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Abstract

Most microbes have the capacity to acquire genetic material from their environment.
Recombination of foreign DNA yields genomes that are, at least in part, incongruent with the
vertical history of their species. Dominant approaches for detecting such horizontal gene
transfer (HGT) and recombination are phylogenetic, requiring a painstaking series of analyses
including sequence-based clustering, alignment, and phylogenetic tree reconstruction. Given
the breakneck pace of genome sequencing, these traditional pan-genomic methods do not
scale. Here we propose an alignment-free and tree-free technique based on the sequential
information bottleneck (SIB), an optimization procedure designed to extract some portion of
relevant information from one random variable conditioned on another. In our case, this joint
probability distribution tabulates occurrence counts of k-mers with respect to their genomes of
origin (the relevance information) with the expectation that HGT and recombination will create
a strong signal that distinguishes certain sets of co-occuring k-mers. The technique is
conceptualized as a rate-distortion problem. We measure distortion in the relevance
information as k-mers are compressed into clusters based on their co-occurrence in the source
genomes. This approach is similar to topic mining in the Natural Language Processing (NLP)
literature. The result is model-free, unsupervised compression of k-mers into genomic topics
that trace tracts of shared genome sequence whether vertically or horizontally acquired. We
examine the performance of SIB on simulated data and on the known large-scale
recombination event that formed the Staphylococcus aureus ST239 clade. We use this
technique to detect recombined regions and recover the vertically inherited core genome with

a fraction of the computing power required of current phylogenetic methods.
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Introduction

Whole microbial genomes are being sequenced at an unprecedented rate.' Focused
sequencing of key organisms and broad sequencing of microbial environments have expanded
our knowledge of evolution and the microbiosphere®**. However, the production of data is
outstripping our ability to analyze it°. Most work in molecular evolution is grounded in
sequence alignment and phylogenetic tree reconstruction. However, whole genome alignment
breaks down with increasing diversity, and tree-based techniques suffer from an exponential
increase in compute time with broader taxon sampling. The evolution of microbes is particularly
challenging because horizontally transferred elements contribute historical signal that is
unrelated to vertical descent. Most dominant techniques for capturing horizontal gene transfer
(HGT) and recombination require either alignment of reads across a reference genome (eg.,
single nucleotide polymorphism (SNP) based analysis or whole genome alignment57. Where
global alignment is impossible, phylogenomic tools require all-against-all analyses designed to

fix genes into aligned orthologous groups®**

. All of these approaches require careful curation,
tree-building, HGT/Recombination detection analysis, and deliberate sampling to limit data to
reasonable scales. For larger, unbiased datasets that include as much natural variation as
possible, these approaches are not sustainable. To handle the onslaught of genomes, we need
tools that can tolerate information loss without sacrificing knowledge of key evolutionary
events.

Lossy compression, where an individual or algorithm makes decisions about which data

are important (or relevant) from a large body of information?, may offer a solution. To do this

in a principled way, the relevance of a given dataset can be measured as information retained
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about some other correlated variable. For example, in unsupervised natural language
processing (NLP) large corpora of texts are distilled to a few topics that reflect overall themes
by comparing patterns of co-occurring words in the source texts. In topic modeling of this sort,
the texts themselves are the relevance variable. The goal is to cluster the overall word
distribution with respect to the documents from which they arise. If X is the original data
distribution, T its compressed representation, and Y the relevance variable, the challenge is to
pack X into as few clusters, T, as possible without sacrificing too much information, Y. This idea
was first described by Tishby, Pereira and Bialek as the information bottleneck (IB)*. It was
premised on rate distortion, Shannon’s original theory of lossy compression which yoked signal
distortion to the rate at which that signal can be encoded™. Distortion is severe if the signal is
forced through a small communication channel and gets cleaner as the channel widens. The IB’s
primary innovation was the use of a relevance variable to quantify this distortion. Topic
modeling was one of this technique’s first applications.

