

1 **A transmission chain linking *Mycobacterium ulcerans* with *Aedes notoscriptus***
2 **mosquitoes, possums and human Buruli ulcer cases in southeastern Australia**

3 Peter T. Mee^{1,*§}, Andrew H. Buultjens^{2,§}, Jane Oliver^{3,§}, Karen Brown¹, Jodie C. Crowder¹, Jessica L. Porter²,
4 Emma C. Hobbs³, Louise M. Judd², George Taiaroa³, Natsuda Puttharak¹, Deborah A. Williamson^{3,4}, Kim R.
5 Blasdell⁵, Ee Laine Tay⁶, Rebecca Feldman⁶, Mutizwa Odwell Muzari⁷, Chris Sanders², Stuart Larsen², Simon
6 R. Crouch⁸, Paul D. R. Johnson⁹, John R. Wallace¹⁰, David J. Price^{3,11}, Ary A. Hoffmann^{12,^}, Katherine B.
7 Gibney^{3,^}, Timothy P. Stinear^{2,13,^,*} and Stacey E. Lynch^{1&,[^]}

8

9 ¹Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, Victoria, Australia.

10 ² Department of Microbiology and Immunology, Doherty Institute for Infection and Immunity, University of
11 Melbourne, Melbourne, Victoria, Australia.

12 ³ Department of Infectious Diseases, University of Melbourne, Doherty Institute for Infection and Immunity, Victoria,
13 3000, Australia

14 ⁴ Victorian Infectious Diseases Reference Laboratory, Melbourne Health, Doherty Institute for Infection and Immunity,
15 Victoria, Australia

16 ⁵ Australian Centre for Disease Preparedness, CSIRO, Geelong, Victoria, Australia.

17 ⁶ Department of Health, Melbourne, Victoria, Australia.

18 ⁷ Medical Entomology, Tropical Public Health Services Cairns, Cairns and Hinterland Hospital & Health Services, Cairns,
19 Queensland, Australia.

20 ⁸ South East Public Health Unit, Monash Health, Clayton, Victoria, Australia.

21 ⁹ North East Public Health Unit, Austin Health, Heidelberg, Victoria, Australia.

22 ¹⁰ Department of Biology, Millersville University, Millersville, PA, USA.

23 ¹¹ Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of
24 Melbourne, Parkville, Victoria, Australia.

25 ¹² Pest and Environmental Adaptation Research Group, School of BioSciences, Bio21 Institute, University of
26 Melbourne, Parkville, Victoria, Australia.

27 ¹³ WHO Collaborating Centre for *Mycobacterium ulcerans*, Doherty Institute for Infection and Immunity, Melbourne,
28 Victoria, Australia

29

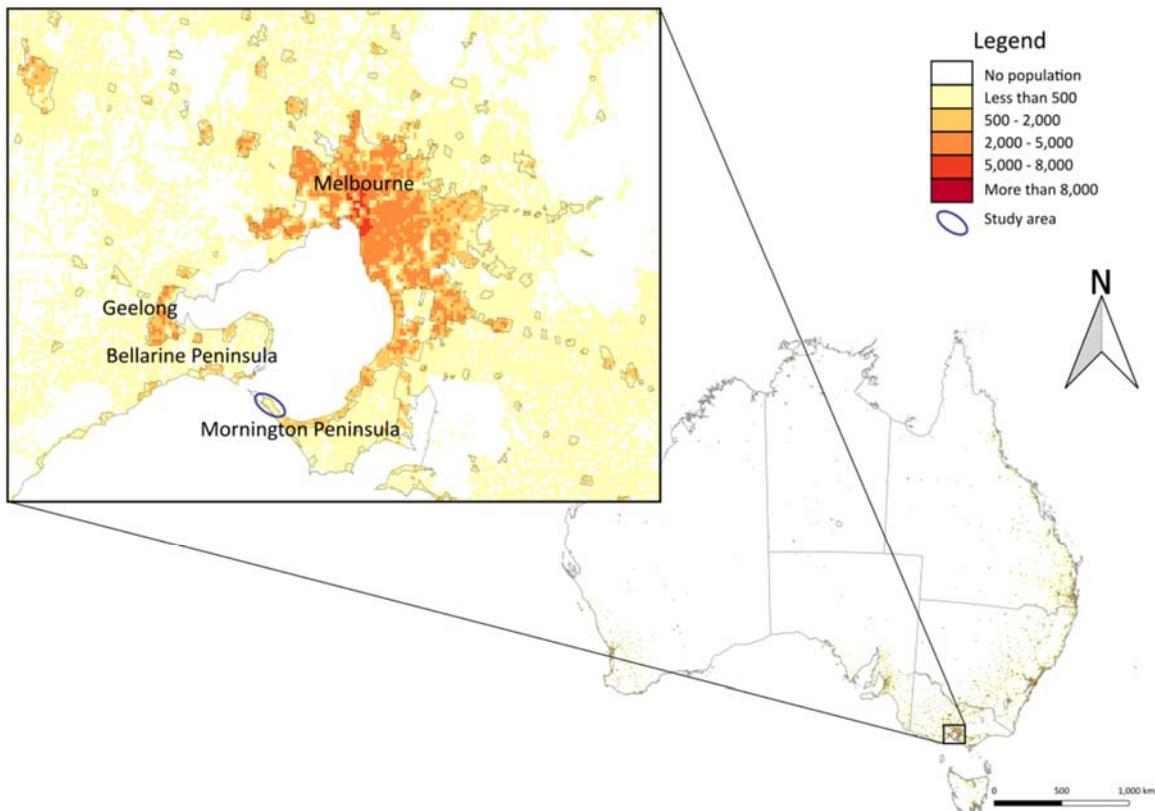
30

31 Corresponding authors: *peter.mee@agriculture.vic.gov.au; tstinear@unimelb.edu.au

32 [§]Contributed equally

33 [^]Joint senior authors

34 & Current affiliations Australian Centre for Disease Preparedness, CSIRO, Geelong, Victoria, Australia


35 Keywords: *Mycobacterium ulcerans*, Buruli ulcer, *Aedes notoscriptus*, disease transmission

36 **Abstract**

37 In temperate southeastern Australia over the past two decades there has been a marked progressive increase
38 in human cases of Buruli ulcer, an infection of subcutaneous tissue caused by *Mycobacterium ulcerans*. Native
39 possums are the major local environmental reservoir of *M. ulcerans* as they not only develop Buruli lesions
40 but they also shed *M. ulcerans* in their excreta. However the way humans acquire *M. ulcerans* from possums
41 has not been determined. Previous case-control studies, insect field surveys and vector competence studies
42 have suggested a role for mosquitoes in *M. ulcerans* transmission between possums and humans. To explore
43 these links we conducted an extensive, 4-month structured mosquito field survey and four *ad hoc* field
44 surveys across an area of 350km² on the Mornington Peninsula, an area endemic for Buruli ulcer to the south
45 of the major metropolitan city of Melbourne. We then compared spatial and temporal patterns of *M.*
46 *ulcerans*-positive mosquito occurrence with *M. ulcerans*-positive possums (established by previous possum
47 excreta surveys) and human Buruli ulcer cases across the region. We used metabarcoding to assess mosquito
48 blood-feeding host preference and to reconstruct *M. ulcerans* genomes from positive mosquitoes to test
49 epidemiological inferences. We collected 66,325 mosquitoes spanning 26 different species from 180
50 repeatedly sampled traps over a 4-month period. *Culex molestus* and *Aedes notoscriptus* were the dominant
51 species (42% and 35% of trapped mosquitoes, respectively). PCR screening 25% of trapped mosquitoes
52 revealed a significant association between *M. ulcerans* and *Ae. notoscriptus* ($p<0.0001$) with a maximum
53 likelihood estimate (MLE) of 5.88 *M. ulcerans* positive mosquitoes per 1,000 tested. Using spatial scanning
54 statistics, we also observed significant overlap between clusters of *M. ulcerans*-positive *Ae. notoscriptus*, *M.*
55 *ulcerans*-positive possum excreta and human Buruli ulcer cases. Metabarcoding analyses of blood-fed *Ae.*
56 *notoscriptus* showed individual mosquitoes had fed both on humans and native possums. Enrichment
57 genome sequencing from PCR-positive mosquitoes confirmed shared *M. ulcerans* genome single-nucleotide
58 polymorphism (SNP) profiles between mosquitoes, possum excreta and clinical human isolates within the
59 same regions. These findings indicate that *Ae. notoscriptus* likely transmit *M. ulcerans* in southeastern
60 Australia and highlight mosquito control as a plausible means to control the Buruli ulcer epidemic in our
61 region.

62 Introduction

63 *Mycobacterium ulcerans* is the causative agent of a neglected tropical skin disease called Buruli ulcer, a
64 necrotising infection of skin and subcutaneous tissue ¹. Buruli ulcer is rarely a fatal condition but can cause
65 severe tissue destruction if not diagnosed and managed effectively ². Buruli ulcer has been described in more
66 than 32 countries worldwide ³ and is an ongoing public health issue in west and central Africa ⁴. Buruli ulcer
67 has also been unexpectedly surging in temperate southeastern Australia (Figure 1) and encroaching on the
68 major metropolitan centres of Melbourne (population 5.1 million) and Geelong (population 274,000), with
69 >250 cases routinely notified each year since 2017 to the Victorian State Government Department of Health
70 ⁵.

71 **Figure 1.** Location of the Mornington Peninsula and the Bellarine Peninsula of Victoria, Australia. Population
72 density is represented on the map from low to high (white to red) based on the human population per square
73 kilometre. The study area is shown within an ellipse (inset).

74

Nature Microbiology

75 How humans contract Buruli ulcer is a central question that has confounded public health control efforts and
76 intrigued scientists since the discovery of *M. ulcerans* from patients in the Bairnsdale region of Australia in
77 the 1930s and across Africa shortly after ^{1,6,7}. Buruli ulcer epidemiology can be unpredictable with a
78 4-5 month median incubation period and outbreaks emerging in specific geographical areas and then
79 disappearing over a number of years. It is also very challenging to isolate the bacterium in pure culture from
80 the environment, presumably due to its very slow growth, although it can be isolated from human skin
81 lesions. These factors combined have made it incredibly challenging to establish how *M. ulcerans* is spread
82 to humans, despite global efforts to investigate this over more than 80 years ⁸.

83 The discovery that Buruli ulcer is a zoonosis and that Australian native possums are a major wildlife
84 source of *M. ulcerans* that is intimately linked with disease transmission has addressed one key component
85 of the transmission enigma ⁹⁻¹⁴. The first indications that mosquitoes might be vectors of *M. ulcerans* from
86 possums to humans in Australia came from a series of entomological field surveys in the southeast of the
87 country in response to an increase in Buruli ulcer cases in the seaside township of Point Lonsdale, located on
88 the Bellarine Peninsula ¹⁵. Among the 12 species identified from a trapping effort that collected 11,500
89 mosquitoes, five different species were IS2404 PCR positive for *M. ulcerans*, including *Ae. camptorhynchus*,
90 *Ae. notoscriptus*, *Coquillettidia linealis*, *Culex australicus*, and *Anopheles annulipes* (maximum likelihood
91 estimate (MLE) was 4.11/1000 mosquitoes) ¹⁵. IS2404 is a *M. ulcerans*-specific insertion sequence and
92 molecular target for the gold-standard diagnostic PCR for Buruli ulcer ¹⁶.

93 A concurrent case control study performed in the same geographic area identified only two factors
94 associated with the odds of being diagnosed with Buruli ulcer: insect repellent use reduced risk (OR 0.37,
95 95% CI 0.19–0.69) and being bitten by mosquitoes on the lower legs increased risk (OR 2.60, 95% CI 1.22–
96 5.53). A variety of outdoor activities were also surveyed but were not independently predictive suggesting
97 that mosquito exposure specifically rather than environmental exposure generally might be the main mode
98 of MU transmission to humans ¹⁷. In Africa, two case control studies conducted in Cameroon both found use
99 of bed nets as a protective factor against Buruli ulcer; (OR 0.4, 95% CI 0.2-0.9, p=0.04) ¹⁸ and (OR 0.1, 95% CI
100 0.03-0.3, p<0.001) ¹⁹.

Nature Microbiology

101

102 However, case control studies and entomological surveys alone are insufficient to indict biological
103 agents as vectors of pathogens. There are formal frameworks used in biomedicine, such as the Barnett
104 criteria³ that build hierarchies of evidence to implicate a candidate disease vector. Here, we build on this
105 aforementioned research to formally address the Barnett criteria, and test the hypothesis that mosquitoes
106 vector *M. ulcerans* to humans²⁰⁻²². A summary of our findings is shown in Table 1, including the new data
107 presented in this study that specifically address criteria 1-3.

108

109 **Table 1: Summary of evidence to indict mosquitoes as vectors of *M. ulcerans***

Barnett Criterion	Evidence	Reference
1. Acquire from source reservoir	<i>M. ulcerans</i> genome sequences from possum excreta matches genomes recovered from mosquitoes in same area	This study
2. Close links with infected hosts	<i>M. ulcerans</i> genome sequences from humans matches genome recovered from mosquitoes in same area. Mosquito bloodmeal analysis confirms human-possum link.	This study
3. Repeat detections from candidate vector	<i>M. ulcerans</i> detected with mosquitoes in seven separate field surveys	^{15,21} , this study
4. Experimental demonstration of transmission	Mosquito- <i>M. ulcerans</i> mechanical transmission demonstrated using murine contaminated skin model	²²

110

111 In the research presented here, based on a very substantial field survey of >65,000 mosquitoes
112 undertaken over four months in 2019 and 2020, and four smaller *ad hoc* surveys conducted between 2016
113 and 2021 along the Mornington Peninsula. The study area encompasses an area of 350 km² and is located
114 90 km south of Melbourne, the capital city of Victoria¹⁰ (Figure 1). The area was originally covered in low-
115 lying coastal vegetation¹⁰, receives an average annual rainfall of 740 mm, and sits at an average elevation of
116 60 metres above sea-level²⁴. The Mornington Peninsula region continues to maintain among the highest
117 incidences of Buruli ulcer in the world²⁵ with a conservative local incidence estimate of 55 human

Nature Microbiology

118 cases/100,000 population in 2022^{5 26}. Here, we employed spatial clustering analyses, bacterial enrichment
119 genome sequencing and mosquito blood meal metabarcoding to continue building a hierarchy of evidence
120 that supports mosquitoes as vectors of *M. ulcerans* from local wildlife reservoirs to humans.

121

122 **Material and methods**

123 **Study Site**

124 Insects were collected from the Mornington Peninsula suburbs of Rye (population 8,416), Blairgowrie
125 (population 2,313), Tootgarook (population 2,869) and Capel Sound (population 4,930)²³ (Figure 1).

126

127 **Arthropod collection and identification**

128 Mosquito trapping campaigns used Biogent Sentinel (BGS) traps (Biogent) that were baited with dry ice
129 pellets to provide a source of CO₂ over an intended 12-hour period. BGS traps were set out at dusk and
130 collected at dawn in shaded locations on the grassed edges of the roadways in the study area. GPS locations
131 for all traps were recorded with data collection managed using *Atlas of Medical Entomology* (Gaia Resources,
132 V3.4.4). Trapped mosquitoes were knocked down with CO₂ by placing the catch-bag in dry ice before being
133 transported back to the laboratory and kept at -20°C until processing. Mosquito species were morphologically
134 identified using a stereo dissecting microscope (Nikon, SMZ800N) and reference to taxonomic keys²⁷⁻²⁹.

135 To assess the potential presence of *M. ulcerans* beyond mosquitoes, other arthropods were collected
136 using Yellow Sticky Traps (YST) and Sticky Ovitrap (SO). Two YST and SO were placed in residential properties
137 where householders had previously noted insect activity to the researchers⁹. The SO traps were placed on
138 the ground and had hay grass infusion (3 Jack Rabbit (clover/lucerne) pellets (Laucke Mills, Barossa Valley,
139 SA, Australia) in 500 mL water) added to them, while the YST (Bugs for Bugs, Toowoomba, QLD, Australia)
140 were placed on the ground with a 14 cm plant tag plastic T-support (Garden City Plastics, Dandenong, VIC,
141 Australia). Within three to four days of being set, residents were asked to pack up the YST and SO by covering
142 the sticky card with a plastic film, and return the sealed traps to the laboratory, where they were stored at -

Nature Microbiology

143 20°C. Non-mosquito arthropods were morphologically identified to family level and, if PCR positive for *M.*
144 *ulcerans*, were DNA barcoded for species confirmation by targeting the cytochrome c oxidase subunit I (COI)
145 gene³⁰.

