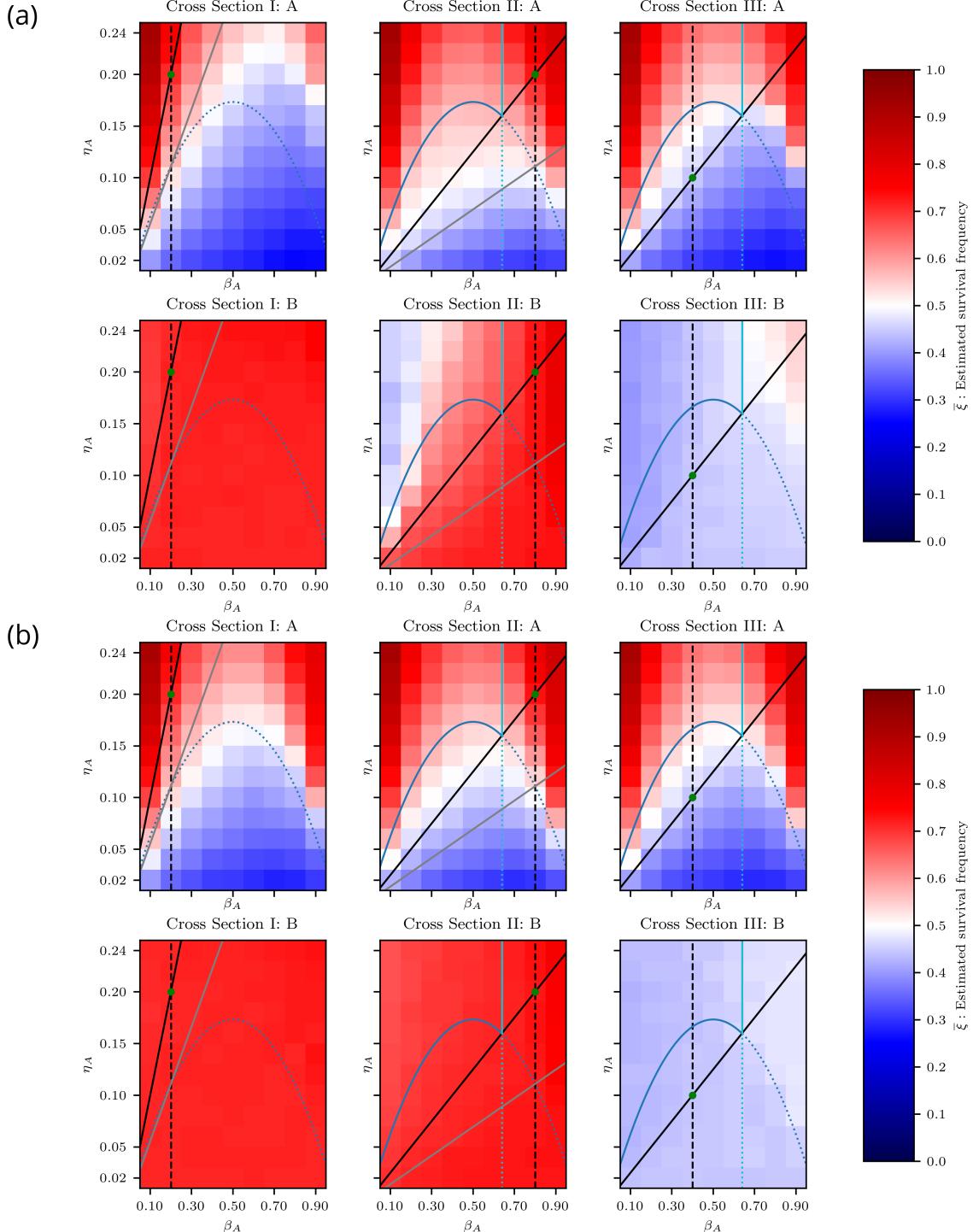


Figure 7: Heterotypic proliferation regimes: vertex-based results. (a–b) Estimated heterotypic survival frequency of cell types A and B using the vertex-based model with random and segregated initial conditions. See Figure 6(b) for legend. (a) Random initial conditions. (b) Segregated initial conditions.

788 The results for the well-mixed model are given in Figure 6(b). The top and bottom
789 rows show the survival frequency for cell types A and B, respectively. When comparing
790 the results to Figure 6(a), we see an excellent agreement between the simulations and
791 predictions.

792 The results for the vertex-based model with random and segregated initial conditions
793 are provided in Figures 7(a) and 7(b), respectively. In Figure 7(a), we can see similar
794 proliferation regimes as in the well-mixed case, except that the contours do not align
795 perfectly with the predicted curves. In Cross Section II, for cell type A, we expect to
796 see a sequence of red–blue–red–blue regions from top left to bottom right, but instead
797 we see a gradual transition from red to blue. In addition, for high β_A , we see red regions
798 for cell type A that extend below their predicted limits in all cross sections.

799 In Figure 7(b), we see significant deviations from the predicted proliferation regimes.
800 When comparing the plots for cell type A with the results for the homotypic proliferation
801 regimes in Figure 4(b), we see that A-type cells essentially behave as if they were in a
802 homotypic environment. Similarly, the heterotypic viability of cell type B matches its
803 viability in homotypic conditions, regardless of the parameters of cell type A. These
804 results suggest that segregated cell types behave like homotypic populations.

805 4.3. Classification of competition regimes

806 So far, we have systematically characterised the proliferation regimes of homotypic
807 populations (Section 4.1.2) and heterotypic populations (Section 4.2.5). In addition,
808 we have described and classified the different types of competitive interactions in het-
809 erotypic populations (Section 4.2.4). In this section, we integrate all these classifications
810 into the competition regimes of the G2 death signal model, allowing us to not only apply
811 the cell competition criteria, but also to refine and expand the known cell competition
812 regimes.

