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Abstract

Random genetic drift in the population-level dynamics of an infectious disease outbreak results from the
randomness of inter-host transmission and the randomness of host recovery or death. The strength of genetic
drift has been found to be high for SARS-CoV-2 due to superspreading, and this is expected to substantially
impact the disease epidemiology and evolution. Noise that results from the measurement process, such as
biases in data collection across time, geographical areas, etc., can potentially confound estimates of genetic
drift as both processes contribute “noise” to the data. To address this challenge, we develop and validate
a method to jointly infer genetic drift and measurement noise from time-series lineage frequency data. We
apply this method to over 490,000 SARS-CoV-2 genomic sequences from England collected between March
2020 and December 2021 by the COVID-19 Genomics UK (COG-UK) consortium. We find that even after
correcting for measurement noise, the strength of genetic drift is consistently, throughout time, higher than
that expected from the observed number of COVID-19 positive individuals in England by 1 to 3 orders
of magnitude. Corrections taking into account epidemiological dynamics (susceptible-infected-recovered
or susceptible-exposed-infected-recovered models) do not explain the discrepancy. Moreover, the levels of
genetic drift that we observe are higher than the estimated levels of superspreading found by modeling
studies that incorporate data on actual contact statistics in England. We discuss how even in the absence
of superspreading, high levels of genetic drift can be generated via community structure in the host contact
network. Our results suggest that further investigations of heterogeneous host contact structure may be
important for understanding the high levels of genetic drift observed for SARS-CoV-2 in England.
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» Introduction

3  Random genetic drift is the change in the composition of a population over time due to the randomness
w0 of birth and death processes. In pathogen transmission, births occur as a result of transmission of the
a pathogen between hosts and deaths occur as a result of infected host recovery or death. The strength of
2 genetic drift in pathogen transmission is determined by the disease prevalence, the disease epidemiology
s parameters [1], the variance in offspring number (the number of secondary infections that result from an
« infected individual) [2], as well as host contact patterns [3]. Many diseases have been found to exhibit high
s levels of genetic drift, such as SARS, MERS, tuberculosis, and measles [2} |4 [5]. The strength of genetic
s drift affects how the disease spreads through the population |2, |3} |6] how new variants emerge [7} 8, (9} |10,
« |11], and the effectiveness of interventions |12, making it an important quantity to accurately estimate for
s understanding disease epidemiology, evolution, and control.

" The effective population size is often used to quantify the strength of genetic drift; it is the population size
s in an idealized Wright-Fisher model (with discrete non-overlapping generations, a constant population size,
st and offspring determined by sampling with replacement from the previous generation) that would reproduce
52 the observed dynamics [13]. If the effective population size is lower than the true population size, it is an
53 indication that there are additional sources of stochasticity beyond random sampling with replacement; thus,
s« a lower effective population size indicates a higher level of genetic drift.

55 Transmission of SARS-CoV-2 has been shown to exhibit high levels of superspreading (high variance in
s offspring number) |14} |15} [16] and high levels of genetic drift (low effective population sizes) |17, (18, [19] (see
s also Supplementary table . However, studies have focused on particular times and locations, and we lack
ss  systematic studies over time and space (see Ref. [20] for a recent first study that uses contact tracing data
o to infer changes in SARS-CoV-2 superspreading over time in Hong Kong). Performing a systematic study
e may be most feasible with a large-scale surveillance dataset, such as that from the COVID-19 Genomics UK
s (COG-UK) consortium, which has sequenced almost 3 million cases of SARS-CoV-2 in both surveillance and
e mnon-surveillance capacities as of October 5, 2022. We focus specifically on this dataset, and specifically on
e England, due to its consistently large number of sequenced SARS-CoV-2 cases since early in the pandemic.
64 A challenge to performing a systematic study of the strength of genetic drift for SARS-CoV-2 and other
s pathogens is how to handle measurement noise, or noise from the data collection process [21]. Measurement
6 noise can arise from a variety of factors, including variability in the testing rate across time, geographic
&7 locations, demographic groups, and symptom status, and biases in contact tracing. Methods exist to infer
s measurement noise from time-series lineage or allele frequencies [22, |23, 24] (see the Supplementary infor-
s mation for a summary of other methods used for inferring genetic drift, and additional references). Note
7o that here we use the term “lineage” to refer to a group of sequences that are genetically similar to one
n another, which are not necessarily the same as the lineages defined by the Pango nomenclature. Intuitively,
7 in time-series frequency data, genetic drift leads to frequency fluctuations whose magnitudes scale with time,
1z whereas measurement noise leads to frequency fluctuations whose magnitudes do not scale with time (Fig-
7 ure[lh). Thus, this system has been mapped onto a Hidden Markov Model (HMM) with continuous hidden
» and observed states (similar to a Kalman filter), where the hidden states are the true frequencies and the
7 observed states are the observed frequencies (Figure ), and the processes of genetic drift and measurement
7 noise determine the transition and emission probabilities, respectively |25, [26]. Methods often assume uni-
7 form sampling of infected individuals from the population [27, 22} |23], but this assumption does not usually
7 hold outside of surveillance studies. A recent study accounted for overdispersed sampling of sequences in the
s inference of fitness coefficients of SARS-CoV-2 variants, but assumes constant overdispersion over time [28];
a1 in reality, the observation process may change over time due to changes in testing intensity between locations
& and subpopulations.

83 In this study, we develop a method to jointly infer genetic drift and measurement noise that allows
s measurement noise to be overdispersed (rather than uniform) and for the strength of overdispersion to vary
s over time (rather than stay constant). By fitting this model to observed lineage frequency trajectories
e from simulations, we show that the effective population size and the strength of measurement noise can
s be accurately determined in most situations, even when both quantities are varying over time. We then
e apply our validated method to estimate the strengths of genetic drift and measurement noise for SARS-
s CoV-2 in England across time (from March 2020 until December 2021) and space using over 490,000 SARS-
o CoV-2 genomic sequences from COG-UK. We find high levels of genetic drift for SARS-CoV-2 consistently
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o1 throughout time that cannot be explained by literature values of superspreading. We discuss how community
o2 structure in the host contact network may partially explain these results. Additionally, we observe that
o3 sampling of infected individuals from the population is mostly uniform for this dataset, and we also find
o evidence of spatial structure in the transmission dynamics of B.1.177, Alpha, and Delta.

» Results

« Method for jointly inferring genetic drift and measurement noise from time-series
- lineage frequency data
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Figure 1: A Hidden Markov Model with continuous hidden and observed states (similar to a Kalman fil-
ter) for inferring genetic drift and measurement noise from lineage frequency time series. (a) Illustration of
how genetic drift and measurement noise affect the observed frequency time series. Muller plot of lineage
frequencies from Wright-Fisher simulations with effective population size 500 and 5000, with and without
measurement noise. In simulations with measurement noise, 100 sequences were sampled per week with
the measurement noise overdispersion parameter ¢; = 5 (parameter defined in text). All simulations were
initialized with 50 lineages at equal frequency. A lower effective population size leads to larger frequency
fluctuations whose variances add over time, whereas measurement noise leads to increased frequency fluctu-
ations whose variances do not add over time. (b) Schematic of Hidden Markov Model describing frequency
trajectories. f; is the true frequency at time ¢ (hidden states) and 2 is the observed frequency at time ¢
(observed states). The inferred parameters are N,(t) = N,(t)7(t), the effective population size scaled by the
generation time, and ¢;, the overdispersion in measurement noise (¢; = 1 corresponds to uniform sampling
of sequences from the population). (c-f) Validation of method using Wright-Fisher simulations of frequency
trajectories with time-varying effective population size and measurement noise. (c) Simulated number of
sequences. (d) Simulated lineage frequency trajectories. (e) Inferred scaled effective population size (N, (t))
on simulated data compared to true values. (f) Inferred measurement noise (¢;) on simulated data compared
to true values. In (e) the shaded region shows the 95% confidence interval calculated using the posterior, and
in (f) the shaded region shows the 95% confidence interval calculated using bootstrapping (see Methods).

o8 We first summarize the statistical inference method that we developed to infer time-varying effective
o population sizes from neutral lineage frequency time series that are affected by overdispersed measurement
w0 noise (more variable than uniform sampling). We explain the method more extensively in the Methods.
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w1 Briefly, we use a Hidden Markov Model (HMM) with continuous hidden and observed states (similar to
02 a Kalman filter), where the hidden states are the true frequencies (f:, where t is time), and the observed
w03 states are the observed frequencies (ff**) (Figure ) (see Methods). The transition probability between
104 hidden states is set by genetic drift, where the mean true frequency is the true frequency at the previous
ws  time E(fi41|f:) = fi, and when the frequencies are rare the variance in frequency is proportional to the

ws  mean, Var(fiyi|fi) = #1(0 Ne(t) = N,(t)7(t) where N,(t) is the effective population size and 7(t) is the

w7 generation time, and both quantities can vary over time; however, we are only able to infer the compound
s parameter N, (¢)7(t). The emission probability between hidden and observed states is set by measurement
o noise, where the mean observed frequency is the true frequency E(ff**|f;) = f; and when the frequencies
o are rare the variance in the observed frequency is proportional to the mean, Var(ff**|f;) = ct]\%. e > 1
w describes the time-varying deviation from uniform sampling (¢; = 1), and M; is the number of sequences
u2  at time t. Our model assumes that the number of individuals and frequency of a lineage is high enough
us  such that the central limit theorem applies; to meet this condition, we created “superlineages” where we
us  randomly and exclusively grouped lineages together such that the sum of their abundances and frequencies
us  was above a threshold (see Methods).

