

1 Genome analysis of the Jomon dogs reveals the oldest domestic dog lineage in Eastern
2 Eurasia

3

4 Yohey Terai^{1*}†, Xiayire Xiaokaiti^{1†}, Jun Gojobori¹, Nami Arakawa¹, Takao Sato², Kenji Kasai³,
5 Kenichi Machida⁴, Kyomi Yamazaki⁵, Naomitsu Yamaji⁶, Hitomi, Hongo^{1*}, Takashi Gakuhari^{7*}

6 † equally contributed

7

8 **Author contribution**

9 Yohey Terai *(concept, , analyses, write ms, construction of libraries, sequencing)

10 Xiayire Xiaokaiti, (part of analysis, DNA extraction, construction of libraries)

11 Jun Gojobori, (part of analysis, edit ms)

12 Nami Arakawa, (construction of libraries)

13 Takao Sato, (provided samples, archaeological information)

14 Kenji Kasai, (provided samples, archaeological information)

15 Kenichi Machida, (provided samples, archaeological information)

16 Kyomi Yamazaki, (provided samples, archaeological information)

17 Naomitsu Yamaji, (provided samples, archaeological information)

18 Hitomi, Hongo, (archaeological information, edit ms)

19 Takashi Gakuhari, (edit ms, DNA extraction, construction of libraries)

20

21 **Affiliation and Address:**

22 1. Research Center for Integrative Evolutionary Science, The Graduate University for
23 Advanced Studies, Shonan Village, Hayama, Kanagawa, 240–0193, Japan.

24 2. Department of Archaeology and Ethnology, Faculty of Letters, Keio University, Mita
25 2-15-45, Minato, Tokyo, 108-8345, Japan
26 3. Toyama Prefectural Center for Archaeological Operations, Chayamachi 206-3, Toyama,
27 930-0115, Japan
28 4. Toyama Cultural Foundation, Shinsogawa 4-18, Toyama, 930-0006, Japan
29 5. Faculty of Letters, Kokugakuin University, Higashi 4-10-28, Shibuya, Tokyo, 150-0011,
30 Japan
31 6. Ichikawa City Museum of archaeology, Horinouchi 2-26-1, Ichikawa, Chiba, 272-0837,
32 Japan
33 7. Center for the Study of Ancient Civilizations and Cultural Resources, Kanazawa
34 University, Kakuma, Kanazawa, Ishikawa, 920-1192, Japan
35
36
37 *Corresponding authors: Hitomi, Hongo*, Takashi Gakuhami *, Yohei Terai*
38 Email: hongou_hitomi@soken.ac.jp; gakuhami@staff.kanazawa-u.ac.jp; terai_yohei@soken.ac.jp;
39

40 Abstract

41 Dog is the oldest domesticated animal that established close relationships with humans.

42 Due to its ancient origin, when, where, and whether a single or dual domestication event

43 occurred is still under debate. The dogs in the Jomon period (Jomon dogs) in the

44 Japanese archipelago had little change in morphology from 10,000 to 3,000 years ago.

45 Therefore, we expected that the ancient genome of the Jomon dogs would provide a

46 clue to reveal the characteristics of the ancient East Asian dogs. Here, we have

47 sequenced the genomes of three 6000-year-old Jomon dogs, one 3000-4000-year-old

48 Jomon dog, and four late 8th century dogs excavated in Japan. Our analyses suggest that

49 the Jomon dogs are a distinct lineage from the previously known ancient dogs and are

50 one of the oldest among the dogs in East Eurasian lineages. In addition, the genome of

51 the Jomon dogs contained 9.5% of the genome of Japanese wolf ancestry due to a single

52 introgression event. We estimated the proportion of the Jomon dog lineage genome in

53 the genomes of dogs, which indicates that the genomic composition derived from the

54 Jomon dog lineage is one of the major sources of modern dog genomes. Furthermore,

55 we estimated the early admixture events of dogs in East Eurasia by analyzing the

56 ancient genomes of the Jomon dogs. Due to the admixture events, the Jomon

57 dog-derived genome has been one of the genomic sources of a wide range of modern

58 dogs.

59

60

61

63 **Introduction**

64 Dog is the oldest domesticated animal that established close relationships with humans
65 whose subsistence was still based on hunting and foraging. It is still under debate when,
66 where, and whether a single or dual domestication event occurred, partly due to its
67 ancient origins and rather scarce archaeological evidence (Savolainen, et al. 2002; Pang,
68 et al. 2009; von Holdt, et al. 2010; Thalmann, et al. 2013; Wang, et al. 2013; Shannon,
69 et al. 2015; Frantz, et al. 2016; Wang, et al. 2016; Bergström, et al. 2022).

70 Whole genome phylogenetic analysis of dogs and gray wolves indicates that
71 dogs form a monophyletic group and have diverged from the internal lineage of Eurasian
72 gray wolves (Freedman, et al. 2014; Fan, et al. 2016; Leathlobhair, et al. 2018; Gojobori,
73 et al. 2021). A monophyletic dog group is a sister group to the Japanese wolf, indicating
74 that the dog lineage diverged from the common ancestor of the dog and Japanese wolf
75 (Gojobori, et al. 2021). Previous studies indicated that the dogs initially diverged into
76 Eastern and Western Eurasian lineages (Freedman, et al. 2014; Shannon, et al. 2015;
77 Frantz, et al. 2016; Botigué, et al. 2017; Leathlobhair, et al. 2018). Subsequently, a third
78 lineage of dogs, the sled dog lineage, including sled dogs and the American pre-contact
79 dogs, was reported as another major lineage (Leathlobhair, et al. 2018; Sinding, et al.
80 2020). The phylogenetic relationship between the sled dog lineage and the West and East
81 Eurasian lineages has been debated (Frantz, et al. 2016; Zhang, Sun, et al. 2020).
82 However, recent genome analysis has shown that the sled dog lineage emerged from
83 admixture of East and West Eurasian lineages (Gojobori, et al. 2021).

84 The modern dingoes and New Guinea singing dogs (NGSD) are the oldest

85 lineages in the East Eurasian lineage. The archaeological evidence showed that the arrival
86 of dingoes in Australia was at least 3500 years ago (Milham and Thompson 1976) or
87 3348-3081 years ago (Balme, et al. 2018). Genome analyses suggest that the dingo and
88 NGSD lineages have diverged from other dog lineages 8,300 (Zhang, Wang, et al. 2020)
89 and 10,900 years ago (Bergström, et al. 2020), respectively. In the West Eurasian lineage,
90 the modern African dogs are estimated to have diverged from European dogs 14,000
91 years ago (Liu, et al. 2018), with archaeological evidence dating the earliest dog in Africa
92 at 6300-5600 BC (Mitchell 2015). These results indicate that the dingo/NGSD and
93 African dogs, because of their isolation from the Eurasian Continent, escaped
94 interbreeding with other Eurasian dogs and retained the genetic characteristics of the old
95 lineages (Larson, et al. 2012; Fan, et al. 2016; Gojobori, et al. 2021).

96 The ancient dog genome was first determined from a Newgrange late Neolithic
97 dog dated to 4,800 years old (Frantz, et al. 2016), followed by two individuals from
98 Germany dating to the Early (7,000 years old) and the end of Neolithic (4,700 years
99 old)(Botigué, et al. 2017). The analysis of these Neolithic dogs indicates that the ancient
100 European dogs are genetically close to the West Eurasian lineage of dogs. In addition, a
101 9,500 years old Siberian dog is closely related to the sled dog lineage (Sinding, et al.
102 2020). Subsequent genome analysis of 27 ancient dog genomes indicates that at least five
103 major lineages of dogs already existed earlier than 11,000 years ago (Bergström, et al.
104 2020). A study analyzing the genomes of 72 ancient wolf genomes, including individuals
105 before and after dog domestication, showed that the entire lineage of dogs has an affinity
106 to the wolves of Eastern Eurasia and that the genome of the Middle Eastern wolf lineage

107 have introgressed into the dogs of the Western Eurasian lineage (Bergström, et al. 2022).
108 In addition, East Eurasian dogs contain the genome of the ancestor of the Japanese wolf
109 (Gojobori, et al. 2021). The most eastern Eurasian ancient dog genomes analyzed in
110 previous studies were from the Lake Baikal area or Siberia, and no ancient dog genomes
111 from East Asia have been reported to date.

112 The oldest dog excavated in the Japanese archipelago (9,300 years old) is
113 morphologically similar to other dogs from the Jomon Period (Shigehara and Hongo
114 2000) (Sugihara and Serizawa 1957; Crane and Griffin 1960; Shigehara and Hongo
115 2000), and the oldest burial dog is 7,400-7,200 years old (Gakuhari, et al. 2015). These
116 ages suggest that dogs were brought to the Japanese archipelago by humans about 10,000
117 years ago, in the Jomon period. The dogs in Jomon period (Jomon dogs) had little change
118 in morphology throughout this period, until about 3,000 years ago (Uchiyama 2014).
119 Therefore, Jomon dogs are presumed to be isolated and have retained the morphological
120 characteristics of the old domestic dogs that did not interbreed with other Eurasian dogs
121 from 10,000 to 3,000 years ago (Shigehara 1990, 1994; Komiya 1997; Shigehara and
122 Hongo 2000; Komiya, et al. 2015). Accordingly, analysis of the ancient genome of
123 Jomon dogs will provide a clue to reveal the characteristics of the ancient East Asian dog
124 lineage. In this study, we extracted DNA from Jomon and late 8th century dogs in Japan
125 and determined the genome sequences. We analyzed the ancient genome sequences with
126 modern dogs, wolves, and Japanese wolves to show the genetic relationship among them.
127

128 **Results**

129 We have sequenced the genomes of three 6000-year-old Jomon dogs, one
130 3000-4000-year-old Jomon dog (15.1-44.1 Gb: average depth of coverage, 6.2-18.2x,
131 reference covered 11-45%), and four late 8th century Japanese dogs (15.5-98 Gb: average
132 depth of coverage, 6.4-40.0x, reference covered 75-96%) (Table S1). Using these ancient
133 dog genomes, we first examined the genetic relationship between the Jomon, late 8th
134 century dogs and modern dogs, gray wolves, and Japanese wolves (Table S1).

