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Abstract 

 

Many proteins have been recently shown to undergo a process of phase separation that 

leads to the formation of biomolecular condensates. Intriguingly, it has been observed 

that some of these proteins form dense droplets of sizeable dimensions already below 

the transition concentration, which is the concentration at which phase separation 

occurs. To understand this phenomenon, which is not readily compatible with classical 

nucleation theory, we investigated the properties of the droplet size distributions as a 

function of protein concentration. We found that these distributions can be described 

by a scale-invariant log-normal function with an average that increases progressively 

as the concentration approaches the transition concentration from below. These results 

suggest the existence of a universal behaviour independent of the sequences and 

structures of the proteins undergoing phase separation, which is typically observed for 

second-order phase transitions. Based on these observations, we show that it is 

possible to use the scale invariance to estimate the critical concentration for phase 

separation.  

 

 

 

Introduction 

 

Many proteins have been shown to undergo a phase separation process into a liquid-like 

condensed state1-5. This process appears to be of physiological significance since it may lead 

to the formation of biomolecular condensates1-7. As a consequence, it is closely controlled by 

the protein homeostasis system8,9, and its dysregulation has been associated with a broad 

range of human diseases10,11. It is therefore important to understand the fundamental nature 

of this process5,12,13 to provide insights for the identification of ways of modulating it through 

pharmacological interventions.  

 

Several models have been proposed to explain the phenomenon of protein phase separation. 

A commonly adopted theoretical framework is the Flory-Huggins theory of phase separation14-

16. In its simplest form, this theory describes a first-order phase separation in a system of 

homopolymers, which can also be adapted to polyampholites17. The Flory-Huggins theory has 
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been extended to associative polymers, with the aim of modelling the sequence composition 

of proteins, by Flory and Stockmayer, who described the phase separation in terms of a third-

order gelation process18,19. Semenov and Rubinstein modified the Flory-Stockmayer theory, 

reporting that the gelation process is not a phase transition, as all the derivatives of the free 

energy are analytical at the gelation point20
. It was also argued that another generalization of 

the Flory-Stockmayer theory21 could describe phase transitions in cytoskeletal networks22. 

More recently, it has been suggested that the protein phase separation process is coupled with 

percolation23. In an older study, g-crystallin was reported to undergo a second-order phase 

separation process24, consistently with observations in lysozyme solutions25. 

 

To understand better the nature of the transition underlying protein phase separation on the 

basis of recent experimental observations26,27, here we study the distribution of the size of the 

droplets below the value of the concentration at which the transition occurs, which here is 

referred to as the transition concentration, rt. This question appears as a promising starting 

point to develop new insights since it has been reported that proteins can form droplets of 

sizeable dimensions already well below the concentration at which phase separation 

occurs26,27. This behaviour is not predicted by classical nucleation theory28, and not readily 

consistent with the idea that the protein phase separation process can be described as a first-

order phase transition. This is because, in a first-order phase transition, nucleation takes place 

in a supersaturated system29, while in a subsaturated system particles can still self-assemble, 

but with a probability that decreases exponentially with the size of the assemblies.  

 

In the present study, we report the observation that the distributions of the sizes of the droplets 

of the proteins FUS and a-synuclein follow a scale-invariant log-normal distribution. These 

findings are consistent with a universal behaviour resulting from the presence of an 

increasingly large correlation length, x, as the concentration approaches the transition 

concentration from below. The correlation length is an emergent characteristic, and it is related 

to the typical spatial range over which density fluctuations are correlated. When x is sufficiently 

large, one can expect scale invariance and finite-size scaling30 to occur within a range of 

lengths spanning from the molecular size to x. This means that physical observables do not 

depend explicitly on many microscopic details characterizing spatial scales smaller than x, thus 

leading to a universal behaviour characterized by quantities obtained by coarse graining over 

scales smaller than x.  

