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Abstract 
 
The ability to predict HIV-1 resistance to broadly neutralizing antibodies (bnAbs) will 
increase bnAb therapeutic benefits. Machine learning is a powerful approach for such 
prediction. One challenge is that some HIV-1 subtypes in currently available training 
datasets are underrepresented, which likely affects models’ generalizability across 
subtypes. A second challenge is that combinations of bnAbs are required to avoid the 
inevitable resistance to a single bnAb, and computationally determining optimal 
combinations of bnAbs is an unsolved problem. Recently, machine learning models 
trained using resistance outcomes for multiple antibodies at once, a strategy called 
multi-task learning (MTL), have been shown to achieve better performance in several 
cases than previous approaches. We develop a new model and show that, beyond the 
boost in performance, MTL also helps address the previous two challenges. 
Specifically, we demonstrate empirically that MTL can mitigate bias from 
underrepresented subtypes, and that MTL allows the model to learn patterns of co-
resistance between antibodies, thus providing tools to predict antibodies’ epitopes and 
to potentially select optimal bnAb combinations. Our analyses, publicly available at 
https://github.com/iaime/LBUM, can be adapted to other infectious diseases that are 
treated with antibody therapy. 
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Introduction 
 
Broadly neutralizing antibodies (bnAbs) exhibiting exceptional breadth and potency 
have revived the hope for immunotherapy against HIV-1 (1). To neutralize most viruses 
and to prevent viral escape, bnAbs will likely be given in combinations. For example, 
one cocktail, made of 3BNC117 and 10-1074, has achieved viral suppression for 
roughly 20 weeks without antiretroviral therapy in 9 out of 11 individuals and 13 out 17 
individuals participating in two phase 1b clinical trials, respectively (2,3). Nonetheless, 
the general question of which bnAbs to administer together to achieve maximum 
efficacy is still outstanding. 
 
Given that bnAbs target HIV’s envelope glycoprotein (Env), neutralization assays are 
traditionally used to determine the breadth and potency of different bnAbs against 
panels of Env-pseudotyped viruses (4). For each pseudovirus, these experiments 
determine the bnAb concentration needed to reduce infectivity by 50% or 80% (i.e., IC50 

or IC80, respectively). These assays are expensive and slow. In particular, when the 
goal is to identify bnAbs that are likely to neutralize most viruses in a given population, 
there is the need for scalable computational methods to predict Env sequences’ 
sensitivity to bnAbs. 
 
Several machine learning (ML) models (5–12) to map Env sequences to bnAb 
susceptibility have been developed using neutralization data compiled in the web server 
CATNAP (13). The generalizability of these methods beyond the training data is 
unclear, as the training datasets have HIV-1 subtype compositions that are 
unrepresentative of large epidemics in sub-Saharan Africa (Fig S1) (14), where the two 
thirds of people living with HIV-1 worldwide reside (15). This is particularly worrying 
since susceptibility to bnAbs can be subtype-dependent (16). 
 
Some of the most recent ML models in predicting HIV-1 resistance to many bnAbs use 
multi-task learning (MTL) (9,12). The premise of MTL is that information from different 
but related tasks is beneficial to specific tasks of interest (17). In this context one model 
is trained using neutralization outcomes for multiple antibodies at once, as opposed to 
only considering one antibody per model. Here we show that, in addition to a boost in 
performance in some cases, MTL provides solutions, at least partially, to the challenges 
related to data imbalances and to the selection of optimal bnAb combinations. 
Specifically, we empirically show that: a) MTL can mitigate bias against 
underrepresented HIV-1 subtypes; b) MTL allows learning patterns of co-resistance 
between antibodies, thus providing tools to predict antibodies’ epitopes and to 
potentially select optimal bnAb combinations.  
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Results  

 

Model rationale 
 
A common modeling choice is to align Env sequences and treat a site in the alignment 
as a categorical variable (5–8,10,11). However, Env is highly variable, thus making 
multiple sequence alignment very challenging. Natural language processing (NLP) 
techniques offer alignment-free methods, which leverage the distributional hypothesis 
originating from linguistics (18). The hypothesis stipulates that similar words tend to 
occur in similar contexts. This allows language models trained on large corpora to learn 
semantically meaningful vector representations of words, called word embeddings. In 
the case of modeling protein sequences, each amino acid can be treated as a word 
whose embedding is learned based on its co-occurrences with other amino acids in 
many sequences. Importantly, the embeddings need not be fixed for each amino acid, 
but can rather vary depending on the rest of the sequence, resulting in contextualized 
embeddings. 
 