146

147 **DNA extraction from mosquitoes**

148 Mosquitoes were sorted by species per trap and by sex and then pooled in 2 mL o-ring tubes, with a maximum
149 of 15 individuals in each pool. A subset of *Ae. notoscriptus* mosquitoes were also screened individually.
150 Mosquitoe(s) were homogenised with 10 x 1.0 mm zirconia-silica beads (BioSpec Products), with 597 µL of
151 Buffer RLT and 2.8 µL of carrier RNA. Homogenisation was performed using a TissueLyser II (Qiagen) at 30
152 oscillations/sec for 100 sec, repeated twice. Tubes were then centrifuged at 16,000 g for 3 mins. A 550 µL
153 volume of supernatant was transferred into a 96 well deep well plate, with extraction performed as is the
154 protocol for the BioSprint 96 One-For-All Vet Kit (Qiagen). Every eleventh of twelve wells in a 96-well plate
155 was a blank DNA extraction control (seven in total) and a synthetic IS2404 positive control was spiked into
156 one of these seven wells to act as a positive extraction control. Extraction was performed on a KingFisher™
157 Flex Magnetic Particle Processors (Thermo Scientific).

158

159 **DNA extraction from arthropods**

160 Arthropods other than mosquitoes collected on YST or SO were removed from the sticky cards and placed in
161 1.5 mL microtubes (Eppendorf). Insects were separated by family and trap location, and were pooled with a
162 maximum of 10 individuals from each family per 1.5 mL tube. Samples were extracted non-destructively to
163 allow species confirmation if positive detections occurred. DNA was extracted using the ISOLATE II Genomic
164 DNA Kit (Bioline). Briefly, 25 µL of Proteinase K and 180 µL of Lysis Buffer GL was added to each tube with
165 samples incubated overnight at 56°C. Following incubation, the insects were removed and stored to allow
166 for further morphological identification if required, with the DNA extraction completed on the incubation
167 solution as per manufacturer instructions.

168

169 Synthetic PCR positive control

170 A synthetic PCR positive control DNA molecule was designed to discriminate false positives due to
171 contamination with positive control DNA versus the authentic IS2404 amplicon. The synthetic positive control
172 was designed to have an amplicon size of 120 bp to easily differentiate from a true IS2404 PCR positive (59
173 bp)¹⁶. The synthetic positive was added at the DNA extraction stage on all 96-well plates, as a positive control
174 for this step and for the subsequent qPCR. The additional DNA sequence used to construct the synthetic
175 positive control was randomly selected from a DNA sequence unlikely to be in the laboratory, in this case,
176 Irrawaddy Dolphin (MK032252).

177 The synthetic positive control had the sequence: 5' –
178 TCCTAAAGCACCACGCAGCATCTATCGCGAGCTTAATCACCATGCCGCGTCCAACGCGATCCCCGCTGGCAGGGATC
179 CCTCTTCTCGCACCGGGCCACAATCCACTGGGGTCGCTATGA – 3' and was synthesised as an ssDNA oligo (Sigma-
180 Aldrich). The synthesised IS2404 synthetic positive was resuspended in nuclease-free water and diluted to
181 0.001 pM, with 2 µL being used for extraction and positive controls. To confirm the presence of a true positive
182 as opposed to contamination, 5 µL of the qPCR product was added to 1 µL of DNA Gel Loading Dye 6X (Thermo
183 ScientificTM) and run on a 2 % agarose gel (TopVision Agarose Tablets, Thermo ScientificTM), with 1% SYBR
184 Safe DNA Gel Stain (InvitrogenTM). The size of any positive IS2404 detection was assessed against 2 µL of 100
185 bp DNA Ladder (Promega) and run at 50 V for 1.5 hrs before being visualised with an EZ Gel Documentation
186 System (Bio-Rad). Before the screening of insects commenced, the synthetic positive control for IS2404 was
187 successfully designed and tested. By running the amplified PCR products on an agarose gel with the synthetic
188 positive control and a real positive control, visual differentiation between a synthetic positive occurring at
189 120 bp and a true positive at 59 bp (Figure S1).

190

191 **Screening insects by qPCR for *M. ulcerans***

192 The qPCR screening was performed using three independent assays IS2404, IS2606 and KR¹⁶. All samples
193 were first screened with the IS2404 qPCR; if a positive was detected, additional confirmation was attempted
194 with IS2606 and KR qPCR assays. Reactions were performed using 7.5 µL TaqManTM Fast Universal PCR Master
195 Mix (2X), no AmpEraseTM UNG (Applied BiosystemsTM), 1 µL of the primer-probe mix, 2 µL of DNA and 4.5 µL
196 of nuclease-free water. A final primer-probe concentration for the IS2404 assay was as follows:
197 250:650:450nM for the forward primer, reverse primer and probe and 800:800:220nM for the forward
198 primer, reverse primer and probe for the IS2606 and KR assay. A 2 µL volume of the synthetic positive control
199 was added for the IS2404 reactions, whereas 2 µL of *M. ulcerans* DNA was used for IS2606 and KR. All
200 reactions included six no-template extraction controls and were run in a 96 well plate format. Cycling
201 conditions were as follows: denaturation at 95°C for 2 mins followed by 45 cycles at 95°C for 10 sec and 60°C
202 for 30 sec, with qPCR performed on a QuantStudioTM 5 Real-Time PCR System (Applied BiosystemsTM).
203 Positives were classified as reactions that produced a cycle quantification (Cq) value less than 40. Data were
204 analysed using the QuantStudioTM Design and Analysis Software v1.4.3 with the Delta Rn threshold set at 0.04
205 for IS2404 and IS2606 and Delta Rn threshold of 0.1 for KR. The maximum likelihood estimate (MLE) per
206 1,000 mosquitoes tested (bias corrected MLE for point estimation of infection rate and a skew-corrected
207 score confidence intervals) was calculated from the pooled samples as described³¹. Fisher's Exact test for
208 assessing the significance of differences in IS2404 PCR positivity between mosquito species was calculated in
209 R 4.0.2³².

210 All qPCR screening was performed blind with mixed-species 96-well plates. The synthetic positive control was
211 added at the DNA extraction phase to one well of each plate and to qPCR plates to check that both extraction
212 and qPCR detections were successful. All no-template controls (extraction and qPCR stage) were checked to
213 ensure they remained negative, and that synthetic positive controls were detected for both the DNA
214 extraction and qPCR stage in each run. Positive samples were run on agarose gels to confirm they were true
215 positives and not contamination from the synthetic positive control.

Nature Microbiology

216 An IS2404 qPCR standard curve was prepared using 10-fold serial dilutions of *M. ulcerans* genomic DNA, with
217 quadruplicate testing of each dilution. The DNA was extracted from *M. ulcerans* JKD8049 as described, and
218 quantified using fluorimetry (Qubit, dsDNA HS ThermoFisher Scientific) ²². A limit-of-detection was defined
219 as the lowest dilution that returned a positive signal for all four replicates. Genome equivalents were
220 calculated based on the estimated mass of the *M. ulcerans* genome of 5.7 femtograms ²². IS2404 cycle
221 threshold (Ct) values were converted to genome equivalents (GE) to estimate bacterial load within a sample
222 by reference to a standard curve ($r^2 = 0.9956$, $y = [-3.829\ln(x)+37.17]*Z$, where $y = Ct$ and $x = \text{amount of DNA}$
223 [fg] and $Z = \text{the dilution factor}$) (Figure S2). An IS2404 qPCR standard curve was fitted using non-linear
224 regression in GraphPad Prism (v9.5.1).

225

226 ***Mycobacterium ulcerans* genome sequencing**

227 Whole-genome sequencing was performed directly on DNA extracted from selected PCR positive mosquito
228 samples and possum excreta specimens using a hybridisation capture approach, based on 120 nucleotide
229 RNA baits spanning the 5.8 Mbp chromosome of the the *M. ulcerans* JKD8049 reference genome
230 [Bioproject ID: PRJNA771185] (Datafile S1) (SureSelect Target enrichment system, Agilent, Santa Clara, CA,
231 USA) and the Illumina *Nextera Flex for Enrichment with RNA Probes* protocol ³³. Resulting sequence reads
232 were submitted to NCBI GenBank and are available under Bioproject PRJNA943595 (Table S2).

233

234 ***Mycobacterium ulcerans* SNP calling, SNP imputation and phylogenetic 235 analysis**

236 To compare genomic variations between *M. ulcerans* clinical isolate genome sequences and sequence
237 capture enrichment datasets, we mapped the sequence reads and called nucleotide variations using *Snippy*
238 (v4.4.5) against a finished *M. ulcerans* reference chromosome, reconstructed from a Victorian clinical
239 isolate (JKD8049; GenBank accession: NZ_CP085200.1) (<https://github.com/tseemann/snippy>). While

Nature Microbiology

240 standard parameters, including a minimum coverage of 10x were used for the clinical isolates and two
241 possum sequence capture datasets, the mosquito sequence capture datasets had lower read coverage,
242 necessitating the adjustment of parameters. Thus, the minimum coverage threshold was lowered to 1x to
243 facilitate SNP calling for the mosquito sequence capture datasets. The resulting SNPs were combined with
244 117 SNPs obtained from a reference set of 36 *M. ulcerans* genomes that represented the previously defined
245 population structure of the pathogen in Victoria³⁵. Due to the low read coverage however, the number of
246 core variable nucleotide positions (VNPs) mapped among the five sequence capture datasets was variable
247 (range: 22 - 112 VNPs).

248

249 To enable inclusion of the sequence capture datasets that had missing SNP sites we employed a
250 multivariate imputation approach, utilising the *IterativeImputer* function from *scikit-learn*³⁶.

251 The combined alignment of 117 core genome SNPs from the sequence capture datasets and clinical isolate
252 genomes served as the foundation for inferring a maximum likelihood phylogeny. This phylogeny was
253 established using the GTR model of nucleotide substitution and executed with FastTree (v2.1.10)³⁴. The
254 incorporation of R packages phytools (v1.0-1)³⁷ and mapdata (v2.3.1)³⁸ allowed for the alignment of tree
255 tips against a base map, facilitating the visualisation of geographical origins of the samples. Further details,
256 including the code employed for missing SNP imputation and phylogeographic analysis, can be found in our
257 GitHub repository: https://github.com/abuultjens/Mosquito_possum_human_genomic_analysis.

258

259 ***Aedes notoscriptus* typing and species confirmation sequencing**

260 Mosquito genotyping was performed by sequence comparisons of a partial fragment of the cytochrome c
261 oxidase subunit I (COI) gene³⁰. DNA was extracted using the above protocols. PCR was performed using 5
262 µL of 5x MyFi Reaction Buffer, 1 µL of MyFi DNA polymerase, 5 µL of DNA, and primer concentrations as
263 described³⁹, with reaction made up to 25 µL with nuclease-free water. Reaction conditions were as follows
264 for COI, initial denaturation at 95 °C for 1 min, followed by 35 cycles at 95°C for 20 sec, 46°C for 20 sec, and
265 72°C for 60 sec before a final extension at 72°C for 5 mins. A 5µL volume of the amplified PCR product was

Nature Microbiology

266 added to 1 μ L of DNA Gel Loading Dye 6X (Thermo ScientificTM) and run on a 1 % agarose gel (TopVision
267 Agarose Tablets, Thermo ScientificTM), with 1% SYBR Safe DNA Gel Stain (InvitrogenTM). 2 μ L of 100 bp DNA
268 Ladder (Promega) was added to confirm amplicons size and run at 100 V for 45 mins. PCR products that
269 produced bands of the correct size were purified using the ISOLATE II PCR and Gel Kit (Bioline) as per
270 manufacturer's protocol and submitted for sequencing using an Applied Biosystems 3730xl capillary analyser
271 (Macrogen), with sequencing occurring on both strands. Sequences were analysed in Geneious Prime
272 (v2019.2.1) and trimmed to high-quality bases, aligned using ClustalW v2.1 and trimmed to a consensus
273 region, *Ae. notoscriptus* COI (874 bp) and for species identification COI (816-882 bp). Sequences were
274 analysed using blastn against the NCBI database. COI sequences generated for species identification are
275 available under accession numbers OQ600123-4 and COI sequences for *Ae. notoscriptus* phylogenetics under
276 accession numbers OQ588831-67 (Table S2).

277

278 Mosquito bloodmeal analysis

279 Ninety blood-fed mosquitoes were identified as having an engorged abdomen and stilling having a red
280 pigment (Sella score 2-3) indicating a fresh bloodmeal and were dissected with a sterile scalpel blade. Blood
281 from the dissected abdomen was absorbed onto a 3 x 20 mm piece of a Whatman FTATM card (Merck) and
282 placed in a 2 mL tube. DNA was extracted from the FTATM card using an ISOLATE II Genomic DNA Kit (Bioline)
283 with a pre-lysis in 180 μ L of Lysis Buffer GL and 25 μ L Proteinase K for 2 hours before completing the
284 extraction as per manufacturer's protocol. Extracted DNA was amplified for Cyt b using primers previously
285 described (Townzen et al. 2008), with MyTaqTM HS Red Mix (Bioline), thermocycling conditions used were as
286 follows: 95°C for 1 min, 30 cycles of 95°C for 15 secs, 50°C for 20 sec, 72°C for 20 sec, with a final extension
287 at 72°C for 2 mins. Negative extraction and negative PCR controls were included with each PCR reaction. 5
288 μ L of the amplified products was run on a 1% agarose gel containing 0.1% SYBR Safe DNA gel stain (Invitrogen)
289 and visualised with a G:BOX Syngene blue light visualisation instrument. If a band was visualised at ~480 bp
290 the PCR product was purified using an ISOLATE II PCR and Gel Kit (Bioline).

Nature Microbiology

291 PCR products were quantified using a Qubit (Invitrogen) Fluorometer with an HS dsDNA kit. Sequencing
292 libraries were prepared using 10 ng of purified PCR product with a NEXTFLEX® Rapid XP DNA-Seq Kit
293 (PerkinElmer) barcoded using NEXTFLEX® UDI Barcodes (PerkinElmer). As a result, 70 bloodmeal libraries
294 were sequenced, as well as 6 PCR negative control and 3 extraction negatives on a NovaSeq 6000 (Illumina),
295 with 2 Gb requested per sample.

296 Sequence data were analysed by identifying poor-quality reads using Rcorrector (Song & Florea, 2015) and
297 removed with TrimGalore v0.6.5 (Krueger 2019). De novo assembly was performed on the remaining
298 sequence reads using Trinity v2.8.6 (Grabherr et al., 2011). The resulting contigs were filtered to be between
299 400-480bp and analysed using BLASTN (Altschul et al. 1990) against the nucleotide database publicly
300 available on the National Centre for Biotechnology Information (NCBI) website. The resulting hits were
301 filtered to exclude those sequences which had < 97% sequence identity to the database. Contigs identified
302 as a host bloodmeal were confirmed by mapping raw reads using BWA-MEM v0.7.17 (Li & Durbin, 2009).
303 Sequence reads were submitted to Genbank (Table S2).

304

305 **Mosquito phylogenetic analysis**

306 Mosquito genotyping was performed with COI as this genetic marker has previously been used to identify
307 potential cryptic species within *Ae. notoscriptus* and can provide better resolution than other markers such
308 as ND5, CAD or EPIC (Exon-Primed Intro Crossing) markers ³⁹. Phylogenetic analysis was performed on
309 trimmed consensus regions of *Ae. notoscriptus* COI. The substitution model was selected using jModelTest2
310 v2.1.10, with the topology taking the best of nearest neighbour interchange, subtree pruning and regrafting
311 ⁴⁰. The most appropriate substitution model was selected based on the Akaike information criterion.
312 Maximum-likelihood trees were constructed in PhyML v3.3.2 with 1,000 bootstrap replicates; the gamma
313 distribution parameter was used to estimate rate variation across sites ⁴¹. The Hasegawa-Kishino-Yano (HKY)
314 substitution model was selected for the COI tree.