813 The first condition of the cell competition criteria is that both cell types are homo-
814 typically viable, i.e. $\lambda_A, \lambda_B > 1/2$. In order to satisfy $\lambda_A > 1/2$, we only consider the
815 parameter space above the homotypic viability curve, as shown in Figure 8. To sat-

Regime	λ_W, λ_L	$\Delta_{W L}^{\neq}$	$\xi_{L W}^{\infty}$	$\Delta_{L W}^{\equiv}$	Legend
Homotypic viability	$> 1/2$	-	-	-	
Coexistence	$> 1/2$	$= 0$	-	-	
Competition	$> 1/2$	> 0	-	-	-
Loser elimination	$> 1/2$	> 0	$\leq 1/2$	$\underline{< 0}$	-
Loser survival	$> 1/2$	> 0	$> 1/2$	-	-
Cell competition	$> 1/2$	> 0	-	< 0	
Complete cell competition	$> 1/2$	> 0	$< 1/2$	$\underline{< 0}$	
Critical cell competition	$> 1/2$	> 0	$= 1/2$	$\underline{< 0}$	
Incomplete cell competition	$> 1/2$	> 0	$> 1/2$	< 0	
Neutral competition	$> 1/2$	> 0	$\underline{> 1/2}$	$= 0$	
Indirect competition	$> 1/2$	> 0	$\underline{> 1/2}$	> 0	

Table 5: Classification of competition regimes. The competition regime (bolded) can be subdivided in two ways: loser elimination and loser survival regimes (top section), or cell competition, neutral competition, and indirect competition regimes (bottom section). The underlined conditions are implied by the other conditions on the same row. The legend column maps the regimes onto areas and curves plotted in Figure 8.

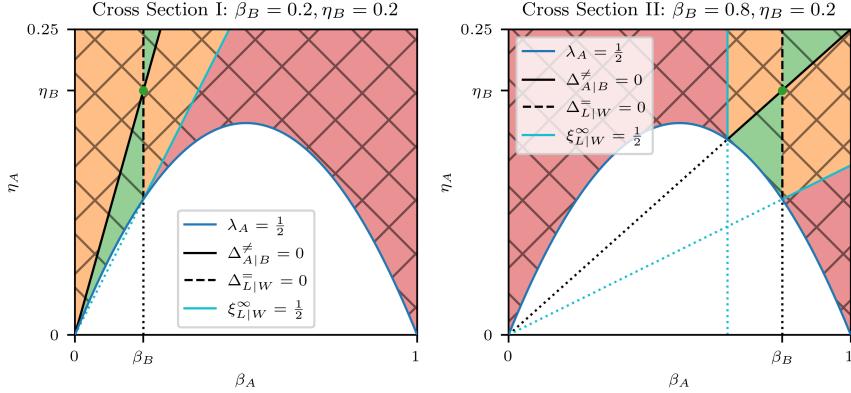


Figure 8: Diagrams of competition regimes for Cross Sections I and II. The green dot corresponds to the neutral coexistence point. The labels W and L are used to refer to the winner and loser cell types, respectively, i.e. W = A, L = B for $\Delta_{A|B}^{\neq} > 0$ and W = B, L = A for $\Delta_{A|B}^{\neq} < 0$. The symbol $\xi_{L|W}^{\infty}$ refers to the asymptotic survival probability of the loser cell type. Linear hatch: homotypic viability. Cross hatch: cell competition. Red: complete cell competition. Orange: incomplete cell competition. Green: indirect cell competition. See also Table 5 for the legend.

816 isfy the viability condition for cell type B, we only consider cross sections that satisfy
 817 $\lambda_B > 1/2$. In particular, Cross Section III does not satisfy this condition, so we only
 818 plot Cross Sections I and II in Figure 8. We define the **homotypic viability regime**
 819 as

$$\lambda_A, \lambda_B > \frac{1}{2}. \quad (71)$$

820 The second condition is that only one cell type remains viable when the two cell types
 821 compete. This implies a nonzero heterotypic survival difference, i.e. $\Delta_{A|B}^{\neq} \neq 0$, splitting
 822 the homotypic viability regime into the **coexistence regime**

$$\lambda_A, \lambda_B > \frac{1}{2} \quad \wedge \quad \Delta_{A|B}^{\neq} = 0, \quad (72)$$

823 and the **competition regime**

$$\lambda_A, \lambda_B > \frac{1}{2} \quad \wedge \quad \Delta_{A|B}^{\neq} \neq 0. \quad (73)$$

824 The competition regime is further subdivided according to which cell type is the winner.
 825 The G2 death signal model is symmetric with respect to swapping cell type labels, so

826 the choice of winner or loser is arbitrary. Therefore, for ease of notation, we henceforth
 827 label the winner cell type with W and the loser cell type with L, such that $\Delta_{W|L}^{\neq} > 0$
 828 by construction.

829 As we saw in Section 4.2.5, the viability of the winner cell type is determined by its
 830 homotypic viability, which is guaranteed by Equation (71). Therefore, we only need to
 831 impose further that the loser cell type is heterotypically nonviable, i.e. $\xi_{L|W}^{\infty} \leq 1/2$. We
 832 define the **loser elimination regime** as

$$\lambda_W, \lambda_L > \frac{1}{2} \quad \wedge \quad \Delta_{W|L}^{\neq} > 0 \quad \wedge \quad \xi_{L|W}^{\infty} \leq \frac{1}{2}, \quad (74)$$

833 and the **loser survival regime** as

$$\lambda_W, \lambda_L > \frac{1}{2} \quad \wedge \quad \Delta_{W|L}^{\neq} > 0 \quad \wedge \quad \xi_{L|W}^{\infty} > \frac{1}{2}. \quad (75)$$

834 The loser elimination regime satisfies the cell competition criteria and is non-empty for
 835 the G2 death signal model. In addition, we have validated the predicted proliferation
 836 regimes with computational simulations. We therefore conclude that the G2 death
 837 signal model is capable of producing competitive outcomes.