Using architectural details from (19), we trained a base Env language model to learn 
contextualized embeddings. This task consisted in predicting each amino acid in the 
sequence given the rest of the sequence. The average of these embeddings across all 
amino acids in a sequence can be understood as the overall vector representing the 
sequence. Such vectors can be used to explain variations between sequences (19). 
This phase of training the base model is what we call “pretraining,” which only requires 
Env sequences, without any neutralization data attached to them. In this work, we 
pretrained using 71390 Env sequences from the Los Alamos National Laboratory HIV 
Sequence Database (https://www.hiv.lanl.gov/). As many sequences without 
neutralization data are available, we hypothesized that pretraining would potentially 
improve the model’s generalizability, in addition to making the model learn alignment-
free sequence encodings.  
 
The second component of an input to a MTL model is the antibody of interest. Inspired 
by works in NLP (20–22), we represent each antibody by a unique vector. We call this 
vector an antibody context. Based on the distributional hypothesis, we reasoned that 
differences between learned antibody contexts would encode correlations between 
antibodies’ resistance profiles, thus offering insights into potential optimal bnAb 
combinations. For simplicity, we did not consider antibody sequences themselves, 
unlike in (12). Instead, antibody contexts were randomly initialized and tuned using 
neutralization data linking antibodies to Env sequences in the training data. The 
resulting MTL model is what we refer to as a language-based universal model (LBUM) 
(Fig 1). Further details of the model are given in Methods.  
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Fig 1. The architecture of a language-based universal model (LBUM).  
 
No single model dominates across all bnAbs 
 
We considered 33 bnAbs targeting five different epitopes: the membrane-proximal 
external region (MPER), the gp120-gp41 interface, the CD4 binding sites (CD4bs), the 
third constant region and the third variable loop (C3/V3), and the first and second 
variable loops (V1/V2) (16,23). The first two columns of Table 1 show the epitope that 
each of the 33 bnAbs targets. 
 
Our aim was not to simply develop models that predict HIV-1 resistance to the 33 
bnAbs; however, we still compared the LBUM to models developed with classical 
machine learning algorithms, namely random forests (RF) and gradient boosting 
machines (GBM). We caution against comparisons to previously published 
performances since CATNAP data has changed over time, and preprocessing and 
model-selection techniques vary across publications (24). 
 
We assessed models using three metrics: the area under the receiver operating 
characteristic curve (AUC), interpreted as the probability that a model ranks resistant 
sequences above sensitive ones; the area under the precision-recall curve (PR AUC), 
which measures how the model trades off precision for sensitivity, an important metric 
especially when resistance sequences are rare; and the binary cross-entropy (Log 
Loss), which measures the difference between predicted resistance probabilities and 
the ground truth. 
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The LBUM achieved higher AUC and higher PR AUC than both RF and GBM models 
did on the same 12 bnAbs out of the 33 bnAbs (Table 1, S1 Table). Notably, 6 of those 
12 bnAbs target the CD4bs. In terms of Log Loss, the LBUM scored better than both RF 
and GBM models did on 10 bnAbs, 4 of which target the CD4bs (S1 Table). 
Interestingly, the LBUM’s AUC and PR AUC on two of the 10 bnAbs (i.e., PGT135 and 
PGT128) was slightly lower than RF and GBM models’. Otherwise, for the remaining 8 
bnAbs, the lower LBUM’s Log Loss meant higher AUC and higher PR AUC than RF and 
GBM models’.  
 