Topic modeling has become an important part of the NLP literature with a number of
wider applications to unsupervised machine learning. The dominant technique in the field is
Latent Dirchilet Allocation (LDA)“, a probabilistic method, that like the IB, considers each
document as a mixture of topics. Some groups have applied this idea to whole genomes***®"/,
and since the publication of STRUCTURE, LDA has become foundational in the genetics
literature where populations are inferred by the distribution of alleles at measured loci'®.
Despite LDA’s popularity and success, a number of authors have shown that unbalanced

sampling can lead to erroneous or missed population assignments™. LDA also makes a number

of statistical assumptions including the assignment of hyperparameters and a Dirchilet prior®’.
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90 Incontrast, the IB is model free and less likely to suffer from size sample bias. The distortion
91 measure emerges from the analysis of the relevance variable, revealing underlying topics

92  without having to set any distributional parameters other than the number of clusters

93  expected.

94 Because it is model free, the IB is a powerful approach for microbial genomics where
95 very little is known about the diversity of the organisms in nature or their distribution.

96 Genomes are living documents that can be sliced into words of arbitrary size. This metaphor is

97  straightforward and has been explored with respect to other NLP techniques elsewhere*?*%. |

n
98 agenomic context, where words are k-mers (X) and documents (Y) are their genomes of origin
99  we hypothesized that IB derived topics (T) may represent co-occurring groups of k-mers that

100 highlight shared ancestry. These topics might include k-mers arranged in co-linear blocks

101  corresponding to a single element, or k-mers distributed across the genome that were inherited

102  in concert. In either case, compression of these k-mers into topics is guided by how often they

103  co-occur with respect to their genomes of origin. This mechanism will tend to group adjacent k-

104 mersin arecombined region because the recombination event is likely restricted to just a

105 subset of taxa. Additionally, shared tracts of co-occuring k-mers common to all genomes, offer

106  asimple, operational definition of a genomic “core”.”® For microbial genomes where HGT is

242> \ve can therefore use the technique to learn which portions of the genome form

107 rampant
108  the vertically inherited core, and which portions have been recombined, or inherited
109  horizontally. In the NLP topic modeling analogy, the core genome of a species could be

110  considered the set of meaningful words across every book in a specialized library, while

111 recombined regions are like themes or ideas restricted to only certain shelves.
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112 Here we apply the IB to microbial genomes. Remarkably, our approach identifies

113  recombination tracts without making any attempt to model evolution, annotate genes,

114  reconstruct trees, or build alignments. In addition, the IB treats genic and intergenic portions of
115 the genome equally, obviating the need for gene-based pangenomic analysisze. Applying the
116  information bottleneck to a k-mer occurrence matrix identifies genome segments with shared
117  vertical or horizontal evolutionary history in a fraction of the time used by other approaches.
118

119  Theory and Implementation

120

121 Consider a set of genomes each of which is chopped into overlapping k-mers. One way
122  to measure the overall relatedness of two of these genomes is to compare their k-mer

123 conditional distributions. To do this we can define

124

125 p(xly) = Z"S‘—('xyl)y)
y

126

127  where X is the set of all k-mers, Y the set of all genomes, and n(x/y) is the occurrence count of
128  the k-mer, x, in genome y. The exercise would then be to group genomes with similar k-mer
129  distributions across all k-mers. In the natural language processing literature, this idea was

130  formalized as distributional clustering®’.

131 However, finding the right distance or distortion measure between these distributions is
132 non-trivial. It is especially difficult when the important features of the signal are unknown.

133  Imagine compressing music into MP3s without data on which frequencies are most important
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134  for human perception, or determining themes from a body of literature if words were

135  decoupled from their books. Even when important components of the signals are known, most
136  clustering algorithms will resort to domain specific, pairwise distances or quantization to find a
137  compressed set of classes with either high levels of internal connectivity or low levels of

138 internal distortion. However, domain specific distortions reduce the usefulness of these

139  clustering techniques. For example, in bioinformatics, clustering based on sequence alignment
140 is subject to all the vagaries of the alignment procedure and parameters therein.

