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During foraging behavior, action values are persistently encoded in

neural activity and updated depending on the history of choice out-

comes. What is the neural mechanism for action value maintenance

and updating? Here we explore two contrasting network models:

synaptic learning of action value versus neural integration. We show

that both models can reproduce extant experimental data, but they

yield distinct predictions about the underlying biological neural cir-

cuits. In particular, the neural integrator model but not the synaptic

model requires that reward signals are mediated by neural pools se-

lective for action alternatives and their projections are aligned with

linear attractor axes in the valuation system. We demonstrate exper-

imentally observable neural dynamical signatures and feasible per-

turbations to differentiate the two contrasting scenarios, suggesting

that the synaptic model is a more robust candidate mechanism. Over-

all, this work provides a modeling framework to guide future experi-

mental research on probabilistic foraging.

Foraging | Value-based decision-making | Reinforcement learning | Neu-

ral integrator

During foraging, action values are stored in short-term
memory over times of several behavioral trials, much

longer than intrinsic neural time scales. The stored action val-
ues bias actions to increase reward acquisition. Action values
are updated depending on the history of choices and rewards.
Single-neuron activity in the monkey posterior parietal cortex
(1, 2), the mouse medial prefrontal (mPFC) (3) and retros-
plenial cortex (RSC) (4), is correlated with estimated action
values. The activity of some of these neurons is persistent,
lasting for seconds during the entire inter-trial interval (ITI)
and updated after the trial ends (3, 4).

Such value encoding and update during foraging has tradi-
tionally been explained by reward-dependent synaptic plastic-
ity (5, 6). In these models, Hebbian plasticity combined with
reward signals (7) modifies synapses that connect feedforward
inputs to a recurrent network that displays winner-take-all dy-
namics. Action values are encoded in the feedforward synaptic
weights to action-encoding selective populations, biasing the
network’s winner-take-all dynamics. However, this stands in
contrast with recordings of neurons in the mice mPFC and
RSC that display graded persistent encoding of action value
(3, 4).

Artificial neural networks (ANNs) can be trained to pro-
duce foraging behavior without synaptic changes in synaptic
weights (8). These ANNs incorporate mechanisms referred to
as gates with unknown neuronal bases which enables them to
maintain signals in memory for extended periods (9, 10). It re-
mains uncertain whether foraging without changes in synaptic
weights represents a robust principle underlying foraging in
the brain. However, these findings in conjunction with the ob-
served persistent graded activity proportional to action values

(3, 4) have raised an interesting alternative mechanism for for-
aging without synaptic changes by virtue of neural integration
such as what is found in line attractor models (11, 12).

In this work, we investigated these two contrasting mecha-
nisms for foraging: reward-dependent synaptic plasticity and
neural integration of values which does not rely on synaptic
weight changes. We build biologically plausible yet simple
models based on the two above scenarios. Both recapitulate
the behavior and important features of neural dynamics dur-
ing foraging (3, 4). However, they differ qualitatively in their
network architecture, dynamical properties, and response to
perturbations. We found the synaptic mechanism is much
more robust to perturbations in the neural activity and the
connectivity than the neural integration of values. The neural
integrator model requires vectorial reward prediction error
(RPE) signals in an on-manifold alignment with the line at-
tractor axes. Lastly, we explored structured foraging tasks
which it is advantageous anti-correlated action value updates.
We predict that in these tasks the neural integrator requires
selective changes in the vectorial RPE alignment, whereas
the synaptic model accommodates these updates by unselec-
tive changes of shared inhibition. We outline experimental
predictions that can be used to disprove these theories using
current neurotechnologies. Our work provides a modeling
framework to investigate the neural mechanisms underlying
foraging behavior.

Results

Two mechanisms for value maintenance and update. In the
neural integrator model (Fig. 1A), action values are stored in
directions in the neural space of slow variation in population
activity or line attractor axes. The neural integrator integrates
rewards by updating action values by an input proportional to
the reward prediction error (RPE) in the direction of action
value encoding (see Fig. 1A). In this mechanism, changes in
the synaptic efficacy are not needed for action value update,
similar to a theoretical proposal in RNN-based agents (8).
On the other hand, in the synaptic model (Fig. 1C), a scalar
feedback triggered by reward enables Hebbian plasticity on
the recurrent connections of the valuation network, in turn
modifying in a reward-dependent manner the synaptic efficacy
on the network’s recurrent connections (5, 6). Since synaptic
inputs drive spiking activity, action values modulate neuronal
activity. Action values are maintained in neural space in a
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Fig. 1. Neural integrator (Top row) vs. synaptic model (bottom row) for foraging behavior. (A) Maintainance and neural integration of values. The value for the two contingencies

is maintained in two different line attractors embedded in high-dimensional neural space. Increasing color opacity represents increasing value. After the reward is collected in

the task, RPE signals align to the line attractor corresponding to the chosen contingency update values by stirring the neural activity along the corresponding line attractor.

Changes in value are not caused by changes in synaptic weights. (B) Network architecture for the neural integrator. Action value is maintained in the valuation network. These

values are read out by the action selection network for producing the choice through a winner-take-all dynamics. RPE signals are computed by subtracting from the trial-by-trial

reward the action value encoded in the valuation network (see dashed line arrow). The RPE signal is routed in a contingency-dependence fashion to the valuation network

to update action value. (C) Maintenance and integration of values through synaptic plasticity. The value of the two contingencies is maintained in neural space in a single

fixed-point attractor. Changes in synaptic weights shift the location of the fixed-point attractor in neural space on a trial-by-trial basis. (D) Network architecture for the synaptic

model. Values are maintained by two selective populations in the valuation network. As in (B), values are read out by the action selection network for producing the choice.

Feedback choice signals elevate the activity of selective populations in the valuation network. RPE signals are computed by subtracting from the trial-by-trial reward the action

value encoded in the valuation network (see dashed line arrow). The RPE is combined with elevated activity to produce synaptic plasticity. The dynamics of one trial for the

valuation (left) and action selection (right) networks for the Neural integrator (E) and synaptic model (F).

single fixed-point attractor that shifts its location on a trial-
by-trial basis (Fig. 1C).