315

316 **Geographical data acquisition and spatial cluster analysis**

317 The population map was created in qGIS v2.18.20 ⁴², using a 1 km² population grid ⁴³ with 2011 Victorian
318 mesh block data. Since 2004, Buruli ulcer has been a notifiable condition in Victoria, requiring Health
319 Department reporting by doctors and laboratories. De-identified case notification data of Buruli ulcer
320 patients who had laboratory-confirmed *M. ulcerans* infection and who lived on the Mornington Peninsula
321 during the years 2019-2020 were provided by the Victorian Department of Health. The cases were defined
322 as patients with a clinical lesion that was diagnosed using IS2404 qPCR and culture ¹⁶. To conduct high-
323 resolution spatial analyses, the data were aggregated at the mesh block level, the smallest geographical
324 census units which typically contain 30-60 dwellings. The 2011 Victorian mesh block boundaries and the
325 Victorian mesh block census population counts datasets were obtained from the Australian Bureau of
326 Statistics (ABS) website ⁴⁴. The datasets were joined using the unique mesh block IDs using the QGIS v.3.16.7
327 geographic information system software ⁴⁵. The latitude and longitude (projected in GDA94) were derived
328 from the centroids of the mesh block polygon. The dataset was then down-sampled to include only the
329 Mornington Peninsula study area, specifically the Point Nepean and Rosebud-McCrae ABS level 2 Statistical
330 Area.

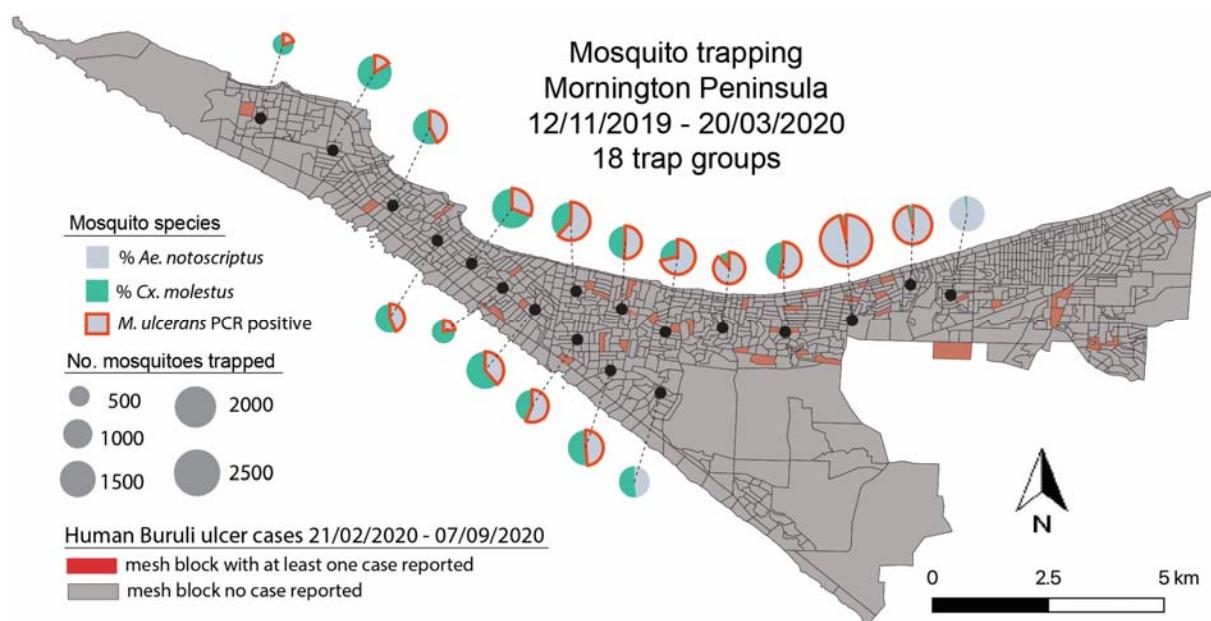
331

332 SaTScan version 10.1.0 ⁴⁶ was utilised to identify spatial clusters among trapped mosquitoes positive for *M.*
333 *ulcerans*, possum excreta positive for *M. ulcerans*, and human Buruli ulcer cases. The software searches for
334 instances where the observed number of spatial incidences exceeds the expected number within a circular
335 window of varying size across a defined study area. A log likelihood ratio statistic is calculated for each
336 window by comparing the number of observed and expected cases inside and outside the circle against the
337 assumption of randomly distributed cases. In addition to the most likely cluster, there are usually secondary
338 clusters with almost as high likelihood that substantially overlap with the primary clusters. These secondary
339 clusters can be indicative of sub-clusters within the primary cluster or potentially distinct clusters that are
340 spatially adjacent to the primary cluster. The Mornington Peninsula surveillance data used in these analyses
341 consisted of trapped mosquitoes (177 traps screened for IS2404 collected: 12/11/19 to 20/03/20), *M.*

Nature Microbiology

342 *ulcerans* detected in possum excreta collected during the summer (December to February) of 2019 using data
343 from a previous study⁴⁷ and notified human Buruli ulcer cases from the study area in the years 2019-2020.
344 The use of possum excreta collected during the summer was appropriate as Buruli ulcer transmission is most
345 likely to occur during that time of year^{48,49}. For each of the three data sources (trapped mosquitoes, possum
346 excreta, and human cases), the null hypothesis assumes that *M. ulcerans* detections or Buruli ulcer cases are
347 uniformly distributed across the study area, where the alternative hypothesis suggests that there may be
348 certain locations with higher rates than expected if the risk was evenly distributed. Primary and secondary
349 clusters were accepted only if the secondary clusters did not overlap with previously reported clusters with
350 a higher likelihood. Given that the trapped mosquito and possum excreta IS2404 PCR results were binary
351 (positive or negative), a Bernoulli model was used to scan for spatial clusters, with the maximum cluster size
352 set to 50% of the population size. The human Buruli ulcer case data aggregated at the mesh block level varied
353 in number, with some mesh blocks having zero cases and others having one or more. We applied the Poisson
354 probability model to the notified Buruli ulcer case counts, using a background population at risk that was
355 derived from the 2011 population census. The maximum cluster size was limited to 14,481 individuals, 10%
356 of the total population at risk. To determine the likelihood of a triple-cluster overlap between the three
357 SaTScan analyses occurring by chance, we conducted a permutation test (<https://github.com/abuultjens/BU-3-way-SatScan>). In each of 10,000 iterations, the geographical coordinates for each variable were randomly
358 shuffled. The number of SaTScan clusters with triple overlap was determined using the 'sf' package⁵⁰ in the
359 R statistical programming language⁵¹.

361


362 **Results**

363 ***Mosquito surveys of the Mornington Peninsula***

364 A primary goal of this research was to test the hypothesis that mosquitoes are associated with *M. ulcerans*
365 transmission, as reflected by IS2404 PCR positivity at a certain frequency in areas of the Mornington
366 Peninsula with human Buruli ulcer cases. A total of 73,580 mosquitoes were collected, consisting of 72,263

Nature Microbiology

367 females (Table 2) and 1,317 males (Table S2). The majority (90%) of these insects were collected in the large
368 survey of 2019-2020 (Datafile S2). Across all five surveys, 26 different mosquito species were collected
369 covering six genera (Table 2). The most dominant species identified during the 2019-2020 survey was *Cx.*
370 *molestus* accounting for 42% of mosquitoes, followed by *Ae. notoscriptus* (35%) and *Cx. australicus* (8%).
371 Twenty-three other species comprised the remaining 15% of mosquitoes. The distribution of the two
372 dominant species across the survey area is shown in Figure 2. This mapping revealed an asymmetric
373 distribution of each species, with *Ae. notoscriptus* dominant to the eastern end and *Cx. molestus* dominant
374 towards the western end of the Peninsula (Figure 2).

375

376 **Figure 2. Dominant mosquito species distribution across the Mornington Peninsula.** Map showing the
377 proportional distribution of the two dominant mosquito species trapped during 2019/2020. The pie charts are
378 an aggregation of the 180 different trap sites. Trap groups containing mosquitoes that were PCR positive for
379 *M. ulcerans* are also indicated. Shown too, are the meshblock statistical areas, with those in red containing
380 at least one human Buruli ulcer case diagnosed in 2019-2020.

381

382 **M. ulcerans PCR positive mosquitoes were predominantly *Aedes***
383 ***notoscriptus***

Nature Microbiology

384 The IS2404 qPCR assay was used to infer the presence of *M. ulcerans* in association with mosquitoes¹⁶. Of
385 the 73,580 mosquitoes trapped across all years, 18,610 (25%) were screened by IS2404 qPCR for the presence
386 of *M. ulcerans* (Table 2). *M. ulcerans* qPCR positives were observed in 53 pools or individuals of *Ae.*
387 *notoscriptus*, with detections occurring in each year across all survey events (Figure 2, Table 2). Only one
388 other mosquito species tested IS2404 positive, which was a two-insect pool of *Ae. camptorhynchus* (Table 3).
389 The positive association between *M. ulcerans* and *Ae. notoscriptus* compared to other mosquitoes, in
390 particular the other abundant mosquito species, *Cx. molestus*, was highly significant (p<0.0001, Fisher's exact
391 test).

392

393 Subsets of *Ae. notoscriptus* were screened individually to better estimate the prevalence of *M. ulcerans*
394 positive mosquitoes in this species. Individually tested mosquitoes included all of the 2017/2018 collection
395 comprising 367/367 individuals with 8 positives (2.2%), 448/4,330 of the 2019/2020 collection with 3
396 positives (0.67%), and all 1,247 individuals of the 2021 collection with 7 positives (0.56%) (Table S3). Thus,
397 based on screening individual insects, 18/2,062 (0.87%) *Ae. notoscriptus* were IS2404 PCR positive. All other
398 *Ae. notoscriptus* and other mosquito species in this study were screened in pools (up to 15 insects per pool)
399 with 24/747 *Ae. notoscriptus* pools (3%), PCR positive (Table S4).

400

401 **Table 2. Female mosquitoes trapped on the Mornington Peninsula and screened by IS2404 PCR.**

Species	No. of mosquitoes/No. mono-species pools screened for <i>M. ulcerans</i> (No. pools positive for <i>M. ulcerans</i> , IS2404*)					Total
	Dec 2016 -		Nov 2017-		Dec 2018-	
	Apr 2017	May 2018	May 2019	Mar 2020	Mar 2021	
<i>Ae. alboannulatus</i>	9/9	4/4	3/3	183/96	21/21	220/133
<i>Ae. australis</i>	0	0	0	1/0	0	1/0
<i>Ae. bancroftianus</i>	0	0	0	3/2	0	3/2
<i>Ae. camptorhynchus</i>	258/258	5/5	0	121/64 (1)	8/8	392/335 (1)
<i>Ae. clelandi</i>	0	0	0	41/32	0	41/32
<i>Ae. flavifrons</i>	1/1	0	0	31/26	13/13	45/40

Nature Microbiology

<i>Ae. imperfectus</i>	0	0	0	266/226	0	226/226
<i>Ae. notoscriptus</i>	174/174 (2)	367/367 (8)	1,793/1,779 (15)	23,360/4,330 (14)	1,247/1,247 (7)	26,941/7,897 (46)
<i>Ae. rubrithorax</i>	9/9	27/27	230/230	1,402/335	45/45	1,713/646
<i>Ae. sagax</i>	0	0	0	2/2	0	2/2
<i>Ae. theobaldi</i>	0	0	0	1/1	0	1/1
<i>Ae. vigilax</i>	0	0	0	2/0	0	2/0
<i>Ae. vittiger</i>	0	0	0	2/0	0	2/0
<i>An. annulipes</i>	1/1	24/24	4/4	751/376	1/1	781/406
<i>An. atratipes</i>	0	0	0	2/0	0	2/0
<i>Cq. linealis</i>	89/89	142/142	2/2	1,254/258	11/11	1,498/502
<i>Cu. inconspicua</i>	0	0	0	2/2	3/3	5/5
<i>Cx. annulirostris</i>	0	3/3	0	42/1	0	45/4
<i>Cx. australicus</i>	3/3	198/198	17/17	4,910/534	33/33	5,161/785
<i>Cx. cylindricus</i>	0	0	2/2	160/81	0	162/83
<i>Cx. globocoxitus</i>	0	24/24	0	3,207/854	9/9	3,240/887
<i>Cx. molestus</i>	61/61	29/29	384/377	28,107/3,308	1,465/1,465	30,046/5,240
<i>Cx. orbostiensis</i>	0	0	0	131/69	0	131/69
<i>Cx. quinquefasciatus</i>	3/3	257/257	37/37	1,098/401	163/163	1,558/861
<i>Tp. atripes</i>	0	0	0	18/0	12/12	30/12
<i>Tp. tasmaniensis</i>	0	0	0	15/13	0	15/13
Total	608/608 (2)	1,080/1,080 (8)	2,512/2,451 (15)	65,112/11,011 (15)	3,031/3,031 (7)	72,263/18,181 (47)

402 * pool size ranged from 1 individual up to 15 individuals

403

404 Of the 46 *Ae. notoscriptus* that tested positive for IS2404, 26 (56%) were confirmed positive for IS2606 and
 405 31 (67%) for KR, with 24 (52%) pools positive by all three qPCR assays (Table S3). Of the 46 IS2404 positive
 406 *Ae. notoscriptus*, eight (17%) pools were not tested using the IS2606 assay and one (2%) pool using the KR
 407 assay due to limited template DNA available. The average Ct value for IS2404 positive *Ae. notoscriptus* was
 408 36.00 (range 29.74-39.65). The average Ct value for IS2606 was 37.73 (range 32.49-45.00), and the average
 409 Ct value for KR was 34.19 (range 28.52-39.26). With reference to an IS2404 qPCR standard curve (Figure S2),
 410 we estimated the *M. ulcerans* burden per mosquito. The mean bacterial genome equivalents (GE) per insect
 411 was 294 GE (range: 11 – 4200) (Table S3). The MLE of estimated infection rate for all *Ae. notoscriptus* was
 412 5.88 based on the IS2404 *M. ulcerans* qPCR-positive mosquitoes per 1,000 tested (95% CI 4.37-7.76) for all
 413 *Ae. notoscriptus* tested over the years and 2.96 for *Ae. camptorhynchus* (95% CI 0.17-14.19) (Table 3).