116 Using the transition and emission probability distributions (see Methods) and the HMM structure, we
ur  determine the likelihood function (Equation in Methods) describing the probability of observing a par-
us ticular set of lineage frequency time-series data given the unknown parameters, namely the scaled effective
1o population size across time Ne(t) and the strength of measurement noise across time ¢;. We then maximize
120 the likelihood over the parameters to determine the most likely parameters that describe the data. Because
1 we are relying on a time-series signature in the data for the inference, we need to use a sufficiently large
12 number of timesteps of data, but on the other hand, the longer the time series, the more parameters would
12z need to be inferred (since both N, (t) and ¢; are allowed to change over time). To balance these two factors,
e we assumed that the effective population size stays constant over a time period of 9 weeks (a form of “reg-
s ularization”). We then shift this window of 9 weeks across time to determine how Ne(t) changes over time
2 (see Methods), but this effectively averages the inferred N,(t) over time. ¢, is still allowed to vary weekly.
127 To validate our model, we ran Wright-Fisher simulations with time-varying effective population size and
s time-varying measurement noise (Figure —f). Because a substantial number of lineages would go extinct
120 over the simulation timescale of 100 weeks, we introduced new lineages with a small rate (a rate of 0.01 per
1 week per individual of “mutating” to start a new lineage) to prevent the number of lineages from becoming
13 too low. We then did inference on the simulated time-series frequency trajectories (Figure ) The inferred
2 N.(t) and ¢; closely follow the true values (Figure —f), and the 95% confidence intervals (see Methods
13 for how they are calculated) include the true value in a median (across timepoints) of 95% of simulation
1 realizations (Figure . The error in ¢; is higher when the variance contributed to the frequency trajectories
135 by measurement noise is lower than that of genetic drift, which occurs when the effective population size
s is low or number of sequences is high (more clearly seen in Figure where the effective population size
137 is held constant). However, the error on 1\76(75) seems to be unchanged or even slightly decrease when the
18 error on ¢; is increased because the contribution to the variance due to genetic drift is higher. We also
15 observe that the inferred N, (t) is smoothed over time due to the assumption of constant N, (t) over 9 weeks
w  (Figure [S7| E this is a potential drawback when there are sharp changes in the effective population size over
1w time. Importantly, we observed that the inferred N, (t) will be underestimated if sampling is assumed to be
12 uniform when it is actually overdispersed (Figure |1 ) This is because variance in the frequency trajectories
13 due to measurement noise is incorrectly being attributed to genetic drift. The underestimation is strongest
s when the variance contributed due to measurement noise is high, either due to high measurement noise
us overdispersion, a low number of sampled sequences, or a high effective population size. In this situation,
us joint inference of measurement noise and N,(t) from the data is necessary for accurate inference of N, (t).
147 In summary, we developed a method to infer the strength of genetic drift and measurement noise from
us lineage frequency time series data and validated the accuracy of the method with simulations.

w Application to COG-UK data in England

150 We next applied this method to study the effective population size and strength of measurement noise for
151 SARS-CoV-2 in England. Because our method assumes that lineages are neutral with respect to one another
152 (no selection), we performed separate analyses on groups of lineages that have been shown to exhibit fitness
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Figure 2: The inferred effective population size and overdispersion of measurement noise in England compared
with the number of positive individuals. (a) Schematic of lineage construction for B.1.177, Alpha, and Delta
from the COG-UK phylogenetic tree. The filled circles represent the sequences of a focal variant sampled in
England, while the unfilled squares represent other sequences, which are of other variants or sampled in other
countries. The phylogenetic tree is cut at a certain depth d = d.,t, and each branch cut by the line d = dt
defines a lineage. Lineages pre-B.1.1.7 are defined using the pango nomenclature . (b) Muller plot
of lineage frequency time series for lineages pre-B.1.177, of B.1.177, of Alpha, of Delta. (c) Inferred scaled
effective population size (N, (t) = N.(t)7(t)) for pre-B.1.177 sequences, B.1.177, Alpha, and Delta, compared
to the estimated number of people testing positive for SARS-CoV-2 in England at the community level, as
measured by the COVID-19 Infection Survey , for all lineages and by variant or group of lineages. To
simplify the plot, only data where the number of positive individuals for a given variant or group of lineages
was higher than 10® in a week are shown. The inferred Ne(t) is considerably lower than the number of
positive individuals for all times and for all variants or group of lineages. (d) Inferred measurement noise
overdispersion (¢;) for pre-B.1.177 sequences, B.1.177, Alpha, and Delta.

differences or deterministic changes in frequency: lineages pre-B.1.177, B.1.177, Alpha, and Delta
. We did not find any studies in the literature claiming detectable fitness differences between lineages
within each of these groups; thus, we assumed that our neutral model should be valid when analyzing lineages
only within a single group. We checked that this assumption is valid and describe the results below.

To obtain lineage frequency time series data for SARS-CoV-2 in England, we downloaded genomic meta-
data from the COVID-19 Genomics UK Consortium (COG-UK) [34] (Figure 2b) and the associated phy-
logenetic trees that were created at different points in time. To minimize potential bias, we used only
surveillance data (labeled as “pillar 2”). For sequences pre-B.1.177, we used the pangolin lineages assign-
ments from COG-UK . However, B.1.177, Alpha, and Delta were subdivided into few or only one
pangolin lineage, since a new lineage is defined by sufficiently many mutations and evidence of geographic
importation. However, these requirements are not important for our purposes and instead we only need reso-
lution of neutral lineages within a variant. Thus, we created our own neutral lineages by grouping sequences
together based on phylogenetic distance in the tree (see Figure [2h and Methods), and cutting the tree at a
particular point. Most sequenced samples were included in the trees (Figure, and any downsampling was
done by preserving genetic diversity. Most sequences in the tree were assigned to lineages (see Methods),
and we corrected for the fraction of sequences that were not assigned to lineages in our inference of Ne(t)
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1o (see Methods). This yielded 486 lineages for pre-B.1.177, 4083 lineages for B.1.177, 6225 lineages for Alpha,
o 24867 lineages for Delta.

171 The inferred effective population size is shown in Figure 2k. The inferred effective population size was
12 lower than the number of positive individuals in the community by a factor of 16 to 1055 at different
173 points in time. The most notable differences between the changes over time in the number of positives
s in the community and that of the effective population size were: the inferred effective population size of
s lineages pre-B.1.177 peaked slightly before the number of pre-B.1.177 positives peaked, the inferred effective
s population size of Alpha decreased slower than the number of positives decreased after January 2021, and the
177 shoulder for the inferred effective population size of Delta occurred earlier than in the number of positives.
s We checked that the inferred effective population size is not sensitive to the depth at which the trees are cut
w  to create lineages (Figure , the threshold counts for creating superlineages (Figure , or the number
10 of weeks in the moving time window (Figure .

181 The inferred measurement noise for each group of lineages is shown in Figure 2d. The inferred measure-
12 ment noise overdispersion was mostly indistinguishable from 1 (uniform sampling), but at times was above 1
13 (sampling that is more variable than uniform sampling). There were also at times differences in the strength
18« of measurement noise between variants when they overlapped in time. In particular, measurement noise for
185 lineages pre-B.1.177 peaked in October 2020 despite measurement noise being low for B.1.177 at that time.
186 To better understand the observed levels of genetic drift, we compared the inferred Ne(t) to that of an
17 SIR null model, which includes a susceptible, infectious, and recovered class. The Ne(t) for an SIR model
s was derived in Ref. [35] 136, [37] and is given by

~ SIR 1(t)
N, t) =
( ) 2R¢vr

(1)

where I(t) is number of infectious individuals, R; is the effective reproduction number, and ~; is the rate at
which infectious individuals recover. For the number of infectious individuals, we used the number of positive
individuals estimated from the UK Office for National Statistics’ COVID-19 Infection Survey [31], which is
a household surveillance study that reports positive PCR tests, regardless of symptom status. We used the
measured effective reproduction number in England reported by the UK Health Security Agency [38]. We
used 'y;l = 5.5 days |39, |40], and our results are robust to varying «; within a realistic range of values

~ SIR
(Figure . We found that N,  (¢) is very similar to the number of positives because the effective
reproduction number in England was very close to 1 across time and -y is also very close to 1 in units of

weeks™!. To calculate N, IR(t) for each variant or group of lineages, we rescaled the population-level I(t) and
R; based on the fraction of each variant in the population and the relative differences in reproduction numbers
between variants (see Methods). We then calculated the scaled true population size, N(t) = N(t)7(t), for
the SIR model by multiplying by the variance in offspring number, o2, for the SIR model [41]

NSIR(p) = N (1) {0210 (2)
[} =2, 3)
189 Overall, the inferred Ne(t) is lower than N SIR(¢) by a time-dependent factor that varies between 16 and

wo 589 (Figures [3¢ and , suggesting high levels of genetic drift in England across time. We find similar
w1 results when using an SEIR rather than an SIR model which additionally includes an exposed class and
12 may be more realistic (Methods, Supplementary information, and Figure . The ratio of N SIR (1) to the
w3 inferred N, (t) was similar across variants anda cross time, except that for Alpha the ratio initially peaked
1s  and then decreased over time.

105 Because non-neutral lineages could potentially bias the the inferred effective population size to be lower
106 in a model that assumes all lineages are neutral, we checked the assumption that lineages are neutral with
107 respect to one another within a group or variant (pre-B.1.177, B.1.177, Alpha, and Delta) using methods that
108 detect deterministic changes in lineage frequency. We used two methods: a more conservative, deterministic
19 method that ignores genetic drift, and a more accurate method that accounts for time-varying genetic drift.
20 To detect any lineages that could possibly be non-neutral, we used the conservative method, and found that
20 about 20% of lineages in each group were significantly non-neutral at a significance level of 5%. Very likely,
22 some of these lineages are detected as non-neutral simply because the model does not correctly account for
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203 strong genetic drift. Excluding these lineages from the analysis of the inferred effective population size leads
2a to slightly different values of the effective population size, but by less than an order of magnitude and mostly
25 by less than the 95% confidence intervals (Figure . This result shows that conservatively excluding
26 lineages that could be non-neutral does not change the result that the inferred effective population size is
27 one to two order of magnitudes lower than the SIR or SEIR model effective population size. Additionally,
208 when we used these new estimates of effective population size in the more accurate method for inferring
200 fitness coefficients that accounts for time-varying effective population size, we find that only about 1% of
20 lineages are non-neutral at a significance level of 5%, which further supports that lineages under constant
an selection are unlikely to explain our results.

212 We also probed the spatial structure of transmission by inferring the scaled effective population size
a3 separately for each region within England. We find that the scaled effective population size in the regions of
ae  England is substantially smaller than that in England as a whole for B.1.177, Alpha, and Delta (Figure ,
215 suggesting that the transmission was not well-mixed at that time. Additionally, the discrepancy between
a6 the inferred regional scaled effective population size and the observed number of positive individuals in a
ar region was comparable to that seen in England as a whole (Figure , which is consistent with spatially
zs  segregated dynamics with similar levels of genetic drift in each region. We further describe these results in
a9 the Supplementary Information.