838 We can further refine the competition regimes by considering, in addition, the type of
 839 competitive interaction. Figure 8 shows that the neutral competition curve, defined by
 840 $\Delta_{L|W}^{\equiv} = 0$, runs through the loser survival regime. We define the **neutral competition**
 841 **regime** as

$$\lambda_W, \lambda_L > \frac{1}{2} \quad \wedge \quad \Delta_{W|L}^{\neq} > 0 \quad \wedge \quad \Delta_{L|W}^{\equiv} = 0. \quad (76)$$

842 The neutral competition curve separates the loser survival regime into two subregimes
 843 where $\Delta_{L|W}^{\equiv} < 0$ and $\Delta_{L|W}^{\equiv} > 0$, respectively. In the case of $\Delta_{L|W}^{\equiv} < 0$, the fitness of
 844 losers is reduced by the winners, but not enough to cause loser elimination. We define
 845 this as the **incomplete cell competition regime**

$$\lambda_W, \lambda_L > \frac{1}{2} \quad \wedge \quad \Delta_{W|L}^{\neq} > 0 \quad \wedge \quad \xi_{L|W}^{\infty} > \frac{1}{2} \quad \wedge \quad \Delta_{L|W}^{\equiv} < 0. \quad (77)$$

846 In addition, we can partition the loser elimination regime into the **complete cell**
 847 **competition regime**

$$\lambda_W, \lambda_L > \frac{1}{2} \quad \wedge \quad \Delta_{W|L}^{\neq} > 0 \quad \wedge \quad \xi_{L|W}^{\infty} < \frac{1}{2}, \quad (78)$$

848 and the **critical cell competition regime**

$$\lambda_W, \lambda_L > \frac{1}{2} \quad \wedge \quad \Delta_{W|L}^{\neq} > 0 \quad \wedge \quad \xi_{L|W}^{\infty} = \frac{1}{2}, \quad (79)$$

849 which is the threshold regime between complete and incomplete cell competition. The
850 common feature of complete, critical, and incomplete cell competition is that the win-
851 ners negatively impact the losers. We group these regimes under the **cell competition**
852 **regime**

$$\lambda_W, \lambda_L > \frac{1}{2} \quad \wedge \quad \Delta_{W|L}^{\neq} > 0 \quad \wedge \quad \Delta_{L|W}^{\neq} < 0. \quad (80)$$

853 Finally, on the other side of the neutral competition curve we have $\Delta_{L|W}^{\neq} > 0$, where
854 loser cells have a higher fitness than in homotypic conditions. We denote this as the
855 **indirect competition regime**

$$\lambda_W, \lambda_L > \frac{1}{2} \quad \wedge \quad \Delta_{W|L}^{\neq} > 0 \quad \wedge \quad \Delta_{L|W}^{\neq} > 0. \quad (81)$$

856 We plot the competition regimes in Figure 8 for Cross Sections I and II, and summarise
857 them in Table 5.

858 The competition regimes let us discriminate between different types of winners and
859 losers. We define *complete winners*, *critical winners*, *incomplete winners*, *neutral win-*
860 *ners*, and *indirect winners* as the winner cell types in the respective competition regimes,
861 and define different types of losers analogously. In this terminology, complete and criti-
862 cal winners and losers correspond to the classical definition of winners and losers in the
863 cell competition literature.

864 5. Discussion

865 We stated in the introduction (Section 1) that there are two important advantages in
866 treating winner/loser status as an emergent property rather than hardcoded identities:
867 (i) we can test whether a given cell-based model is capable of producing competitive
868 outcomes; and (ii), if so, analyse the conditions that give rise to competitive outcomes
869 in that model. We demonstrated the first capability in Section 2 by showing that

870 differences in mechanical properties alone (i.e. without a mechanism for active cell
871 death) are insufficient to robustly generate competitive outcomes in a vertex-based
872 model of an epithelial tissue, which agrees with experimental observations that cell
873 competition depends on the initiation of cell death in loser cells [28].

874 This negative result motivated our decision to propose a modelling framework for
875 cell competition with an active mechanism of cell death that is triggered by the exchange
876 of death signals (Section 3). In Section 4, we introduced the G2 death signal model, in
877 which cells only emit death signals in the G2 phase. We systematically investigated its
878 behaviour for homotypic (Section 4.1) and heterotypic populations (Section 4.2), study-
879 ing their proliferation regimes through a combination of (i) theoretical analysis based
880 on the survival probability and (ii) computational simulation using the well-mixed and
881 vertex-based models, ultimately culminating in the characterisation of the competition
882 regimes in Section 4.3. Importantly, our analysis allows for a direct examination of
883 the conditions and parameters that lead to competitive outcomes. In this section, we
884 will interpret and discuss our findings, propose specific ideas for novel cell competition
885 experiments, and outline potential future research directions.

886 *5.1. Spatial mixing is required for cell competition*

887 In Section 4.2.6, we observed that the occurrence of competitive outcomes in the
888 vertex-based model depends on the initial spatial patterning of cell types. When the
889 cell types are distributed randomly, we observe competitive outcomes, but when they
890 are segregated, we do not. In fact, the behaviour of the segregated cell types is virtually
891 identical to that of isolated homotypic populations. This result agrees with experimen-
892 tal observations that spatial mixing is required for cell competition [42], and has been
893 replicated in other cell-based models of cell competition [13].

894 Our derivation of heterotypic proliferation regimes is based on the assumption that
895 the population is well-mixed, which is only true *locally* at heterotypic clone boundaries
896 in the vertex-based model, where cells sample the death signal of both cell types. Within
897 clones, however, cells interact only with cells of the same type, so they behave more like

898 a homotypic population. The degree of competition therefore depends on the amount
899 of heterotypic contact between cell types, which is modulated by the level of spatial
900 mixing.