135 Principal component analysis showed that each of the gray wolf and the
136 Japanese wolf formed separate clusters from a dog cluster (Fig. 1a). The dogs formed a
137 cluster spread along the PC2 axis, with African and Jomon dogs at each end. Late 8th
138 century dogs and dingo/NGSD were placed in position close to the Jomon dogs (Fig. 1a).
139 In addition, the location of European dogs was close to that of African dogs, suggesting
140 that the PC2 axis reflected the geographic distribution of East and West Eurasia. Using
141 the same data set, ADMIXTURE analysis divided all individuals into four genetic
142 compositions, the gray wolf, Japanese wolf, and East and West Eurasian dogs at the
143 lowest CV error of K=4 (Fig. 1b, Fig. S1). Jomon dogs and dingo/NGSD showed an East
144 Eurasian dog genetic composition, while African dogs were composed of West Eurasian
145 genetic composition (Fig. 1b).

146 Next, we constructed phylogenetic trees based on representative dogs of three
147 dog lineages (dingo/NGSD, African dogs, and sled dogs), plus Jomon, late 8th century
148 dogs, gray wolves, and Japanese wolves. The dogs formed three clusters, and the Jomon
149 and late 8th century dogs formed a monophyletic group that was a sister group to the
150 dingo/NGSD clade (Fig. S2). Furthermore, we constructed a phylogenetic tree with

151 ancient European and Siberian dogs. The Jomon and late 8th century dogs, together with
152 dingo/NGSD, formed a monophyletic group of East Eurasian lineage (Fig. 2, Fig. S2).
153 The ancient European dogs formed a monophyletic group with the dogs in West Eurasian
154 lineage (African dogs) and the ancient Siberian dogs formed a monophyletic group with
155 sled dogs (Fig. 2). These results indicate that Jomon dogs are members of the East
156 Eurasian lineage and are distinct from the ancient dogs of Europe and Siberia.

157 In Eurasia, the genomes of dogs of Eastern and Western Eurasian lineages have
158 been admixed (Gojobori, et al. 2021). However, dingo/NGSD and African dogs rarely
159 admixed with Eurasian dogs, and they were reported as genetically the most distantly
160 related pair of dogs (Gojobori, et al. 2021). Therefore, if Jomon dogs belong to one of the
161 oldest lineages of dogs in East Eurasian lineage, we expect that Jomon dogs are
162 genetically the most distantly related to African dogs. We then examined the genetic
163 relationship between Jomon dogs and other dogs. The f_3 statistic for all dog combinations
164 showed that a Jomon dogs and African dogs pair have the lowest genetic affinity (Fig. S3),
165 suggesting that Jomon dogs belong to one of the oldest lineages in the East Eurasian dogs
166 and are the least admixed with the West Eurasian dogs. Next, we examined dogs with
167 high genetic affinity to Jomon dogs using f_3 statistics. Late 8th century dogs had the
168 highest genetic affinity to Jomon dogs, followed by dingo/NGSD and modern Japanese
169 dogs (Fig. S4-S6), indicating that late 8th century dogs are the direct descendants of the
170 Jomon dogs. No ancient dog had a higher affinity with the Jomon dogs than late 8th
171 century dogs and dingo/NGSD (Fig. S5 and S6). These results indicate that the Jomon
172 dogs are a distinct lineage from the previously known ancient dogs and are one of the

173 oldest among the East Eurasian dog lineages.

174 A recent study reported that the genomes of East Eurasian dogs contain the
175 genome of the Japanese wolf ancestry resulted in high genetic affinity of these two groups
176 (Gojobori, et al. 2021). To further examine the relationship of the Jomon dogs to wolves,
177 we analyzed the genetic affinity between Jomon dogs and gray wolves using $f3$ statistics.
178 As the result, the Japanese wolf showed the highest affinity to Jomon dogs among
179 modern wolves (Fig. S7). We added ancient wolves to the analysis, and showed that no
180 ancient wolf showed a higher affinity to Jomon dogs than the Japanese wolf, either (Fig.
181 3a). We next examined the gene flow between Jomon dogs and gray wolves including the
182 Japanese wolf using the $f4$ statistic. We found that the Japanese wolf had the highest $f4$
183 value (Fig. S8), indicating a gene flow between Jomon dogs and the Japanese wolf.
184 Furthermore, the $f4$ -ratio revealed that the genomes of Jomon dogs contained the highest
185 proportion of the Japanese wolf ancestry genome (9-11%), followed by late 8th century
186 dogs and NGSD (5.0-6.7%) (Fig. 3b). The dog genome in the Japanese wolf genome was
187 under the detection limit (Fig. S9). These results suggest a genomic introgression event
188 from the Japanese wolf to East Eurasian dogs.

189 We further examined the number of introgression events (waves) from wolves
190 to dogs by qpwave. Setting the Japanese wolf, North American and Eurasian gray wolves
191 as genomic sources, qpwave analysis indicates that two or more introgression events have
192 occurred from wolves to dogs (Table 1: Test 1). When we excluded the Japanese wolf
193 from the genomic sources of wolves, the introgression events were estimated to have
194 occurred once or more (one reduction) (Test 2). These results suggest one introgression

195 event from the Japanese wolf to a dog. When we set only East Eurasian dogs as the dog
196 population, the analysis showed one or more introgression event(s) from wolves to East
197 Eurasian dogs (Test 3). The introgression event was eliminated when we excluded the
198 Japanese wolf (Test 4) or a Jomon dog (Test 5) from this analysis. This elimination of the
199 event indicates an introgression event from the Japanese wolf (ancestry) to the Jomon
200 dogs (ancestry). Similarly, we analyzed the introgression event from wolves to West
201 Eurasian lineage (African dogs) (Test 7, 8) and showed an introgression event from an
202 Israeli wolf (ancestry) to African dogs (ancestry) as reported in (Bergström, et al. 2022).

203 If genomic introgression event from the Japanese wolf ancestry to the Jomon
204 dog lineage occurred once, we can assume that the ratio of the genome of Jomon dog
205 ancestry to that of the Japanese wolf ancestry was constantly maintained in the genomes
206 of the other dogs admixed with Jomon dog lineage (Fig. S10). To test this possibility, the
207 genetic affinities of Jomon dogs to each of the other dogs and that of Japanese wolves to
208 each of the other dogs were plotted on the x-axis and y-axis, respectively. The plots
209 showed a positive correlation between the genetic affinity to Jomon dogs and that of
210 Japanese wolves in all dogs (Fig. 4). Thus, each dog has a constant ratio of Jomon dog
211 ancestry to the Japanese wolf ancestry, suggesting a single introgression event from the
212 Japanese wolf ancestry to the ancestor of the Jomon dogs.

213 Next, we examined the genetic relationship between Jomon dogs and
214 dingo/NGSD, an old lineage in East Eurasia. The proportion of the West Eurasian dogs
215 (European dogs) genome in each dog showed that most dogs, including the late 8th
216 century dogs, contained genomes from the West Eurasian dogs (Fig. S11). However, the

217 two dingo/NGSD individuals were below the detection limit (Z score < 3) (Fig. S11).
218 Thus, similar to Jomon dogs, which are the most distantly related to African dogs, the
219 genomes of dingo/NGSD contain no or little proportion of the genome of the West
220 Eurasian dogs. Nevertheless, the proportion of the Japanese wolf ancestry in the genome
221 differs between Jomon dogs at about 9.5% (average of four Jomon dogs) and
222 dingo/NGSD at about 5%. This result suggests a possibility that there was an East
223 Eurasian lineage without including the Japanese wolf ancestry genome (No-Jw-dogs) and
224 that dingo/NGSD may have resulted from an admixture of the Jomon dog lineage and the
225 No-Jw-dogs lineage.

226 To test this possibility, we plotted the genetic affinities of dingo/NGSD to each
227 dog on the X-axis and those of Jomon dogs (Fig. S12a) or the Japanese wolf (Fig. S12b)
228 to each dog on the Y-axis. Both graphs show Y-shaped plots, indicating that the East
229 Eurasian dogs were separated into two groups, individuals with higher affinity to
230 dingo/NGSD and individuals with higher affinity to Jomon dogs (Fig. S12a).
231 Furthermore, individuals with a high affinity to Jomon dogs also have a high affinity to
232 the Japanese wolf (Fig. S12b). This result was consistent with the positive correlation
233 between the ratio of the Jomon dog and the Japanese wolf ancestry compositions in the
234 genome (Fig. 4). Therefore, individuals with a higher affinity to dingo/NGSD are
235 estimated to contain more genomes derived from No-Jw-dogs. Using qpgraph, we
236 compared the likelihood scores between a simple dingo/NGSD and Jomon dog lineages
237 divergence model (Likelihood score: 80.2) (Fig. S13d) and a dingo/NGSD admixture
238 model (Likelihood score: 29.0) (Fig. S13e). The latter model was supported by a lower

239 Likelihood score and suggests an existence of No-Jw-dogs in East Eurasia.

240 The sled dog lineage may have arisen from an admixture of Eastern and
241 Western Eurasian lineages (Gojobori, et al. 2021). However, the East Eurasian source of
242 the admixture is still unknown. To confirm the admixture event and identify this East
243 Eurasian source, we compared the likelihood scores by qpgraph between models in which
244 sled dog lineage has diverged a) simultaneously with the divergence of Eastern and
245 Western Eurasian lineages, b) from the Western Eurasian lineage, c) from the
246 dingo/NGSD lineage, d) from the Jomon dog lineage, or e-g) have arisen by the
247 admixture of the Eastern and Western Eurasian lineage (Fig. S14). The results showed
248 that models from an admixture of Eastern and Western Eurasian lineages had lower
249 scores than the others. Among the models of the Eastern and Western Eurasian lineages
250 admixture (Fig. S14e-g), the dingo/NGSD and Western Eurasian lineages admixture
251 model (Fig. S14g) was the lowest likelihood score, suggesting that the sled dog lineage
252 was likely to be an admixture of these two lineages.

