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Abstract

Cancer is a heterogeneous disease that demands precise molecular profiling for better understanding
and management. RNA-sequencing has emerged as a potent tool to unravel the transcriptional
heterogeneity. However, large-scale characterization of cancer transcriptomes is hindered by the
limitations of costs and tissue accessibility. Here, we develop SEQUOIA, a deep learning model
employing a transformer architecture to predict cancer transcriptomes from whole-slide histology
images. We pre-train the model using data from 2,242 normal tissues, and the model is fine-tuned
and evaluated in 4,218 tumor samples across nine cancer types. The results are further validated
across two independent cohorts compromising 1,305 tumors. The highest performance was observed
in cancers from breast, kidney and lung, where SEQU OI A accurately predicted 13,798, 10,922 and
9,735 genes, respectively. The well predicted genes are associated with the regulation of inflammatory
response, cell cycles and hypoxia-related metabolic pathways. Leveraging the well predicted genes,
we develop a digital signature to predict the risk of recurrence in breast cancer. While the model is
trained at the tissue-level, we showcase its potential in predicting spatial gene expression patterns
using spatial transcriptomics datasets. SEQUOIA deciphers clinically relevant gene expression
patterns from histology images, opening avenues for improved cancer management and personalized
therapies.
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Introduction

Estimates from the World Health Organization (WHO) in 2019 [1] revealed cancer as the primary or
secondary cause of death before the age of 70 years in 112 out of 183 countries, and third or fourth
leading cause of death in another 23 countries. Its multifaceted nature characterized by diverse subtypes,
intricate molecular profiles and both inter- and intra-patient heterogeneity presents formidable challenges
for effective diagnosis and treatment.

With the growing interest in personalized and precision medicine, molecular profiling has gained sig-
nificant attention as a critical component of prognostication and treatment planning for various cancer
types [2]. In the past decades, the advancement of RNA sequencing (RNA-seq) has deepened our under-
standing of inter-patient heterogeneity, providing a comprehensive view of gene expression patterns and
biological processes within tumors. This information has led to the discovery of molecular signatures
specific to different cancer types or subtypes, enabling more accurate diagnosis. [3-5].

However, deriving gene expression profiles from tissue samples is still a bottleneck in the workflow of
clinical practice. Current methods involve time-consuming and expensive laboratory procedures, limiting
the widespread integration of gene expression analysis in routine diagnostics. This is especially the case
for cancers with high degree of intra-tumoral heterogeneity, where the analysis of multiple tumor regions
is needed to determine the subtype and malignant status.

With the digitization of histopathology glass slides to Whole Slide Images (WSIs), unprecedented
opportunities arise for cost-efficient analyses of tumor properties. Namely, WSIs are available without
additional cost as they are obtained in routine clinical practice for diagnostic purposes. Despite provid-
ing only morphological information, WSIs may also reflect the molecular status of the tumor. In recent
studies, deep learning-based computational methods were used to extract hidden morphological fea-
tures from WSIs that associate with molecular properties, such as aneuploidies, genetic alterations and
expression signatures of cancer infiltrating immune cells [6-17]. Hence, deep learning models predicting
gene expression from WSI offer a cost-efficient way to infer and analyze gene expression patterns on a
large scale, with potential applications in both research and clinical settings.

Although remarkable progress has been made in computer vision on medical images, the application of
state-of-the-art methods on WSIs remains exceedingly challenging due to their immense resolutions and
the presence of noisy labeling. To enable the application of feature extraction techniques (e.g., ResNet),
the WSI is first divided into thousands of smaller tiles. Notably, slide-level bulk sequencing labels may
correspond to only a small portion of the WSI, which may not fully capture the molecular heterogeneity
of the entire tissue. The lack of fine-grained annotations for training tile-level models [6, 9, 12, 13, 16, 18§]
poses significant challenges in extracting relevant morphological information that is associated with gene
expression.

Here, we present SEQUOIA, a deep learning model for Slide-based Expression Quantification using
grouped Vision Attention. We employ the concept of multiple instance learning (MIL) [19], where
training instances (i.e. tiles) are organized into bags and the slide-level label is assigned to the bag as a
whole [20, 21]. To generate contextualized representations of image features, we utilize the transformer
architecture, and a model is trained to automatically derive which tiles from the bag are relevant for
the slide-level prediction. Furthermore, we harness the power of transfer learning, where the weight
parameters are pre-trained using data from normal tissues. The model is fine-tuned and evaluated using
data from 4,218 tumor samples across nine cancer types, and the results were further validated in two
independent cohorts. Our analysis reveals the model’s capacity in accurately predicting gene expression
governing cancer progression, recurrence, and therapy resistance. Finally, we demonstrate the clinical
utility of our model in predicting cancer recurrence and unveiling spatial gene expression patterns.
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Fig. 1: Overview of workflow for the SEQUOI A model. a) Cancer types on which the SEQUOT A
model is developed and validated. The panel is created with BioRender.com. b) The model is trained and
evaluated using matched WSIs and bulk RNA-Seq data from nine cancer types available in the TCGA
database. To pre-train the transformer encoder, we use data of normal tissues from the GTEx database.
The model is independently validated using data from the CPTAC and Tempus cohorts. Apart from
predicting tissue-level gene expression, we integrate a spatial prediction technique that elucidates region-
level gene expression patterns within tumor tissues, validated using spatial transcriptomics datasets
[22]. Clinical utility is demonstrated by evaluating the model’s capacity to predict cancer recurrence.
¢) SEQUOIA architecture. First, N tiles are sampled from the WSI, and a feature vector is extracted
from each tile using a pre-trained ResNet-50 module. We then cluster the feature vectors into K clusters,
and an average feature vector is obtained from each cluster, resulting in K aggregated feature vectors.
Next, a transformer encoder and dense layers translate the obtained K feature vectors to the predicted
gene expression values. d) Performance of SEQUOI A compared to HE2RN A. For both architectures,
we show the performance when trained from scratch and when finetuning from a model pre-trained on
normal tissues. Violin plots illustrate the distribution of Pearson correlation coefficients (left y axis)
between the predicted and ground truth gene expression values in the TCGA test sets. The top 1,000
genes with the highest correlation coefficients in each architecture are included. Black squares indicate
the absolute number (right y axis) of significantly accurately predicted genes across each cancer.
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Results

SEQUOIA as tool for gene expression prediction from WSIs

We present SEQUOI A, a deep learning model for Slide-based Expression Quantification using grouped
vision Attention (“Methods”, Figures la-b-c). To train and evaluate the model, we utilized WSIs and
RNA-seq gene expression data of nine cancer types available in The Cancer Genome Atlas (TCGA):
(1) prostate adenocarcinoma (PRAD), (2) pancreatic adenocarcinoma (PAAD), (3) lung adenocarci-
noma (LUAD), (4) lung squamous cell carcinoma (LUSC), (5) kidney renal papillary cell carcinoma
(KIRP), (6) kidney renal clear cell carcinoma (KIRC), (7) glioblastoma multiforme (GBM), (8) colon
adenocarcinoma (COAD), and (9) breast invasive carcinoma (BRCA).

