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Abstract19

Random genetic drift in the population-level dynamics of an infectious disease outbreak results from the20

randomness of inter-host transmission and the randomness of host recovery or death. The strength of genetic21

drift has been found to be high for SARS-CoV-2 due to superspreading, and this is expected to substantially22

impact the disease epidemiology and evolution. Noise that results from the measurement process, such as23

biases in data collection across time, geographical areas, etc., can potentially confound estimates of genetic24

drift as both processes contribute “noise” to the data. To address this challenge, we develop and validate25

a method to jointly infer genetic drift and measurement noise from time-series lineage frequency data. We26

apply this method to over 490,000 SARS-CoV-2 genomic sequences from England collected between March27

2020 and December 2021 by the COVID-19 Genomics UK (COG-UK) consortium. We find that even after28

correcting for measurement noise, the strength of genetic drift is consistently, throughout time, higher than29

that expected from the observed number of COVID-19 positive individuals in England by 1 to 3 orders30

of magnitude. Corrections taking into account epidemiological dynamics (susceptible-infected-recovered31

or susceptible-exposed-infected-recovered models) do not explain the discrepancy. Moreover, the levels of32

genetic drift that we observe are higher than the estimated levels of superspreading found by modeling33

studies that incorporate data on actual contact statistics in England. We discuss how even in the absence34

of superspreading, high levels of genetic drift can be generated via community structure in the host contact35

network. Our results suggest that further investigations of heterogeneous host contact structure may be36

important for understanding the high levels of genetic drift observed for SARS-CoV-2 in England.37
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Introduction38

Random genetic drift is the change in the composition of a population over time due to the randomness39

of birth and death processes. In pathogen transmission, births occur as a result of transmission of the40

pathogen between hosts and deaths occur as a result of infected host recovery or death. The strength of41

genetic drift in pathogen transmission is determined by the disease prevalence, the disease epidemiology42

parameters [1], the variance in offspring number (the number of secondary infections that result from an43

infected individual) [2], as well as host contact patterns [3]. Many diseases have been found to exhibit high44

levels of genetic drift, such as SARS, MERS, tuberculosis, and measles [2, 4, 5]. The strength of genetic45

drift affects how the disease spreads through the population [2, 3, 6] how new variants emerge [7, 8, 9, 10,46

11], and the effectiveness of interventions [12], making it an important quantity to accurately estimate for47

understanding disease epidemiology, evolution, and control.48

The effective population size is often used to quantify the strength of genetic drift; it is the population size49

in an idealized Wright-Fisher model (with discrete non-overlapping generations, a constant population size,50

and offspring determined by sampling with replacement from the previous generation) that would reproduce51

the observed dynamics [13]. If the effective population size is lower than the true population size, it is an52

indication that there are additional sources of stochasticity beyond random sampling with replacement; thus,53

a lower effective population size indicates a higher level of genetic drift.54

Transmission of SARS-CoV-2 has been shown to exhibit high levels of superspreading (high variance in55

offspring number) [14, 15, 16] and high levels of genetic drift (low effective population sizes) [17, 18, 19] (see56

also Supplementary table S1). However, studies have focused on particular times and locations, and we lack57

systematic studies over time and space (see Ref. [20] for a recent first study that uses contact tracing data58

to infer changes in SARS-CoV-2 superspreading over time in Hong Kong). Performing a systematic study59

may be most feasible with a large-scale surveillance dataset, such as that from the COVID-19 Genomics UK60

(COG-UK) consortium, which has sequenced almost 3 million cases of SARS-CoV-2 in both surveillance and61

non-surveillance capacities as of October 5, 2022. We focus specifically on this dataset, and specifically on62

England, due to its consistently large number of sequenced SARS-CoV-2 cases since early in the pandemic.63

A challenge to performing a systematic study of the strength of genetic drift for SARS-CoV-2 and other64

pathogens is how to handle measurement noise, or noise from the data collection process [21]. Measurement65

noise can arise from a variety of factors, including variability in the testing rate across time, geographic66

locations, demographic groups, and symptom status, and biases in contact tracing. Methods exist to infer67

measurement noise from time-series lineage or allele frequencies [22, 23, 24] (see the Supplementary infor-68

mation for a summary of other methods used for inferring genetic drift, and additional references). Note69

that here we use the term “lineage” to refer to a group of sequences that are genetically similar to one70

another, which are not necessarily the same as the lineages defined by the Pango nomenclature. Intuitively,71

in time-series frequency data, genetic drift leads to frequency fluctuations whose magnitudes scale with time,72

whereas measurement noise leads to frequency fluctuations whose magnitudes do not scale with time (Fig-73

ure 1a). Thus, this system has been mapped onto a Hidden Markov Model (HMM) with continuous hidden74

and observed states (similar to a Kalman filter), where the hidden states are the true frequencies and the75

observed states are the observed frequencies (Figure 1b), and the processes of genetic drift and measurement76

noise determine the transition and emission probabilities, respectively [25, 26]. Methods often assume uni-77

form sampling of infected individuals from the population [27, 22, 23], but this assumption does not usually78

hold outside of surveillance studies. A recent study accounted for overdispersed sampling of sequences in the79

inference of fitness coefficients of SARS-CoV-2 variants, but assumes constant overdispersion over time [28];80

in reality, the observation process may change over time due to changes in testing intensity between locations81

and subpopulations.82

In this study, we develop a method to jointly infer genetic drift and measurement noise that allows83

measurement noise to be overdispersed (rather than uniform) and for the strength of overdispersion to vary84

over time (rather than stay constant). By fitting this model to observed lineage frequency trajectories85

from simulations, we show that the effective population size and the strength of measurement noise can86

be accurately determined in most situations, even when both quantities are varying over time. We then87

apply our validated method to estimate the strengths of genetic drift and measurement noise for SARS-88

CoV-2 in England across time (from March 2020 until December 2021) and space using over 490,000 SARS-89

CoV-2 genomic sequences from COG-UK. We find high levels of genetic drift for SARS-CoV-2 consistently90
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throughout time that cannot be explained by literature values of superspreading. We discuss how community91

structure in the host contact network may partially explain these results. Additionally, we observe that92

sampling of infected individuals from the population is mostly uniform for this dataset, and we also find93

evidence of spatial structure in the transmission dynamics of B.1.177, Alpha, and Delta.94

Results95

Method for jointly inferring genetic drift and measurement noise from time-series96

lineage frequency data97
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Figure 1: A Hidden Markov Model with continuous hidden and observed states (similar to a Kalman fil-
ter) for inferring genetic drift and measurement noise from lineage frequency time series. (a) Illustration of
how genetic drift and measurement noise affect the observed frequency time series. Muller plot of lineage
frequencies from Wright-Fisher simulations with effective population size 500 and 5000, with and without
measurement noise. In simulations with measurement noise, 100 sequences were sampled per week with
the measurement noise overdispersion parameter ct = 5 (parameter defined in text). All simulations were
initialized with 50 lineages at equal frequency. A lower effective population size leads to larger frequency
fluctuations whose variances add over time, whereas measurement noise leads to increased frequency fluctu-
ations whose variances do not add over time. (b) Schematic of Hidden Markov Model describing frequency
trajectories. ft is the true frequency at time t (hidden states) and fobst is the observed frequency at time t
(observed states). The inferred parameters are Ñe(t) ≡ Ne(t)τ(t), the effective population size scaled by the
generation time, and ct, the overdispersion in measurement noise (ct = 1 corresponds to uniform sampling
of sequences from the population). (c-f) Validation of method using Wright-Fisher simulations of frequency
trajectories with time-varying effective population size and measurement noise. (c) Simulated number of
sequences. (d) Simulated lineage frequency trajectories. (e) Inferred scaled effective population size (Ñe(t))
on simulated data compared to true values. (f) Inferred measurement noise (ct) on simulated data compared
to true values. In (e) the shaded region shows the 95% confidence interval calculated using the posterior, and
in (f) the shaded region shows the 95% confidence interval calculated using bootstrapping (see Methods).

We first summarize the statistical inference method that we developed to infer time-varying effective98

population sizes from neutral lineage frequency time series that are affected by overdispersed measurement99

noise (more variable than uniform sampling). We explain the method more extensively in the Methods.100
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Briefly, we use a Hidden Markov Model (HMM) with continuous hidden and observed states (similar to101

a Kalman filter), where the hidden states are the true frequencies (ft, where t is time), and the observed102

states are the observed frequencies (fobst ) (Figure 1b) (see Methods). The transition probability between103

hidden states is set by genetic drift, where the mean true frequency is the true frequency at the previous104

time E(ft+1|ft) = ft, and when the frequencies are rare the variance in frequency is proportional to the105

mean, Var(ft+1|ft) = ft
Ñe(t)

. Ñe(t) = Ne(t)τ(t) where Ne(t) is the effective population size and τ(t) is the106

generation time, and both quantities can vary over time; however, we are only able to infer the compound107

parameter Ne(t)τ(t). The emission probability between hidden and observed states is set by measurement108

noise, where the mean observed frequency is the true frequency E(fobst |ft) = ft and when the frequencies109

are rare the variance in the observed frequency is proportional to the mean, Var(fobst |ft) = ct
ft
Mt

. ct ≥ 1110

describes the time-varying deviation from uniform sampling (ct = 1), and Mt is the number of sequences111

at time t. Our model assumes that the number of individuals and frequency of a lineage is high enough112

such that the central limit theorem applies; to meet this condition, we created “superlineages” where we113

randomly and exclusively grouped lineages together such that the sum of their abundances and frequencies114

was above a threshold (see Methods).115

Using the transition and emission probability distributions (see Methods) and the HMM structure, we116

determine the likelihood function (Equation 13 in Methods) describing the probability of observing a par-117

ticular set of lineage frequency time-series data given the unknown parameters, namely the scaled effective118

population size across time Ñe(t) and the strength of measurement noise across time ct. We then maximize119

the likelihood over the parameters to determine the most likely parameters that describe the data. Because120

we are relying on a time-series signature in the data for the inference, we need to use a sufficiently large121

number of timesteps of data, but on the other hand, the longer the time series, the more parameters would122

need to be inferred (since both Ñe(t) and ct are allowed to change over time). To balance these two factors,123

we assumed that the effective population size stays constant over a time period of 9 weeks (a form of “reg-124

ularization”). We then shift this window of 9 weeks across time to determine how Ñe(t) changes over time125

(see Methods), but this effectively averages the inferred Ñe(t) over time. ct is still allowed to vary weekly.126

