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Abstract

Many proteins have been recently shown to undergo a process of phase separation that
leads to the formation of biomolecular condensates. Intriguingly, it has been observed
that some of these proteins form dense droplets of sizeable dimensions already below
the transition concentration, which is the concentration at which phase separation
occurs. To understand this phenomenon, which is not readily compatible with classical
nucleation theory, we investigated the properties of the droplet size distributions as a
function of protein concentration. We found that these distributions can be described
by a scale-invariant log-normal function with an average that increases progressively
as the concentration approaches the transition concentration from below. These results
suggest the existence of a universal behaviour independent of the sequences and
structures of the proteins undergoing phase separation, which is typically observed for
second-order phase transitions. Based on these observations, we show that it is
possible to use the scale invariance to estimate the critical concentration for phase
separation.

Introduction

Many proteins have been shown to undergo a phase separation process into a liquid-like
condensed state®. This process appears to be of physiological significance since it may lead
to the formation of biomolecular condensates’”. As a consequence, it is closely controlled by
the protein homeostasis system®®, and its dysregulation has been associated with a broad
range of human diseases'®"". It is therefore important to understand the fundamental nature
of this process®'*"® to provide insights for the identification of ways of modulating it through
pharmacological interventions.

Several models have been proposed to explain the phenomenon of protein phase separation.
A commonly adopted theoretical framework is the Flory-Huggins theory of phase separation
' In its simplest form, this theory describes a first-order phase separation in a system of
homopolymers, which can also be adapted to polyampholites'’. The Flory-Huggins theory has
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been extended to associative polymers, with the aim of modelling the sequence composition
of proteins, by Flory and Stockmayer, who described the phase separation in terms of a third-
order gelation process''. Semenov and Rubinstein modified the Flory-Stockmayer theory,
reporting that the gelation process is not a phase transition, as all the derivatives of the free
energy are analytical at the gelation point?. It was also argued that another generalization of
the Flory-Stockmayer theory?' could describe phase transitions in cytoskeletal networks?®.
More recently, it has been suggested that the protein phase separation process is coupled with
percolation?. In an older study, y-crystallin was reported to undergo a second-order phase
separation process?*, consistently with observations in lysozyme solutions?.

To understand better the nature of the transition underlying protein phase separation on the
basis of recent experimental observations?*?’, here we study the distribution of the size of the
droplets below the value of the concentration at which the transition occurs, which here is
referred to as the transition concentration, p:. This question appears as a promising starting
point to develop new insights since it has been reported that proteins can form droplets of
sizeable dimensions already well below the concentration at which phase separation
occurs®?’. This behaviour is not predicted by classical nucleation theory®®, and not readily
consistent with the idea that the protein phase separation process can be described as a first-
order phase transition. This is because, in a first-order phase transition, nucleation takes place
in a supersaturated system?®, while in a subsaturated system particles can still self-assemble,
but with a probability that decreases exponentially with the size of the assemblies.

In the present study, we report the observation that the distributions of the sizes of the droplets
of the proteins FUS and a-synuclein follow a scale-invariant log-normal distribution. These
findings are consistent with a universal behaviour resulting from the presence of an
increasingly large correlation length, &, as the concentration approaches the transition
concentration from below. The correlation length is an emergent characteristic, and it is related
to the typical spatial range over which density fluctuations are correlated. When § is sufficiently
large, one can expect scale invariance and finite-size scaling® to occur within a range of
lengths spanning from the molecular size to &. This means that physical observables do not
depend explicitly on many microscopic details characterizing spatial scales smaller than &, thus
leading to a universal behaviour characterized by quantities obtained by coarse graining over
scales smaller than &.

At a first-order phase transition, & is finite, and if it is not large enough, the length range
discussed above remains too short to observe scale invariance. However, the vicinity of the
spinodal line (where nucleation disappears as the dilute phase becomes unstable) to the
coexistence curve (where nucleation appears as the dilute phase becomes metastable) might
cause a large increase of ¢ as the first-order phase transition is approached by increasing the
concentration. If it is not preceded by a first-order phase transition, the spinodal line would
correspond to a second-order phase transition, resulting in infinite &, and thus scale invariance
holds on all length scales larger than the molecular scale.