253

254 **Discussion**

255 **Jomon dog lineage is one of the genomic sources of the modern dogs**

256 Dogs form a monophyletic group and are, therefore, genetically monophyletic origin
257 (Freedman, et al. 2014; Fan, et al. 2016; Leathlobhair, et al. 2018; Gojobori, et al. 2021).
258 This does not indicate a single origin of dog domestication, because the domestication
259 process would have been initiated with the association of dogs with humans (Larson, et al.
260 2012). A single genetic origin of dogs suggests that the majority of the dog genomes

261 would be derived from the common ancestor of the monophyletic dog group. The
262 genomes supplied by introgressions are also the source of the modern dog genome,
263 because the West and East Eurasian lineage of dogs contain the genome of Middle
264 Eastern wolves and the Japanese wolf ancestry genome, respectively (Gojobori, et al.
265 2021; Bergström, et al. 2022).

266 In this study, we estimated a single event of genomic introgression of about
267 9.5% from the Japanese wolf ancestry into the Jomon dog lineage. Therefore, the
268 proportion of the Japanese wolf ancestry genome is a good indicator to estimate how
269 much of the Jomon dog lineage genome is included in the genomes of dogs. In other
270 words, the genomic content of the Jomon dog lineage in a particular dog genome can be
271 estimated from the proportion of the Japanese wolf ancestry genome. For example, the
272 NGSD individuals contain 5.0-6.0% Japanese wolf ancestry genome, and these values
273 allow us to estimate that 53-63% of the NGSD genomes are derived from the genome of
274 the Jomon dog lineage. Using this model, we estimated the proportion of the Jomon
275 dog-derived genome and found that modern dogs from a broad geographic region
276 contained Jomon dog-derived genome; 45-52% in Akita and Kishu dogs, 22-25% in
277 Greenland sled dogs, and 13% in several European dogs (Fig. 5). These proportions
278 indicate that the genome derived from the Jomon dog lineage is one of the major sources
279 of the modern dog genomes.

280 In ancient dogs, we estimated the proportion of the Jomon dog-derived genome
281 as 53-70% for late 8th century dogs, 44% for Baikal 7k, 17% for Zhokhov 10k, and 14%
282 for Newgrange 5k, indicating that even ancient European dogs already contained the

283 Jomon dog genome. Since the 9,500 years old Zhokhov 10k also contains the Jomon
284 dog-derived genome, the Jomon dog lineage was already admixed with other dogs before
285 9,500 years ago.

286

287 **Admixture events of dogs in East Eurasia in the Pleistocene**

288 Previous studies of ancient dog genomes have shown that five major dog lineages existed
289 11,000 years ago (Bergström, et al. 2020). However, ancient genomic studies of dogs
290 used individuals from West Eurasia and Siberia and did not use East Eurasian dogs
291 (Frantz, et al. 2016; Botigué, et al. 2017; Bergström, et al. 2020). Therefore, the ancient
292 admixture event of dogs in East Eurasia, the possible origin of the dog lineage, remains to
293 be explored.

294 Based on the analyses in this study, we estimated the following events during
295 the early stages of the dog evolution: 1) divergence of the dog lineage from the common
296 ancestor of the Japanese wolf and dog, 2) divergence of the East and West Eurasian
297 lineages, 3) divergence of the East Eurasian lineage into two lineages, 4) introgression of
298 the Japanese wolf ancestry genome into the Jomon dog lineage, 5) admixture of the two
299 East Eurasian lineages, arisen dingo/NGSD lineage, 6) admixture of the dingo/NGSD
300 lineage and the West Eurasian lineage, arisen the sled dog lineage (Fig. 6). The first and
301 fourth events were proposed to have occurred in East Eurasia (not in the Japanese
302 archipelago)(Gojobori, et al. 2021). The divergence of the East Eurasian lineage (Event
303 3) and the admixture of the two East Eurasian lineages (Event 5) are both related to East
304 Eurasian and, therefore, likely occurred in East Eurasia. Hence, the early events 1-5 in the

305 evolution of the dog most likely occurred in East Eurasia. The sled dog lineage that
306 appeared at the end of our estimation includes the 9,500 years old Zhokhov 10k,
307 suggesting that the dingo/NGSD lineage and the West Eurasian lineage had admixed
308 earlier than 9,500 years ago. Thus, the evolutionary events estimated here must have
309 occurred during the final Pleistocene or the beginning of Holocene.

310 It is unknown if humans were involved in these admixture events of dogs.
311 However, when the dogs appeared in the Japanese Archipelago in Jomon period, they
312 were already distinct from the wolves both in their morphology and size, suggesting that
313 they had already been domesticated. Therefore, the ancestors of the Jomon dog lineage
314 were likely to have been domesticated when they were still in the Eurasian Continent.

315 The gene flow from the Southeast Asian dog ancestry to the ancestor of the
316 ancient European dogs before 7,000 years ago (Botigué, et al. 2017) suggests ancient East
317 and West Eurasian dog lineages interactions. Indeed, the late 8th century dogs already
318 contained 15-22% of the West Eurasian lineage genome, and therefore the dog that
319 arrived in Japan in the period after the end of the Jomon period (3,000 years ago) may
320 have been a mixture of the East and West Eurasian dog lineages.

321 In this study, we estimated the early admixture events of dogs in East Eurasia
322 by analyzing the ancient genomes of the Jomon dogs. Due to the admixture events, the
323 Jomon dog-derived genome have been one of the genomic sources of a wide range of
324 modern dogs. Since the Jomon dog lineage is an old lineage isolated in the Japanese
325 archipelago from 10,000 to 3,000 years ago, the Jomon dogs are the best target for
326 estimating initial evolutionary events of dogs in East Eurasia. Thus, in the future, more

327 detailed analyses of the early divergence of dog lineages in East Eurasia through ancient
328 genome analysis will require analysis of bones earlier than 10,000 years old.

329

330 **Materials and Methods**

331 **Samples, DNA extraction, and sequencing**

332 For the Jomon dogs (odk1, odk2, odk3, and MD1) and late 8th century dogs (SWD2,
333 SWD3, SWD5, and SWD7), the petrous bones were cut with diamond cutting disc. After
334 washed by ultrapure water and 99.9% Ethanol, the cut-out pieces were irradiated
335 UV-light for 30 min. Approximately 50~100 mg bone powder was obtained from the
336 inner part of petrous bones by drilling. DNA was extracted followed by a modified
337 protocol of Gamba et al. 2014 as described in Gakuhami et al. 2020 (Gamba, et al. 2014;
338 Gakuhami, et al. 2020). The powder was first digested with pre-digestion buffer containing
339 0.5 M EDTA, 0.65 U/ml recombinant Proteinase K, and 10% N-Lauroylsarcosyl and
340 incubate at 50°C for 15 min with shaking (900 rpm). The reaction solution was
341 centrifuged at 13,000 g for 10 min, and the supernatant was stored (Pre-digestion
342 supernatant). The lysis buffer containing 20 mM Tris HCl(pH 7.5), 0.7%
343 N-lauroylsarcosine, 47.5 mM EDTA (pH 8), 0.65 U/ml recombinant Proteinase K was
344 added to the pellet, and then the reaction solution was incubated 16 hours at 37°C with
345 shaking (900 rpm). The reaction solution was centrifuged at 13,000 g for 10 min, and the
346 supernatant was diluted with 3 ml TE (pH 8.0) and centrifuged using a filtration tube
347 (Amicon® Ultra-4 Centrifugal Filter Unit 30K) at 2,000 g until final volume of 100 µl.

348 The DNA solution was purified by MinElute PCR Purification Kit (QIAGEN) following
349 the instruction with pre-heated (60°C) EB buffer containing 0.05% Tween 20. Extraction
350 of ancient DNA was performed in an ancient DNA clean room at Kanazawa university.
351 Before sampling, all the bones were irradiated UV-light for 30 min to remove surface
352 contaminants. We targeted the inner part of petrous bones which is recognized as optimal
353 substrates for ancient studies. (Pinhasi et al. 2015)

354 Before library construction, the DNAs of one Jomon dog (MD1) and three late
355 8th century dogs (SWD_2, SWD_5, and SWD_7) were treated by USER enzyme (NEB)
356 for uracil removal. DNA libraries were constructed from 1 ng of genomic DNA with
357 NEBNext Ultra II DNA Library Prep Kit for Illumina and NEBNext Multiplex Oligos for
358 Illumina (New England Bio Labs, MA, USA). Paired-end (2 × 150 bp) sequencing was
359 performed on the Illumina HiSeq X or NovaSeq 6000 platforms.