We explore these two contrasting neural mechanisms un-
derlying action value maintenance and its reward-dependent
update during foraging. We develop circuit models for the two
mechanisms that allow us to explore experimental tests for
these two mechanisms. These models were guided by anatom-
ical and physiological evidence of the neural circuits involved
in foraging behavior (3, 13). We aim for these models to be
simple enough to be suitable for mechanistic understanding
and mathematical analysis, but to include key details to the
extent their predictions can be interpreted in actual brain
circuits.

We first focus on the dynamic foraging task (DFT) (2–
4, 14, 15) (see Methods). Briefly, in this task, after a go
cue, the subject freely chooses among two contingencies that
deliver reward with nonstationary probabilities. The reward
probability for the two contingencies changes in blocks of tens
to hundreds of trials. On each trial, a go cue instructs the
subject to make a choice and collect reward. After a reward is
delivered probabilistically, the subject waits an ITI of several
seconds after the next go cue. Different from the two-armed
bandit task (16), the reward is baited (2–4, 14, 15) in this
task: once the reward is assigned, it remains assigned to the
contingency until its consumption even if the contingency is
not chosen.

The network architecture consists of two inter-connected
areas, each modeled as recurrent networks (Fig. 1B and D).
Action values for the two contingencies are maintained and
updated depending on reward in the ‘valuation network’. Ac-
tions are selected depending on action values in the ‘action
selection network’. This architecture is inspired by the separa-

tion between the limbic and motor information streams during
decision-making (13, 17).

In the neural integrator model, action values for the two
contingencies are maintained by the population activity in two
linear axes embedded in a high-dimensional neural space (the
space spanned by the activity of all neurons in the network)
(Fig. 1A) that we refer as line attractor axes. After the action
is selected and the reward is delivered, an RPE signal updates
the corresponding action value represented in the line attractor
axes (Fig. 1B). Importantly, although the two line attractor
axes are orthogonal in neural space, the network connectivity
is recurrent, and overlapping populations encode action values
for the two contingencies (Fig. S1 in SI). Two predictions
can be derived directly from our neural integrator model’s
assumptions:

1. RPE signals have to be at least partially aligned to the
action value encoding axis corresponding to the chosen
contingency to produce sizable changes in value (see more
in the section response to perturbations). Therefore,
unlike the view in which the RPE is a global scalar signal
(18), for the neural integrator model, RPE must project
to a selective neural population in a choice-dependent
manner to update a particular action value in any given
trial.

2. For choice signals from the action selection network to not
disrupt the value encoding in the valuation networks we
expect feedback to be weak or approximately orthogonal
to the line attractor axes.

In the synaptic model, the recurrent synaptic weights in the
valuation network are updated according to the three-factor
learning rule (see Eq. (17)). After the action is selected, the
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pre and post-synaptic activity of chosen selective populations
in the valuation network is transiently elevated after the ac-
tion is selected due to the feedback from the action selection
network (Fig. 1B and D). In contrast, little to no feedback
activity is produced in the corresponding unchosen population,
presenting low pre and post-synaptic activity. After reward
delivery, the transient elevated activity in the corresponding
chosen populations will drive Hebbian plasticity gated by a
global RPE (5, 6, 19) (Fig. 1C and D) (see Methods). Thus,
only the recurrent synapses of the corresponding chosen popu-
lations will modify their synaptic efficacy. Two conceptually
different predictions from the neural integrator model can be
directly derived from the synaptic model:

1. RPE acts as a global signal gating plasticity in the three-
factor learning rule of the recurrent synapses of the value
network.

2. Selective feedback from the action selection network is
needed for value learning in the valuation network.

The dynamic mechanism for maintaining and updating
action values is qualitatively different for the synaptic model
compared with the neural integrator. For the synaptic model,
action values are maintained in a single fixed-point attractor
in neural space. After the reward is collected in the task,
a global RPE signal will gate synaptic changes through a
three-factor learning rule. Changes in synaptic weights stir
the location of the fixed-point attractor in neural space (see
Fig. 1C). Therefore, in this model, changes in synaptic weights
are needed for action value update.

Foraging behavior. Can we differentiate these models during
foraging in the DFT?

At a single trial level, both models display value-dependent
persistent activity during the inter-trial interval (ITI) (Fig. 1E
and F; Fig. S1 in SI) as it has been observed experimentally
(3, 4). After the action selection network makes a choice, the
activity is modified in both models, and action value repre-
sentations are updated and persist during the next ITI (see
Fig. 1D and E) (3, 4). Importantly, as discussed above, in the
synaptic model, selective choice signals in the valuation net-
work feedback from the action selection network before reward
delivery for action value update. For the neural integrator,
these signals are not present by construction (see Fig. 1D vs.
E) since they would disrupt action value encoding (see next
section).

During a simulated DFT session the reward delivery is
stochastic, and the probability of reward for the two contin-
gencies changes in blocks of 100 trials (see Methods), making
it necessary for the models to update the value representations
to maximize the reward consumption. The instantaneous pro-
portion of choices closely follows the instantaneous proportion
of baited reward for the two models (Figs. 2A and B). This
dynamical matching is also displayed in a block scale in which,
for each block, the slope of the choice ratio, which is the slope
of the cumulative choice of contingency A vs. B, matches
approximately the baited probability ratio for each block. (2–
4, 15) (Figs. 1E and F). We found that the two models display
probability matching (14) for a large parameter range.

For the neural integrator, the action value representations
encoded in the population activity projected in the line at-
tractor axes dynamically change across trials and they are

correlated with the baited rewards (Fig. 2C). Similarly, the
synaptic model’s selective populations firing rates during the
ITI encoding action value also correlate with the baited reward
(Fig. 2D). Overall, both models display qualitatively similar
dynamics of value encoding across trials consistent with the
value representations observed in the cortex during foraging
(3, 4).

The ITI activity in the action selection network also
presents, a rather small, action value encoded in its persistent
firing. The average firing rate is correlated to the action value
encoded by the valuation network in both models (Fig. 2G
and H) due to the feedforward connections from the action
value network to the valuation network (Fig. 1B and D).

The trial-by-trial dynamics of action value representations
both models is mathematically very similar to the Q-learning
algorithm in Reinforcement Learning (16) (see Methods and
SI). As in the Q-learning algorithm, maintained action values
bias action selection performed in our case by the action
selection network. Also, as in the Q-learning algorithm, RPE
signals are integrated by updating action values in both models.
In the neural integrator, this is performed by the neural activity
itself, while in the synaptic model, by changes in the synaptic
efficacy.

