

1                   **"Phylogenetic analysis of ABCE genes across the plant kingdom"**

2                   **Liina Jakobson<sup>1,2\*±</sup>, Jelena Mõttus<sup>1,\*±</sup>, Jaanus Suurväli<sup>3</sup>, Merike Sõmera<sup>1</sup>, Jemilia Tarassova<sup>1</sup>,**

3                   **Lenne Nigul<sup>1</sup>, Olli-Pekka Smolander<sup>1</sup>, Cecilia Sarmiento<sup>1,\*</sup>**

4                   <sup>1</sup> Department of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia tee 15,

5                   12618 Tallinn, Estonia.

6                   <sup>2</sup> Current affiliation: Plant Biotechnology Department, Centre of Estonian Rural Research and Knowledge,

7                   M. Pilli haru 1, 48309 Jõgeva, Estonia.

8                   <sup>3</sup> Department of Biological Sciences, University of Manitoba, 50 Sifton Rd, Winnipeg, MB, R3T 2N2,

9                   Canada.

10                   **\*Equal contribution**

11                   \* Authors for Correspondence: Liina Jakobson, Plant Biotechnology Department, Centre of Estonian Rural

12                   Research and Knowledge, M. Pilli haru 1, Jõgeva, Estonia, +372 5199 5445, [liina.jakobson@metk.agri.ee](mailto:liina.jakobson@metk.agri.ee);

13                   Cecilia Sarmiento, Department of Chemistry and Biotechnology, Tallinn University of Technology,

14                   Akadeemia tee 15, 12618, Estonia, +372 56285691, [cecilia.sarmiento@taltech.ee](mailto:cecilia.sarmiento@taltech.ee)

15

16                   **Abstract**

17                   ATP-BINDING CASSETTE SUBFAMILY E MEMBER (ABCE) proteins are one of the most conserved

18                   proteins across eukaryotes and archaea. Yeast and the vast majority of animals possess a single ABCE gene

19                   encoding the vital ABCE1 protein. We retrieved ABCE gene sequences of 76 plant species from public

20                   genome databases and analyzed them with the reference to *Arabidopsis thaliana* ABCE2 gene (AtABCE2).

21                   Over half of the studied plant species possess two or more ABCE genes. There can be as many as eight

22                   ABCE genes in a plant species. This suggest that ABCE genes in plants can be classified as a low-copy gene

23                   family, rather than a single-copy gene family. Plant ABCE proteins showed overall high sequence

24                   conservation, sharing at least 78% of amino acid sequence identity with AtABCE2. The phylogenetic trees

25                   of full-length ABCE amino acid and CDS sequences demonstrated that *Brassicaceae* and *Poaceae* families

26 have independently undergone lineage-specific split of the ancestral *ABCE* gene. Other plant species have  
27 gained *ABCE* gene copies through more recent duplication events. Deeper analysis of *AtABCE2* and its  
28 parologue *AtABCE1* from 1135 *Arabidopsis thaliana* ecotypes revealed 4 and 35 non-synonymous SNPs,  
29 respectively. The lower natural variation in *AtABCE2* compared to *AtABCE1* is in consistence with its  
30 crucial role for plant viability. Overall, while the sequence of the ABCE protein family is highly conserved  
31 in the plant kingdom, many plants have evolved to have more than one copy of this essential translational  
32 factor.

33

34 **Key words:** *ABCE* gene subfamily, ABCE, gene evolution, phylogenetics, natural variation, plants

35 **Significance statement:**

36 In most eukaryotes there is a single ABCE protein, which is involved in many vital processes in cells.  
37 However, less is known about ABCEs specifically in plants. Here we show that while the sequence of ABCE  
38 proteins is highly conserved in plants, they have evolved to often have multiple copies of this essential  
39 translational factor. By studying 76 species from the entire plant kingdom, we observed as many as eight  
40 *ABCE* genes being present at a time, although most species have less. Some *ABCE* copies appeared earlier  
41 than others and were found in multiple species. Thus, our findings indicate that ABCE genes in plants are  
42 not a single-copy gene family and should instead be re-classified as a low-copy gene family.

43

44 **Data Availability Statement:**

45 Multiple sequence alignments of plant ABCE protein sequences used in this study have been made publicly  
46 available at Dryad repository (Jakobson, Liina (2022), Plant ABCEs, Dryad, Dataset,  
47 <https://doi.org/10.5061/dryad.vhhmgqzn2>).

## 48 Introduction

49 Members of the ATP-BINDING CASSETTE (ABC) subfamily E (ABCE) belong to the  
50 superfamily of ABC proteins, which can be found in all living organisms studied to date and are regarded  
51 as highly essential in all eukaryotes. Most ABC proteins function as ATP-dependent membrane transporters.  
52 They possess transmembrane domains (TMDs) coupled with nucleotide-binding domains (NBD) otherwise  
53 known as ATP-binding cassettes (Andolfo et al. 2015; Navarro-Quiles et al. 2018). ABCE (initially denoted  
54 RNASE L INHIBITOR (RLI)) proteins, in contrast, lack TMDs, but still have two NBDs associated with  
55 several specific domains and thus are soluble proteins.

56 In most species the ABCE subfamily is represented by a single member, ABCE1, which is involved  
57 in ribosome biogenesis and several stages of translation regulation (Yarunin et al. 2005; Andersen & Leevers  
58 2007; Barthelme et al. 2011; Mancera-Martínez et al. 2017; Navarro-Quiles et al. 2018). In accordance with  
59 its fundamental role, ABCE1 expression has been detected in most tissues and developmental stages of the  
60 species studied. In addition, loss-of-function of *ABCE1* genes results in a lethal phenotype in all studied  
61 species (Du et al. 2003; Zhao et al. 2004; Maeda et al. 2005; Sarmiento et al. 2006; Kougiumoutzi et al.  
62 2013). ABCE1 has been found to participate in translational initiation and termination, however, its most  
63 conserved function is in the process linking these two stages of translation – ribosome recycling (Navarro-  
64 Quiles et al. 2018). During that process, ABCE1 splits the ribosome through direct interactions with  
65 ribosomal subunits and release factors, either after canonical stop codon-dependent termination or after  
66 recognition of stalled and vacant ribosomes. The latter is recognized during mRNA surveillance  
67 mechanisms such as no-go decay (NGD), non-stop decay (NSD), and non-functional 18S rRNA decay (18S-  
68 NRD) (Graille & Séraphin 2012). Furthermore, ABCE1 dissociates the 80S-like complex during maturation  
69 of ribosomal subunits (Strunk et al. 2012). The role in ribosome biogenesis is supported by the nuclear  
70 accumulation of 40S and 60S ribosome subunits in the absence of ABCE1 (Yarunin et al. 2005; Kispal et  
71 al. 2005; Andersen & Leevers 2007). Additionally, it has a key role in RNA silencing in both plants and  
72 animals (Zimmerman et al. 2002; Sarmiento et al. 2006; Kärblane et al. 2015). Moreover, we have

73 previously shown that human ABCE1 (HsABCE1) is directly or indirectly involved in histone biosynthesis  
74 and DNA replication (Toompuu et al. 2016).

75 The study of ABCE functions in plants has been mostly limited to the model plants *Arabidopsis*  
76 *thaliana*, *Nicotiana benthamiana*, *Nicotiana tabacum* and *Cardamine hirsuta* (Petersen et al. 2004;  
77 Sarmiento et al. 2006; Kougioumoutzi et al. 2013; Möttus et al. 2021; Navarro-Quiles et al. 2022). In *A.*  
78 *thaliana* there are two genes encoding for paralogous ABCE proteins (AtABCE1 and AtABCE2, also  
79 referred to as AtRLI1 and AtRLI2, respectively), which share 80.8% identity (Navarro-Quiles et al. 2022;  
80 Möttus et al. 2021). AtABCE2 is orthologous to HsABCE1 and is ubiquitously expressed in all plant organs  
81 (Sarmiento et al. 2006). Recently, AtABCE2 was found to interact with ribosomal proteins and translational  
82 factors, confirming its conserved ancestral function in translation that is coupled to general growth and  
83 vascular development, likely indirectly via auxin metabolism (Navarro-Quiles et al. 2022). Furthermore,  
84 through regulation of translation AtABCE2 is involved in the development of gametophyte and embryo  
85 (Yu, et al. 2023). In addition, AtABCE2 has been shown to suppress GFP transgene RNA silencing in  
86 heterologous system at the local and at the systemic levels by reducing accumulation of siRNAs (Sarmiento  
87 et al. 2006; Kärblane et al. 2015). Mutational analysis of AtABCE2 revealed that the structural requirements  
88 for RNA silencing suppression are similar to those needed for ribosome recycling in archaea (Möttus et al.  
89 2021). This indicates that AtABCE2 might suppress RNA silencing via supporting translation-associated  
90 RNA degradation mechanisms. The role of AtABCE1 in *A. thaliana*, which is expressed almost exclusively  
91 in generative organs (Navarro-Quiles et al 2022; Yu et al 2023), is yet to be studied.

92 Silencing of *ABCE* orthologues (*RLIh*) in *N. tabacum* resulted in a single viable transgenic plant  
93 exhibiting severe morphological alterations, supporting the important role of ABCE proteins at the whole-  
94 organism level. At that time, it remained unclear how many *RLIh* genes there are in tobacco species  
95 (Petersen et al. 2004). In *C. hirsuta*, a close relative of *A. thaliana* that has composite leaves, there is only  
96 one *ABCE* gene in the genome, named SIMPLE LEAF3 (SIL3, or ChRLI2) (Kougioumoutzi et al. 2013).  
97 Hypomorphic mutation Pro177Leu in the NBD1 domain of ChRLI2 affects the determination of leaf shape  
98 and regulation of auxin homeostasis (Kougioumoutzi et al. 2013). Interestingly, the expression of *ChRLI2*

99 was not ubiquitous as in *A. thaliana*, but instead it was shown to be expressed in meristematic and vascular  
100 tissues of young developing leaves and in leaflet initiation sites (Kougioumoutzi et al. 2013).

101 It is commonly claimed that most eukaryotes only have one *ABCE* gene (Dermauw & Van Leeuwen  
102 2014). Exceptions to this have been detected in plants such as thale cress, rice, maize, potato and tomato,  
103 but also in animals such as catfish, cod and mosquitoes (Braz et al. 2004; Garcia et al. 2004; Verrier et al.  
104 2008; Liu et al. 2013; Pang et al. 2013; Andolfo et al. 2015; Lu et al. 2016). Although some plant species  
105 have more than one *ABCE* gene, it is still the smallest and most conserved of all ABC subfamilies (Andolfo  
106 et al. 2015).

107 In this study we aimed to characterize the phylogenetic evolution of *ABCE* genes in plants in order  
108 to shed light on the possible functional diversification within *ABCE* protein family. Here we present the  
109 results of an extensive bioinformatics analysis of publicly available sequences for plant *ABCE* genes and  
110 corresponding proteins, together with haplotype analysis of *A. thaliana* *ABCEs*.