» Potential mechanisms that can contribute to the high levels of genetic drift

a1 Two potential mechanisms that can contribute to the observed high levels of genetic drift are: (1) variability
2 at the individual level through superspreading (Figure [3h), and (2) host population structure (Figure [Bp).
»3 We investigate each of these mechanisms in turn and compare it to our results. While in reality, both
2 mechanisms (and others not explored here) are likely at play, it is challenging to tease them apart given our
25 limited data. Therefore, we consider the extreme situations where only one mechanism at a time is driving
26 the dynamics.

27 Superspreading occurs due to overdispersion in the number of secondary cases, which decreases the
s effective population size. If superspreading were the only mechanism at play, then the variance in offspring
20 number that would explain our results would be the same as the ratio between the SIR null model N5 (t)
2z and the inferred N, (t) (16-589) (Figure ) Current estimates of the variance in offspring number measured
2 by contact tracing and modeling across a wide range of times and locations are from around 0.7 in one
»»  study to 65 in another (Table . We found two studies that apply to the UK, one which used a model
23 that incorporated the empirical viral load trajectories and contact numbers to estimate superspreading [43]
22¢ and another which used a branching process model of the number of imported and local cases [42]. The
25 literature estimates whose time window overlapped with our time windows found substantially lower levels
26 of superspreading than what we observe (Figure [3t and corresponding overdispersion parameter shown in
27 Figure . It is possible that contact tracing and modeling over- or under-estimates overdispersion due to
23 missed contacts [20]. However, on the other hand, it may be the case that superspreading is not the only
20  mechanism at play.

240 Host deme structure is another mechanism that can lead to decreased effective population size. In
21 such a model, individuals within a deme are very well-connected to one another (i.e. households or friend
22 groups, also known as “communities” in network science [44]), but there are few connections between demes
a3 (Figure ) It is possible for deme structure to occur without superspreading. For instance, in the schematic
2u  in Figure Bk, the number of contacts is either 4 or 5; if every contact led to a transmission, this would be
25 an extremely narrow offspring number distribution (i.e. no superspreading). Because individuals are very
xus  well-connected within a deme, once the pathogen spreads to a susceptible deme, it will spread rapidly in a
27 deme until all individuals are infected (a jackpot event). In this way, deme structure can lower the effective
2us  population size by lowerering the effective number of stochastic transmissions. For instance, in the example
2o in Figure B, there are 20 individuals, but only 3 potential stochastic transmissions. Deme structure may
20 also arise from correlations in the number of secondary infections over a series of hosts (i.e. a series of high
»1 numbers of secondary infections in a transmission chain, or conversely low numbers of secondary infections
2 in a transmission chain) [45]. This may arise, for instance, if individuals in a transmission chain have similar
»3  behavior, due to geographical proximity, or similar value systems on risk aversion. A recent study has found
»s that individuals infected by superspreading tend to be superspreaders themselves more than expected by
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Figure 3: Potential mechanisms that can generate a low effective population size. (a) Superspreading, where
the distribution of the number of secondary cases (Z) from a single infected individual is broadly distributed
(variance greater than mean). (b) Deme structure without superspreading, due to heterogeneity in the
host network structure, where the distribution of the number of secondary cases is not broadly distributed
(variance approximately equal to mean). (c) The ratio between the N5 (t) (the scaled population size
calculated from an SIR model using the number of observed positive individuals and the observed effective
reproduction number) and the inferred N, (t) for each variant. Only data where the error in the SIR model
N SIR(¢) is less than 3 times the value are shown, because larger error bars make it challenging to interpret
the results. The inferred N,(t) is lower than the NS™(¢) (which assumes well-mixed dynamics and no
superspreading) by a factor of 16 to 589, indicating high levels of genetic drift. The variance in offspring
number from the literature does not entirely explain the discrepancy between the true and effective
population sizes. (d) Simulations of deme structure without superspreading can generate high levels of
genetic drift via jackpot events. SEIR dynamics are simulated within demes (with R; = 10, i.e. deterministic
transmission) and Poisson transmission is simulated between demes (R; < 1, i.e. stochastic transmission)
such that the population R; ~ 1 (see Methods). Simulation parameters are: mean transition rate from
exposed to infected vg = (2.5 days)~!, mean transition rate from infected to recovered v; = (6.5 days)~!,
total number of demes Djotqr = 5.6 x 10°. The ratio between the number of infected individuals and the
inferred effective population size is found to scale linearly with the deme size and not with the number of
infected demes. This scaling results because of jackpot events where a lineage that happens to infect a
susceptible deme grows rapidly until all susceptible individuals in the deme are infected.

chance , which would be consistent with this phenomenon.

To check our intuition that deme structure can decrease the effective population size and increase genetic
drift, we ran simulations of a simplified deme model (see Methods): all demes have the same number of
individuals, and there is a sufficiently large enough number of demes that the total number of demes does
not matter. Initially some number of demes are infected, and transmission occurs such that the overall
effective reproduction number in the population is around 1. From our simulations, we find that when the
number of individuals in a deme increases, the ratio between the number of infected individuals and the
inferred effective population size increases (Figure ); in other words, the more individuals there are in a
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%3 deme, the higher the level of genetic drift we observe compared what is expected from the number of infected
s individuals. This is because while the number of infected individuals increases when the deme size increases
s (Figure )7 the inferred effective population size (and thus the level of stochasticity) stays the same as a
% function of deme size (it is more dependent on the number of infected demes) (Figure [S17p). However, the
%7 exact ratio of the number of infected individuals to the inferred effective size depends on the parameters of
%8 the model.

» 1Discussion

oo Here, we systematic studied the strength of genetic drift of SARS-CoV-2 in England across time and spatial
on scales. To do this, we developed and validated a method for jointly inferring time-varying genetic drift
a2 and overdispersed measurement noise using lineage frequency time series data (Figure , allowing these
oz two effects to be disentangled, which overcomes a major challenge in the ability to infer the strength of
o genetic drift from time-series data. We find that the effective population size of SARS-CoV-2 in England
x5 was lower than that of an SIR null model true population size (using the observed number of positives)
x6 by a time-dependent factor ranging from 16 to 589 (Figure )7 suggesting that there were higher levels of
ar - genetic drift than expected from uniform transmission. We also find evidence for spatial structure in the
as transmission dynamics during the B.1.177, Alpha, and Delta waves, as the inferred Ne(t) was substantially
a9 lower in regions compared to that of all England (Figure. These findings are consistent with other studies
20 that have found spatial structure in transmission of B.1.177 [47], Alpha [48], and Delta [49].

281 The levels of genetic drift that we observe are higher than literature values of superspreading; while this
22 may be partly due to the challenges of accurately estimating the extent of superspreading from data, it also
23 suggests that additional mechanisms may be leading to increased stochasticity. In particular, we explore a
s simplified deme model with groups of individuals that are well-connected to each other (demes) but not to
»s  individuals from other demes, and find that such a simple model can generate a low effective population
2 size even in the absence of superspreading, due to jackpot events. In reality, both superspreading and host
27 structure are likely at play. Additionally, they could interact with each other. For instance, there could be
28 superspreading within a deme. Future work can try to tease apart the contribution of these two mechanisms,
250 which for instance may be possible with better transmission network data, building on previous work on
20 transmission networks [50], or with time-resolved contact tracing data [20]. This will be important because
201 the relative contributions of the two mechanisms of superspreading and host population structure to genetic
22 drift can affect the establishment of new variants in the population [3].

203 Accurately estimating the strength of genetic drift allows us to better understand disease spread and ex-
2 tinction, as well as to better parameterize evolutionary models and understand how mutations will establish
25 in the population. We observed that with a few exceptions, the amount by which genetic drift was elevated
26 compared to the number of positives did not change much over time or across variants (Figure ), despite
27 changes in lockdowns and restrictions (which we may expect to decrease behavior that leads to superspread-
28 ing). On the other hand, this may not be so surprising given the findings that restrictions affect the mobility
20 network structure in a complex way, decreasing some types of mobility while increasing others [51]. One
w0 exception was that Alpha had significantly higher genetic drift compared to Delta and the strength of genetic
sn  drift in Alpha first peaked then slowly decreased over time. This may be either due to differences in the
sz properties of the virus or differences in host behavior. For instance, it may suggest that the stochasticity
33 in the transmission of Alpha sharply increased then slowly decreased over time. Alternatively, this may
s be driven by Alpha’s expanding geographic range combined with reimported cases of Alpha into the UK
w05 (observed from February 2021 onwards), which could both also decrease the effective population size [52].
306 We observe that measurement noise of SARS-CoV-2 is mostly indistinguishable from uniform sampling,
7 but data from some variants at some times do exhibit more elevated measurement noise than uniform
s sampling. Thus, we expect that assuming uniform sampling, as many methods do, or constant overdispersion
w0 will lead to accurate estimates for this dataset |27, 22, 23, 28]. The number of SARS-CoV-2 sequences from
a0 England is extremely high and sampling biases are expected to be low, because of efforts to reduce sampling
su  biases by sampling somewhat uniformly from the population through the COVID-19 Infection Survey [31]
sz (from which a subset of positives are sequenced and included in the COG-UK surveillance sequencing data
a3 that we use). On the other hand, other countries may have higher sampling biases, so jointly estimating
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s measurement noise and genetic drift may be more crucial in those settings. It may also be interesting to use
a5 this method to test whether genomics data taken from wastewater has lower levels of measurement noise as
s compared to sequenced cases.

317 We find that constant selection is unlikely to explain our results, as excluding potentially non-neutral
as  lineages does not significantly change the inferred effective population size. Our method allows for the
a0 inference of constant selection while accounting for time-varying effective population size, and thus may be
0 interesting in future applications of tests for selection. However, the model ignores other processes that
s may lead to deterministic changes in frequency, such as migration and mutation (discussed below); thus, we
s recommend combining it with complementary methods (for instance, phylogenetic methods) that test for
33 selection as somewhat independent tests for selection.

324 In summary, we find that the strength of genetic drift in SARS-CoV-2 transmission in England is higher
s than expected based on the number of positive individuals and the levels of superspreading reported in the
26 literature. Our results suggest that additional models and methods will be needed to better understand the
7 mechanisms behind the observed elevated levels of genetic drift.