Since the tumor architecture and gene expression profiles differ between cancer types, the model was
developed and validated independently in each cancer type. To evaluate the model, we carried out five-
fold cross-validation. In each iteration, slides from 80% of the patients were used for training and internal
validation, and 20% for testing. To assess the prediction performance, we combined Pearson’s correlation
analysis and Root Mean Squared Error (RMSE) (“Methods”). A gene is defined “well-predicted” in case
of statistical significant, positive correlation between the ground truth and predicted gene expression
values across the test cohorts. In addition, we required the Pearson’s correlation coefficient for a well-
predicted gene to be significantly higher than the coefficient obtained with an untrained model with the
same architecture.

When trained from scratch, SEQUOIA was able to generate many well-predicted genes. On average,
7,756 out of 25,749 genes were well predicted across the nine cancer types (Supplementary Table A4,
Figure 1d). Overall, the number of well-predicted genes was positively correlated with the number of
available training samples available in each cancer (Supplementary Table Al). The highest number
(N = 14, 915) of genes was identified in BRCA, the cancer type with the most available slides (N = 1,053
slides). Further, we identified 11,505 well-predicted genes in KIRC (N = 515 slides) and 10,900 genes in
LUAD (N = 536 slides). Comparatively, PAAD and GBM had the lowest number of well-predicted genes
as well as the lowest number of slides (PAAD: N = 757 genes from N = 195 slides; GBM: N = 3,413
genes from N = 236 slides).

The correlation observed between the number of accurately predicted genes and the size of the available
training data suggests that the model can reach higher performance if a larger training dataset was
incorporated. Since published studies have revealed advantages of pre-training transformer models on
data of the same modality [23], we took steps to pre-train the weights of each model using WSIs and
RNA-seq data from normal tissues in the GTex cohort [24]. We found that finetuning a model pre-trained
on normal tissues increased the number of well-predicted genes in four cancer types (i.e., PAAD, KIRP,
PRAD , COAD), in which a relatively small numbers (N <= 450) of tumor slides were available (Figure
1d and Supplementary Table A4). On average, SEQUOIA significantly predicted 7,851 out of 25,749
genes across the nine cancer types. As with training from scratch, the highest number of well-predicted
genes were found in BRCA (13,798 genes) and least in PAAD (1,737 genes).

Since the histological appearance of BRCA has been shown to be associated with hormone receptor
status [25], we separately assessed the performance in the estrogen receptor (ER) negative and ER
positive BRCA subtypes. In the ER positive subtype, we identified 8,517 well-predicted genes, and
in ER negative subtype 3,840 genes were well-predicted (Supplementary Figure A3a). Of these genes,
2,103 genes were significantly predicted in both subtypes. These results demonstrate the capacity of
SEQUOIA in predicting gene expression signals specific to breast cancer subtypes.

To compare the performance of our model with existing architectures, we benchmarked our results
with the HE2RN A [26] model. SEQUOIA outperformed HE2RN A in all cancer types, irrespective
of using the pre-trained models or training from scratch (Supplementary Table A4). Notably, in BRCA,
the SEQUOIA model identified three times more genes (13,798 genes versus 4,117 genes) than the
HE2RN A model. Further, in LUAD and KIRC, the number of well-predicted genes was respectively
six and seven times higher for SEQUOIA. The cancer type with the smallest factor of increase (x1.4)
was GBM, where SEQUOIA significantly predicted 2,820 genes as compared to 1,963 genes using
HE2RNA.
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Finally, to compare the quality of predictions, we compared the correlation coefficients between the
prediction and ground truth between the SEQUOIA and HE2RN A model (Figure 1d, Supplemen-
tary Table A5). We found that SEQUOIA significantly outperformed HE2RN A in all cancer types
(Supplementary Figure A2, Whitney U test, P < 0.0001).

Characterization of the accurately predicted genes

In our subsequent analysis, we focused on results obtained from the pre-trained SEQUOI A models. The
well-predicted genes include protein-coding genes, long non-coding RNAs (IncRNAs) and micro-RNAs
(miRNAs). On average, over 90% of the genes are protein-coding genes (Supplementary Figure A3b).
To characterize their biological functions, we carried out gene set enrichment analysis in each individual
cancer type, and three different gene sets were considered: (1) gene ontology, (2) KEGG pathway and (3)
cell-type signatures. Gene ontology analysis revealed several common pathways that were significantly
well predicted across cancer types, including lymphocyte proliferation (e.g., ARG1, HLA-DRB1, IL10),
T cell activation (e.g., CCL2, CCR2, CCDC88B), cell-matrix adhesion (e.g., ECM2, FN1, EMP2) and
response to oxidative stress (e.g., TP53, PRDX1, VRK2) (Figure 2a and Supplementary Data 1).

In addition, some gene sets were found in specific cancer types. In GBM (Figure 2b), we identi-
fied genes associated with macrophage migration (CCL2, EDN2, CKLF), protein kinase B signaling
(TNF, ADTRP, SETX), and endothelial cell development (ROCK1, IKBKB, TNFRSF1A). Similarly,
in LUSC (Supplementary Figure A3c), we identified genes associated with collagen biosynthetic process
(CREB3L1, WNT4, TGFB1), natural killer cell differentiation (PTPRC, PIK3CD, KAT7), and histone
H2A acetylation (ACTL6A, MEAF6, DMAPI). Gene sets identified in other cancer types are listed in
Supplementary Data 1.

Furthermore, KEGG pathway analysis revealed that the well-predicted genes are involved in the PD-L1
expression and check point pathway (CD247, CD274, CD14), NF-kappa B signaling (CXCL12, SYK,
PRKCB), HIF-1 signaling (GAPDH, HIF1A, VEGFA), and p53 signaling (TP5313, PTEN, CDK})
(Figures 2c-d and Supplementary Data 2). Additionally, we identified several cell-type signatures,
including cell-type markers for endothelial cells (CD69, CD93), CD4 T cell (CD3SE, CD4, CD48), M2
macrophage (CD14, CD163, CD84), and B cell (CD19, CD53, CD37) (Figure 2e and Supplementary
Data 3). Overall, these results highlight the critical biological functions of the accurately predicted genes
in regulating cell cycles, inflammation and hypoxia response.