414

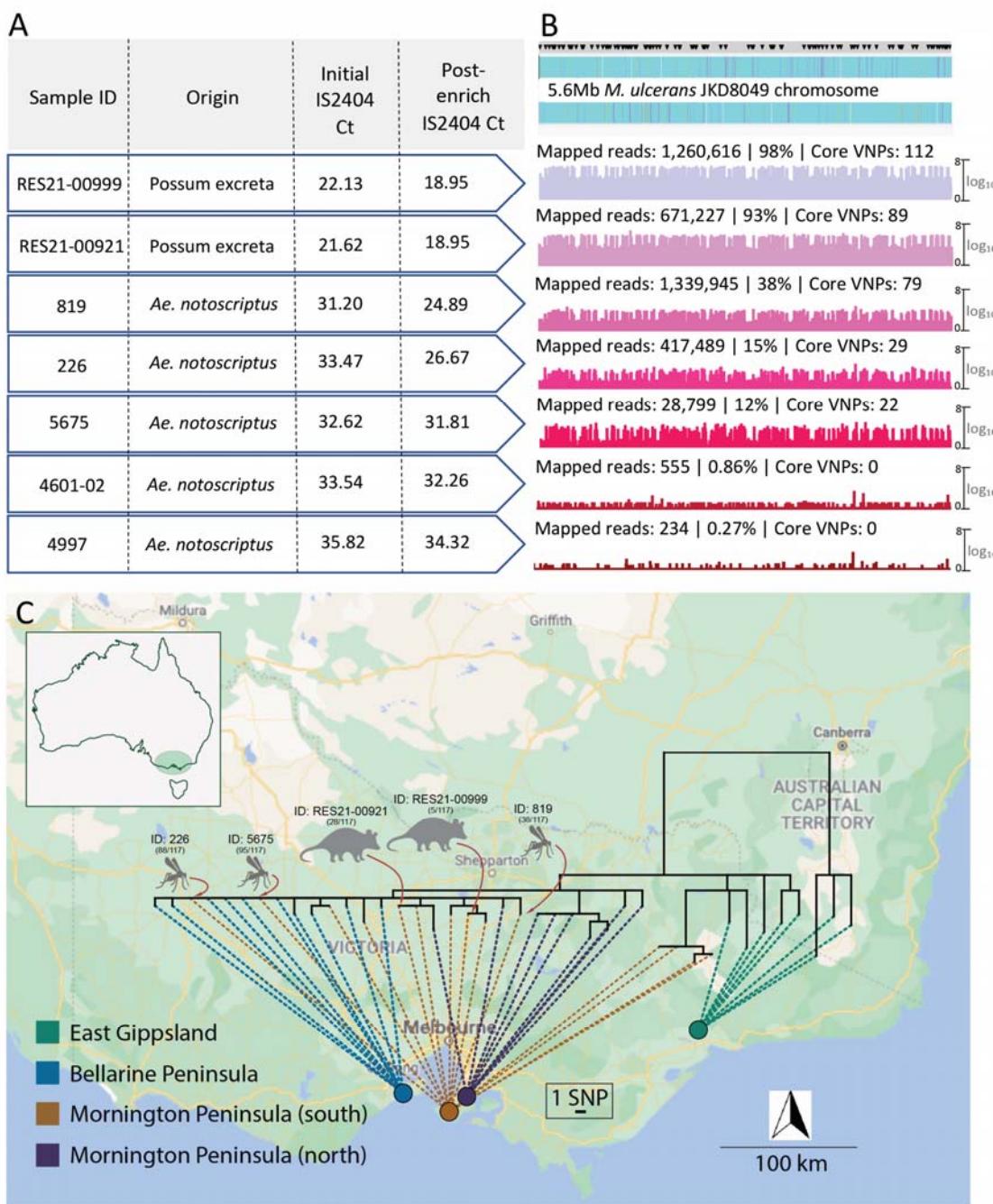
415 **IS2404 PCR positive *Ae. notoscriptus* and possum excreta yield *M.***

416 ***ulcerans* genomic SNP profiles that match human patient isolates**

417 Genomic epidemiological studies have shown there are characteristic SNP signatures associated with *M.*
418 *ulcerans* clinical isolates from specific endemic areas in southeastern Australia³⁵. To test if the *M. ulcerans*
419 genotypes present in mosquitoes from our study area matched that found in possum excreta and human
420 Buruli ulcer cases in the same region, we conducted genome sequence enrichment. This method facilitates
421 whole genome sequence analysis of target pathogen genomes directly from complex microbial samples,
422 when competing background DNA precludes sequencing the target pathogen genome directly. As reported
423 in other sequence enrichment studies, we observed decreasing genome sequence recovery with decreasing
424 pathogen load, as indicated by increasing IS2404 Ct values (Figure 3A)⁵². Nevertheless, DNA sequence reads
425 were obtained from five IS2404 positive mosquitoes and two IS2404 positive possum excreta specimens, the
426 latter specimens collected as part of a large field survey of *M. ulcerans* in Australian native possum excreta
427 in the region⁵³. While DNA sequence reads were obtained across the length of the 5.6Mbp *M. ulcerans*
428 reference chromosome, for all five mosquitoes and the two possum excreta specimens, only the excreta
429 specimens (IS2404 Ct values <23) and three of the five mosquito DNA extracts (ID: 5675, Ct 32.62; ID: 226, Ct
430 33.47; ID: 819, Ct 31.20) yielded sufficient *M. ulcerans* reads for SNP-calling (Figure 3B).

431

432 To assess the relatedness of *M. ulcerans* genomes from mosquito and excreta to human *M. ulcerans* isolates,
433 we inferred a phylogeny using a 5.6Mbp local *M. ulcerans* reference chromosome and sequence reads from
434 36 published clinical *M. ulcerans* genomes from southeastern Australia³⁵, based on a core genome alignment
435 with 117 SNP positions. These 36 genomes were selected because they spanned our previously reported
436 population structure of *M. ulcerans* in this locale (Table S1)³⁵. Alignment of the five mosquito and two excreta
437 sequence capture datasets revealed reads mapping across the length of the *M. ulcerans* chromosome -


Nature Microbiology

438 confirming the presence of the pathogen on (or in) *Ae. notoscriptus* and in the possum faecal material (Figure
439 3B).

440

441 Despite chromosome-wide read mapping for the seven sequence capture datasets, the relatively low and
442 incomplete coverage meant that these datasets didn't have reads spanning all 117 variable loci (range: 22-
443 112 sites) (Figure 3B). Thus, to enable the inclusion of the sequence capture datasets into a phylogenomic
444 analysis of 117 core SNPs, a multivariate statistical approach using an imputation model was employed
445 (Figure S3A). The model was trained on the 117 SNPs from the core genome alignment of all 36 clinical
446 isolates to predict with high confidence (impute) the missing SNP alleles of the sequence capture datasets
447 (see methods). To validate the model, we initially masked 95 random SNP sites as missing data for a random
448 set of five of the 36 clinical isolates, leaving 22 SNPs. Using the multivariate imputation model trained on the
449 full 117 sites of the remaining 31 clinical isolate genomes, we predicted the missing alleles of the five masked
450 clinical isolates (Figure S3A). This approach yielded a mean accuracy of 97% in correctly predicting missing
451 alleles, given the 22 available SNPs. To ensure the model was robust, we randomly selected five *M. ulcerans*
452 clinical isolate genomes and then varied the number of masked chromosome SNP sites to simulate missing
453 data and replicated this process 100x. This analysis showed the high performance of the imputation model,
454 with a mean accuracy of 94% when 100/117 SNP sites were randomly masked and then imputed (Figure S3B).
455 Using the validated imputation model to predict the missing alleles for the five sequence capture datasets
456 and create a sequence alignment (Dataset S3), a maximum likelihood tree was inferred using all 117 variable
457 sites with location of tree tips aligned with geographic origin. This phylogeny showed possum excreta and
458 mosquito *M. ulcerans* genotypes co-clustered with each other and with human *M. ulcerans* isolates from the
459 Mornington Peninsula, with 0-5 SNP differences between any pairwise comparison (Figure 3C). This pattern
460 is consistent with a shared transmission cycle between possums, mosquitoes and humans. Individual
461 phylogenies inferred with and without SNP allele imputation showed that imputation did not create
462 artifactual tree topologies (Figure S4).

463

464 **Figure 3. Comparison of *M. ulcerans* genome from human Buruli ulcer cases compared with sequences**
465 **recovered from possum excreta and mosquitoes on the Mornington Peninsula.** (A) Summary of IS2404 qPCR
466 screening of primary samples and the sequence capture libraries pre- and post-enrichment. Note that possum
467 excreta were enriched as barcoded sequence library pools so share the same pre- and post-enrichment Ct
468 values; (B) Artemis coverage plots depicting sequence capture reads mapped to the *M. ulcerans* JKD8409
469 chromosome from possum excreta samples and three qPCR positive mosquitoes (labels are: numbers of

Nature Microbiology

470 *mapped reads/percentage of total chromosome bases mapped/number of core Variable Nucleotide Positions*
471 *[VNPs] covered). Grey horizontal bar above the above the chromosome map depicts the sites of 117 core SNPs*
472 *(black inverted triangles); (C) Maximum-likelihood phylogeny inferred from an alignment of 117 core-genome*
473 *SNPs using reads mapped to the JKD8049 reference chromosome, and with tips aligned with environmental*
474 *sample origin or patient origin. Dataset includes reads from the five environmental samples listed in panel*
475 *with >21 VNPs (A), and a reference collection of 36 *M. ulcerans* genomes representing the genomic diversity*
476 *of the *M. ulcerans* population in southeastern Australia*³⁵. *The shortest vertical branch length represents a*
477 *single SNP difference, as per the scale bar.*

478

479 **Genetic characterisation of *Ae. notoscriptus* collected on the**
480 **Mornington Peninsula**

481 To assess if *M. ulcerans* presence was associated with a particular clade of *Ae. notoscriptus* on the
482 Mornington Peninsula we compared COI gene sequences for 18 *M. ulcerans* positive (confirmed by all IS2404,
483 IS2606 and KR qPCR assays) *Ae. notoscriptus* and 19 *M. ulcerans* negative *Ae. notoscriptus* (Figure 2). Based
484 on the COI phylogenetic tree, *Ae. notoscriptus* from the Mornington Peninsula spanned the three previously
485 identified clades and there was no association between *M. ulcerans* and a particular mosquito lineage (Figure
486 S5) ³⁹.

487

488 **Table 3. The number of *M. ulcerans* positive pools tested by insertion sequence IS2404 qPCR and**
489 **Maximum likelihood estimate (MLE) of *M. ulcerans* per 1,000 mosquitoes trapped in the Mornington**
490 **Peninsula.**

Species	No. mosquitoes	No. positive/No. pools tested	MLE‡	95% Confidence interval
<i>Ae. alboannulatus</i>	133	0/97	0	0-27.71
<i>Ae. bancroftianus</i>	2	0/2	0	0-657.62
<i>Ae. camptorhynchus</i>	335	1/85	2.96	0.17-14.19
<i>Ae. clelandi</i>	32	0/3	0	0-67.97

Nature Microbiology

<i>Ae. flavifrons</i>	40	0/16	0	0-78.10
<i>Ae. imperfectus</i>	226	0/27	0	0-14.96
<i>Ae. notoscriptus</i>	7897	46/2937	5.88	4.37-7.76
<i>Ae. rubithorax</i>	646	0/220	0	0-5.84
<i>Ae. sagax</i>	2	0/1	0	0-545.52
<i>Ae. theobaldi</i>	1	0/1	0	0-793.45
<i>An. annulipes</i>	406	0/148	0	0-9.16
<i>Cq. linealis</i>	502	0/139	0	0-7.43
<i>Cu. Inconspicua</i>	5	0/4	0	0-408.11
<i>Cx. annulirostris</i>	4	0/3	0	0-450.75
<i>Cx. australicus</i>	785	0/150	0	0-4.76
<i>Cx. cylindricus</i>	83	0/38	0	0-41.60
<i>Cx. globocoxitus</i>	887	0/150	0	0-4.22
<i>Cx. molestus</i>	5240	0/609	0	0-0.73
<i>Cx. orbostiensis</i>	69	0/9	0	0-42.95
<i>Cx. quinquefasciatus</i>	861	0/237	0	0-4.39
<i>Tp. atripes</i>	12	0/9	0	0-230.35
<i>Tp. tasmaniensis</i>	13	0/10	0	0-215.26

491 [‡]MLE bias was corrected when ≥ 1 pool was positive.

492

493 **IS2404 PCR screening of arthropods other than mosquitoes**

494 We also investigated the association of *M. ulcerans* with arthropods other than mosquitoes in the region
495 using yellow sticky traps (YST) and sticky ovitraps (SO). A total of 21,000 specimens were collected and sorted
496 from 278 YST and 33 SO traps. We were able to classify 2,696 as insects that may bite or pierce human skin
497 (Table 4). Flies were the largest group collected on the sticky traps. YSTs collected more insects than the SOs,
498 but this was proportional to the number of traps set (Table 4). Of the 2,696 insects screened by PCR, only
499 two flies tested positive for *M. ulcerans* (Table S3). Both flies had high Ct values for IS2404 (Ct 35.92 and

Nature Microbiology

500 37.54) and each sample was only confirmed for either IS2606 or KR assay (Table S3), but not with all three
501 assays. Both insects were blowflies (*Calliphora hilli* Patton) based on morphology and sequencing of the COI
502 region with sequences having >99.86 nt identity to *C. hilli* (Table S1).

503

504 **Table 4. Number of arthropods collected on Yellow Sticky Traps (YST) and Sticky Ovitrap (SO) on the**
505 **Mornington Peninsula that might bite or pierce human skin.**

Trap	Ants	Biting midges	Flies	Mosquitoes	Spiders	Ticks	Wasps	Total
YST	28	58	1,562	10	76	21	562	2,317
SO	70	1	144	11	141	4	8	379
Total	98	59	1,706	21	217	25	570	2,696

506

507

508 ***Mosquito bloodmeal analysis***

509 Of the mosquitoes collected, a proportion of individuals identified as being engorged (bloodfed) were PCR
510 screened and the resulting amplicon sequenced for Cytochrome B (CytB) to identify host bloodmeal sources.

511 A total of 90 individual engorged mosquitoes were extracted, with 70 DNA preparations producing high
512 quality amplicons that were of sufficient concentration to permit Illumina amplicon sequencing. After quality
513 filtering, 36 individuals were identified as having had a recent bloodmeal: 14 *Cx. molestus*, 13 *Ae.*
514 *notoscriptus*, 2 *Ae. rubrithorax*, 2 *Cx. globocoxitus*, 2 *Cx. quinquefasciatus*, 2 *Cq. linealis* and 1 *Cx. australicus*.

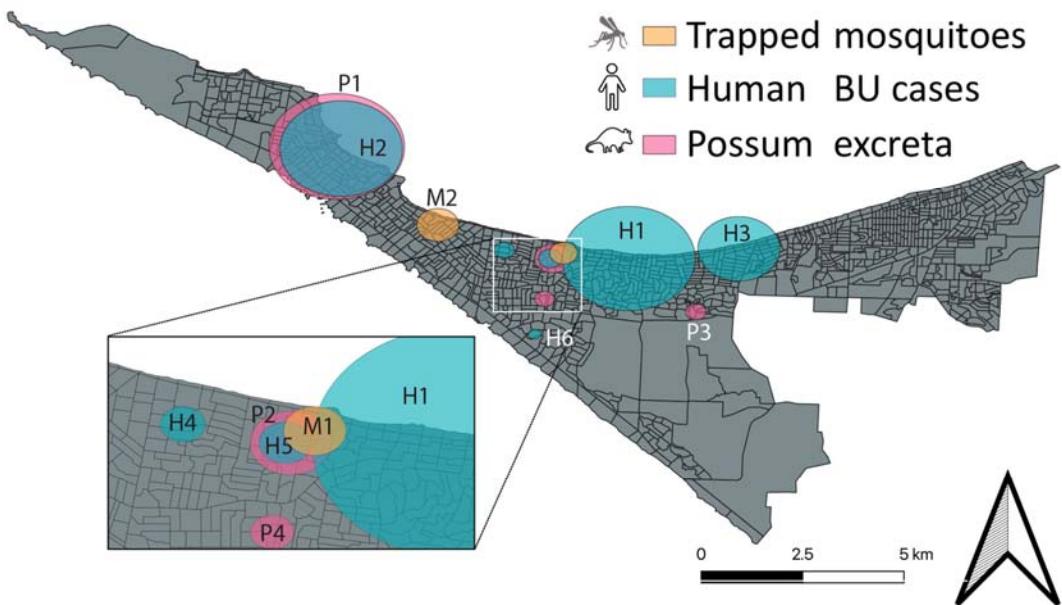
515 Of the bloodmeals detected, common ringtail possum was the most commonly identified with 20 detections
516 across the 36 samples, followed by 17 blackbirds, 13 humans, 11 red wattle birds, and 5 little wattle birds; a
517 further 16 bloodmeals identified 10 minor host species (Figure 4, Figure S6). Dual bloodmeals were
518 commonly identified, with 55% (20/36) of individuals having more than one bloodmeal identified.

519 Additionally, two mosquitoes had evidence of three different bloodmeal sources within an individual insect.
520 Three individuals (2 x *Ae. notoscriptus* and 1 x *Ae. rubrithorax*) were also identified as having dual bloodmeals
521 from ringtail possum and human origins (Figure 4).

Nature Microbiology

522

523 **Figure 4. Mosquito blood meal analysis.** Summary of cytochrome B (Cytb) gene sequences from the 36
524 bloodfed mosquitoes to identify host bloodmeal sources . A blue circle indicates positive for host blood
525 source; the larger the circle, the more individual mosquitoes with an identical bloodmeal profile. Red boxes
526 indicate individual mosquitoes which have dual bloodmeals for both humans and ringtail possum sources.