As an application of this observation, we address the question of whether scale invariance
holds for droplet size distributions near the coexistence curve. As a practical consequence, we
use this observation to propose a procedure to overcome the challenge of estimating the
critical concentration, pc. Such challenge arises from the fact that close to the critical
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concentration, the timescale required for the equilibration of a system grows together with &,
thus exceeding the timescale amenable to experimental observation. If a second order-phase
transition is present, then pc is the concentration where the transition occurs (with pc = py),
whereas in the case of a first-order phase transition, p¢ is where the spinodal occurs (with pc >

Py).

Our analysis of experimental data indicates that: (i) scale invariance does indeed hold near the
coexistence curve, and (ii) the droplet size distribution is log-normal. Based on the properties
of the scale-invariant log-normal distribution of droplet sizes, we investigate a correlation
between the moments of the distribution and the distance from p.

Finally, we note that methods to assess the critical concentration are crucial for understanding
the location of proteins in their phase diagram, their proximity to the phase boundary between
the native and droplet states, and how pharmacological interventions can modify their phase
behaviour. To address this problem, we report how the moments of the distribution can be
used as a scale-invariant gauge to estimate the critical concentration. In this way, an accurate
estimate of the critical concentration is possible because it is based on measurements carried
out away from the critical point, under conditions such that fluctuations are small, and hence
experimental errors are smaller than in the proximity of the transition.

Results

Formulation of the scaling ansatz. Empirical evidence indicates that protein self-assembly
into liquid-like condensates is characterized by: (i) a phase separation transition at a
concentration p, (ii) a formation of droplets of sizeable dimensions already below ps, and (iii) a
droplet size distribution that, after an initial transient, does not change with the experimental
observation time, although individual droplets can form, grow, shrink and dissolve. An initial
analysis of droplet size distributions observed experimentally led us to ask whether the region
near the transition could be described in terms of a scaling theory, as commonly done for
critical phenomena (29), as summarized above. We also note that this approach is analogous
to analyzing the cluster size distribution in a percolation problem?®'.

In our analysis, we called P-(s|p) the survival distribution function (SDF = 1-CDF, where CDF
is the cumulative distribution function) corresponding to the probability to observe a droplet of
size greater than s, when the concentration is p. The distance from the critical concentration
pc is measured in terms of the dimensionless variable p° = (o0 — pc)/pe, which also allows to
compare data from different experiments, as explained below. Ps(s|p) in general depends
separately on s, p and many other parameters characterizing the process, including
temperature, with p; and p; approaching each other as the temperature approaches the critical
temperature from below. However, if scale invariance holds in the vicinity of p., i.e. when [p|
is small and the correlation length of the system is large enough, we would expect P-(s|p) to
depend on p and on other details pertaining to the microscopic scales only through the
characteristic droplet size, sc. The characteristic size s; is defined, apart from a proportionality
constant (see below), as the ratio of the second to the first moment of the droplet size
distribution. This leads us to formulate the following scaling ansatz®'
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P>(S|p) = S_Oéf(i) (1)

where, s; depends on p, and it is expected to diverge at the critical concentration as®’'’

—p

se = a|&Le| " = alp|™®

(@)

where « = 0 and ¢ > 0 are critical exponents, a is a constant and f is the so-called scaling
function®.

Thus, the scaling of the SDF is equivalent to saying that, apart from the singular behaviour s,
the remaining s and p dependence occurs only through the ratio s/s.. All extra dependencies
are encapsulated in sc through the constant a, pc. and, possibly, on the specific form of the
scaling function f. A consequence of scaling and singular behavior described by Eq. (2), i.e.
the divergence of the characteristic size of the droplets, is that details of any specific system
may not affect the value of the critical exponents, which are therefore expected to be universal,
i.e. independent of specific details of the system.