360

361 **Extraction of SNPs and vcf file preparation**

362 We downloaded sequencing data of modern dogs, modern gray wolves, ancient dogs,
363 ancient canids, and outgroup species from the database (Table S2). Sequence reads from
364 the genomic DNA libraries of Jomoin and the late 8th century dogs (Table S1) as well as
365 samples from the database (Table S2) were trimmed to remove nucleotides with base
366 qualities lower than 35 on average of a 150 bp read (sum of the base-calling error
367 probability < 0.05 in a 150 bp read) and adaptor sequences using CLC Genomics
368 Workbench (<https://www.qiagenbioinformatics.com/>). The trimmed reads were mapped
369 to the dog reference genome (CanFam3.1) using CLC Genomics Workbench. Reads

370 showing high similarity (> 90% in > 90% of read length) were mapped to the reference
371 genome sequences to avoid mapping the low similarity reads. Reads mapped to more than
372 one position were removed (“ignore” option for reads mapped to multiple positions) to
373 prevent mapping to non-unique regions. The mapping data was exported in bam file
374 format and sorted and indexed using samtools (Li, et al. 2009). The duplicated reads in
375 bam files were marked by the MarkDuplicates algorithm implemented in GATK v4.2
376 (<https://gatk.broadinstitute.org/hc/en-us>). We performed genotype calling on all
377 individuals analyzed in this study using the HaplotypeCaller algorithm in GATK v4.2.
378 Genotypes of all individuals were output as gvcf format (-ERC GVCF option). All gvcf
379 files were combined into a single gvcf format file by the CombineGVCFs algorithm in
380 GATK v4.2. The combined file was genotyped by the GenotypeGVCFs algorithm and
381 filtered by Filtervcf in GATK v4.2 with parameters; --filter-expression "QD < 2.0"
382 --filter-name "QD2" --filter-expression "QUAL < 30.0" --filter-name "QUAL30"
383 --filter-expression "FS > 200.0" --filter-name "FS200" --filter-expression "SOR > 10.0"
384 -filter-name "SOR10" --filter-expression "ReadPosRankSum < -20.0" --filter-name
385 "ReadPosRankSum-20".

386 To maximize the number of SNPs for analyses, we prepared datasets from the
387 genotyped vcf file for each analysis by following filtering using vcftools (Danecek, et al.
388 2011).

389 **Dataset 1: PCA and ADMIXTURE** (Fig. 1, Fig. S1)

390 This dataset includes the individuals listed in Table S2 (dataset1). We removed four
391 shiba dogs, one dingo, and one NGSD from dataset 2. This dataset consisted of
392 815,014 sites (103 individuals).

393 **Dataset 2: *f3, f4* statistics** (Figs. 3b, 5, S3, S4, S7, S8, S9, S11 and S12)

394 This dataset includes the individuals listed in Table S2 (dataset 2). We removed
395 sites with missingness higher than 7% and minor allele frequency (MAF) < 0.05.
396 We extracted bi-allelic sites with coverage equal to or more than three in all
397 individuals and with GQ values equal to or more than eight in all individuals. The
398 final dataset consisted of 815,014 sites (109 individuals).

399 **Dataset 3: *f3* statistics and *f4*-ratio** (Fig. 3a, 5, S5, and S6)

400 This dataset includes the individuals listed in Table S2 (dataset 3). We removed
401 sites with missingness higher than 30% and minor allele frequency (MAF) < 0.05.
402 We extracted bi-allelic sites with coverage equal to or more than three in all
403 individuals and with GQ values equal to or more than eight in all individuals. The
404 final dataset consisted of 584,646 sites (67 individuals).

405 **Dataset 4: Phylogenetic analyses** (Figs. S2)

406 This dataset includes the individuals listed in Table S2 (dataset 4). We removed
407 sites with missing data and minor allele frequency (MAF) < 0.02. We extracted
408 bi-allelic sites with coverage equal to or more than three in all individuals and with
409 GQ values equal to or more than eight in all individuals. After the first filtration, we
410 extracted unlinked biallelic SNPs. The final dataset consisted of 113,784 sites (54
411 individuals).

412 **Dataset 5: Phylogenetic analyses (Fig. 2)**

413 This dataset includes the individuals listed in Table S2 (dataset 5). We removed
414 sites with missing data and minor allele frequency (MAF) < 0.02. We extracted
415 bi-allelic sites with coverage equal to or more than three in all individuals and with
416 GQ values equal to or more than eight in all individuals. After the first filtration, we
417 extracted transversion unlinked biallelic SNPs. The final dataset consisted of 74,761
418 sites (58 individuals).

419 **Dataset 6: *f3* statistics (Fig. S8)**

420 This dataset includes the individuals listed in Table S2 (dataset 6). We removed sites
421 with missingness higher than 20% and minor allele frequency (MAF) < 0.05. We
422 extracted bi-allelic sites with coverage equal to or more than three in all individuals
423 and with GQ values equal to or more than eight in all individuals. After the first
424 filtration, we extracted transversion SNPs. The final dataset consisted of 725,285
425 sites (54 individuals).

426

427 **Phylogenetic analysis**

428 We extracted unlinked biallelic SNPs using PLINK ver. 1.9 (Purcell, et al. 2007)
429 with an option “--indep-pairwise 50 10 0.1”. The pruned SNP vcf file was converted to
430 PHYLIP format. 10 kb sequences from the 5' end of the PHYLIP format file were
431 extracted and a model for the Maximum Likelihood method was selected using MEGA
432 ver. X (Kumar, et al. 2018). A phylogenetic tree was constructed using the Maximum

433 Likelihood (ML) method using PhyML ver. 3.2 (Guindon, et al. 2010) with a model
434 selection option “-m GTR” and with 100 bootstrap replications.

435

436 **Principal component analysis and ADMIXTURE**

437 We performed a principal component analysis (PCA) using PLINK ver. 1.9 (Purcell,
438 et al. 2007) with an option “--indep-pairwise 50 10 0.1” to explore the affinity among
439 canids (Figure 1a).

440 ADMIXTURE ver. 1.3 (Alexander and Lange 2011) was run on the dataset 1 (Fig.
441 1b and Fig. S1) assuming 2 to 8 clusters (K=2-8).

442

443 ***f3, f4* statistics, and *f4*-ratio**

444 *f3, f4* statistics, and *f4*-ratio implemented in ADMIXTOOLS ver. 7.0.1 (Patterson, et
445 al. 2012) were used to evaluate the shared genetic drift among gray wolves, Japanese
446 wolves, and modern and ancient dogs using SNP dataset 2, 3, and 6.

447

448 **qpWave and qpGraph**

449 We used qpWave as implemented in Admixtools2 (Maier, et al. 2022) to study the
450 number of admixture flows from wolves to dogs. We set the test populations (dogs) and
451 the source populations as describe in Table 1.

452 We used qpGraph as implemented in Admixtools2 (Maier, et al. 2022) to compute
453 the admixture graph with best fitting model by adding one group after the other and
454 compared the likelihood scores. We started from (outgroup: coyote(Eurasian wolf: wolf

455 chanco(West Eurasian dog: African dong, East Eurasian dog: NGSD))), and added

456 Japanese wolf (Jw284), Jomon dog (MD1), and Greenland sled dog, one by one.

457

458 **Availability of data**

459 The nucleotide sequences were deposited in the DDBJ nucleotide database under

460 Bioproject PRJDB13874.

461

462 **Acknowledgments**

463 We would like to express our gratitude to all the participants who contributed to this study.

464 Sequencing of the samples in this study was supported by JSPS KAKENHI Grant

465 Number 16H06279 (PAGS). This study was supported by Grant-in-Aid for Scientific

466 Research (22H00737, 22H00013, 20K01104, 19H0053), Collaborative research grant,

467 Evolutionary Studies of Biosystems (ESB), The Graduate University for Advanced

468 Studies (Sokendai) (2020, 2021) and Student Dispatch Program, Sokendai (2022).

469

470

471 **References**

472 Alexander DH, Lange K. 2011. Enhancements to the ADMIXTURE algorithm for individual

473 ancestry estimation. *BMC Bioinformatics* 12:1-6.

474 Balme J, O'Connor S, Fallon S. 2018. New dates on dingo bones from Madura Cave provide
475 oldest firm evidence for arrival of the species in Australia. *Scientific reports* 8:1-6.

476 Bergström A, Frantz L, Schmidt R, Ersmark E, Lebrasseur O, Girdland-Flink L, Lin AT, Storå J,
477 Sjögren K-G, Anthony D. 2020. Origins and genetic legacy of prehistoric dogs. *Science*
478 370:557-564.

479 Bergström A, Stanton DWG, Taron UH, Frantz L, Sinding MS, Ersmark E, Pfrengle S,
480 Cassatt-Johnstone M, Lebrasseur O, Girdland-Flink L, et al. 2022. Grey wolf genomic
481 history reveals a dual ancestry of dogs. *Nature*.

482 Botigué LR, Song S, Scheu A, Gopalan S, Pendleton AL, Oetjens M, Taravella AM, Seregély T,
483 Zeeb-Lanz A, Arbogast R-M. 2017. Ancient European dog genomes reveal continuity
484 since the Early Neolithic. *Nature Communications* 8:1-11.

485 Crane HR, Griffin JB. 1960. University of Michigan radiocarbon dates V. *Radiocarbon* 2:31-48.

486 Danecek P, Auton A, Abecasis G, Albers CA, Banks E, DePristo MA, Handsaker RE, Lunter G,
487 Marth GT, Sherry ST. 2011. The variant call format and VCFtools. *Bioinformatics*
488 27:2156-2158.