 

At a first-order phase transition, x is finite, and if it is not large enough, the length range 

discussed above remains too short to observe scale invariance. However, the vicinity of the 

spinodal line (where nucleation disappears as the dilute phase becomes unstable) to the 

coexistence curve (where nucleation appears as the dilute phase becomes metastable) might 

cause a large increase of x  as the first-order phase transition is approached by increasing the 

concentration. If it is not preceded by a first-order phase transition, the spinodal line would 

correspond to a second-order phase transition, resulting in infinite x, and thus scale invariance 

holds on all length scales larger than the molecular scale.   

 

As an application of this observation, we address the question of whether scale invariance 

holds for droplet size distributions near the coexistence curve. As a practical consequence, we 

use this observation to propose a procedure to overcome the challenge of estimating the 

critical concentration, rc. Such challenge arises from the fact that close to the critical 
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concentration, the timescale required for the equilibration of a system grows together with x, 

thus exceeding the timescale amenable to experimental observation. If a second order-phase 

transition is present, then rc is the concentration where the transition occurs (with rc = rt), 

whereas in the case of a first-order phase transition, rc is where the spinodal occurs (with rc > 

rt).  

 

Our analysis of experimental data indicates that: (i) scale invariance does indeed hold near the 

coexistence curve, and (ii) the droplet size distribution is log-normal. Based on the properties 

of the scale-invariant log-normal distribution of droplet sizes, we investigate a correlation 

between the moments of the distribution and the distance from rc.  

 

Finally, we note that methods to assess the critical concentration are crucial for understanding 

the location of proteins in their phase diagram, their proximity to the phase boundary between 

the native and droplet states, and how pharmacological interventions can modify their phase 

behaviour. To address this problem, we report how the moments of the distribution can be 

used as a scale-invariant gauge to estimate the critical concentration. In this way, an accurate 

estimate of the critical concentration is possible because it is based on measurements carried 

out away from the critical point, under conditions such that fluctuations are small, and hence 

experimental errors are smaller than in the proximity of the transition. 

 

 

Results 

 

Formulation of the scaling ansatz. Empirical evidence indicates that protein self-assembly 

into liquid-like condensates is characterized by: (i) a phase separation transition at a 

concentration rt, (ii) a formation of droplets of sizeable dimensions already below rt, and (iii) a 

droplet size distribution that, after an initial transient, does not change with the experimental 

observation time, although individual droplets can form, grow, shrink and dissolve. An initial 

analysis of droplet size distributions observed experimentally led us to ask whether the region 

near the transition could be described in terms of a scaling theory, as commonly done for 

critical phenomena (29), as summarized above. We also note that this approach is analogous 

to analyzing the cluster size distribution in a percolation problem31.  

 

In our analysis, we called P>(s|Ã) the survival distribution function (SDF = 1-CDF, where CDF 

is the cumulative distribution function) corresponding to the probability to observe a droplet of 

size greater than s, when the concentration is Ã. The distance from the critical concentration 

Ãc is measured in terms of the dimensionless variable �	#  = (Ã 2 Ãc)/Ãc, which also allows to 

compare data from different experiments, as explained below. P>(s|Ã) in general depends 

separately on s, r  and many other parameters characterizing the process, including 

temperature, with Ãc and Ãt approaching each other as the temperature approaches the critical 

temperature from below. However, if scale invariance holds in the vicinity of Ãc, i.e. when |�|%	 

is small and the correlation length of the system is large enough, we would expect P>(s|Ã) to 

depend on r and on other details pertaining to the microscopic scales only through the 

characteristic droplet size, sc. The characteristic size sc is defined, apart from a proportionality 

constant (see below), as the ratio of the second to the first moment of the droplet size 

distribution. This leads us to formulate the following scaling ansatz31  
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  (1) 

 

where, sc depends on r, and it is expected to diverge at the critical concentration as30,31  

              

                                           .       (2) 

 

where a g 0 and Ç > 0 are critical exponents, a is a constant and f is the so-called scaling 

function30. 

 

Thus, the scaling of the SDF is equivalent to saying that, apart from the singular behaviour s2³, 

the remaining s and Ã dependence occurs only through the ratio s/sc. All extra dependencies 

are encapsulated in sc through the constant a, rc and, possibly, on the specific form of the 

scaling function f. A consequence of scaling and singular behavior described by Eq. (2), i.e. 

the divergence of the characteristic size of the droplets, is that details of any specific system 

may not affect the value of the critical exponents, which are therefore expected to be universal, 

i.e. independent of specific details of the system. 