To determine the exponents a and ¢, we introduce the moments of Px(s|p)

> dPs (s Ca
<Sk> :/ sk(—%>ds — Ck.slg
0

where the scaling ansatz Eq. (1) has been used in the last step and ckis given by
ek =k [y a" o f(z) da
which depends on the function f but is independent of p'. From Eq. (3), we deduce that

("1 crga1 . CkH1 |-
<sk> - Ck S¢ — Ck CL|,0| (4)

If the scaling ansatz of Eq. (1) is correct, by plotting the ratio of moments (s**")/(s¥) for various

values of k as a function of 1/[p | in a log-log scale, we should obtain straight parallel lines with
slope ¢ and intercept -In(ack+1/cx).

Scaling behaviour of the droplet size distributions of FUS. We investigated the validity the
ansatz in Eq. (2) using experimental data on the RNA-binding protein FUS, which are available
for both the untagged and the SNAP-tagged protein?” (Table S1). We calculated the survival
distribution function, Eq. (2), and its moments, Eq. (3). We then plotted the moments versus
the inverse distance from the critical concentration 1/5| in log-log scale (Figure 1). We used
the estimates of the critical concentrations, p. = 5.0 uM for FUS and pc = 5.4 pM for SNAP-
tagged FUS, obtained below, in a self-consistency check of the validity of the scaling ansatz.
We observed that the moment ratios at different distances from the critical concentration fall
onto straight lines, as predicted by the scaling ansatz. In addition, the weighted average slope
(see Egs. (15) and (16) below) of the lines for different moment ratios is 0.95 + 0.05 for
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untagged FUS, and 0.95 + 0.05 for SNAP-tagged FUS, which is in good agreement with ¢=1
for the exponent in the scaling ansatz in Eq. (1) (Figure 1A,C).

Having determined the exponent ¢, we can also determine the exponent a using Eq. (3)

o e(k—a)
<8k>:ck-s]§*a - |P Pe
Pe
(5)
The exponent a is then calculated from
_ _ — L _m
m=((k-a)p—>a=k % )

where m is the slope of the linear fit of the log-log plot of <s> (the first moment, k=1) vs 1/[p |.
We then plotted the mean droplet size, <s>, versus the distance from the critical concentration
[p'| on a natural logarithm scale, which could be fitted using a line with a slope m= 0.99 # 0.05
for untagged FUS, and 0.93 £ 0.07 for SNAP-tagged FUS (Figure 1B,D), which is consistent
with m=1. Using the value of ¢ = 1, determined based on Eq. (4), we obtain a = 0.

Taken together, these data support the validity of the scaling ansatz of Eq. (1).
The droplet size distribution of FUS is log-normal. The above analysis suggests that the

droplet size distribution may follow a log-normal distribution. The scaling ansatz of Eq. (1) for
the SDF is equivalent to the following scaling for the probability density distribution

dP
APGID) e pafs), s x [

P(slp) = ——- )

where f, the scaling function in Eq. (1), and F are related as follows

f(z) =2 /ZOO e F(z)da

(8)
The log-normal droplet size distribution P(s|p) is
2
. In(s/so)
P(S|p) =S 10\}% eXp{_%} (ga)
with
2
So = 806—302/2 where s. = <<SS>> (9b)

being the characteristic droplet size distribution as defined above. Consequently, the size
survival distribution function is
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Potslp) = g -erfe( 2L

o2 (10)

The values of sp and o can be determined as the average and the variance, of In (s/u)
obtained at each concentration:

In(so/u) = (In(s/u))
0% = Var(In(s/u)) = (In*(s/u)) — (In(s/u))? (11)

where u is an arbitrary (and irrelevant) constant with the same units as s. In the following, when
not stated, it is implicitly assumed that u=17 in the same units as s. The droplet sizes follow a
log-normal distribution only if the survival distribution functions or, equivalently, the size
distribution functions, multiplied by s, collapse when plotted versus Eq. (9) or Eq. (10) with the
values of sp and o of each droplet size distributions obtained at different concentrations (Eq.
(11)). We determined so and o values for each distribution (Figure 2A,B) and plotted the
properly rescaled size distribution functions versus [In(s/so)]/c (Figure 2C). We observed that
the size distribution functions collapsed for both FUS and SNAP-tagged FUS (Figure 2C).
Furthermore, the collapsed curve overlapped with the analytic log-normal distribution we
computed with sp=1, 0=1, the normal distribution in the rescaled variables.

The observed collapse supports the observation that droplet size distributions from different
experiments follows a log-normal behaviour.

Independence of the variance of the distribution from the concentration of FUS. The log-
normal behaviour described above is consistent with the scale invariance underlying Eq. (1) if
the variance of the log-normal distribution, o, is independent of p or, equivalently, of g .
Indeed, comparing Eq. (1) with Egs. (7), (9a,b) and (10) we obtain that the scaling invariance
holds with

n $6302/2
f(@) = gerfe[ M7=

F(zr) =271

n xesa /2
e

vz P~ (12)

with a=0and ¢ = 1 (Figure 1). Furthermore, the k-th moment of the log-normal distribution is

<Sk> —8 e’ o k(k— 3)/2} (13)

which, compared with the scaling prediction Eq. (3), is also consistent with a = 0, appropriate
for the log-normal, and

Cp = 602kz(k—3)/2 (14)

which is independent of g if o is independent of g, see Eq. (3).
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This prediction is verified in Figure 2B, where the o2 values are shown to be nearly uniform at
different concentrations, with the exception of the data at the lowest concentration values, i.e.
those furthest away from the critical concentration. These results are consistent with the
scaling ansatz in the vicinity of p =0.

Our analysis does not exclude the possibility that o might depend on specific experimental
conditions, even though the data that we analysed are suggestive of at most a weak
dependence. We note that such dependence, even if present, does not invalidate the scaling,
as long as the exponents do not depend on the experimental conditions.

Estimation of the critical concentration of FUS using the scale invariance. The fact that
the scaling ansatz is satisfied for different set of experiments opens a possibility to estimate
the critical concentration. The scaling predicts ((s;)) "1/ vs p to be a straight line with a slope
depending on k. It is important to note that this is the consequence only of the scaling ansatz
and not of the log-normal distribution. The line should intersect the p-axis at the critical
concentration providing an estimate of pc.

We illustrate this process using the FUS data by plotting ({s;))~1/% vs p. As expected, for
different values of k we obtained a straight line fit of the points near p. (Figure 3). Due to
experimental uncertainties, the various lines, one for each value of k, lead to a slightly different
estimate of p.. The average of the estimated p. values is 5.0 £ 0.2 uM for FUS and 5.4 + 0.4
uM for SNAP-tagged FUS (Figure 3). The different p.. values predicted based on the scaling
ansatz using different k values enable the estimation of error of the predicted critical
concentration (Figure 3). Both estimates are higher than the values of the transition
concentration p; originally reported from the plateau of the absorbance of a spin-down assay
(ot = 2 uM of untagged and p: = 3 uM of tagged FUS?"), as expected, since p is always smaller
than p.. We also note that our estimates are compatible with other ones recently reported?.

We then used both the values of p; to probe the collapse of the size distribution functions
(Figure 4). We observed that both in cases of untagged and tagged FUS, the SDFs collapsed
with our estimated value of p. (Figure 4).

These results indicate that the scaling model can be used to estimate the critical concentration
based on the distribution of droplet sizes.