» Limitations of the study and opportunities for future directions

9 First, in our analysis, we focused on standing variation that existed at a particular depth in the phylogenetic
s tree and ignored de novo mutations subsequently arising during the time series. However, we don’t think this
s should substantially affect our results because introducing mutations in the form of new lineages with a small
sz rate in the simulations did not have a large effect on the method performance (Figure ) We also ignored
s importation of SARS-CoV-2 into England and exportation of SARS-CoV-2 out of England. Migration can
s substantially change frequencies that are locally rare, but we expect importations to only weakly influence
35 the frequency fluctuations of abundant variants, on which we have focused in this work. Additionally, we
36 did not test for more complex forms of selection, such as fluctuating selection. More generally, future work
s should explore joint inference of selection, migration, and/or mutation in the model, as is appropriate for
s the pathogen of interest, building on previous work in this area [53| (54} [26].

339 Second, there may be biases in the way that data are collected that are not captured in our model. While
mo our method does account for sampling biases that are uncorrelated in time, sampling biases that remain over
s time cannot be identified as such (i.e. if one geographical region was dominated by a particular lineage and it
s consistently had higher sequencing rates compared to another geographical region), and this can potentially
w3 bias the inferred effective population size; although, this is also a problem in phylogenetic methods. One
s approach to this problem that was utilized by some early methods during the pandemic is to develop sample
us  weights based on geography, time, and number of reported cases. Future work should study the effect of
us different sampling intensities between regions on uncorrelated and correlated sampling noise. Additionally,
wr  we assume that the measurement noise overdispersion is identical for all lineages within a variant; in reality,
us there may be differences in sampling between lineages. Future work should explore whether this is the case
uo in the actual dataset, as well as the effect of lineage-specific measurement noise overdispersion on overall
350  method performance.

351 Third, the quantity of effective population size is a summary statistic that is influenced by many factors,
2 making its interpretation challenging. The effective population size describes the population size under a
3 well-mixed Wright-Fisher model, whereas in reality, this assumption is broken by many effects, including
s host structure and broad offspring number distributions. Thus, in our study we are careful to interpret
s effective population size only in the broadest terms of genetic drift, without being able to determine what
36 mechanisms lead to the inferred effective population size (although we do explore some possibilities above).
37 While within-host dynamics may in principle impact the lineage frequency trajectories, this effect is likely
s small for our analysis because we focus on acute infections (infections in the community rather than in
30 hospitals and nursing homes). This is because acute infections of SARS-CoV-2 are thought to generate little
w0 within-host diversity that is passed on due to the short infection duration and small bottleneck size between
s hosts [55) [56]; while new mutations arising within acute hosts have been observed to be transmitted, these
;2 events are rare [55].

363 Fourth, the use of a sliding window of 9 weeks on the lineage frequency data will lead to smoothing of
s sharp changes in effective population size. It may be interesting in future work to develop a continuous
s method that uses a prior to condition on changes in effective population size, similar to those that have been

10
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w6 developed for coalescence-based methods [1}[57]. This would allow us to infer continuous changes in effective
7 population size without needing to use a sliding window.

368 While we have focused on SARS-CoV-2 in this study, the method developed here can be extended to
w0 study genetic drift in other natural populations that are influenced by measurement noise and where genomic
s frequency data are available, for instance other pathogens, field studies, and ancient DNA [58, 59, 60]. More
sn generally, ongoing methods development that integrates genomics, epidemiological, and other data sources
sz is crucial for being able to harness the large amounts of data that have been generated to better understand
sz and predict evolutionary dynamics.
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=~ Materials and Methods

s  Data sources and processing

s We downloaded sequence data from the COVID-19 Genomics UK Consortium (COG-UK) [34]. We only
s used surveillance data (labeled as “pillar 27); this dataset is composed of a random sample of the positive
srs cases from the COVID-19 Infection Survey, which is a surveillance study of positive individuals in the
s community administered by the Office for National Statistics (see below). For lineages that appeared before
s0 B.1.177, we downloaded the metadata from the COG-UK Microreact dashboard [61], which included the
s time and location of sample collection (at the UTLA level), as well as the lineage designation using the
s Pango nomenclature [29) [30]. For B.1.177, Alpha, and Delta sequences, because the Pango nomenclature
3 classified them into very few lineages, we created our own lineages from the phylogenetic trees (see below).
s We downloaded the publicly available COG-UK tree on February 22, 2021 for B.1.177; June 20, 2021 for
ss Alpha; and January 25, 2022 for Delta. We also downloaded the COG-UK metadata for all lineages on
s January 16, 2022, which included the time and location (at the UTLA level) of sample collection. For the
sz data of B.1.177, Alpha, and Delta, the data was deduplicated to remove reinfections in the same individual
s by the same lineage, but reinfections in the same individual by a different lineage were allowed. This yielded
s a total of 490,291 sequences.

300 The lineage frequency time-series is calculated separately for each variant or group of lineages (pre-
sn B.1.177, B.1.177, Alpha, and Delta). First, the sequence metadata are aggregated by epidemiological week
s (Epiweek) to average out measurement noise that may arise due to variations in reporting within a week.
3 Then, the lineage frequency is calculated by dividing the number of sequences from that lineage in the
3¢ respective tree by the total number of sequences of that variant (or group of lineages) that were assigned to
35 any lineage in the respective tree.

306 Because our model describes birth-death processes when the central limit theorem can be applied, we need
a7 the lineage frequencies to be sufficiently high. Thus, we randomly combine rare lineages into “superlineages”
s that are above a threshold number of counts and threshold frequency in the first and last timepoint of each
o trajectory. For the threshold, we chose of 20 counts and frequency of 0.01. Sensitivity analyses showed
w0 that the choice of the superlineage count threshold does not substantially affect the results (Figure .
w1 Superlineages are non-overlapping (i.e. each sequence belongs to exactly one superlineage).

202 The estimated number of people testing positive for COVID-19 in England and each region of England
w:  was downloaded from the UK Office for National Statistics’ COVID-19 Infection Survey [31]. The COVID-19
ss  Infection Survey includes households that are semi-randomly chosen, and individuals are tested regardless
ws of whether they are reporting symptoms. Infections reported in hospitals, care homes, and other communal
w6 establishments are excluded. Thus the dataset provides a representative number of positive individuals in
w7 the community setting. The reported date of positive cases is the date that the sample was taken. The error
w8 on the number of positive individuals from April 17, 2020 to July 5, 2020 is reported as the 95% confidence
wo interval, and after July 5, 2020 is reported as the 95% credible interval. The regional data reported the
a0 positivity rate over two week intervals. To get the number of positives, we multiplied by the number of
a1 individuals in the community setting in the region (excluding hospitals, care homes, and other communal
a2 establishments). As the data was reported over two week intervals, we obtained the number of positives for
sz each week using linear interpolation.

a1 The observed effective reproduction numbers for England and each region of England were downloaded
a5 from the UK Health Security Agency [38]. Only times where the certainty criteria are met and the inference
a6 18 not based on fewer days or lower quality data are kept. The error on the effective reproduction number is
a7 reported as the 90% confidence interval. Although not reported in the dataset, we choose the point estimate
as  of the effective reproduction number to be the midpoint between the upper and lower bounds of the 90%
a9 confidence interval.

= Creating lineages in B.1.177, Alpha, and Delta

o1 For B.1.177, Alpha, and Delta, we divided each of them into neutral lineages based on phylogenetic distance.
2 Specifically, for B.1.177 and Alpha, we cut a phylogenetic tree (in units of number of mutations) at a certain
w3 depth, d = d.yt. Each of the internal or external branches that are cut by the line d = d.y; defines a lineage
w2 (Figure 2h). The (observed) frequency of a lineage at a given time point in England was computed by
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w5 counting the number of England sequences (leaf nodes) belonging to the lineage and by normalizing it by the
w6 total number of sequences in all assigned lineages of the focal variant in England at that time point. Lineage
w7 frequencies at the regional level were similarly computed by counting the number of sequences separately for
w8 each region.

220 The choice of d¢,y is arbitrary to some extent. Because we wanted a sufficiently high resolution of lineages
x0  from the early phase of spreading of a variant and because the evolutionary distance correlates with the actual
a  sample date (Figure , for each focal variant, we chose the depth d.,; that roughly corresponds to the
a2 time point when it began to spread over England.

433 For the Delta variant, the sequences form two distinct groups along the depth direction, as seen from the
s last panel of Figure Therefore, to divide the Delta variant into lineages with small frequencies, we cut
a5 the phylogenetic tree at two depths sequentially; we first cut the tree at dg)t, which resulted in lineages with
16 small frequencies plus a lineage with O(1) frequency. Then, to divide the latter lineage further, we took the
a7 subtree associated with this lineage and cut the subtree at dﬁ?}t

238 For the results presented in the main text, we used (in units of substitutions per site, with the reference

s d=0 being the most recent common ancestor) dey, = 2.323 - 1072 for B.1.177, deyt = 2.054 - 1072 for Alpha,

wmo  and d&)t = 1.687- 1072 and dﬁi{ = 1.954 - 1073 for Delta. We confirmed that our results are robust to the
s choice of dgy; as well as the choice of the phylogenetic tree data we used (Figure .