 

To determine the exponents ³ and Ç, we introduce the moments of P>(s|Ã) 

 

                                          (3) 

 

where the scaling ansatz Eq. (1) has been used in the last step and ck is given by 

 

 
 

which depends on the function f but is independent of �	# .	From Eq. (3), we deduce that 

 

                                                         (4) 

      

If the scaling ansatz of Eq. (1) is correct, by plotting the ratio of moments ïsk+1ð/ïskð for various 

values of k as a function of 1/|�	%| in a log-log scale, we should obtain straight parallel lines with 

slope Ç and intercept -ln(ack+1/ck). 

  

Scaling behaviour of the droplet size distributions of FUS. We investigated the validity the 

ansatz in Eq. (2) using experimental data on the RNA-binding protein FUS, which are available 

for both the untagged and the SNAP-tagged protein27 (Table S1). We calculated the survival 

distribution function, Eq. (2), and its moments, Eq. (3). We then plotted the moments versus 

the inverse distance from the critical concentration 1/�	# | in log-log scale (Figure 1). We used 

the estimates of the critical concentrations, Ãc = 5.0 ¿M for FUS and Ãc = 5.4 ¿M for SNAP-

tagged FUS, obtained below, in a self-consistency check of the validity of the scaling ansatz. 

We observed that the moment ratios at different distances from the critical concentration fall 

onto straight lines, as predicted by the scaling ansatz. In addition, the weighted average slope 

(see Eqs. (15) and (16) below) of the lines for different moment ratios is 0.95 ± 0.05 for 
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untagged FUS, and 0.95 ± 0.05 for SNAP-tagged FUS, which is in good agreement with Ç=1 

for the exponent in the scaling ansatz in Eq. (1) (Figure 1A,C). 

 

Having determined the exponent Ç, we can also determine the exponent ³ using Eq. (3) 

 

   (5) 

 

The exponent ³ is then calculated from 

 

                                                             (6) 

 

where m is the slope of the linear fit of the log-log plot of <s> (the first moment, k=1) vs 1/|�	%|. 

We then plotted the mean droplet size, <s>, versus the distance from the critical concentration 

|�	%|  on a natural logarithm scale, which could be fitted using a line with a slope m= 0.99 ± 0.05 

for untagged FUS, and 0.93 ± 0.07 for SNAP-tagged FUS (Figure 1B,D), which is consistent 

with m=1. Using the value of Ç = 1, determined based on Eq. (4), we obtain ³ = 0.  

 

Taken together, these data support the validity of the scaling ansatz of Eq. (1).  

 

The droplet size distribution of FUS is log-normal. The above analysis suggests that the 

droplet size distribution may follow a log-normal distribution. The scaling ansatz of Eq. (1) for 

the SDF is equivalent to the following scaling for the probability density distribution 

 

  (7) 

 

where f, the scaling function in Eq. (1), and F are related as follows  

 

  (8) 

 

The log-normal droplet size distribution P(s|Ã) is  

 

  (9a) 

with 

                                                                              (9b) 

 

being the characteristic droplet size distribution as defined above. Consequently, the size 

survival distribution function is 

 

m = (k − α)ϕ → α = k −
m

ϕ
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√
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    (10) 

 

The values of s0 and s can be determined as the average and the variance, of ln (s/u) 

obtained at each concentration: 

 

  (11) 

 

where u is an arbitrary (and irrelevant) constant with the same units as s. In the following, when 

not stated, it is implicitly assumed that u=1 in the same units as s. The droplet sizes follow a 

log-normal distribution only if the survival distribution functions or, equivalently, the size 

distribution functions, multiplied by s, collapse when plotted versus Eq. (9) or Eq. (10) with the 

values of s0 and Ã of each droplet size distributions obtained at different concentrations (Eq. 

(11)). We determined s0 and Ã values for each distribution (Figure 2A,B) and plotted the 

properly rescaled size distribution functions versus [ln(s/s0)]/s (Figure 2C). We observed that 

the size distribution functions collapsed for both FUS and SNAP-tagged FUS (Figure 2C). 