111

## 112 **Results**

### 113 **Variability of plant *ABCE* genes**

114 To gain insight into the diversity of *ABCE* genes in plants, we compiled a selection of *ABCE* genes  
115 from 76 different plant species available in public databases. The selection criteria for including in further  
116 analysis was high identity (min 78%) of the full-length amino acid sequence to AtABCE2 and the presence  
117 of all known essential structural elements of *ABCE* proteins (Karcher et al. 2005; Barthelme et al. 2007;  
118 Nürenberg & Tampé 2013; Nürenberg-Goloub et al. 2020). Truncated or aberrant sequences were discarded  
119 from further analysis. Altogether 152 plant *ABCE* genes were included in the study. The selected species  
120 represented a wide range of plant groups, including unicellular algae such as *Chlamydomonas reinhardtii*  
121 and *Micromonas sp. RCC299*, monocots such as *Zea mays* and *Triticum aestivum*, *Solanum* species such as  
122 *Solanum tuberosum* and *N. benthamiana*, and *Brassicaceae* such as *Brassica napus* and *A. thaliana* (Figure  
123 1, Supplementary Table S1). Our analysis revealed that plant species from the phylum *Chlorophyta* (green

124 algae) usually possess only a single *ABCE* gene, except for *Ostreococcus lucimarinus*, which has two genes.  
125 In contrast, most of the analyzed species in the *Poaceae* family have at least two *ABCE* genes, and some  
126 have as many as eight genes in their genome, as is the case for *T. aestivum*. Another group of plant species  
127 with an above-average number of *ABCE* genes is the *Brassicaceae* family. For example, *B. napus* has eight  
128 genes, *B. rapa* five genes, and *Capsella rubella* four genes. On the other hand, among *Brassicaceae*, *C.*  
129 *hirsuta* and *Boechera stricta* have only a single *ABCE* gene (Figure 1). Interestingly, only 30 species out of  
130 76 (39.5%) had a single *ABCE* gene. Similarly, there were 34 species (44.7%) possessing two *ABCE* genes  
131 (Figure 2A). This shows that *ABCE* genes in plants are not a single-copy gene family and should instead be  
132 re-classified as a low-copy gene family.

133 Next, we analyzed the correlation between ploidy level and the number of *ABCE* genes. Despite  
134 clustering of multi-gene-species in the *Poaceae* and *Brassicaceae* families, there was no visual segmentation  
135 between the number of *ABCE* genes and phylogenetic origin in other plant families (Figure 1). We found a  
136 slight correlation ( $R=0.25$ ) between ploidy level and the amount of *ABCE* genes per species. However, there  
137 were examples of tetraploid species with a single *ABCE* gene (e.g. *S. tuberosum*) and diploids with five  
138 *ABCE* genes (e.g. *B. distachyon*, *B. rapa*) (Figure 2B, Supplementary Table S1).

139 We compared the amount of *ABCE* genes with known whole genome duplications (WGDs) and  
140 triplications (WGT) per species. WGD data was based on the data of 53 plant species published by the One  
141 Thousand Plant Transcriptomes Initiative (Leebens-Mack et al. 2019). The observation of WGT data in the  
142 common ancestor of *Brassica* species was based on the study of Wang and coworkers (Wang et al. 2011).  
143 We found a very weak correlation ( $R=0.17$ ) between the number of *ABCE* genes in a species and the number  
144 of WGD events that have taken place in the ancestors of the respective species (Figure 2C). Interestingly,  
145 there are examples of species, which have encountered at least five WGDs in their evolutionary history, but  
146 still possess only a single *ABCE* gene, for example *Actinidia chinensis* and *Glycine max* (Figure 1, 2C,  
147 Supplementary Table S2).

148 **Plant ABCEs are highly conserved**

149 ABCE proteins are composed of four domains: NBD1 and NBD2 forming the ATPase core,  
150 bipartite hinge domain that is tightly engaged in twin-NBD cassette arrangement and a unique N-terminal  
151 iron-sulphur (FeS) cluster domain (Figure 3A). Additionally, ABCEs embody a helix-loop-helix (HLH)  
152 motif in NBD1 that distinguishes it from otherwise superimposable NBD2 (Karcher et al. 2005).

153 As many as 86.8% out of the 152 analyzed gene sequences encode ABCE of canonical protein  
154 length (600 – 609 amino acids) (Figure 3B). Along with exceptional conservation within functionally critical  
155 motifs, all analyzed ABCE sequences are highly similar to AtABCE2 sharing at least 78% of amino acid  
156 sequence identity (Figure 3C, Supplementary Table S3).

157 We also plotted amino acid sequence length to amino acid sequence identity for the studied 152  
158 ABCE proteins. There was a clear clustering of proteins with the length of 605 amino acids (Figure 3D).  
159 Proteins with lower sequence identity did not cluster by protein length (Figure 3D). Interestingly, proteins  
160 with more than 90% identity to AtABCE2 could be as short as 591 amino acids and as long as 625 amino  
161 acids long (Figure 3D). Hence, despite some variance in amino acid sequence length and sequence identity  
162 to AtABCE2, the selection of amino acid sequences analyzed here is uniform and represents well the plant  
163 ABCE genes.

164 **Phylogeny of plant ABCEs**

165 To understand how ABCE proteins have evolved in the green plant lineage, we constructed a  
166 Maximum Likelihood (ML) phylogenetic tree for 152 ABCE protein sequences from 76 species (Figure 4).  
167 Among the included species, *Chlorophyta* (green algae) represent the earliest lineage to split off from the  
168 rest of the green plants. In an unrooted tree of ABCE amino acid sequences, representatives of *Chlorophyta*  
169 formed a separate cluster with high bootstrap support (Supplementary Figure S1a). In a smaller tree with  
170 ABCE amino acid sequences from 15 plant species rooted with HsABCE1, the sequences from *Chlorophyta*  
171 were clearly split off from all other plants (Supplementary Figure S1b). We therefore reasoned that  
172 *Chlorophyta* would be a suitable outgroup for rooting the tree.

173 By examining the tree rooted on *Chlorophyta*, we found that most of the plant ABCE full-length  
174 protein sequences cluster well together according to the taxonomic groupings. For instance, ABCEs from  
175 *Fabaceae* family members (legumes) form a single cluster, as is the case for *Solanaceae* family  
176 (nightshades). Homologous ABCE protein sequences from these families share a very high similarity and  
177 likely have the same function (Figure 4). As previously reported for a small selection of *Brassicaceae*  
178 (mustard and cabbage family, includes the thale cress *A. thaliana*) (Navarro-Quiles et al. 2022), our analysis  
179 shows that many of their members encode distinguishable ABCE1 and ABCE2 proteins (Figure 4). Notably,  
180 all *Brassicaceae* species have at least one ABCE2 protein.

181 In contrast to the well supported clustering of sequences from the same taxonomic groups,  
182 relationships between the clusters were not fully resolved and all internal branches of the tree were poorly  
183 supported. The topology of the likeliest amino acid sequence-based tree suggested all ABCE proteins from  
184 *Poaceae* (grasses) to be more closely related to AtABCE1 than to AtABCE2. This contrasts the notion that  
185 AtABCE2 preserves the ancestral function, whereas AtABCE1 is subjected to ongoing subfunctionalization  
186 or pseudogenization (Navarro-Quiles et al. 2022). In an attempt to shed further light on the phylogenetic  
187 relationships between AtABCE proteins and ABCEs from *Poaceae* family members, we constructed an  
188 additional tree including ABCE amino acid sequences from the *Brassicaceae* (32) and *Poaceae* (48)  
189 families, together with *Amborella trichopoda* (2), an important reference plant species in evolutionary  
190 studies. The green algae *C. reinhardtii* (1) was used to root the tree. In the likeliest tree obtained from this  
191 analysis, *Brassicaceae* ABCE1 group appeared as a separate branch, whereas all *Poaceae* ABCE protein  
192 sequences clustered together with AtABCE2, a very different result than the one obtained before. This  
193 further highlights that the amino acid sequences of ABCE may not be sufficient to fully resolve the  
194 phylogeny (Figure 5).

195 We then constructed an additional ML-tree based on nucleotide sequences coding for the ABCE  
196 proteins (coding sequence; CDS), rather than the proteins themselves. We used CDS of the same 152 plant  
197 ABCE proteins that were used to generate Figure 4, and again used *Chlorophyta* as an outgroup for placing  
198 the root (Figure 6). The information provided by nucleotide-level differences allowed additional branches

199 in the tree to be resolved with high bootstrap support values. Here it becomes clear that the split of a single  
200 *ABCE* gene into *ABCE1* and *ABCE2* happened in the common ancestor of *Brassicaceae*, whereas the  
201 ancestor of *Poaceae* had a similar split independently (Figure 6). Furthermore, it appears that in the common  
202 ancestor of the largest *Poaceae* subfamily *Pooideae*, involving important cereals such as barley and wheat,  
203 one *ABCE* parologue went through additional duplication (Figure 6). Although many other plant species  
204 also have more than one *ABCE* gene, these originate from more recent duplication events that are usually  
205 not shared with other analyzed species. The placement of major clusters in relation to each other generally  
206 correlates with the species tree (Figure 6).

207 In addition, we separately analyzed the three main domains of ABCE proteins, FeS cluster domain,  
208 NBD1, and NBD2, by realigning the corresponding sequences and constructing a ML-tree for each  
209 (Supplementary Figure S2, S3, S4). The topology of the resulting trees was different for each domain, but  
210 none of those were well supported by bootstrap analysis.

## 211 **Natural variation of *Arabidopsis AtABCE1* and *AtABCE2* genes**

212 Natural variation among *A. thaliana* ecotypes has been well documented by the 1001 Genomes  
213 Project (Weigel & Mott 2009). We analyzed the *ABCE* gene sequences of all 1135 *A. thaliana* ecotypes  
214 reported in that project and found 35 and 4 non-synonymous SNPs in *AtABCE1* and *AtABCE2*, respectively  
215 (Supplementary Table S4). Only four non-synonymous SNPs in *AtABCE2* indicate a low degree of natural  
216 variation, which is consistent with its fundamental, conserved role in growth and development. On the other  
217 hand, 35 non-synonymous SNPs annotated for *AtABCE1* show relatively higher natural variation. From  
218 these SNPs, we selected 18 that cause amino acid substitutions at conserved and important positions or that  
219 were present in combination with other SNPs of interest. Therefore, 21 ecotypes were included in the further  
220 study and resequencing, together with Col-0 (Supplementary Table S4; Table 1). Two SNPs causing amino  
221 acid substitution could not be detected while resequencing (Pro399Thr in Grivo-1 and Gly182Ser in IP-Cot-  
222 0). Instead, one SNP previously undocumented in the 1001 Genomes Project database (Leu253Phe in Grivo-  
223 1) was identified. Figure 7A shows the positions of the amino acid substitutions caused by the 17 SNPs

224 sequenced in the *AtABCE1* gene. In our resequencing analysis, the most frequent SNPs in *AtABCE1* caused  
225 the changes His561Leu and Ala441Thr (Table 1). Noteworthily, histidine at the position 561 seems to be  
226 characteristic to Col-0, as all the other analyzed ecotypes had leucine at this position. Next, we performed  
227 haplotype analysis with CDS sequences on the PopART platform and found that the most conserved  
228 sequence of *AtABCE1* is most probably the one identical to Ei-2, Kia1, Pra-6, IP-Car-1 and Can-0 (Figure  
229 7B). Eight SNPs out of 17 appear as single SNPs in the *AtABCE1* of Kly4, Toufl-1, Col-0, IP-Ezc-2, IP-  
230 Vis-0, IP-Moz-0, IP-Hoy-0, IP-Loz-0, IP-Cot-0 and Lebja-1 (Figure 7B). Interestingly, a substitution of  
231 Ala441Thr can appear both as the consequence of a single SNP in Leska-1-44 and together with other SNPs  
232 such as in Cvi-0 or Qar-8a (Figure 7B). Some amino acid changes, like Pro129Gln, Ala549Gly and  
233 His561Leu, are always grouped (Table 1). Pro129Gln appears only together with at least two other SNPs,  
234 e.g., in Grivo-1 or Qar-8a (Figure 7B).

235 In *AtABCE2*, we found only three amino acid changes (Gly44Ser, Met379Thr and Gly405Ala) due  
236 to non-synonymous SNPs, which were located in FeS cluster domain and NBD2 at not conserved positions  
237 (Figure 7C; Supplementary Table S4). The SNPs were verified in five different ecotypes (Table 1). The  
238 haplotype map of *AtABCE2* SNPs shows that Col-0 has the most conserved sequence and three different  
239 SNPs root from it (Figure 7D).

240 In this study we could not find any correlation between the presence of non-synonymous SNPs in  
241 *AtABCE* genes and the geographical origin of the ecotype (Table 1). Visual rosette phenotype of the studied  
242 ecotypes matched with characterization available in the public databases (Supplementary Figure S5).