489 Fan Z, Silva P, Gronau I, Wang S, Armero AS, Schweizer RM, Ramirez O, Pollinger J,
490 Galaverni M, Del-Vecchio DO. 2016. Worldwide patterns of genomic variation and
491 admixture in gray wolves. *Genome Research* 26:163-173.

492 Frantz LA, Mullin VE, Pionnier-Capitan M, Lebrasseur O, Ollivier M, Perri A, Linderholm A,
493 Mattiangel V, Teasdale MD, Dimopoulos EA. 2016. Genomic and archaeological
494 evidence suggest a dual origin of domestic dogs. *Science* 352:1228-1231.

495 Freedman AH, Gronau I, Schweizer RM, Ortega-Del Vecchio D, Han E, Silva PM, Galaverni
496 M, Fan Z, Marx P, Lorente-Galdos B. 2014. Genome sequencing highlights the dynamic
497 early history of dogs. *PLoS Genetics* 10:e1004016.

498 Gakuhari T, Komiya H, Sawada J, Anezaki T, Sato T, Kobayashi K, Itoh S, Kobayashi K,
499 Matsuzaki H, Yoshida K. 2015. Radiocarbon dating of one human and two dog burials
500 from the Kamikuroiwa rock shelter site, Ehime Prefecture. *Anthropological*
501 *Science*:150309.

502 Gakuhari T, Nakagome S, Rasmussen S, Allentoft ME, Sato T, Korneliussen T, Chuinneagáin
503 BN, Matsumae H, Koganebuchi K, Schmidt R. 2020. Ancient Jomon genome sequence
504 analysis sheds light on migration patterns of early East Asian populations.
505 *Communications biology* 3:437.

506 Gamba C, Jones ER, Teasdale MD, McLaughlin RL, Gonzalez-Fortes G, Mattiangeli V,
507 Domboróczki L, Kővári I, Pap I, Anders A. 2014. Genome flux and stasis in a five
508 millennium transect of European prehistory. *Nature Communications* 5:5257.

509 Gojobori J, Arakawa N, Xiayire X, Matsumoto Y, Matsumura S, Hongo H, Ishiguro N, Terai Y.
510 2021. The Japanese wolf is most closely related to modern dogs and its ancestral genome
511 has been widely inherited by dogs throughout East Eurasia. *BioRxiv*.

512 Guindon S, Dufayard J-F, Lefort V, Anisimova M, Hordijk W, Gascuel O. 2010. New
513 algorithms and methods to estimate maximum-likelihood phylogenies: assessing the
514 performance of PhyML 3.0. *Systematic Biology* 59:307-321.

515 Komiya H. 1997. Nonmetric cranial variants of modern dogs and the origins of domesticated
516 dogs in Japan. *Anthropological Science* 105:69.

517 Komiya H, Sawada J, Saeki F, Sato T. 2015. Morphological characteristics of buried dog
518 remains excavated from the Kamikuroiwa Rock Shelter site, Ehime Prefecture, Japan.
519 *Anthropological Science* 123:73-85.

520 Kumar S, Stecher G, Li M, Knyaz C, Tamura K. 2018. MEGA X: molecular evolutionary
521 genetics analysis across computing platforms. *Molecular Biology and Evolution* 35:1547.

522 Larson G, Karlsson EK, Perri A, Webster MT, Ho SY, Peters J, Stahl PW, Piper PJ, Lingaas F,
523 Fredholm M. 2012. Rethinking dog domestication by integrating genetics, archeology,
524 and biogeography. *Proceedings of the National Academy of Sciences* 109:8878-8883.

525 Leathlobhair MN, Perri AR, Irving-Pease EK, Witt KE, Linderholm A, Haile J, Lebrasseur O,
526 Ameen C, Blick J, Boyko AR. 2018. The evolutionary history of dogs in the Americas.
527 *Science* 361:81-85.

528 Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R.
529 2009. The sequence alignment/map format and SAMtools. *Bioinformatics* 25:2078-2079.

530 Liu Y-H, Wang L, Xu T, Guo X, Li Y, Yin T-T, Yang H-C, Hu Y, Adeola AC, Sanke OJ. 2018.
531 Whole-genome sequencing of African dogs provides insights into adaptations against
532 tropical parasites. *Molecular Biology and Evolution* 35:287-298.

533 Maier R, Flegontov P, Flegontova O, Changmai P, Reich D. 2022. On the limits of fitting
534 complex models of population history to genetic data. *BioRxiv*:2022.2005.2008.491072.

535 Milham P, Thompson P. 1976. Relative antiquity of human occupation and extinct fauna at
536 Madura Cave, southeastern Western Australia. *The Australian Journal of Anthropology*
537 10:175.

538 Mitchell P. 2015. Did disease constrain the spread of domestic dogs (*Canis familiaris*) into

539 Sub-Saharan Africa? *Azania: Archaeological Research in Africa* 50:92-135.

540 Pang J-F, Kluetsch C, Zou X-J, Zhang A-b, Luo L-Y, Angleby H, Ardalan A, Ekström C,
541 Skölleramo A, Lundeberg J. 2009. mtDNA data indicate a single origin for dogs south of
542 Yangtze River, less than 16,300 years ago, from numerous wolves. *Molecular Biology*
543 and *Evolution* 26:2849-2864.

544 Patterson N, Moorjani P, Luo Y, Mallick S, Rohland N, Zhan Y, Genschoreck T, Webster T,
545 Reich D. 2012. Ancient admixture in human history. *Genetics* 192:1065-1093.

546 Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira M, Bender D, Maller J, Sklar P, de
547 Bakker P, Daly M, et al. 2007. PLINK: a toolset for whole-genome association and
548 population-based linkage analyses. *American Journal of Human Genetics* 81:559-575.

549 Savolainen P, Zhang Y-p, Luo J, Lundeberg J, Leitner T. 2002. Genetic evidence for an East
550 Asian origin of domestic dogs. *Science* 298:1610-1613.

551 Shannon LM, Boyko RH, Castelhano M, Corey E, Hayward JJ, McLean C, White ME, Abi Said
552 M, Anita BA, Bondjengo NI. 2015. Genetic structure in village dogs reveals a Central
553 Asian domestication origin. *Proceedings of the National Academy of Sciences*
554 112:13639-13644.

555 Shigehara N. 1994. Morphological changes in Japanese ancient dogs. *Archaeozoologia* 2:79-94.

556 Shigehara N. 1990. Shape changes by era in the Japanese dog. *Bulletin of the National Museum*
557 *of Japanese History* 29:89-108.

558 Shigehara N, Hongo H. 2000. Ancient remains of Jomon dogs from Neolithic sites in Japan.
559 BAR International Series 889:61-70.

560 Sinding M-HS, Gopalakrishnan S, Ramos-Madrigal J, de Manuel M, Pitulko VV, Kuderna L,
561 Feuerborn TR, Frantz LA, Vieira FG, Niemann J. 2020. Arctic-adapted dogs emerged at
562 the Pleistocene–Holocene transition. *Science* 368:1495-1499.

563 Sugihara S, Serizawa T. 1957. Kanagawa-ken Natsushima niokeru Jomon bunka syotou no
564 kaiduka. Rinsen, Kyoto.

565 Thalmann O, Shapiro B, Cui P, Schuenemann VJ, Sawyer SK, Greenfield D, Germonpré MB,
566 Sablin MV, López-Giráldez F, Domingo-Roura X. 2013. Complete mitochondrial
567 genomes of ancient canids suggest a European origin of domestic dogs. *Science*
568 342:871-874.

569 Uchiyama S. 2014. Inu no Kokogaku (Archaeology of Dogs): Douseisya.

570 von Holdt BM, Pollinger JP, Lohmueller KE, Han E, Parker HG, Quignon P, Degenhardt JD,
571 Boyko AR, Earl DA, Auton A. 2010. Genome-wide SNP and haplotype analyses reveal a

572 rich history underlying dog domestication. *Nature* 464:898-902.

573 Wang G, Zhai W, Yang H-c, Fan R-x, Cao X, Zhong L, Wang L, Liu F, Wu H, Cheng L-g. 2013.

574 The genomics of selection in dogs and the parallel evolution between dogs and humans.

575 *Nature Communications* 4:1-9.

576 Wang G-D, Zhai W, Yang H-C, Wang L, Zhong L, Liu Y-H, Fan R-X, Yin T-T, Zhu C-L,

577 Poyarkov AD. 2016. Out of southern East Asia: the natural history of domestic dogs

578 across the world. *Cell Research* 26:21-33.

579 Zhang M, Sun G, Ren L, Yuan H, Dong G, Zhang L, Liu F, Cao P, Ko AM-S, Yang MA, et al.

580 2020. Ancient DNA evidence from China reveals the expansion of pacific dogs.

581 *Molecular Biology and Evolution* 37:1462-1469.

582 Zhang S-j, Wang G-D, Ma P, Zhang L-l, Yin T-T, Liu Y-h, Otecko NO, Wang M, Ma Y-p, Wang

583 L. 2020. Genomic regions under selection in the feralization of the dingoes. *Nature*

584 *Communications* 11:1-10.

585

586

587

588 **Figure legends**

589 Figure 1 Relationships between Jomon dogs and other canids

590 (A) Principal Components Analysis (PC1 versus PC2) of 100 samples based on 815,014

591 SNPs (see Table S2 for sample information). Colored circle, square, and triangle

592 correspond to the names of dogs or wolves in the panel. (B) ADMIXTURE results

593 based on SNP data for $K = 4$ (see Table S2 for sample information).

594

595 Figure 2

596 Phylogenetic relationships between Jomon dogs and other canids.

597 Maximum likelihood tree based on 74,761 unlinked biallelic SNPs. Node labels indicate

598 bootstrap replicates.