141 An antidote to these narrow clustering applications is to operate in an information

142  theoretic space where the primary measurement is relevant quantization'. The IB extends

143  Shannon’s rate distortion theory by guiding it with an additional, orienting variable. Tishby et
144  al* enriched a theory about transmission efficiency with the concept of relevance (Y), or the
145  value of the information transmitted. The choice of Y defines relevant features in the signal. If X
146  andY are tabulated as a joint probability distribution, the information that X provides about Y is
147  squeezed through a simpler representation, T. For the technique to work, the two variables in
148  our joint distribution p(x,y) must be non-independent, or more precisely, must have positive

149  mutual information, I(X,Y):

150

_ p(ylx)
151 1(X,Y) = szyp(x)pmx) log™ =5
152

153  Tis now a meaningful compression of the data, maximizing the mutual information between
154  the clusters and documents, I(T;Y), while minimizing the mutual information between the

155  words and the clusters, I(T;X). The IB is a classic optimization problem.
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156 With the distribution in hand and implemented as a k-mer occurrence matrix, we can
157  quantize the set of all k-mers directly by minimizing information lost about their source

158 genomes. If X is compressed into T then we can find the optimal assignments for X by

159  minimizing the following Lagranian with respect to Y:

160

161 Llp(tl)] = 1(X;T) — BI(X;Y)

162

163  This formulation balances the compactness of X, with the erosion of information about Y. Bis a
164  multiplier that slides through the optimization landscape. As beta approaches 0, k-mers are
165 clumped into fewer and fewer clusters, emphasizing compression. As beta approaches infinity,
166  every k-mer is its own cluster, preserving all relevant information. Of course, collapsing all k-
167  mers into one cluster is overly reductive, and assigning each k-mer to its own cluster is

168 meaningless. The IB negotiates these two extremes (Figure 1). In NLP, the result is a set of

169 clusters that coalesce into topics over a body of literature®. In genomics, these same clusters
170  might yield co-occurring and/or spatially co-located k-mers with distinct biological and/or

171  evolutionary meaning.

172 Remarkably, minimizing the Lagranian above has an exact, optimal solution®. The most
173 surprising outcome of this solution is that the relative entropy, or Kullback Liebler divergence®,
174  emerges as the distortion measure for the information bottleneck. The relative entropy is a
175  fundamental quantity in information theory, and in the IB context, it measures the distortion
176  between the points, x (k-mers), as they are quantized into their clusters, t, with respect to the

177  relevance variable, y (genomes):
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178
P(ylx)
179 Dy, = Z O/l 1o
KL yp y gP(y|t)
180

181  Calculation of the optimal solution requires soft clustering, that is, any given k-mer can exist in
182  more than one cluster. But soft clustering can be slow and difficult to devise. Early

183  implementations of the information bottleneck therefore settled on hard clustering

184  approximations. In hard or deterministic clustering, each k-mer is assigned to only one cluster,
185 anassumption that eases computational burden but does not generally arrive at globally

186  optimal solutions.

187 The most obvious hard clustering algorithm is agglomerative, or bottom-up*°. Consider
188  again the set of all genomes, X, and their compressed representation, T. If we start with a

189  scenario where every k-mer in X occupies its own singleton cluster, we can systematically

190 reduce the dimensionality by merging clusters that minimize some distortion score. This greedy
191 merging procedure produces a tree. But agglomerative clustering does not yield stable cluster
192  membership. The tree varies every time the process is reinitialized. Worse, its computation is
193  expensive, requiring cubic time complexity and quadratic memory complexity. In a genomic
194  context where we routinely deal with billions of k-mers, this approach is a nonstarter.

195 Instead, we implemented a sequential clustering procedure where the number of

196 clusters is defined at the outset and remains consistent throughout the calculation. From an
197 initial random distribution of all k-mers across this set of clusters, we draw one k-mer out, and

198 represent it as a singleton. Now using greedy optimization, we merge this singleton into one of
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199 the existing bulk clusters. Slonim’s sequential information bottleneck (SIB)*! employs the

3221

200 Jensen-Shannon divergence in the cost of merging a k-mer, x, into a cluster, t:

201

202 d(x,t) = (p(x) + p(0)) * Dys(p(y1x), p(y[t))

203

204 A k-mer will join a new cluster only if its new address reduces the total distortion. Otherwise it
205  will remain in its existing cluster. With respect to our initial random conditions, this algorithm is
206  guaranteed to converge to a local optimum. We mitigate the risk of getting trapped in local
207  optima by testing several random initializations.