We next extended our functional analyses to the well predicted IncRNA genes (”Methods”). We focused
on the IncRNAs that were significantly predicted in at least three cancer types, resulting in a set of
449 unique IncRNAs (Supplementary Figure A3d). Gene set analysis revealed that they are involved
in the regulation of T cell activation (LINC00528, LINC00861, LINC02195), stem cell maintenance
(FGD5-AS1, MIR100HG, TRBV11-2), epigenetic regulation (LINC01089, FGD5-AS1, PSMAS3-AS1)
and chromatin remodeling (FGD5-AS1, LINC01355, LINC01857) (Figure 2f, Supplementary Figure
A3e and Supplementary Data 4). Collectively, these results demonstrate the capacity of SEQUOIA in
predicting the expression of both protein-coding genes and IncRNAs.
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Fig. 2: Biological functions of the well-predicted genes. a) Heatmap showing the significant P
values from the gene ontology analysis of the well-predicted genes in each cancer type. Color and size of
the circles represent the negative log-transformed P values. Integers represent the absolute gene count
in each category, and non-significant categories are left in blank. b) Circos plot showing the enriched
biological processes associated with the well-predicted genes in GBM. Gene names are displayed on
the left and the corresponding biological processes are shown on the right. ¢) Heatmap showing the
significant P values of the KEGG pathways across cancer types. Color and size of the circles represent the
negative log-transformed P values. Integers represent the absolute gene count in each category, and non-
significant categories are left in blank. d) Circos plot showing the KEGG pathways associated with the
well-predicted genes in COAD. Gene names are displayed on the left and the corresponding pathways on
the right. e) Heatmap showing the significant P values for the enrichment of cell-type signatures across
cancer types. Color and size of the circles represent the negative log-transformed P values. Integers
represent the absolute gene count in each category, and non-significant categories are left in blank. f)
Top enriched biological processes associated with the well-predicted IncRNA genes. Sizes of the circles
represent the number of genes in each biological process, and colors represent significant P values from
the enrichment analysis. P values were adjusted for multiple testing using the Benjamini—-Hochberg
method.
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SEQUOIA generalizes to independent cohorts

To test the generalization capacity of SEQUOI A, we applied the models developed in each cancer with
the TCGA cohort to the matched cancer type in the CPTAC cohort [27-33]. We extended our validation
to cancers from six tissues, including breast, lung, kidney, brain, colon and pancreas. Since the cohort
size in CPTAC is smaller compared to the TCGA (Supplementary Table A2), it is expected that fewer
genes can pass our significance threshold. Despite this limitation, we were able to validate many well-
predicted genes (Figure 3a). In BRCA, we validated 10,082 genes in the CPTAC cohort that overlapped
with the predictions from the TCGA test cohort. This accounted for 73% of all significant genes (N =
13,798 genes) identified in the TCGA cohort. Additionally, we identified 4,437 (41%) genes in KIRC,
4,226 (49%) genes in COAD, 4,060 (42%) genes in LUAD, 3,030 (74%) genes in LUSC, 1,517 (54 %)
genes in GBM and 743 (43%) genes in PAAD.

Gene ontology analysis of the overlapping genes between the TCGA and CPTAC cohorts revealed their
key functions in regulating cell proliferation, inflammatory response and tumor growth. Specifically, they
are associated with the regulation of cell cycle, B cell proliferation, T cell differentiation and angiogenesis
(Figure 3b). Furthermore, KEGG pathway analysis showed that the overlapping genes are associated
with cell adhesion, NF-kappa B signaling, T cell receptor signaling and p53 signaling pathway (Figure
3c). To benchmark the generalization capacity of our model to existing architectures, we compared
the prediction results to those from the HE2RN A model. Although HFE2RN A identified numerous
significant genes in both the TCGA and CPTAC cohorts, only a limited overlap of genes was identified
between the two cohorts (Supplementary Table A6).

To further test the generalization capacity, we extended the validation to a lung adenocaricnoma (LUAD)
cohort from Tempus (“Methods”, N = 287 slides from N = 249 patients). This led to the identifica-
tion of 763 genes that were well-predicated across all three (TCGA, CPTAC and Tempus) cohorts for
lung cancer patients. Functional analysis of these genes revealed their regulatory functions in inflamma-
tory response (ITGAL, CYBB, PTGER}), angiogenesis (VEGFD, TSPAN12, EMP2), ERK signaling
(PRKCZ, PDGFA, FGF10), and Wnt signaling pathway (WIF1, SFRP2, NKD2) (Figure 3d). These
results demonstrate the generalization capacity of SEQUOI A in predicting gene expression values across
independent cohorts.
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Fig. 3: Characterization of the genes validated in external cancer cohorts. a) The number of
genes validated in the CPTAC cohort from each cancer type. Percentages enclosed within the parenthesis
indicate the proportion of significant genes obtained from the TCGA cohort. b) Heatmap showing
the significant P values from the gene ontology analysis of the validated genes. Color and size of the
circles represent the negative log-transformed P values. Integers represent the absolute gene count in
each category, and non-significant categories are left in blank. ¢) Heatmap showing the significant P
values from the KEGG analysis of the validated genes. Color and size of the circles represent the
negative log-transformed P values. Integers represent the absolute gene count in each category, and non-
significant categories are left in blank. d) Circos plot showing the enriched biological processes associated
with the validated genes in lung adenocarcinoma.P values were adjusted for multiple testing using the
Benjamini-Hochberg method.

A digital signature for breast cancer recurrence prediction

Given that SEQUOI A was able to predict the transcriptional activity of genes involved in key cancer-
related pathways (Figures 2 and 3), we next assessed whether these genes have prognostic value. We
focused our analysis on breast cancer, for which the highest number of genes (N = 13,798) was accurately
predicted.

The genes accurately predicted from SEQUOIA encompass various published prognostic signatures
(Supplementary Data 5)[34-37]. These include 47 out of 50 (94%) genes of the PAM50 signature, all 12
(100%) genes of the EndoPredict signature, 13 out of 21 (62%) genes of the Oncotype DX signature,
47 out of 70 (67%) genes of the Mammaprint signature, 6 out of 7 (86%) genes of the Breast Cancer
Index and 4 out of 5 (80%) gene of the Mammostrat signature. These results highlight the capacity of
SEQUOIA in predicting prognosis-associated gene expression in breast cancer.
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Next, we sought to develop a multi-gene signature that can stratify the risk of breast cancer recurrence,
leveraging the accurately predicted genes from SEQUOI A. We fitted a regularized Cox regression model
on the ground-truth gene expression values, where the model aims at predicting a risk score of recurrence
(”Methods”). High risk scores indicate a greater likelihood of recurrence. The model was developed on
the TCGA cohort (N = 858 patients) and further validated using data from two independent cohorts:
(1) ”SCANB” (N = 5,034 patients) [38] and (2) "METABRIC” (N = 2,262 patients) [39].

Our analysis led to the identification of a 50-gene signature significantly associated with recurrence
(Figures 4a~c and Supplementary Data 6). To assess its performance, we first treated the predicted
risk score as a continuous variable. Results from univariate Cox regression analyses (Figures 4a-b and
Supplementary Figure A3f) showed that the predicted risk scores were significantly associated with
recurrence-free survival: TCGA (HR = 2.24, .95CI = 1.99-2.52, P < 2e — 16), SCANB (HR = 1.31,
95CI =1.25-1.39, P < 2e — 16), and METABRIC (HR = 1.21, .95CI = 1.08-1.36, P = 7.8¢ — 07).
To further assess the model, we treated the predicted risk score as a dichotomous variable. Patients
within each cohort were divided into a high-risk and a low-risk group based on the median risk score
(Figures 4a-b). Results from the log-rank test demonstrate that the high-risk group had significantly
worse prognosis compared to the low risk group: TCGA (P < 2e — 16), SCANB (P = 4e — 13), and
METABRIC (P = 8¢ — 05).