Estimation of the critical concentration of a-synuclein using the scale invariance. As
heterogeneous clusters of a-synuclein were recently reported below the critical
concentration®*, we aimed at characterising whether such clusters also follow scale invariant
size distribution. Using A90C a-synuclein labelled with Alexa Fluor 647, we monitored droplet
formation as previously described®®. We measured droplet sizes at 5% PEG concentration 10
minutes after detection of liquid-like condensates using increasing concentrations of a-
synuclein (20, 40, 50, 60, 75, 80 and 100 uM) (Table S2). Using k values of 0.25, 0.75, 1.25,
1.75, we determined the critical exponents in the scaling ansatz (Egs. (4) and (6)), obtaining ¢
=1.3+0.2and «=0.9 £ 0.2. As control, we also determined the critical exponents using the
scaling ansatz in a different way, using Eq. (19), obtaining ¢ = 1.1 £ 0.2 and « = 0.8 £ 0.2,
corroborating the validity of the scale invariant model. We then estimated the critical
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concentration using the two methods obtaining pc = 137 + 10 uM, using Eq. (18) (Figure 5C)
and pc= 125 + 7 uM, using Eq. (19) (Figure 5D).

Discussion

Although growing experimental evidence indicates the presence of protein condensates both
in vitro and in vivo'*3¢, the mechanisms responsible for the formation of these condensates
are not fully understood. There is still the need of a general framework capable to fully account
for all the experimental observations of protein phase separation. Here, to help build this
framework, we aimed at describing phase separation as a universal phenomenon using a
scaling ansatz.

With this aim, we analyzed a series of droplet size distributions of FUS and a-synuclein. We
found that the droplet size distributions follow a log-normal behaviour and can be described by
a scale-invariant model. Scale invariance means that the description of the behaviour of a
system remains the same regardless of the scale of observation. It has been seen for example
in self-similar systems like fractals, which repeat patterns at different length scales®. Scale
invariance is vital in physics, biology, and economics, helping understand complex systems by
identifying consistent patterns and fundamental properties®. The critical exponents of the
scaling model are consistent for different systems. The compatibility of the droplet distributions
with a scale-invariant model underscores its universality, whereby the properties of a broad
range of systems remain unaffected by specific dynamical details. We also note the generality
of the log-normal model for nucleation and grain size growth ranging from crystal seeding®**°
to the mass size distributions in organism growth of various sea organisms*2.

These observations may appear to be in contrast with the Flory-Huggins theory, which
characterizes droplet formation as a consequence of nucleation processes within a metastable
state of a supersaturated system. In such cases, however, when the correlation length exceeds
the cellular dimensions, the remnants of what should have been a first-order phase transition
in an infinite system may effectively exhibit indistinguishable characteristics from a second-
order phase transition. We also note that a power law distribution, but above the transition
temperature, has recently been reported for nucleoli*’.

Quite generally, the existence of scale invariance within the droplet size distribution, at least
under the conditions investigated here, imposes stringent constraints on theoretical models
that aim to elucidate protein phase separation. The elegance of a scaling analysis lies in its
ability to uncover the fundamental aspects of universal phenomena, transcending models
confined solely to specific systems for which they were originally designed.

As a practical consequence of the scaling model, we found that the moments of the droplet
size distribution correlate with the critical concentration. This observation suggests that the
analysis of the moments of the droplet size distribution can provide a quantitative gauge of the
proximity to the phase boundary irrespective of the actual mechanism of phase transition.
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Conclusions

We have addressed the problem of understanding the nature of the transition that leads to
protein phase separation. By analysing the functional form of the droplet size distribution, we
have reported a scale-invariant log-normal behaviour, which suggests that protein phase
separation exhibits features typical of both second-order and first-order phase transitions.

As a prediction derived from this functional form of the droplet size distribution, we have
presented a method of estimating the critical concentration for protein phase separation. This
distribution can be determined in the test tube, cell cultures or human tissues. The droplet
dimensions could be assessed in 1D (length), 2D (area) or 3D (volume).

We note that second-order phase transitions usually result from critical phenomena, and that
these processes tend to be highly sensitive to environmental conditions. The modulation of the
formation and dimensions of protein droplets therefore could be more tunable than what
expected from a standard first-order phase transition. This feature would appear to be
favourable for the control of the formation of biomolecular condensates by the protein
homeostasis system.