Furthermore, the collapsed curve overlapped with the analytic log-normal distribution we 

computed with s0=1, Ã=1, the normal distribution in the rescaled variables. 

 

The observed collapse supports the observation that droplet size distributions from different 

experiments follows a log-normal behaviour. 

 

Independence of the variance of the distribution from the concentration of FUS. The log-

normal behaviour described above is consistent with the scale invariance underlying Eq. (1) if 

the variance of the log-normal distribution, Ã, is independent of r or, equivalently, of �	#  32. 

Indeed, comparing Eq. (1) with Eqs. (7), (9a,b) and (10) we obtain that the scaling invariance 

holds with 

 

                                                                 (12) 

 

with a=0 and Ç = 1 (Figure 1). Furthermore, the k-th moment of the log-normal distribution is 

 

 , (13) 

 

which, compared with the scaling prediction Eq. (3), is also consistent with ³ = 0, appropriate 

for the log-normal, and  

 

  (14) 

 

which is independent of �	#  if Ã is independent of  �	# , see Eq. (3).  
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This prediction is verified in Figure 2B, where the Ã2 values are shown to be nearly uniform at 

different concentrations, with the exception of the data at the lowest concentration values, i.e. 

those furthest away from the critical concentration. These results are consistent with the 

scaling ansatz in the vicinity of 	�	#=0.   

 

Our analysis does not exclude the possibility that Ã might depend on specific experimental 

conditions, even though the data that we analysed are suggestive of at most a weak 

dependence. We note that such dependence, even if present, does not invalidate the scaling, 

as long as the exponents do not depend on the experimental conditions. 

 

Estimation of the critical concentration of FUS using the scale invariance. The fact that 

the scaling ansatz is satisfied for different set of experiments opens a possibility to estimate 

the critical concentration. The scaling predicts (ï�!ï)"# !d  vs Ã to be a straight line with a slope 

depending on k. It is important to note that this is the consequence only of the scaling ansatz 

and not of the log-normal distribution. The line should intersect the Ã-axis at the critical 

concentration providing an estimate of Ãc.  

 

We illustrate this process using the FUS data by plotting (ï�!ï)"# !d  vs Ã. As expected, for 

different values of k we obtained a straight line fit of the points near Ãc (Figure 3). Due to 

experimental uncertainties, the various lines, one for each value of k, lead to a slightly different 

estimate of Ãc. The average of the estimated Ãc values is 5.0 ± 0.2 µM for FUS and 5.4 ± 0.4 

µM for SNAP-tagged FUS (Figure 3). The different Ãc. values predicted based on the scaling 

ansatz using different k values enable the estimation of error of the predicted critical 

concentration (Figure 3). Both estimates are higher than the values of the transition 

concentration Ãt originally reported from the plateau of the absorbance of a spin-down assay 

(Ãt = 2 µM of untagged and Ãt = 3 µM of tagged FUS27), as expected, since Ãt is always smaller 

than Ãc. We also note that our estimates are compatible with other ones recently reported33.  

 
We then used both the values of Ãc to probe the collapse of the size distribution functions 

(Figure 4). We observed that both in cases of untagged and tagged FUS, the SDFs collapsed 

with our estimated value of Ãc (Figure 4). 

 

These results indicate that the scaling model can be used to estimate the critical concentration 

based on the distribution of droplet sizes. 

 

Estimation of the critical concentration of a-synuclein using the scale invariance.  As 

heterogeneous clusters of a-synuclein were recently reported below the critical 

concentration34, we aimed at characterising whether such clusters also follow scale invariant 

size distribution. Using A90C a-synuclein labelled with Alexa Fluor 647, we monitored droplet 

formation as previously described35. We measured droplet sizes at 5% PEG concentration 10 

minutes after detection of liquid-like condensates using increasing concentrations of a-

synuclein (20, 40, 50, 60, 75, 80 and 100 µM) (Table S2). Using k values of 0.25, 0.75, 1.25, 

1.75, we determined the critical exponents in the scaling ansatz (Eqs. (4) and (6)), obtaining Ç 

= 1.3 ± 0.2 and a = 0.9 ± 0.2. As control, we also determined the critical exponents using the 

scaling ansatz in a different way, using Eq. (19), obtaining Ç = 1.1 ± 0.2 and a = 0.8 ± 0.2, 

corroborating the validity of the scale invariant model. We then estimated the critical 
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concentration using the two methods obtaining Ãc = 137 ± 10 µM, using Eq. (18) (Figure 5C) 

and Ãc = 125 ± 7 µM, using Eq. (19) (Figure 5D).  