To assess whether breast cancer subtype was a confounding variable in risk prediction, we incorporated
the PAM50 molecular subtypes and hormone (estrogen and progesterone) receptor status as covariates
into our Cox regression analyses. We found that the predicted risk score was still significantly associated
with prognosis after including these covariates: TCGA (HR = 2.22, .95CI =1.96-2.52, P < 2e — 16),
SCANB (HR = 1.26, .95CI =1.20-1.33, P < 2e — 16), METABRIC (HR = 1.22, .95CI = 1.08-1.39,
P ="7.6e — 05).

Gene ontology analysis (Figure 4c) revealed the regulatory functions of the signature genes in cell
apoptosis (MSX1, PTPN2, BCL2A1), cell-cycle phase transition (NEK10, CDK14, RAD51C, PLK2),
inflammatory response (IL21, PTGS2, PPP2R3C), cytokine production (CLEC9A, CLEC6A), cellular
metabolic process (PDESB, ADA2, NEU3, SUMO2, ACAT?2), ERK signaling cascade (THPO, PTPN2),
cell-fate specification (POUSF1, SIX2), cell membrane transportation (CACNA1E, PTGS2, CACNG/,
PLK?2), and cell migration (MDGA1, HTRG).

So far, we have developed and validated a 50-gene signature using the ground-truth gene expression
values. We then tested whether utilizing the gene expression values from histology images alone was
sufficient to stratify the risk groups. For each patient, we calculated a risk score using the same risk
coeflicient from our signature model, but this time replacing the ground-truth gene expression values
with the predicted values. As shown in Figure 4d, patients assigned with high risk scores demonstrated
significantly worse prognosis compared to patients with low risk scores (Cox regression: HR = 1.58,
.95C1 = 1.16-2.15, P = 0.006; Log-rank test: P = 0.008). These results indicate that SEQUOIA can
accurately predict the expression of genes associated with breast cancer recurrence.
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Fig. 4: Development and validation of a digital signature for predicting breast cancer
recurrence. a) Kaplan-Meier curves of recurrence-free survival obtained from the TCGA discovery
dataset. Patients were split by the median risk score. b) Kaplan-Meier curves of recurrence-free survival
in the SCANB validation dataset. ¢) Circos plot showing the biological processes associated with the
prognostic gene signature. Gene names and the associated risk coefficients are shown on the left and
the corresponding biological processes are shown on the right. d) Kaplan-Meier curves of recurrence-free
survival obtained from the predicted gene expression values in the TCGA dataset. Patients were split
by the median risk score. HR: hazard ratio.

Tile-level predictions validated with spatial transcriptomics

So far, we have demonstrated the ability of SEQUOI A to accurately predict RNA-Seq gene expression
values at the tissue (i.e., bulk) level. However, gene expression patterns are known to vary across different
tumor regions due to intra-tumoral heterogeneity of cell-type compositions. Uncovering spatial gene
expression patterns can reveal the intricate landscape of tumor architecture and the microenvironment,
which is known to affect tumor growth, metabolic processes, and resistance to therapy [40, 41]. We
hence investigated whether our models trained at the slide-level can be used to predict gene expression
values at the region level within tumor tissues.

Here, we implemented a sliding window method to generate tile-level predictions of gene expression
(“Methods”). To validate the prediction, we utilized a cohort of eighteen glioblastoma (GBM) patients,
which contains matched histology images and spatial transcriptomics data, providing tile-level ground
truth gene expression measurements [22] (Figure 5a). We focused our analysis on the top 500 genes for
which SEQUOIA generated the best predictions on the TCGA test set (i.e. genes with the highest
Pearson correlation coefficients). For each of these genes, we generated a spatial heatmap illustrating
their expression values across the slide. To quantitatively assess the prediction performance, we used
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Fig. 5: Spatial visualization of gene expression predicated at the tile level. a) Whole Slide
Image thumbnails from the validation cohort. b) Examples of genes that are well-predicted spatially
within slides, with predicted spatial gene expression on the left and ground truth on the right. The
prediction and ground truth maps were normalized to percentile scores between 0-100. ¢) Examples of
genes that are spatially well-predicted across several slides. Each row shows the prediction map (on the
left) and ground truth (on the right) for a particular gene across four slides. d) Heatmap showing the
correlation coefficients of meta-gene modules that define the transcriptional subtype and proliferation
state of GBM cells. e) Spatial organization of the predicted transcriptional subtypes within different
slides. Transcriptional subtypes were assigned based on the meta-gene module showing the highest
prediction values

the Earth Mover’s Distance (EMD) as an evaluation metric (“Methods”). EMD values are bounded
between 0 and 1, with lower values indicating a closer correspondence between predictions and ground
truth. On average, SEQUOIA achieved an EMD of 0.15 (.95CT = 0.148-0.152) across all slides and
genes (Supplementary Table A7). Higher performance was observed in slides with high degrees of spatial
variance in gene expression [22, 41].

Notably, SEQUOI A generated accurate spatial predictions for genes that hold significant relevance to
GBM malignancy and prognosis. For instance, the COL6A1 and COL9AS genes are highly expressed
in the mesenchymal subtype of GBM, a subtype associated with unfavorable prognoses [42, 43]. In our
spatial predictions, we observed a median EMD of 0.11 across all slides for both COL6A1 and COL9AS3
(Figures 5b-c). Furthermore, the CKAP4 gene, with and EMD of 0.12 has been shown to mediate the
growth, migration, and invasion of GBM cells [44]. These results highlight the potential of SEQUOIA
in accurately predicting spatial gene expression patterns related to GBM malignancy and prognosis.

The utilization of single-cell RNA-seq and spatial transcriptomics assays in recent studies has revealed
that cells sharing the same transcriptional subtype are often co-localized within spatially segmented
niches [22, 45]. To investigate whether SEQUOIA captured true biological signals that reflect under-
lying tissue compositions, we assessed spatial co-expression patterns of functionally related genes. We
considered four previously established meta-gene modules governing the transcriptional subtype and
proliferation state of GBM cells: (1) ‘lineage development’ (124 genes), (2) ‘cell cycle’ (70 genes), (3)
‘mesenchymal-like’ (92 genes) and (4) ‘astrocyte-like’ (37 genes) [46]. Spatial correlation analyses showed
that genes within the same meta module consistently clustered together, exhibiting similar spatial
expression patterns (Figures 5d-e). To demonstrate the spatial prediction capacity of SEQUOI A in other
cancer types, we developed an user-friendly, interactive web application (https://sequoia.stanford.edu)
where users can explore the spatial heatmap for genes predicted in the TCGA cohorts. These results
demonstrate the potential of SEQUOI A in resolving spatial cellular architectures within heterogeneous
tumor tissues.

Discussion

Transcriptomic analysis of tumor tissues holds immense promise in advancing personalized diagnosis
and outcome predictions. In this study, we presented SEQUOI A, a deep learning model for predicting
RNA-seq gene expression data from Whole Slide Images. We combined algorithmic and methodological
advancements, followed by thorough analyses of gene functions, clinical relevance, and generalizabil-
ity. Through a comprehensive evaluation of our model in nine cancer types across seven tissues, we
demonstrated the value of SEQUOIA in predicting clinically relevant gene expression patterns.