208 Once the clusters stabilize, we quantify the information captured by calculating the

209 normalized mutual information, NMI = I(T;X) / I(X;Y). Trivially, NMI = 1 when each k-mer

210  occupies its own cluster. The curve traced between T =1 (NMI =0) and T = x is called the

211  relevance compression curve®. This is analogous to the optimization of B in the Lagranian

212 above, but for the deterministic case involving hard clustering. As with 3, the shape of this

213 curve describes the compressibility of the data.

214 The most important aspect of the SIB, and the reason we chose it for this work, is that it
215  makes the concept of the information bottleneck accessible to modern genomics. The time

216  complexity is linear in the number of k-mers and the number of clusters. This improvement
217  makes information theoretic NLP a useful tool to discover genomic topics encoded as clusters
218  of co-occurring k-mers.

219

220 Results and Discussion
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221

222  The bottleneck in test: one large, simulated HGT event

223 The simple example in Figure 2 illustrates how the bottleneck works in practice. In

224  SimBac®*, we simulated four 1 megabase genomes with a single 200 kilobase recombination
225  event. The event is common to genomes 0, 2 and 3, but is not found in strain 1. We initialized
226  the simulation with a random distribution of 19-mers across five clusters. To learn the true

227  distribution, we leveraged information in our relevance variable, the source genomes. The inset
228  table shows how this distribution evolves as we iterate through the sequential information

229  bottleneck (SIB). Since the relevance variable is expected to drive the unsupervised

230  compression of these k-mers, we also included the genomes in this table. Counts across each
231 row therefore reflect how many times a k-mer in that cluster is found in a particular genome.
232 The SIB starts by randomly distributing the k-mers, destroying all information available
233 in the original occurrence matrix. At the outset, the normalized mutual information is therefore
234  zero. With each SIB loop, we attempt to reclaim as much of this information as possible given
235  the number of clusters we choose to model. Because the technique is inherently lossy, the SIB
236  will never recover all of the information originally encoded, but aims to extract the most salient
237  themes, or topics.

238 In the example shown here, after the first loop, cluster 3 (the cluster designations are
239  arbitrary) has attracted the most k-mers in roughly even proportion across the genomes. The
240 normalized mutual information has also jumped to 0.69, indicating that just one pass of sorting
241  k-mers into five bins effectively captures 70% of the information available in the original

242 occurrence matrix. The second and third loops refine the other clusters into mutually exclusive
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243  sets and add to cluster 3, which strengthens into a genomic “core” defined here as the cluster
244  of k-mers with the highest average representation across all genomes and the lowest index of
245  dispersion.

246 By the third pass through the k-mers, the SIB reaches a plateau in the normalized

247  mutual information, and the counts of k-mers across clusters and genomes have stabilized. For
248  this particular set of starting conditions, the SIB reclaims nearly 91% of the information in the
249  original matrix. To put this in perspective, we have effectively reduced the outsized,

250 uninterpretable dimensions of our original data — 1.25 million unique k-mers —into the 5

251  clusters we set out to model, while sacrificing only 9% of the original information present in the
252  relevance variable.

253 In a genomic context, we hypothesized that the spatial organization of k-mer clusters
254  would correspond to areas of common ancestry. In Figure 2, we mapped k-mers from various
255  clusters to the genome backbones of strain 1 and strain 2. Cluster 3 occupies the outer tracks of
256  both strains. This cluster emerges as a dense block of shared genome sequence and

257  corresponds to our definition of a bottleneck-defined core. But the block is interrupted by our
258 simulated recombination event. Since this event is restricted to only genomes 0, 2 and 3, the
259 region is absent from the core. Its k-mers are instead captured by cluster 4 while cluster 1

260 serves as a counterpoint, containing the ancestral state prior to the simulated event.