 

 

Discussion 

 

Although growing experimental evidence indicates the presence of protein condensates both 

in vitro and in vivo1-5,36, the mechanisms responsible for the formation of these condensates 

are not fully understood. There is still the need of a general framework capable to fully account 

for all the experimental observations of protein phase separation. Here, to help build this 

framework, we aimed at describing phase separation as a universal phenomenon using a 

scaling ansatz. 

 

With this aim, we analyzed a series of droplet size distributions of FUS and a-synuclein. We 

found that the droplet size distributions follow a log-normal behaviour and can be described by 

a scale-invariant model. Scale invariance means that the description of the behaviour of a 

system remains the same regardless of the scale of observation. It has been seen for example 

in self-similar systems like fractals, which repeat patterns at different length scales37. Scale 

invariance is vital in physics, biology, and economics, helping understand complex systems by 

identifying consistent patterns and fundamental properties38. The critical exponents of the 

scaling model are consistent for different systems. The compatibility of the droplet distributions 

with a scale-invariant model underscores its universality, whereby the properties of a broad 

range of systems remain unaffected by specific dynamical details. We also note the generality 

of the log-normal model for nucleation and grain size growth ranging from crystal seeding39,40  

to the mass size distributions in organism growth of various sea organisms32.  

 

These observations may appear to be in contrast with the Flory-Huggins theory, which 

characterizes droplet formation as a consequence of nucleation processes within a metastable 

state of a supersaturated system. In such cases, however, when the correlation length exceeds 

the cellular dimensions, the remnants of what should have been a first-order phase transition 

in an infinite system may effectively exhibit indistinguishable characteristics from a second-

order phase transition. We also note that a power law distribution, but above the transition 

temperature, has recently been reported for nucleoli41. 

 

Quite generally, the existence of scale invariance within the droplet size distribution, at least 

under the conditions investigated here, imposes stringent constraints on theoretical models 

that aim to elucidate protein phase separation. The elegance of a scaling analysis lies in its 

ability to uncover the fundamental aspects of universal phenomena, transcending models 

confined solely to specific systems for which they were originally designed. 

 

As a practical consequence of the scaling model, we found that the moments of the droplet 

size distribution correlate with the critical concentration. This observation suggests that the 

analysis of the moments of the droplet size distribution can provide a quantitative gauge of the 

proximity to the phase boundary irrespective of the actual mechanism of phase transition. 
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Conclusions  

 

We have addressed the problem of understanding the nature of the transition that leads to 

protein phase separation. By analysing the functional form of the droplet size distribution, we 

have reported a scale-invariant log-normal behaviour, which suggests that protein phase 

separation exhibits features typical of both second-order and first-order phase transitions. 

 

As a prediction derived from this functional form of the droplet size distribution, we have 

presented a method of estimating the critical concentration for protein phase separation. This 

distribution can be determined in the test tube, cell cultures or human tissues. The droplet 

dimensions could be assessed in 1D (length), 2D (area) or 3D (volume).  

 

We note that second-order phase transitions usually result from critical phenomena, and that 

these processes tend to be highly sensitive to environmental conditions. The modulation of the 

formation and dimensions of protein droplets therefore could be more tunable than what 

expected from a standard first-order phase transition. This feature would appear to be 

favourable for the control of the formation of biomolecular condensates by the protein 

homeostasis system. 