Over the past decade, deep learning has revolutionized cancer diagnosis. Published studies have demon-
strated the potential of deep neural networks in extracting intricate patterns from medical images.
He et al. developed ST-Net, a convolutional neural network that predicts the expression values of 250
genes from histology images in breast cancer [47]. Their model however is trained on individual tiles,
which does not integrate contextual information across tiles and requires high-resolution training labels
obtained from spatial transcriptomic assays. To model contextual information, Graziani et al. incor-
porate an attention mechanism into their model for gene expression prediction. However, this strategy
requires training a dedicated model for predicting the expression of each individual gene [48]. While this
approach reaches publishable performance, it can lead to computational challenges, particularly when
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attempting to infer the entire transcriptome. A recent study by Alsaafin et al. utilized transformer mod-
ules to extract latent representation of WSIs. Their model was tested in renal cell carcinoma for gene
expression prediction and subtype classification tasks [3].

To demonstrate the advantages of our model, we compared it with HE2RN A [26], a recent model for
whole transcriptome prediction from WSIs. The results of our analysis revealed consistent improvements
across various cancer types when using SEQUOIA in comparison to HE2RN A. A key factor driving
this performance boost lies in the attention-based mechanism leveraged by SEQUOI A, which enables
effective integration of information between tiles. In contrast, HE2RN A treated each tile as an inde-
pendent entity, limiting its ability to capture the contextual relationships present in the data. However,
the increased complexity of the transformer-based model can also lead to overfitting, particularly when
confronted with limited training data. To address this challenge, we pre-trained the weight parameters
of the model using data from normal tissues. We found that the pre-training regimen improved the
performance, especially in case of small training datasets.

The genes accurately predicted by SEQUOIA were associated with key pathways pertinent to can-
cer. Among these were genes involved in regulating cell cycles, inflammation, angiogenesis, and hypoxia
response. Additionally, the model effectively captured cell-type markers, including those for endothelial
cells, CD4 T cells, M2 macrophages and B cells. Building upon the well predicted genes, we developed
a b0-gene signature that predicts the risk of breast cancer recurrence. Although the gene expression
signature was developed on ground-truth gene expression values, we demonstrated its utility in patient
stratification by just using the predicted gene expression. Despite the decreasing costs for transcrip-
tomics sequencing, many hospitals still lack the necessary equipment and trained personnel to conduct a
comprehensive analyses. However, by harnessing SEQUOI A’s predictions, it becomes possible to swiftly
examine transcriptomics profiles from routinely obtained whole slide images, thereby streamlining the
diagnostic process and significantly cutting down on expenses.

While SEQUOI A was trained using bulk RNA gene expression, we demonstrated its potential in predict-
ing gene expression patterns at a local level. We evaluated the accuracy of the predicated high-resolution
spatial maps on an independent cohort of eighteen patients with GBM. We showed a number of genes for
which SEQUOI A was able to generate accurate spatial maps, for genes with good visualization within
as well as across slides. Several of these genes have been identified as prognostic for GBM, related to
aggressive phenotype and/or as potential therapeutic targets. Such high-resolution spatial prediction of
gene expression on WSIs can bring significant value to both clinical and research settings. In the clinic,
it can aid in identifying specific regions within a heterogeneous tumor that require sequencing (hence
ensuring the accurate detection of biomarkers and preventing the omission of critical lesions [16]). In
research, this approach enables the cost-efficient exploration of gene expression dynamics at high resolu-
tion which allows to generate hypotheses about spatial co-occurrences and interactions between genes,
thereby advancing our understanding of the complex mechanisms underlying cancer progression.

In the future, the accurate prediction of gene expression from whole slide images holds immense poten-
tial for enhancing diagnosis and prognosis for cancer. Furthermore, the predicted gene expression and
associated pathways can provide valuable insights into a tumor’s aggressiveness and its molecular char-
acteristics, thereby enabling personalized and targeted therapies. Once clinically validated and further
improved (e.g. by training on larger cohorts and spatial transcriptomics cohorts), the implementation
of such predictive models has the potential to streamline medical processes, save costs and improve
efficiency by rapidly identifying actionable information from image-based data.

In conclusion, by combining algorithmic advancements with thorough analyses of gene prediction, clinical
relevance, survival prediction, and generalizability, our research offers a comprehensive understanding
of the potential applications of gene expression prediction from WSIs.

Methods

Patient cohorts and ethics
TCGA

For model training, anonymized patient data were retrieved from the publicly available ‘The Cancer
Genome Atlas’ (TCGA) archive (available at https://portal.gdc.cancer. gov). We used paraffin-
embedded (FFPE) whole slide images (WSIs) and matched gene expression data of nine cancer types,
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including prostate adenocarcinoma (PRAD), pancreatic adenocarcinoma (PAAD), lung adenocarcinoma
(LUAD), lung squamous cell carcinoma (LUSC), kidney renal papillary cell carcinoma (KIRP), kidney
renal clear cell carcinoma (KIRC), glioblastoma multiforme (GBM), colon adenocarcinoma (COAD),
and breast adenocarcinoma (BRCA). The number of patients, WSIs and genes used for training each
cancer type is listed in Supplementary Table A1.

CPTAC

For validation, we used the publicly available patient data from the Clinical Proteomic Tumor Anal-
ysis Consortium (CPTAC) cohort (https://portal.gdc.cancer. gov). We retrieved matched WSIs and
gene expression data from seven cancer types, including breast invasive carcinoma (BRCA), lung ade-
nocarcinoma (LUAD), lung squamous cell carcinoma (LSCC/LUSC), colon adenocarcinoma (COAD),
kidney renal clear cell carcinoma (CCRCC/KIRC), glioblastoma multiforme (GBM), pancreatic
adenocarcinoma (PDA/PAAD). The sample size is described in Supplementary Table A2.

Tempus

For an additional validation, we utilized matched WSIs and RNA-seq data (N = 287 slides from N = 249
patients) of lung adenocarcinoma (LUAD). The data were obtained through a data transfer agreement
with Tempus Labs, Inc.

GTex

For pre-training the models, we used WSIs and gene expression data from six normal tissues (i.e., brain,
colon, kidney, lung, pancreas, prostate). Data were obtained from The Genotype-Tissue Expression
(GTEx) project (https://gtexportal.org), and the sample size is described in Supplementary Table A3

Spatial GBM, SCANB, METABRIC

Spatial transcriptomic data and matched histology images of GBM were obtained from a published
study by Ravi et al. (https://datadryad.org/stash/dataset/doi:10.5061/dryad.h70rxwdmj) [22]. Data of
the SCANB and METABRIC breast cancer cohorts were obtained from published studies by Staaf et
al.[38] and Curties et al.[39].

Preprocessing of RNA-Seq data

For training and validation of our models, we used FPKM-UQ normalized gene expression values. Since
the gene expression values span several orders of magnitude and our model was trained using the Mean
Squared Error loss function, the training process may introduce bias to genes with large gene expression
values. To overcome this potential bias, we performed log2 transformation (v — logs(v+ 1)) of the gene
expression values.