599

600 Figure 3 Genetic affinity and gene flow between Jomon dogs and the other canids

601 (a) Shared genetic drift between Jomon dogs and gray wolves measured by outgroup $f3$

602 statistics. Each of all wolves and a Jomon dog (MD1) were used as populations. Each $f3$

603 statistical value is plotted in order of highest to lowest value from the top, and the

604 names of the wolves are shown on the right side of the panel. Error bars represent

605 standard errors. (b) $f4$ -ratio test to estimate proportion of genome introgression from the

606 Japanese wolf to dogs. Each $f4$ -ratio α value is plotted in order of highest to lowest

607 value from the top, and the names of the dogs are shown on the left side of the panel.

608 Error bars represent standard errors. Z score above 3 is colored in blue.

609

610 Figure 4 Positive correlation between genetic affinity of Japanese wolf and Jomon dog

611 to other dogs

612 $f3$ statistics testing whether dogs share more alleles with Jomon dogs (x-axis) or

613 Japanese wolf (y-axis). Dots show the $f3$ statistics, and horizontal and vertical error bars

614 represent standard errors. Each of the Japanese wolves and Jomon dogs individuals

615 were used as populations.

616

617 Figure 5 Estimated proportion of Jomon dog derived genome in dogs.

618

619 Figure 6 A model of the early stages of the dog evolution.

620 Each event was supported by following results; event 1), phylogenomic analyses (Fig.2,
621 S2): 2) phylogenomic analyses (Fig.2, S2), 3) $f4$ ratio test (Fig. 3b, S11), $f3$ biplots
622 (Fig. S12), and qpgraph (Fig. S13): 4) $f4$ ratio test (Fig. 3b, S9) and qpgraph (Fig.
623 S13), 5) $f4$ ratio test (Fig. 3b, S11) and qpgraph (Fig. S13): 6) $f4$ ratio test (Fig. 3b)
624 and qpgraph (Fig. S14). Arrows indicate introgression or admixture events.

625

626

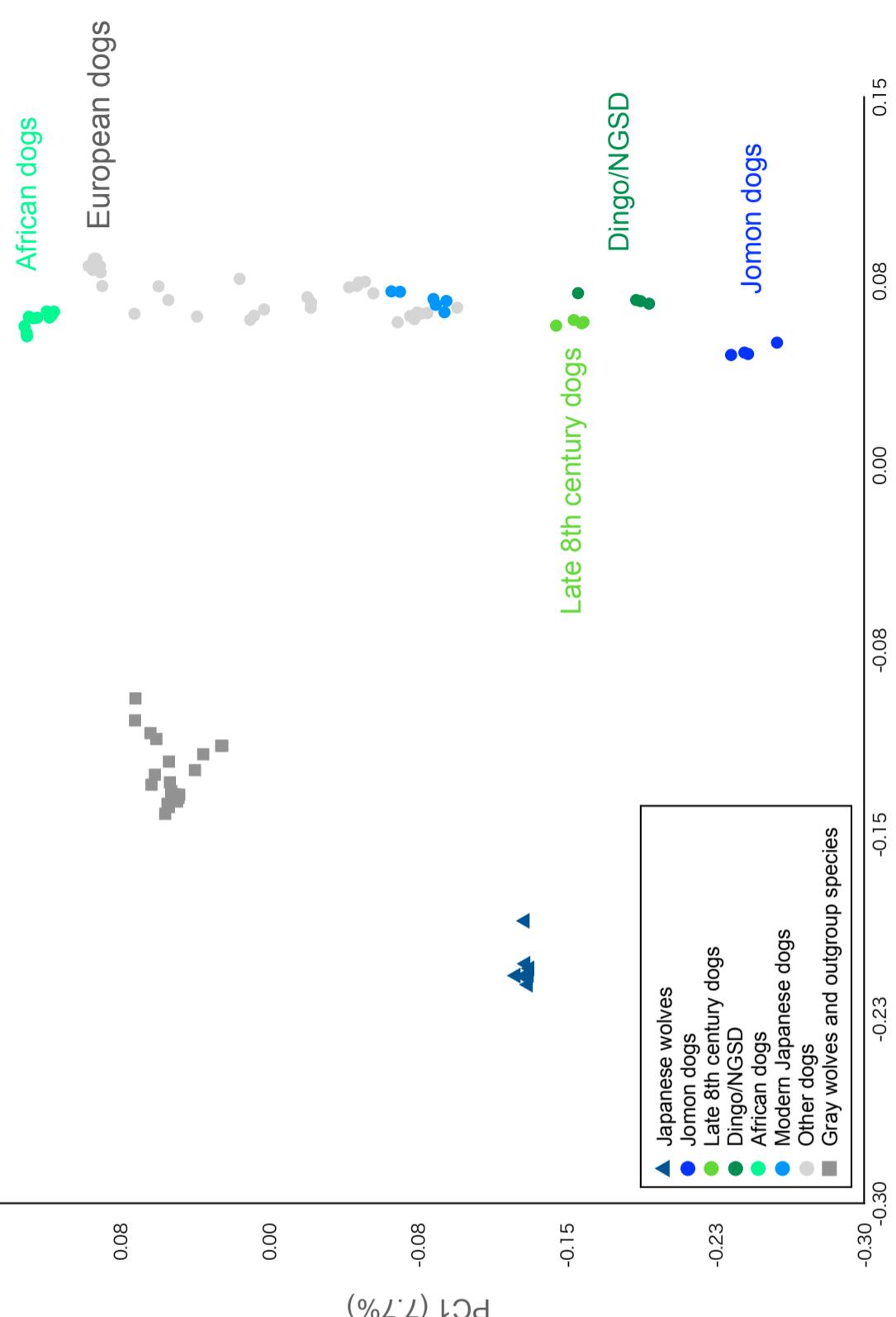
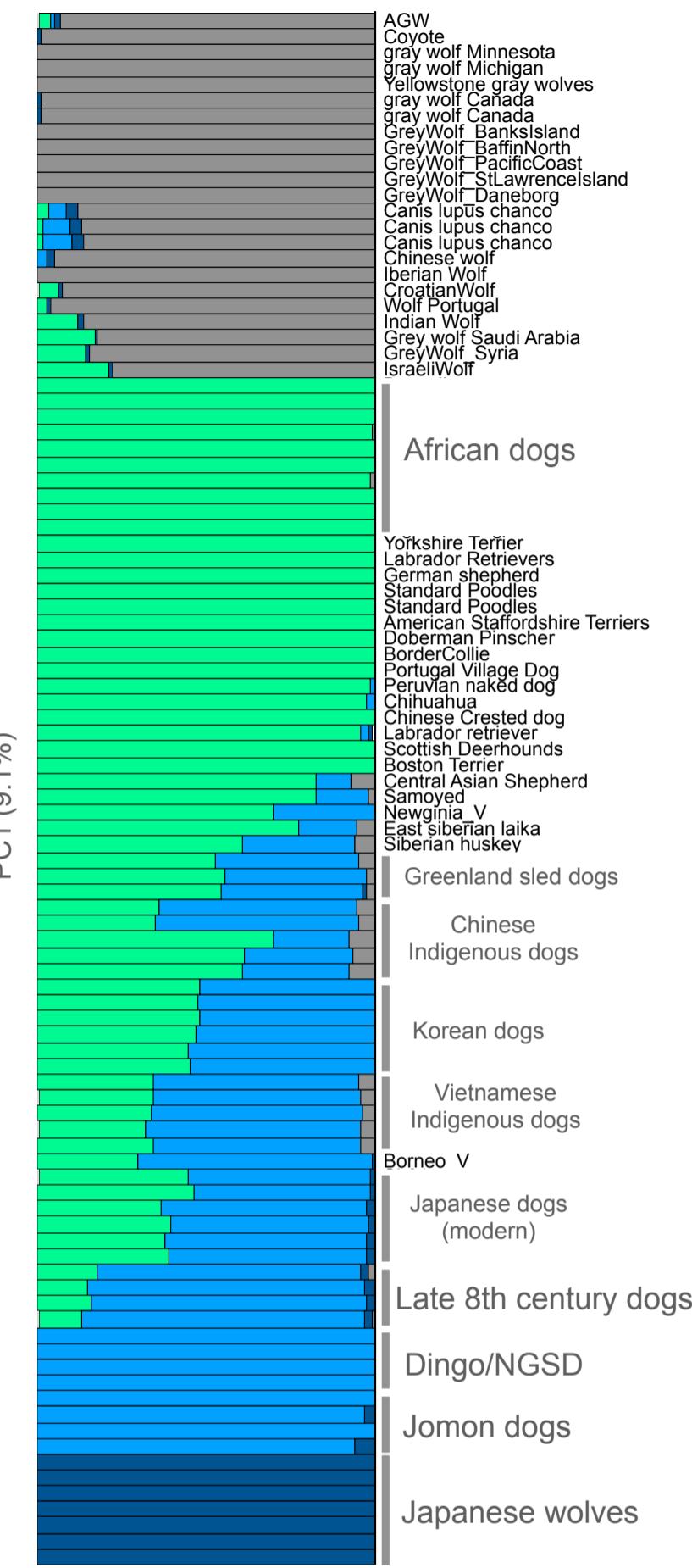



Figure 1 Relationships between Jomon dogs and other canids
(A) Principal Components Analysis (PC1 versus PC2) of 100 samples based on 815,014 SNPs (see Table S1 for sample information). Colored circle, square, and triangle correspond to the names of dogs or wolves in the panel. (B) ADMIXTURE results based on SNP data for $K = 4$ (see Table S1 for sample information).