To validate our model, we ran Wright-Fisher simulations with time-varying effective population size and127

time-varying measurement noise (Figure 1c-f). Because a substantial number of lineages would go extinct128

over the simulation timescale of 100 weeks, we introduced new lineages with a small rate (a rate of 0.01 per129

week per individual of “mutating” to start a new lineage) to prevent the number of lineages from becoming130

too low. We then did inference on the simulated time-series frequency trajectories (Figure 1d). The inferred131

Ñe(t) and ct closely follow the true values (Figure 1e-f), and the 95% confidence intervals (see Methods132

for how they are calculated) include the true value in a median (across timepoints) of 95% of simulation133

realizations (Figure S5). The error in ct is higher when the variance contributed to the frequency trajectories134

by measurement noise is lower than that of genetic drift, which occurs when the effective population size135

is low or number of sequences is high (more clearly seen in Figure S6, where the effective population size136

is held constant). However, the error on Ñe(t) seems to be unchanged or even slightly decrease when the137

error on ct is increased because the contribution to the variance due to genetic drift is higher. We also138

observe that the inferred Ñe(t) is smoothed over time due to the assumption of constant Ñe(t) over 9 weeks139

(Figure S7); this is a potential drawback when there are sharp changes in the effective population size over140

time. Importantly, we observed that the inferred Ñe(t) will be underestimated if sampling is assumed to be141

uniform when it is actually overdispersed (Figure 1e). This is because variance in the frequency trajectories142

due to measurement noise is incorrectly being attributed to genetic drift. The underestimation is strongest143

when the variance contributed due to measurement noise is high, either due to high measurement noise144

overdispersion, a low number of sampled sequences, or a high effective population size. In this situation,145

joint inference of measurement noise and Ñe(t) from the data is necessary for accurate inference of Ñe(t).146

In summary, we developed a method to infer the strength of genetic drift and measurement noise from147

lineage frequency time series data and validated the accuracy of the method with simulations.148

Application to COG-UK data in England149

We next applied this method to study the effective population size and strength of measurement noise for150

SARS-CoV-2 in England. Because our method assumes that lineages are neutral with respect to one another151

(no selection), we performed separate analyses on groups of lineages that have been shown to exhibit fitness152
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Figure 2: The inferred effective population size and overdispersion of measurement noise in England compared
with the number of positive individuals. (a) Schematic of lineage construction for B.1.177, Alpha, and Delta
from the COG-UK phylogenetic tree. The filled circles represent the sequences of a focal variant sampled in
England, while the unfilled squares represent other sequences, which are of other variants or sampled in other
countries. The phylogenetic tree is cut at a certain depth d = dcut, and each branch cut by the line d = dcut

defines a lineage. Lineages pre-B.1.1.7 are defined using the pango nomenclature [29, 30]. (b) Muller plot
of lineage frequency time series for lineages pre-B.1.177, of B.1.177, of Alpha, of Delta. (c) Inferred scaled
effective population size (Ñe(t) ≡ Ne(t)τ(t)) for pre-B.1.177 sequences, B.1.177, Alpha, and Delta, compared
to the estimated number of people testing positive for SARS-CoV-2 in England at the community level, as
measured by the COVID-19 Infection Survey [31], for all lineages and by variant or group of lineages. To
simplify the plot, only data where the number of positive individuals for a given variant or group of lineages
was higher than 103 in a week are shown. The inferred Ñe(t) is considerably lower than the number of
positive individuals for all times and for all variants or group of lineages. (d) Inferred measurement noise
overdispersion (ct) for pre-B.1.177 sequences, B.1.177, Alpha, and Delta.

differences or deterministic changes in frequency: lineages pre-B.1.177, B.1.177, Alpha, and Delta [28, 17,153

32, 33]. We did not find any studies in the literature claiming detectable fitness differences between lineages154

within each of these groups; thus, we assumed that our neutral model should be valid when analyzing lineages155

only within a single group. We checked that this assumption is valid and describe the results below.156

To obtain lineage frequency time series data for SARS-CoV-2 in England, we downloaded genomic meta-157

data from the COVID-19 Genomics UK Consortium (COG-UK) [34] (Figure 2b) and the associated phy-158

logenetic trees that were created at different points in time. To minimize potential bias, we used only159

surveillance data (labeled as “pillar 2”). For sequences pre-B.1.177, we used the pangolin lineages assign-160

ments from COG-UK [29, 30]. However, B.1.177, Alpha, and Delta were subdivided into few or only one161

pangolin lineage, since a new lineage is defined by sufficiently many mutations and evidence of geographic162

importation. However, these requirements are not important for our purposes and instead we only need reso-163

lution of neutral lineages within a variant. Thus, we created our own neutral lineages by grouping sequences164

together based on phylogenetic distance in the tree (see Figure 2a and Methods), and cutting the tree at a165

particular point. Most sequenced samples were included in the trees (Figure S8), and any downsampling was166

done by preserving genetic diversity. Most sequences in the tree were assigned to lineages (see Methods),167

and we corrected for the fraction of sequences that were not assigned to lineages in our inference of Ñe(t)168
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(see Methods). This yielded 486 lineages for pre-B.1.177, 4083 lineages for B.1.177, 6225 lineages for Alpha,169

24867 lineages for Delta.170

The inferred effective population size is shown in Figure 2c. The inferred effective population size was171

lower than the number of positive individuals in the community by a factor of 16 to 1055 at different172

points in time. The most notable differences between the changes over time in the number of positives173

in the community and that of the effective population size were: the inferred effective population size of174

lineages pre-B.1.177 peaked slightly before the number of pre-B.1.177 positives peaked, the inferred effective175

population size of Alpha decreased slower than the number of positives decreased after January 2021, and the176

shoulder for the inferred effective population size of Delta occurred earlier than in the number of positives.177

We checked that the inferred effective population size is not sensitive to the depth at which the trees are cut178

to create lineages (Figure S9), the threshold counts for creating superlineages (Figure S10), or the number179

of weeks in the moving time window (Figure S11).180

The inferred measurement noise for each group of lineages is shown in Figure 2d. The inferred measure-181

ment noise overdispersion was mostly indistinguishable from 1 (uniform sampling), but at times was above 1182

(sampling that is more variable than uniform sampling). There were also at times differences in the strength183

of measurement noise between variants when they overlapped in time. In particular, measurement noise for184

lineages pre-B.1.177 peaked in October 2020 despite measurement noise being low for B.1.177 at that time.185

To better understand the observed levels of genetic drift, we compared the inferred Ñe(t) to that of an186

SIR null model, which includes a susceptible, infectious, and recovered class. The Ñe(t) for an SIR model187

was derived in Ref. [35, 36, 37] and is given by188

Ñe
SIR

(t) =
I(t)

2RtγI
(1)

where I(t) is number of infectious individuals, Rt is the effective reproduction number, and γI is the rate at
which infectious individuals recover. For the number of infectious individuals, we used the number of positive
individuals estimated from the UK Office for National Statistics’ COVID-19 Infection Survey [31], which is
a household surveillance study that reports positive PCR tests, regardless of symptom status. We used the
measured effective reproduction number in England reported by the UK Health Security Agency [38]. We
used γ−1

I = 5.5 days [39, 40], and our results are robust to varying γI within a realistic range of values

(Figure S12). We found that Ñe
SIR

(t) is very similar to the number of positives because the effective
reproduction number in England was very close to 1 across time and γI is also very close to 1 in units of

weeks−1. To calculate Ñe
SIR

(t) for each variant or group of lineages, we rescaled the population-level I(t) and
Rt based on the fraction of each variant in the population and the relative differences in reproduction numbers
between variants (see Methods). We then calculated the scaled true population size, Ñ(t) ≡ N(t)τ(t), for
the SIR model by multiplying by the variance in offspring number, σ2, for the SIR model [41]

ÑSIR(t) = Ñe
SIR

(t){σ2}SIR (2)

{σ2}SIR = 2. (3)

Overall, the inferred Ñe(t) is lower than ÑSIR(t) by a time-dependent factor that varies between 16 and189

589 (Figures 3c and S13), suggesting high levels of genetic drift in England across time. We find similar190

results when using an SEIR rather than an SIR model which additionally includes an exposed class and191

may be more realistic (Methods, Supplementary information, and Figure S14). The ratio of ÑSIR(t) to the192

inferred Ñe(t) was similar across variants anda cross time, except that for Alpha the ratio initially peaked193

and then decreased over time.194

Because non-neutral lineages could potentially bias the the inferred effective population size to be lower195

in a model that assumes all lineages are neutral, we checked the assumption that lineages are neutral with196

respect to one another within a group or variant (pre-B.1.177, B.1.177, Alpha, and Delta) using methods that197

detect deterministic changes in lineage frequency. We used two methods: a more conservative, deterministic198

method that ignores genetic drift, and a more accurate method that accounts for time-varying genetic drift.199

To detect any lineages that could possibly be non-neutral, we used the conservative method, and found that200

about 20% of lineages in each group were significantly non-neutral at a significance level of 5%. Very likely,201

some of these lineages are detected as non-neutral simply because the model does not correctly account for202
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strong genetic drift. Excluding these lineages from the analysis of the inferred effective population size leads203

to slightly different values of the effective population size, but by less than an order of magnitude and mostly204

by less than the 95% confidence intervals (Figure S15). This result shows that conservatively excluding205

lineages that could be non-neutral does not change the result that the inferred effective population size is206

one to two order of magnitudes lower than the SIR or SEIR model effective population size. Additionally,207

when we used these new estimates of effective population size in the more accurate method for inferring208

fitness coefficients that accounts for time-varying effective population size, we find that only about 1% of209

lineages are non-neutral at a significance level of 5%, which further supports that lineages under constant210

selection are unlikely to explain our results.211

We also probed the spatial structure of transmission by inferring the scaled effective population size212

separately for each region within England. We find that the scaled effective population size in the regions of213

England is substantially smaller than that in England as a whole for B.1.177, Alpha, and Delta (Figure S1),214

suggesting that the transmission was not well-mixed at that time. Additionally, the discrepancy between215

the inferred regional scaled effective population size and the observed number of positive individuals in a216

region was comparable to that seen in England as a whole (Figure S3), which is consistent with spatially217

segregated dynamics with similar levels of genetic drift in each region. We further describe these results in218

the Supplementary Information.219

Potential mechanisms that can contribute to the high levels of genetic drift220

Two potential mechanisms that can contribute to the observed high levels of genetic drift are: (1) variability221

at the individual level through superspreading (Figure 3a), and (2) host population structure (Figure 3b).222