261

262  Several smaller, simulated HGT events

263 Though large hybridization events like the one we simulated here do occur (see our

264  analysis of ST239 S. aureus below), smaller and more abundant events typify most microbial
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265  evolution®. To see how the bottleneck performs in this more challenging case, we simulated
266  ten 1 megabase genomes with a background mutation rate of 0.01 and a recombination rate of
267  0.0001, resulting in 57 discrete events averaging 500 basepairs in size (from 6 to 2884 bases). In
268  Figure 3, the innermost track marks the locations of these events.

269 The ability to detect horizontally transferred sequence is strongly dependent on its

270  evolutionary distance from the genome background’. To visualize this dependence, we

271  modulated the divergence of our 57 recombination events (an arbitrary number derived from
272  the first simulation) and measured the effect on the core cluster, one of 60 modeled for this
273 simulation. The innermost histogram in Figure 3 shows the core pattern with an external

274  (between species) divergence rate of 0.1, an order of magnitude higher than the background.
275  We observe clear “valleys” in the k-mer distribution of the core that are coincident with the
276  positions of our 57 events. But this pattern steadily disappears as we sweep through lower

277  rates of divergence (0.05, 0.03, and 0.01). The outermost track models the same mutation rate
278  asthe background, resulting in dulled or partially filled valleys in the core genome. Plots of core
279  k-mers function almost as a photographic negative, highlighting blank spaces as regions of

280 potential evolutionary interest.

281 The k-mers that would otherwise occupy these gaps, are sorted into other clusters

282  because they are unique to only a subset of the genomes, and carry the recombination signal.
283  As we have shown in our first simulation, k-mers corresponding to the ancestral state should
284  fall into a different cluster. Note that this does not necessarily mean that each side (donor and
285  recipient) of an HGT event has its own cluster. Recall that compression is driven by genome

286  origin. If a single common ancestor sustains multiple transfer events, all k-mers from those
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287  events will merge into a single cluster because they are shared by the same subset of

288  descendants.

289 The accounting becomes increasingly complicated when events overlap. Overlapping
290 events might mix across clusters depending on their arrangement and how frequently they
291  have been overwritten. When detection becomes difficult, we instead rely on an evolutionary
292  event’s imprint on the core cluster. This approach exploits the idea of the core as a

293  photographic negative or a clonal frame. The pattern of HGT events in this negative is evident
294 by eye, but if the number of input genomes and the number of modeled clusters is large, visual
295 inspection is a burden, and subject to error in interpretation. Instead we introduce a method
296  based in change point detection to automatically detect changes in k-mer frequency®. We

297  specifically employ Bayesian change point detection®’ to model probabilities of change in the k-
298  mer frequency stream. As shown in Figure 4 change point probabilities spike at the start and
299  end of HGT events.

300 In addition to change point detection, we note that if counts of k-mers in an HGT region
301 are ssignificantly lower than the rest of the core’s background (Wilcoxon, p < 0.05), these

302 depletions can qualify as a simple signal marking some combination of HGT events. With these
303 criteria, at a divergence rate of 0.1, the bottleneck captures 56 of the 57 simulated events,

304  missing only the smallest.

305

306 The k-mer skim

307 Accounting for every overlapping k-mer in each strain is an unnecessarily close reading

308 of our genomic text. We can save on both memory and computation by selecting fewer k-mers
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309 (skimming) from our source genomes with some set space between each sample. In Figure 5 we
310 show that even when sampling every 25" 19-mer in our ten 1 Mbase simulated genomes, we
311  still detect 55 of our 57 recombination events. Because the bottleneck relies on the signal

312 inherent in k-mer co-occurrence, as we reduce the density of our k-mer sampling, we lose

313  detection of the smallest events first. However, the compute time savings more than

314 compensate for this loss in sensitivity. While analyzing every 19-mer requires nearly 12

315  minutes, skimming every 25" reduces the runtime to 30 seconds. This compares favorably with
316 the efficiency of both ClonalFrameML’ and Gubbins®, the two dominant HGT detection

317 methods in the literature. ClonalFrameML requires 110 seconds and captures only 47 of our 57
318 events. Gubbins finds 54 in 21 seconds. However, both ClonalFrameML and Gubbins require
319 alignment and phylogenetic tree reconstruction, which both add massive prior computational
320 cost and time.