Methods

Expression and purification of a-synuclein

Human wild-type a-synuclein and A90C cysteine variants were purified from Escherichia coli
BL21 (DE3)-gold (Agilent Technologies) expressing plasmid pT7-7 encoding for a-synuclein
as previously described®**2*®_ Following purification in 50 mM trisaminomethane-hydrochloride
(Tris-HCL) at pH 7.4, a-synuclein was concentrated using Amicon Ultra-15 centrifugal filter
units (Merck Millipore). The protein was subsequently labelled with a 1.5-fold molar excess of
C5 maleimide-linked Alexa Fluor 647 (Invitrogen Life Technologies) overnight at 4 °C with
constant mixing. The excess dye was removed using an Amicon Ultra-15 centrifugal filter unit
and used immediately for phase separation experiments.

Determination of the droplet distribution of a-synuclein

The experimental conditions were determined from a previously described phase boundary®.
To induce liquid droplet/condensate formation, wild-type a-synuclein was mixed with an A90C
variant labelled with Alexa 647 at a 100:1 molar ratio in 50 mM Tris-HCL and 5% polyethylene
glycol 10,000 (PEG) (Thermo Fisher Scientific). The final mixture was pipetted onto a 35-mm
glass-bottom dish (P35G-1.5-20-C; MatTek Life Sciences) and immediately imaged on Leica
Stellaris Will inverted stage scanning confocal microscope using a 40x/1.3 HC PL Apo CS oil
objective (Leica Microsystems) at room temperature. The excitation wavelength was 633 nm
for all experiments. For liquid droplet size characterisation images were captured 10 minutes
post-liquid droplet formation. All images were processed and analysed in Imaged (NIH).
Images were analysed by applying a threshold function in Imaged that excluded the
background of the image and identified the liquid droplets as having a circularity of 0.8-1.

Determination of the droplet distributions of FUS
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We used previously published data on FUS droplets?’, where the fluorescence intensity of the
FUS droplets was reported to be proportional to their diameters?’. The abundance of untagged

FUS droplets formed at 0.125, 0.25, 0.5 and 1.0, 2.0 uM concentrations were measured by
nanoparticle tracking analysis for 51 different droplet sizes with three repetitions for each
measure?’. Similarly, the abundance of SNAP-tagged FUS droplets at 0.125, 0.25, 0.5, 1.0,

1.5, 2.0, 2.5 and 3.0 uM concentrations were measured for 64 different sizes with 3 repetitions
for each measure?’. For each data point, we determined the mean droplet abundance and the
standard error of the mean from the three experimental replicates. The survival distribution
function was computed as P>x = N>,/Niwt, where Nsy is the number of droplets above size x, and
Nt is the number of droplets. The values of x were chosen according to the original data?’.

Determination of the critical exponents for FUS

We computed the k-th moment of each droplet size, determined the average for each value of
k and computed the ratios of the subsequent moments (Eq. (4)). We tested several k values
from 0.25 to 3 in 0.25 increments, determined the moment ratios in each case. We selected
four k values (k=0.5, k=1.0, k=1.5 and k=2.0) where the moment ratios at each concentration
provided the best linear fit for both FUS and SNAP-tagged FUS. Then we generated a log-log
plot of the moments and g, the distance from the critical concentration (Figure 1). For each
value of k, the points were estimated by taking the average of the computation done on the 3
independent measurements. The errors of the data points are estimated as the standard error
of the mean. At each k value, we performed a linear regression between the points at each
concentration?” determining the slope, resulting in four ¢, values, with an associated error
from the weighted linear regression. Given the independent observations ¢, with variances

oy, the value of the exponent was obtained as the weighted average

— _ Yrer/o}
¢ = Ykl/of (15)

The error on the exponent ¢ was computed as

1
Ykl/of

Var(p) = (16)

The exponent @ was determined based on the log-log plot of the mean of the droplet size
distribution at various distances from the critical concentration ([p|). (Figure 1). We performed
a linear regression weighted by the inverse of the variance of the data points corresponding,
as previously, to the computed mean of the three independent experiments for each
concentration (Eq. (6)) using ¢ =1. The error of the exponent & was computed using Eq. (16),
where the variance referred to the k=0 moments.