We fit a reduced version of both network models using
mouse behavior during the DFT (see Fig. 3, Fig. S2, and
the SI for a description of the fitting procedure). We found
that both models have comparable performance with standard
behavioral models for foraging (3, 4, 20, 21).

Importantly, although both models display qualitatively
similar dynamics across trials for encoding value, they have
qualitatively different network mechanisms for value encoding
and update. These differences can be uncovered by their
response to perturbations, as shown in the next section.

Response to perturbations in neural activity. A central differ-
ence between these models is their response to perturbations.

When a perturbation targets action value encoding popu-
lations in the valuation network during the ITI the models
behave qualitatively differently. In the case of the synaptic
model, because action values are stored in the synaptic effica-
cies, disruptions in the action value encoding due to selective
perturbations always rebound to previous values (see Fig. 4A).
By contrast, in the case of the neural integrator, perturbations
of population activity during the ITI can modify the action
value encoding (Fig. 4B). Importantly, however, the effect
highly depends on the way of perturbation (Fig. 4D). While
on-manifold perturbation dramatically modifies action value
encoding, random perturbations have to be much stronger
(∼3-5 times than on-manifold perturbations) to have compara-
ble effects to on-manifold perturbations (Fig. 4B and Fig. S3).
Uniform (spatially correlated) perturbations where all neurons
are perturbed by the same constant amount, reminiscent of
optogenetic manipulations, could also disrupt action value en-
coding as on-manifold perturbations if they are strong enough
(∼3-5 times than on-manifold perturbations) (Fig. 4B and
Fig. S3). Importantly, strong input noise degrades value en-
coding leading to drifts in the projections of neural activity
in the line attractor axes (Fig. 4C). In the neural integrator,
perturbations can be further engineered by ranking neurons by
the strength of their encoding to one of the two contingencies.
We found that perturbing the first 10% of the highest action
value encoding neurons produce an 83% of change in action
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Fig. 2. Foraging behavior for the neural integrator (left) and synaptic model (right). (Top row) Foraging behavior during a DFT session (A and B). The base reward probability

(red) changes in blocks of 100 trials (see Methods), and the network adjusts its choices, maximizing the baited reward. Black and gray ticks indicate the rewarded and

unrewarded trials respectively with choices A (top) and B (bottom). The network’s proportion of choices (black trace) closely follows the proportion of baited reward (green trace)

which are smoothed using a causal Gaussian kernel with a standard deviation of 4 trials. (C) Mean projections of the valuation network’s activity on the line attractors axes

during the ITI across trials. (D) Mean activity of the valuation network’s selective populations during the ITI across trials. (E and F) Cumulative choice (black) and rate of baited

rewards for the neural integrator and synaptic model, respectively. Mean projections on the line attractors axes (G) and mean activity of the selective populations (H) on the

valuation network vs. mean firing rate on the action selection network during the ITI.
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Trial #

Fig. 3. Foraging behavior for a mouse vs. network models during an example DFT

session. (A) Foraging behavior of a mouse during a DFT session (see Methods). The

base reward probability (red) changes in blocks. Black and gray ticks indicate the

rewarded and unrewarded trials respectively for right (top) and left (bottom) choices.

Black trace: the proportion of choices smoothed using a running average of 10 trials.

The behavior was fitted using a Rescorla–Wagner model (21) (R-W) (orange), the

neural integrator (blue), and a synaptic model (green). (B) Model fitting AIC and BIC

scores. In this task, the contingencies are licking left and right (see Methods).

value encoding (Fig. 4D).
In the synaptic model, the timescale of response to random

fluctuations of the selective populations in the valuation net-
work is correlated with action values. In contrast, in the neural
integrator, it is not (Fig. 5). The reason is that in the synaptic
model, an increase (decrease) in the strength of excitatory
recurrent slows down (speeds up) the network’s dynamics (see
SI). The neural integrator does not rely on synaptic efficacy
changes for action value updates. As a result, there is no
association between action value encoding and the time-scale
of fluctuations.

Response to connectivity perturbations. Synaptic strengths
fluctuate in time due to unreliable synapses (22), short-term
(23), and long-term plasticity (24). How do synaptic fluctua-
tions affect action value encoding in both models?

In our neural integrator, for constructing the line attractor
axes, we set the two eigenvalues corresponding to these axes
to have a real part equal to zero (see Fig. 6A and Eq. (28)).
These eigenvalues are fine-tuned, and slight departures of a
distance ε from the imaginary axis cause neural activity to drift
with a time scale τ ∝ 1/ε (11, 25) (Fig. 6B). Therefore, our
model predicts that for slight departures to ε = 0, action value
encoding drifts during the ITI. However, cellular mechanisms
can be incorporated into neural integrators to attenuate this
drift (25) (see Discussion). When multiple action values are
encoded in the neural integrator, the probability of encounter-
ing significant drifts in at least one of the line attractor axes
due to connectivity perturbations increases with the number
of action values being maintained (refer to Fig. S4A and B).

In contrast to the neural integrator, the average neural
activity in the synaptic model is robust against synaptic fluc-
tuations. Random synaptic strength fluctuations (see Synaptic
perturbations in SI) do not disrupt the average value encoding
(Fig. 6C). This is also the case when multiple action values
are maintained (see Fig. S4C).

Overall, the synaptic model exhibits significantly greater
robustness against synaptic perturbations in the encoding of
action values compared to the neural integrator.

Possible mechanisms for anti-correlated action value up-

dates. In both models, values are independently updated across
trials, similar to model free reinforcement learning algorithms
(16), in which action values are updated using only the pre-
vious history of choices and rewards (see SI, Fitting network
models on behavioral data). However, hidden causal structures

in the environment can often be used for optimally updating
action values during foraging. For example, this is the case in
variations of the DFT in which the changes in the probability
of rewards are strongly anti-correlated (26). In this case, oppo-
site action values updates are optimal for maximizing reward
during the task. What are the circuit mechanisms for anti-
correlated action values updates in structured environments?
We explored two possible scenarios in the neural integrator
and the synaptic model.

For the neural integrator, one possible scenario for anti-
correlated action value updates is that the line attractor axes
are anti-correlated (Fig. 7A left), and a contingency-dependent
RPE signal is aligned with one of the axes. In this case, RPE
signals produce anti-correlated action values updates (Fig. 7A
right). An alternative scenario is that the RPE signal is
comprised of two inputs, each one aligned with one of the
two line attractor axes and with opposite signs (Fig. 7B left).
This scenario also leads to opposite changes in action value
representations (Fig. 7B right).