901 *5.2. Tolerance and emission*

902 When we derived the heterotypic survival difference in Section 4.2.2, we found that
903 the relative abundance of cell types in a tissue is determined by their tolerance to death
904 signals (i.e. η/β). Furthermore, when we derived the homotypic survival difference in
905 Section 4.2.3, we showed that the difference in death signal emission (i.e. $1 - \beta$) between
906 two competing cell types determines the impact of the heterotypic interaction compared
907 to homotypic conditions. Also, in Section 4.2.5, we demonstrated that loser elimination
908 depends on the relationship between the tolerance of the loser and the emission of the
909 winner. From these observations, we infer that tolerance to, and emission of, death
910 signals are the fundamental cell properties driving cell competition in the G2 death
911 signal model. Here, we present a transformation of parameters that explicitly describes
912 the behaviour of the model in terms of tolerance and emission. We also show that the
913 transformed parameters allow us to describe the competition regimes using intuitive
914 and elegant expressions.

915 We define the **tolerance** and **emission** of cell type X , respectively denoted $\tilde{\eta}_X$ and
916 d_X , as follows:

$$\tilde{\eta}_X \equiv \frac{\eta_X}{\ln(2)\beta_X}, \quad d_X \equiv 1 - \beta_X. \quad (82)$$

917 We can formulate the **homotypic viability** condition, $1/2 < \lambda_X$, using $\tilde{\eta}_X$ and d_X by
918 substituting the homotypic survival probability (Equation (31)) and rearranging:

$$\frac{1}{2} < \lambda_X \Leftrightarrow 1 - \beta_X < \frac{\eta_X}{\ln(2)\beta_X} \Leftrightarrow d_X < \tilde{\eta}_X. \quad (83)$$

919 The last inequality reads as the condition that cells must have a higher tolerance than
920 emission to be homotypically viable. The biological interpretation is that cells must
921 be capable of tolerating the death signal that they themselves emit in order to survive
922 as a group. The **loser elimination** condition, $\xi_{L|W}^\infty < 1/2$, can also be expressed

923 using tolerance and emission. Denoting the winner and loser cell types using the labels
 924 W and L, respectively, we substitute the asymptotic survival probability of the loser
 925 (Equation (61)) to obtain

$$\xi_{L|W}^\infty < \frac{1}{2} \Leftrightarrow \frac{\eta_L}{\ln(2)\beta_L} < 1 - \beta_W \Leftrightarrow \tilde{\eta}_L < d_W. \quad (84)$$

926 This means that winner cells must emit death signals at a rate that loser cells cannot
 927 tolerate in order to eliminate the loser cell type from the tissue.

928 To satisfy the cell competition criteria, we require that both cell types are homo-
 929 typically viable, i.e. $d_W < \tilde{\eta}_W$ and $d_L < \tilde{\eta}_L$, and that the loser is eliminated, i.e.
 930 $\tilde{\eta}_L < d_W$. Combining these expressions, we can summarise the conditions on the model
 931 parameters such that the cell competition criteria are satisfied in a single statement:

$$d_L < \tilde{\eta}_L < d_W < \tilde{\eta}_W, \quad (85)$$

which can be read as

$$\text{loser emission} < \text{loser tolerance} < \text{winner emission} < \text{winner tolerance}. \quad (86)$$

932 This corresponds to the **complete cell competition** regime that we defined earlier
 933 in Section 4.3. In a similar manner, we can express all the competition regimes defined
 934 in Section 4.3 in terms of tolerance and emission (compare the following with the bottom
 935 section of Table 5):

936 **Cell competition:** $d_L < \tilde{\eta}_L < \tilde{\eta}_W \wedge d_L < d_W$.

937 **Complete cell competition:** $d_L < \tilde{\eta}_L < d_W < \tilde{\eta}_W$.

938 **Critical cell competition:** $d_L < \tilde{\eta}_L = d_W < \tilde{\eta}_W$.

939 **Incomplete cell competition:** $d_L < d_W < \tilde{\eta}_L < \tilde{\eta}_W$.

940 **Neutral competition:** $d_L = d_W < \tilde{\eta}_L < \tilde{\eta}_W$.

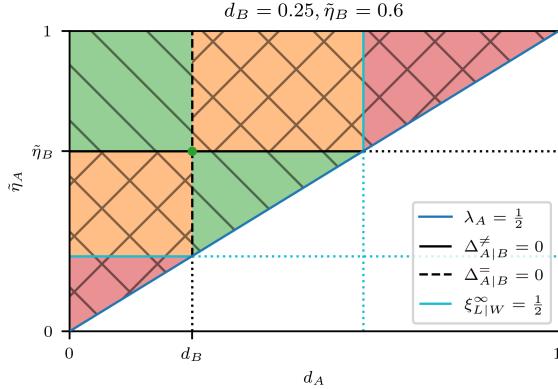


Figure 9: Diagram of competition regimes using the transformed parameters $\tilde{\eta}_X$ and d_X , defined in Equation (82). The green dot corresponds to the neutral coexistence point. The same conventions apply as in Figure 8. See Table 5 for the legend.

941 **Indirect competition:** $d_W < d_L < \tilde{\eta}_L < \tilde{\eta}_W$.

942 These relationships can be verified visually in Figure 9, which shows the competition
 943 regimes in transformed parameter space.

944 *5.3. The tolerance–emission model of cell competition*

945 Based on Equation (86), we make the following biological prediction: **cell competition**
 946 **requires that winner cells have a higher tolerance to death signals and**
 947 **a higher rate of death signal emission than loser cells.** The implicit assumption
 948 in this statement is that cells emit and tolerate some form of death signal, which can
 949 be contact-based, ligand-based, mechanical stress-based, etc. Intuitively, regardless of
 950 the type of death signal, winners must expose losers to a sufficiently high level of death
 951 signal to eliminate them, while still being able to withstand it themselves.

952 Importantly, this model implies that mutations resulting in cell competition, such
 953 as *Minutes* and *Myc*, are pleiotropic because they simultaneously alter the tolerance
 954 to, and emission of, death signals. As a corollary, mutations which affect only one or
 955 neither, do *not* engender cell competition. This potentially explains why some muta-
 956 tions related to proliferation rates result in cell competition, and others do not [7]. In
 957 this view, the inhibition of apoptosis can be regarded as a mutation that results in an

958 infinite tolerance, without affecting emission. Indeed, it has been shown in experiments
959 that inhibiting apoptosis prevents cell competition [7, 28].