Overall, there was no single model that consistently outperformed all other models 
across all bnAbs. Nevertheless, averaging predicted resistance probabilities from the 
three models—defining the ensemble model, ENS—mitigated underperformances from 
individual models. The ensemble model achieved the highest AUC on 24 bnAbs (Table 
1), the highest PR AUC on 21 bnAbs (S1 Table), and the lowest Log Loss on 22 bnAbs 
(S1 Table).  
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Table 1. Models’ AUC. Area under the receiver operating characteristic curve (AUC). 
GBM is Gradient Boosting Machines; RF is Random Forests; LBUM is language-based 
universal model; ENS is the ensemble model that averages predictions from GBM, RF 
and LBUM. The red shade means that LBUM had a better score than both RF and GBM 
models did. The blue shade means the ensemble model scored better than all three 
individual models did. Numbers between parentheses are standard deviations. 
 

 

Epitope BnAb GBM RF LBUM ENS 

CD4bs 

VRC07 0.78 (0.08) 0.85 (0.03) 0.93 (0.03) 0.94 (0.05) 

VRC01 0.86 (0.03) 0.89 (0.02) 0.91 (0.01) 0.93 (0.03) 

NIH45-46 0.84 (0.04) 0.84 (0.05) 0.91 (0.03) 0.93 (0.03) 

VRC-CH31 0.77 (0.06) 0.78 (0.07) 0.82 (0.10) 0.86 (0.06) 

VRC-PG04 0.80 (0.10) 0.82 (0.07) 0.85 (0.07) 0.89 (0.08) 

HJ16 0.53 (0.07) 0.53 (0.07) 0.63 (0.04) 0.62 (0.07) 

3BNC117 0.89 (0.04) 0.92 (0.04) 0.91 (0.02) 0.93 (0.03) 

VRC03 0.83 (0.03) 0.83 (0.01) 0.81 (0.05) 0.86 (0.02) 

VRC13 0.83 (0.01) 0.86 (0.03) 0.75 (0.07) 0.87 (0.02) 

b12 0.80 (0.04) 0.81 (0.03) 0.73 (0.05) 0.81 (0.03) 

C3/V3 

DH270.1 0.89 (0.03) 0.91 (0.05) 0.94 (0.02) 0.95 (0.01) 

VRC29.03 0.78 (0.10) 0.80 (0.07) 0.86 (0.06) 0.87 (0.07) 

DH270.5 0.92 (0.02) 0.93 (0.02) 0.93 (0.03) 0.96 (0.02) 

DH270.6 0.93 (0.05) 0.95 (0.03) 0.93 (0.03) 0.97 (0.02) 

PGT135 0.77 (0.05) 0.77 (0.06) 0.76 (0.04) 0.79 (0.04) 

PGT128 0.87 (0.04) 0.86 (0.02) 0.84 (0.03) 0.89 (0.02) 

2G12 0.91 (0.02) 0.90 (0.03) 0.85 (0.03) 0.90 (0.03) 

PGT121 0.91 (0.02) 0.91 (0.02) 0.84 (0.02) 0.93 (0.02) 

10-1074 0.97 (0.02) 0.97 (0.01) 0.88 (0.04) 0.98 (0.01) 

MPER 
4E10 0.60 (0.12) 0.63 (0.15) 0.73 (0.06) 0.72 (0.10) 

2F5 0.96 (0.03) 0.95 (0.03) 0.90 (0.03) 0.95 (0.03) 

gp120-gp41 

35O22 0.56 (0.13) 0.62 (0.08) 0.59 (0.06) 0.61 (0.10) 

VRC34.01 0.82 (0.03) 0.80 (0.07) 0.74 (0.06) 0.81 (0.04) 

PGT151 0.78 (0.06) 0.79 (0.04) 0.65 (0.07) 0.78 (0.05) 

8ANC195 0.88 (0.05) 0.86 (0.05) 0.63 (0.04) 0.88 (0.05) 

V1/V2 

VRC26.08 0.88 (0.02) 0.87 (0.02) 0.93 (0.03) 0.94 (0.02) 

VRC26.25 0.86 (0.03) 0.85 (0.03) 0.87 (0.06) 0.91 (0.02) 

PG16 0.82 (0.04) 0.83 (0.03) 0.84 (0.02) 0.85 (0.03) 

PG9 0.85 (0.03) 0.84 (0.02) 0.85 (0.03) 0.89 (0.03) 

CH01 0.79 (0.03) 0.79 (0.03) 0.76 (0.05) 0.82 (0.02) 