243 In the case of 18 out of 21 ecotypes, all SNPs were confirmed as reported earlier. For three ecotypes  
244 only part of the SNPs was validated: Leska-1-44 did not exhibit Pro129Gln, IP-Cot-0 did not exhibit  
245 Gly182Ser and Grivo-1 did not exhibit Pro399Thr amino acid changes in AtABCE1 (Supplementary Table  
246 S4; Table 1). More interestingly, we verified Gly125Glu in IP-Cot-0 and Pro129Gln, Leu253Phe,  
247 Ala441Thr and His561Leu in Grivo-1. Leu253Phe had not been annotated in any *A. thaliana* ecotype in the  
248 1001 Genomes Project database (Table 1).

249 Surprisingly, we noticed some SNPs affecting highly conserved amino acid residues in AtABCE1.  
250 These include arginine residues from R cluster of Hinge domains (Arg323Cys and Arg572Leu of IP-Moz-  
251 0 and Toufl-1, respectively), and Arg86Gln of IP- Ezc-2 ecotype that locates to the Y-loop I (Figure 7 A;  
252 Table 1). According to the 1001 Genomes Project database the latter SNP is present in 19 *A. thaliana*  
253 ecotypes (Supplementary table S4).

254 Although, the length of AtABCE proteins in *A. thaliana* ecotypes is very conserved, in a single  
255 ecotype, namely Kly-4, we found a SNP in *AtABCE1* causing premature stop codon that makes the protein  
256 14 amino acid residues shorter. Despite this deletion, the cluster of arginine residues remains intact in Hinge  
257 II subdomain (Supplementary Figure S5).

258

## 259 **Discussion**

260 The availability of high-quality plant genome sequences is growing day by day, which creates a  
261 completely new and underexploited repository. It has been recognized that the plant genome evolution has  
262 been very complex, including polyploidy, periods of rapid speciation and extinction (Leebens-Mack et al.  
263 2019). Interestingly, massive expansions of gene families took place before the origins of green plants, land  
264 plants and vascular plants (Leebens-Mack et al. 2019). Whole genome duplications (WGDs) that have  
265 occurred at least 244 times throughout the evolution of plants and ferns (Leebens-Mack et al. 2019) increase  
266 ploidy of genomes and largely impact gene family size variation within different lineages. Apart from  
267 autoploidy, which results from intraspecies WGD events, there are also allopolyploid species, which  
268 originate from interspecies hybrids and render gene evolution tracking challenging.

## 269 **How many *ABCE* genes plants have and need?**

270 As was previously mentioned, in most animal and in yeast species the *ABCE* gene family is  
271 represented by a single gene that encodes the vital ABCE1 protein. In plant kingdom, *ABCE* gene family  
272 size across different lineages is more variable. Based on the data from the public databases and our analysis  
273 we were able to reconfirm the same number of *ABCE* genes for a selection of plant species. For example

274 there is a single gene in *C. hirsuta* (Kougioumoutzi et al. 2013), in *C. reinhardtii* (Li et al. 2022), in *Citrus*  
275 *sinesis* and in *Theobroma cacao* (Navarro-Quiles et al. 2022). Similarly to previous studies, we reverified  
276 two genes in *Zea mays* (Pang et al. 2013), in tomato (Ofori et al. 2018), in rice, and in *Populus trichocarpa*  
277 (Navarro-Quiles et al. 2022). The same was true for five *ABCE* genes from *Brassica rapa* (Navarro-Quiles  
278 et al. 2022). Intriguingly, Zhang and colleagues found three *ABCE* genes in barley, whereas our study  
279 identified only two sequences with all canonical subunits (604 and 611 amino acids long) (Zhang et al.  
280 2020). Moreover, for *Capsella rubella* we identified four *ABCE* genes as opposed to two sequences analyzed  
281 earlier (Navarro-Quiles et al. 2022). Taken together, we found that plant *ABCE* genes do not comprise a  
282 single-copy gene family, but rather should be classified as a low-copy gene family.

283 In terms of evolutionary perspective, the duplicates of genes resulting from WGD are often subject  
284 to relaxed selection, meaning rapid mutation resulting in loss of function (Qiao et al. 2019). In this study  
285 we did not notice significant correlation between *ABCE* gene family size and WGD events occurred in a  
286 lineage, probably due to the elimination of defunctionalized *ABCE* duplicates in many species during  
287 evolution. For example, in *Glycine max* and *Actinidia chinensis* after five documented WGD events they  
288 retained a single *ABCE2* gene. Interestingly, the overexpression of *ABCE1* in yeast causes growth inhibition  
289 (Dong et al. 2004), meaning that the amount of *ABCE* present – and therefore probably also the number of  
290 hypothetical redundant genes – is critical for the well-functioning of translation, a crucial process.

291 However, when higher expression of a particular gene is beneficial, its duplicate might be retained  
292 in the genome. This could be the case for the two *ABCE* paralogues in maize that are located close to each  
293 in our phylogenetic analysis (Figure 4) and share the same expression pattern profiles (Pang et al. 2013).  
294 Alternatively, as a result of faster evolution, gene duplicates may obtain novel functions or specialized  
295 expression patterns (Prince & Pickett 2002). In *Arabidopsis*, At $ABCE1$  and At $ABCE2$  exhibit partial  
296 functional redundancy. In contrast to At $ABCE2$ , which is ubiquitously expressed, At $ABCE1$  is mostly  
297 present in generative organs and at relatively low levels (Yu et al. 2023; Klepikova et al. 2016; Navarro-  
298 Quiles et al. 2022). This could mean an ongoing process of pseudogenization or subfunctionalization, where  
299 the paralogues acquire specific roles. There is a growing evidence regarding ribosomal heterogeneity and

300 the existence of specialized cell-type-specific ribosomes (Xue & Barna 2012; Barna et al. 2022), suggesting  
301 that AtABCE1 is involved in the regulation of translation in generative tissues. Paralogous *ABCE* genes in  
302 plants may serve to provide specificity in fine-tuning translation and controlling cellular translatome (Gerst  
303 2018).

304 Our initial observations based on a simple correlation analysis revealed a weak correlation between  
305 ploidy level and *ABCE* gene number. In the future, the determinants of *ABCE* copy number can be further  
306 elucidated by including more species from diverse lineages and using statistical modelling that takes  
307 phylogenetic structuring of the data also into account. These models could also potentially include other  
308 information from the species that was not used for the present study, such as whether the species is annual  
309 or perennial, their preferred mode of reproduction, or what kind of environments do they grow in.

310 **In plants *ABCE* genes are prone to duplicate**

311 In this study we analyzed 152 *ABCE* sequences from 76 plant species. This included the most well  
312 studied plant *ABCE* gene – AtABCE2, which is thought to preserve the ancestral functions of *ABCE*  
313 proteins (Navarro-Quiles et al. 2022). Phylogenetic tree of full-length *ABCE* protein sequences confirmed  
314 previously reported clustering into *ABCE2* and *ABCE1* groups for *Brassicaceae* (Navarro-Quiles et al.  
315 2022) but was unable to resolve the relationship between *ABCEs* from different families. The lack of  
316 phylogenetic signal can at least partially be explained by the strong conservation of plant *ABCE* proteins,  
317 each sharing at least 78% of sequence identity with AtABCE2 (Supplementary Table S3). However, using  
318 the nucleotide sequences coding for *ABCE* proteins allowed to better illustrate the evolution and clustering  
319 of plant *ABCE* genes. The results suggest that *Brassicaceae* and *Poaceae* families have undergone  
320 independent lineage-specific splits of the ancestral *ABCE* gene. *Pooideae*, the largest *Poaceae* subfamily  
321 that includes barley and wheat, appears to have had further duplication events and its members have  
322 additional *ABCE* genes. In addition to *Brassicaceae* and *Poaceae*, many other plant taxa have also gained  
323 *ABCE* gene copies, most likely as a result of more recent duplications. We can therefore postulate that in  
324 contrast to species which possess a single *ABCE* gene and are sensitive to copy number changes (Dong et  
325 al. 2004), plants have evolved to benefit from higher numbers of this essential translational factor. Gene

326 copies may arise from different events including WGD, tandem- and transposon-related duplications, but  
327 the precise source of *ABCE* subfamily expansion in plants remains to be investigated.

328 **Natural variation of *A. thaliana* ABCEs**

329 Usually, essential genes are subject to strong evolutionary pressure and thus, non-synonymous  
330 SNPs in conserved regions of gene sequences are rare (Pang et al. 2016; Castle 2011). In *AtABCE1* we  
331 found three SNPs that could potentially impact the protein's function (Table1; Figure 7A). SNPs causing  
332 the substitutions Arg323Cys (in IP-Moz-0) and Arg572Leu (in Toufl-1) located at Hinge domain I and II  
333 could be of importance, since these domains are essential for NBD-twin cassette assembly in the case of  
334 *ABCE1* in other organisms (Karcher et al. 2005). In addition, *AtABCE1* of IP-Ezc-2 ecotype contains an  
335 amino acid substitution at position Arg86Gln, which is exceptionally conserved across archaea and  
336 eukaryotes and locates to Y-loop I. In the context of Y-loop with consensus sequence **HR**YGVNAF, the  
337 arginine residue has been shown to mediate interaction between FeS cluster domain and NBD1 in the sole  
338 *ABCE1* gene of *Pyrococcus abyssi* (Karcher et al. 2008).

339 The His561Leu amino acid change was reported to be present in 997 out of 1135 *A. thaliana*  
340 ecotypes (Supplementary Table S4), which suggest that histidine at this position of *AtABCE1* might be  
341 characteristic only to a small subset of ecotypes including Col-0. Thus, it seems that leucine is the most  
342 conserved residue at position 561 in *AtABCE1* among *Arabidopsis* ecotypes.

343 As expected, in *AtABCE2* gene, known to be essential for the viability of an organism (Navarro-Quiles et  
344 al. 2022; Yu et al. 2023) only four non-synonymous SNPs residing in non-conserved regions were found  
345 among 1135 *A. thaliana* ecotypes (Supplementary Table S4). Importantly, the *AtABCE2* gene seems to be  
346 hard to mutate, since up to now there is no T-DNA homozygous line available and only one viable,  
347 hypomorphic allele has been recently isolated after ethyl methanesulfonate mutagenesis (Navarro-Quiles et  
348 al., 2022). Interestingly, the only non-synonymous SNP present in more than one ecotype in the case of  
349 *AtABCE2* is leading to Gly44Ser substitution in FeS domain. According to the 1001 Genomes Project

350 database this mutation is present in 54 ecotypes, three of them were confirmed in the current study (Table  
351 1; Figure 7; Supplementary Table S4).

352 Taken together, this study has shown the surprisingly high number of *ABCE* genes among the plant  
353 kingdom. We hypothesize that plants have developed a number of specialized ABCEs with more specific  
354 functions compared to species carrying a single copy of *ABCE* gene such as humans, fruit fly or yeast.

355

## 356 **Methods**

### 357 **Phylogenetic diagram of studied plants**

358 The phylogenetic diagram of the studied plants species together with the bar chart of *ABCE* gene  
359 number was created based on NCBI taxonomy with phyloT and visualized with iTOL (Letunic & Bork  
360 2007, 2019; [phylot.biobyt.de](http://phylot.biobyt.de)).

### 361 **Genome and proteome data acquisition**

362 *ABCE* sequence data for 55 species was downloaded from the online resource Phytozome portal  
363 <https://phytozome.jgi.doe.gov/> (Goodstein et al. 2012). *ABCE* sequence data for additional 18 species was  
364 downloaded from Ensembl Plants (Howe et al. 2020). The genome data for *C. hirsuta* was accessed at  
365 <http://bioinfo.mpipz.mpg.de/blast/> (Gan et al. 2016). Genome data for *N. tabacum* and *N. benthamiana* was  
366 downloaded from Sol Genomics Network <http://solgenomics.net> (Edwards et al. 2017; Kourelis et al. 2019).  
367 We downloaded genomic, CDS and translated amino acid sequences for each plant *ABCE* gene used in the  
368 study.