For pre-training the weight of the models, we obtained the RNA-seq data of normal tissues from the
GTEx data portal (https://gtexportal.org/home/datasets). We performed the same log2 transformation
(v — loga(v + 1)) of the gene expression values. Since during the pre-training phase, we combined
data from all tissue types, we performed a z-score normalization of the gene expression values in each
individual tissue type, and the normalized gene expression matrices were concatenated across the tissue
types.

We focused our analysis on three gene categories: (1) protein-coding genes, (2) micro-RNAs (miRNAs)
and (3) long non-coding RNAs (IncRNAs). On average, the protein-coding genes account for 85% of all
the analyzed genes.

Preprocessing of Whole Slide Images

Whole-slide images (WSIs) were acquired in SVS format and downsampled to 20x magnification (0.5um
px!). We used the Otsu threshold method to obtain a mask of the tissue, which allows to omit tiles
mostly containing white background [49]. WSIs have much larger dimensions than natural images (usu-
ally over 10k x 10k pixels), and therefore cannot be used directly to train machine learning models.
Thus, as commonly done in WST analysis [12, 13], we randomly sampled non-overlapping tiles to train
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models. We chose a maximum of N = 4000 random non-overlapping tiles of 256 x 256 pixels (at 0.5um
px'!), omitting those containing more than 20% background and tiles with low contrast.

To obtain a representation at slide-level, we decided to follow the super-tile methodology proposed by
Schmauch et al. [26]. First, we used a pre-trained ResNet-50 (pre-trained on ImageNet) to obtain a
feature representation of each tile. Then, we used the k-means algorithm to cluster similar tiles into
K =100 clusters per slide. Each cluster contains tiles with similar morphological features, where cluster
A may represent tiles that mostly contain tumor cells, cluster B may contain tiles with mostly connective
tissue and so on. Finally, the corresponding 100 cluster means are obtained which each represent a
super-tile. This leaves a matrix of 100 x 2048 super-tile feature vectors which represent the slide.

SEQUOIA architecture

SEQUOIA is inspired by the vanilla Vision Transformer (ViT) architecture [50] which extrapolates the
Transformer architecture from the natural language processing (NLP) domain to computer vision [51].
For a ViT, an image is divided in patches of 16 x 16 px, representing “tokens” of the image. Feature
vectors are then extracted from these patches (by linear projection in the ViT). Then, they are fed to a
transformer encoder, which outputs a new representation of the input and forwards it to a multi-layer
perceptron (MLP) head that makes the final prediction.

In our work, the division of an image into small patches from the original ViT corresponds to the WSI
being divided into super-tiles. The feature vectors of the super-tiles used as input to the transformer
encoder are the 100 cluster means of dimension 2048 described above (‘Preprocessing of Whole Slide
Images’). Importantly, the transformer encoder allows to model relationships across super-tiles before
deciding whether they are relevant for the slide-level prediction.

Specifically, our model takes as input a 100 x 2048 feature matrix (for the 100 super-tile, i.e. cluster mean
feature vectors). This is fed to the transformer encoder which contains 6 encoder blocks, 16 attention
heads, and a head dimension of 64. After layer normalization, the output is sent to an MLP layer with
dimension 2048 x num_genes, with num_genes the number of genes available to predict in each cancer
type (see Supplementary Table Al).

Pre-training on normal tissue

We performed pre-training of the SEQUOI A and H E2RN A models using normal tissues corresponding
to the tested cancer types. We combined all normal tissues for the pre-training step, and the resulting
model was afterwards finetuned for each specific cancer type.

Notably, during our preliminary experiments, we observed that incorporating breast normal tissue into
pre-training led to an overall decrease in performance compared to the model pre-trained on all other
normal tissues without the breast. This decrease can likely be attributed to the known differences in
tissue composition between normal breast tissues and breast cancer. While the normal breast mainly
comprises adipocytes, the tumors consist of transformed epithelial cells. Consequently, we excluded the
normal breast tissue from the pre-training process, resulting in the following used tissues for pre-training:
lung, brain, kidney, pancreas, prostate, colon.

The model was trained using the Mean Squared Error loss function for 200 epochs with early stopping
(early stop if the loss did not decrease for a patience of 100 epochs), and batch size 16. Model parameters
were optimized with the Adam optimizer with learning rate 3 x 10~3. For training the model, we consid-
ered 19,198 genes for which gene expression levels are available across all normal tissues (Supplementary
Table A3).

Training details

After pre-training the model on normal tissues, we finetuned a dedicated model for the nine cancer types
we considered from TCGA. Hereto, the transformer encoder was initialized with the weights from the
pre-trained model and a new prediction head (a layer norm and a linear layer) was trained (see Figure 1).

Regarding splitting the TCGA data for model training (for each cancer type), we used the same approach
as Schmauch et al. [26] which is a five fold cross-validation. Specifically, five folds are made each of
which consist of a ‘global’ train and test set (samples from the same patients always restricted to the
same set). In each fold i, the ‘global’ train set is further split into a train (90%) and validation (10%)
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set. The validation set ¢ is used to determine the optimal point to stop training model ¢, which is then
evaluated on test set i. Afterwards, predictions on patients from test sets ¢ (i = 1..5) are concatenated
before calculating performance measures (e.g. Pearson correlation between predicted gene expression
and ground truth expression across patients). The reason for concatenating the patients across these
test sets (instead of the conventional approach where one held-out test set is chosen and the rest split for
cross-validation) is because each test set ¢ is too small to determine statistical significance of correlation
across patients within that set.

We used the Mean Squared Error (MSE) as loss function for training the model and we trained each
model for a maximum of 200 epochs. Instead of only considering the Pearson correlation coefficient as
performance metric for determining the optimal point for stopping training and saving model checkpoints
(as in Schmauch et al. [26]), we considered a criterion that takes into account both MSE and correlation.
Namely, while the MSE decreases, we continue training and saving model weights on optimal MSE. Once
the MSE stops improving, we continue training if in the last patience epochs, correlation has improved
and if there has been a reasonable MSE (i.e. MSE < § +bestMSE, with § = 0.5). We then save model
weights in an epoch if correlation has improved (i.e. corr > best_corr).

We used a fixed learning rate of 1 x 10~ and batch size of 16 for model training. The model parameters
were optimized with the Adam optimizer.

Identification of well-predicted genes

To identify a significantly well-predicted gene, we used Pearson’s correlation analysis to compare the
ground truth gene expression values versus the predicted values. The resulting correlation coefficient
and p-value was further compared to those obtained with a random, untrained model with the same
architecture. We combined three criteria to select significant genes: (1) The correlation coefficient (r1)
between the ground truth and the predicted gene expression values across the validation cohorts must
be positive (11 > 0) and the P value (p;) should be smaller than 0.05 (p; < 0.05); (2) The correlation
coefficient 71 must be greater than 7o (r1 > r2), where ry represents the coefficient between the ground
truth and predicted gene expression values obtained from the random model; (3) 71 must be significantly
higher than ry as determined by the Steiger’s Z test. We required the raw P value to be smaller than
0.05 and the adjusted P value by Benjamini-Hochberg correction to be smaller than 0.2.