321 Because the IB is alignment-free and tree-free, it is theoretically capable of handling
322  larger datasets than any existing technology in reasonable amounts of time. To test this, we
323  simulated 1000 1 Mb genomes with the same parameters as the smaller dataset shown in

324  Figure 3. The simulation generated 620 unique recombination events. ClonalFrameML detected
325 564 (91%). Including time required to build a guide tree, this calculation consumed 32.5 CPU
326  hours. Gubbins was slightly more accurate and significantly faster: 583 (95%) events over 16.3
327  CPU hours. Using Figure 5 as a guide, we ran the 1000 genome dataset through the SIB using a
328 25 base-pair skim. We detected an HGT imprint at 92% of sites in 1.5 CPU hours.

329

330 How well does the IB hold up under extreme evolutionary pressure?
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331 To evaluate the performance of our technique with respect to recombination size and
332 divergence rate, we simulated sets of ten 1 megabase (Mb) genomes for each variable. We set
333  default parameters to 0.01 for background rate, 0.001 for recombination rate, 0.1 for HGT
334  divergence rate, and 500 base pairs for average recombination tract size. We performed 100
335 replicates at each size and rate, and measured the imprint of the simulated events on the core
336  cluster without the skim feature. Figure 6A shows this sweep for recombination tract length,
337  and Figure 6B, for recombination tract divergence. In both cases, we observe saturating

338  behavior. We see recombination imprints at 90% accuracy when events are larger than 100
339  base pairs with divergence rates of at least 0.02. Notably, our procedure can detect HGT in at
340 least half of events that diverge at the very low rate of 0.005, well below the background. And
341  only the very smallest recombination events (less than 7 basepairs) elude our technique

342  completely.

343 Recombination tract length and divergence have direct and measureable effects on the
344  efficacy of detection. As long as the total length of all recombination events is less than half the
345  size of the genome, the core remains intact, and we can easily isolate HGT events of sufficient
346  size and divergence. But recombination and background mutation rates are problematic

347  because they redefine the core. For example, at high rates of recombination, every base ofa 1
348 Mb genome is likely scrambled. Under such flux, some sites recombine several times. A high
349  background mutation rate also disrupts stretches of common sequence that mark the core. As
350 these rates increase, the core genome itself erodes. To measure this phenomenon, we again
351  simulated 100 sets of ten 1 Mb genomes across a variety of recombination and background

352  mutation rates. All three curves in Figure 7 show a steep decline in the size of the core with
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353  increasing recombination rate. At rates of 0.01 and 0.1, we see no shared core at all. Each

354  genome has essentially rewritten itself into something distinct from all others. Core genome
355  signal grows stronger with lower background mutation, but even with background mutation set
356  to essentially zero, a high recombination rate destroys the core.

357

358 The bottleneck in action: one large, real world hybridization event

359 We used genomes from ST239 Staphylococcus aureus to illustrate that our method can
360 corroborate known, large scale recombination events found in nature. The ST239 strain is a
361  hybrid: a segment from a CC30 (clonal complex 30) donor replaced nearly 20% of the

362 homologous region in a CC8 strain®®. The evolutionary histories of genes across these segments
363 areincongruent. Previous studies compared the histories of thousands of genes to reach this
364  conclusion®. Here, we attempt to localize this same phenomenon using the co-occurrence

365  pattern of k-mers alone. We chose 10 genomes (GCA_000146385.1, GCA_000012045.1,

366 GCA_000011505.1, GCA_000011265.1, GCA_000013425.1, GCA_000204665.1,

367 GCA_000159535.2, GCA_000027045.1, GCA_000017085.1, and SA21300), sampled from both
368 the donor clade (CC30), the recipient clade (CC8), and genomes outside of the evolutionary
369 event. When cut into overlapping 19-mers (no skim), these 10 genomes dissolve into 28.8

370  million k-mers, 4.72 million of which are unique.