PGDM1400 0.90 (0.02) 0.89 (0.02) 0.90 (0.02) 0.94 (0.02) 

VRC38.01 0.69 (0.10) 0.66 (0.03) 0.66 (0.09) 0.71 (0.09) 

PGT145 0.85 (0.03) 0.85 (0.05) 0.79 (0.07) 0.87 (0.03) 
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Multi-task learning can mitigate HIV-1 subtype bias 
 
Publicly available training datasets are very imbalanced in terms of HIV-1 subtypes (Fig 
S1), which can compromise models’ generalizability to underrepresented subtypes, a 
problem we call “subtype bias” hereafter. The LBUM uses, in addition to the usual bnAb 
data, large numbers of Env sequences with no neutralization data, and also data from 
antibodies not deemed as bnAbs. We hypothesized that both of these data sources help 
to mitigate subtype bias, because they have more balanced availability across subtypes 
than bnAb data. To test the two aspects separately, one would ideally vary the 
composition of subtypes at different training stages. However, only subtype B and 
subtype C had sufficient data to run meaningful tests (Fig S1). In addition, data on 
bnAbs NIH45-46, VRC13, VRC07, and VRC26.08 was excluded from this analysis 
because it lacked enough subtype and phenotype diversity. 
 
To quantify the level of subtype bias, we trained two models, one with only subtype B 
data and one with only subtype C data. We then evaluated the models on the subtype B 
and subtype C bnAb testing sets separately. With the exception of gp120-gp41 bnAbs 
(n=4) and MPER bnAbs (n=2), the AUC was greater by roughly 0.3 on the matched 
subtype than on the unmatched (Fig 2A). The model trained on both subtypes did 
equally well at classifying both subtypes (Fig 2A). While experimental data from 
antibody neutralization assays was not available for all subtypes, there was sequence 
data for all subtypes. To test whether using the additional sequence data improved the 
generalizability of the models, we re-trained the subtype-specific model but included 
both subtypes in the initial pretraining step. Unfortunately, using the additional 
sequences improved the generalizability only minimally, if at all (Fig 2B).  
 
While neutralization data for bnAbs is limited, there is often data for other antibodies, 
which we label as “non-bnAbs”. We tested whether including this non-bnAb data in the 
training of the subtype-specific models improved their generalizability. Except on gp120-
gp41 bnAbs, these models showed much greater generalizability, with the difference in 
AUC between the two subtypes dropping to roughly 0.1 or less in many cases (Fig 2C).   
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Fig 2. Effect of subtype representativeness on AUC. We named models according to 
the subtype combinations contained in the pretraining data (shown as “Pretraining”), in 
data on non-bnAbs (shown as “non-bnAbs”), and in bnAb data (shown as “bnAbs”). 
AUC discrepancy means AUC on subtype B minus AUC on subtype C. (A) shows the 
bias introduced by only training on one subtype, and how that bias is eliminated by 
more subtype diversity. (B) shows that subtype representativeness in the pretraining 
data reduces subtype bias only to a small extent, if at all. (C) shows how subtype 
representativeness in non-bnAb data reduces subtype bias. Error bars represent the 
95% confidence intervals computed using 1000 bootstrap samples. 
 
PR AUC and Log Loss generally showed similar patterns of subtype bias to those seen 
for AUC (Fig S2 and Fig S3). That is, subtype representativeness in non-bnAb data 
improved PR AUC on the unmatched subtype (Fig S2C & Fig S3C), while pretraining 
with the subtype of interest had very minimal effects on subtype bias (Fig S2B & Fig 
S3B). The exceptions for gp120-gp41 and MPER bnAbs remained. We also note that 
Log Loss discrepancy did not change as much on C3/V3 bnAbs for some models, 
despite subtype representativeness in non-bnAb data (Fig S3C).  
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Do the learned antibody contexts encode co-resistance patterns? 
 