« Model for inferring effective population size from lineage frequency time series

s We use a Hidden Markov Model with continuous hidden and observed states to describe the processes of
s genetic drift and sampling of cases for sequencing (similar to a Kalman filter) (Figure[[]A). The hidden states
ws  describe the true frequencies of the lineages and the observed states describe the observed frequencies of the
us lineages as measured via sequenced cases.

aa7 The transition probability between the true frequencies f; (the hidden states) due to genetic drift when
us 0 < f <« 1 has been shown in [62] to be well-described by the following expression, which we use as our
wo  transition probability,

P(fesal fe. Ne(t)) = (4)

1 —th1/2 eXp< - 204 ftfl _ \/ﬁ)2>
2\ 7 f [ (Ne(t)) (Ne(t))~

w0 Ne(T) = N,(t)7(t) where N,(t) is the time-dependent effective population size and 7(t) is the time-dependent
s generation time, which is defined as the mean time between two subsequent infections per individual (i.e.
52 the time between when an individual becomes infected and infects another individual, or the time between
»s3  two subsequent infections caused by the same individual). This transition probability gives the correct first
s+ and second moments describing genetic drift when f < 1, E(fi1|f:) = fr and Var(fipi|fi) = ~f‘(t), and
s 18 a good approximation when the central limit theorem can be applied, which is the case when f>o.
w6 By assuming that f;11 ~ f;, and defining ¢; = /f;, Equation |4| can be approximated as a simple normal
w7 distribution

1

P(de41]dt, Ne(t)) :N(%W)' (5)

458 We describe the emission probability from the true frequency f; to the observed frequency fP (the
w0 observed states), defining ¢?°* = /f??%, as

obs — N( Ct ) 6
(977 ¢, ct) b1, 1M (6)
wo  where M; is the number of input sequences. Again, this distribution is generically a good description when

w1 the number of counts is sufficiently large, due to the central limit theorem. The first and second moments
w of this emission probability are E(f¢**|f;) = f; and Var(f{**|f;) = §& f;, or equivalently considering the

ws number of sequences n®* = fP* M, and the true number of positive individuals ny, E(n$®®|n;) = n; and
464 Var(nfbs|nt) = ¢ng. Thus, ¢; describes the strength of measurement noise at time t. When ¢; = 1,

w5 the emission probability approaches that describing uniform sampling of sequences from the population
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w6 of positive individuals (i.e. can be described by a Poisson distribution in the limit of a large number of
w sequences), namely Var(n®®|n;) = n; or equivalently Var(ff*|f;) = AJ;[—Z This is the realistic minimum
w8 amount of measurement noise. When ¢; > 1, it describes a situation where there is bias (that is uncorrelated
w0 in time) in the way that sequences are chosen from the positive population. The case of 0 < ¢; < 1 describes
a0 underdispersed measurement noise, or noise that is less random than uniform sampling. The case of ¢; =0
am  describes no measurement noise (for instance, when all cases are sampled for sequencing). These last two
a2 situations are unlikely in our data, and thus as we describe below, we constrain ¢; > 1 in the inference
a3 procedure. In addition to being a good description of measurement noise, defining the emission probability
s in the same normal distribution form as the transmission probability allows us to easily derive an analytical
a5 likelihood function, described below (Note: see Ref. |26] for a method to derive an analytical likelihood
ws  function for arbitrary forms of the transition and emission probabilities).
We derive the likelihood function (up to a constant) for the the Hidden Markov Model using the forward
algorithm, although it can alternatively be derived by marginalizing over all hidden states. We assume an
(improper) uniform prior on ¢q (i.e. no information about the initial true frequency of the lineage).

p<¢07¢8b3790) :p(¢8bs|¢0700)p(¢0) (7)
p(do) o< 1 (8)

P(be, 35, 00:0) = p(627%| b, Ct)[ P(De|de—1, Ne(0)p(Pr—1, 6351, 00:4—1)dde—1, 0<t<T (9)
P63 00r) = [ plom, o5 b0)don (10)
L(852100.m) = [ [ p({ 665 }ars o1 )p (B0 (11)
p(QO:T) x1 (12)
L(¢5100r) = [ [ p({685% oo o). (13)

ar where ¢g% = {492, ..., 2%}, B,y = {N.(0),..., Ne(t), o, ..., ¢}, and the subscript « indicates a particular
s lineage. We use a uniform prior on the parameters. The parameters 6y.; are inferred by maximizing the
a0 likelihood (described below).
The forward algorithm has an analytical form for the simple case of Gaussian transition and emission
probabilities. We use the identity for the product of two normal distributions N(z, u,v), where u is the
mean and v is the variance:

N(z, p1,v1)N(x, p2,v2) = N(p1, p2, v1 + v2)N(, p12,v12) (14)
H1v2 + fov
) ) 3 = 15
M12(u1 M2, 01 7)2) o1+ s ( )
1
1112(’01,’02) = = (16)
e

Solving the forward algorithm recursively, we have
T

obs _ obs . Ci )
p(¢3:1: bo:r) = ]:[1N(¢z s M AM, + v;) (17)
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where
H1 = Sbs (19)
oy = R T3 (20)
4
Hit1 = Mu(ﬂi,(ﬁ?bs,vz‘, 45\21') (21)
Vig1 = 012(4671\2,%) + 4Ni(t) (22)

Equation [17] can be substituted into Equation [13| to obtain the full analytical likelihood function.

Fitting the model to data

We split the time series data into overlapping periods of 9 Epiweeks, over which the effective population size is
assumed to be constant. We first use the moments of the probability distributions combined with least squares
minimization to get an initial guess for the parameters. Then, we perform maximum likelihood estimation
using the full likelihood function. To capture uncertainties that arise from the formation of superlineages
from lineages, we create superlineages randomly 100 times (except where indicated otherwise). We infer the
strength of measurement noise and the effective population size for each superlineage combination (described
below).

Determining the initial guess for the parameters using method of moments approach

Combining the transition and emission probabilities, and marginalizing over the hidden states we have

<Q(¢T¢f*)> o

P(fg(?bs|f10bs) S8 WGXP
p(65%[68°) = N(67°, ki 5) (25)
/{i,j = Ci + Cj (] - Z) (26)

4M; ~ 4AMj  4AN.(t)

The first two terms of «; ; are the contribution to the variance from measurement noise at times ¢ ad j, and
the third term is the contribution to the variance from genetic drift.
We calculate the maximum likelihood estimate of x; j, #; ;, which is simply the mean squared displacement

fij = <(¢;bs _ ¢?bS)2>. (27)

The standard error is given by

(togs - sy — 7))
7

AR ; = (28)

where Z is the number of superlineages.

By looking across all pairs of timepoints ¢ and j, we get a system of linear equations in &; ; that depend
on the parameters ¢; and N, (t). To determine the most likely values of the parameters, we minimize

(Rij — Ac)?

using scipy.optimize.minimize with the L-BFGS-B method and the bounds 1 < ¢; < 100 and 1 < N,(t) < 107.
While underdispersed measurement noise (¢; < 1) is in principle possible, we constrain ¢; >1 because
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w0 realistically, the lowest amount of measurement noise will be from uniform sampling of sequences. An
so  example of inferred parameters using the methods of moments approach on simulated data is shown in

501 Figure @

s Maximum likelihood estimation of the parameters

For each set of superlineages, we use the inferred measurement noise values (¢;) and inferred scaled effective
population size from above (Ne(t)) as initial guesses in the maximization the likelihood function in Equa-
tion [13| over the parameters. For the optimization, we use scipy.optimize.minimize_scalar with the Bounded
method and the bounds 1 < ¢, < 100 and 1 < N, () < 10'!. The time ¢ in the inferred N,(t) is taken to be
the midpoint of the 9 Epiweek period. The reported N,(t) is the median inferred N, (t) across all superlineage
combinations where N, (t) < 10° (values above 10° likely indicate non-convergence of the optimization). The
reported errors on Ne(t) are the 95% confidence intervals (again taking the median across all superlineage
combinations where N, (t) < 10°) which are calculated by using the likelihood ratio to get a p-value [63, 64].
We replace the likelihood with the profile likelihood, which has the nuisance parameters co.7 profiled out:

p > 0.05 (30)
Ly, (Cor|63%) .
P= / I| =Pt > 1| Py, (Cor|630) AN (31)
Ly, Gorldgs) ] ™
Co.r = arg max Ly, (cor 56t (32)
Py, (Cor|B3s) o Ly, (é0.7|035) (N (33)
p(N,) x 1 (34)

s2  where I is an indicator function that equals one when the argument is true and zero otherwise, £ (éo.7|¢3%")

so¢ is the profile likelihood with the nuisance parameters (in this case) co.p profiled out, Pg, (60:T\¢_>'8f77§) is the
ss  posterior where we have used a uniform prior. We also tried a Jeffreys prior which is used for variance
ss  parameters, but it gave similar results on simulated data because it looked relatively flat over the values of
sv N, (t) of interest. As the Jeffreys prior was more computationally expensive than the uniform prior and the
s two priors gave similar results, we used the uniform prior for the analyses.

500 The reported values of ¢; are the median across all superlineage combinations and across all time series
s.0 segments where the timepoint appears. The reported errors on ¢; are the 95% confidence intervals as
su calculated by the middle 95% of values across superlineage combinations and time series segments.

512 An example of inferred parameters on simulated data using the maximum likelihood estimation approach,
si3 compared to the initial guesses of the parameters from the methods of moments approach, is shown in

su Figure [S19

ss  Correcting for the number of sequences assigned to lineages

sis Because some sequences occur before the cut point in the tree that is used for creating lineages, they are
si7 not included in any lineages. As a result, the number of sequences assigned to lineages is lower than the
sis number of sequences in the tree. To correct for the bias in inferred effective population size that results
s from leaving out sequences from parts of the tree, we divide the inferred effective population size by the
s fraction of sequences in the tree that are assigned to a lineage. We note that while the number of sequences
s21  in the tree is less than the total number of sampled sequences, the sequences in the tree were chosen to be a
s representative fraction of the total sampled sequences. Thus, we do not need to additionally correct for the
53 downsampling of sequences that were included in the tree. To test that randomly subsampling sequences for
s the analysis does not affect the results, we randomly subsampled half of the Delta sequences, and reran the
55 analyses; the inferred effective population size was very similar to that from the full number of sequences

s (Figure [S20)).
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» Simulations for validating method

For the model validation, we perform simulations of the lineage trajectories using a discrete Wright-Fisher
model. 500 lineages are seeded initially, and the initial frequency of lineages is taken to be the same across all
lineages. In each subsequent Epiweek, the true number of counts for a lineage is drawn from a multinomial
distribution where the probabilities of different outcomes are the true frequencies of the lineages in the
previous Epiweek and the number of experiments is the effective population size. The true frequency is
calculated by dividing the true number of counts by N. The observed counts are drawn from a negative
binomial distribution,

obs nObS + T — 1 r nobs
1) =V = (" T a0 (3)
_ iMy
r= p— (36)
1
q= o (37)

s which has the same mean and variance as the emission probability in Equation [6] The total number of
520 observed sequences in each timepoint is calculated empirically after the simulation is completed, as it may
s not be exactly M;. The simulation is run for 10 weeks of “burn-in” time before recording to allow for
sn equilibration. Superlineages are created in the same way as described above.

532 For long time series simulations, some lineages will go extinct due to genetic drift, making it challenging
s to have sufficient data for the analysis. To be able to have a high enough number of lineages for the entire
s time series, we introduce mutations to a new lineage with a small rate g = 0.01 per generation per individual.

s Calculating the effective population size for an SIR or SEIR model

s35 The effective population size times the generation time in an SIR model is given by Refs. |41} |35]

NS ) = NSR()r(t) = 2%31. -

sy The variance in offspring number for an SIR model is approximately 2.