371 Figure 8 highlights two of these 10 genomes, and three of the 60 clusters we modeled
372  for this analysis. Both S. aureus COL (CC8) and S. aureus T0131 (ST239) share a large, congruent
373  core. The gap in this core characterizes the dimensions of the recombination event, whose k-

374  mers are split into two other clusters, shown here as the second and third tracks. Like subtopics
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375 in a vast library, the bottleneck learns the complete structural evolution of the clade as tracts,
376  or topics, of co-occurring sequence. The clusters themselves comprise an evolutionary model
377  for the structural event and the core genome. This evolutionary model is derived not from

378 traditional character-based phylogenetic analysis, but from the presence/absence pattern of k-
379  mers squeezed into a predefined number of groups. Genome origin guides the k-mer sort by
380 forming the basis of the distortion measure. We lose information in a controlled and

381 quantitative way, and we short circuit the long and arduous tasks phylogenomic analyses

382  require® with an information theoretic procedure that runs for 2 hours on 1 CPU.

383 By definition, this sort of lossy compression is not perfect. In Figure 8, seemingly

384  unrelated contaminants pollute the recombined region’s clusters. This is equivalent to channel
385  noise. It recalls Shannon’s original formulation of the rate distortion problem®®. When we force
386  all the signal in our k-mer occurrence matrix through a narrow five cluster channel, portions of
387  the original message emerge garbled. In this case, modeling more clusters increases the rate of
388 transmission, and reduces the distortion of the message received.

389 With respect to the information bottleneck, we can quantify this effect using a

390 relevance-compression curve®®. Figure 9 shows curves for the ST239 genomes alongside 10
391 genomes of Mycobacterium tuberculosis and Helicobacter pylori. In all three cases, as the

392 number of clusters modeled increases, we capture more normalized mutual information. The
393 theoretical extremes for this curve are intuitive. At the origin, all the relevant information is
394  destroyed. At the other end, we retain too much relevant information to interpret. The curve
395 traced between these two extremes is a fingerprint of the data. A convex shape suggests

396 natural structure easily modeled with just a few clusters. We see this in M. tuberculosis, a
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397  species thought to be largely clonal with little recombination. On the other hand, data that
398 resists compression flattens this curve. Highly recombinogenic species like H. pylori suffer this
399  sort of steep information loss. Theoretically, the space above the curve for each species is

400 unachievable by any process, forming an upper bound. The relevance-compression curve

401 therefore defines absolute limits on the quantity and quality of information communicated as
402  we sweep through a dilating channel. This approach introduces a new type of comparative
403  genomics based not on alignments and trees, but on compression. We interpret the shape of
404  the relevance compression curve as a proxy for evolutionary mode. A convex curve implies
405 fewer recombination events and more vertical signal, whereas a flattened curve may signal a
406  species with a more open pangenome.

407 In the case of ST239, asking for just two clusters — a very narrow channel — captures
408 more than 40% of the relevant information. Remarkably, these two clusters separate the core
409 from the recombined region. Even the simplest model learns the most prominent evolutionary
410 process. Further along the curve, fifteen clusters capture almost all of the information. Beyond
411  fifteen, the curve elbows, and modeling gains are slight. In this way, the relevance-compression

412  curve defines the optimal number of clusters.>**°

But in the light of evolution this bend may
413  have a deeper meaning. Fifteen clusters are enough to adequately capture the complete set of
414  k-mer aggregation patterns across our chosen genomes. This point of diminishing returns may
415  signify an opportunity for interpretive balance: not so many clusters that we drown dominant

416  evolutionary events, and not so few that we neglect to model subtle k-mer co-occurrence

417  patterns. This particular use of the well-known elbow method in our information theoretic
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418  context puts a crude limit on the dominant evolutionary paths taken by the genomic elements
419  that comprise our species.

420
421  Conclusion (words=149)

422  The information bottleneck, a lossy compression technique borrowed from the information

423  theoretic and Natural Langauge Processing literature, is well suited to detecting evolutionary
424  patterns in sets of co-occuring k-mers. Here we have shown that we can detect simulated and
425 real recombination events while highlighting a core set of k-mers that comprise the vertically
426 inherited portion of any set of genomes. Moreover, the compressibility of any given set of

427  genomes, as embodied in their relevance compression curves, offers a new way to compare the
428  pangenomes of very different clades in the microbial tree of life. In our application, the

429  bottleneck is informed by genome origin, our relevance variable. But the technique is general.
430 The information bottleneck can be used for any biological contingency matrix where the goal is
431  to cluster a variable into interpretable groups by preserving as much information as possible in
432  the variable to which it is linked.