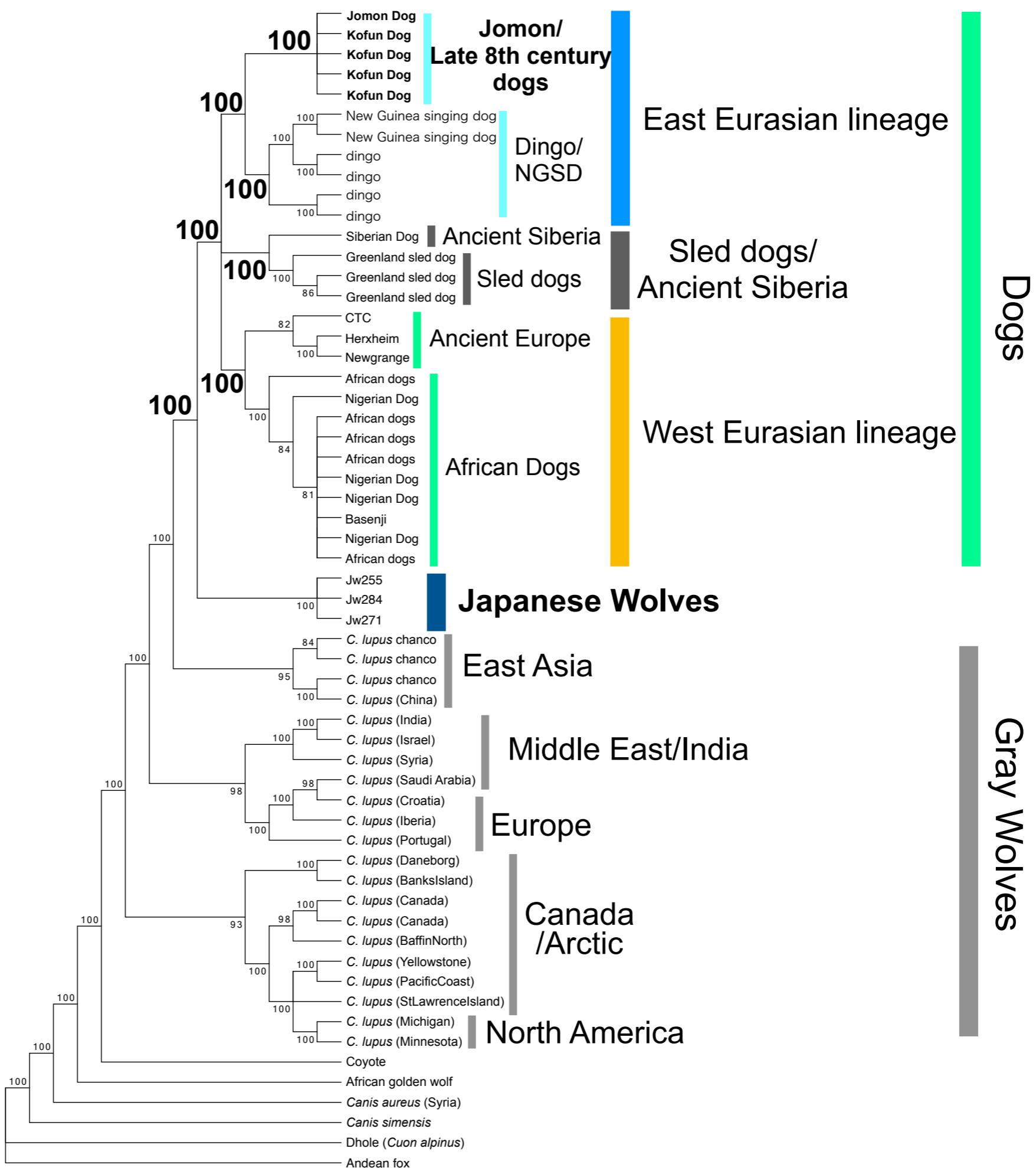


Figure 2
Phylogenetic relationships
between Jomon dogs and
other canids.
Maximum likelihood tree
based on 74,761 unlinked
biallelic SNPs. Node labels
indicate bootstrap replicates.

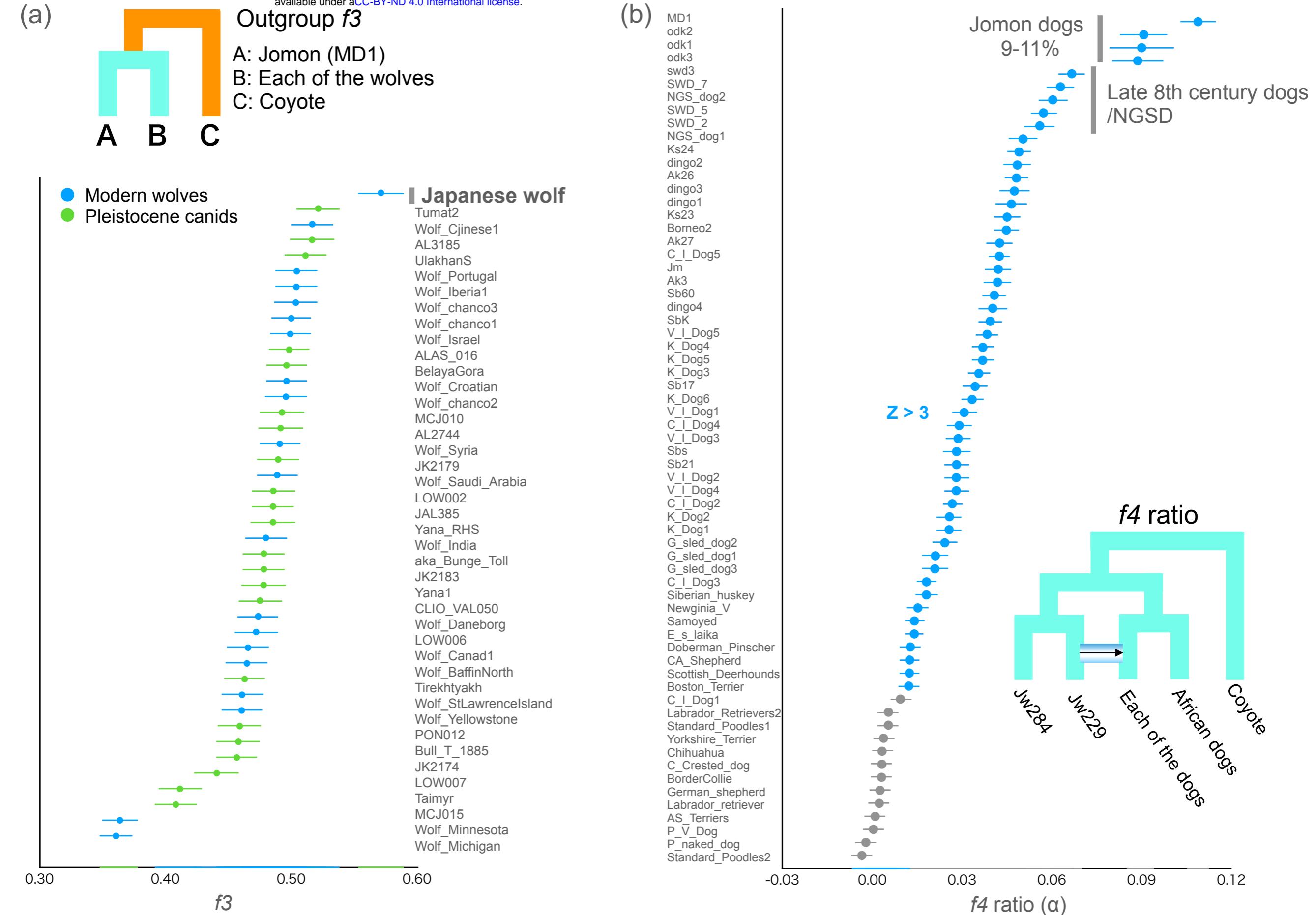


Figure 3 Genetic affinity and gene flow between Jomon dogs and the other canids

(a) Shared genetic drift between Jomon dogs and gray wolves measured by outgroup f_3 statistics. Each of all wolves and a Jomon dog (MD1) were used as populations. Each f_3 statistical value is plotted in order of highest to lowest value from the top, and the names of the wolves are shown on the right side of the panel. Error bars represent standard errors. (b) f_4 -ratio test to estimate proportion of genome introgression from the Japanese wolf to dogs. Each f_4 -ratio α value is plotted in order of highest to lowest value from the top, and the names of the dogs are shown on the left side of the panel. Error bars represent standard errors. Z score above 3 is colored in blue.

Figure 4 Positive correlation between genetic affinity of Japanese wolf and Jomon dog to other dogs
 f_3 statistics testing whether dogs share more alleles with Jomon dogs (x-axis) or Japanese wolf (y-axis). Dots show the f_3 statistics, and horizontal and vertical error bars represent standard errors. Each of the Japanese wolves and Jomon dogs individuals were used as populations.