960 This observation raises the question: do mutations exist that increase the emission
961 of death signals, without affecting tolerance? If so, they would be challenging to culture,
962 since such mutants would not tolerate their own death signal and thus be homotypically
963 nonviable. However, the tolerance–emission model suggests that such a mutation would
964 be viable if it were paired with apoptosis inhibition. Our model therefore predicts that
965 a hypothetical emission-enhancing mutation combined with apoptosis inhibition would
966 result in a novel species of super-competitors.

967 *5.3.1. Experimental support*

968 Experimental evidence from *Myc*-based cell competition supports the tolerance–
969 emission hypothesis. In [43], the authors demonstrated that the ligand Spätzle is nec-
970 essary for the elimination of loser cells in the *Drosophila* wing disc, forming what the
971 authors term a “killing signal”. They also observed that Spätzle is produced in wild-
972 type conditions at a rate that is tolerated by the wild-type cells, and that the production
973 of Spätzle is upregulated in *Myc* super-competitors without inducing cell death in *Myc*
974 mutants. *Myc* mutants therefore emit more death signal than wild-type cells, while
975 simultaneously being less sensitive to it.

976 In this experiment, the death signal takes on the form of a diffusible death ligand.
977 While the principles of tolerance and emission should still apply, there is an important
978 difference with the contact-based G2 death signal discussed in Section 4; namely that
979 death ligands can diffuse away from the site of heterotypic contact. This could poten-
980 tially explain why we observe loser cell death at a distance in *Myc*-based cell competi-
981 tion [7], but not in *Minutes*-based cell competition. According to the tolerance–emission
982 model, death ligand secretion is upregulated in mutant winner cells in the former case,
983 and downregulated in mutant loser cells in the latter case.

984 We also find support for the tolerance–emission model in mechanical cell competi-
985 tion, specifically in cultures of Madine–Darby canine kidney (MDCK) cells [10]. The

986 authors discovered that cell proliferation is in part modulated by the composition of
987 cell types in the cellular neighbourhood. In particular, winner cells are more prolific
988 when they are specifically surrounded by loser cells. This agrees with our observations
989 that winner cells benefit from proximity to loser cells because loser cells emit a lower
990 level of death signal.

991 *5.3.2. Experimental validation*

992 To validate the tolerance–emission hypothesis, we must extrapolate the model pre-
993 dictions to experimental conditions that have not yet been tested. We predicted in
994 Section 4.2.5 that homotypically nonviable loser cells can be rescued through indirect
995 competition. This occurs when a winner cell type has a lower emission rate than the
996 loser cell type, creating an environment in which losers can proliferate even if they
997 are not viable on their own. The challenge in producing this outcome experimentally,
998 however, is that we would first need to identify an intrinsically nonviable mutant cell
999 type to assume the role of the loser. We therefore propose an alternative experiment
1000 that could potentially simulate this behaviour with known cell types.

1001 Consider a triple co-culture where cell type A outcompetes cell type B and cell type
1002 B outcompetes cell type C. Cell types B and C are both eliminated in a background of
1003 cell type A, which mimics the intrinsic nonviability of cell types B and C. The tolerance–
1004 emission model predicts that the emission of death signals by cell type C is tolerated
1005 by cell type B. Therefore, if we inhibit apoptosis in cell type C, we expect to see: (i)
1006 C-type clones forming in an A-type background; and (ii) the survival of B-type cells
1007 exclusively inside the C-type clones. This outcome would be analogous to the rescue
1008 of a homotypically nonviable loser by indirect competition, with cell types B and C
1009 corresponding to the indirect losers and winners, respectively.

1010 *5.4. The function of cell competition*

1011 The prevalent hypothesis is that cell competition is a mechanism for maintaining
1012 tissue health by eliminating unfit cells. However, what is meant by “fitness” in this
1013 context is not clear [44]. The classical definition of fitness is based on *reproductive*

1014 *success* and early experiments indeed linked reproductive fitness to cell competition,
1015 with winner cells having higher intrinsic proliferation rates than losers [45, 46]. However,
1016 not all mutations that increase proliferation rates result in cell competition [7]. In cell
1017 competition, fitness is perhaps more accurately defined as a measure of *competitive*
1018 *success*, which can be determined by pairwise contests between cell types. In the tolerance–
1019 emission model, competitive success is a combination of tolerance and emission, and
1020 lacks a causal relationship with proliferation rates.

1021 Competitive fitness is therefore not the same as reproductive fitness, but then why
1022 are they often linked in practice? We speculate that differential proliferation rates
1023 are not the mechanism of cell competition, but the *target* of cell competition. Cell
1024 competition evolved to optimise reproductive fitness, but uses competitive fitness as
1025 an imperfect means to communicate it. In other words, competitive fitness serves as a
1026 proxy for reproductive fitness and evolved in a trade-off with other factors such as the
1027 costs involved in cell competition.

1028 Furthermore, we expect that the target of cell competition depends on the function
1029 of the host tissue. In the *Drosophila* wing disc, the tissue expands from 50 to 50 000
1030 cells in the span of four days, so the function of cell competition in this context is to
1031 optimise for reproductive fitness. MDCK cells, on the other hand, were derived from
1032 kidney tubules, so their function is to form a mechanically resilient barrier. In this case,
1033 cell competition is linked to mechanical cell compression, which we hypothesise acts as
1034 a proxy for the cell’s ability to contribute to the structural integrity of the tissue.

1035 5.5. Future work

1036 The framework presented in this paper can be applied to any cell-based model to
1037 study hypothetical mechanisms of cell competition. Moreover, the cell competition
1038 criteria are sufficiently abstract that they can potentially be translated to models of
1039 cell competition that are not cell-based, such as Lotka–Volterra models [47].