 

 

 

Methods 

 

Expression and purification of ³-synuclein  

Human wild-type ³-synuclein and A90C cysteine variants were purified from Escherichia coli 

BL21 (DE3)-gold (Agilent Technologies) expressing plasmid pT7-7 encoding for ³-synuclein 

as previously described35,42,43. Following purification in 50 mM trisaminomethane-hydrochloride 

(Tris-HCL) at pH 7.4, ³-synuclein was concentrated using Amicon Ultra-15 centrifugal filter 

units (Merck Millipore). The protein was subsequently labelled with a 1.5-fold molar excess of 

C5 maleimide-linked Alexa Fluor 647 (Invitrogen Life Technologies) overnight at 4 °C with 

constant mixing. The excess dye was removed using an Amicon Ultra-15 centrifugal filter unit 

and used immediately for phase separation experiments. 

 

Determination of the droplet distribution of ³-synuclein 

The experimental conditions were determined from a previously described phase boundary35. 

To induce liquid droplet/condensate formation, wild-type ³-synuclein was mixed with an A90C 

variant labelled with Alexa 647 at a 100:1 molar ratio in 50 mM Tris-HCL and 5% polyethylene 

glycol 10,000 (PEG) (Thermo Fisher Scientific). The final mixture was pipetted onto a 35-mm 

glass-bottom dish (P35G-1.5-20-C; MatTek Life Sciences) and immediately imaged on Leica 

Stellaris Will inverted stage scanning confocal microscope using a 40×/1.3 HC PL Apo CS oil 

objective (Leica Microsystems) at room temperature. The excitation wavelength was 633 nm 

for all experiments. For liquid droplet size characterisation images were captured 10 minutes 

post-liquid droplet formation. All images were processed and analysed in ImageJ (NIH). 

Images were analysed by applying a threshold function in ImageJ that excluded the 

background of the image and identified the liquid droplets as having a circularity of 0.8-1. 

 

 

Determination of the droplet distributions of FUS  
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We used previously published data on FUS droplets27, where the fluorescence intensity of the 

FUS droplets was reported to be proportional to their diameters27. The abundance of untagged 

FUS droplets formed at 0.125, 0.25, 0.5 and 1.0, 2.0 µM concentrations were measured by 

nanoparticle tracking analysis for 51 different droplet sizes with three repetitions for each 

measure27. Similarly, the abundance of SNAP-tagged FUS droplets at 0.125, 0.25, 0.5, 1.0, 

1.5, 2.0, 2.5 and 3.0 µM concentrations were measured for 64 different sizes with 3 repetitions 

for each measure27. For each data point, we determined the mean droplet abundance and the 

standard error of the mean from the three experimental replicates. The survival distribution 

function was computed as P>x = N>x/Ntot, where N>x is the number of droplets above size x, and 

Ntot is the number of droplets. The values of x were chosen according to the original data27.  

 

Determination of the critical exponents for FUS 

We computed the k-th moment of each droplet size, determined the average for each value of 

k and computed the ratios of the subsequent moments (Eq. (4)). We tested several k values 

from 0.25 to 3 in 0.25 increments, determined the moment ratios in each case. We selected 

four k values (k=0.5, k=1.0, k=1.5 and k=2.0) where the moment ratios at each concentration 

provided the best linear fit for both FUS and SNAP-tagged FUS. Then we generated a log-log 

plot of the moments and �	# , the distance from the critical concentration (Figure 1). For each 

value of k, the points were estimated by taking the average of the computation done on the 3 

independent measurements. The errors of the data points are estimated as the standard error 

of the mean. At each k value, we performed a linear regression between the points at each 

concentration27 determining the slope, resulting in four �! 	values, with an associated error 

from the weighted linear regression. Given the independent observations �! with variances 

�!, the value of the exponent was obtained as the weighted average 

 

�) = 3 &! '
!

"d!

3 # '
!
"d!

                                                                            (15) 

 

The error on the exponent � was computed as 

 

V��(�)) = #

3 # '
!
"d!

                                                                   (16) 

 

The exponent � was determined based on the log-log plot of the mean of the droplet size 

distribution at various distances from the critical concentration (|�|% ).  (Figure 1).  We performed 

a linear regression weighted by the inverse of the variance of the data points corresponding, 

as previously, to the computed mean of the three independent experiments for each 

concentration (Eq. (6)) using � =1. The error of the exponent � was computed using Eq. (16), 

where the variance referred to the k=0 moments. 