527

528 **Spatial clustering links *M. ulcerans* positive mosquitoes with positive**
529 **possum excreta and human Buruli ulcer cases**

Nature Microbiology

530 In our previous research, we demonstrated a spatial association between possum excreta containing *M.*
531 *ulcerans*, as detected by structured surveys, and clusters of human Buruli ulcer cases⁵³. To expand on this
532 finding, we investigated whether further spatial clustering associations could be detected by analysing
533 qualitative qPCR (IS2404) data of trapped mosquitoes using SaTScan. Here, three separate analyses were
534 conducted: (i) human Buruli ulcer case data from individuals reported to have acquired the disease in the
535 study area during 2019-2020, (ii) qPCR data from possum excreta collected in a previous investigation (2018-
536 2019), and (iii) qPCR data from trapped mosquitoes (2019-2020). These analyses identified a single mosquito
537 cluster, four possum clusters and six human Buruli ulcer clusters (Figure 5A-B). Notably, one human Buruli
538 ulcer cluster and two possum excreta clusters had higher numbers of observed Buruli ulcer cases or *M.*
539 *ulcerans* detections, respectively, than expected if uniformly distributed (p-value <0.05) (Figure 5B).
540 Importantly, the analyses revealed an instance of triple cluster overlap (mosquito/possum excreta/human)
541 in the Mornington Peninsula suburb of Rye, where all three SaTScan analyses had an overlapping cluster
542 (Figure 5A).

A

B

	CLUSTER	P_VALUE	OBSERVED	EXPECTED	LLR
	M1	0.915	2	0.26	4.16
	M2	0.472	3	0.52	4.17
	H1	2.06E-05*	31	9.35	17.75
	H2	0.148	13	3.56	7.80
	H3	0.265	15	4.95	7.03
	H4	0.702	4	0.42	5.53
	H5	0.820	4	0.46	5.14
	H6	0.999	2	0.12	3.74
	P1	9.21E-05*	41	17.54	17.05
	P2	0.002*	9	1.350	13.58
	P3	0.804	4	0.562	6.42
	P4	0.997	3	0.450	4.46

543

544 **Figure 5.** SaTScan analyses of trapped mosquitoes, possum excreta, and human Buruli ulcer cases on the
545 Mornington Peninsula, revealing spatial clustering. A) Map illustrating the clusters identified by the three
546 separate SaTScan analyses: (i) trapped mosquitoes (177 traps screened for IS2404 collected: 12.11.19 to
547 20.03.20), (ii) *M. ulcerans* detected in possum excreta collected during the summer of 2019 (Dec 2018 – Feb
548 2019) using data from a previous study, and (iii) notified human Buruli ulcer cases from the study area in

Nature Microbiology

549 *the years 2019-2020. The zoomed insert highlights an instance where all three analyses had overlapping*
550 *clusters in the suburb of Rye. B) Table summarising the SaTScan results for all identified clusters. Log*
551 *likelihood ratio is abbreviated as "LLR." Clusters with p-values <0.05 are marked with asterisks.*

552

553 The results of our permutation test to explore the probability of these three categories (mosquitoes, possums
554 and humans) overlapping showed that a triple-cluster overlap occurred with randomly rearranged location
555 labels at a low frequency of 8.9%. This analysis adds support to a causal relationship between the presence
556 of *M. ulcerans* in possums and mosquitoes and humans contracting Buruli ulcer in the Mornington Peninsula
557 suburb of Rye.

558

559 **Discussion**

560 Using insect field surveys augmented with genomics we have addressed *Barnett Criteria 1 – 3* (Table 1) to
561 add to a hierarchy of evidence indicting mosquitoes as principal vectors in the spread of *M. ulcerans* from
562 the environment to humans ^{3,15,17,21,22}. Our survey area was the Mornington Peninsula, where human Buruli
563 ulcer cases have increased progressively over the past 20 years ¹². Our key findings were that *M. ulcerans*
564 was almost exclusively associated with one mosquito species in this region, *Ae. notoscriptus*, a mammalian
565 host feeder, at a frequency of 0.87%. The estimated pathogen burden in each insect (Table S3) was consistent
566 with the reported low infectious dose for *M. ulcerans* ^{22,54}. Pathogen genomics provided support for a linked
567 transmission chain between mosquitoes, native possums and humans in this region. The metabarcoding
568 bloodmeal analysis of trapped mosquitoes revealed dual feeding by individual mosquitoes on both possums
569 and humans, providing an example of a potential transmission pathway between infected possums and
570 humans. Finally, spatial clustering analysis showed a striking overlap between clusters of possums shedding
571 *M. ulcerans*, mosquitoes harbouring *M. ulcerans* and human Buruli ulcer cases, reinforcing the importance
572 of possums and mosquitoes in the spread of *M. ulcerans* to humans.

573

Nature Microbiology

574 Indications that invertebrates might be playing a role in the spread of Buruli ulcer first came from field surveys
575 in West Africa in the late 1990s, where surveys in Benin identified water bugs in the genera *Naucoris* and
576 *Diplonychus* as IS2404 PCR positive for *M. ulcerans*^{15,16,55}. Subsequent culture isolation of *M. ulcerans* from
577 an aquatic insect in Benin (*Gerris* sp.) and potentially from *Naucoris* sp. in neighbouring Cote d'Ivoire further
578 suggested a role for water bugs in disease transmission, at least in west Africa^{56,57}. A role for mosquitoes in
579 the transmission of *M. ulcerans* anywhere was first revealed from entomological surveys in the mid-2000s
580 on the Bellarine Peninsula and then more recently in Far North Queensland^{15,21,58}. Other observations that
581 supported a role for mosquitoes in transmission included an analysis of the Buruli ulcer lesion location on the
582 human body, which included more than 600 human Buruli ulcer cases, and showed a preponderance of
583 lesions on ankles, elbows and backs of legs. These areas are frequently exposed and insects may
584 preferentially bloodfeed there⁵⁹. Laboratory studies under one transmission scenario have also shown the
585 competence of *Ae. notoscriptus* as mechanical vectors of *M. ulcerans* (Barnett criteria No. 4, Table 1)²².

586

587 Of the ~18,600 mosquitoes tested by IS2404 PCR from five different survey periods in the present study, *Ae.*
588 *notoscriptus* was consistently positively associated with *M. ulcerans*. Where and how *M. ulcerans* is
589 contaminating (or infecting) these mosquitoes remains to be determined. However, we made the somewhat
590 unexpected observation that the most abundant mosquito species trapped on the Mornington Peninsula, *Cx.*
591 *molestus*, which predominately feeds on avian species⁶⁰ was consistently IS2404 PCR negative. This
592 observation might be explained by a difference in the ecology of these two mosquito species, such as how
593 (or where) they are encountering *M. ulcerans*. The apparent *Ae. notoscriptus/M. ulcerans* tropism might also
594 indicate a specific biological interaction between this insect and the mycobacterium, or alternatively, a *Cx.*
595 *molestus* antagonism to mycobacterial carriage.

596

597 MLE is a parameter used in vector ecology to estimate the proportion of infected mosquitoes that are
598 pathogen positive, based on a pooling-based screening assay, where the proportion is the parameter of a
599 binomial distribution⁶¹. The MLE of *Ae. notoscriptus* over all 5 years of our surveys was 5.88 *M. ulcerans*

Nature Microbiology

600 positive mosquitoes/1,000 tested (95% CI 4.37-7.76). The MLE for the only other positive mosquito species,
601 *Ae. camptorhynchus* (consisting of two insects that tested positive for *M. ulcerans*), was 2.96/1,000 tested
602 (95% CI 0.17-14.19). These estimates are consistent with those previously reported for *Ae. camptorhynchus*
603 (10,558 mosquitoes tested, MLE 3.98 per 1,000) and *Ae. notoscriptus* (221 mosquitoes tested, MLE of 4.47
604 per 1,000) during the Bellarine Peninsula survey of that Buruli ulcer endemic area ¹⁵. Interestingly, these
605 values are significantly higher than the MLE values from an *M. ulcerans* mosquito survey conducted in tropical
606 far north Queensland, Australia which reported an MLE value of 0.13 /1,000 (95% CI 0.01–0.61) for different
607 species of mosquito ⁵⁸. To note though, there were few reported cases of Buruli ulcer in this area of
608 Queensland during the field survey period, consistent with the suggestion that mosquito surveys for *M.*
609 *ulcerans* will be useful for predicting Buruli ulcer risk in humans.

610

611 In tropical far north Queensland, Australia, host-seeking mosquitoes that harboured *M. ulcerans* collected
612 through similar CO₂ light traps to those used in this study were within the genera *Verallina*, *Coquillettidia* and
613 *Mansonia* ⁵⁸. These comparisons highlight that the mosquitoes encountering *M. ulcerans* appear to be
614 region/environment specific, and these observations support the idea that mosquitoes are mechanical
615 vectors of *M. ulcerans*. The major mosquito species associated with detection of *M. ulcerans* in Victoria, *Ae.*
616 *notoscriptus*, *Ae. camptorhynchus*, *An. annulipes* and *Cq. linealis*, are all diverse opportunistic feeders.

617

618 To explore host sources for mosquitoes trapped in our study, we used metagenomic amplicon sequencing of
619 engorged mosquitoes ⁶²⁻⁶⁷. Of the 90 blood-fed mosquitoes processed, 36 individual insects successfully had
620 their host blood source identified. The 54 bloodmeals that were unidentified were probably due to
621 degradation of the host DNA that occurs approximately 36 hours post-feeding ⁶⁸. As the mosquitoes analysed
622 in this study were collected from baited mosquito traps, the exact time post-feeding they were collected is
623 unknown. Of the host blood sources identified, common ringtail possum was the most commonly identified
624 bloodmeal, followed by birds and humans, with dual bloodmeals observed in 55% of mosquitoes (Figure 4,
625 Figure S4). Most notably, three insects were determined to have bloodmeals from both common ringtail

Nature Microbiology

626 possums and humans. These insects consisted of two *Ae. notoscriptus* and one *Ae. rubrithorax*. Common
627 ringtail possums are major wildlife reservoirs of *M. ulcerans*¹¹, and in this study we identified *M. ulcerans* in
628 frequent association with *Ae. notoscriptus*. The identification of these dual bloodmeals provides evidence
629 that *Ae. notoscriptus* mosquitoes are bloodfeeding between possums and humans within a relatively short
630 timeframe. Dual bloodmeals may provide an opportunity for a mechanical transmission event of *M. ulcerans*
631 from a possum with a Buruli ulcer teeming with *M. ulcerans*, from which a mosquito bloodfeeds and then
632 moves to a nearby human. However, the observed positive association specifically between *Ae. notoscriptus*
633 and *M. ulcerans* is not explained by our bloodmeal analysis, which showed several other mosquito species
634 that were not *M. ulcerans* positive, such as *Cx. molestus*, *Ae. rubrithorax* and *Cq. Linealis*, also fed on possums.
635 An alternative source of *M. ulcerans* acquisition for *Ae. notoscriptus* might be from possum excreta
636 contaminating the *Ae. notoscriptus* breeding sites, as this species breeds in small artificial containers⁶².
637 Previous studies have shown that mosquito larvae can ingest *M. ulcerans* and test positive for *M. ulcerans*
638 during the larval stage, but *M. ulcerans* is not detected in the pupa or adult, which is largely thought to be a
639 result of the larval midgut being purged⁶⁹. However, if possum excreta, which can have a high concentration
640 of *M. ulcerans*¹¹, falls into these artificial breeding sites, then this may provide a means to contaminate the
641 adult *Ae. notoscriptus* during eclosion and emergence on top of the water's surface.

642

643 In common with other arthropod-borne bacterial pathogens, *M. ulcerans* also has the genomic hallmarks of
644 niche adaptation^{70,71}. For instance, the bacterial diseases vectored by blood-feeding arthropods, such as
645 bubonic plague, spread to humans through the bite of fleas harbouring the bacterium *Yersinia pestis*⁷², the
646 tick-borne infections such as Lyme disease, Rocky Mountain Spotted Fever, ehrlichiosis (among others)
647 caused by *Borrelia burgdorferi*, *Rickettsia rickettsii* and *Ehrlichia* sp., respectively⁷³, or tularemia, caused by
648 infection with *Francisella tularensis* spread through the bite of infected ticks (with some subspecies also
649 spread by mosquitoes)⁷⁴⁻⁷⁶, are all caused by bacteria that have degenerating genomes. That is, like *M.*
650 *ulcerans*, their genomes bear the distinctive hallmarks of evolutionary bottlenecks and niche-adaptation
651 (plasmid acquisition, pseudogene accumulation, insertion sequence expansion), a genomic pattern thought
652 indicative of a shared trajectory towards symbiosis with the arthropod host⁷⁷. In addition, the absence of

Nature Microbiology

653 recombination and highly clonal population structure of *M. ulcerans* is aligned with the population structure
654 of bacteria in 'closed symbiosis' with their host animal⁷⁸.

655

656 Mosquitoes were not the only arthropods from which *M. ulcerans* were detected in the Mornington
657 Peninsula. With over 20,500 arthropods collected using sticky traps (YST and SO), this study screened other
658 insects that might broadly act as a mechanical vector, that is, an insect that is involved in the accidental
659 transport of a pathogen^{79 22}. *M. ulcerans* was successfully identified on two of ~1,800 flies tested, identified
660 as blowflies (*Calliphora hilli*) . Previous studies have screened other species of flies, such as March flies
661 (Tabanidae), with no positive detections⁵⁸. *C. hilli* is a native species occurring along the Australian east coast
662 and in South Australia⁸⁰. This species is a carrion breeder occurring year-round throughout Victoria, with the
663 female laying her eggs in decaying flesh where the larvae emerge⁸⁰. Possum carcasses are readily infested by
664 *C. hilli*⁸¹, which may explain how this fly species is becoming contaminated with *M. ulcerans*, as possums are
665 wildlife reservoirs of *M. ulcerans*¹⁰. The likelihood of *C. hilli* carrying *M. ulcerans* to humans is relatively low
666 due to this species rarely biting humans⁸².

667

668 Interestingly, all species that have tested positive for *M. ulcerans* share quite different breeding
669 environments and feeding preferences, although most feed on humans. *Ae. camptorhynchus* and *Verrallina*
670 *sp.* are saltmarsh mosquitoes^{83,84}, while *Ae. notoscriptus* is a freshwater container breeder occurring in close
671 association to humans⁸⁵. *Anopheles annulipes* and *Cx. australicus* are also freshwater breeding mosquitoes
672⁸⁶, although *Cx. australicus* typically feeds on avian species and is not considered to feed on humans⁸⁷. This
673 diversity in mosquito species, habitats, flight range from breeding sites and host-preference feeding raises
674 interesting questions about how these mosquitoes are coming into contact with *M. ulcerans* and how
675 potential vector mosquito species may change based on the study area. Additionally, the ecology of the
676 mosquito sub-species are generally poorly understood, including *Ae. Notoscriptus*, which occurs as a series
677 of genetically differentiated clades within Australia³⁹.

678

Nature Microbiology

679 In this study, we also deployed for the first time targeted enrichment genome capture using the Agilent RNA
680 bait system to demonstrate beyond reasonable doubt the presence of *M. ulcerans* in association with
681 mosquitoes⁵². The IS2404, IS2606 and KR PCR assays have provided robust evidence for the presence of *M.*
682 *ulcerans* in the environment, but detecting pathogen genomic DNA and using those sequences to forensically
683 dissect transmission chains by matching pathogen genome SNP profiles is a powerful technological advance
684 ⁵². While the method lost sensitivity for IS2404 qPCR Ct values >32, we generated sufficient genome
685 coverage from one IS2404 PCR positive mosquito and from two possum excreta specimens to show that the
686 *M. ulcerans* genotypes of the captured genomes were identical to those associated with human Buruli ulcer
687 cases in the study area, rather than Buruli ulcer cases linked to other regions (Figure 3). These findings provide
688 strong support for mosquitoes and possums playing a role in the transmission of *M. ulcerans* in the
689 Mornington Peninsula. These results also add to the growing body of evidence demonstrating the utility of
690 pathogen genomics in specifically identifying the sources and transmission pathways of environmental
691 pathogens and suggest that continued surveillance of *M. ulcerans* genotypes in mosquitoes and possums
692 could be useful in guiding public health interventions that seek to control the spread of Buruli ulcer in the
693 region. We are now exploring the use of genome sequence enrichment to dissect the genomic epidemiology
694 from the perspective of environmental sources, in particular to track the spread of Buruli ulcer in Australian
695 native possums across the region⁵³.