433

434  Software implementation: NECK (https://github.com/narechan/neck)

435

436

437  Figure Legends

438

439  Figure 1. The information bottleneck. In the information bottleneck a distribution, X, is

440 compressed into T while retaining as much information as possible about a correlated relevance

441  variable, Y. The joint distribution, p(x,y), has positive mutual information and the goal of the

442  information bottleneck is to capture as much of that information as possible at interpretive
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443  scale. The technique is a classic optimization problem wherein the mutual information between
444  Tand X is minimized, while the mutual information between T and Y is maximized. At

445  optimality, T is presumed to be a lossy but adequate model of X.

446

447  Figure 2. One simulated HGT event. A simple set of four simulated genomes with a single large
448  transfer event is shown. The transfer occurs in the common ancestor to genomes 0, 2, and 3.
449  The inset chart clearly shows that the k-mers corresponding to this event are captured by

450 cluster 4, while the ancestral state is captured by cluster 1. K-mers from these clusters map to
451  the location of the simulated event in genomes 0, 2 and 3 and genomes 1, respectively. Cluster
452  3isthe core and contains only one gap corresponding to the HGT region.

453

454  Figure 3. Several simulated HGT events. The innermost ring of this circos plot shows the

455  locations of 57 simulated HGT events across 10 1 Mbase genomes. The remaining concentric
456  tracks plot the core set of k-mers as calculated by the information bottleneck. In the outermost
457  frequency plot, the 57 HGT events diverge at the same mutation rate as the background, 0.01.
458  Going in towards the center, we increase the HGT divergence rate of the events to 0.03, 0.05,
459  and 0.1. Gaps in the core correspond with the simulated HGT events whose k-mers are sorted
460 into other clusters.

461

462  Figure 4. Bayesian change point detection. The two innermost rings mirror those in Figure 3.
463 The outermost ring plots the posterior probabilities of change in the k-mer frequencies.

464
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465  Figure 5. The k-mer skim. Here we show the decrease in HGT detection sensitivity as a function
466  of the density of k-mers sampled. The higher the k-mer skim factor (defined as the number of
467  positions skipped before the next k-mer is sampled), the lower the density of k-mers subject to
468 the information bottleneck. The inset shows the plateau behavior near the origin for k-mer
469  skim factors of 1, 5, 10, 25, and 50.

470

471  Figure 6. Varying HGT length and divergence. HGT detection rates are shown with respect to
472  increasing HGT length and divergence.

473

474  Figure 7. Varying recombination and background mutation rates. We measure the fraction of
475  unique k-mers in each simulation captured by the core genome cluster as a function of

476  recombination rate and background mutation rate. The core genome signal is strongest at low
477  rates of recombination and background mutation. At higher recombination rates, there is no
478  evidence for a core genome of any kind regardless of the background mutation rate.

479

480  Figure 8. Modelling ST239’s hybridization event. We selected 10 S. aureus genomes to track the
481  ST239 hybridization event with the information bottleneck. COL was chosen to represent the
482  CC30 donor strain, and T0131 the CC8 acceptor. Of the 60 clusters we calculated, we show the
483  three that capture the hybridization event. The innermost track is a frequency plot of k-mers
484  that define the core. The second and third tracks are flipsides of the HGT event that created
485  ST239.

486


https://doi.org/10.1101/2021.08.27.457981
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.08.27.457981; this version posted August 28, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

487  Figure 9. Relevance compression curves. In an information bottleneck experiment, the

488 relevance compression curve traces the increase in normalized mutual information with the
489  number of clusters modeled. The curves quantify the amount of information lost at a given
490 modeling threshold. We show how this type of relationship can function as a marker for

491  evolutionary strategy by calculating curves for three very different groups of microbes: M.

492  tuberculosis, a species thought to demonstrate little if any HGT; S. aureus, a species considered
493  largely clonal with occasional HGT; and H. pylori, a species known to employ HGT as an engine
494  for diversity.

495
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