1040 We emphasise that the death clock framework is agnostic with respect to the death
1041 signal, and that it can be used to represent different kinds of cell competition mecha-

1042 nisms. Of particular interest are diffusible ligands and mechanical compression as death
1043 signals. Studies show that cell competition in the *Drosophila* wing disc involves the use
1044 of diffusible death ligands [43, 48, 49]. A death clock model based on the secretion
1045 (i.e. emission) and recognition of death ligands is therefore an obvious next step toward
1046 a more biologically accurate representation of the cell competition process. Section 2
1047 suggests that differences in mechanical properties alone do not robustly generate com-
1048 petitive outcomes in a heterotypic vertex-based model. However, they may still play
1049 a role in cell competition when paired with an active mechanism for cell death. Re-
1050 search indicates that mechanical compression triggers apoptosis in loser cells during
1051 mechanical cell competition [16], hence cell compression may be an appropriate death
1052 signal in this context. Further research is needed to investigate models that incorporate
1053 diffusible ligands or mechanical compression as death signals.

1054 6. Acknowledgements

1055 The authors would like to acknowledge the use of the University of Oxford Advanced
1056 Research Computing (ARC) facility [50] and GNU Parallel [51] in carrying out this
1057 work. This work was supported by the Biotechnology and Biological Sciences Research
1058 Council (BBSRC) [BB/M011224/1].

1059 7. Declaration of interests

1060 The authors declare that they have no known competing financial interests or per-
1061 sonal relationships that could have appeared to influence the work reported in this
1062 paper.

1063 **References**

1064 [1] L. A. Johnston, Competitive interactions between cells: death, growth, and geog-
1065 graphy, *Science* 324 (5935) (2009) 1679–1682. doi:[10.1126/science.1163862](https://doi.org/10.1126/science.1163862).

1066 [2] S. Vivarelli, L. Wagstaff, E. Piddini, Cell wars: regulation of cell survival and
1067 proliferation by cell competition, *Essays In Biochemistry* 53 (2012) 69–82. doi:
1068 [10.1042/bse0530069](https://doi.org/10.1042/bse0530069).

1069 [3] R. Levayer, E. Moreno, Mechanisms of cell competition: themes and variations,
1070 *Journal of Cell Biology* 200 (6) (2013) 689–698. doi:[10.1083/jcb.201301051](https://doi.org/10.1083/jcb.201301051).

1071 [4] J. P. Vincent, A. G. Fletcher, L. A. Baena-Lopez, Mechanisms and mechanics of
1072 cell competition in epithelia, *Nature Reviews Molecular Cell Biology* 14 (9) (2013)
1073 581–591. doi:[10.1038/nrm3639](https://doi.org/10.1038/nrm3639).

1074 [5] M. Amoyel, E. A. Bach, Cell competition: how to eliminate your neighbours,
1075 *Development* 141 (5) (2014) 988–1000. doi:[10.1242/dev.079129](https://doi.org/10.1242/dev.079129).

1076 [6] S. Bowling, K. Lawlor, T. A. Rodríguez, Cell competition: the winners and losers of
1077 fitness selection, *Development* 146 (2019) dev167486. doi:[10.1242/dev.167486](https://doi.org/10.1242/dev.167486).

1078 [7] C. De La Cova, M. Abril, P. Bellosta, P. Gallant, L. A. Johnston, *Drosophila myc*
1079 regulates organ size by inducing cell competition, *Cell* 117 (1) (2004) 107–116.
1080 doi:[10.1016/S0092-8674\(04\)00214-4](https://doi.org/10.1016/S0092-8674(04)00214-4).

1081 [8] M. Norman, K. A. Wisniewska, K. Lawrenson, P. Garcia-Miranda, M. Tada,
1082 M. Kajita, H. Mano, S. Ishikawa, M. Ikegawa, T. Shimada, Y. Fujita, Loss of
1083 Scribble causes cell competition in mammalian cells, *Journal of Cell Science* 125 (1)
1084 (2012) 59–66. doi:[10.1242/JCS.085803](https://doi.org/10.1242/JCS.085803).

1085 [9] E. Moreno, K. Basler, dMyc transforms cells into super-competitors, *Cell* 117 (1)
1086 (2004) 117–129. doi:[10.1016/S0092-8674\(04\)00262-4](https://doi.org/10.1016/S0092-8674(04)00262-4).

1087 [10] A. Bove, D. Gradeci, Y. Fujita, S. Banerjee, G. Charras, A. R. Lowe, Local cellular
1088 neighborhood controls proliferation in cell competition, *Molecular Biology of the*
1089 *Cell* 28 (23) (2017). doi:10.1091/mbe.e17-06-0368.

1090 [11] S. W. Lee, Y. Morishita, Possible roles of mechanical cell elimination intrinsic
1091 to growing tissues from the perspective of tissue growth efficiency and homeosta-
1092 sis, *PLoS Computational Biology* 13 (7) (2017). doi:10.1371/journal.pcbi.
1093 1005651.

1094 [12] A. Tsuboi, S. Ohsawa, D. Umetsu, Y. Sando, E. Kuranaga, T. Igaki, K. Fujimoto,
1095 Competition for space is controlled by apoptosis-induced change of local epithelial
1096 topology, *Current Biology* 28 (13) (2018). doi:10.1016/j.cub.2018.05.029.

1097 [13] D. Gradeci, A. Bove, G. Vallardi, A. R. Lowe, S. Banerjee, G. Charras, Cell-scale
1098 biophysical determinants of cell competition in epithelia, *eLife* 10 (2021) e61011.
1099 doi:10.7554/eLife.61011.

1100 [14] C. Brás-Pereira, E. Moreno, Mechanical cell competition, *Current Opinion in Cell*
1101 *Biology* 51 (2018) 15–21. doi:10.1016/j.ceb.2017.10.003.

1102 [15] R. Levayer, C. Dupont, E. Moreno, Tissue crowding induces caspase-dependent
1103 competition for space, *Current Biology* 26 (5) (2016) 670–677. doi:10.1016/j.
1104 cub.2015.12.072.