Gene set analysis

The gene set analysis was performed with the ClusterProfiler R library (version 4.2.1) [52] and
GSEApy package (version 1.0.5) [53]. Biological processes from gene ontology and cell-type signa-
tures were obtained from the MSigDB database (https://www.gsea-msigdb.org/gsea). KEGG (Kyoto
Encyclopedia of Genes and Genomes) pathway annotations were obtained from the KEGG database
(https://www.genome.jp/kegg/catalog/org list.html). The enrichment analysis was performed with
hyper-geometric testing, and the P values were corrected with the Benjamini-Hochberg procedure. To
generate heatmaps of the P values, we aggregated gene sets with high similarities (e.g., “regulation of
T cell proliferation” and “positive regulation of T cell proliferation”), and the average P values were
shown.

Identification and validation of the prognostic gene signature

To construct a gene expression model for predicting breast cancer recurrence, we first selected the top
5,000 well-predicted protein-coding genes from the TCGA-BRCA cohort as potential candidates. Then,
we performed LASSO Cox regression model analysis with the ‘glmnet’ R package (version 4.1)[54].
The penalized Cox regression model with LASSO penalty was used to achieve shrinkage and variable
selection simultaneously. The optimal value of the penalty parameter A was determined through a
five-fold cross-validation.

Utilizing the optimal A value, we curated a list of prognostic genes, each associated with a coefficient (i.e.,
hazard ratio) that was not equal to zero. The risk score was derived by performing a linear combination
of the expression levels of the selected genes, with each expression level being weighted by its associated
coeflicient, as described by the equation 1:
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risk score = Z C; x Exp; (1)
i=1

where C; represents the coefficient of a gene and Exp; its expression value.

The patients in each dataset were split into a low-risk and a high-risk group according to the median risk
score. Finally, the Kaplan—Meier estimator and the log-rank test were performed to assess the difference
in recurrence-free survival between the low-risk and high-risk groups.

Spatial visualization of predicted gene expression on tile level

To visualize predicted gene expression spatially on tile-level, we implemented a sliding-window method.
Starting from the left upper corner of the WSI, consider a window of 10 x 10 tiles. For clarity, we refer
to the location of the window by the (x,y) coordinate of the left upper tile in the window. Hence, the
window in the left upper corner has coordinate (0,0) and is referred to as wgo (z,y axes defined as
in image processing, origin in left upper corner and x-axis increases when moving to the right, y-axis
increasing when moving below).

The 100 x 2048 feature vectors of tiles in the window w, , are fed to the model (each individual tile
feature vector serves as a ‘cluster mean vector’). The resulting predicted gene expression gy, , is saved
for all tiles in the window. Then, the window is moved stride number of tiles to the right (wWy+tsiride.y)s
and the predicted gene expression is again saved for each tile in the window. When the window has
reached the end of a row (z + stride + 10 equals the width of the image), a new window is started at
position stride below the previous row (wo y+siride). After the window has passed the entire WSI, the
prediction for each tile is calculated as the average of all values that were saved for that tile when it was
part of a window w, . In our implementation, we chose stride =1 (larger strides require less compute
time but are less fine-grained).

For comparison of the predicted spatial gene expression with the spatial transcriptomics measurement in
the ground truth, we resampled the ground truth resolution to match the predicted resolution. Namely,
the ground truth resolution was 55um per spot which is higher than the predicted resolution of 256um
per spot. Hence, we compared each spot in the prediction with the average of the four nearest spots in
the ground truth (nearest in terms of smallest Euclidean distance between the x,y coordinates of the
spots). We also performed median filtering on the ground truth map to remove noise (window size 3 x 3)
and we only considered genes with >= 10 unique measured values in the spatial ground truth map (to
avoid incorporating noisy measurements). Finally, we converted both the predicted and ground truth
values to normalized percentile scores between 0-100.

Earth Mover’s Distance

For a quantitative evaluation of the spatial visualization capabilities of the model, we used the two
dimensional Earth Mover’s Distance (EMD) (implemented with the cv2. EM D function from opencv-
python [55]). Intuitively, the metric captures the minimum amount of ‘work’ required to transform one
distribution into the other. Often the two distributions are informally described as different ways of
piling up earth/dirt, and the ‘work’ to transform one distribution into another is defined as the amount
of dirt multiplied by the distance (Euclidean distance in our case) over which it is moved. Hence, this
metric takes into account the spatial context to determine how well the prediction map corresponds to
the ground truth. This is in contrast to pixel-level metrics which only take into account how correct a
certain pixel is irrelevant of its 2D location and context (e.g. calculating for each pixel the Mean Squared
Error between prediction and ground truth).

Spatial correlation analysis of GBM signature genes

To assess whether genes exhibiting similar spatial expression patterns are functionally related, we used
four recurrent meta-gene modules governing the transcriptional subtype and proliferation state of GBM
cells as discovered from a published single-cell RNA-seq study [46]. We included all signature genes
from these modules, except for those (N = 18 genes) not included in our training process. The neural-
progenitor-like (NPC-like) and oligodendrocyte-progenitor-like (OPC-like) modules were combined into
one group, namely ’lineage development’, which includes a total of 124 genes. Further, gene modules
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regulating G1/S and G2/M phase transitions (N = 70 gens) were combined into a ’cell-cycle’ module.
Finally, the ‘mesenchymal-like’ (N = 92 genes) and ‘astrocyte-like’ (N = 39 genes) modules were
included as separate groups.

To assess spatial co-expression patterns, we determined the similarity of spatial prediction maps for
each pairwise combination of genes (N = 325 genes in total). This was accomplished by first flattening
the tile-level predictions into two 1D arrays and then computing the Pearson correlation between them.
This process was repeated in each slide, and the resulting correlation matrices were averaged across all
eighteen slides. The spatial correlation matrix was clustered using hierarchical clustering to reveal genes
that exhibit similar spatial expression patterns. We further assigned a color to each row and column in
the matrix indicating the meta-module each gene belongs to.

Code availability

Codes for data pre-processing, model training and evaluation were deposited into a public GitHub
repository (https://github.com/gevaertlab/sequoia-pub).

Data availability

Anonymized WSIs, gene expression and clinical data of the The Cancer Genome Atlas’
(TCGA) cohorts were retrieved from the publicly available Genomic Data Commons
(GDC) portal (https://portal.gdc.cancer. gov). Gene expression data of the Clinical Pro-
teomic Tumor Analysis Consortium (CPTAC) cohort were downloaded from GDC portal
(https://portal.gdc.cancer. gov) and WSIs were obtained from the Cancer Image Archive
with the accession URL (https://www.cancerimagingarchive.net/collections). Gene expres-
sion data and WSIs of the Tempus cohort were obtained through a data transfer
agreement with Tempus Labs, Inc. Publicly available gene expression data and WSIs of
The Genotype-Tissue Expression (GTEx) project were retrieved with the accession URL
(https://gtexportal.org). The publicly available spatial transcriptomics data of GBM were acquired
from Datadryad using the following accession URL (https://doi.org/10.5061/dryad.h70rxwdmj)
[22]. The RNA-seq data and clinical annotations of the SCANB cohort were obtained
from the accession URL (https://data.mendeley.com/datasets/yzxtxndnmd/3), and
data of the METABRIC cohort was obtained for cbioportal with accession URL
(https://www.cbioportal.org/study /summary?id=brca_metabric).
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Appendix A Supplementary tables and figures

Table A1: Number of genes, Whole Slide Images and unique number
of patients used from each cancer type in TCGA.