369 The length of amino acid sequences was calculated with SeqinR package (version 3.6.1) in R 4.0.2  
370 (Charif & Lobry 2007). In order to calculate their similarities to AtABCE2, all 152 sequences were aligned  
371 using the online interface of MUSCLE with default Pearson/FASTA parameters provided by the European  
372 Bioinformatics Institute (EBI) (Madeira et al. 2019). Thereafter the percent identity scores were calculated  
373 with MUSCLE algorithm for aligned sequences in R 4.0.2 package Bio3D version 2.4-1 (Grant et al. 2021;  
374 Edgar 2004).

375 Next, sequences aligned to AtABCE2 were inspected for the general protein structure, that is the  
376 presence and correct order of the domains, including FeS cluster domain, NBD1, NBD2 and bipartite Hinge  
377 domain (Supplementary Figure S6). Sequences lacking critical motifs within these domains (Karcher et al.  
378 2005; Barthelme et al. 2007; Nürenberg & Tampé 2013; Nürenberg-Goloub et al. 2020) were filtered out  
379 from the analysis.

380 **Evolutionary analysis by Maximum Likelihood method**

381 All amino acid sequences were analyzed with the MEGA software package (versions 10.2.2 and  
382 11.0.13) (Kumar et al. 2018) as described below. Sequences were aligned with default parameters of the  
383 MUSCLE algorithm. Phylogenetic relationships were inferred using the Maximum Likelihood method and  
384 JTT matrix-based model (Jones et al. 1992), selected for each data set based on the lowest BIC scores  
385 (Bayesian Information Criterion). A discrete gamma distribution was used to model evolutionary rate  
386 differences among sites. Bootstrap analysis was performed with 500 replicates. The trees with the highest  
387 log likelihood were published for each analysis.

388 CDS sequences were aligned with the default parameters of MAFFT version 7.4.9.0 (Katoh &  
389 Standley 2013). Sites in the CDS alignment that contained gaps for more than 10% of the sequences were  
390 removed with trimAl version 1.4.rev22 (Capella-Gutiérrez et al. 2009), resulting in 1,810 retained  
391 positions. RAxML version 8.2.12 (Stamatakis 2014) was used to create a maximum likelihood phylogeny  
392 with the GTR model of nucleotide substitution, gamma model of rate heterogeneity and 500 bootstrap  
393 replicates.

394 **Data acquisition for 1135 *Arabidopsis* ecotypes**

395 Data (SNPs and indels) available for 1135 *A. thaliana* strains was downloaded from the 1001  
396 Genomes Project depository (Weigel & Mott 2009).

397 **Reconfirming the haplotypes of *Arabidopsis* ecotypes**

398 Seeds of the selected 21 *Arabidopsis* ecotypes were acquired from the Nottingham *Arabidopsis*  
399 Stock Centre (NASC). Both *AtABCE1* and *AtABCE2* full coding sequences were PCR-amplified and

400 sequenced by Sanger sequencing for ecotypes Can-0, Ei-2, IP-Car-1, Kia1 and Pra-6. For the other 15  
401 ecotypes only *AtABCE1* full coding sequences was sequenced. Primer pairs used for the PCRs are shown in  
402 the Supplementary Table S5. For all the PCR reactions touchdown PCR method with the following  
403 conditions was used: 95 °C for 15 minutes; 13 cycles of at 95 °C for 15 seconds, at the gradually decreasing  
404 temperature from 60 °C to 54 °C (the temperature drops by 0.5 °C per cycle) for 30 seconds, at 72°C for 70  
405 seconds; 15 cycles of 95°C 15 seconds, 54°C 30 seconds, 72°C 70 seconds and the final extension at 72 °C  
406 for 10 minutes. Amplified DNA fragments were purified from the agarose gel using GeneJET Gel Extraction  
407 Kit (Thermo Scientific) according to the manufacturer's instructions. Thereafter the purified DNA  
408 fragments were Sanger sequenced and aligned respectively to *AtABCE1* or *AtABCE2*. The final results were  
409 based on the sequencing of at least two plants for each ecotype. Columbia (Col-0) ecotype was used as a  
410 reference.

411 **Generating haplotype map with PopART**

412 For the haplotype analysis, first an alignment file with CDS sequences was created in Nexus format.  
413 Thereafter the multiple sequence alignment was analyzed with PopART version 1.7 (Population Analysis  
414 with Reticulate Trees) (Leigh & Bryant 2015). The network was constructed with Median Joining Network  
415 algorithm (epsilon=0).

416

417 **Figure and table texts**

418 **Fig. 1. Phylogenetic diagram of 152 ABCE genes in plants.** The data was compiled from 76 plant species.

419 Whole genome duplications (WGDs) and triplications (WGT) are marked as grey and black stars,  
420 respectively.

421 **Fig. 2. ABCE copy number in plants.** (A) ABCE gene copy number among the studied 76 plant species.

422 (B) The correlation between ABCE gene copy number and species ploidy level. (C) The correlation between  
423 ABCE gene copy number and the number of WGDs of a species.

424 **Fig. 3. Amino acid sequences of plant ABCEs reveal high level of conservation.** (A) Linear protein  
425 model of AtABCE2. Grey regions depict highly conserved motifs within AtABCE2. FeS – iron-sulphur  
426 cluster domain, NBD1 – nucleotide-binding domain 1, NBD2 – nucleotide-binding domain 2. (B) Histogram  
427 of protein sequence lengths of the studied 152 plant ABCEs. (C) Histogram of amino acid sequence  
428 identities of the studied 152 plant ABCEs, based on MUSCLE alignment. (D) The correlation between  
429 amino acid sequence identity and protein sequence length of the studied 152 plant ABCEs.

430 **Fig. 4. Cladogram of the 152 plant ABCE full-length amino acid sequences.** There was a total of 777  
431 positions in the final dataset. The tree was constructed using the Maximum Likelihood method and JTT+G  
432 model. Color coding of the selected proteins refers to the affiliation to the bigger plant phyla or families.  
433 Bootstrap values over 75% are depicted on the figure. The tree is rooted on *Chlorophyta* phylum.

434 **Fig. 5. Cladogram of the selected 83 plant ABCE amino acid sequences from the *Brassicaceae* family**  
435 **(32), *Poaceae* family (48) and *A. trichopoda* (2) together with *C. reinhardtii* (1) as the root of the tree.**  
436 There was a total of 738 positions in the final dataset. The tree was constructed using the Maximum  
437 Likelihood method and JTT+G model. Bootstrap values over 75% are depicted on the figure.

438 **Fig. 6. Cladogram of the 152 plant ABCE full-length CDS sequences.** There was a total of 1810 positions  
439 in the final dataset. The tree was constructed using the Maximum Likelihood method and JTT+G model.  
440 Color coding of the selected proteins refers to the affiliation to the bigger plant phyla or families. Bootstrap  
441 values over 75% are depicted on the figure.

442 **Fig. 7. Analysis of non-synonymous SNPs in AtABCE1 and AtABCE2.** (A) Linear protein model of  
443 AtABCE1. Asterisks depict amino acid substitutions due to SNPs verified in different ecotypes. (B)  
444 Haplotype map of AtABCE1 detected among 22 *Arabidopsis* ecotypes. Branch length represents the number  
445 of mutations between sequences. For pairs of haplotypes whose distances on the tree are longer than the  
446 distances between the sequences, edges are added to shorten the distance. (C) Linear protein model of  
447 AtABCE2. Asterisks depict amino acid substitutions due to SNPs verified in different ecotypes. (D)  
448 Haplotype map of AtABCE2 detected among six *Arabidopsis* ecotypes. Branch length represents the  
449 number of mutations between sequences. For pairs of haplotypes whose distances on the tree are longer than  
450 the distances between the sequences, edges are added to shorten the distance.

451 **Table 1. Non-synonymous SNPs found in AtABCE1 and AtABCE2 among 21 *A. thaliana* ecotypes.**

452 All SNPs were verified by Sanger sequencing and whole-genome sequencing published in the 1001  
453 Genomes project (Weigel & Mott 2009; Cao et al. 2011). SNP locations were numbered according to the  
454 position in the cDNA sequence starting from ATG. Change in amino acid sequence corresponding to the  
455 SNP is presented. Orange color depicts SNPs that are not present in 1001 Genomes Project data but verified  
456 by Sanger sequencing within this study. Green color shows SNPs positioned in conserved arginine residues.

457

458 **Supplementary Material**

459 **Supplementary Figure S1. Maximum likelihood phylogenetic trees supporting the use of *Chlorophyta***  
460 **phylum as the outgroup for ABCE phylogenetic studies.** (A) Unrooted tree of 152 ABCE amino acid  
461 sequences. Representatives of *Chlorophyta* formed a separate cluster with high bootstrap support. (B) Tree  
462 with ABCE amino acid sequences from 15 selected plant species rooted on HsABCE1.

463 **Supplementary Figure S2. Cladogram of FeS domain of the 152 plant ABCEs.** There was a total of 113  
464 positions in the final dataset. The tree was constructed using the Maximum Likelihood method and JTT+G  
465 model. Color coding of the selected proteins refers to the affiliation to the bigger plant phyla or families.

466 **Supplementary Figure S3. Cladogram of NBD1 domain of the 152 plant ABCEs.** There was a total of  
467 249 positions in the final dataset. The tree was constructed using the Maximum Likelihood method and

468 JTT+G model. Color coding of the selected proteins refers to the affiliation to the bigger plant phyla or  
469 families.

470 **Supplementary Figure S4. Cladogram of NBD2 domain of the 152 plant ABCEs.** There was a total of  
471 293 positions in the final dataset. The tree was constructed using the Maximum Likelihood method and  
472 JTT+G model. Color coding of the selected proteins refers to the affiliation to the bigger plant phyla or  
473 families.

474 **Supplementary Figure S5. Images of 22 *Arabidopsis* ecotypes.** White scale bar depicts 1 cm on the  
475 images.

476 **Supplementary Figure S6. Alignment of human HsABCE1 and *Arabidopsis thaliana* AtABCE2**  
477 **together with respective domains and conserved regions.**

478 **Supplementary Table S1. List of the 76 plant species used within the ABCE phylogenetic analysis.**  
479 Number of plant ABCE genes identified per species, database used, genome assembly version and genome  
480 ploidy level are depicted.

481 **Supplementary Table S2. Whole-genome duplications (WGDs) detected in the plant species analyzed**  
482 **in the study.** Data is based on the results of One Thousand Plant Transcriptomes Initiative published in  
483 2019.

484 **Supplementary Table S3. List of the 152 ABCE genes identified from 76 plant species together with**  
485 **protein length and amino acid sequence similarity to AtABCE2.**

486 **Supplementary Table S4. Non-synonymous SNPs found in AtABCE1 and AtABCE2.**

487 **Supplementary Table S5. Primers used within this study.**

488 **Supplementary File S1. A Maximum Likelihood phylogenetic tree based on 152 plant ABCE full-**  
489 **length amino acid sequences.** This data was used to create Figure 4 and is in Newick file format.

490 **Supplementary File S2. . A Maximum Likelihood phylogenetic tree based on selected 83 plant ABCE**  
491 **full-length amino acid sequences from the *Brassicaceae* family (32), *Poaceae* family (48) and *A.***  
492 ***trichopoda* (2) together with *C. reinhardtii* (1) as the root of the tree.** This data was used to create Figure  
493 5 and is in Newick file format.

494 **Supplementary File S3. A Maximum Likelihood phylogenetic tree based on 152 plant ABCE full-  
495 length CDS sequences.** This data was used to create Figure 6 and is in Newick file format.