 

At each concentration, from the distribution of ln(s) we determined s0 as <ln(s)> =ln(s0), and Ã 

as the standard deviation of ln(s). At each concentration, we plotted the droplet size distribution 

function versus 
()(+/+#)

'
  (Eq. (10)) using the s0 and  Ã values determined from the corresponding 

droplet size distribution at the given concentration. The log-normal behaviour is demonstrated 

by the resulting collapse (Figure 2). Furthermore, the collapsed curves overlapped with a 
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theoretical log-normal curve computed with s0=1, Ã = 1, which is the normal distribution in the 

rescaled log variables. 

 

Determination of the critical concentration for FUS 

The k-th moment of the log-normal distribution (Eq. (13)) and the scaling ansatz with ³ = 0 (Eq. 

(3)) gives 

 

(ï�!ï)"# !d = #

+#
�"

!$
"

"                                                                                                         (17) 

where  �. = � ç 1/"/%
/%

1
"#

, a is a proportionality constant independent of k, ln s0 is the mean and 

Ã is the standard deviation of the logarithm of the droplet probability size distribution. Therefore 

  

(ï�!ï)"# !d = #

0
�"

!$
"

" 1/"/%
/%

1                                                                                                                    (18)

  

plotted versus the concentration intersects the x-axis at the value of the critical concentration.

  

Determination of the critical exponents for a-synuclein 

For a-synuclein, the critical exponents were determined in two different ways, the first using 

the same method as for FUS (Eq. (18)), and the second using  

 

                                                                                 (19) 

 

Where we constrained j to 1. Analogously to what happens in Figure 3, the lines plotted in 

Figure 5D intercept the x axis on the same point, which corresponds to the critical 

concentration.  

 

Determination of the critical concentration of a-synuclein 

As for the critical exponents, we determined the critical concentration of of a-synuclein using 

the scaling ansatz in two different ways, either using Eq. (18) or using Eq. (19). We plotted the 

moments of the droplet size (Eq. (3)) versus the concentration, using a range of values of k to 

cover majority of the data. We performed a linear regression weighted by the inverse variance, 

determining the intercept on the x-axis. For each value of k, we calculated the regression errors 

of both intercept and slopes. We estimated the critical concentration from each fit as the 

intercept calculated as �1,3 = "4

5
, where q and m are the y-axis intercept and the slope retrieved 

by the fit, respectively, where the subscript � indicates each independent experiment. The 

estimated Ãc was obtained as the mean of the different independent values Ãc,i. The error on 

the estimate of Ã
!
 is obtained as the standard error of the mean of the Ãc,i. 
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Figure 1. Determination of the critical exponents for FUS of the scaling invariance. (A,C) 

Determination of the exponent Ç for FUS (A) and SNAP-tagged FUS (C). The ratios of the 

average moments of the droplet sizes (<sk+1>/<sk>, at k=0.5, 1, 1.5, 2, Eq. (4)) are represented 

at various distances from the critical concentration (|�|% ). The exponent Ç for each value of k 

was determined by error weighted linear regressions. The exponent �) and its error were 

determined as mean and standard deviation of the three independent measurements (Eqs. 

(15) and (16)). Error bars are shown in inset for graphical clarity. (B,D) Determination of the 

exponent ³ for FUS (B) and SNAP-tagged FUS (D). The mean of the droplet size distributions 

is plotted at various distances from the critical concentration (|�|% ). The value of the exponent 

³ was determined by error weighted linear regression (Eq. (6)), using � =1, where the errors 

were standard deviations of the three independent measurements (Eq. 16). Error bars, which 

were obtained as the standard deviation of the three independent measurements are shown 

in inset for graphical clarity. Error weighted linear regressions are performed in both cases 

excluding the data point at the lowest concentration Ã = 0.125 ¿M. The fit corresponding to the 

scaling ansatz, compatible with Ç=1 and ³=0, is represented by a dashed gray line with a slope 

of 1.  
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Figure 2. Log-normal behavior of FUS and SNAP-tagged FUS size distributions below 

the critical concentration. (A, B) Variation of the size distribution with protein concentration:  

lns0 (A) and Ã (B).  lns0 and Ã (inset) were computed for FUS (blue) and SNAP-tagged FUS 