696

697 The SaTScan clustering analyses provide compelling evidence for the spatial association between the
698 presence of *M. ulcerans* in possums, mosquitoes, and human Buruli ulcer cases in the study area (Figure 5).
699 The triple-cluster overlap observed in our SaTScan analyses suggests that the spatial distribution of these
700 three factors is likely to be closely linked and may be contributing to the persistence of Buruli ulcer in the
701 Mornington Peninsula. Our finding of a low frequency of triple-cluster overlap among 10,000 randomisations,
702 with only 8.9% of replicates showing this phenomenon, provides a level of confidence that our observations
703 have not occurred randomly. This further supports the validity of our findings and reinforces the idea that
704 the presence of *M. ulcerans* in possums and mosquitoes may play a crucial role in the transmission of *M.*
705 *ulcerans* to humans in the study area. Our findings highlight the importance of ongoing surveillance of

Nature Microbiology

706 possum and mosquito populations, which may provide critical insights into the epidemiology of Buruli ulcer
707 in the region and inform targeted public health interventions to control the disease.

708

709 Our research has some limitations. Although we found a spatial association between the presence of *M.*
710 *ulcerans* in possums and mosquitoes, and human Buruli ulcer cases, we cannot absolutely conclude causality
711 or directionality. In addition, the very specific set of circumstances that have led to the rise of Buruli ulcer in
712 temperate southeastern Australia restricts the generalisability of our results. One must be cautious to draw
713 parallels with African Buruli ulcer endemic countries for instance, where a highly susceptible mammalian
714 reservoir equivalent to the Australian native possum is yet to be identified and evidence for mosquitoes as
715 possible vectors is lacking⁸⁸. Further investigations are needed to better understand the underlying
716 mechanisms that drive the association between the presence of *M. ulcerans* in these different species and
717 the development of human Buruli ulcer cases.

718 Despite these caveats, our collective research over more than 15 years makes it very clear that mosquitoes
719 are likely vectors and native possums are major wildlife reservoirs of *M. ulcerans* in southeastern Australia.
720 Mosquito surveillance with *M. ulcerans* screening coupled with mosquito control and public health
721 messaging to avoid mosquito bites are practical interventions that would be expected to reduce the incidence
722 of human Buruli ulcer.

723

724 **Funding**

725 TPS: National Health and Medical Research Council of Australia (GNT1152807, GNT1196396). The funders
726 had no role in study design, data collection and interpretation, or the decision to submit the work for
727 publication.

728

729

730 **Acknowledgments**

731 We would like to acknowledge the residents of the Mornington Peninsula for assisting in collecting and
732 sending sticky cards to our laboratory as part of our surveillance and to Mary Tachedjian, Michael Dunn,
733 Simone Clayton, Julie Gaburro and Victoria Boyd for assistance during field work.

734

735 **Ethics**

736 Ethical approval for the use in this study of de-identified human BU case location, aggregated at mesh block
737 level, was obtained from the Victorian Government Department of Health Human Ethics Committee under
738 HREC/54166/DHHS-2019-179235(v3), 'Spatial risk map of Buruli ulcer infection in Victoria.'

739

740 **Author Contributions**

741 Conceptualisation PTM, JO, RF, SRC, PDRJ, JRW, AAH, KBG, TPS, SEL; Data curation PTM, KB, JO; Formal
742 Analysis PTM, AHB, TPS; Funding acquisition SRC, PDRJ, KBG, JRW, AH, KG, TPS, SEL; Methodology PTM, AHB,
743 KB, JCC, JRW, TPS, SEL; Writing – original draft PTM, AHB, SEL, TPS; Writing – review & editing all authors.

744

745 **Data availability statement**

746 DNA sequences generated in this project are available under these GenBank accession numbers:
747 PRJNA943595, OQ600123-4, OQ588831-67. Custom computer code: <https://github.com/abuultjens/BU-3-way-SatScan>; https://github.com/abuultjens/Mosquito_possum_human_genomic_analysis.

749

750 **References**

751 1 MacCullum, P., Tolhurst, J. C., Buckle, G. & Sissons, H. A. A new Mycobacterial infection in man. *J Pathol Bacteriol* **60**, 93-102 (1948).

752 2 World Health Organization. (World Health Organization, Geneva, 2004).

753 3 Merritt, R. W. *et al.* Ecology and transmission of Buruli ulcer disease: a systematic review. *PLoS Negl Trop Dis* **4**, e911-e911, doi:10.1371/journal.pntd.0000911 (2010).

754 4 Organization, W. H. *Buruli ulcer (Mycobacterium ulcerans infection)*, <[https://www.who.int/news-room/fact-sheets/detail/buruli-ulcer-\(mycobacterium-ulcerans-infection\)](https://www.who.int/news-room/fact-sheets/detail/buruli-ulcer-(mycobacterium-ulcerans-infection))> (2022).

755 5 Department of Health and Human Services (Victoria). *Interactive infectious disease surveillance reports [internet]*, <<https://www2.health.vic.gov.au/public-health/infectious-diseases/infectious-diseases-surveillance/interactive-infectious-disease-reports>> (2021).

756 6 Janssens, P. G., Quertinmont, M. J., Sieniawski, J. & Gatti, F. Necrotic tropical ulcers and mycobacterial causative agents. *Trop Geogr Med* **11**, 293-312 (1959).

757 7 Clancey, J. K., Dodge, O. G., Lunn, H. F. & Oduori, M. L. Mycobacterial skin ulcers in Uganda. *Lancet (London, England)* **2**, 951-954, doi:10.1016/s0140-6736(61)90793-0 (1961).

758 8 Muleta, A. J., Lappan, R., Stinear, T. P. & Greening, C. Understanding the transmission of Mycobacterium ulcerans: A step towards controlling Buruli ulcer. *PLoS Negl Trop Dis* **15**, e0009678, doi:10.1371/journal.pntd.0009678 (2021).

759 9 Blasdell, K. R. *et al.* Environmental risk factors associated with the presence of Mycobacterium ulcerans in Victoria, Australia. *PLoS One* **17**, e0274627, doi:10.1371/journal.pone.0274627 (2022).

760 10 Carson, C. *et al.* Potential wildlife sentinels for monitoring the endemic spread of human buruli ulcer in South-East Australia. *PLoS Negl Trop Dis* **8**, e2668, doi:10.1371/journal.pntd.0002668 (2014).

761 11 Fyfe, J. A. M. *et al.* A major Role for mammals in the ecology of *Mycobacterium ulcerans*. *PLoS Negl Trop Dis* **4**, e791, doi:10.1371/journal.pntd.0000791 (2010).

762 12 Johnson, P. D. R. in *Buruli Ulcer: Mycobacterium Ulcerans Disease* (eds G. Pluschke & K. Roltgen) 61-76 (2019).

763 13 O'Brien, C. R. *et al.* Clinical, microbiological and pathological findings of *Mycobacterium ulcerans* infection in three Australian Possum species. *PLoS Negl Trop Dis* **8**, e2666, doi:10.1371/journal.pntd.0002666 (2014).

764 14 Xu, R. W., Stinear, T. P., Johnson, P. D. & O'Brien, D. P. Possum bites man: case of Buruli ulcer following possum bite. *Med J Aust* **216**, 452-453, doi:10.5694/mja2.51505 (2022).

765 15 Johnson, P. D. R. *et al.* *Mycobacterium ulcerans* in mosquitoes captured during outbreak of Buruli ulcer, southeastern Australia. *Emerging Infectious Diseases* **13**, 1653-1660, doi:10.3201/eid1311.061369 (2007).

766 16 Fyfe, J. A. *et al.* Development and application of two multiplex real-time PCR assays for the detection of *Mycobacterium ulcerans* in clinical and environmental samples. *Applied and environmental microbiology* **73**, 4733-4740 (2007).

767 17 Quek, T. Y. *et al.* Risk factors for *Mycobacterium ulcerans* infection, southeastern Australia. *Emerg Infect Dis* **13**, 1661-1666, doi:10.3201/eid1311.061206 (2007).

768 18 Landier, J. *et al.* Adequate wound care and use of bed nets as protective factors against Buruli Ulcer: results from a case control study in Cameroon. *PLoS Negl Trop Dis* **5**, e1392, doi:10.1371/journal.pntd.0001392 (2011).

769 19 Pouillot, R. *et al.* Risk factors for buruli ulcer: a case control study in Cameroon. *PLoS Negl Trop Dis* **1**, e101, doi:10.1371/journal.pntd.0000101 (2007).

770 20 Johnson, P. D. *et al.* Consensus recommendations for the diagnosis, treatment and control of *Mycobacterium ulcerans* infection (Bairnsdale or Buruli ulcer) in Victoria, Australia. *Med J Aust* **186**, 64-68, doi:10.5694/j.1326-5377.2007.tb00802.x (2007).

771 21 Lavender, C. J. *et al.* Risk of Buruli ulcer and detection of *Mycobacterium ulcerans* in mosquitoes in southeastern Australia. *PLoS Negl Trop Dis* **5**, e1305, doi:10.1371/journal.pntd.0001305 (2011).

Nature Microbiology

800 22 Wallace, J. R. *et al.* *Mycobacterium ulcerans* low infectious dose and mechanical transmission
801 support insect bites and puncturing injuries in the spread of Buruli ulcer. *PLoS Negl Trop Dis* **11**,
802 e0005553, doi:10.1371/journal.pntd.0005553 (2017).

803 23 Australian Bureau of Statistics. *2016 Census QuickStats*,
804 <https://quickstats.censusdata.abs.gov.au/census_services/getproduct/census/2016/quickstat/SSC_22187?opendocument> (2021).

805 24 Australian Bureau of Meteorology. *Summary statisitcs Mornington*,
806 <http://www.bom.gov.au/climate/averages/tables/cw_086079.shtml> (2022).

807 25 World Health Organization. *Number of new reported cases of Buruli ulcer*,
808 <<https://apps.who.int/gho/data/node.main.A1631>> (2023).

809 26 Mornington Peninsula Shire. *Mornington Peninsula Shire population forecasts*,
810 <<https://forecast.id.com.au/mornington-peninsula>> (2023).

811 27 Russell, R. C. *A colour photo atlas of mosquitoes of Southeastern Australia*. (University of Sydney
812 Printing Service, NSW, 1996).

813 28 Dobrotworsky, N. V. *The mosquitoes of Victoria (Diptera, Culicidae)*. (Melbourne University Press,
814 1965).

815 29 Liehne, P. F. S. *An atlas of the mosquitoes of Western Australia*. (Health Department of Western
816 Australia, 1991).

817 30 Folmer, O., Black, M., Hoeh, W., Lutz, R. & Vrijenhoek, R. DNA primers for amplification of
818 mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. *Mol Mar Biol
819 Biotechnol* **3**, 294-299 (1994).

820 31 PooledInfRate, Version 4.0: a Microsoft^(R) Office Excel^(C) Add-In to compute prevalence estimates
821 from pooled samples. (Fort Collins, CO, USA, 2009).

822 32 R: A language and environment for statistical computing. R Foundation for Statistical Computing,
823 Vienna, Austria (2020).

824 33 Illumina. *Nextera Flex for Enrichment with RNA Probes*,
825 <https://support.illumina.com/content/dam/illumina-support/documents/documentation/chemistry_documentation/samplepreps_nextera-nextera-flex-enrichment/nextera-flex-for-enrichment-rna-probes-demonstrated-protocol-1000000070581-01.pdf> (2023).

826 34 Price, M. N., Dehal, P. S. & Arkin, A. P. FastTree: computing large minimum evolution trees with
827 profiles instead of a distance matrix. *Mol Biol Evol* **26**, 1641-1650, doi:10.1093/molbev/msp077
828 (2009).

829 35 Buultjens, A. H. *et al.* Comparative Genomics Shows That *Mycobacterium ulcerans* Migration and
830 Expansion Preceded the Rise of Buruli Ulcer in Southeastern Australia. *Appl Environ Microbiol* **84**,
831 doi:10.1128/AEM.02612-17 (2018).

832 36 van Buuren, S. & Groothuis-Oudshoorn, K. mice: Multivariate Imputation by Chained Equations in
833 R. *J Statistical Software* **45**, 1-67 (2011).

834 37 Revell, L. phytools: An R package for phylogenetic comparative biology (and other things). *Methods
835 in Ecology and Evolution* **3**, 217-223, doi:doi:10.1111/j.2041-210X.2011.00169.x. (2012).

836 38 Becker, R. A. & Wilks, A. R. Constructing a Geographical Database. (1995).

837 39 Endersby, N. M. *et al.* Evidence of cryptic genetic lineages within *Aedes notoscriptus* (Skuse).
838 *Infection, genetics and evolution : journal of molecular epidemiology and evolutionary genetics in
839 infectious diseases* **18**, 191-201, doi:10.1016/j.meegid.2013.04.035 (2013).

840 40 Darriba, D., Taboada, G. L., Doallo, R. & Posada, D. jModelTest 2: more models, new heuristics and
841 parallel computing. *Nature Methods* **9**, 772, doi:10.1038/nmeth.2109 (2012).

842 41 Guindon, S. & Gascuel, O. A simple, fast, and accurate algorithm to estimate large phylogenies by
843 maximum likelihood. *Systematic biology* **52**, 696-704, doi:10.1080/10635150390235520 (2003).

844 42 QGIS Geographic Information System. Open Source Geospatial Foundation Project. (2022).

845 43 Statistics, A. B. o. *1270.0.55.007 - Australian Population Grid*, 2011,
846 <<https://www.abs.gov.au/ausstats/abs@.nsf/lookup/1270.0.55.007main+features12011>> (2011).

847 44 Australian Bureau of Statistics. <<https://www.abs.gov.au>> (2023).

848 45 QGIS Geographic Information System (2021).

Nature Microbiology

853 46 Kulldorff, M. A spatial scan statistic. *Commun Stat-Theor M* **26**, 1481-1496, doi:Doi
854 10.1080/03610929708831995 (1997).

855 47 Vandelannoote, K. *et al.* Structured surveys of Australian native possum excreta predict Buruli ulcer
856 occurrence in humans. *Biorxiv*, doi:<https://doi.org/10.1101/2022.11.16.516821> (2022).

857 48 Loftus, M. J. *et al.* The incubation period of Buruli ulcer (*Mycobacterium ulcerans* infection) in
858 Victoria, Australia - Remains similar despite changing geographic distribution of disease. *PLoS Negl
859 Trop Dis* **12**, e0006323, doi:10.1371/journal.pntd.0006323 (2018).

860 49 Trubiano, J. A., Lavender, C. J., Fyfe, J. A., Bittmann, S. & Johnson, P. D. The incubation period of
861 Buruli ulcer (*Mycobacterium ulcerans* infection). *PLoS Negl Trop Dis* **7**, e2463,
862 doi:10.1371/journal.pntd.0002463 (2013).

863 50 Pebesma, E. Simple Features for R: Standardized Support for Spatial Vector Data. *R J* **10**, 439-446
864 (2018).

865 51 R: A language and environment for statistical computing (R Foundation for Statistical Computing,
866 Vienna, Austria., 2021).

867 52 Taouk, M. L. *et al.* Characterisation of *Treponema pallidum* lineages within the contemporary
868 syphilis outbreak in Australia: a genomic epidemiological analysis. *Lancet Microbe* **3**, e417-e426,
869 doi:10.1016/S2666-5247(22)00035-0 (2022).

870 53 Vandelannoote, K. *et al.* Statistical modelling based on structured surveys of Australian native
871 possum excreta harbouring *Mycobacterium ulcerans* predicts Buruli ulcer occurrence in humans.
872 *Elife* **12**, doi:10.7554/eLife.84983 (2023).