496

497 **Acknowledgements**

498 This work was supported by Postdoctoral grant SS458 to L. J. from Tallinn University of Technology. J.S.  
499 was funded by a Natural Sciences and Engineering Research Council of Canada Discovery Grant to Colin  
500 Garroway. The research was conducted using the equipment purchased within the framework of the Project  
501 “Plant Biology Infrastructure – TAIM” funded by the EU Regional Development Fund (2014-2020.4.01.20-  
502 0282).

503

504

505 **References**

506 Andersen DS, Leevers SJ. 2007. The Essential Drosophila ATP-binding Cassette Domain Protein, Pixie,  
507 Binds the 40 S Ribosome in an ATP-dependent Manner and Is Required for Translation Initiation. *J. Biol.*  
508 *Chem.* 282:14752–14760. doi: 10.1074/jbc.M701361200.

509 Andolfo G et al. 2015. Genetic variability and evolutionary diversification of membrane ABC transporters  
510 in plants. *BMC Plant Biol.* 15:51. doi: 10.1186/s12870-014-0323-2.

511 Barna M et al. 2022. The promises and pitfalls of specialized ribosomes. *Mol. Cell.* 82:2179–2184. doi:  
512 10.1016/j.molcel.2022.05.035.

513 Barthelme D et al. 2011. Ribosome recycling depends on a mechanistic link between the FeS cluster  
514 domain and a conformational switch of the twin-ATPase ABCE1. *Proc. Natl. Acad. Sci. U. S. A.*  
515 108:3228–3233. doi: 10.1073/pnas.1015953108.

516 Barthelme D et al. 2007. Structural organization of essential iron-sulfur clusters in the evolutionarily  
517 highly conserved ATP-binding cassette protein ABCE1. *J. Biol. Chem.* 282:14598–14607. doi:  
518 10.1074/jbc.M700825200.

519 Braz ASK, Finnegan J, Waterhouse P, Margis R. 2004. A plant orthologue of RNase L inhibitor (RLI) is  
520 induced in plants showing RNA interference. *J. Mol. Evol.* 59:20–30. doi: 10.1007/s00239-004-2600-4.

521 Capella-Gutiérrez S, Silla-Martínez JM, Gabaldón T. 2009. trimAl: a tool for automated alignment  
522 trimming in large-scale phylogenetic analyses. *Bioinformatics.* 25:1972–1973. doi:  
523 10.1093/bioinformatics/btp348.

524 Castle JC. 2011. SNPs occur in regions with less genomic sequence conservation. *PLoS One.* 6:e20660.  
525 doi: 10.1371/journal.pone.0020660.

526 Charif D, Lobry JR. 2007. SeqinR 1.0-2: A Contributed Package to the R Project for Statistical  
527 Computing Devoted to Biological Sequences Retrieval and Analysis. In: *Structural Approaches to*  
528 *Sequence Evolution: Molecules, Networks, Populations.* Bastolla, U, Porto, M, Roman, HE, &  
529 Vendruscolo, M, editors. *Biological and Medical Physics, Biomedical Engineering* Springer: Berlin,  
530 Heidelberg pp. 207–232. doi: 10.1007/978-3-540-35306-5\_10.

531 Dermauw W, Van Leeuwen T. 2014. The ABC gene family in arthropods: comparative genomics and role  
532 in insecticide transport and resistance. *Insect Biochem. Mol. Biol.* 45:89–110. doi:  
533 10.1016/j.ibmb.2013.11.001.

534 Dong J et al. 2004. The essential ATP-binding cassette protein RLI1 functions in translation by promoting  
535 preinitiation complex assembly. *J. Biol. Chem.* 279:42157–42168. doi: 10.1074/jbc.M404502200.

536 Du X et al. 2003. cDNA Cloning and Expression Analysis of the Rice (*Oryza sativa* L.) RNase L  
537 Inhibitor. *DNA Seq.* 14:295–301. doi: 10.1080/1085566031000141162.

538 Edgar RC. 2004. MUSCLE: multiple sequence alignment with high accuracy and high throughput.  
539 *Nucleic Acids Res.* 32:1792–1797. doi: 10.1093/nar/gkh340.

540 Edwards KD et al. 2017. A reference genome for *Nicotiana tabacum* enables map-based cloning of  
541 homeologous loci implicated in nitrogen utilization efficiency. *BMC Genomics*. 18:448. doi:  
542 10.1186/s12864-017-3791-6.

543 Gan X et al. 2016. The *Cardamine hirsuta* genome offers insight into the evolution of morphological  
544 diversity. *Nat. Plants*. 2:1–7. doi: 10.1038/nplants.2016.167.

545 Garcia O, Bouige P, Forestier C, Dassa E. 2004. Inventory and comparative analysis of rice and  
546 *Arabidopsis* ATP-binding cassette (ABC) systems. *J. Mol. Biol.* 343:249–265. doi:  
547 10.1016/j.jmb.2004.07.093.

548 Gerst JE. 2018. Pimp My Ribosome: Ribosomal Protein Paralogs Specify Translational Control. *Trends  
549 Genet.* 34:832–845. doi: 10.1016/j.tig.2018.08.004.

550 Goodstein DM et al. 2012. Phytozome: a comparative platform for green plant genomics. *Nucleic Acids  
551 Res.* 40:D1178–D1186. doi: 10.1093/nar/gkr944.

552 Graille M, Séraphin B. 2012. Surveillance pathways rescuing eukaryotic ribosomes lost in translation.  
553 *Nat. Rev. Mol. Cell Biol.* 13:727–735. doi: 10.1038/nrm3457.

554 Grant BJ, Skjaerven L, Yao X-Q. 2021. The Bio3D packages for structural bioinformatics. *Protein Sci.  
555 Publ. Protein Soc.* 30:20–30. doi: 10.1002/pro.3923.

556 Howe KL et al. 2020. Ensembl Genomes 2020—enabling non-vertebrate genomic research. *Nucleic Acids  
557 Res.* 48:D689–D695. doi: 10.1093/nar/gkz890.

558 Jones DT, Taylor WR, Thornton JM. 1992. The rapid generation of mutation data matrices from protein  
559 sequences. *Bioinformatics*. 8:275–282. doi: 10.1093/bioinformatics/8.3.275.

560 Kärblane K et al. 2015. ABCE1 is a highly conserved RNA silencing suppressor. *PLoS One*. 10:e0116702.  
561 doi: 10.1371/journal.pone.0116702.

562 Karcher A, Büttner K, Märkens B, Jansen R-P, Hopfner K-P. 2005. X-ray structure of RLI, an essential  
563 twin cassette ABC ATPase involved in ribosome biogenesis and HIV capsid assembly. *Struct. Lond. Engl.*  
564 1993. 13:649–659. doi: 10.1016/j.str.2005.02.008.

565 Karcher A, Schele A, Hopfner K-P. 2008. X-ray structure of the complete ABC enzyme ABCE1 from  
566 *Pyrococcus abyssi*. *J. Biol. Chem.* 283:7962–7971. doi: 10.1074/jbc.M707347200.

567 Katoh K, Standley DM. 2013. MAFFT Multiple Sequence Alignment Software Version 7: Improvements  
568 in Performance and Usability. *Mol. Biol. Evol.* 30:772–780. doi: 10.1093/molbev/mst010.

569 Kispal G et al. 2005. Biogenesis of cytosolic ribosomes requires the essential iron–sulphur protein Rli1p  
570 and mitochondria. *EMBO J.* 24:589–598. doi: 10.1038/sj.emboj.7600541.

571 Klepikova AV, Kasianov AS, Gerasimov ES, Logacheva MD, Penin AA. 2016. A high resolution map of  
572 the *Arabidopsis thaliana* developmental transcriptome based on RNA-seq profiling. *Plant J.* 88:1058–  
573 1070. doi: 10.1111/tpj.13312.

574 Kougioumoutzi E et al. 2013. SIMPLE LEAF3 encodes a ribosome-associated protein required for leaflet  
575 development in *Cardamine hirsuta*. *Plant J.* 73:533–545. doi: 10.1111/tpj.12072.

576 Kourelis J et al. 2019. A homology-guided, genome-based proteome for improved proteomics in the  
577 allopolloid *Nicotiana benthamiana*. *BMC Genomics*. 20:722. doi: 10.1186/s12864-019-6058-6.

578 Kumar S, Stecher G, Li M, Knyaz C, Tamura K. 2018. MEGA X: Molecular Evolutionary Genetics  
579 Analysis across Computing Platforms. *Mol. Biol. Evol.* 35:1547–1549. doi: 10.1093/molbev/msy096.

580 Leebens-Mack JH et al. 2019. One thousand plant transcriptomes and the phylogenomics of green plants.  
581 *Nature*. 574:679–685. doi: 10.1038/s41586-019-1693-2.

582 Leigh JW, Bryant D. 2015. popart: full-feature software for haplotype network construction. *Methods*  
583 *Ecol. Evol.* 6:1110–1116. doi: <https://doi.org/10.1111/2041-210X.12410>.

584 Letunic I, Bork P. 2007. Interactive Tree Of Life (iTOL): an online tool for phylogenetic tree display and  
585 annotation. *Bioinforma. Oxf. Engl.* 23:127–128. doi: 10.1093/bioinformatics/btl529.

586 Letunic I, Bork P. 2019. Interactive Tree Of Life (iTOL) v4: recent updates and new developments.  
587 *Nucleic Acids Res.* 47:W256–W259. doi: 10.1093/nar/gkz239.

588 Li Xiangyu et al. 2022. Identification and Characterization of ATP-Binding Cassette Transporters in  
589 *Chlamydomonas reinhardtii*. *Mar. Drugs.* 20:603. doi: 10.3390/md20100603.

590 Liu S, Li Q, Liu Z. 2013. Genome-wide identification, characterization and phylogenetic analysis of 50  
591 catfish ATP-binding cassette (ABC) transporter genes. *PloS One*. 8:e63895. doi:  
592 10.1371/journal.pone.0063895.

593 Lu H, Xu Y, Cui F. 2016. Phylogenetic analysis of the ATP-binding cassette transporter family in three  
594 mosquito species. *Pestic. Biochem. Physiol.* 132:118–124. doi: 10.1016/j.pestbp.2015.11.006.

595 Madeira F et al. 2019. The EMBL-EBI search and sequence analysis tools APIs in 2019. *Nucleic Acids*  
596 *Res.* 47:W636–W641. doi: 10.1093/nar/gkz268.

597 Maeda T et al. 2005. Cloning and characterization of a ribonuclease L inhibitor from the silkworm,  
598 *Bombyx mori*. *DNA Seq.* 16:21–27. doi: 10.1080/10425170400028871.

599 Mancera-Martínez E, Brito Querido J, Valasek LS, Simonetti A, Hashem Y. 2017. ABCE1: A special  
600 factor that orchestrates translation at the crossroad between recycling and initiation. *RNA Biol.* 14:1279–  
601 1285. doi: 10.1080/15476286.2016.1269993.

602 Möttus J, Maiste S, Eek P, Truve E, Sarmiento C. 2021. Mutational analysis of *Arabidopsis thaliana*  
603 ABCE2 identifies important motifs for its RNA silencing suppressor function. *Plant Biol.* 23:21–31. doi:  
604 <https://doi.org/10.1111/plb.13193>.

605 Navarro-Quiles C et al. 2022. The *Arabidopsis* ATP-Binding Cassette E protein ABCE2 is a conserved  
606 component of the translation machinery. *Front. Plant Sci.* 13.  
607 <https://www.frontiersin.org/articles/10.3389/fpls.2022.1009895> (Accessed January 6, 2023).

608 Navarro-Quiles C, Mateo-Bonmatí E, Micol JL. 2018. ABCE Proteins: From Molecules to Development.  
609 *Front. Plant Sci.* 9:1125. doi: 10.3389/fpls.2018.01125.

610 Nürenberg E, Tampé R. 2013. Tying up loose ends: ribosome recycling in eukaryotes and archaea. *Trends*  
611 *Biochem. Sci.* 38:64–74. doi: 10.1016/j.tibs.2012.11.003.