We investigate each of these mechanisms in turn and compare it to our results. While in reality, both223

mechanisms (and others not explored here) are likely at play, it is challenging to tease them apart given our224

limited data. Therefore, we consider the extreme situations where only one mechanism at a time is driving225

the dynamics.226

Superspreading occurs due to overdispersion in the number of secondary cases, which decreases the227

effective population size. If superspreading were the only mechanism at play, then the variance in offspring228

number that would explain our results would be the same as the ratio between the SIR null model ÑSIR(t)229

and the inferred Ñe(t) (16-589) (Figure 3c). Current estimates of the variance in offspring number measured230

by contact tracing and modeling across a wide range of times and locations are from around 0.7 in one231

study to 65 in another (Table S1). We found two studies that apply to the UK, one which used a model232

that incorporated the empirical viral load trajectories and contact numbers to estimate superspreading [43]233

and another which used a branching process model of the number of imported and local cases [42]. The234

literature estimates whose time window overlapped with our time windows found substantially lower levels235

of superspreading than what we observe (Figure 3c and corresponding overdispersion parameter shown in236

Figure S16). It is possible that contact tracing and modeling over- or under-estimates overdispersion due to237

missed contacts [20]. However, on the other hand, it may be the case that superspreading is not the only238

mechanism at play.239

Host deme structure is another mechanism that can lead to decreased effective population size. In240

such a model, individuals within a deme are very well-connected to one another (i.e. households or friend241

groups, also known as “communities” in network science [44]), but there are few connections between demes242

(Figure 3c). It is possible for deme structure to occur without superspreading. For instance, in the schematic243

in Figure 3c, the number of contacts is either 4 or 5; if every contact led to a transmission, this would be244

an extremely narrow offspring number distribution (i.e. no superspreading). Because individuals are very245

well-connected within a deme, once the pathogen spreads to a susceptible deme, it will spread rapidly in a246

deme until all individuals are infected (a jackpot event). In this way, deme structure can lower the effective247

population size by lowerering the effective number of stochastic transmissions. For instance, in the example248

in Figure 3c, there are 20 individuals, but only 3 potential stochastic transmissions. Deme structure may249

also arise from correlations in the number of secondary infections over a series of hosts (i.e. a series of high250

numbers of secondary infections in a transmission chain, or conversely low numbers of secondary infections251

in a transmission chain) [45]. This may arise, for instance, if individuals in a transmission chain have similar252

behavior, due to geographical proximity, or similar value systems on risk aversion. A recent study has found253

that individuals infected by superspreading tend to be superspreaders themselves more than expected by254
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Superspreading 

Deme structure without superspreading

a

b d

c

Deme

Figure 3: Potential mechanisms that can generate a low effective population size. (a) Superspreading, where
the distribution of the number of secondary cases (Z) from a single infected individual is broadly distributed
(variance greater than mean). (b) Deme structure without superspreading, due to heterogeneity in the
host network structure, where the distribution of the number of secondary cases is not broadly distributed
(variance approximately equal to mean). (c) The ratio between the ÑSIR(t) (the scaled population size
calculated from an SIR model using the number of observed positive individuals and the observed effective
reproduction number) and the inferred Ñe(t) for each variant. Only data where the error in the SIR model
ÑSIR(t) is less than 3 times the value are shown, because larger error bars make it challenging to interpret
the results. The inferred Ñe(t) is lower than the ÑSIR(t) (which assumes well-mixed dynamics and no
superspreading) by a factor of 16 to 589, indicating high levels of genetic drift. The variance in offspring
number from the literature [42, 43] does not entirely explain the discrepancy between the true and effective
population sizes. (d) Simulations of deme structure without superspreading can generate high levels of
genetic drift via jackpot events. SEIR dynamics are simulated within demes (with Rt = 10, i.e. deterministic
transmission) and Poisson transmission is simulated between demes (Rt � 1, i.e. stochastic transmission)
such that the population Rt ∼ 1 (see Methods). Simulation parameters are: mean transition rate from
exposed to infected γE = (2.5 days)−1, mean transition rate from infected to recovered γI = (6.5 days)−1,
total number of demes Dtotal = 5.6 × 105. The ratio between the number of infected individuals and the
inferred effective population size is found to scale linearly with the deme size and not with the number of
infected demes. This scaling results because of jackpot events where a lineage that happens to infect a
susceptible deme grows rapidly until all susceptible individuals in the deme are infected.

chance [46], which would be consistent with this phenomenon.255

To check our intuition that deme structure can decrease the effective population size and increase genetic256

drift, we ran simulations of a simplified deme model (see Methods): all demes have the same number of257

individuals, and there is a sufficiently large enough number of demes that the total number of demes does258

not matter. Initially some number of demes are infected, and transmission occurs such that the overall259

effective reproduction number in the population is around 1. From our simulations, we find that when the260

number of individuals in a deme increases, the ratio between the number of infected individuals and the261

inferred effective population size increases (Figure 3d); in other words, the more individuals there are in a262
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deme, the higher the level of genetic drift we observe compared what is expected from the number of infected263

individuals. This is because while the number of infected individuals increases when the deme size increases264

(Figure S17a), the inferred effective population size (and thus the level of stochasticity) stays the same as a265

function of deme size (it is more dependent on the number of infected demes) (Figure S17b). However, the266

exact ratio of the number of infected individuals to the inferred effective size depends on the parameters of267

the model.268

Discussion269

Here, we systematic studied the strength of genetic drift of SARS-CoV-2 in England across time and spatial270

scales. To do this, we developed and validated a method for jointly inferring time-varying genetic drift271

and overdispersed measurement noise using lineage frequency time series data (Figure 1), allowing these272

two effects to be disentangled, which overcomes a major challenge in the ability to infer the strength of273

genetic drift from time-series data. We find that the effective population size of SARS-CoV-2 in England274

was lower than that of an SIR null model true population size (using the observed number of positives)275

by a time-dependent factor ranging from 16 to 589 (Figure 3c), suggesting that there were higher levels of276

genetic drift than expected from uniform transmission. We also find evidence for spatial structure in the277

transmission dynamics during the B.1.177, Alpha, and Delta waves, as the inferred Ñe(t) was substantially278

lower in regions compared to that of all England (Figure S1). These findings are consistent with other studies279

that have found spatial structure in transmission of B.1.177 [47], Alpha [48], and Delta [49].280

The levels of genetic drift that we observe are higher than literature values of superspreading; while this281

may be partly due to the challenges of accurately estimating the extent of superspreading from data, it also282

suggests that additional mechanisms may be leading to increased stochasticity. In particular, we explore a283

simplified deme model with groups of individuals that are well-connected to each other (demes) but not to284

individuals from other demes, and find that such a simple model can generate a low effective population285

size even in the absence of superspreading, due to jackpot events. In reality, both superspreading and host286

structure are likely at play. Additionally, they could interact with each other. For instance, there could be287

superspreading within a deme. Future work can try to tease apart the contribution of these two mechanisms,288

which for instance may be possible with better transmission network data, building on previous work on289

transmission networks [50], or with time-resolved contact tracing data [20]. This will be important because290

the relative contributions of the two mechanisms of superspreading and host population structure to genetic291

drift can affect the establishment of new variants in the population [3].292

Accurately estimating the strength of genetic drift allows us to better understand disease spread and ex-293

tinction, as well as to better parameterize evolutionary models and understand how mutations will establish294

in the population. We observed that with a few exceptions, the amount by which genetic drift was elevated295

compared to the number of positives did not change much over time or across variants (Figure 3c), despite296

changes in lockdowns and restrictions (which we may expect to decrease behavior that leads to superspread-297

ing). On the other hand, this may not be so surprising given the findings that restrictions affect the mobility298

network structure in a complex way, decreasing some types of mobility while increasing others [51]. One299

exception was that Alpha had significantly higher genetic drift compared to Delta and the strength of genetic300

drift in Alpha first peaked then slowly decreased over time. This may be either due to differences in the301

properties of the virus or differences in host behavior. For instance, it may suggest that the stochasticity302

in the transmission of Alpha sharply increased then slowly decreased over time. Alternatively, this may303

be driven by Alpha’s expanding geographic range combined with reimported cases of Alpha into the UK304

(observed from February 2021 onwards), which could both also decrease the effective population size [52].305

We observe that measurement noise of SARS-CoV-2 is mostly indistinguishable from uniform sampling,306

but data from some variants at some times do exhibit more elevated measurement noise than uniform307

sampling. Thus, we expect that assuming uniform sampling, as many methods do, or constant overdispersion308

will lead to accurate estimates for this dataset [27, 22, 23, 28]. The number of SARS-CoV-2 sequences from309

England is extremely high and sampling biases are expected to be low, because of efforts to reduce sampling310

biases by sampling somewhat uniformly from the population through the COVID-19 Infection Survey [31]311

(from which a subset of positives are sequenced and included in the COG-UK surveillance sequencing data312

that we use). On the other hand, other countries may have higher sampling biases, so jointly estimating313
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measurement noise and genetic drift may be more crucial in those settings. It may also be interesting to use314

this method to test whether genomics data taken from wastewater has lower levels of measurement noise as315

compared to sequenced cases.316

We find that constant selection is unlikely to explain our results, as excluding potentially non-neutral317

lineages does not significantly change the inferred effective population size. Our method allows for the318

inference of constant selection while accounting for time-varying effective population size, and thus may be319

interesting in future applications of tests for selection. However, the model ignores other processes that320

may lead to deterministic changes in frequency, such as migration and mutation (discussed below); thus, we321

recommend combining it with complementary methods (for instance, phylogenetic methods) that test for322

selection as somewhat independent tests for selection.323

In summary, we find that the strength of genetic drift in SARS-CoV-2 transmission in England is higher324

than expected based on the number of positive individuals and the levels of superspreading reported in the325

literature. Our results suggest that additional models and methods will be needed to better understand the326

mechanisms behind the observed elevated levels of genetic drift.327

Limitations of the study and opportunities for future directions328

First, in our analysis, we focused on standing variation that existed at a particular depth in the phylogenetic329

tree and ignored de novo mutations subsequently arising during the time series. However, we don’t think this330

should substantially affect our results because introducing mutations in the form of new lineages with a small331

rate in the simulations did not have a large effect on the method performance (Figure 1e). We also ignored332

importation of SARS-CoV-2 into England and exportation of SARS-CoV-2 out of England. Migration can333

substantially change frequencies that are locally rare, but we expect importations to only weakly influence334

the frequency fluctuations of abundant variants, on which we have focused in this work. Additionally, we335

did not test for more complex forms of selection, such as fluctuating selection. More generally, future work336

should explore joint inference of selection, migration, and/or mutation in the model, as is appropriate for337

the pathogen of interest, building on previous work in this area [53, 54, 26].338