1105 [16] L. Wagstaff, M. Goschorska, K. Kozyrska, G. Duclos, I. Kucinski, A. Chessel,
1106 L. Hampton-O’Neil, C. R. Bradshaw, G. E. Allen, E. L. Rawlins, P. Silberzan,
1107 R. E. Salas, E. Piddini, Mechanical cell competition kills cells via induction of
1108 lethal p53 levels, *Nature Communications* 7 (2016). doi:10.1038/ncomms11373.

1109 [17] E. Marinari, A. Mehonic, S. Curran, J. Gale, T. Duke, B. Baum, Live-cell de-
1110 lamination counterbalances epithelial growth to limit tissue overcrowding, *Nature*
1111 484 (7395) (2012) 542–545. doi:10.1038/nature10984.

1112 [18] G. T. Eisenhoffer, P. D. Loftus, M. Yoshigi, H. Otsuna, C. B. Chien, P. A.
1113 Morcos, J. Rosenblatt, Crowding induces live cell extrusion to maintain home-
1114 ostatic cell numbers in epithelia, *Nature* 484 (7395) (2012) 546–549. doi:
1115 [10.1038/nature10999](https://doi.org/10.1038/nature10999).

1116 [19] A. G. Fletcher, M. Osterfield, R. E. Baker, S. Y. Shvartsman, Vertex models of
1117 epithelial morphogenesis, *Biophysical Journal* 106 (11) (2014) 2291–2304. doi:
1118 [10.1016/j.bpj.2013.11.4498](https://doi.org/10.1016/j.bpj.2013.11.4498).

1119 [20] E. M. Purcell, Life at low Reynolds number, *American Journal of Physics* 45 (1)
1120 (1977) 3–11. doi:[10.1119/1.10903](https://doi.org/10.1119/1.10903).

1121 [21] R. Farhadifar, J. C. Röper, B. Aigouy, S. Eaton, F. Jülicher, The influence of cell
1122 mechanics, cell-cell interactions, and proliferation on epithelial packing, *Current
1123 Biology* 17 (24) (2007) 2095–2104. doi:[10.1016/j.cub.2007.11.049](https://doi.org/10.1016/j.cub.2007.11.049).

1124 [22] A. G. Fletcher, J. M. Osborne, P. K. Maini, D. J. Gavaghan, Implementing vertex
1125 dynamics models of cell populations in biology within a consistent computational
1126 framework, *Progress in Biophysics and Molecular Biology* 113 (2) (2013) 299–326.
1127 doi:[10.1016/J.PBIOMOLBIO.2013.09.003](https://doi.org/10.1016/J.PBIOMOLBIO.2013.09.003).

1128 [23] J. A. Smith, L. Martin, Do cells cycle?, *Proceedings of the National Academy of
1129 Sciences of the United States of America* 70 (4) (1973) 1263–1267. doi:[10.1073/pnas.70.4.1263](https://doi.org/10.1073/pnas.70.4.1263).

1131 [24] G. R. Mirams, C. J. Arthurs, M. O. Bernabeu, R. Bordas, J. Cooper, A. Cor-
1132 rias, Y. Davit, S.-J. Dunn, A. G. Fletcher, D. G. Harvey, M. E. Marsh, J. M.
1133 Osborne, P. Pathmanathan, J. Pitt-Francis, J. Southern, N. Zemzemi, D. J. Gav-
1134 aghan, Chaste: an open source C++ library for computational physiology and biol-
1135 ogy, *PLoS Computational Biology* 9 (3) (2013) e1002970. doi:[10.1371/journal.pcbi.1002970](https://doi.org/10.1371/journal.pcbi.1002970).

1137 [25] J. M. Osborne, A. G. Fletcher, J. M. Pitt-Francis, P. K. Maini, D. J. Gav-
1138 aghan, Comparing individual-based approaches to modelling the self-organization
1139 of multicellular tissues, *PLoS Computational Biology* 13 (2) (2017) e1005387.
1140 [doi:10.1371/journal.pcbi.1005387](https://doi.org/10.1371/journal.pcbi.1005387).

1141 [26] M. D. McKay, R. J. Beckman, W. J. Conover, A comparison of three methods for
1142 selecting values of input variables in the analysis of output from a computer code,
1143 *Technometrics* 21 (2) (1979) 239–245. [doi:10.2307/1268522](https://doi.org/10.2307/1268522).

1144 [27] B. Tang, Orthogonal array-based Latin hypercubes, *Journal of the American Sta-*
1145 *tistical Association* 88 (424) (1993) 1392–1397. [doi:10.2307/2291282](https://doi.org/10.2307/2291282).

1146 [28] E. Moreno, K. Basler, G. Morata, Cells compete for decapentaplegic survival factor
1147 to prevent apoptosis in *Drosophila* wing development, *Nature* 416 (6882) (2002)
1148 755–759. [doi:10.1038/416755a](https://doi.org/10.1038/416755a).

1149 [29] S. Legewie, N. Blüthgen, H. Herzel, Mathematical modeling identifies inhibitors of
1150 apoptosis as mediators of positive feedback and bistability, *PLoS Computational*
1151 *Biology* 2 (9) (2006) e120. [doi:10.1371/journal.pcbi.0020120](https://doi.org/10.1371/journal.pcbi.0020120).

1152 [30] M. Rehm, H. J. Huber, H. Dussmann, J. H. M. Prehn, Systems analysis of effector
1153 caspase activation and its control by X-linked inhibitor of apoptosis protein, *The*
1154 *EMBO Journal* 25 (18) (2006) 4338–4349. [doi:10.1038/sj.emboj.7601295](https://doi.org/10.1038/sj.emboj.7601295).

1155 [31] M. Bentle, I. Lavrik, M. Ulrich, S. Stößer, D. W. Heermann, H. Kalthoff, P. H.
1156 Krammer, R. Eils, Mathematical modeling reveals threshold mechanism in CD95-
1157 induced apoptosis, *Journal of Cell Biology* 166 (6) (2004) 839–851. [doi:10.1083/jcb.200404158](https://doi.org/10.1083/jcb.200404158).