612 Nürenberg-Goloub E et al. 2020. Molecular analysis of the ribosome recycling factor ABCE1 bound to the  
613 30S post-splitting complex. *EMBO J.* n/a:e103788. doi: 10.15252/embj.2019103788.

614 Ofori PA et al. 2018. Tomato ATP-Binding Cassette Transporter SIABC4 Is Involved in Auxin  
615 Transport in the Developing Fruit. *Plants Basel Switz.* 7:65. doi: 10.3390/plants7030065.

616 Pang E, Wu X, Lin K. 2016. Different evolutionary patterns of SNPs between domains and unassigned  
617 regions in human protein-coding sequences. *Mol. Genet. Genomics.* 291:1127–1136. doi:  
618 10.1007/s00438-016-1170-7.

619 Pang K, Li Y, Liu M, Meng Z, Yu Y. 2013. Inventory and general analysis of the ATP-binding cassette  
620 (ABC) gene superfamily in maize (*Zea mays* L.). *Gene.* 526:411–428. doi: 10.1016/j.gene.2013.05.051.

621 Petersen BO, Jørgensen B, Albrechtsen M. 2004. Isolation and RNA silencing of homologues of the  
622 RNase L inhibitor in *Nicotiana* species. *Plant Sci.* 167:1283–1289. doi: 10.1016/j.plantsci.2004.06.030.

623 phylot.biobyt.de. phyloT : a phylogenetic tree generator. <https://phylot.biobyt.de/> (Accessed March 18,  
624 2021).

625 Prince VE, Pickett FB. 2002. Splitting pairs: the diverging fates of duplicated genes. *Nat. Rev. Genet.*  
626 3:827–837. doi: 10.1038/nrg928.

627 Qiao X et al. 2019. Gene duplication and evolution in recurring polyploidization–diploidization cycles in  
628 plants. *Genome Biol.* 20:38. doi: 10.1186/s13059-019-1650-2.

629 Sarmiento C, Nigul L, Kazantseva J, Buschmann M, Truve E. 2006. AtRLI2 is an endogenous suppressor  
630 of RNA silencing. *Plant Mol. Biol.* 61:153–163. doi: 10.1007/s11103-005-0001-8.

631 Stamatakis A. 2014. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large  
632 phylogenies. *Bioinformatics.* 30:1312–1313. doi: 10.1093/bioinformatics/btu033.

633 Strunk BS, Novak MN, Young CL, Karbstein K. 2012. Joining of 60S subunits and a translation-like  
634 cycle in 40S ribosome maturation. *Cell.* 150:111–121. doi: 10.1016/j.cell.2012.04.044.

635 Toompuu M, Kärblane K, Pata P, Truve E, Sarmiento C. 2016. ABCE1 is essential for S phase  
636 progression in human cells. *Cell Cycle Georget. Tex.* 15:1234–1247. doi:  
637 10.1080/15384101.2016.1160972.

638 Verrier PJ et al. 2008. Plant ABC proteins--a unified nomenclature and updated inventory. *Trends Plant  
639 Sci.* 13:151–159. doi: 10.1016/j.tplants.2008.02.001.

640 Wang X et al. 2011. The genome of the mesopolyploid crop species *Brassica rapa*. *Nat. Genet.* 43:1035–  
641 1039. doi: 10.1038/ng.919.

642 Weigel D, Mott R. 2009. The 1001 Genomes Project for *Arabidopsis thaliana*. *Genome Biol.* 10:107. doi:  
643 10.1186/gb-2009-10-5-107.

644 Xue S, Barna M. 2012. Specialized ribosomes: a new frontier in gene regulation and organismal biology.  
645 *Nat. Rev. Mol. Cell Biol.* 13:355–369. doi: 10.1038/nrm3359.

646 Yarunin A et al. 2005. Functional link between ribosome formation and biogenesis of iron–sulfur proteins.  
647 *EMBO J.* 24:580–588. doi: 10.1038/sj.emboj.7600540.

648 Yu S-X et al. 2023. RLI2 regulates Arabidopsis female gametophyte and embryo development by  
649 facilitating the assembly of the translational machinery. *Cell Rep.* 42. doi: 10.1016/j.celrep.2023.112741.

650 Zhang Z et al. 2020. Genome-Wide Identification of Barley ABC Genes and Their Expression in  
651 Response to Abiotic Stress Treatment. *Plants Basel Switz.* 9:1281. doi: 10.3390/plants9101281.

652 Zhao Z, Fang LL, Johnsen R, Baillie DL. 2004. ATP-binding cassette protein E is involved in gene  
653 transcription and translation in *Caenorhabditis elegans*. *Biochem. Biophys. Res. Commun.* 323:104–111.  
654 doi: 10.1016/j.bbrc.2004.08.068.

655 Zimmerman C et al. 2002. Identification of a host protein essential for assembly of immature HIV-1  
656 capsids. *Nature.* 415:88–92. doi: 10.1038/415088a.

657

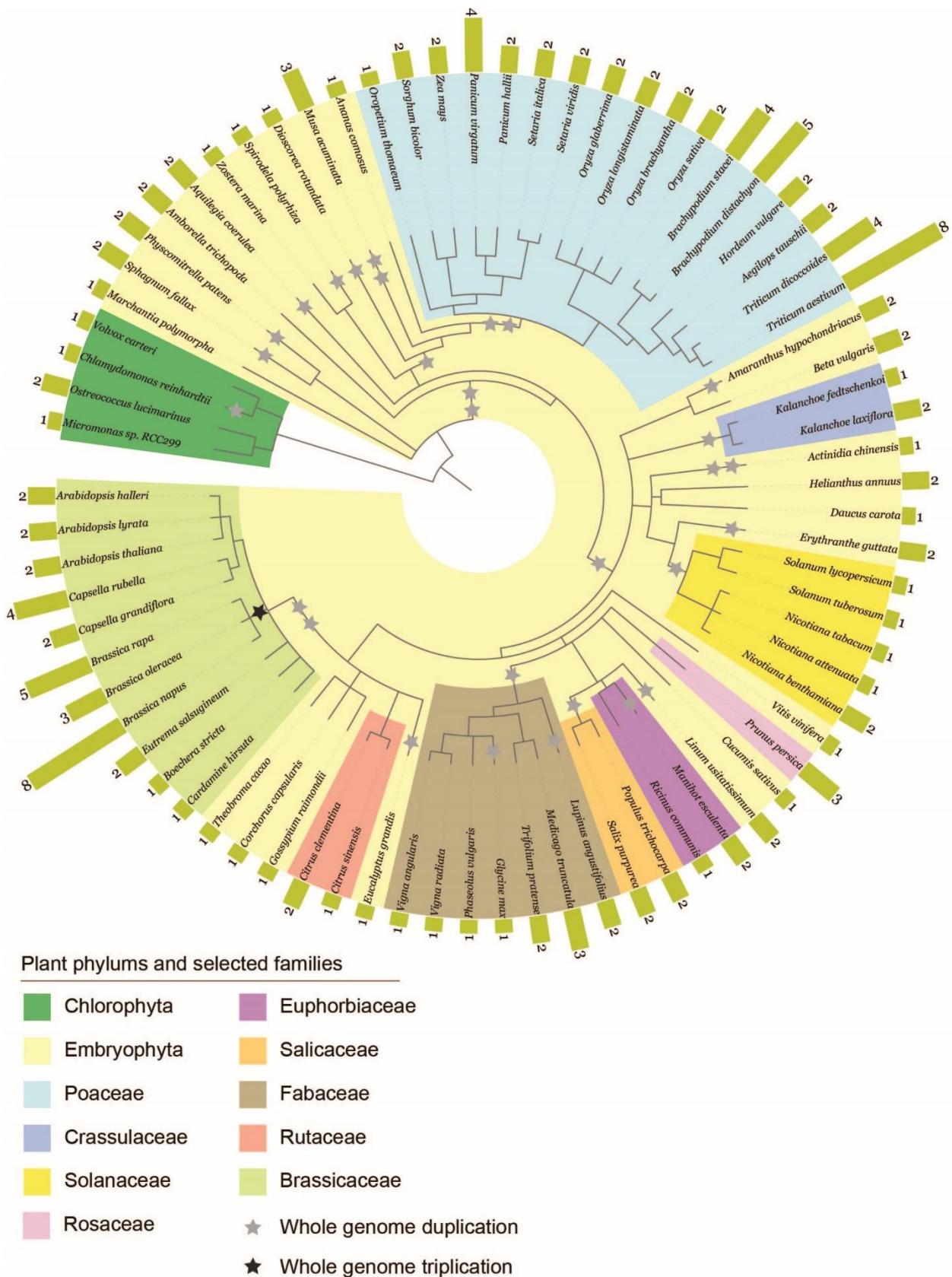
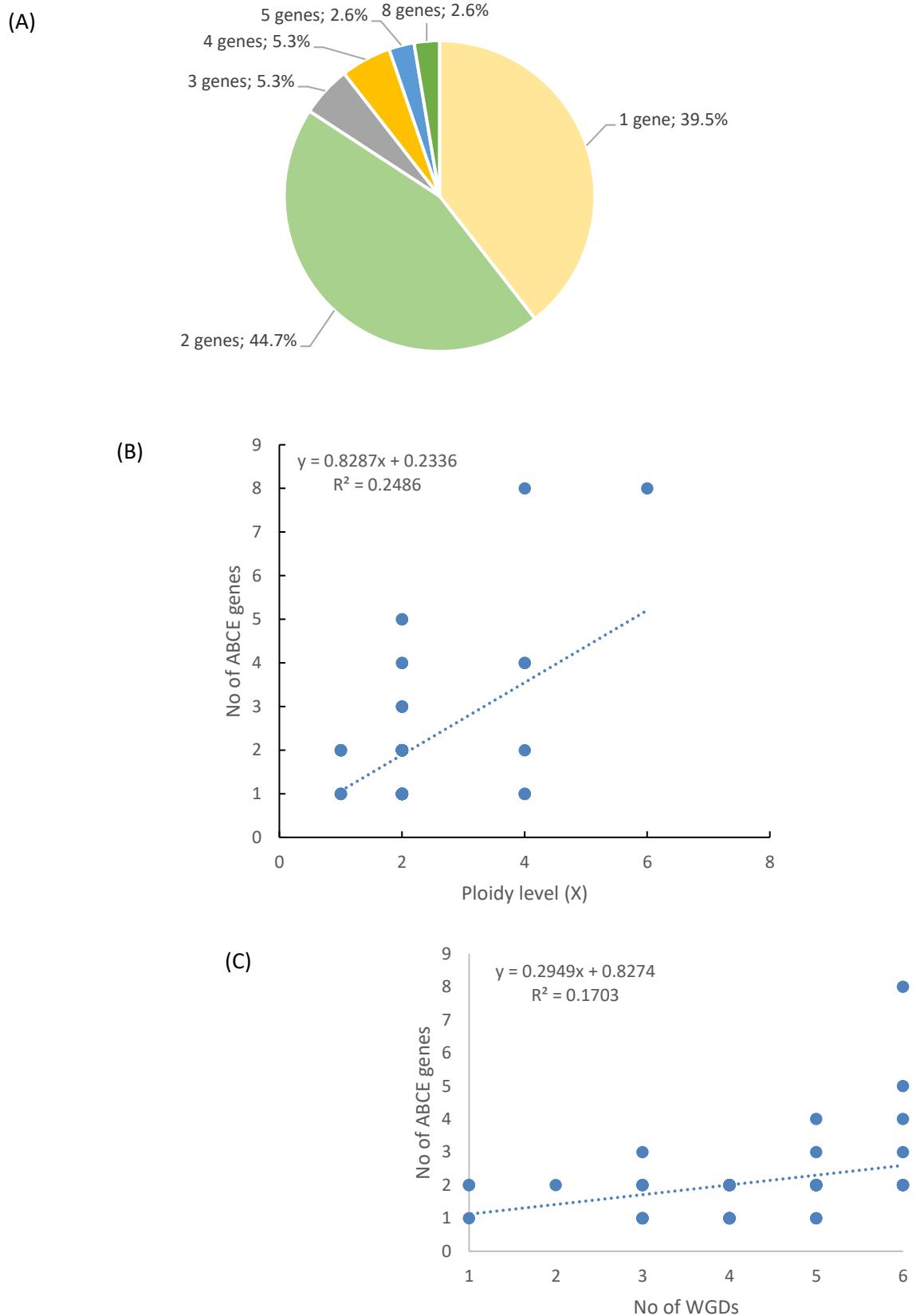
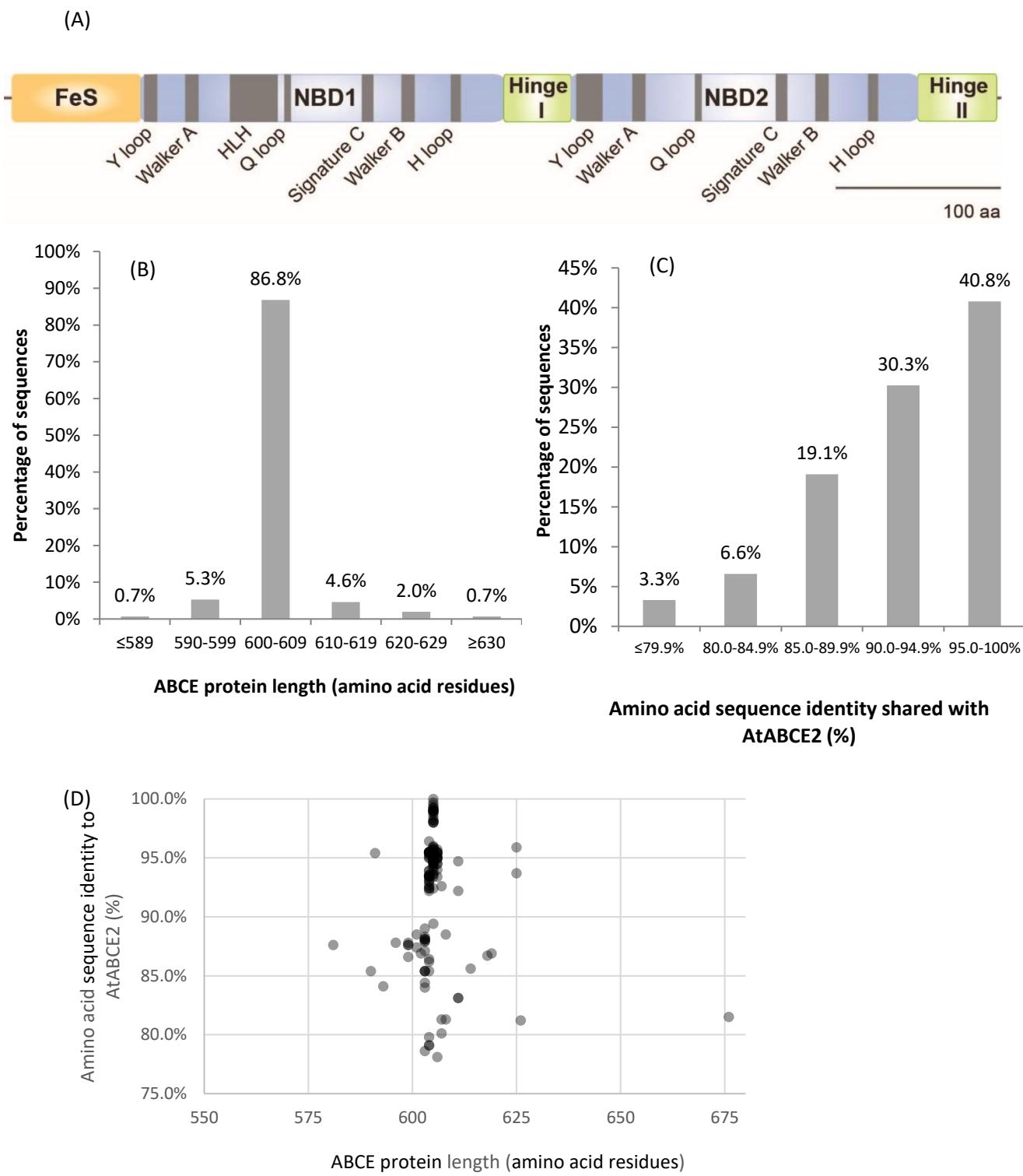