Second, there may be biases in the way that data are collected that are not captured in our model. While339

our method does account for sampling biases that are uncorrelated in time, sampling biases that remain over340

time cannot be identified as such (i.e. if one geographical region was dominated by a particular lineage and it341

consistently had higher sequencing rates compared to another geographical region), and this can potentially342

bias the inferred effective population size; although, this is also a problem in phylogenetic methods. One343

approach to this problem that was utilized by some early methods during the pandemic is to develop sample344

weights based on geography, time, and number of reported cases. Future work should study the effect of345

different sampling intensities between regions on uncorrelated and correlated sampling noise. Additionally,346

we assume that the measurement noise overdispersion is identical for all lineages within a variant; in reality,347

there may be differences in sampling between lineages. Future work should explore whether this is the case348

in the actual dataset, as well as the effect of lineage-specific measurement noise overdispersion on overall349

method performance.350

Third, the quantity of effective population size is a summary statistic that is influenced by many factors,351

making its interpretation challenging. The effective population size describes the population size under a352

well-mixed Wright-Fisher model, whereas in reality, this assumption is broken by many effects, including353

host structure and broad offspring number distributions. Thus, in our study we are careful to interpret354

effective population size only in the broadest terms of genetic drift, without being able to determine what355

mechanisms lead to the inferred effective population size (although we do explore some possibilities above).356

While within-host dynamics may in principle impact the lineage frequency trajectories, this effect is likely357

small for our analysis because we focus on acute infections (infections in the community rather than in358

hospitals and nursing homes). This is because acute infections of SARS-CoV-2 are thought to generate little359

within-host diversity that is passed on due to the short infection duration and small bottleneck size between360

hosts [55, 56]; while new mutations arising within acute hosts have been observed to be transmitted, these361

events are rare [55].362

Fourth, the use of a sliding window of 9 weeks on the lineage frequency data will lead to smoothing of363

sharp changes in effective population size. It may be interesting in future work to develop a continuous364

method that uses a prior to condition on changes in effective population size, similar to those that have been365
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developed for coalescence-based methods [1, 57]. This would allow us to infer continuous changes in effective366

population size without needing to use a sliding window.367

While we have focused on SARS-CoV-2 in this study, the method developed here can be extended to368

study genetic drift in other natural populations that are influenced by measurement noise and where genomic369

frequency data are available, for instance other pathogens, field studies, and ancient DNA [58, 59, 60]. More370

generally, ongoing methods development that integrates genomics, epidemiological, and other data sources371

is crucial for being able to harness the large amounts of data that have been generated to better understand372

and predict evolutionary dynamics.373
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Materials and Methods374

Data sources and processing375

We downloaded sequence data from the COVID-19 Genomics UK Consortium (COG-UK) [34]. We only376

used surveillance data (labeled as “pillar 2”); this dataset is composed of a random sample of the positive377

cases from the COVID-19 Infection Survey, which is a surveillance study of positive individuals in the378

community administered by the Office for National Statistics (see below). For lineages that appeared before379

B.1.177, we downloaded the metadata from the COG-UK Microreact dashboard [61], which included the380

time and location of sample collection (at the UTLA level), as well as the lineage designation using the381

Pango nomenclature [29, 30]. For B.1.177, Alpha, and Delta sequences, because the Pango nomenclature382

classified them into very few lineages, we created our own lineages from the phylogenetic trees (see below).383

We downloaded the publicly available COG-UK tree on February 22, 2021 for B.1.177; June 20, 2021 for384

Alpha; and January 25, 2022 for Delta. We also downloaded the COG-UK metadata for all lineages on385

January 16, 2022, which included the time and location (at the UTLA level) of sample collection. For the386

data of B.1.177, Alpha, and Delta, the data was deduplicated to remove reinfections in the same individual387

by the same lineage, but reinfections in the same individual by a different lineage were allowed. This yielded388

a total of 490,291 sequences.389

The lineage frequency time-series is calculated separately for each variant or group of lineages (pre-390

B.1.177, B.1.177, Alpha, and Delta). First, the sequence metadata are aggregated by epidemiological week391

(Epiweek) to average out measurement noise that may arise due to variations in reporting within a week.392

Then, the lineage frequency is calculated by dividing the number of sequences from that lineage in the393

respective tree by the total number of sequences of that variant (or group of lineages) that were assigned to394

any lineage in the respective tree.395

Because our model describes birth-death processes when the central limit theorem can be applied, we need396

the lineage frequencies to be sufficiently high. Thus, we randomly combine rare lineages into “superlineages”397

that are above a threshold number of counts and threshold frequency in the first and last timepoint of each398

trajectory. For the threshold, we chose of 20 counts and frequency of 0.01. Sensitivity analyses showed399

that the choice of the superlineage count threshold does not substantially affect the results (Figure S10).400

Superlineages are non-overlapping (i.e. each sequence belongs to exactly one superlineage).401

The estimated number of people testing positive for COVID-19 in England and each region of England402

was downloaded from the UK Office for National Statistics’ COVID-19 Infection Survey [31]. The COVID-19403

Infection Survey includes households that are semi-randomly chosen, and individuals are tested regardless404

of whether they are reporting symptoms. Infections reported in hospitals, care homes, and other communal405

establishments are excluded. Thus the dataset provides a representative number of positive individuals in406

the community setting. The reported date of positive cases is the date that the sample was taken. The error407

on the number of positive individuals from April 17, 2020 to July 5, 2020 is reported as the 95% confidence408

interval, and after July 5, 2020 is reported as the 95% credible interval. The regional data reported the409

positivity rate over two week intervals. To get the number of positives, we multiplied by the number of410

individuals in the community setting in the region (excluding hospitals, care homes, and other communal411

establishments). As the data was reported over two week intervals, we obtained the number of positives for412

each week using linear interpolation.413

The observed effective reproduction numbers for England and each region of England were downloaded414

from the UK Health Security Agency [38]. Only times where the certainty criteria are met and the inference415

is not based on fewer days or lower quality data are kept. The error on the effective reproduction number is416

reported as the 90% confidence interval. Although not reported in the dataset, we choose the point estimate417

of the effective reproduction number to be the midpoint between the upper and lower bounds of the 90%418

confidence interval.419

Creating lineages in B.1.177, Alpha, and Delta420

For B.1.177, Alpha, and Delta, we divided each of them into neutral lineages based on phylogenetic distance.421

Specifically, for B.1.177 and Alpha, we cut a phylogenetic tree (in units of number of mutations) at a certain422

depth, d = dcut. Each of the internal or external branches that are cut by the line d = dcut defines a lineage423

(Figure 2a). The (observed) frequency of a lineage at a given time point in England was computed by424
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counting the number of England sequences (leaf nodes) belonging to the lineage and by normalizing it by the425

total number of sequences in all assigned lineages of the focal variant in England at that time point. Lineage426

frequencies at the regional level were similarly computed by counting the number of sequences separately for427

each region.428

The choice of dcut is arbitrary to some extent. Because we wanted a sufficiently high resolution of lineages429

from the early phase of spreading of a variant and because the evolutionary distance correlates with the actual430

sample date (Figure S18), for each focal variant, we chose the depth dcut that roughly corresponds to the431

time point when it began to spread over England.432

For the Delta variant, the sequences form two distinct groups along the depth direction, as seen from the433

last panel of Figure S18. Therefore, to divide the Delta variant into lineages with small frequencies, we cut434

the phylogenetic tree at two depths sequentially; we first cut the tree at d
(1)
cut, which resulted in lineages with435

small frequencies plus a lineage with O(1) frequency. Then, to divide the latter lineage further, we took the436

subtree associated with this lineage and cut the subtree at d
(2)
cut.437

For the results presented in the main text, we used (in units of substitutions per site, with the reference438

d=0 being the most recent common ancestor) dcut = 2.323 · 10−2 for B.1.177, dcut = 2.054 · 10−3 for Alpha,439

and d
(1)
cut = 1.687 · 10−3 and d

(2)
cut = 1.954 · 10−3 for Delta. We confirmed that our results are robust to the440

choice of dcut as well as the choice of the phylogenetic tree data we used (Figure S9).441

Model for inferring effective population size from lineage frequency time series442

We use a Hidden Markov Model with continuous hidden and observed states to describe the processes of443

genetic drift and sampling of cases for sequencing (similar to a Kalman filter) (Figure 1A). The hidden states444

describe the true frequencies of the lineages and the observed states describe the observed frequencies of the445

lineages as measured via sequenced cases.446

The transition probability between the true frequencies ft (the hidden states) due to genetic drift when447

0 � f � 1 has been shown in [62] to be well-described by the following expression, which we use as our448

transition probability,449

p(ft+1|ft, Ñe(t)) =
1

2

√√√√ 2f
1/2
t

πf
3/2
t+1(Ñe(t))−1

exp

(
−

2(
√
ft+1 −

√
ft)

2

(Ñe(t))−1

)
. (4)

Ñe(T ) ≡ Ne(t)τ(t) where Ne(t) is the time-dependent effective population size and τ(t) is the time-dependent450

generation time, which is defined as the mean time between two subsequent infections per individual (i.e.451

the time between when an individual becomes infected and infects another individual, or the time between452

two subsequent infections caused by the same individual). This transition probability gives the correct first453

and second moments describing genetic drift when f � 1, E(ft+1|ft) = ft and Var(ft+1|ft) = ft
Ñe(t)

, and454

is a good approximation when the central limit theorem can be applied, which is the case when f � 0.455

By assuming that ft+1 ≈ ft, and defining φt ≡
√
ft, Equation 4 can be approximated as a simple normal456

distribution457

p(φt+1|φt, Ñe(t)) = N
(
φt,

1

4Ñe(t)

)
. (5)

We describe the emission probability from the true frequency ft to the observed frequency fobst (the458

observed states), defining φobst ≡
√
fobst , as459

p(φobst |φt, ct) = N
(
φt,

ct
4Mt

)
(6)

where Mt is the number of input sequences. Again, this distribution is generically a good description when460

the number of counts is sufficiently large, due to the central limit theorem. The first and second moments461

of this emission probability are E(fobst |ft) = ft and Var(fobst |ft) = ct
Mt
ft, or equivalently considering the462

number of sequences nobst = fobst Mt and the true number of positive individuals nt, E(nobst |nt) = nt and463