At each concentration, from the distribution of In(s) we determined so as <In(s)> =In(so), and o
as the standard deviation of In(s). At each concentration, we plotted the droplet size distribution

In(s/so)
o

function versus (Eq. (10)) using the sp and o values determined from the corresponding

droplet size distribution at the given concentration. The log-normal behaviour is demonstrated
by the resulting collapse (Figure 2). Furthermore, the collapsed curves overlapped with a
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theoretical log-normal curve computed with so=1, o = 1, which is the normal distribution in the
rescaled log variables.

Determination of the critical concentration for FUS
The k-th moment of the log-normal distribution (Eq. (13)) and the scaling ansatz with a = 0 (Eq.
(3)) gives

(s i/ = Le™s (1)

-1
where so = a - |% , ais a proportionality constant independent of k, In s is the mean and

o is the standard deviation of the logarithm of the droplet probability size distribution. Therefore

P—Pc

_ka?
2 |
Pc

Ut~k = e

(18)

plotted versus the concentration intersects the x-axis at the value of the critical concentration.

Determination of the critical exponents for a-synuclein
For a-synuclein, the critical exponents were determined in two different ways, the first using
the same method as for FUS (Eq. (18)), and the second using

<Sk> _1/[@(k)_1)] p—pe
<<S>) x Pc ‘ (19)

Where we constrained ¢ to 1. Analogously to what happens in Figure 3, the lines plotted in
Figure 5D intercept the x axis on the same point, which corresponds to the critical
concentration.

Determination of the critical concentration of a-synuclein

As for the critical exponents, we determined the critical concentration of of a-synuclein using
the scaling ansatz in two different ways, either using Eq. (18) or using Eq. (19). We plotted the
moments of the droplet size (Eq. (3)) versus the concentration, using a range of values of k to
cover majority of the data. We performed a linear regression weighted by the inverse variance,
determining the intercept on the x-axis. For each value of k, we calculated the regression errors
of both intercept and slopes. We estimated the critical concentration from each fit as the

intercept calculated as p.; = %’, where g and m are the y-axis intercept and the slope retrieved