For the synaptic model, anti-correlated synaptic changes
(Fig. 7C left) for the corresponding selective populations pro-
duce anti-correlated action value updates (Fig. 7A right). An
alternative scenario relies on strong shared inhibition (Fig. 7D
left) that anti-correlates neural activity (see SI, synaptic
model). In this scenario, synaptic changes in only one selective
population produce anti-correlated action value updates (see
Fig. 7D right and SI).

Discussion

We investigated two contrasting models for action value encod-
ing and update mechanisms in foraging behavior: a synaptic
model and a neural integrator. The synaptic model maintains
action values in synaptic strength and updates them through
synaptic plasticity, whereas the neural integrator maintains
action values in a continuous attractor through neural activity
and updates via on-manifold perturbations. It is worth noting
that we use an extension of the concept of line attractor (11)
to several line attractors in a high dimensional state space of
neural population activity (12).

Our models successfully replicate both choice behavior
and key observations in neuronal recordings. Specifically, our
modeling requires that RPE signals in the neural integrator
are vectorial and action-specific on-manifold signals, whereas
the synaptic model exhibits global RPE signals. Furthermore,
we found that the neural integrator is more susceptible to
perturbations in neural activity and connectivity, while the
synaptic model displays remarkable robustness against such
perturbations.

When examining anti-correlated activity updates necessary
for optimal performance in foraging tasks with hidden causal
structures, we found that the synaptic model efficiently ac-
commodates these updates by solely increasing the amount of
shared inhibition, offering a parsimonious explanation for the
synaptic changes necessary for learning new tasks structures

Our initial findings suggest that the synaptic model is a
compelling candidate for the maintenance and update of action
values in the brain, given its robustness and because its ob-
served dynamics align with multiple experimental observations.
We identified requirements for neural integrator model that
presently lack experimental support, including the assumption
that different dopamine neural populations are selective for
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Fig. 4. Response to perturbations: neural integrator vs. synaptic model. (A) Top panel: valuation network’s response to a perturbation during the ITI (yellow-shaded region)

for the synaptic model. Bottom panel: Action selection network’s response. (B) Examples of on-manifold, random, and uniform brief (100ms) perturbations (starting at the

vertical dashed lines and indicated at the yellow-shaded region) in the valuation network for the neural integrator. Top panel: Activity of 50 representative neurons color-coded

according to the magnitude of the corresponding entries of the first line attractor axis ~vA. Random and uniform perturbations are four times larger in magnitude than the

on-manifold perturbation. For the stimuli’s parameters see the SI subsection “Three classes of external perturbations”. (C) Projection drift due to noise for 1000 realizations.

The dashed red line indicates the initial projection’s value. (D) Schematic of on-manifold and random perturbations. (E) Schematics for the engineered perturbation experiment

for the neural integrator. Neurons are ranked according to the entries of the line attractor axis corresponding to one of the contingencies ~vA. (F) Change in action value

encoding when the 1st, 1-10th, 1-100th, and all ranked neurons are stimulated as in B with the same magnitude. (G) number of stimulated neurons vs. the magnitude of the

perturbation response (see SI).
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foraging. (Middle) Network dynamics during the ITI for two consecutive trials. (Right) Autocorrelation function (AF) for two consecutive trials. The AF is also computed

analytically for the synaptic model (dashed lines; see SI).
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Fig. 6. Response to synaptic perturbations: synaptic model vs. neural integrator.

(A) Eigenvalue spectra of the neural integrator connectivity L (Eq. (29) in Methods).

The eigenvalues corresponding to the line attractor axes (Fig. 1A) are at a ε distance

from the imaginary axis (i.e., zero real value). (B) The exponential time decay of the

network activity projected on one of the line attractor axes for different values of ε.

(C) The effect of random synaptic perturbations on the synaptic model (see Synaptic

perturbations in SI). Each excitatory population A (blue) and B (red) are comprised

of N = 200 neurons (faint lines). The average activity across neurons for each

selective population is shown with tick lines color coded accordingly.

action values and project to a valuation system in such a
way to be well aligned with the line attractor axes. Overall,
our work provides a computational framework to guide future
research in order to disprove these two candidate mechanisms
for foraging in the brain.

Network architecture. Consistent with the observed functional
separation between valuation and action selection in the
cortical-basal ganglia-thalamocortical limbic and motor loops
during decision-making (13, 17), we build a network model
with two distinct connected networks that separately realize
valuation and action selection. In the action selection network,
actions are selected by a winner-take-all dynamics elicited by
a transient go signal. Importantly, in our models (both the
synaptic model and neural integrator), this go signal acts in a
non-selective multiplicative fashion transiently modifying the
overall recurrent connections of the action selection network
(see Eq. (8-12) on Methods) and momentarily creating two
stable attractors that represent chosen actions (27, 28) without
the need of reset the network. This multiplicative mechanism
is consistent with experimental evidence in decision-making
tasks in which go signals input the thalamus from the mid-
brain (29). These inputs can effectively increase the recurrent
connectivity in cortex due to the recurrent thalamocortical
loop (30, 31).

Due to the feedforward connections from the valuation net-
work to the action selection network, the ITI activity in the
action selection network also presents a rather small, action
value encoding in its persistent firing (Fig. 1E and F; Fig. 2G
and H). Our models’ predictions are consistent with the ob-
served value encoding in the rat’s secondary motor cortex
during foraging (32).

Our models provide contrasting predictions for the feedback
projections from the action selection to the valuation network.
In the neural integrator, there is no feedback from the action
selection network. This aims to avoid choice signals disrupting
action value encoding. It is expected that, in this scenario,
any feedback projections from the action selection network
to be weak or approximately orthogonal to the line attractor
axes, to maintain the action value encoding. In contrast, in
the synaptic model, choice signals feedback from the action
selection network are necessary for reward-dependent learning
(see Methods). In this scenario, we expect feedback from the
action selection to the valuation network to play a causal role
in learning.

Synaptic model. In the valuation network of our synaptic
model, recurrent connections undergo reward-modulated plas-
ticity. Trial-to-trial changes in its recurrent synaptic strengths
cause a graded variation of neural activity during ITIs in
proportion to action values updates that are consistent with
recorded activity in the mPFC and RSC (3, 4). Our results
contrast with classic synaptic models for action value main-
tenance and update during foraging in which plasticity is
limited to the feedforward input projections (5, 6). In these
models, action selection is biased by action value encoded in
the strengths of these feedforward projections and the net-
work performs action selection by a winner-take-all dynamics
that resets after each trial, at odds with recent experimental
observations (3, 4).