Var(nobst |nt) = ctnt. Thus, ct describes the strength of measurement noise at time t. When ct = 1,464

the emission probability approaches that describing uniform sampling of sequences from the population465
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of positive individuals (i.e. can be described by a Poisson distribution in the limit of a large number of466

sequences), namely Var(nobst |nt) = nt or equivalently Var(fobst |ft) = ft
Mt

. This is the realistic minimum467

amount of measurement noise. When ct > 1, it describes a situation where there is bias (that is uncorrelated468

in time) in the way that sequences are chosen from the positive population. The case of 0 < ct < 1 describes469

underdispersed measurement noise, or noise that is less random than uniform sampling. The case of ct = 0470

describes no measurement noise (for instance, when all cases are sampled for sequencing). These last two471

situations are unlikely in our data, and thus as we describe below, we constrain ct ≥ 1 in the inference472

procedure. In addition to being a good description of measurement noise, defining the emission probability473

in the same normal distribution form as the transmission probability allows us to easily derive an analytical474

likelihood function, described below (Note: see Ref. [26] for a method to derive an analytical likelihood475

function for arbitrary forms of the transition and emission probabilities).476

We derive the likelihood function (up to a constant) for the the Hidden Markov Model using the forward
algorithm, although it can alternatively be derived by marginalizing over all hidden states. We assume an
(improper) uniform prior on φ0 (i.e. no information about the initial true frequency of the lineage).

p(φ0, φ
obs
0 , θ0) = p(φobs0 |φ0, c0)p(φ0) (7)

p(φ0) ∝ 1 (8)

p(φt, φ
obs
0:t , θ0:t) = p(φobst |φt, ct)

∫ ∞
−∞

p(φt|φt−1, Ñe(t))p(φt−1, φ
obs
0:t−1, θ0:t−1)dφt−1, 0 < t ≤ T (9)

p(φobs0:T , θ0:T ) =

∫ ∞
−∞

p(φT , φ
obs
0:T , θ0:T )dφT (10)

L(~φobs0:T |θ0:T ) =
∏
α

p({φobs0:T }α, θ0:T )p(θ0:T ) (11)

p(θ0:T ) ∝ 1 (12)

L(~φobs0:T |θ0:T ) =
∏
α

p({φobs0:T }α, θ0:T ). (13)

where φobs0:t ≡ {φobs0 , ..., φobst }, θ0:t ≡ {Ñe(0), ..., Ñe(t), c0, ..., ct}, and the subscript α indicates a particular477

lineage. We use a uniform prior on the parameters. The parameters θ0:T are inferred by maximizing the478

likelihood (described below).479

The forward algorithm has an analytical form for the simple case of Gaussian transition and emission
probabilities. We use the identity for the product of two normal distributions N(x, µ, v), where µ is the
mean and v is the variance:

N(x, µ1, v1)N(x, µ2, v2) = N(µ1, µ2, v1 + v2)N(x, µ12, v12) (14)

µ12(µ1, µ2, v1, v2) =
µ1v2 + µ2v1

v1 + v2
(15)

v12(v1, v2) =
1

1
v1

+ 1
v2

. (16)

Solving the forward algorithm recursively, we have

p(φobs0:T , θ0:T ) =
T∏
i=1

N(φobsi , µi,
ci

4Mi
+ vi) (17)

(18)
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where

µ1 = φobs0 (19)

v1 =

1
Ñe(t)

+ c0
M0

4
(20)

µi+1 = µ12(µi, φ
obs
i , vi,

ci
4Mi

) (21)

vi+1 = v12(
ci

4Mi
, vi) +

1

4Ñe(t)
. (22)

(23)

Equation 17 can be substituted into Equation 13 to obtain the full analytical likelihood function.480

Fitting the model to data481

We split the time series data into overlapping periods of 9 Epiweeks, over which the effective population size is482

assumed to be constant. We first use the moments of the probability distributions combined with least squares483

minimization to get an initial guess for the parameters. Then, we perform maximum likelihood estimation484

using the full likelihood function. To capture uncertainties that arise from the formation of superlineages485

from lineages, we create superlineages randomly 100 times (except where indicated otherwise). We infer the486

strength of measurement noise and the effective population size for each superlineage combination (described487

below).488

Determining the initial guess for the parameters using method of moments approach489

Combining the transition and emission probabilities, and marginalizing over the hidden states we have

p(fobsj |fobsi ) ∝
√

1

(fobsj )3/2
exp

(
−

2
(√

fobsj −
√
fobsi

)2

κi,j

)
(24)

p(φobsj |φobsi ) = N (φobsi , κi,j) (25)

κi,j ≡
ci

4Mi
+

cj
4Mj

+
(j − i)
4Ñe(t)

. (26)

The first two terms of κi,j are the contribution to the variance from measurement noise at times i ad j, and490

the third term is the contribution to the variance from genetic drift.491

We calculate the maximum likelihood estimate of κi,j , κ̂i,j , which is simply the mean squared displacement492

κ̂i,j =
〈

(φobsj − φobsi )2
〉
. (27)

The standard error is given by493

∆κ̂i,j =

√√√√〈[(φobsj − φobsi )2 − κ̂i,j
]2〉

Z
(28)

where Z is the number of superlineages.494

By looking across all pairs of timepoints i and j, we get a system of linear equations in κi,j that depend495

on the parameters ct and Ñe(t). To determine the most likely values of the parameters, we minimize496

ln
∑
i,j

(κ̂i,j −Ac)2

∆κ̂i,j
(29)

using scipy.optimize.minimize with the L-BFGS-B method and the bounds 1 ≤ ct ≤ 100 and 1 ≤ Ñe(t) ≤ 107.497

While underdispersed measurement noise (ct < 1) is in principle possible, we constrain ct ≥1 because498
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realistically, the lowest amount of measurement noise will be from uniform sampling of sequences. An499

example of inferred parameters using the methods of moments approach on simulated data is shown in500

Figure S19.501

Maximum likelihood estimation of the parameters502

For each set of superlineages, we use the inferred measurement noise values (ct) and inferred scaled effective
population size from above (Ñe(t)) as initial guesses in the maximization the likelihood function in Equa-
tion 13 over the parameters. For the optimization, we use scipy.optimize.minimize scalar with the Bounded
method and the bounds 1 ≤ ct ≤ 100 and 1 ≤ Ñe(t) ≤ 1011. The time t in the inferred Ñe(t) is taken to be
the midpoint of the 9 Epiweek period. The reported Ñe(t) is the median inferred Ñe(t) across all superlineage
combinations where Ñe(t) < 105 (values above 105 likely indicate non-convergence of the optimization). The
reported errors on Ñe(t) are the 95% confidence intervals (again taking the median across all superlineage
combinations where Ñe(t) < 105) which are calculated by using the likelihood ratio to get a p-value [63, 64].
We replace the likelihood with the profile likelihood, which has the nuisance parameters c0:T profiled out:

p > 0.05 (30)

p =

∫
I

[
LÑe(ĉ0:T |~φobs0:T )

LÑ ′e(ĉ0:T |~φobs0:T )
> 1

]
PÑ ′e

(ĉ0:T |~φobs0:T )dÑ ′e (31)

ĉ0:T = arg max
c0:T
LÑe(c0:T |~φobs0:T ) (32)

PÑ ′e
(ĉ0:T |~φobs0:T ) ∝ LÑ ′e(ĉ0:T |~φobs0:T )p(Ñe) (33)

p(Ñe) ∝ 1 (34)

where I is an indicator function that equals one when the argument is true and zero otherwise, LÑe(ĉ0:T |~φobs0:T )503

is the profile likelihood with the nuisance parameters (in this case) c0:T profiled out, PÑ ′e
(ĉ0:T |~φobs0:T ) is the504

posterior where we have used a uniform prior. We also tried a Jeffreys prior which is used for variance505

parameters, but it gave similar results on simulated data because it looked relatively flat over the values of506

Ñe(t) of interest. As the Jeffreys prior was more computationally expensive than the uniform prior and the507

two priors gave similar results, we used the uniform prior for the analyses.508

The reported values of ct are the median across all superlineage combinations and across all time series509

segments where the timepoint appears. The reported errors on ct are the 95% confidence intervals as510

calculated by the middle 95% of values across superlineage combinations and time series segments.511

An example of inferred parameters on simulated data using the maximum likelihood estimation approach,512

compared to the initial guesses of the parameters from the methods of moments approach, is shown in513

Figure S19.514

Correcting for the number of sequences assigned to lineages515

Because some sequences occur before the cut point in the tree that is used for creating lineages, they are516

not included in any lineages. As a result, the number of sequences assigned to lineages is lower than the517

number of sequences in the tree. To correct for the bias in inferred effective population size that results518

from leaving out sequences from parts of the tree, we divide the inferred effective population size by the519

fraction of sequences in the tree that are assigned to a lineage. We note that while the number of sequences520

in the tree is less than the total number of sampled sequences, the sequences in the tree were chosen to be a521

representative fraction of the total sampled sequences. Thus, we do not need to additionally correct for the522

downsampling of sequences that were included in the tree. To test that randomly subsampling sequences for523

the analysis does not affect the results, we randomly subsampled half of the Delta sequences, and reran the524

analyses; the inferred effective population size was very similar to that from the full number of sequences525

(Figure S20).526
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Simulations for validating method527

For the model validation, we perform simulations of the lineage trajectories using a discrete Wright-Fisher
model. 500 lineages are seeded initially, and the initial frequency of lineages is taken to be the same across all
lineages. In each subsequent Epiweek, the true number of counts for a lineage is drawn from a multinomial
distribution where the probabilities of different outcomes are the true frequencies of the lineages in the
previous Epiweek and the number of experiments is the effective population size. The true frequency is
calculated by dividing the true number of counts by N . The observed counts are drawn from a negative
binomial distribution,

p(nobst |ft) = NB(r, q) ≡
(
nobst + r − 1

r − 1

)
qr(1− q)n

obs
t (35)

r =
ftMt

ct − 1
(36)

q =
1

ct
(37)

which has the same mean and variance as the emission probability in Equation 6. The total number of528

observed sequences in each timepoint is calculated empirically after the simulation is completed, as it may529

not be exactly Mt. The simulation is run for 10 weeks of “burn-in” time before recording to allow for530

equilibration. Superlineages are created in the same way as described above.531

For long time series simulations, some lineages will go extinct due to genetic drift, making it challenging532

to have sufficient data for the analysis. To be able to have a high enough number of lineages for the entire533

time series, we introduce mutations to a new lineage with a small rate µ = 0.01 per generation per individual.534

Calculating the effective population size for an SIR or SEIR model535

The effective population size times the generation time in an SIR model is given by Refs. [41, 35]536

Ñe
SIR

(t) ≡ NSIR
e (t)τ(t) =

I(t)

2RtγI
. (38)

The variance in offspring number for an SIR model is approximately 2.537

For an SEIR model, we calculated Ñe(t) following the framework from Ref. [36]. Using this framework,538

we were only able to consider a situation where the epidemic is in equilibrium. We test how well this539

approximates the situation out of equilibrium using simulations (see Supplementary Information).540