873 54 Mangas, K. M. *et al.* Vaccine-Specific Immune Responses against *Mycobacterium ulcerans* Infection
874 in a Low-Dose Murine Challenge Model. *Infect Immun* **88**, doi:10.1128/IAI.00753-19 (2020).

875 55 Portaels, F., Elsen, P., Guimaraes-Peres, A., Fonteyne, P. A. & Meyers, W. M. Insects in the
876 transmission of *Mycobacterium ulcerans* infection. *Lancet (London, England)* **353**, 986,
877 doi:10.1016/s0140-6736(98)05177-0 (1999).

878 56 Marsollier, L. *et al.* Aquatic plants stimulate the growth of and biofilm formation by *Mycobacterium*
879 *ulcerans* in axenic culture and harbor these bacteria in the environment. *Appl Environ Microbiol* **70**,
880 1097-1103, doi:10.1128/AEM.70.2.1097-1103.2004 (2004).

881 57 Portaels, F. *et al.* First cultivation and characterization of *Mycobacterium ulcerans* from the
882 environment. *PLoS Negl Trop Dis* **2**, e178-e178, doi:10.1371/journal.pntd.0000178 (2008).

883 58 Singh, A., McBride, W. J. H., Govan, B., Pearson, M. & Ritchie, S. A. A survey on *Mycobacterium*
884 *ulcerans* in mosquitoes and march flies captured from endemic areas of Northern Queensland,
885 Australia. *PLoS Negl Trop Dis* **13**, e0006745, doi:10.1371/journal.pntd.0006745 (2019).

886 59 Yerramilli, A. *et al.* The location of Australian Buruli ulcer lesions—Implications for unravelling
887 disease transmission. *PLoS Negl Trop Dis* **11**, e0005800, doi:10.1371/journal.pntd.0005800 (2017).

888 60 Gomes, B. *et al.* Feeding patterns of molestus and pipiens forms of *Culex pipiens* (Diptera:
889 Culicidae) in a region of high hybridization. *Parasit Vectors* **6**, 93, doi:10.1186/1756-3305-6-93
890 (2013).

891 61 Bustamante, D. M. & Lord, C. C. Sources of error in the estimation of mosquito infection rates used
892 to assess risk of arbovirus transmission. *The American journal of tropical medicine and hygiene* **82**,
893 1172-1184, doi:10.4269/ajtmh.2010.09-0323 (2010).

894 62 Kay, B. H., Boyd, A. M., Ryan, P. A. & Hall, R. A. Mosquito feeding patterns and natural infection of
895 vertebrates with Ross River and Barmah Forest viruses in Brisbane, Australia. *The American journal
896 of tropical medicine and hygiene* **76**, 417-423 (2007).

897 63 Jansen, C. C. *et al.* Blood sources of mosquitoes collected from urban and peri-urban environments
898 in eastern Australia with species-specific molecular analysis of avian blood meals. *The American
899 journal of tropical medicine and hygiene* **81**, 849-857, doi:10.4269/ajtmh.2009.09-0008 (2009).

900 64 Flies, E. J., Flies, A. S., Fricker, S. R., Weinstein, P. & Williams, C. R. Regional comparison of mosquito
901 bloodmeals in South Australia: implications for Ross River virus ecology. *Journal of Medical
902 Entomology* **53**, 902-910, 909 (2016).

903 65 Muller, M., Murray, M. & Edwards, J. Blood-sucking midges and mosquitoes feeding on mammals
904 at Beatrice Hill, N.T. *Australian Journal of Zoology* **29**, 573-588,
905 doi:<https://doi.org/10.1071/ZO9810573> (1981).

Nature Microbiology

906 66 Lee, D. J., Clinton, K. J. & O'Gower, A. K. The blood sources of some Australian mosquitoes.
907 *Australian journal of biological sciences* **7**, 282-301, doi:10.1071/bi9540282 (1954).

908 67 Johansen, C. A., Power, S. L. & Broom, A. K. Determination of mosquito (Diptera: Culicidae)
909 bloodmeal sources in western australia: implications for arbovirus transmission. *Journal of Medical*
910 *Entomology* **46**, 1167-1175, doi:10.1603/033.046.0527 (2009).

911 68 Oshaghi, M. A. *et al.* Effects of post-ingestion and physical conditions on PCR amplification of host
912 blood meal DNA in mosquitoes. *Exp Parasitol* **112**, 232-236, doi:10.1016/j.exppara.2005.11.008
913 (2006).

914 69 Wallace, J. R. *et al.* Interaction of *Mycobacterium ulcerans* with mosquito species: implications for
915 transmission and trophic relationships. *Appl Environ Microbiol* **76**, 6215-6222,
916 doi:10.1128/AEM.00340-10 (2010).

917 70 Doig, K. D. *et al.* On the origin of *Mycobacterium ulcerans*, the causative agent of Buruli ulcer. *BMC*
918 *Genomics* **13**, 258, doi:10.1186/1471-2164-13-258 (2012).

919 71 Stinear, T. P. *et al.* Reductive evolution and niche adaptation inferred from the genome of
920 *Mycobacterium ulcerans*, the causative agent of Buruli ulcer. *Genome Res* **17**, 192-200,
921 doi:10.1101/gr.5942807 (2007).

922 72 Eisen, R. J. & Gage, K. L. Transmission of flea-borne zoonotic agents. *Annu Rev Entomol* **57**, 61-82,
923 doi:10.1146/annurev-ento-120710-100717 (2012).

924 73 Kernif, T., Leulmi, H., Raoult, D. & Parola, P. Emerging Tick-Borne Bacterial Pathogens. *Microbiol*
925 *Spectr* **4**, doi:10.1128/microbiolspec.EI10-0012-2016 (2016).

926 74 Ryden, P. *et al.* Outbreaks of tularemia in a boreal forest region depends on mosquito prevalence. *J*
927 *Infect Dis* **205**, 297-304, doi:10.1093/infdis/jir732 (2012).

928 75 Thelaus, J. *et al.* *Francisella tularensis* subspecies *holarctica* occurs in Swedish mosquitoes, persists
929 through the developmental stages of laboratory-infected mosquitoes and is transmissible during
930 blood feeding. *Microb Ecol* **67**, 96-107, doi:10.1007/s00248-013-0285-1 (2014).

931 76 Abdellahoum, Z., Maurin, M. & Bitam, I. Tularemia as a Mosquito-Borne Disease. *Microorganisms* **9**,
932 doi:10.3390/microorganisms9010026 (2020).

933 77 Hendry, T. A. *et al.* Ongoing Transposon-Mediated Genome Reduction in the Luminous Bacterial
934 Symbionts of Deep-Sea Ceratioid Anglerfishes. *mBio* **9**, doi:10.1128/mBio.01033-18 (2018).

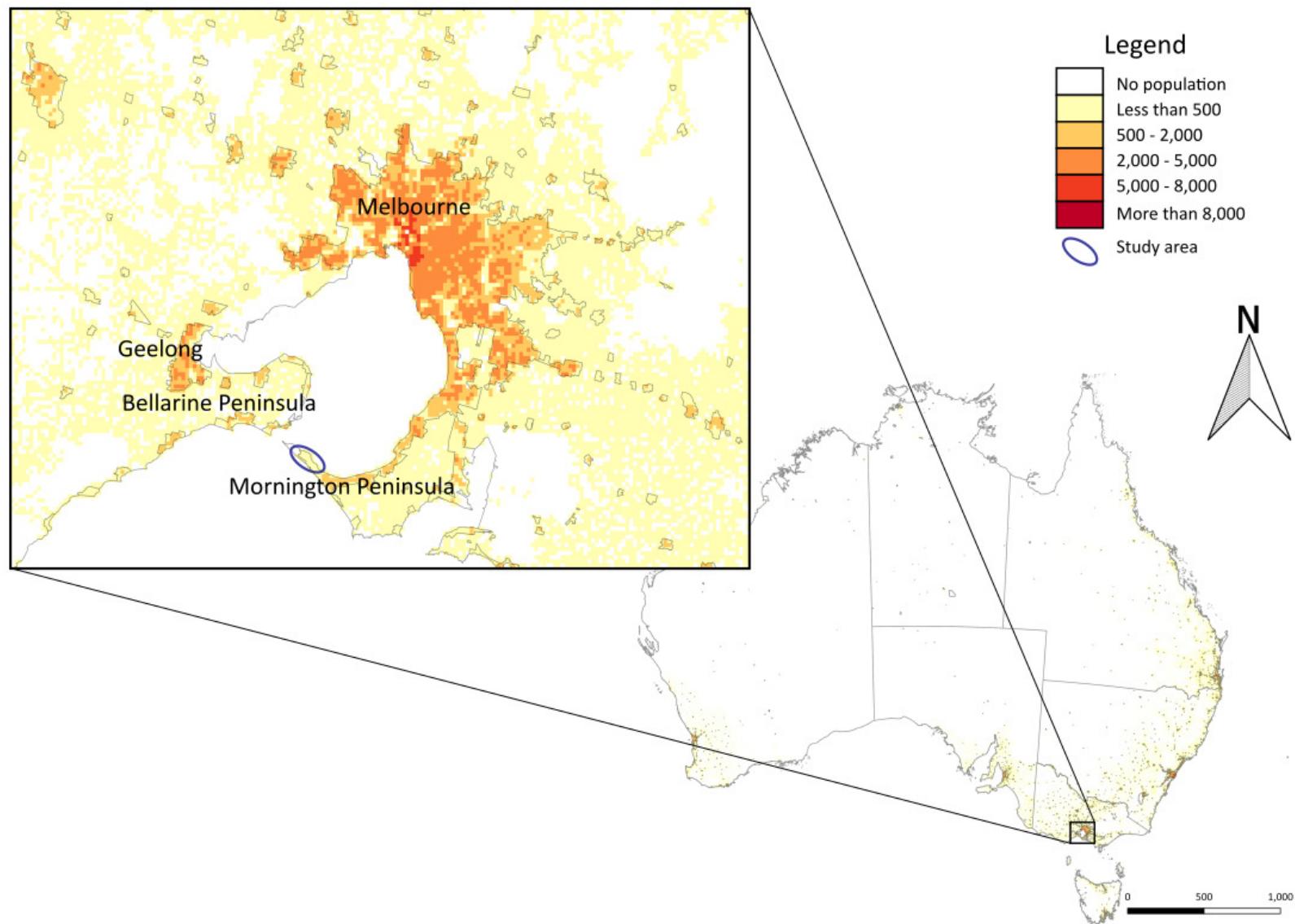
935 78 Perreau, J. & Moran, N. A. Genetic innovations in animal-microbe symbioses. *Nat Rev Genet* **23**, 23-
936 39, doi:10.1038/s41576-021-00395-z (2022).

937 79 Drucker, M. & Then, C. Transmission activation in non-circulative virus transmission: a general
938 concept? *Current Opinion in Virology* **15**, 63-68, doi:<https://doi.org/10.1016/j.coviro.2015.08.006>
939 (2015).

940 80 Archer, M. S. *The ecology of invertebrate associations with vertebrate carrion in Victoria, with*
941 *reference to forensic entomology* Doctor of Philosophy thesis, The University of Melbourne, (2002).

942 81 Lang, M. D., Allen, G. R. & Horton, B. J. Blowfly succession from possum (*Trichosurus vulpecula*)
943 carrion in a sheep-farming zone. *Medical and Veterinary Entomology* **20**, 445-452,
944 doi:<https://doi.org/10.1111/j.1365-2915.2006.00654.x> (2006).

945 82 Skopyk, A. D., Forbes, S. L. & LeBlanc, H. N. Recognizing the inherent variability in Dipteron
946 colonization and decomposition rates of human donors in Sydney, Australia. *Journal of Clinical and*
947 *Health Sciences* **6**, 102-119 (2021).


948 83 C A. Van Schie, Spafford, H., Carver, S. S. & Weinstein, P. Salinity tolerance of *Aedes*
949 *camptorhynchus* (Diptera: Culicidae) from two regions in southwestern Australia. *Austral*
950 *Entomology* **48**, 293-299 (2009).

951 84 Jeffery, J. A. L., Kay, B. H. & Ryan, P. A. Development time and survival of *Verrallina funerea*
952 (Theobald) (Diptera: Culicidae) immatures and other brackish water mosquito species in southeast
953 Queensland, Australia. *Australian Journal of Entomology* **44**, 226-232,
954 doi:<https://doi.org/10.1111/j.1440-6055.2005.00479.x> (2005).

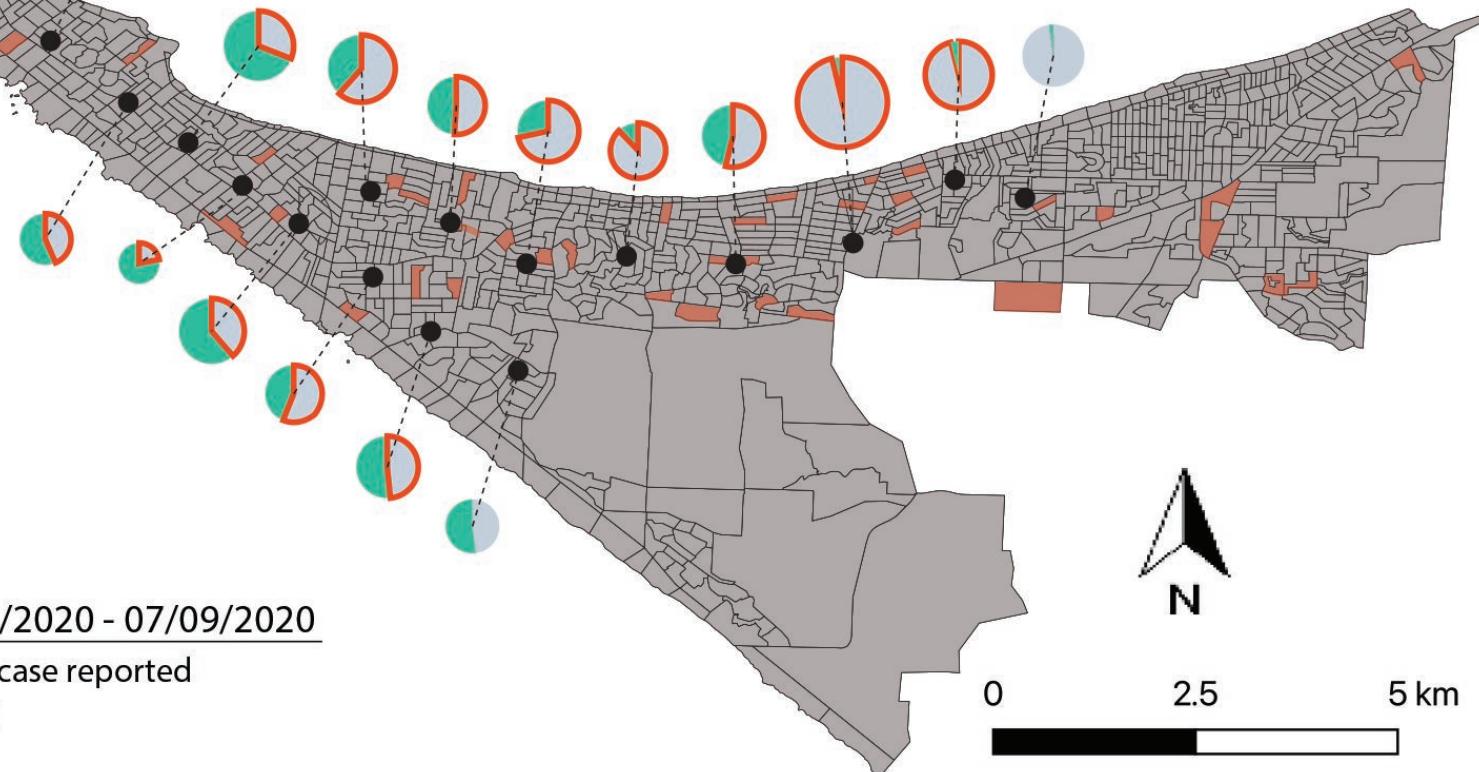
955 85 Hamlyn-Harris, R. Notes on the breeding-places of *Aedes* (Finlaya) *notoscriptus*, Skuse, in
956 Queensland. *Bulletin of Entomological Research* **19**, 405-409, doi:10.1017/S0007485300020782
957 (1928).