Recent work studying foraging on the fly suggests that
synaptic plasticity might be the mechanism underlying forag-
ing behavior in this animal (33).

In the synaptic model, the timescale of response to random
fluctuations of the selective populations is correlated with ac-
tion values. Consistent with this prediction, such dependence
on the autocorrelation function with value has been observed
in value-based tasks in monkeys (34).

Neural integrator. For the neural integrator model, we assumed
two line attractors encoding action values (see Fig. 1A). We
showed that this model can account for graded changes of
neural firing during ITIs, but requires that value updating is
realized by an action-specific vectorial RPE signal projecting
to value-coding neurons in a special way along a specific action
value axis (e.g., for action A, not B), in a given trial. These sig-
nals could be mediated by dopamine cells (35), norepinephrine
cells (36), or subcortical input (37). The latter implies that
these projections target selective neural populations in a choice-
dependent manner, an assumption not supported in the case
of dopamine by presently known evidence but testable in the
future.

Robustness to perturbations. In the synaptic model, the dy-
namics during the ITI is given by a single stable fixed-point
attractor. We predict that optogenetic perturbations in the
neural activity during the ITI recover to similar firing rate
levels, enabling the robust encoding of action value against
perturbations.

For the line attractor, the effect of a perturbation in neu-
ral activity diminishes as it becomes more misaligned with
the line attractor axes. However, our findings indicate that
even a strong perturbation with minimal alignment to the line
attractor axes can result in significant disruptions to action
value encoding. We predict that brief and strong optogenetic
perturbations during the ITI will disrupt action value encoding
in this scenario. We also predict that optogenetic perturba-
tions can be engineered to maximize its effect by targeting the
neurons with higher action value encoding. Random persistent
fluctuations induce drift in action value encoding, predicting
deterioration of the action value maintenance for long ITIs.
Our study primarily focuses on linear neural integrators or
those with weak non-linearities. It is possible that incorpo-
rating strong nonlinear effects (38) or the implementation
of an approximately continuous line attractor consisting of
multiple discrete stable attractors (39) could produce some
enhancement in the robustness of the network.
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Fig. 7. Possible mechanisms for anti-correlated action value updates. (A) Left: Action values encoded in anti-correlated line attractor axes are updated in opposite directions by

an RPE signal aligned to one of the axes. (B) Left: Action value encoding update RPE signal comprised of two inputs, each one aligned with one of the line attractor axes

but with opposite signs. Right (A and B): Projections dynamics. (C) Left: Anti-correlated synaptic changes in the synaptic model. (D) Left: Synaptic changes in the synaptic

model of only one selective population produce anti-correlated action value updates due to strong inhibition. Right (C and D): Population activity dynamics. The RPE signal is

delivered and the synaptic update is performed at 2.5s (dashed line). The RPE signal has a duration of 100ms.

In the neural integrator, the connectivity is fine-tuned, re-
sulting in a manifold of marginally stable states. Even small
perturbations in the synaptic connectivity caused by fluctua-
tions in the synaptic efficacy can lead to persistent drifts in
neural activity. Furthermore, as the number of action values
maintained increases, the likelihood of significant drifts in the
encoding of action values also rises. Consequently, the neural
integrator is very susceptible to synaptic perturbations. In
contrast, the synaptic model exhibits stability against synap-
tic fluctuations. Action values in this model remain largely
unaffected by such perturbations.

Overall, our findings show that the synaptic model pro-
vides a significantly more robust mechanism for action value
encoding.

Structured tasks. In both models, action values are updated
depending on the history of choices and rewards, with no use
of the specific structure of the task. Furthermore, our net-
work models are algorithmically very similar to the Q-learning
algorithm (16) (see SI). Consequently, from a reinforcement
learning standpoint, our models are considered model free (16),
which refers to the fact that they do not use information about
the environment’s structure for performing the action values
updates encoded in the synapses and neural activity in the
respective models.

In many situations, it is advantageous to learn the causal
structure of the world for maximizing reward consumption
(40, 41). During value-based decision-making in uncertain
environments with underlying hidden structures, inferring
the causal structure of the task can lead to higher rewards
(26, 42–44). One interesting scenario for foraging is a recently
proposed task in which a hidden state induces anti-correlated
and extreme changes in reward probabilities (26).

In our models, anti-correlated updates of the firing rate
activity of selective populations could capture the hidden
structure of this task. In the neural integrator, anti-correlated
line attractor axes lead to anti-correlated action-value updates.
However, adapting to new task structures may involve learning
new alignments between line attractor axes effectively changing

the manifold structure, which may require global changes
in synaptic connectivity. It is unclear whether this can be
flexibly achieved using local learning rules. In contrast, anti-
correlated updates can also be achieved in the line attractor
by adjusting the RPE alignment with the line attractor axes.
Consequently, when learning new tasks, only modifying RPE
signal alignments becomes necessary in this scenario. To our
knowledge, there is no evidence of such RPE characteristics
in the dopamine system.

In the synaptic model, anti-correlated changes in firing
rates and action value encoding can be achieved using local
three-factor learning rules by leveraging the amount of shared
inhibition in the network. Our results demonstrate that if
there is strong shared inhibition among selective populations,
synaptic changes in the recurrent connections of one population
give rise to anti-correlated changes in firing rates. Interestingly,
we hypothesize that for learning new tasks inhibitory plasticity
(45, 46) could sculpt the correlation structure of the firing
rate updates. This leads to a possible flexible mechanism for
learning new causal structures in the environment.

Foraging in naturalistic environments. While animals are for-
aging in a naturalistic environment, they must remember the
expected reward at each location and estimate the travel cost
to other locations to decide on actions (47). In our model,
we consider an environment in which there is only one loca-
tion and two action options that are simultaneously presented.
By contrast, in more naturalistic foraging, different choice
alternatives (e.g., food patches) are present at different time
points (48–50). For example, if a limited and fixed number of
actions are taken in each state, e.g., stay vs. leave, if leave
goes left vs. right. It would suffice to maintain in memory the
location values by a valuation network as shown in Fig. S4 in
the SI. An action selection network model similar to the one
presented in this work can decide whether to stay or leave and
the direction of travel by comparing the value of the current
location (state) vs. the integrated value of the rest of the en-
vironment discounting travel costs. It remains to be seen how
our model can be extended for such foraging in naturalistic
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environments.