We first considered how the mean number of lineages, A, changes going backwards in time, s, which is541

given by542

dA

ds
= −fpc (39)

where f is the number of transmissions per unit time and pc is the probability that a transmission results543

in a coalescence being observed in our sample. pc is given by the number of ways of choosing two lineages544

divided by the number of ways of choosing two infectious individuals545

pc =

(
A(s)

2

)(
N(s)

2

) =
limN(s)→∞

(
A(s)

2

)
2

N(s)2
. (40)

where the limit assumes that the number of infectious individuals, N(s), is large. In the Kingman coalescent546

we also have547

dA

ds
= −

(
A(s)

2

)
1

Ñe(t)
. (41)

Combining Equations 39, 40, and 41, we have548

Ñe(t) =
N(s)2

2f
. (42)
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Thus by determining the number of transmissions per unit time, f , and the number of infectious individuals,549

N(s), in an SEIR model, we can find an expression for Ñe(t).550

These quantities can be derived from the equations describing the number of susceptible (S), exposed
(E), infectious (I), and recovered (R) individuals in an SEIR model

dS

dt
= −βI S

NH
(43)

dE

dt
=
βIS

NH
− γEE − δEE (44)

dI

dt
= γEE − γII − δII (45)

dR

dt
= γII (46)

where β is the number of transmissions per infectious individual per unit time (the number of contacts551

made by an infectious individual per unit time multiplied by the probability that a contact results in a552

transmission), NH is the total population size (NH = S + E + I + R), γE is the rate that an exposed553

individual becomes infectious, δE is the rate of death for an exposed individual, γI is the rate than an554

infectious individual recovers, and δI is the rate of death for an infectious individual.555

The number of infectious individuals in a generation, N(s), is given by the instantaneous number of infec-556

tious individuals plus the number of exposed individuals that will become infectious in that generation [41].557

Thus,558

N(s) =
γE

γE + δE
E + I. (47)

The number of transmissions per unit time is given by559

f = βI
S

NH
. (48)

We rewrite f in terms of the effective reproduction number (for which data are available) which is given by560

the number of transmissions per unit time (f) divided by the number of recoveries and deaths per unit time561

Rt =
f

(γI + δI)I + δEE
. (49)

Putting everything together, we have that Ñe(t) for an SEIR model in equilibrium is given by562

Ñe
SEIR,eq

(t) =

[(
γE

γE+γI

)
E + I

]2
2Rt[(γI + δI)I + δEE]

. (50)

For SARS-CoV-2, the death rates are much lower than the rate at which exposed individuals become in-563

fectious and the rate at which infectious individuals recover (δE , δI � γE , γI). In this limit, Equation 50564

simplifies to565

Ñe
SEIR,eq

(t) =
(E + I)2

2RtγII
. (51)

To calculate the Ñe for an SIR or SEIR model, we use the estimated number of positives from the566

COVID-19 Infection Survey for I(t). This number is an estimate of the number of positive individuals in567

the community as measured by surveillance and includes both symptomatic and asymptomatic individuals.568

While the estimated number of positives does not include cases from hospitals, care homes, and other com-569

munal establishments, community cases likely contribute the most to transmission. We used the measured570

effective reproduction number from the UK Health Security Agency for Rt.571

To calculate the number of exposed individuals for the SEIR model, we solved for E in Equation 45572

(taking δE � γE)573

E =
1

γE

(dI
dt

+ γII
)
. (52)
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dI
dt was calculated numerically as I(t+∆t)−I(t−∆t)

2∆t where ∆t = 1 week. The parameter values used were γ−1
E574

= 3 days and γ−1
I = 5.5 days [39, 40]. We checked that varying the value used for γI does not substantially575

affect the results (Figure S12). The error on E was calculated by taking the minimum and maximum possible576

values from the combined error intervals of I(t + ∆t) and I(t −∆t) (note that this does not correspond to577

a specific confidence interval size).578

The error on Ñe(t) for the SIR or SEIR model was calculated similarly by taking the minimum and579

maximum possible values from the combined error intervals of E, I, and Rt. Only time points where the580

error interval of Ñe(t) was less than 3 times the point estimate were kept.581

Calculating the effective population size for an SIR or SEIR model by variant582

To calculate the effective population size for an SIR or SEIR model by variant, we needed to determine583

the variant-specific: number of infectious individuals I(t), number of exposed individuals E(t), effective584

reproduction number Rt, and rate than an infectious individual recovers γI . We assumed that γI is constant585

between variants. We calculated the number of infectious individuals I(t) by multiplying the total number586

of positives by the fraction of each variant in the reported sequences. This should be a good representation587

of the fraction of the variant in the population as the sequences are a random sample of cases detected588

via surveillance. We calculated the number of variant-specific exposed individuals E(t) in the same way as589

described above using the variant-specific number of infectious individuals. We assumed that the rate an590

exposed individual becomes infectious γE is constant between variants.591

We calculated the variant-specific effective reproduction number by rescaling the measured effective592

reproduction number for the whole population593

Rvt = Rt
Rv0∑

w R
w
0 f

w
(53)

where Rw0 is the basic reproduction number of the variant w and fw is the fraction of the infectious population594

with variant w. The values of R0 when rescaled to Rpre−B.1.1.70 that are used for the data presented in the595

main text are
Rpre−B.1.1.7

0

Rpre−B.1.1.7
0

= 1,
RAlpha

0

Rpre−B.1.1.7
0

= 1.7 (Ref. [17]),
RDelta

0

Rpre−B.1.1.7
0

= 1.97 (Ref. [65]). Varying the variant596

R0 within the ranges reported in the literature does not substantially affect the results (Figure S21).597

Inference of fitness from lineage frequency time series598

We sought to infer the fitness effects of individual lineages, so that we could then determine if putatively599

selected lineages are influencing the estimation of the time-varying effective population sizes. We first used600

a deterministic method to estimate lineage fitness effects, similar to the method described in [66].601

On average, when the frequency of lineage i is sufficiently small ft,i � 1, the frequency dynamics will602

exponentially grow/decay according to the lineage fitness effect, si,603

〈ft,i〉 = f0,ie
sit

The two sources of noise–genetic drift and measurement noise–both arise from counting processes, so the604

combined noise will follow var (ft,i) ∝ 〈ft,i〉. To account for the inherent discreteness of the number of cases605

in a lineage–especially important to accurately model lineages at low frequencies–we modeled the observed606

counts at Epiweek t of lineage i, rt,i, as a negative binomial random variable,607

rt,i|si, f0,i ∼ NB (µt,i, ζt) (54)

〈rt,i〉 = µt,i (55)

var (rt,i) = ζt〈rt,i〉 (56)

µt,i = Mtf0,ie
sit (57)

Where Mt is the total number of sequences, and ζt is a dispersion parameter. We took ζt as the total608

marginal variance at a given time-point, i.e. ζt = ct +Mt/Ne(t), where we computed estimates of ct and Ne609
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as previously described (section “Maximum likelihood estimation of the parameters”). The final likelihood610

for the fitness, si, of lineage i is obtained by combining the data from all the relevant the time-points,611

P (ri|si, f0,i) =
∏
t

Γ
(
rt,i +

µt,i
ζt−1

)
Γ
(
µt,i
ζt−1

)
Γ (rt,i + 1)

(ζt − 1)rt,i

ζ
rt,i+

µt,i
ζt−1

t

(58)

The point estimate of the lineage fitness, ŝi, is then numerically computed as the maximum likelihood,612

ŝi = argmax
si

logP (ri|si, f0,i) (59)

For ease of computation and generality we compute the p-value as the posterior probability that the613

likelihood ratio between null and alternative hypotheses is greater than 1, i.e. the probability that the614

data more strongly support the null hypothesis (the lineage is neutral) over the alternative (the lineage is615

non-neutral),616

pi = Psi|r

(
L(0|ri)
L(si|ri)

> 1

)
P (si|r) ∝ L(si|ri)

Where L(si|ri) is the profile likelihood. This convenient definition has been shown to be equivalent to617

the frequentist definition of the p-value using a likelihood ratio test statistic (if the distribution is invariant618

under transformation) [63, 64], and does not require asymptotic approximations. After obtaining p-values619

for all the lineages, we performed a standard Benjamini-Hochberg FDR on all the p-values. As mentioned in620

the main text, the Ne inference method was then re-run using all lineages, except those that were significant621

at FDR< 0.05 using the above method.622

Subsequently, we sought to use a more accurate method to detect if lineages have constant, non-neutral623

fitness effects. So, we turned back to our HMM method and modified it slightly. We wanted to measure the624

fitness effects of lineages that may be very small, with counts at some time points close to or at 0, which625

then would not satisfy the central limit theorem, upon which our main HMM method rests. Thus, we used a626

different transition [62] and emmission probability for the HMM, which are more valid for small population627

sizes and counts:628

p(ft+1|ft, Ne(t), si) =
1

2

√
2(esitft)1/2

πf
3/2
t+1(Ñe(t))−1

exp

(
−

2(
√
ft+1 −

√
esitft)

2

(Ñe(t))−1

)
(60)

fobst |ft, ct ∼ NB (ft, ct) (61)

〈fobst 〉 = ft (62)

var (fobst ) = ctft. (63)

We used the point estimates of Ne and ct that were calculated after we had excluded the selected lineages629

detected by the conservative method. To get the maximum likelihood estimate of s for each lineage, we used630

the standard HMM forward algorithm, numerically integrating over the intermediates. We then calculated631

the p-value for each lineage by calculating the log-likelihood ratio LLRi = 2(Li(ŝi) − Li(0)), and then632

comparing it to a chi-squared ratio with d.f.=1. After obtaining p-values for all the lineages, we performed633

a standard Benjamini-Hochberg FDR on all the p-values.634

Stochastic simulations of SEIR model635

The stochastic simulations of an SEIR model were performed using a Gillespie simulation with 4 states:636

susceptible, exposed, infectious, and recovered, where the number of individuals in each state are denoted637

by S(t), E(t), I(t), and R(t) respectively. There are 3 types of events that lead to the following changes in638

the number of individuals in each state639
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1. Infection of an susceptible individual with probability βI(t)S(t)
N(t)

S(t) = S(t)− 1 (64)

E(t) = E(t) + 1 (65)

2. Transition of an exposed individual to being infectious with probability γEE(t)

E(t) = E(t)− 1 (66)

I(t) = I(t) + 1 (67)

3. Recovery of an infectious individual with probability γII(t)

I(t) = I(t)− 1 (68)

R(t) = R(t) + 1 (69)

where β ≡ R0γI , R0 is the basic reproduction number, γE is the rate that exposed individuals become640

infectious, and γI is the rate that infectious individuals recover. As in the rest of this work, we assume that641

the birth rate of susceptible individuals, background death rate, and the death rate due to disease are much642

slower compared to the rates of the above processes and thus can be neglected from the dynamics.643