TCGA project number genes number WSIs number patients

TCGA-BRCA 25,761 1,053 993
TCGA-LUAD 25,812 536 473
TCGA-LUSC 26,443 510 476
TCGA-GBM 26,530 236 101
TCGA-PRAD 25,587 448 401
TCGA-PAAD 26,172 195 169
TCGA-KIRP 25,141 275 251
TCGA-KIRC 26,653 515 509
TCGA-COAD 23,645 450 442
total 4,218 3,815

Table A2: Number of genes, Whole Slide Images and unique number
of patients used from each cancer type in CPTAC.
CPTAC project number genes number WSIs number patients

CPTAC-BRCA 25,761 106 106
CPTAC-CCRCC 26,653 302 211
CPTAC-COAD 23,645 103 103
CPTAC-GBM 26,530 94 94
CPTAC-LUAD 25,812 222 222
CPTAC-LSCC 26,443 109 108
CPTAC-PDA 26,172 146 146
total 1,081 989

Table A3: Number of genes, Whole Slide Images and unique num-
ber of patients used from each cancer type in GTex.

GTex project number genes number WSIs number patients

GTex-Breast 19,198 440 440
GTex-Brain 19,198 238 238
GTex-Colon 19,198 405 405
GTex-Kidney 19,198 65 65
GTex-Lung 19,198 530 530
GTex-Pancreas 19,198 325 325
GTex-Prostate 19,198 239 239
total 2,242 861

Table A4: Number of genes significantly well predicted in the TCGA test sets.
N shows the total number of slides available for each cancer type.

he2rna_scratch  he2rna_pretrain  sequoia_scratch  sequoia_pretrain

BRCA (N = 1053) 1,672 4,117 14,915 13,798
LUAD (N = 536) 856 1,646 10,900 9,735
KIRC (N = 515) 115 1,531 11,505 10,922
LUSC (N = 510) 18 127

COAD (N = 450) 4,250 174

PRAD (N = 448) 1,187 3,060

KIRP (N = 275) 5,135 362

GBM (N = 236) 1,462 1,963

PAAD (N = 195) 670 280 757 1,737
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Table A5: Median correlation coefficient between prediction and
ground truth in TCGA test set for top 1000 genes within each model.
Top genes defined as genes with highest correlation coefficient for each

model type.
he2rna_scratch  he2rna_pretrain sequoia_pretrain
BRCA 0.143 [ 0.251

LUAD 0.107
KIRC 0.090
LUSC 0.089
COAD
PRAD
KIRP

GBM

PAAD

Table A6: Number of genes validated in the CPTAC cohort using the HE2RN A model
versus the SEQUOI A model.

Cancer Abbreviation he2rna_pretrain sequoia_pretrain
Breast invasive carcinoma BRCA 18 (0.4%) 10,082 (73%)
Lung adenocarcinoma LUAD 2 (0.1%) 4,060 (42%)

Lung squamous cell carcinoma LUSC (LSCC) 0 (0.0%) 3,030 (74%)

Colon adenocarcinoma COAD 0 (0.0%) 4,226 (49%)
Kidney renal papillary cell carcinoma KIRC (CCRCC) 3 (0.8%) 4,437 (41%)
Glioblastoma multiforme GBM 6 (0.3%) 1,517 (54%)
Pancreatic adenocarcinoma PAAD (PDA) 3 (1.1%) 743 (43%)

Table A7: Median Earth Mover’s Distance
between prediction and ground truth for top
500 genes from TCGA test set evaluated on dif-
ferent slides in spatial validation cohort.

slide ID median EMD  slide ID  median EMD

242 0.116 266 0.096
243 0.152 268 0.238
248 0.170 269 0.128
251 0.171 270 0.134
255 0.113 275 0.132
259 0.123 296 0.138
260 0.131 304 0.121
262 0.126 313 0.179
265 0.174 334 0.197

] train set (90%) + validation set (10%)  —— test set

patient 1 patient 2 patient N
o s | | N ——
oos [ ——
eds | ENRNGEEEEE—"

Fig. Al: Data splitting. First, five folds are made each of which consist of a ‘global’ train and test set.
The ‘global’ train set is further split into a train (90%) and validation (10%) set. In each fold ¢, validation
set ¢ is used to determine the optimal point to stop training model ¢, which is then evaluated on test
set i. Afterwards, predictions on patients from test sets ¢ (¢ = 1..5) are concatenated before calculating
performance measures (e.g. Pearson correlation between predicted gene expression and ground truth
expression across patients).
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- 10
sequoia_scratch-he2rna_scratch  [RelSeEs]

) - 0.8
sequoia_scratch-he2rna_pretrain  [RGES4 2 ) 0 1e-165 3e-89
sequoia_scratch-sequoia_pretrain 1e-92 - Be-87 3e-157 0.0009 4e-93 0.6
sequoia_pretrain-he2ma_scratch  [REIRel VRN T-Tu Esr Stk b 1] 0 2e-121 0 0 1e-126 0.4
sequoia_pretrain-he2rna_pretrain [l 4e-60 3e-288

0.2
sequoia_pretrain-sequoia_scratch 2e-60 4e-153
0.0

BRCA  COAD GEM KIRC KIRP LUAD LUSC PAAD PRAD

Fig. A2: Statistical comparison of distributions of correlation coefficient for top 1,000 genes
for each model. For each pairwise model comparison, the P value of the Mann-Whitney U test for
testing whether the distribution of the correlation coefficient for model z is larger than for model y,
formatted on the left axis as z-y. Mann-Whitney U test calculated with scipy.stats in python with
alternative=‘greater’.
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Fig. A3: Characterization of the well-predicted genes. a) Venn diagram showing the number
of well predicted genes in the estrogen-receptor (ER) positive and ER negative breast cancer. b) The
proportion of protein-coding genes, miRNAs and IncRNAs among the well predicted genes from each
cancer type. ¢) Circos plot showing the biological processes associated with the well predicted genes in
LUSC. d) Venn diagram showing the number of well predicted IncRNAs in each cancer type. Genes from
the two lung cancer subypes (LUAD and LUSC) were combined, and same for the two kidney cancer
subtypes (KIRC and KIRP). e) Circos plot showing the enriched biological processes associated with
the well predicated IncRNAs. f) Kaplan-Meier curves of recurrence-free survival in the METABRIC
validation dataset (n = 2,262 patients). Patients were split by the median risk score. HR: hazard ratio.
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