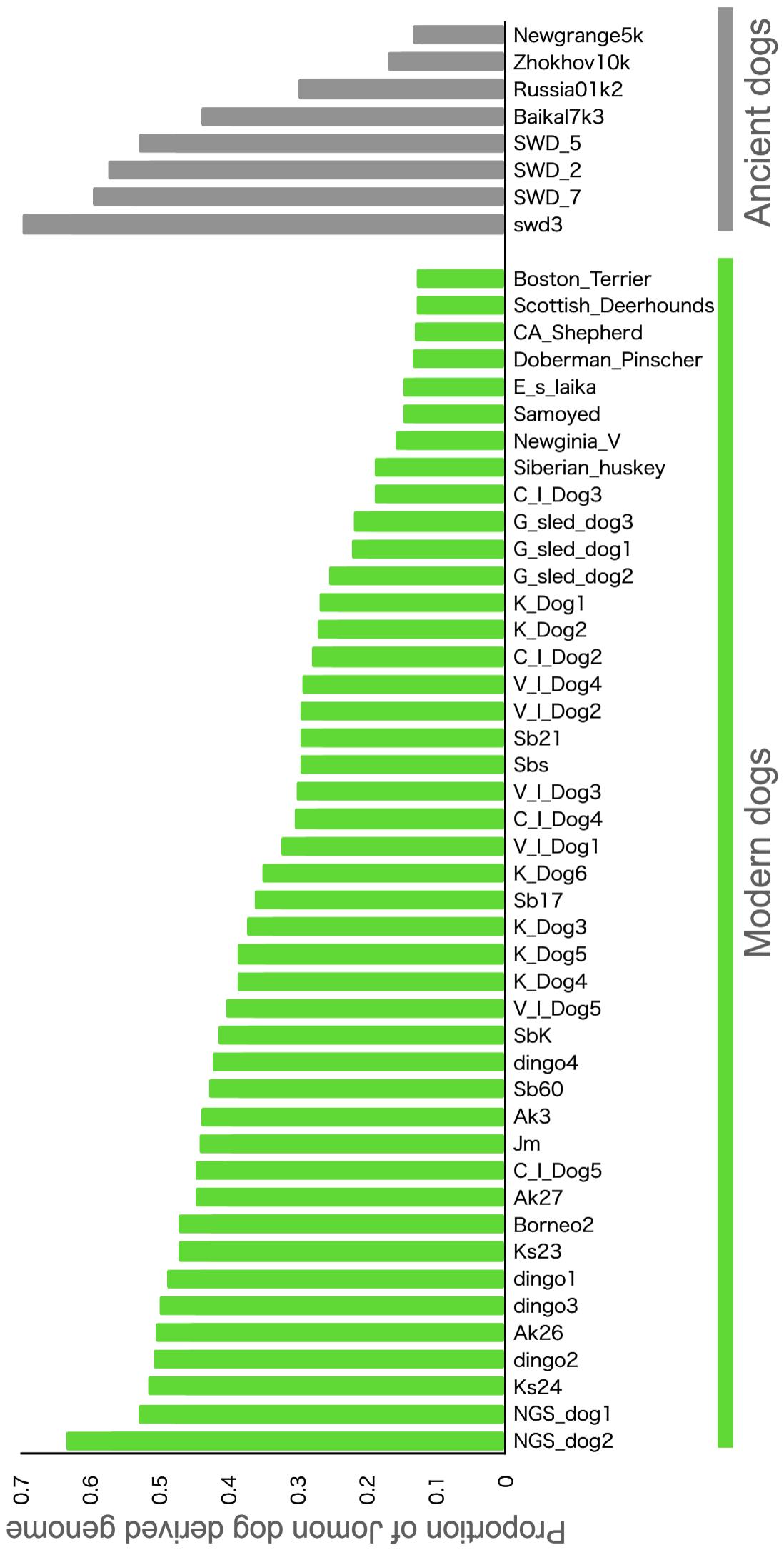


Figure 5 Estimated proportion of Jomon dog derived genome in dogs.

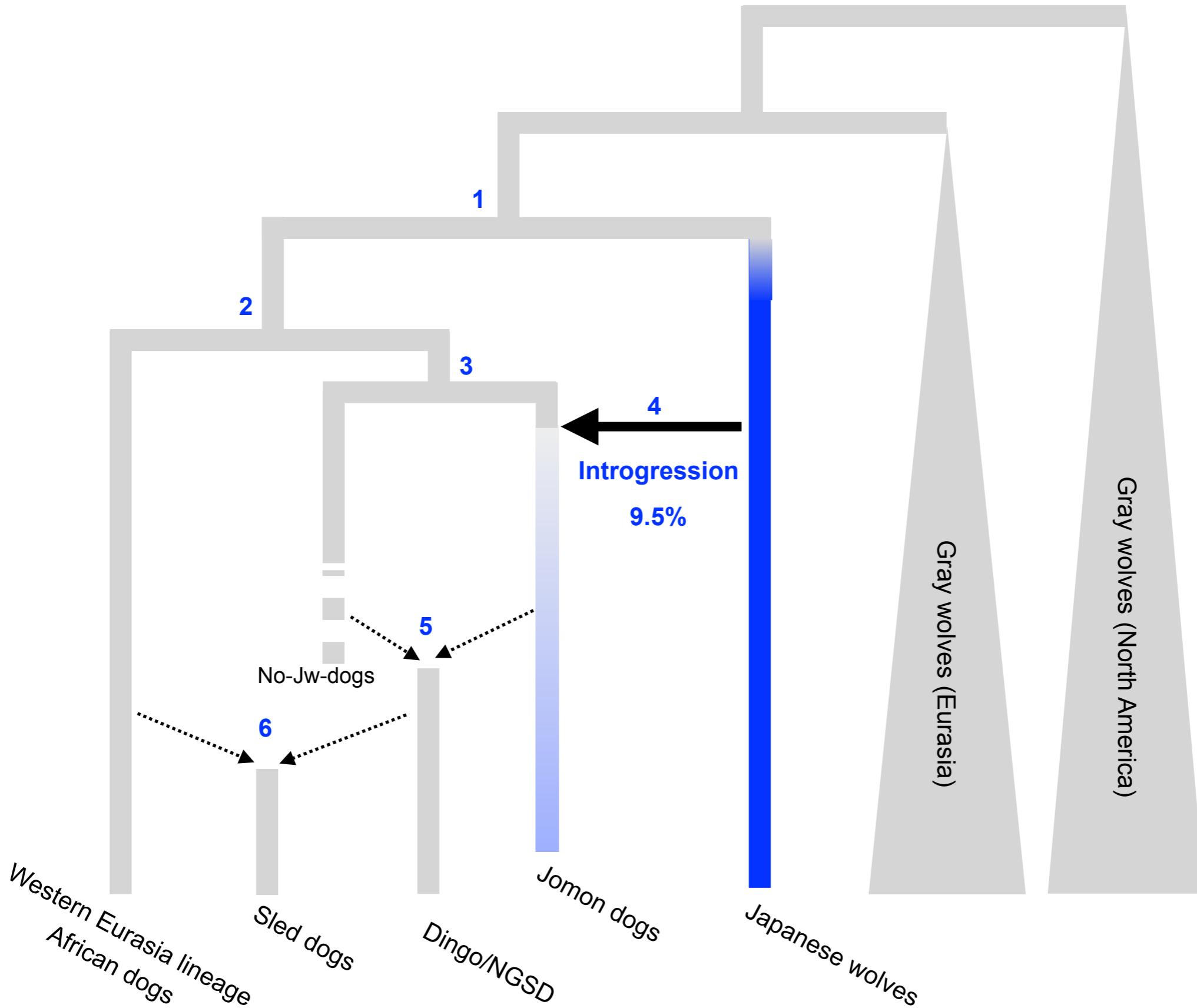


Figure 6 A model of the early stages of the dog evolution.

Each event was supported by following results; event 1), phylogenomic analyses (Fig.2, S2): 2) phylogenomic analyses (Fig.2, S2), 3) f_4 ratio test (Fig. 3b, S11), f_3 biplots (Fig. S12), and qpgraph (Fig. S13): 4) f_4 ratio test (Fig. 3b, S9) and qpgraph (Fig. S13), 5) f_4 ratio test (Fig. 3b, S11) and qpgraph (Fig. S13): 6) f_4 ratio test (Fig. 3b) and qpgraph (Fig. S14). Arrow indicate introgression or admixture events.

Table 1 The results of qpwave

	Left (dogs) populations	Right (wolves) populations	p < 0.05	Number of admixture events
Test 1 (Eastern and Western dogs)	Jomon, NGSD1, Dingo1, African1, Nigerian1	Jw284, chanco1, Chinese1, Portugal, Israel, Michigan	rank = 0, 1	≥ 2
Test 2 (Eastern and Western dogs)	Jomon, NGSD1, Dingo1, African1, Nigerian1	chanco1, Chinese1, Portugal, Israel, Michigan	rank = 0	≥ 1
Test 3 (Eastern dogs)	Jomon, NGSD1, NGSD2, Dingo2, Dingo4	Jw284, chanco1, Chinese1, Portugal, Israel, Michigan	rank = 0	≥ 1
Test 4 (Eastern dogs)	Jomon, NGSD1, NGSD2, Dingo2, Dingo4	chanco1, Chinese1, Portugal, Israel, Michigan	-	-
Test 5 (Eastern dogs)	NGSD1, NGSD2, Dingo2, Dingo4	Jw284, chanco1, Chinese1, Portugal, Israel, Michigan	-	-
Test 6 (Eastern dogs)	Jomon, NGSD1, NGSD2, Dingo2, Dingo4	Jw284, chanco1, Chinese1, Portugal, Michigan	rank = 0	≥ 1
Test 7 (Western dogs)	African1, African2, Nigerian1, Nigerian2	Jw284, chanco1, Chinese1, Portugal, Israel, Michigan	rank = 0	≥ 1
Test 8 (Western dogs)	African1, African2, Nigerian1, Nigerian2	Jw284, chanco1, Chinese1, Portugal, Michigan	-	-
Test 9 (Western dogs)	African1, African2, Nigerian1, Nigerian2	chanco1, Chinese1, Portugal, Israel, Michigan	rank = 0	≥ 1