Materials and Methods

Foraging task

Dynamic foraging task. We implement a dynamic foraging task
(DFT) similar to the one in (3, 4) in both our network simulations
and behavioral experiments. Briefly, in this task, after a go cue
(auditory for the mice), the subject chooses freely among two alter-
natives (by licking one of two custom-built lick ports for the mice)
that deliver a reward (water for the mice) probabilistically. After
an inter-trial interval (ITI) of the order of several seconds (3s in the
case of the network and 5.79s median ITI in the case of the mice),
the next go cue is presented. Depending on their choice, a reward
is delivered with a probability that changes randomly in blocks of
100 trials for the network (see Fig. 2A and B). For the behavioral
experiments in mice, the number of trials in each block is drawn
from a bounded exponential distribution ranging from 40−100 trials.
For this task, the reward schedule uses baited rewards (e.g., see
(2–4, 20)), that is that once the reward is assigned, it remains in the
corresponding contingency (network)/port (mice) for its consump-
tion. The reward probabilities for the two contingencies (pA, pB)
(network)/(pRight, pLeft) (mice) were chosen randomly from
{(0.225, 0.225), (0.4, 0.05), (0.05, 0.4), (0.3857, 0.0643), (0.0643, 0.3857)}.

Animal procedure and behavioral task. All animal procedures
were in accordance with protocols approved by the Janelia
Research Campus Institutional Animal Care and Use Com-
mittee and have been described before (51, 52). Briefly,
C57BL/6J mice were each implanted with a titanium head post
(dx.doi.org/10.17504/protocols.io.9a8h2hw) and housed individually
in a reverse 12-hour dark/12-hour light cycle. After recovery from
the head post surgery, the mice were water restricted and then
habituated for 2 days prior to task training.

Behavioral sessions lasted 1-2 hours during the dark phase.
Mice were head restrained while resting in a 31.8 mm acrylic tube
(8486K331, McMaster-Carr) inside a dark and sound-attenuated box.
The go cue (3 kHz, 100 ms) was presented by a speaker (TW025A20,
Madisound). Water reward (2-4 µL) was delivered by solenoid valves
(LHDA1233215H, The Lee Co) through two lick ports, spaced
4.5 mm apart (8987K47, McMaster-Carr). Licks were detected
by a custom circuit (JF-SV-LP0001, Janelia Research Campus).
Task events were controlled by a Bpod State Machine (Sanworks)
and programmed in PyBpod (https://github.com/hanhou/Foraging-
Pybpod).

Network models

Network architecture. As described in the main text, we develop
two network models for contrasting two different mechanisms for
action value maintenance and update during foraging: (i) neural
integration and (ii) synaptic learning. Both models have similar
network architecture consisting of a mesoscopic network of two
inter-connected areas. Each area is modeled as a recurrent network.
Action values are maintained and updated depending on reward in
a network we refer to as the valuation network (see Fig. 1B and D).
For action selection, action values are read out from the valuation
network and projected for biasing actions in a network we refer to
as the action selection network (see Fig. 1B and D). The dynamics
of the action selection network is the same for both models.

As described below, two critical differences exist between the
neural integrator and the synaptic model architectures. First, there
are feedback projections between the action selection and the valua-
tion network in the synaptic model, while in the neural integrator,
these projections do not exist. Second, in the neural integrator,
reward prediction error (RPE) signals are selectively projected to
the two action value axes, while in the synaptic model, RPE is a
global signal projected to the whole valuation network (see more in
sections below).

Action selection network. For the action selection network, we use
a reduced mean field model that has been shown to be a good
approximation of the dynamics of a full recurrent network of spiking
neurons (28). This reduced model represents the dynamics of the
fraction of activated N-methyl-D-aspartate (NMDA) receptors of
two selective excitatory populations. These populations represent
the two contingencies. The dynamics is described by the below
equations

dsA

dt
= − sA

τ
+ γ(1 − sA)F (IA) [1]

dsB

dt
= − sB

τ
+ γ(1 − sB)F (IB). [2]

with γ = 0.641 and τ = 100ms. The function F is the input-
output transfer function given by

f(I) =
Af I − Bf

1 − exp(−Df (Af I − Bf ))
, [3]

where Af = 270Hz/nA, Bf = 108Hz, and Df = 0.154s (28, 53).
The synaptic currents are given by a recurrent (Ir

A
and Ir

B
), a

background synaptic noise (In
A

and In
B

), and a non-selective external

go signal (Igo
A

and Igo
B

) components

IA = Ir
A + In

A + Igo
A

[4]

IB = Ir
B + In

B + Igo
B

. [5]

The recurrent component is given by

Ir
A = W sA − JsB + I0 + jFFxA(t) [6]

Ir
B = W sB − JsA + I0 + jFFxB(t). [7]

Here W = 0.2609 corresponds to the average recurrent synaptic
weights for each selective population, J = 0.0497 corresponds to
the effective shared inhibition weights, and I0 = 0.3381 to the back-
ground current. For these parameter values, the action selection
network is in a winner-take-all regime suitable for decision-making
(28). The parameter jFF corresponds to the feedforward connections
from the valuation to the action selection network. The variables
xA(t) and xB(t) represent the mean activity of the two selective
populations rA(t) and rB(t) in the case of the synaptic model and
the two projections mA(t) and mB(t) in the case of the neural
integrator respectively (see following sections for the detailed im-
plementation of the valuation network). For the synaptic model
jFF = 0.2 for Fig. 1F and jFF = 0.04 for Fig. 2B, D, F, and H. For
the neural integrator jFF = 0.0015 for Fig. 1B and jFF = 0.003 for
Fig. 2A, C, E, and G. The equations for the background synaptic
noise due to AMPA synapses are given by

τAMPA

dIn
A

dt
= −In

A + σAMP A
√

τAMP AηA(t) [8]

τAMPA

dIn
B

dt
= −In

B + σAMP A
√

τAMP AηB(t) [9]

Here ηA(t) and ηB(t) are Gaussian noise variables. The time
scale of AMPA synapses is τAMPA = 2ms. Lastly, the intensity of
the noise for the synaptic model is σAMP A = 0.003 for Fig. 1 and
Fig. 4 and σAMP A = 0.03 for Fig. 2. For the neural integrator is
σAMP A = 0.003 for Fig. 1 and σAMP A = 0.02 for Fig. 2.