Nature Microbiology

958 86 Russell, R. C. *Mosquitoes and mosquito-borne disease in southeast Australia*. (Department of
959 Medical Entomology, Westmead Hospital and Department of Medicine, University of Sydney, NSW,
960 1993).
961 87 Russell, R. C. A review of the status and significance of the species within the *Culex pipiens* group in
962 Australia. *Journal of the American Mosquito Control Association* **28**, 24-27 (2012).
963 88 Djouaka, R. *et al.* Evidences of the Low Implication of Mosquitoes in the Transmission of
964 *Mycobacterium ulcerans*, the Causative Agent of Buruli Ulcer. *Can J Infect Dis Med Microbiol* **2017**,
965 1324310, doi:10.1155/2017/1324310 (2017).
966
967

Mosquito trapping
Mornington Peninsula
12/11/2019 - 20/03/2020
18 trap groups

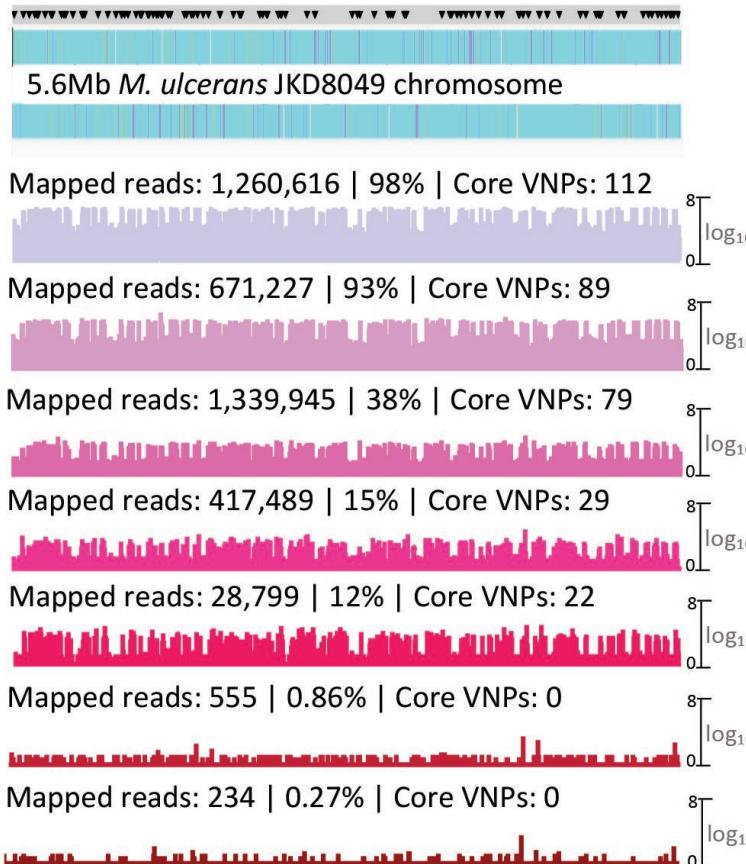
Mosquito species

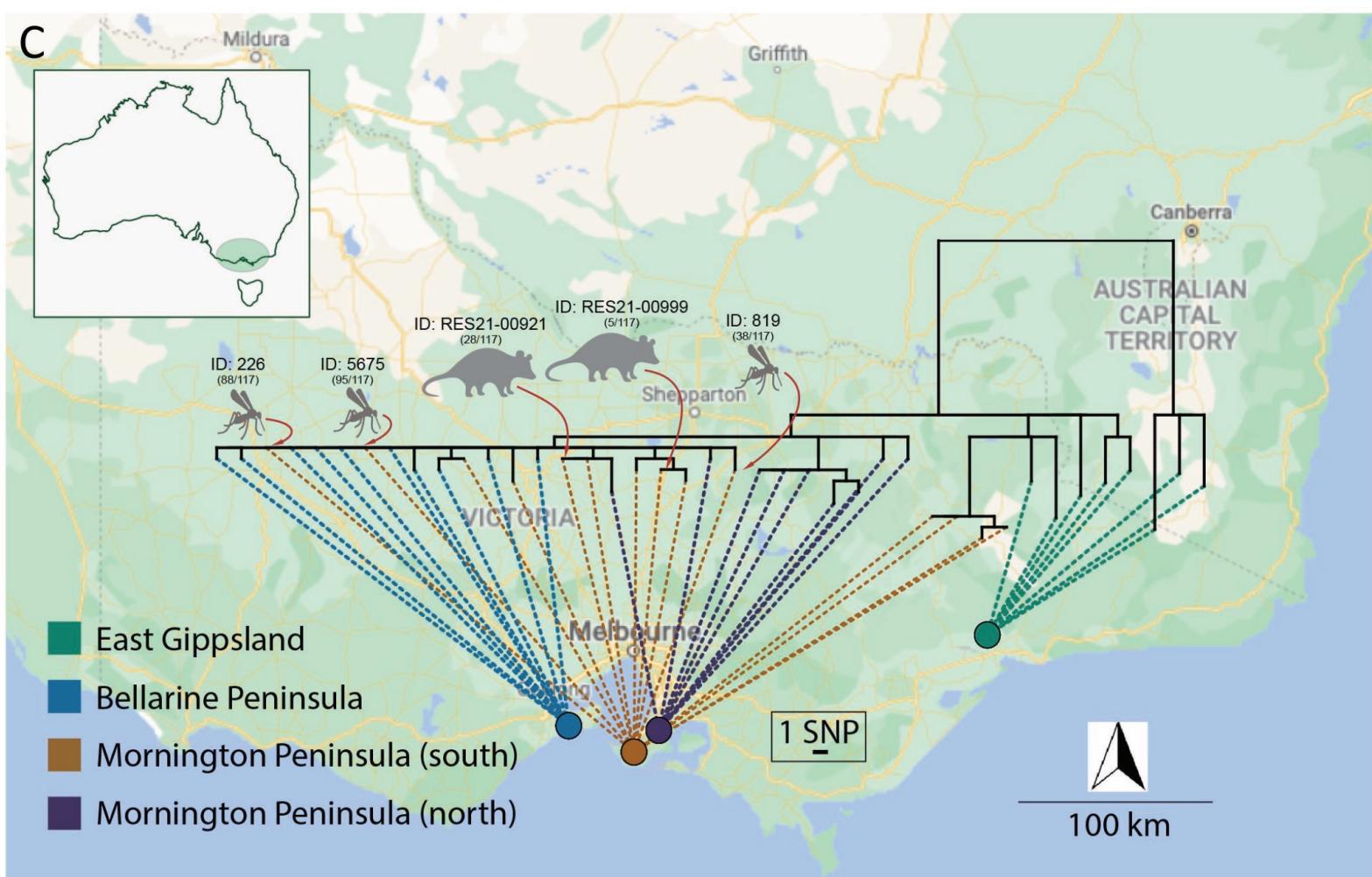

- % *Ae. notoscriptus*
- % *Cx. molestus*
- M. ulcerans PCR positive

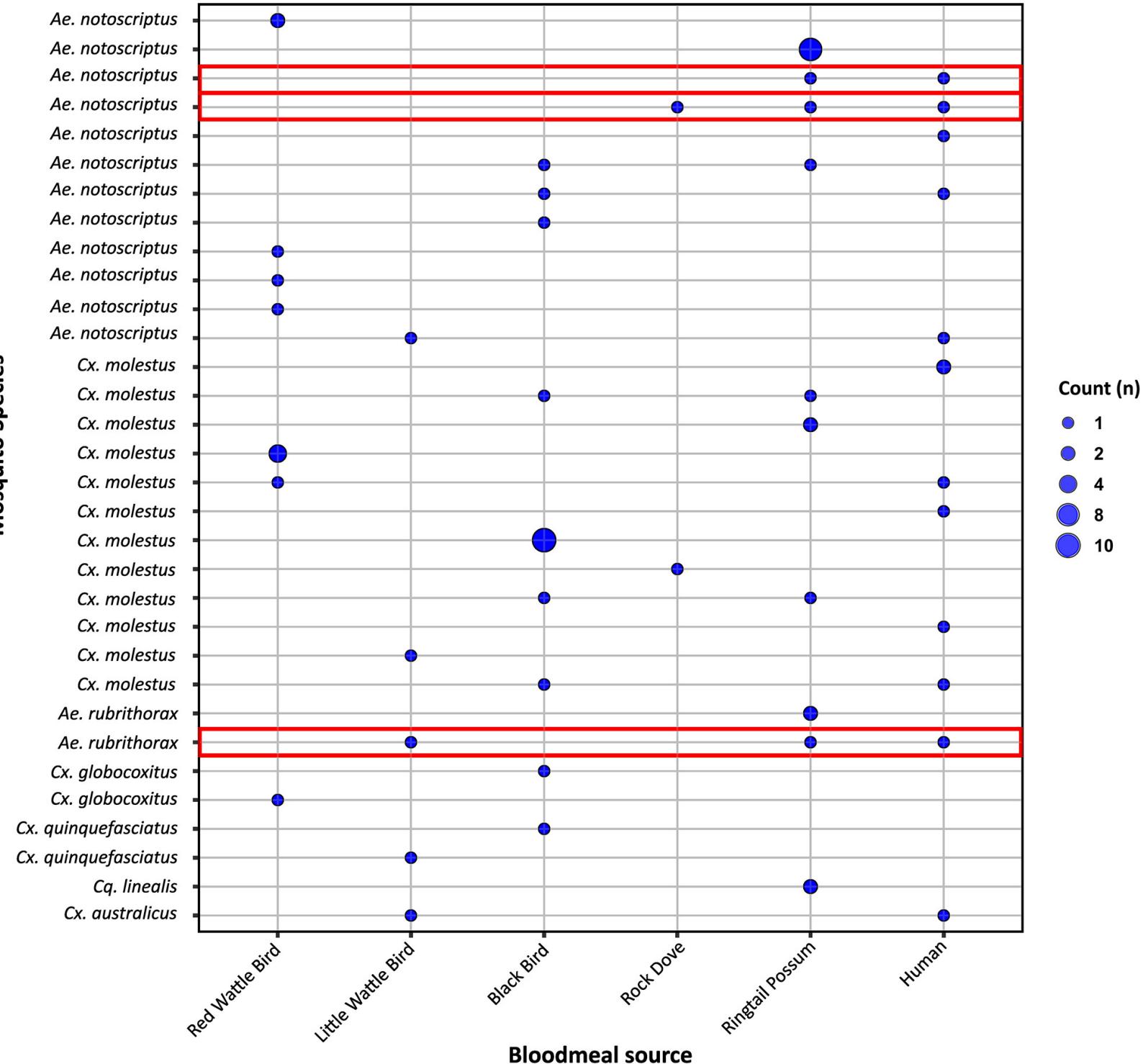
No. mosquitoes trapped

- 500
- 1000
- 1500
- 2000
- 2500

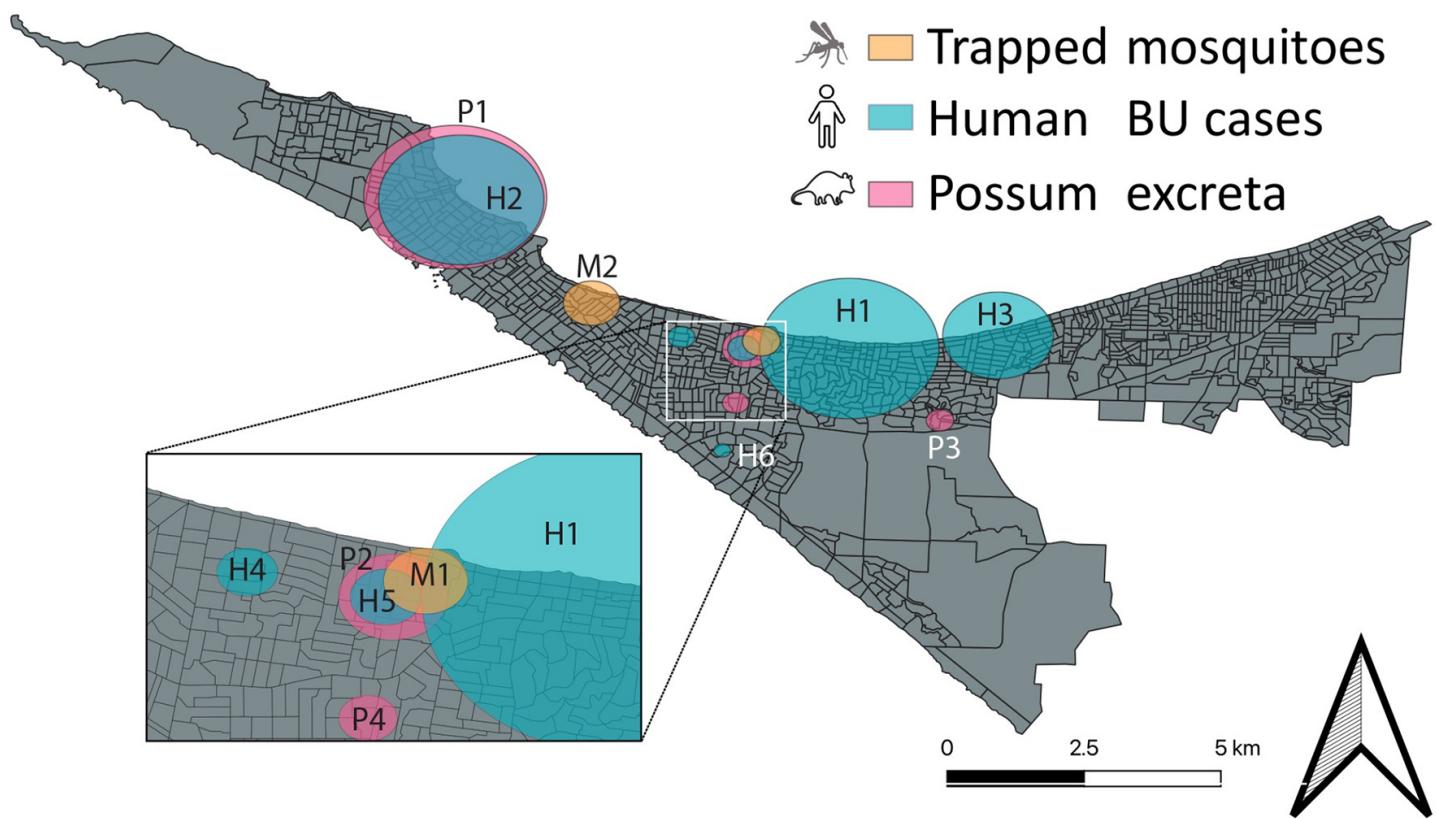
Human Buruli ulcer cases 21/02/2020 - 07/09/2020


- mesh block with at least one case reported
- mesh block no case reported


A


Sample ID	Origin	Initial IS2404 Ct	Post-enrich IS2404 Ct
RES21-00999	Possum excreta	22.13	18.95
RES21-00921	Possum excreta	21.62	18.95
819	<i>Ae. notoscriptus</i>	31.20	24.89
226	<i>Ae. notoscriptus</i>	33.47	26.67
5675	<i>Ae. notoscriptus</i>	32.62	31.81
4601-02	<i>Ae. notoscriptus</i>	33.54	32.26
4997	<i>Ae. notoscriptus</i>	35.82	34.32

B



C

A

B

	CLUSTER	P_VALUE	OBSERVED	EXPECTED	LLR
	M1	0.915	2	0.26	4.16
	M2	0.472	3	0.52	4.17
	H1	2.06E-05*	31	9.35	17.75
	H2	0.148	13	3.56	7.80
	H3	0.265	15	4.95	7.03
	H4	0.702	4	0.42	5.53
	H5	0.820	4	0.46	5.14
	H6	0.999	2	0.12	3.74
	P1	9.21E-05*	41	17.54	17.05
	P2	0.002*	9	1.350	13.58
	P3	0.804	4	0.562	6.42
	P4	0.997	3	0.450	4.46