The time until the next event is drawn from an exponential distribution with rate given by the inverse644

of the sum of the above probabilities, and the type of event is randomly drawn weighted by the respective645

probabilities.646

Because the time of the events occurs in continuous time, but the inference method of the effective647

population size works in discrete time, we must convert from continuous to discrete time. To perform this648

conversion, we calculate the net number of events of each type in each chosen unit of discrete time (1 week)649

and perform the changes in the number of individuals of each state as described above. Thus, for example, if650

within the same week an individual becomes exposed and then becomes infectious, it will cause the number651

of susceptible individuals to decrease by 1, no change in the number of exposed individuals, and the number652

of infectious individuals to increase by 1.653

The infected (or infected and exposed) individuals are randomly assigned a lineage at a given time after654

the start of the epidemic. For our simulations, we chose the lineage labeling time as 75 days or 10.7 weeks655

since the approximate number of infectious individuals was high enough at that time to generate sufficient656

diversity in lineages, and we chose the number of different types of lineages as 100. The other parameters that657

we used for the simulations were R0 = 2, γ−1
E = 3 days, γ−1

I = 5.5 days, N(t) = S(t)+E(t)+I(t)+R(t) = 106.658

The initial condition of the simulation is S(t) = N(t)− 1, E(t) = 1, and I(t) = R(t) = 0.659

To test the sensitivity of the results to whether the reported PCR positive individuals are infectious or660

whether they can also be from the exposed class, we recorded the results in two ways. In the first case, only661

the infectious individuals we recorded as positive (Figure S22), and in the second case both the exposed and662

infectious individuals were recorded as positive (Figure S23). Inference of Ñe(t) was subsequently done on663

the lineage frequency trajectories of the recorded positive individuals. The SIR or SEIR model Ñe(t) were664

calculated analytically using the true numbers of infectious and exposed individuals and numerically using665

the number of positive individuals as described above in “Calculating the effective population size for an666

SIR or SEIR model”.667

Deme simulations668

To better understand the effect of host population structure on the effective population size, we simulated669

a simple situation where there are “demes”, or groups, of individuals with very high rates of transmission670

between individuals in that deme, but the rate of transmission between individuals from different demes671

is very low. In a given simulation, all demes have the same number of individuals (10, 50, 100, or 200).672

The total number of demes is chosen to be very high (5.6 × 106). Initially, a certain number of demes673

(100, 1000, 2000, or 5000) are each seeded by a single infectious individual infected by a randomly chosen674

lineage (200 different lineages). We simulated deterministic SEIR dynamics within demes with R0 = 10,675

γE = (2.5 days)−1, γI = (6.5 days)−1. We simulated Poisson transmission dynamics between demes. In676
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order to calibrate the overall population dynamics to be roughly in equilibrium (the number of infectious677

individuals is not deterministically growing or shrinking), we draw the number of between-deme infections678

caused by a given deme from a Poisson distribution with mean 1. The time of the between-deme infection679

event is randomly chosen, weighted by the number of infected individuals within a deme at a given time. The680

number of infectious individuals in each lineage is recorded every 1 week, and the frequency of the lineage681

is calculated by dividing by the total number of infectious individuals from all lineages in that week. The682

lineage frequency data from a period of 9 weeks starting in week 42 is used for the inference of effective683

population size. The effective population size inference is performed as above except in the absence of684

measurement noise, so there is no emission step in the HMM.685

Data and code availability686

Data and code to reproduce the analyses in this manuscript are available at https://github.com/qinqin-687

yu/sars-cov-2 genetic drift.688
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Supplementary Information901

Summary of existing methods for inferring the strength of genetic drift902

There are currently four main types of methods for estimating the strength of genetic drift in pathogen903

transmission, which we summarize here for giving context to this study.904

1. Contact tracing can directly measure superspreading by following the close contacts of infected905

individuals to measure the distribution of the number of secondary cases (the offspring number distri-906

bution) [2]. However, some secondary cases may be missed which can lead to measurement bias [20].907

Additionally, it is challenging to trace multiple generations of transmission, so we miss important908

information on host contact network structure.909

2. Another type of method fits disease prevalence over time to branching process models [42]. These910

models assume a particular distribution for the offspring number distribution (often a negative binomial911

distribution) and estimate the combination of parameters of the offspring number distribution along912

with growth rate that best fit the observed disease prevalence. External information about the growth913

rate can be used to constrain the parameters of the offspring number distribution.914

3. Phylogenetics methods arrange genomics sequences into a tree based on genomic distance and either915

measure the distribution of lineage sizes (number of sequences in different parts of the tree) [19] or fit916

the rate at which branches in the tree coalescence to determine the effective population size [27, 67,917

1, 68]. The effective population size is the population size that would reproduce the observed popu-918

lation dynamics under the idealized conditions of Wright-Fisher dynamics (discrete non- overlapping919

generations, a constant population size, and offspring determined by sampling with replacement from920

the previous generation). A lower effective population size indicates a higher level of genetic drift.921

4. Time series frequency methods make use of a signature that genetic drift leaves in time series data,922

which is that it causes fluctuations in the lineage abundances. Higher amounts of genetic drift (lower923

effective population size) lead to larger fluctuations, and the magnitude of the fluctuations can be fit924

to determine the effective population size [69, 24] (Figure 1a). Time series methods have also been925

used extensively in population genetics [22, 70, 53, 23, 26, 25] and to estimate within-host effective926

population size [71] and between-host transmission bottleneck sizes [72].927

Comparison to SEIR null model928

In the main text, we compared the inferred Ñe(t) to an SIR model. However, there are likely more complex929

epidemiological dynamics describing SARS-CoV-2. Here we check the results for an SEIR model which930

includes a susceptible, exposed, infectious, and recovered class. The SEIR model is a good representation of931

the epidemiology of SARS-CoV-2 when PCR test positivity is closely associated with an infected host being932

infectious; the literature suggests that this is a good assumption for SARS-CoV-2 [16], but we also test this933

assumption below. The exposed class thus represents individuals before they are infectious and test positive.934

Ñe(t) for an SEIR model in equilibrium (number of infectious individuals is constant over time) is given by935

(see Methods for derivation):936

Ñe
SEIR,eq

(t) ≡ {Ne(t)τ(t)}SEIR,eq =
(E(t) + I(t))2

2RtγI(t)
. (70)

where E(t) is the number of exposed individuals, I(t) is the number of infectious individuals, Rt is the937

effective reproduction number, and γI is the rate at which infectious individuals stop being infectious.938

While this equation is derived under equilibrium conditions, we show using simulations that this equation939

accurately estimates Ñe(t) in non-equilibrium conditions after the peak of the pandemic (Figure S22); before940

the pandemic peak, this equation overestimates Ñe(t) but by less than one order of magnitude. Additionally,941

we show that calculating the Ñe(t) using the equation for an SIR model (Equation 1) when the dynamics are942

actually described by an SEIR model provides a lower bound on the actual Ñe(t). Thus, if the true dynamics943

of SARS-CoV-2 in England are actually SEIR dynamics, then the inference results shown in Figure 3c using944
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the SIR model should be an underestimate of the level of genetic drift; thus our main result that the literature945

values of superspreading do not sufficiently explain our results should still hold.946

In reality, it may also be the case that some people test positive in a PCR test before they become947

infectious. To test the impact of this possibility on our results, in our simulations we recorded both exposed948

and infectious individuals as testing positive. We then calculated the SEIR model Ñe(t) numerically as949

described in “Calculating the effective population size for an SIR or SEIR model” assuming that I(t) includes950

both infectious and exposed individuals (Figure S23). We find that the numerical solutions give slightly higher951

Ñe(t) as compared with the true analytical solutions; however, the numerical solutions to the SEIR and SIR952

models bound the inferred Ñe(t). Thus we also expect that our main result that the literature values of953

superspreading do not sufficiently explain our results should still hold in this scenario.954

To calculate the SEIR model Ñe(t) for the actual data, for the number of infectious individuals, we
used the number of positive individuals estimated from the UK Office for National Statistics’ COVID-19
Infection Survey [31], which is a household surveillance study that reports positive PCR tests, regardless
of symptom status. We used the measured effective reproduction number in England reported by the UK

Health Security Agency [38]. We found that Ñe
SEIR

(t) is very similar to the number of positives because the

effective reproduction number in England was very close to 1 across time. To calculate Ñe
SEIR

(t) for each
variant or group of lineages, we rescaled the population-level I(t) and Rt based on the fraction of each variant
in the population and the relative differences in reproduction numbers between variants (see Methods). We
then calculated the scaled true population size, Ñ(t) ≡ N(t)τ(t), for the SEIR model by multiplying by the
variance in offspring number, σ2, for the SEIR model [41]

ÑSEIR(t) = Ñe
SEIR

(t){σ2}SEIR (71)

{σ2}SEIR = 2. (72)

Overall, the inferred Ñe(t) is lower than ÑSEIR(t) by a time-dependent factor that varies between 70 and955

2000 (Figure S14), suggesting high levels of genetic drift in England across time, which is consistent with956

what we find with an SIR model (Figures 2 and S13). Also similarly to in the case with an SIR model, the957

ratio of ÑSEIR(t) to the inferred Ñe(t) for Alpha decreased over time, suggesting that the stochasticity in958

the transmission of Alpha decreased over time.959

Application to COG-UK data by regions in England960

The inference of effective population size can also reveal information about the well-mixed or spatially-961

structured nature of transmission dynamics within England. This can be done by inferring effective pop-962

ulation size at smaller geographical scales within England. If the transmission dynamics were completely963

well-mixed, then we would expect Ñe(t) to be the same across regions and compared to England. On the964

other hand, if the transmission dynamics were completely spatially segregated (i.e. transmission only occurs965

within the defined geographical areas, but not between them) and the dynamics were the same in each region,966

we would expect that the ratio Ñe
SIR

(t)/Ñe
inf

(t) to be the same across regions.967

The geographical areas that we used were the 9 regions of England: East Midlands, East of England,968

London, North East, North West, South East, South West, West Midlands, and Yorkshire and The Humber.969

We looked at sequences from each region, repeating the analysis described above, and inferred the scaled970

effective population size (Figure S1). We observe a lower Ñe(t) for in the region than in England for Delta971

in all regions, for Alpha in all regions except North East (where there was not enough data), and for B.1.177972

in all regions except North East. For lineages pre-B.1.177, the inferred Ñe(t) is not significantly differnt in973

the region than in England. These results suggest that the dynamics are not well-mixed during the B.1.177,974