538 For an SEIR model, we calculated N,(t) following the framework from Ref. [36]. Using this framework,
s9  we were only able to consider a situation where the epidemic is in equilibrium. We test how well this
s90 approximates the situation out of equilibrium using simulations (see Supplementary Information).

541 We first considered how the mean number of lineages, A, changes going backwards in time, s, which is

sz given by
dA

= —fn. (39)

53 where f is the number of transmissions per unit time and p. is the probability that a transmission results
sas 1N a coalescence being observed in our sample. p. is given by the number of ways of choosing two lineages
ses  divided by the number of ways of choosing two infectious individuals

(D) (Ae) 2
= i o 2 ) 1o

s6 where the limit assumes that the number of infectious individuals, N(s), is large. In the Kingman coalescent
sz we also have A N
1
:-(“D~ . (41)
ds 2 ) N.(t)
s Combining Equations [39] [40] and (1] we have

N(t) = : (42)
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s Thus by determining the number of transmissions per unit time, f, and the number of infectious individuals,
s0 N (s), in an SEIR model, we can find an expression for Ne(t).
These quantities can be derived from the equations describing the number of susceptible (5), exposed
(E), infectious (I), and recovered (R) individuals in an SEIR model

% = —ﬂINiH (43)
%f _ % —ApE — 65E (44)
% =ypE — I =61 (45)
o (46)

ssu where [ is the number of transmissions per infectious individual per unit time (the number of contacts
ss2 made by an infectious individual per unit time multiplied by the probability that a contact results in a
53 transmission), Ny is the total population size (Ng = S + E + I + R), vg is the rate that an exposed
ssa  individual becomes infectious, dg is the rate of death for an exposed individual, ; is the rate than an
55 infectious individual recovers, and d; is the rate of death for an infectious individual.
556 The number of infectious individuals in a generation, N(s), is given by the instantaneous number of infec-
s tious individuals plus the number of exposed individuals that will become infectious in that generation [41].
558 Thus, ~
E
N(s) 7E+5EE+I. (47)

ss9 ' The number of transmissions per unit time is given by
S
= pgl—. 48
f=0Iy (48)

s0  We rewrite f in terms of the effective reproduction number (for which data are available) which is given by
s0  the number of transmissions per unit time (f) divided by the number of recoveries and deaths per unit time

f

b= T+ 60E (49)
562 Putting everything together, we have that N, (t) for an SEIR model in equilibrium is given by
B ?
NeSEIR,eq(t) _ |:(’YE+'YI )E + I} (50)

© 2R[(vr +61)I + 6pE]

ss3  For SARS-CoV-2, the death rates are much lower than the rate at which exposed individuals become in-
s fectious and the rate at which infectious individuals recover (0g,d0; < yg,7r). In this limit, Equation
ses  simplifies to

~ SEIR,eq (E+1)?
Ne t)= 55— 51
566 To calculate the N, for an SIR or SEIR model, we use the estimated number of positives from the

ssv - COVID-19 Infection Survey for I(t). This number is an estimate of the number of positive individuals in
sss  the community as measured by surveillance and includes both symptomatic and asymptomatic individuals.
s While the estimated number of positives does not include cases from hospitals, care homes, and other com-
s munal establishments, community cases likely contribute the most to transmission. We used the measured
sn effective reproduction number from the UK Health Security Agency for R;.

572 To calculate the number of exposed individuals for the SEIR model, we solved for E in Equation [45]
573 (taking 0p < ’YE)

1 gdl
_TE<

=+ WI). (52)
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574 % was calculated numerically as %Ai(t*m) where At = 1 week. The parameter values used were 'ygl

s = 3 days and fyl_l = 5.5 days [39 [40]. We checked that varying the value used for v; does not substantially
ss  affect the results (Figure . The error on F was calculated by taking the minimum and maximum possible
s values from the combined error intervals of I(¢t + At) and I(t — At) (note that this does not correspond to
s a specific confidence interval size).

579 The error on N,(t) for the SIR or SEIR model was calculated similarly by taking the minimum and
s maximum possible values from the combined error intervals of E, I, and R;. Only time points where the
s error interval of N,(t) was less than 3 times the point estimate were kept.

s Calculating the effective population size for an SIR or SEIR model by variant

se3 1o calculate the effective population size for an SIR or SEIR model by variant, we needed to determine
s« the variant-specific: number of infectious individuals I(¢), number of exposed individuals E(t), effective
s reproduction number Ry, and rate than an infectious individual recovers ;. We assumed that +; is constant
6 between variants. We calculated the number of infectious individuals I(¢) by multiplying the total number
sz of positives by the fraction of each variant in the reported sequences. This should be a good representation
sss  Of the fraction of the variant in the population as the sequences are a random sample of cases detected
0 via surveillance. We calculated the number of variant-specific exposed individuals E(t) in the same way as
s described above using the variant-specific number of infectious individuals. We assumed that the rate an
s exposed individual becomes infectious g is constant between variants.

502 We calculated the variant-specific effective reproduction number by rescaling the measured effective
ss  reproduction number for the whole population

Ry
P =Ries——r (53)
LRy
ss - where RY is the basic reproduction number of the variant w and f is the fraction of the infectious population
sss  with variant w. The values of Ry when rescaled to Rgre*B'l'lj that are used for the data presented in the

pre—B.1.1.7 RAlp
s06 main text are Rg,e,B_1_1_7 =1
0

ha Delta
, gy = 17 (Ref. [17)), —etsrrs = 1.97 (Ref. [65]). Varying the variant
0 0
so7  Rp within the ranges reported in the literature does not substantially affect the results (Figure [S21)).

s« Inference of fitness from lineage frequency time series

s0  We sought to infer the fitness effects of individual lineages, so that we could then determine if putatively
eo selected lineages are influencing the estimation of the time-varying effective population sizes. We first used
s a deterministic method to estimate lineage fitness effects, similar to the method described in [66].

602 On average, when the frequency of lineage 7 is sufficiently small f;; < 1, the frequency dynamics will
w03 exponentially grow/decay according to the lineage fitness effect, s;,

(fri) = fo€™"

604 The two sources of noise—genetic drift and measurement noise-both arise from counting processes, so the
s combined noise will follow var (f; ;) o< (fi;). To account for the inherent discreteness of the number of cases
es 1N a lineage—especially important to accurately model lineages at low frequencies—we modeled the observed
sor counts at Epiweek ¢ of lineage 4, r; ;, as a negative binomial random variable,

7til8i5 foi ~ NB (pae.4, () (54)
<7’t,i> = Mt (55)

var (1) = G (re) (56)
fiei = My fo e (57)

608 Where M; is the total number of sequences, and (; is a dispersion parameter. We took (; as the total
o0 marginal variance at a given time-point, i.e. {; = ¢; + M;/N.(t), where we computed estimates of ¢; and N,
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s as previously described (section “Maximum likelihood estimation of the parameters”). The final likelihood
eun  for the fitness, s;, of lineage ¢ is obtained by combining the data from all the relevant the time-points,

T (Ttﬂ‘ + Clzt_ﬂi) (Ct _ I)Tf,,i

P(rils;, foi) = H T (58)
’ i P
T (L) T (1) S
612 The point estimate of the lineage fitness, §;, is then numerically computed as the maximum likelihood,
§; = argmax log P(7r;|s;, fo.:) (59)
Si
613 For ease of computation and generality we compute the p-value as the posterior probability that the

sa  likelihood ratio between null and alternative hypotheses is greater than 1, i.e. the probability that the
a5 data more strongly support the null hypothesis (the lineage is neutral) over the alternative (the lineage is
616 non-neutral),

pi = Pg)r <££((§l|7;l)) - 1>

P(s;|r) o< L(si]7;)

o7 Where L(s;|r;) is the profile likelihood. This convenient definition has been shown to be equivalent to
sis  the frequentist definition of the p-value using a likelihood ratio test statistic (if the distribution is invariant
oo under transformation) [63} [64], and does not require asymptotic approximations. After obtaining p-values
o0 for all the lineages, we performed a standard Benjamini-Hochberg FDR on all the p-values. As mentioned in
e the main text, the IV, inference method was then re-run using all lineages, except those that were significant
62 at FDR< 0.05 using the above method.

623 Subsequently, we sought to use a more accurate method to detect if lineages have constant, non-neutral
e fitness effects. So, we turned back to our HMM method and modified it slightly. We wanted to measure the
es fitness effects of lineages that may be very small, with counts at some time points close to or at 0, which
626 then would not satisfy the central limit theorem, upon which our main HMM method rests. Thus, we used a
e different transition [62] and emmission probability for the HMM, which are more valid for small population
e sizes and counts:

oFoss | for No(t), 51) = 1 Wexp( B 2(y/ ft+} - \/esitft)2> (60)

TS (V1) (Ne(t) !
£ fer co ~ NB (fi, ) (61)
() = fe (62)
var ( t()bs) = ctft (63)
629 We used the point estimates of N, and ¢; that were calculated after we had excluded the selected lineages

630 detected by the conservative method. To get the maximum likelihood estimate of s for each lineage, we used
en  the standard HMM forward algorithm, numerically integrating over the intermediates. We then calculated
2 the p-value for each lineage by calculating the log-likelihood ratio LLR; = 2(L£;(8;) — £;(0)), and then
63 comparing it to a chi-squared ratio with d.f.=1. After obtaining p-values for all the lineages, we performed
6 a standard Benjamini-Hochberg FDR on all the p-values.

a5 Stochastic simulations of SEIR model

e The stochastic simulations of an SEIR model were performed using a Gillespie simulation with 4 states:
es7  susceptible, exposed, infectious, and recovered, where the number of individuals in each state are denoted
ws by S(t), E(t), I(t), and R(t) respectively. There are 3 types of events that lead to the following changes in
63 the number of individuals in each state
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1. Infection of an susceptible individual with probability %(f’)(t)
Sit)=S@k) -1 (64)
Et)=E(t)+1 (65)

2. Transition of an exposed individual to being infectious with probability v E(t)

E(t)=E(t) -1 (66)
It =1I(t)+1 (67)

3. Recovery of an infectious individual with probability vI(t)

Ity =1I(t)—1 (68)
R(t) = R(t) + 1 (69)

s0 where 8 = Ryyr, R is the basic reproduction number, vg is the rate that exposed individuals become
er infectious, and ~; is the rate that infectious individuals recover. As in the rest of this work, we assume that
ez the birth rate of susceptible individuals, background death rate, and the death rate due to disease are much
&3 slower compared to the rates of the above processes and thus can be neglected from the dynamics.