(red) using Eq. (11). Error bars (in inset for graphical clarity) are estimated from three 

independent measurements. While droplet sizes increase with concentration, the width of 

distribution does not change considerably. (C) The collapse of the droplet size distribution 

functions is consistent with a log-normal behaviour. The droplet size distribution functions for 

both untagged FUS (blue) and SNAP-tagged FUS (red) are plotted after rescaling the sizes by 

the lns0 and Ã values, the first and second moment of the logarithm of the droplet size 

distribution, which are a function of the concentration. The rescaled curves for both the 

untagged and the tagged protein collapse to the normal distribution (gray dashed), as expected 

when the non-rescaled droplet sizes follow a log-normal distribution.   
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Figure 3: Estimation of the critical concentration of FUS using the scale invariance.  

(A,B) Critical concentration of FUS (A) and SNAP-tagged FUS (B). The scaling model predicts 

that the function of the moments plotted versus the concentration Ã becomes a straight line 

near the critical concentration Ãc and intersects the Ã-axis at Ãc, independently of the value of 

k. Error weighted linear regressions are performed in both cases excluding the data point at 

the lowest concentration Ã = 0.125 ¿M. The resulting estimate of the critical concentration is 

shown in green along with the corresponding standard deviation, estimated from three 

independent measurements.  
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Figure 4. Collapse of the droplet size distributions of FUS as predicted by the scale 

invariance. If the scaling ansatz of Eq. (2) holds, the standard deviation s of the log-normal 

distribution should not depend on the distance from the critical concentration, and a collapse 

should be achieved by rescaling the size with the distance |�|% = 12 �

�
�

	from the critical 

concentration. (A,C) Droplet size distributions derived from the experimental data of untagged 

FUS at 0.125, 0.25, 0.5, 1.0 and 2.0 ¿M concentrations (A) and SNAP-tagged FUS at 0.125, 

0.25, 0.5, 1.0, 1.5, 2.0, 2.5 and 3.0 ¿M concentrations (C), and their standard error of the mean 

from three independent measurements (26). (B,D) Collapse of the droplet size distributions 

rescaled by the estimated critical concentration. The error bars show the standard error of the 

mean from the three independent measurements (26).  
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Figure 5. Estimation of the critical concentration of a-synuclein using the scale 

invariance.  (A) Determination of the critical exponent j. The ratios of the average moments 

of the droplet sizes (<sk+1>/<sk>, at k=0.25, 0.75, 1.25, 1.75, Eq. (4)) are represented at various 

distances from the critical concentration (|�|% ). The exponent Ç and its error for each value of k 

were determined as a mean and standard deviation of the three independent measurements 

(Eqs. (15) and (16)). Error bars are shown in inset for clarity. (B) Determination of the critical 

exponent a. The mean of the droplet size distributions is plotted at various distances from the 

critical concentration (|�|% ). The value of the exponent ³ was determined by error weighted 

linear regression (Eq. 6), using � =1, where the errors were standard deviations of the five 

independent measurements (Eq. (16)). Error bars, which were obtained as the standard 

deviation of the five independent measurements are shown in inset for clarity. Error-weighted 

linear regressions were performed. The fit corresponding to the scaling ansatz, compatible 

with Ç=1 and ³=0, is represented by a scattered gray line with a slope of 1. (C,D) Determination 

of the critical concentration for a-synuclein using the scaling ansatz in two different ways (see 

Methods). The scaling model predicts that the function of the moments plotted versus the 

concentration Ã becomes a straight line near the critical concentration Ãc and intersects the Ã-

axis at Ãc, independently of the value of k. Error-weighted linear regressions were performed. 

The resulting estimates of the critical concentration are shown in green along with the 

corresponding standard deviation, estimated from five independent measurements. In panel 

D, j was constrained to 1.0 using Eq. (19). 
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