Alpha, and Delta waves.975

The calculated SIR model Ñe
SIR

(t) (Figure S2) and the number of positive individuals in each region976

(Figure S3) were 1-2 orders of magnitude higher than the inferred Ñe(t), suggesting high levels of genetic977

drift. The ratios of the the SIR model Ñe(t) and the number of positives to the inferred Ñe(t) in the regions978

were similar to one another and to that seen in England as a whole, consistent with a scenario where the979

dynamics are spatially-structured and the extent of stochasticity in transmission is similar across regions.980

Similarly to in England as a whole, the inferred measurement noise in each region was mostly indistin-981

guishable from uniform sampling except for in a few timepoints (Figure S4).982
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Figure S1: Inferred effective population size in regions of England. (Top panels) Inferred Ñe(t) of pre-B.1.177
lineages, B.1.177, Alpha, and Delta for each region of England. The inferred Ñe(t) for England as a whole
is shown for reference. Shaded regions show 95% confidence intervals (see Methods). (Bottom panels) The
ratio between the inferred Ñe(t) of England and that of the region for each variant. A horizontal dashed
line indicates a ratio of 1 (i.e. Ñe(t) is the same in that region of England and England as a whole). Shared
regions show the minimum and maximum possible values of the ratio from the combined error intervals of
the numerator and denominator (thus, not corresponding to a specific confidence interval range).
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Figure S2: Inferred scaled effective population size by region in England, compared to that of an SIR model
as calculated using the observed number of positives at the community level in that region reported by the
COVID-19 Infection Survey [31] and the observed effective reproduction number in that region reported by
the UK Health Security Agency [38].
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Figure S3: Inferred scaled effective population size by region in England, compared to number of positives
at the community level in that region reported by the COVID-19 Infection Survey [31].
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Figure S5: The fraction of simulations (20 total) where the inferred 95% confidence interval for Ñe(t) or c
included the true value (left) by timepoint and (right) for all timepoints. (Right) Boxes indicate the quartiles
and the line inside the box (and number above) indicates the median. Whiskers indicate the extreme values
excluding outliers. Simulation parameters are specified in the Methods and Figure 1, which shows a single
simulation instance. For the inference, we created superlineages randomly 20 times.
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Figure S6: Wright-Fisher simulations where Ñe(t) is constant over time, and the inferred Ñe(t) and ct. (a)
Number of sequences sampled. (b) Simulated lineage frequency trajectories. (c) Inferred effective population
size (Ñe(t)) on simulated data compared to true values. (d) Inferred measurement noise (ct) on simulated
data compared to true values. In (c) the shaded region shows the 95% confidence interval calculated using
the posterior, and in (d) the shaded region shows the 95% confidence interval calculated using bootstrapping
(see Methods).
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Figure S7: Wright-Fisher simulations where Ñe(t) changes over time according to a rectangular function, and
the inferred Ñe(t) and ct. (a) Number of sequences sampled. (b) Simulated lineage frequency trajectories.
(c) Inferred effective population size (Ñe(t)) on simulated data compared to true values when ct is jointly
inferred and when ct is fixed at 1 (uniform sampling). (d) Inferred measurement noise (ct) on simulated data
compared to true values. In (c) the shaded region shows the 95% confidence interval calculated using the
posterior, and in (d) the shaded region shows the 95% confidence interval calculated using bootstrapping
(see Methods).
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Figure S8: Total number of surveillance sequences of each variant in the metadata from COG-UK downloaded
on January 16, 2022 and the number of sequences used in the analysis for each variant or group of lineages
(determined by the number of sequences included in the tree, and the number of sequences which could be
grouped into sublineages based on the procedure described in the Methods).
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Figure S9: Varying the date of the tree downloaded from COG-UK and the depth at which the tree is cut for
creating lineages (dcut, see Methods) does not substantially change the inferred scaled effective population
size. The the tree date and depth used in the main text are {2021-02-22, B.1.177, dcut = 2.323 · 10−2},
{2021-06-20, Alpha, dcut = 2.054 · 10−3}, {2022-01-25, Delta, d

(1)
cut = 1.687 · 10−3, d

(2)
cut = 1.954 · 10−3}. The

color of the lines for the parameters that were used in the main text are the same as those shown in Figure 2.
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Figure S10: Varying the threshold counts for forming superlineages (see Methods) does not substantially
change the inferred scaled effective population size. The superlineage threshold counts used in the main text
is 20.
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Figure S11: Varying the number of weeks in the moving window does not substantially change the inferred
scaled effective population size. The size of the moving window used in the main text is 9 weeks.
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Figure S12: Varying the rate of transitioning from infected to recovered within literature ranges (γI =3 to
14 days) used for calculation of the SIR model Ñe(t) (Methods) does not substantially decrease the observed

ratio Ñe
SIR

(t)/Ñe
inf

(t).
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Figure S13: Inferred scaled effective population size compared to the SIR model scaled population size
calculated using the observed number of positive individuals in England (see Methods).
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Figure S14: Inferred scaled effective population size compared to the SEIR model scaled population size
calculated using the observed number of positive individuals in England (see Methods).
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Figure S15: Inferred scaled effective population size of all lineages compared to that when excluding non-
neutral lineages detected by conservative method (assumes no genetic drift).
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Figure S16: Same as Figure 3c, but plotting the overdispersion parameter, k = Rt
σ2

Rt
−1

, where Rt is the

effective reproduction number and σ2 is the variance in offspring number. The circles show the inferred
overdispersion parameter if we assume there is only superspreading and no deme structure. For the inferred
overdispersion parameter, the estimated effective reproduction number in England by variant (see Methods)
is used for Rt, and the ratio between the SIR model population size and the inferred effective population
size is used for σ2. The shaded area for the inferred overdispersion parameter k gives an estimate of the
error and is calculated by combining minimum or maximum values of the individual parameters; note that
this does not correspond to a particular confidence interval.
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Figure S17: Simulations of deme structure (described in main text and Methods). (a) The mean number of
infected individuals per week from Weeks 42 to 50. (b) The inferred Ñe(t) using lineage trajectories from
Weeks 42 to 50.

Figure S18: Sample epiweeks versus tree depths. In a phylogenetic tree, the number of sequences (leaf nodes)
of a focal variant that fall within specific epiweek and tree depth ranges is counted and summarized as a
two-dimensional histogram. The tree depth is the substitution rate measured in units of substitutions per
site, with respect to the most recent common ancestor. From left to right, the phylogenetic tree (specified
by date created by COG-UK, using the sequences available at the time) and focal variant are {2021-02-22,
B-1-177}, {2021-06-01, Alpha}, {2021-06-20, Alpha}, and {2022-01-25, Delta}. Weeks are counted from

2019-12-29. The dashed horizontal lines indicate the values of dcut (d
(1)
cut and d

(2)
cut for the Delta variant) used

for the results presented in the main text.

44

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 22, 2022. ; https://doi.org/10.1101/2022.11.21.517390doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.21.517390
http://creativecommons.org/licenses/by-nc/4.0/


0

1

2

3
S

eq
ue

nc
es

, M
t

1e4

0.00

0.25

0.50

0.75

1.00

O
bs

er
ve

d 
 fr

eq
ue

nc
y,

 fob
s

t

10
3

10
4

S
ca

le
d 

ef
fe

ct
iv

e 
 p

op
ul

at
io

n 
si

ze
, N

e(
t)

Inferred HMM
Inferred MSD
True

0 20 40 60 80
Week

0

5

10

M
ea

su
re

m
en

t n
oi

se
 

 o
ve

rd
is

pe
rs

io
n,

 c
t

Figure S19: Comparing the inferred Ñe(t) and ct in Wright-Fisher simulations using the method of moments
and maximum likelihood estimation approaches (see Methods). (a) Number of sequences sampled. (b)
Simulated lineage frequency trajectories. (c) Inferred effective population size (Ñe(t)) on simulated data
using the method of moments (MSD, for mean squared displacement) and maximum likelhood (HMM, for
Hidden Markov Model) estimation approaches compared to true values. The shaded region shows the 95%
confidence interval of the inferred values. The confidence interval using the method of moments approach was
calculated by taking the middle 95% of values when bootstrapping over the superlineages. The confidence
interval using the maximum likelihood estimation approach was determined using the posterior (see Methods)
and takes into account joint errors in ct and Ñe(t). (d) Inferred measurement noise (ct) on simulated data
using the method of moments and maximum likelihood estimation approaches compared to true values. The
shaded region shows the 95% confidence interval calculated using bootstrapping (see Methods).
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Figure S20: Randomly subsampling half of the Delta sequences used for the analysis does not substantially
change the inferred scaled effective population size.
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Figure S21: Varying the values of the basic reproduction number within literature ranges (
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1.1−2.7 [17],
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= 1.76−2.17 [65]) used for calculation of the SIR model Ñe(t) by variant (Methods)

does not substantially affect the calculated ÑSIR(t).
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Figure S22: Simulations of stochastic SEIR dynamics without measurement noise, and comparison of the
inferred Ñe(t) to Equations 1 and 51 when the reported positive individuals include only the infectious
individuals. (Top) Muller plot of simulated infectious individuals’ lineage trajectories (simulations described
in Methods). Infectious individuals are randomly assigned a lineage in week 11, and individuals that they
transmit to are infected with the same lineage. The blue lineage before week 11 indicates the infectious
individuals that existed before lineages were assigned. (Bottom) Comparison of the inferred Ñe(t) using the
lineage trajectories shown in the top panel to the number of infectious individuals I(t), Equation 51 (SEIR
model Ñe(t) at equilibrium), and Equation 1 (SIR model Ñe(t)) calculated analytically or numerically as
described in the Methods. The numerical solutions give the same results as the analytical solutions.
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Figure S23: Simulations of stochastic SEIR dynamics without measurement noise, and comparison of the
inferred Ñe(t) to Equations 1 and 51 when the reported positive individuals include both infectious and
exposed individuals. (Top) Muller plot of simulated infectious and exposed individuals’ lineage trajectories
(simulations described in Methods). Infectious and exposed individuals are randomly assigned a lineage
in week 11, and individuals that they transmit to are infected with the same lineage. The blue lineage
before week 11 indicates the infectious and exposed individuals that existed before lineages were assigned.
(Bottom) Comparison of the inferred Ñe(t) using the lineage trajectories shown in the top panel to the
number of infectious individuals I(t), the sum of the number of infectious and exposed individuals I(t)+E(t),
Equation 51 (SEIR model Ñe(t)), and Equation 1 (SIR model Ñe(t)) calculated analytically or numerically as
described in the Methods. The numerical solutions give slightly higher Ñe(t) as compared with the analytical
solutions; however, the numerical solutions to the SEIR and SIR models bound the inferred Ñe(t).
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