644 The time until the next event is drawn from an exponential distribution with rate given by the inverse
es of the sum of the above probabilities, and the type of event is randomly drawn weighted by the respective
646 probabilities.

647 Because the time of the events occurs in continuous time, but the inference method of the effective
ws population size works in discrete time, we must convert from continuous to discrete time. To perform this
0 conversion, we calculate the net number of events of each type in each chosen unit of discrete time (1 week)
eo and perform the changes in the number of individuals of each state as described above. Thus, for example, if
es1  within the same week an individual becomes exposed and then becomes infectious, it will cause the number
62 of susceptible individuals to decrease by 1, no change in the number of exposed individuals, and the number
es3 of infectious individuals to increase by 1.

654 The infected (or infected and exposed) individuals are randomly assigned a lineage at a given time after
o5 the start of the epidemic. For our simulations, we chose the lineage labeling time as 75 days or 10.7 weeks
66 since the approximate number of infectious individuals was high enough at that time to generate sufficient
67 diversity in lineages, and we chose the number of different types of lineages as 100. The other parameters that
ess  we used for the simulations were Ry = 2, 7' = 3 days, 7; ' = 5.5 days, N(t) = S(t)+E(t)+I(t)+R(t) = 10°.
0 The initial condition of the simulation is S(¢) = N(¢) — 1, E(t) = 1, and I(¢) = R(t) = 0.

660 To test the sensitivity of the results to whether the reported PCR positive individuals are infectious or
e1  whether they can also be from the exposed class, we recorded the results in two ways. In the first case, only
s2 the infectious individuals we recorded as positive (Figure[S22)), and in the second case both the exposed and
3 infectious individuals were recorded as positive (Figure Inference of N, (t) was subsequently done on
s the lineage frequency trajectories of the recorded positive individuals. The SIR or SEIR model N, (t) were
es calculated analytically using the true numbers of infectious and exposed individuals and numerically using
es the number of positive individuals as described above in “Calculating the effective population size for an
s7  SIR or SEIR model”.

s Deme simulations

60 1o better understand the effect of host population structure on the effective population size, we simulated
o0 a simple situation where there are “demes”, or groups, of individuals with very high rates of transmission
e between individuals in that deme, but the rate of transmission between individuals from different demes
o2 18 very low. In a given simulation, all demes have the same number of individuals (10, 50, 100, or 200).
es The total number of demes is chosen to be very high (5.6 x 10°). Initially, a certain number of demes
e+ (100, 1000, 2000, or 5000) are each seeded by a single infectious individual infected by a randomly chosen
o5 lineage (200 different lineages). We simulated deterministic SEIR dynamics within demes with Ry = 10,
o e = (2.5 days)™!, v; = (6.5 days)~!. We simulated Poisson transmission dynamics between demes. In
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e order to calibrate the overall population dynamics to be roughly in equilibrium (the number of infectious
os  individuals is not deterministically growing or shrinking), we draw the number of between-deme infections
oo caused by a given deme from a Poisson distribution with mean 1. The time of the between-deme infection
e event is randomly chosen, weighted by the number of infected individuals within a deme at a given time. The
e number of infectious individuals in each lineage is recorded every 1 week, and the frequency of the lineage
ez 1s calculated by dividing by the total number of infectious individuals from all lineages in that week. The
63 lineage frequency data from a period of 9 weeks starting in week 42 is used for the inference of effective
e« population size. The effective population size inference is performed as above except in the absence of
65 Imeasurement noise, so there is no emission step in the HMM.

« Data and code availability

s Data and code to reproduce the analyses in this manuscript are available at https://github.com/qingin-
s yu/sars-cov-2_genetic_drift!
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« Supplementary Information

« Summary of existing methods for inferring the strength of genetic drift

w3 There are currently four main types of methods for estimating the strength of genetic drift in pathogen
oa transmission, which we summarize here for giving context to this study.

905 1. Contact tracing can directly measure superspreading by following the close contacts of infected
906 individuals to measure the distribution of the number of secondary cases (the offspring number distri-
907 bution) [2]. However, some secondary cases may be missed which can lead to measurement bias [20].
908 Additionally, it is challenging to trace multiple generations of transmission, so we miss important
909 information on host contact network structure.

910 2. Another type of method fits disease prevalence over time to branching process models [42]. These
o11 models assume a particular distribution for the offspring number distribution (often a negative binomial
012 distribution) and estimate the combination of parameters of the offspring number distribution along
013 with growth rate that best fit the observed disease prevalence. External information about the growth
o14 rate can be used to constrain the parameters of the offspring number distribution.

015 3. Phylogenetics methods arrange genomics sequences into a tree based on genomic distance and either
a6 measure the distribution of lineage sizes (number of sequences in different parts of the tree) [19] or fit
017 the rate at which branches in the tree coalescence to determine the effective population size [27] |67,
018 1 68]. The effective population size is the population size that would reproduce the observed popu-
019 lation dynamics under the idealized conditions of Wright-Fisher dynamics (discrete non- overlapping
920 generations, a constant population size, and offspring determined by sampling with replacement from
021 the previous generation). A lower effective population size indicates a higher level of genetic drift.

02 4. Time series frequency methods make use of a signature that genetic drift leaves in time series data,
023 which is that it causes fluctuations in the lineage abundances. Higher amounts of genetic drift (lower
024 effective population size) lead to larger fluctuations, and the magnitude of the fluctuations can be fit
925 to determine the effective population size [69} [24] (Figure ) Time series methods have also been
926 used extensively in population genetics [22} |70} [53] [23] 26} |25] and to estimate within-host effective
927 population size [71] and between-host transmission bottleneck sizes [72].

2  Comparison to SEIR null model

29 In the main text, we compared the inferred N, (t) to an SIR model. However, there are likely more complex
o epidemiological dynamics describing SARS-CoV-2. Here we check the results for an SEIR model which
oa1  includes a susceptible, exposed, infectious, and recovered class. The SEIR model is a good representation of
o2 the epidemiology of SARS-CoV-2 when PCR test positivity is closely associated with an infected host being
a3 infectious; the literature suggests that this is a good assumption for SARS-CoV-2 [16], but we also test this
oz assumption below. The exposed class thus represents individuals before they are infectious and test positive.
o5 N,(t) for an SEIR model in equilibrium (number of infectious individuals is constant over time) is given by
a5 (see Methods for derivation):

~ SEIR,eq

N, (t) = {N.(t)7(t)}SFRea = M

2Rt’Yl(t) (70)

o where E(t) is the number of exposed individuals, I(¢) is the number of infectious individuals, R; is the
o effective reproduction number, and ~; is the rate at which infectious individuals stop being infectious.
o0 While this equation is derived under equilibrium conditions, we show using simulations that this equation
a0 accurately estimates N, (t) in non-equilibrium conditions after the peak of the pandemic (Figure ; before
o1 the pandemic peak, this equation overestimates ]\76(75) but by less than one order of magnitude. Additionally,
w2 we show that calculating the N, () using the equation for an SIR model (Equation when the dynamics are
ws  actually described by an SEIR model provides a lower bound on the actual N, (t). Thus, if the true dynamics
aa  of SARS-CoV-2 in England are actually SEIR dynamics, then the inference results shown in Figure 3k using

27


https://doi.org/10.1101/2022.11.21.517390
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.11.21.517390; this version posted November 22, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

as the SIR model should be an underestimate of the level of genetic drift; thus our main result that the literature
as values of superspreading do not sufficiently explain our results should still hold.

047 In reality, it may also be the case that some people test positive in a PCR test before they become
as infectious. To test the impact of this possibility on our results, in our simulations we recorded both exposed
w and infectious individuals as testing positive. We then calculated the SEIR model Ne(t) numerically as
w0 described in “Calculating the effective population size for an SIR or SEIR model” assuming that I(¢) includes
ss1  both infectious and exposed individuals (Figure. We find that the numerical solutions give slightly higher
052 ]\76(75) as compared with the true analytical solutions; however, the numerical solutions to the SEIR and SIR
o3 models bound the inferred N,(t). Thus we also expect that our main result that the literature values of
ose  superspreading do not sufficiently explain our results should still hold in this scenario.

To calculate the SEIR model N,(t) for the actual data, for the number of infectious individuals, we
used the number of positive individuals estimated from the UK Office for National Statistics’ COVID-19
Infection Survey [31], which is a household surveillance study that reports positive PCR tests, regardless
of symptom status. We used the measured effective reproduction number in England reported by the UK

~ SEIR
Health Security Agency [38]. We found that N, (t) is very similar to the number of positives because the

effective reproduction number in England was very close to 1 across time. To calculate N, EIR(t) for each
variant or group of lineages, we rescaled the population-level I(t) and R; based on the fraction of each variant
in the population and the relative differences in reproduction numbers between variants (see Methods). We
then calculated the scaled true population size, N (t) = N(t)7(t), for the SEIR model by multiplying by the
variance in offspring number, o2, for the SEIR model [41]

NSEIR(t) — NeSEIR(t){OQ}SEIR (71)
{O_Q}SEIR -9 (72)
055 Overall, the inferred N, (t) is lower than NSFIR(¢) by a time-dependent factor that varies between 70 and

w6 2000 (Figure , suggesting high levels of genetic drift in England across time, which is consistent with
o7 what we find with an SIR model (Figures [2| and . Also similarly to in the case with an SIR model, the
ss  ratio of NSFIR(¢) to the inferred N, (t) for Alpha decreased over time, suggesting that the stochasticity in
oo the transmission of Alpha decreased over time.

w Application to COG-UK data by regions in England

o1 The inference of effective population size can also reveal information about the well-mixed or spatially-
o2 structured nature of transmission dynamics within England. This can be done by inferring effective pop-
o3 ulation size at smaller geographical scales within England. If the transmission dynamics were completely
o well-mixed, then we would expect N,(t) to be the same across regions and compared to England. On the
ws other hand, if the transmission dynamics were completely spatially segregated (i.e. transmission only occurs
ws  within the defined geographical areas, but not between them) and the dynamics were the same in each region,

w7 we would expect that the ratio NSSIR(t)/Nemf(t) to be the same across regions.