1159 [32] I. N. Lavrik, A. Golks, D. Riess, M. Bentle, R. Eils, P. H. Krammer, Analysis of
1160 CD95 threshold signaling: triggering of CD95 (FAS/APO-1) at low concentrations
1161 primarily results in survival signaling, *Journal of Biological Chemistry* 282 (18)
1162 (2007) 13664–13671. [doi:10.1074/jbc.M700434200](https://doi.org/10.1074/jbc.M700434200).

1163 [33] K. L. King, J. A. Cidlowski, Cell cycle and apoptosis: common pathways to life
1164 and death, *Journal of Cellular Biochemistry* 58 (2) (1995) 175–180. doi:10.1002/
1165 jcb.240580206.

1166 [34] K. L. King, J. A. Cidlowski, Cell cycle regulation and apoptosis, *Annual Review*
1167 of *Physiology* 60 (1) (1998) 601–617. doi:10.1146/annurev.physiol.60.1.601.

1168 [35] B. Pucci, M. Kasten, A. Giordano, Cell cycle and apoptosis, *Neoplasia* 2 (4) (2000)
1169 291–299. doi:10.1038/sj.neo.7900101.

1170 [36] K. Vermeulen, Z. N. Berneman, D. R. Van Bockstaele, Cell cycle and apoptosis,
1171 *Cell Proliferation* 36 (3) (2003) 165–175. doi:10.1046/j.1365-2184.2003.
1172 00267.x.

1173 [37] L. M. Facchini, L. Z. Penn, The molecular role of Myc in growth and transformation:
1174 recent discoveries lead to new insights, *The FASEB Journal* 12 (9) (1998)
1175 633–651. doi:10.1096/fasebj.12.9.633.

1176 [38] S. B. McMahon, MYC and the control of apoptosis, *Cold Spring Harbor Perspectives*
1177 in *Medicine* 4 (7) (2014) a014407. doi:10.1101/cshperspect.a014407.

1178 [39] G. Bretones, M. D. Delgado, J. León, Myc and cell cycle control, *Biochimica et*
1179 *Biophysica Acta - Gene Regulatory Mechanisms* 1849 (5) (2015) 506–516. doi:
1180 10.1016/j.bbagr.2014.03.013.

1181 [40] N. Ninov, D. A. Chiarelli, E. Martín-Blanco, Extrinsic and intrinsic mechanisms
1182 directing epithelial cell sheet replacement during *Drosophila* metamorphosis, *De-*
1183 *velopment* 134 (2) (2007) 367–379. doi:10.1242/dev.02728.

1184 [41] Y. Nakajima, E. Kuranaga, K. Sugimura, A. Miyawaki, M. Miura, Nonautonomous
1185 apoptosis is triggered by local cell cycle progression during epithelial replacement
1186 in *Drosophila*, *Molecular and Cellular Biology* 31 (12) (2011) 2499–2512. doi:
1187 10.1128/mcb.01046-10.

1188 [42] R. Levayer, B. Hauert, E. Moreno, Cell mixing induced by myc is required for
1189 competitive tissue invasion and destruction, *Nature* 524 (7566) (2015) 476–480.
1190 [doi:10.1038/nature14684](https://doi.org/10.1038/nature14684).

1191 [43] L. Alpar, C. Bergantiños, L. A. Johnston, Spatially restricted regulation of
1192 Spätzle/Toll signaling during cell competition, *Developmental Cell* 46 (6) (2018)
1193 1–14. [doi:10.1016/j.devcel.2018.08.001](https://doi.org/10.1016/j.devcel.2018.08.001).

1194 [44] K. Maheden, The field of cell competition comes of age: semantics and technolo-
1195 gical synergy, *Frontiers in Cell and Developmental Biology* 10 (2022) 891569.
1196 [doi:10.3389/fcell.2022.891569](https://doi.org/10.3389/fcell.2022.891569).

1197 [45] G. Morata, P. Ripoll, Minutes: mutants of *Drosophila* autonomously affecting
1198 cell division rate, *Developmental Biology* 42 (2) (1975) 211–221. [doi:10.1016/0012-1606\(75\)90330-9](https://doi.org/10.1016/0012-1606(75)90330-9).

1200 [46] P. Simpson, G. Morata, Differential mitotic rates and patterns of growth in com-
1201 partments in the *Drosophila* wing, *Developmental Biology* 85 (2) (1981) 299–308.
1202 [doi:10.1016/0012-1606\(81\)90261-X](https://doi.org/10.1016/0012-1606(81)90261-X).

1203 [47] S. Nishikawa, A. Takamatsu, S. Ohsawa, T. Igaki, Mathematical model for cell
1204 competition: predator-prey interactions at the interface between two groups of
1205 cells in monolayer tissue, *Journal of Theoretical Biology* 404 (2016). [doi:10.1016/j.jtbi.2016.05.031](https://doi.org/10.1016/j.jtbi.2016.05.031).

1207 [48] S. N. Meyer, M. Amoyel, C. Bergantiños, C. De La Cova, C. Schertel, K. Basler,
1208 L. A. Johnston, An ancient defense system eliminates unfit cells from developing
1209 tissues during cell competition, *Science* 346 (6214) (2014). [doi:10.1126/science.1258236](https://doi.org/10.1126/science.1258236).

1211 [49] N. Senoo-Matsuda, L. A. Johnston, Soluble factors mediate competitive and co-
1212 operative interactions between cells expressing different levels of *Drosophila* Myc,

1213 Proceedings of the National Academy of Sciences of the United States of America

1214 104 (47) (2007) 18543–18548. doi:10.1073/pnas.0709021104.

1215 [50] A. Richards, University of Oxford Advanced Research Computing (2015). doi:

1216 10.5281/zenodo.22558.

1217 [51] O. Tange, GNU Parallel: the command-line power tool, ;login: The USENIX

1218 Magazine 36 (1) (2011) 42–47. doi:10.5281/zenodo.16303.