In our model, the go input currents Igo
A

and Igo
B

correspond to
transient non-selective inputs that lasts until one of the populations
reaches a set firing rate (F (IA) or F (IB)) threshold of 30Hz. Con-
sistent with recordings in the Anterior Lateral Motor cortex (ALM)
during motor initiation (54) and as proposed in theoretical studies
(30, 31), we hypothesize transient non-selective go signals gate ac-
tions to the motor thalamus. Since the recurrent thalamocortical
loop involving ALM and ventromedial (VM) thalamic nucleus is
causally involved in motor initiation (29, 55), the net effect of an
input to the thalamus corresponds to transient effective synaptic
weights (30, 31) given by

Igo(t)A = wgo(t)sA [10]

Igo(t)B = wgo(t)sB , [11]
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where

wgo(t) =

{

0 t < tgo

0.1 tgo ≤ t ≤ t∗

0 t∗ < t

. [12]

We define t∗ as the time when one of the populations firing rates
F (IA) or F (IB) reaches the threshold of 30Hz.

The numerical integration time step used was dt = 0.1ms.

Network dynamics. For the synaptic model, the network dynamics
are given by the linearized dynamics of a network of two excitatory
selective populations to the two contingencies in the DFT with
shared inhibition

τ
drA

dt
= −rA + wA(k)rA − ρ

2
(rA + rB) + IA + Ifb,A [13]

τ
drB

dt
= −rB + wB(k)rB − ρ

2
(rA + rB) + IB + Ifb,A. [14]

Here the variables rA and rB correspond to the mean firing
rates of the two selective populations. The parameters wA(k) and
wB(k) correspond to the mean synaptic efficacy of the recurrent
connections in the trial k. The synaptic efficacies are plastic and
change on a trial-to-trial basis according to a learning rule specified
in the next section. The parameter ρ = 0.05 corresponds to the
effective, shared inhibition. The background input current is given
by the parameters IA = IB = 0.1. The timescale of the dynamics
is taken as τ = 10ms. The numerical integration time-step used
was dt = 10ms. The currents Ifb,A = wfbsA and Ifb,B = wfbsB

correspond to the feedback current from the action selection network.
We use wfb = 0.2. Since during the ITI the feedback current is
small, for the below analysis, we will assume Ifb,A = Ifb,B = 0. In
Fig. 7C wA = 0.87, wB = 0.62, and ρ = 0.25. In Fig. 7D wA = 0.87,
wB = 0.62, and ρ = 0.45.

Although extremely simple, this model captures essential features
of an E-I network and has the advantage that several quantities
can be calculated analytically. This model has a single fixed-point
attractor corresponding to the dynamics’ stationary state. We
analytically calculate its fixed point (see section Synaptic model on
SI).

Synaptic model’s reward-dependent learning rule. In the synaptic
model, the recurrent connections synaptic efficacies of the two
selective populations in the valuation network wA(k) and wB(k)
are learned using a reward-dependent plasticity rule (5, 6, 19) in a
trial-by-trial (where k is the trial index) basis. In our three-factor
learning rule the synaptic changes are given by

Wx(k + 1) − Wx(k) = (R(k) − [rx(k)]+)f(rx(k))2H(Wx(k))

x = A, B. [15]

Here the reward is a binary variable R ∈ {0, 1}. The function
[•]+ is the rectifier linear function with a minimum equal to 0 and
a maximum equal to 1. The function H(x) given by

H(x) =

{

1 if 0 ≤ x ≤ 1

0 otherwise,
[16]

enforces a hard constraint on the synaptic weights preventing a
firing rate instability. This could be implemented by homeostatic
plasticity mechanisms (56).

The reward prediction error (RPE) at trial k is given by the
difference RPE(k) = R(k) − [rx(k)]+. Here rx(k) is the mean firing
rate of the population in the valuation network corresponding to
the chosen contingency x = A, B at trial k. Then Eq. (15) reads as

∆wx(k) = wx(k + 1) − wx(k) = RPE(k)f(rx(k))2H(Wx(k))

x = A, B. [17]

We assume that the RPE is computed elsewhere in the brain,
for example, in the Ventral Tegmental Area (VTA) (18).

The Hebbian term of the three-factor learning rule (19), which
is the product of a non-linear function of pre and post-synaptic
activity of the selective populations, is given by the term f(rx)2 =

f(rx) · f(rx) for x = A, B. Notice that the Hebbian term is squared
because the pre and post-synaptic activity is the activity of the
selective populations A or B. This term will modify the recurrent
connections of the selective populations wA(k) and wB(k). In our
model, the function f is a highly non-linear step function

f(s; k) =

{

0 if s < µx(k) + ∆√
AH if µx(k) + ∆ ≤ s

x = A, B. [18]

Here µA(k) and µB(k) correspond to the running temporal
firing rate average of population A and B in the valuation network,
respectively, at trial k. The above function induces plasticity in
synapses where the firing rates are ∆ larger than the average firing
rate of the previous trial. This class of non-linear plasticity rule
that potentiates firing rate outliers has been recently inferred from
in vivo data (57, 58).

In our model, the running average µA(k) and µB(k) we assume
a slow exponential kernel of the order of seconds. Since, in our
task, the ITI period is much longer than the response period, we
can replace µA(k) and µB(k) by the mean firing rates during the
ITI. After the go signal, when the choice is selected by the action
selection network, the chosen selective population in the action selec-
tion network will elevate its firing rate (see Fig. 1F). The feedback
projections from the action selection to the valuation network will
produce a transient elevated activity in the corresponding popula-
tion. In contrast, little to no feedback activity is produced in the
corresponding unchosen population (see Fig. 1B, bottom row left).
This selective feedback activity in the valuation network and our
learning rule in Eq. (18) produce changes in the recurrent synaptic
efficacies of only the chosen populations in the valuation network.
Therefore, the final learning rule we use in our numerical simulations
is

wA(k + 1) = ρwwA(k) + AHRPE(k)H(WA(k)) if A is chosen [19]

wB(k + 1) = ρwwB(k) + AHRPE(k)H(WB(k)) if B is chosen [20]

and

wA(k + 1) = ρwwA(k) if B is chosen [21]

wB(k + 1) = ρwwB(k) if A is chosen. [22]

The parameter ρw ∈ [0, 1] represents to a trial-by-trial forgetting
parameter. If ρw = 1, there is no forgetting across trials, while if
ρw = 0, the synaptic efficacies modifications are forgotten in one
trial. We choose no forgetting ρw = 1 for simulations in Fig. 2, and
we fit this parameter using behavioral data in Fig. 3 (see the section
Fitting network models in behavioral data in SI). The parameter
AH in Eqs. (18-20) corresponds to the maximum amplitude of the
Hebbian term in our three-factor learning rule. For the network
simulations in Fig. 2 AH = 0.12 while we fit this parameter using
behavioral data in Fig. 3 (see the section Fitting network models
in behavioral data in SI for the parameter values of the fit and
Fig. S2).