968 The geographical areas that we used were the 9 regions of England: East Midlands, East of England,
o0 London, North East, North West, South East, South West, West Midlands, and Yorkshire and The Humber.
a0 We looked at sequences from each region, repeating the analysis described above, and inferred the scaled
o effective population size (Figure . We observe a lower Ne(t) for in the region than in England for Delta
o2 in all regions, for Alpha in all regions except North East (where there was not enough data), and for B.1.177
oz in all regions except North East. For lineages pre-B.1.177, the inferred Ne(t) is not significantly differnt in
o the region than in England. These results suggest that the dynamics are not well-mixed during the B.1.177,
o5 Alpha, and Delta waves.

a6 The calculated SIR model NeSIR(t) (Figure and the number of positive individuals in each region
o  (Figure were 1-2 orders of magnitude higher than the inferred N,(t), suggesting high levels of genetic
o drift. The ratios of the the SIR model N,(t) and the number of positives to the inferred N,(t) in the regions
o0 were similar to one another and to that seen in England as a whole, consistent with a scenario where the
o0 dynamics are spatially-structured and the extent of stochasticity in transmission is similar across regions.
981 Similarly to in England as a whole, the inferred measurement noise in each region was mostly indistin-
2 guishable from uniform sampling except for in a few timepoints (Figure .
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Figure S1: Inferred effective population size in regions of England. (Top panels) Inferred N, (t) of pre-B.1.177
lineages, B.1.177, Alpha, and Delta for each region of England. The inferred Ne(t) for England as a whole
is shown for reference. Shaded regions show 95% confidence intervals (see Methods). (Bottom panels) The
ratio between the inferred N, (t) of England and that of the region for each variant. A horizontal dashed
line indicates a ratio of 1 (i.e. N,(t) is the same in that region of England and England as a whole). Shared
regions show the minimum and maximum possible values of the ratio from the combined error intervals of

the numerator and denominator (thus, not corresponding to a specific confidence interval range).
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Figure S2: Inferred scaled effective population size by region in England, compared to that of an SIR model
as calculated using the observed number of positives at the community level in that region reported by the
COVID-19 Infection Survey and the observed effective reproduction number in that region reported by

the UK Health Security Agency [3§].
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Figure S4: Inferred measurement noise by region in England.
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Figure S5: The fraction of simulations (20 total) where the inferred 95% confidence interval for N, (t) or ¢
included the true value (left) by timepoint and (right) for all timepoints. (Right) Boxes indicate the quartiles
and the line inside the box (and number above) indicates the median. Whiskers indicate the extreme values
excluding outliers. Simulation parameters are specified in the Methods and Figure [} which shows a single
simulation instance. For the inference, we created superlineages randomly 20 times.
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Figure S6: Wright-Fisher simulations where N,(t) is constant over time, and the inferred N,(t) and ¢;. (a)
Number of sequences sampled. (b) Simulated lineage frequency trajectories. (c¢) Inferred effective population
size (N,(t)) on simulated data compared to true values. (d) Inferred measurement noise (¢;) on simulated
data compared to true values. In (c) the shaded region shows the 95% confidence interval calculated using
the posterior, and in (d) the shaded region shows the 95% confidence interval calculated using bootstrapping

(see Methods).
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Figure S7: Wright-Fisher simulations where Ne(t) changes over time according to a rectangular function, and
the inferred N, (t) and ¢;. (a) Number of sequences sampled. (b) Simulated lineage frequency trajectories.
(c) Inferred effective population size (N,(t)) on simulated data compared to true values when ¢ is jointly
inferred and when ¢; is fixed at 1 (uniform sampling). (d) Inferred measurement noise (¢;) on simulated data
compared to true values. In (c) the shaded region shows the 95% confidence interval calculated using the
posterior, and in (d) the shaded region shows the 95% confidence interval calculated using bootstrapping

(see Methods).
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Figure S8: Total number of surveillance sequences of each variant in the metadata from COG-UK downloaded
on January 16, 2022 and the number of sequences used in the analysis for each variant or group of lineages
(determined by the number of sequences included in the tree, and the number of sequences which could be
grouped into sublineages based on the procedure described in the Methods).
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Figure S9: Varying the date of the tree downloaded from COG-UK and the depth at which the tree is cut for
creating lineages (d.ut, see Methods) does not substantially change the inferred scaled effective population
size. The the tree date and depth used in the main text are {2021-02-22, B.1.177, dey = 2.323 - 1072},

-Ju=2U, pha, dcut = 2- . oy, -Ul-29, eta, . . -, . . —31. e
2021-06-20, Alpha, d 2.054 - 1073}, {2022-01-25, Delta, d'*) = 1.687- 1073, d®) = 1.954-10~3}. Th

cut — cut —
color of the lines for the parameters that were used in the main text are the same as those shown in Figure 2]
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Figure S10: Varying the threshold counts for forming superlineages (see Methods) does not substantially
change the inferred scaled effective population size. The superlineage threshold counts used in the main text
is 20.
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Figure S11: Varying the number of weeks in the moving window does not substantially change the inferred
scaled effective population size. The size of the moving window used in the main text is 9 weeks.
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Figure S12: Varying the rate of transitioning from infected to recovered within literature ranges (vr =3 to
14 days) used for calculation of the SIR model N,(t) (Methods) does not substantially decrease the observed

inf

ratio Noo () /N ™ (¢).
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Figure S13: Inferred scaled effective population size compared to the SIR model scaled population size
calculated using the observed number of positive individuals in England (see Methods).
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Figure S14: Inferred scaled effective population size compared to the SEIR model scaled population size
calculated using the observed number of positive individuals in England (see Methods).
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Figure S15: Inferred scaled effective population size of all lineages compared to that when excluding non-
neutral lineages detected by conservative method (assumes no genetic drift).
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Figure S16: Same as Figure [3c, but plotting the overdispersion parameter, k = afil, where R; is the

Ry

effective reproduction number and o2 is the variance in offspring number. The circles show the inferred
overdispersion parameter if we assume there is only superspreading and no deme structure. For the inferred
overdispersion parameter, the estimated effective reproduction number in England by variant (see Methods)
is used for Ry, and the ratio between the SIR model population size and the inferred effective population
size is used for o2. The shaded area for the inferred overdispersion parameter k gives an estimate of the
error and is calculated by combining minimum or maximum values of the individual parameters; note that
this does not correspond to a particular confidence interval.
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Figure S17: Simulations of deme structure (described in main text and Methods). (a) The mean number of

infected individuals per week from Weeks 42 to 50. (b) The inferred N,(t) using lineage trajectories from
Weeks 42 to 50.
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Figure S18: Sample epiweeks versus tree depths. In a phylogenetic tree, the number of sequences (leaf nodes)
of a focal variant that fall within specific epiweek and tree depth ranges is counted and summarized as a
two-dimensional histogram. The tree depth is the substitution rate measured in units of substitutions per
site, with respect to the most recent common ancestor. From left to right, the phylogenetic tree (specified
by date created by COG-UK, using the sequences available at the time) and focal variant are {2021-02-22,
B-1-177}, {2021-06-01, Alpha}, {2021-06-20, Alpha}, and {2022-01-25, Delta}. Weeks are counted from
2019-12-29. The dashed horizontal lines indicate the values of dcy (d,(il)t and dgi)t for the Delta variant) used
for the results presented in the main text.
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Figure S19: Comparing the inferred N,(t) and ¢, in Wright-Fisher simulations using the method of moments
and maximum likelihood estimation approaches (see Methods). (a) Number of sequences sampled. (b)
Simulated lineage frequency trajectories. (c) Inferred effective population size (N,(t)) on simulated data
using the method of moments (MSD, for mean squared displacement) and maximum likelhood (HMM, for
Hidden Markov Model) estimation approaches compared to true values. The shaded region shows the 95%
confidence interval of the inferred values. The confidence interval using the method of moments approach was
calculated by taking the middle 95% of values when bootstrapping over the superlineages. The confidence
interval using the maximum likelihood estimation approach was determined using the posterior (see Methods)
and takes into account joint errors in ¢; and N, (t). (d) Inferred measurement noise (¢;) on simulated data
using the method of moments and maximum likelihood estimation approaches compared to true values. The
shaded region shows the 95% confidence interval calculated using bootstrapping (see Methods).
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Figure S20: Randomly subsampling half of the Delta sequences used for the analysis does not substantially
change the inferred scaled effective population size.
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Figure S21: Varying the values of the basic reproduction number within literature ranges (W =
0

1.1-27 , % =1.76-2.17 ) used for calculation of the SIR model N, (t) by variant (Methods)
0

does not substantially affect the calculated NS™R(t).
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Figure S22: Simulations of stochastic SEIR dynamics without measurement noise, and comparison of the
inferred N, (t) to Equations [1f and when the reported positive individuals include only the infectious
individuals. (Top) Muller plot of simulated infectious individuals’ lineage trajectories (simulations described
in Methods). Infectious individuals are randomly assigned a lineage in week 11, and individuals that they
transmit to are infected with the same lineage. The blue lineage before week 11 indicates the infectious
individuals that existed before lineages were assigned. (Bottom) Comparison of the inferred N, (t) using the
lineage trajectories shown in the top panel to the number of infectious individuals I(t), Equation [51| (SEIR
model N, (t) at equilibrium), and Equation |1 (SIR model N,(t)) calculated analytically or numerically as
described in the Methods. The numerical solutions give the same results as the analytical solutions.
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Figure S23: Simulations of stochastic SEIR dynamics without measurement noise, and comparison of the
inferred N,(t) to Equations [1] and when the reported positive individuals include both infectious and
exposed individuals. (Top) Muller plot of simulated infectious and exposed individuals’ lineage trajectories
(simulations described in Methods). Infectious and exposed individuals are randomly assigned a lineage
in week 11, and individuals that they transmit to are infected with the same lineage. The blue lineage
before week 11 indicates the infectious and exposed individuals that existed before lineages were assigned.
(Bottom) Comparison of the inferred N,(t) using the lineage trajectories shown in the top panel to the
number of infectious individuals I(t), the sum of the number of infectious and exposed individuals I(t)+ E(t),
Equation (SEIR model N, (t)), and Equation (SIR model N,(t)) calculated analytically or numerically as
described in the Methods. The numerical solutions give slightly higher N, (t) as compared with the analytical
solutions; however, the numerical solutions to the SEIR and STR models bound the inferred N, (t).
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