by the fit, respectively, where the subscript i indicates each independent experiment. The
estimated p. was obtained as the mean of the different independent values p.;. The error on
the estimate of p, is obtained as the standard error of the mean of the pc,.
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Figure 1. Determination of the critical exponents for FUS of the scaling invariance. (A,C)
Determination of the exponent ¢ for FUS (A) and SNAP-tagged FUS (C). The ratios of the
average moments of the droplet sizes (<s**'>/<s*>, at k=0.5, 1, 1.5, 2, Eq. (4)) are represented
at various distances from the critical concentration ([p]). The exponent ¢ for each value of k
was determined by error weighted linear regressions. The exponent ¢ and its error were
determined as mean and standard deviation of the three independent measurements (Egs.
(15) and (16)). Error bars are shown in inset for graphical clarity. (B,D) Determination of the
exponent a for FUS (B) and SNAP-tagged FUS (D). The mean of the droplet size distributions
is plotted at various distances from the critical concentration ([p|). The value of the exponent
a was determined by error weighted linear regression (Eq. (6)), using ¢ =1, where the errors
were standard deviations of the three independent measurements (Eq. 16). Error bars, which
were obtained as the standard deviation of the three independent measurements are shown
in inset for graphical clarity. Error weighted linear regressions are performed in both cases
excluding the data point at the lowest concentration p = 0.125 yM. The fit corresponding to the
scaling ansatz, compatible with =1 and a=0, is represented by a dashed gray line with a slope
of 1.
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Figure 2. Log-normal behavior of FUS and SNAP-tagged FUS size distributions below
the critical concentration. (A, B) Variation of the size distribution with protein concentration:
Inso (A) and o (B). Insp and o (inset) were computed for FUS (blue) and SNAP-tagged FUS
(red) using Eq. (11). Error bars (in inset for graphical clarity) are estimated from three
independent measurements. While droplet sizes increase with concentration, the width of
distribution does not change considerably. (C) The collapse of the droplet size distribution
functions is consistent with a log-normal behaviour. The droplet size distribution functions for
both untagged FUS (blue) and SNAP-tagged FUS (red) are plotted after rescaling the sizes by
the Insy and o values, the first and second moment of the logarithm of the droplet size
distribution, which are a function of the concentration. The rescaled curves for both the
untagged and the tagged protein collapse to the normal distribution (gray dashed), as expected
when the non-rescaled droplet sizes follow a log-normal distribution.
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Figure 3: Estimation of the critical concentration of FUS using the scale invariance.
(A,B) Critical concentration of FUS (A) and SNAP-tagged FUS (B). The scaling model predicts
that the function of the moments plotted versus the concentration p becomes a straight line
near the critical concentration pc and intersects the p-axis at pc, independently of the value of
k. Error weighted linear regressions are performed in both cases excluding the data point at
the lowest concentration p = 0.125 uM. The resulting estimate of the critical concentration is
shown in green along with the corresponding standard deviation, estimated from three

independent measurements.
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Figure 4. Collapse of the droplet size distributions of FUS as predicted by the scale
invariance. If the scaling ansatz of Eq. (2) holds, the standard deviation ¢ of the log-normal
distribution should not depend on the distance from the critical concentration, and a collapse
should be achieved by rescaling the size with the distance [p| =1 —pﬂfrom the critical

concentration. (A,C) Droplet size distributions derived from the experimental data of untagged
FUS at 0.125, 0.25, 0.5, 1.0 and 2.0 uM concentrations (A) and SNAP-tagged FUS at 0.125,
0.25,0.5,1.0, 1.5, 2.0, 2.5 and 3.0 uM concentrations (C), and their standard error of the mean
from three independent measurements (26). (B,D) Collapse of the droplet size distributions
rescaled by the estimated critical concentration. The error bars show the standard error of the
mean from the three independent measurements (26).
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Figure 5. Estimation of the critical concentration of a-synuclein using the scale
invariance. (A) Determination of the critical exponent ¢. The ratios of the average moments
of the droplet sizes (<s**'>/<s*>, at k=0.25, 0.75, 1.25, 1.75, Eq. (4)) are represented at various
distances from the critical concentration ([p|). The exponent ¢ and its error for each value of k
were determined as a mean and standard deviation of the three independent measurements
(Egs. (15) and (16)). Error bars are shown in inset for clarity. (B) Determination of the critical
exponent a.. The mean of the droplet size distributions is plotted at various distances from the
critical concentration ([p]). The value of the exponent a was determined by error weighted
linear regression (Eq. 6), using ¢ =1, where the errors were standard deviations of the five
independent measurements (Eq. (16)). Error bars, which were obtained as the standard
deviation of the five independent measurements are shown in inset for clarity. Error-weighted
linear regressions were performed. The fit corresponding to the scaling ansatz, compatible
with ¢=1 and a=0, is represented by a scattered gray line with a slope of 1. (C,D) Determination
of the critical concentration for a-synuclein using the scaling ansatz in two different ways (see
Methods). The scaling model predicts that the function of the moments plotted versus the
concentration p becomes a straight line near the critical concentration pcand intersects the p-
axis at pc, independently of the value of k. Error-weighted linear regressions were performed.
The resulting estimates of the critical concentration are shown in green along with the
corresponding standard deviation, estimated from five independent measurements. In panel
D, ¢ was constrained to 1.0 using Eq. (19).
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