For the synaptic update in Fig. 7C, ∆wA = −0.25 and ∆wB =
0.25 while for Fig. 7D ∆wA = 0 and ∆wB = 0.33.

High-dimensional neural integrator. For constructing a neural inte-
grator in high dimensional neural space, our starting point is a
recurrent linear network with N number of units. The following
linear equations give the dynamics

dui

dt
= −ui +

N
∑

j=1

Jijuj + Ii [23]

of the synaptic current ui for each neuron (59). In this network
model, the connectivity is random. Each entry is drawn from a
normal distribution with zero mean and variance equal to g2/N .

The external input to the network is given by the vector ~I. For all
the simulations in the paper, we used g = 0.5.

By defining the below matrix

W = J − I, [24]
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where I is the identity matrix. Then Eq. (23) can be written in
vectorial form as

d~u

dt
= W~u + ~I. [25]

Using the singular value decomposition (SVD) the matrix W can
be written as the sum of rank-1 matrices scaled by the corresponding
singular vectors

W =

N
∑

µ=1

σµ~qµ~vT
µ . [26]

Here the singular vectors are ordered from larger (σ1) to smaller
(σN ). We constructed a neural integrator for encoding two action
values similarly as in (12). For constructing a neural integrator
with two integration modes, we subtract to the matrix W the rank-
1 matrices in Eq. (26) corresponding to the two smaller singular
values, i.e.,

L = W − σN ~qN~vT
N − σN−1~qN−1~vT

N−1 − ε
[

~vN~vT
N + ~vN−1~vT

N−1

]

.

[27]
Notice that here introduce a rank-2 normal perturbation that

will lead to drifts of time scale τ ∼ 1/ε in the directions ~vN−1 and
~vN . We then use this new matrix L as the connectivity matrix of
our neural integrator, which now has two integration modes.

This model can be extended for maintaining p values of actions,
by constructing a network with p line attractor axes:

L = W −
p−1
∑

µ=0

σN−µ~qN−µ~vT
N−µ − ε

p−1
∑

µ=0

~vN−µ~vT
N−µ. [28]

The dynamics of the neural integrator is given by

d~u

dt
= L~u + ~I. [29]

We compute the firing rates as a non-linear transformation of the
synaptic currents using a sigmoidal transfer function ~r = tanh(~u).
By projecting the network activity ~r(t) onto the right singular
vectors we decompose the activity in N network modes

mk(t) = ~vk
T ~r(t) =

N
∑

j=1

vk,jrj(t) k = 1, . . . , N. [30]

When we project Eq. (29) in the two line attractor axes that
maintain the corresponding action values in our DFT we obtain

dmN

dt
= 〈~I, ~vN 〉 − εmN [31]

dmN−1

dt
= 〈~I, ~vN−1〉 − εmN−1. [32]

For ε = 0 reads

dmN

dt
= 〈~I, ~vN 〉 [33]

dmN−1

dt
= 〈~I, ~vN−1〉, [34]

which correspond to the equations of two independent one-
dimensional neural integrators. Where 〈·, ·〉 corresponds to the
inner product of two vectors.

In our model we assume J to be independently and identi-

cally distributed (i.i.d.) from a Gaussian distribution, i.e., W
i.i.d.∼

N(0, g2/N). The input current to the network is given by

~I = ~IRPE(t) + ~Iext(t). [35]

Here ~IRPE(t) is an input proportional to the RPE that updates
the action value after reward delivery by briefly pushing or pulling
in the direction of the action value axis corresponding to the chosen

contingency (i.e., in the directions ~vN−1 and ~vN for the contingency

A and B respectively). The ~IRPE(t) is given by

~IRPE(t) =

{

0 t ≤ Tchoice

ARPERPE(k; x)~vx Tchoice < t < Tchoice + 100ms

0 Tchoice + 100ms ≤ t

.

[36]
Here the RPE is given by

RP E(k) = R(k) − qx(k) x = A, B. [37]

Here qx(k) corresponds to the quantile of the projection of the
population activity on the line attractor axis corresponding to the
chosen contingency (i.e., A or B) (see section Neural integrator on
SI). The rationale for using the quantile is to normalize this value
to take values between 0 and 1 to be comparable to the reward
(i.e., R ∈ {0, 1}) since the projection can have arbitrary values. We
believe this normalization necessary for computing the RPE in our
model could be performed by subcortical structures as the VTA
(35, 60).

The parameter ARPE is the strength by which the RPE signal
modifies the population activity. For Fig. 1E ARPE = 0.1 and for
Fig. 2 ARPE = 0.3. The RPE signal stimulates the network after
the reward is delivered, which happens instantly after the choice
is made at time Tchoice in our model. Tchoice is Tgo = 3s plus the
reaction time of the action selection network at a given trial and
therefore varies from trial to trial.

The ~Iext(t) is an external perturbation to the network. For

Figs. 1-3 we set ~Iext(t) = ~0.
In Fig.7A and B, a 100ms stimulus is delivered starting at 2.5s.

In Fig.7A, the two line attractor axes exhibit perfect anti-correlation,
and the stimulus is proportional to one of the line attractor axes,
having a norm equal to 2. In Fig. 7B, the stimulus is proportional
to ~vA − ~vB , with a norm equal to 3.

The numerical integration time-step used was dt = 10ms.

Software and data availability. The network simulations were per-

formed using custom Python scripts available at the GitHub

repository https://github.com/ulisespereira/foraging-integrator-vs-

synaptic. The code for fitting the reduced network models on mice

behavior is available upon request.
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