Fig. 1.



**Fig. 2.**



**Fig. 3.**

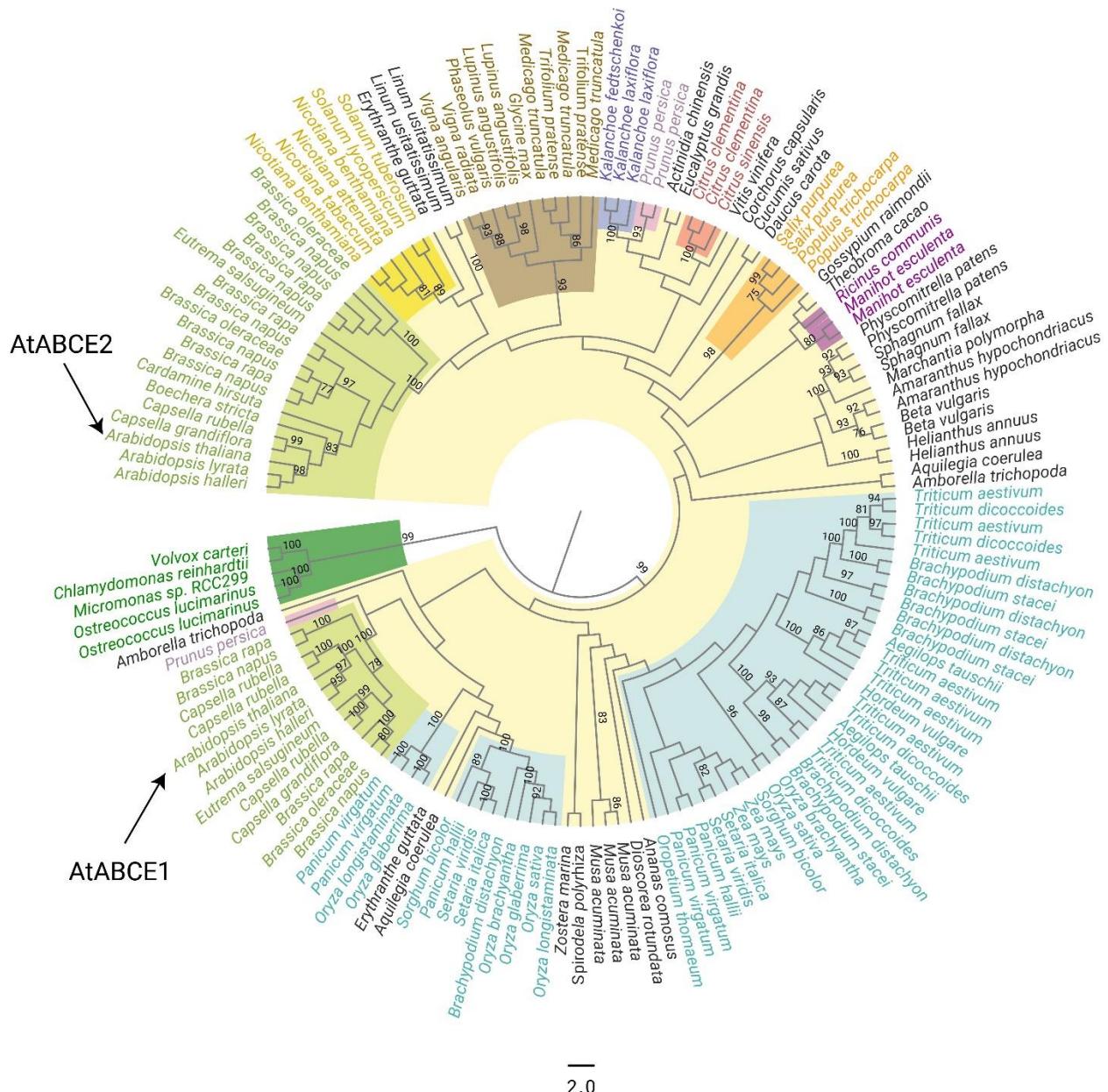



Fig. 4.

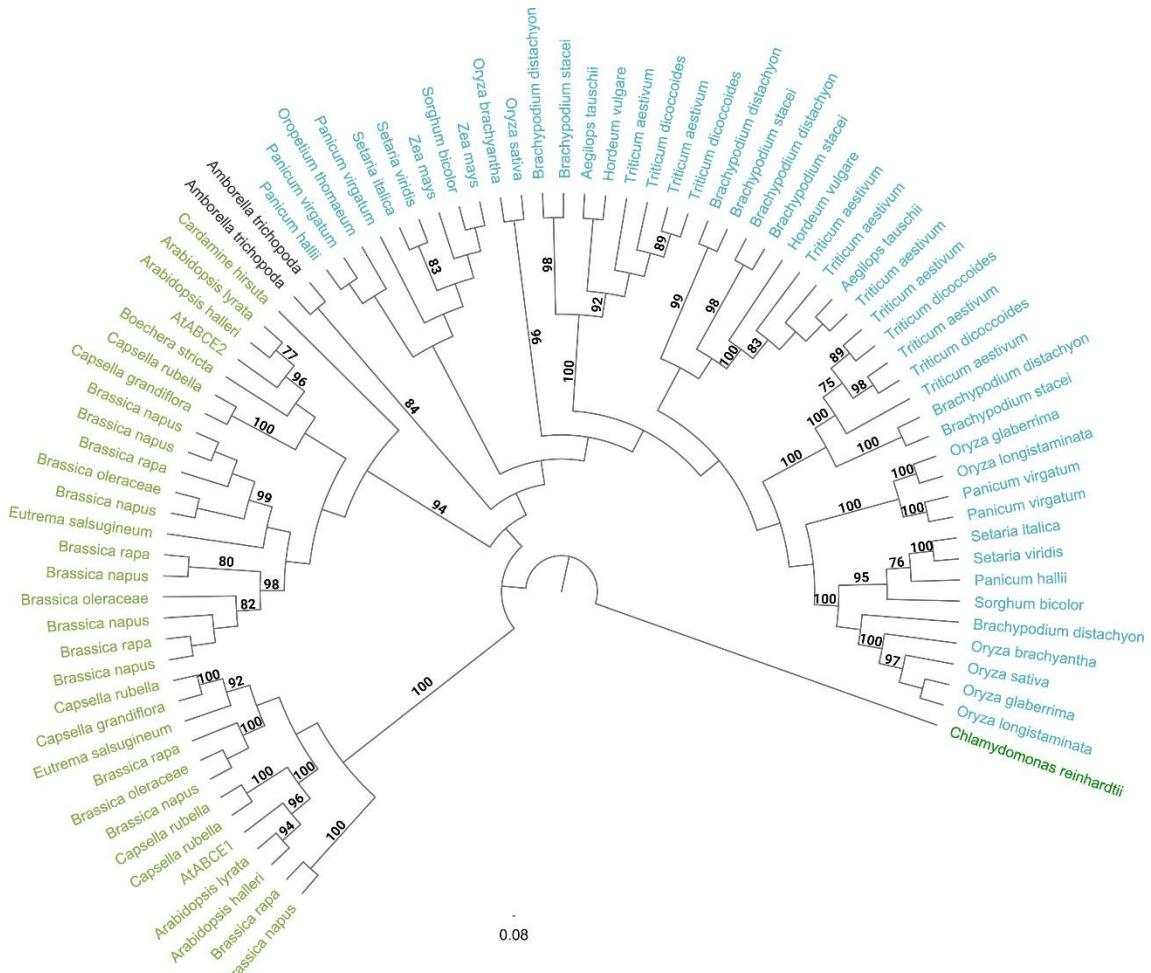



Fig. 5.

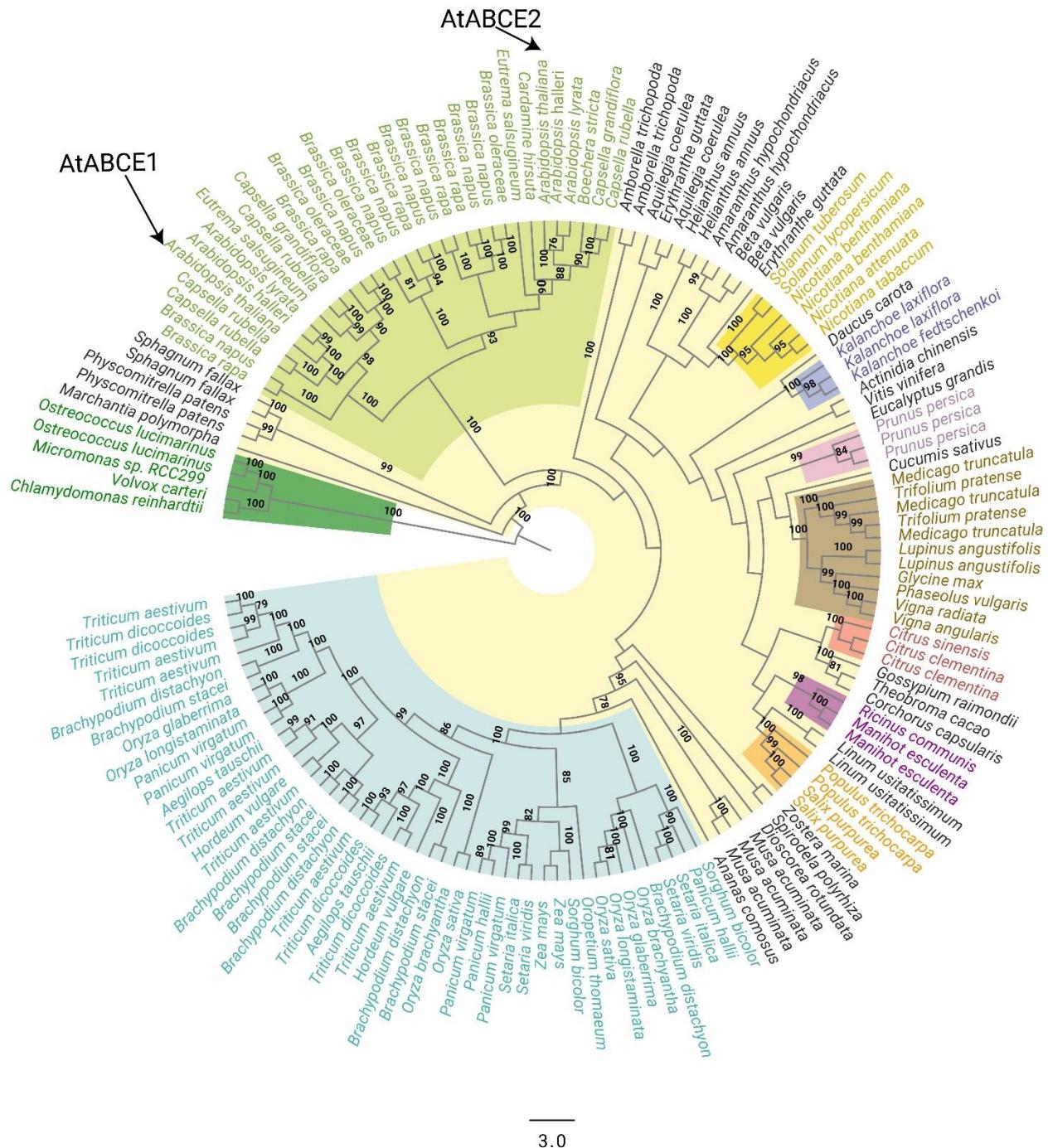
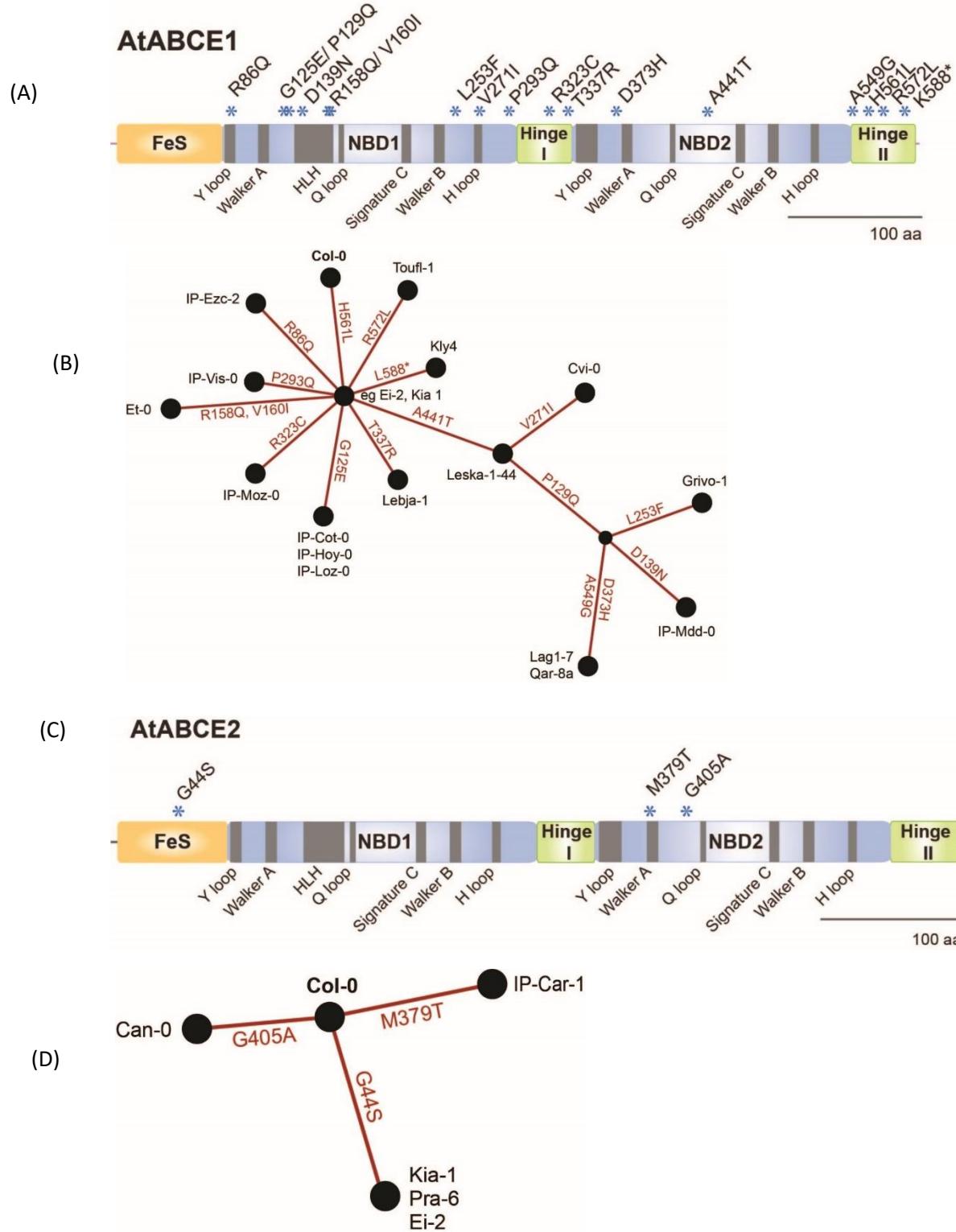




Fig. 6.



**Fig. 7.**

**Table 1.**

| No | Ecotype    | SNPs in<br><i>AtABCE1</i><br>cDNA                  | Amino acid<br>change in<br><i>AtABCE1</i>                     | SNPs in<br><i>AtABCE2</i><br>cDNA | Amino acid<br>change in<br><i>AtABCE2</i> | Origin     |
|----|------------|----------------------------------------------------|---------------------------------------------------------------|-----------------------------------|-------------------------------------------|------------|
| 1  | IP-Ezc-2   | 257G>A<br>1682A>T                                  | Arg86Gln<br>His561Leu                                         | None                              | None                                      | Spain      |
| 2  | IP-Cot-0   | 374G>A<br>1682A>T                                  | Gly125Glu<br>His561Leu                                        | None                              | None                                      | Spain      |
| 3  | IP-Hoy-0   | 374G>A<br>1682A>T                                  | Gly125Glu<br>His561Leu                                        | None                              | None                                      | Spain      |
| 4  | IP-Loz-0   | 374G>A<br>1682A>T                                  | Gly125Glu<br>His561Leu                                        | None                              | None                                      | Spain      |
| 5  | IP-Vis-0   | 878C>A<br>1682A>T                                  | Pro293Gln<br>His561Leu                                        | None                              | None                                      | Spain      |
| 6  | IP-Moz-0   | 967C>T<br>1682A>T                                  | Arg323Cys<br>His561Leu                                        | None                              | None                                      | Spain      |
| 7  | Lebja-1    | 1010C>G<br>1682A>T                                 | Thr337Arg<br>His561Leu                                        | None                              | None                                      | Russia     |
| 8  | Leska-1-44 | 1321G>A<br>1682A>T                                 | Ala441Thr<br>His561Leu                                        | None                              | None                                      | Bulgaria   |
| 9  | Toufl-1    | 1682A>T<br>1715G>T                                 | His561Leu<br>Arg572Leu                                        | None                              | None                                      | Morocco    |
| 10 | Kly4       | 1682A>T<br>1762A>T                                 | His561Leu<br>Lys588STOP                                       | None                              | None                                      | Russia     |
| 11 | Et-0       | 473G>A<br>478G>A<br>1682A>T                        | Arg158Gln<br>Val160Ile<br>His561Leu                           | None                              | None                                      | France     |
| 12 | Cvi-0      | 811G>A<br>1321G>A<br>1682A>T                       | Val271Ile<br>Ala441Thr<br>His561Leu                           | None                              | None                                      | Cape Verde |
| 13 | IP-Mdd-0   | 386C>A<br>415G>A<br>1321G>A<br>1682A>T             | Pro129Gln<br>Asp139Asn<br>Ala441Thr<br>His561Leu              | None                              | None                                      | Spain      |
| 14 | Grivo-1    | 386C>A<br>757C>T<br>1321G>A<br>1682A>T             | Pro129Gln<br>Leu253Phe<br>Ala441Thr<br>His561Leu              | None                              | None                                      | Bulgaria   |
| 15 | Lag1-7     | 386C>A<br>1117G>C<br>1321G>A<br>1646C>G<br>1682A>T | Pro129Gln<br>Asp373His<br>Ala441Thr<br>Ala549Gly<br>His561Leu | None                              | None                                      | Georgia    |
| 16 | Qar-8a     | 386C>A<br>1117G>C<br>1321G>A<br>1646C>G<br>1682A>T | Pro129Gln<br>Asp373His<br>Ala441Thr<br>Ala549Gly<br>His561Leu | None                              | None                                      | Lebanon    |
| 17 | Ei-2       | 1682A>T                                            | His561Leu                                                     | 130G>A                            | Gly44Ser                                  | Germany    |
| 18 | Kia 1      | 1682A>T                                            | His561Leu                                                     | 130G>A                            | Gly44Ser                                  | Sweden     |
| 19 | Pra-6      | 1682A>T                                            | His561Leu                                                     | 130G>A                            | Gly44Ser                                  | Spain      |
| 20 | IP-Car-1   | 1682A>T                                            | His561Leu                                                     | 1136T>C                           | Met379Thr                                 | Spain      |
| 21 | Can-0      | 1682A>T                                            | His561Leu                                                     | 1214G>C                           | Gly405Ala                                 | Spain      |