If learned antibody contexts encode co-resistance patterns, we would expect many 
bnAbs targeting similar epitopes to have similar contexts, given that bnAbs targeting 
similar epitopes tend to have similar resistance patterns (16). Clustering by epitope 
could be observed after projecting the dimensionality of the antibody contexts to a two-
dimensional space (Fig 3A-E). Without any further training we could predict bnAb 
epitopes solely based on the epitope targeted by the closest bnAb in that context space 
with at least 72% accuracy (Table 2).  We defined closeness between bnAbs in terms of 
cosine similarity, L1 distance and L2 distance between their context vectors. In at least 
85% of cases, at least one of the 5 closest bnAbs targeted the same epitope as the 
bnAb in question (Table 2), further suggesting that antibody contexts captured epitope-
specific resistance patterns. 
 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 30, 2023. ; https://doi.org/10.1101/2023.09.28.559724doi: bioRxiv preprint 

https://doi.org/10.1101/2023.09.28.559724
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 
Fig 3. Learned antibody contexts. Antibody contexts (i.e., vector representations of 
antibodies) learned as part of the attention mechanism. As a result of performing 5-fold 
cross-validation, 5 LBUMs were available, and antibody contexts from each of these are 
shown in one of the 5 subfigures. BnAbs are color-coded according to their epitopes. 
Arrows point to some bnAbs of interest; dashed-line circles show where one arrow 
points to two very close bnAbs. 
 
 
 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 30, 2023. ; https://doi.org/10.1101/2023.09.28.559724doi: bioRxiv preprint 

https://doi.org/10.1101/2023.09.28.559724
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

Table 2. Proportion of bnAbs whose epitope was targeted by at least one of the 
closest bnAbs. The numbers between parentheses are standard deviations, since 
there are 5 LBUMs that resulted from performing 5-fold cross-validation. 
 

Number of 
closest bnAbs 

considered 

Cosine similarity L1 distance L2 distance 

1 0.74 (0.06)  0.72 (0.04) 0.75 (0.05) 

2 0.82 (0.03)  0.79 (0.06) 0.79 (0.06) 

3 0.89 (0.04)  0.83 (0.06) 0.84 (0.03) 

4 0.94 (0.02) 0.84 (0.06) 0.84 (0.04) 

5 0.95 (0.02) 0.85 (0.05) 0.87 (0.05) 

 
 
Although bnAbs targeting similar epitopes generally tend to have similar resistance 
profiles, that is not always the case. Indeed, we observed outliers in epitope clusters 
(Fig 3). We therefore investigated whether such within-epitope dissimilarities imply 
different resistance patterns among bnAbs targeting similar epitopes. A known example 
of dissimilar patterns within the V1/V2 epitope was captured by learned bnAb contexts: 
VRC26.08 and VRC26.25 clustered away from the rest of V1/V2 bnAbs (Fig 3A,B,C,E). 
Contrary to the rest of V1/V2 bnAbs, the potency of CAP256-VRC26 bnAbs, which 
include the two bnAbs, is known to be inversely dependent on the presence of a glycan 
at the N160 position in Env (25). VRC38.01 was also another outlier in the V1/V2 cluster 
(Fig 3B,C&E). Unlike the other V1/V2 bnAbs, VRC38.01 has a unique binding mode that 
allows it to have non-protruding heavy-chain complementarity-determining region 3 
(HCDR3) (26). Furthermore, b12 and HJ16 clustered away from the rest of CD4bs 
bnAbs (Fig 3A-D). Unlike VRC01-like bnAbs, b12 does not mimic CD4 binding and 
binds Env in its relaxed conformation (27). On the other hand, HJ16 interferes with CD4 
by binding to a glycan at site N270 in Env. The mutation N270D, which removes the 
glycan, makes viruses resistant to HJ16, while making them more sensitive to other 
CD4bs bnAbs such as VRC01 and VRC03 (28). Another interesting dissimilarity was 
between 2F5 and 4E10, which target different MPER regions (29). Mutations with 
opposing effects on resistances to 2F5 versus 4E10 have been reported (16).  
 
Finally, we note that some bnAbs, such as 2F5 and b12 (Fig 3B&C), appeared to have 
similar bnAb contexts despite targeting different epitopes. Whether such cases imply 
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cross-epitope resistance correlation is an interesting question, which we leave for future 
work.  
 

Discussion 
 
In summary, we developed a model to predict the neutralization of different HIV-1 Env 
sequences by different broadly neutralizing antibodies (bnAbs). Our model, which we 
named a language-based universal model (LBUM), is a type of multi-task learning 
(MTL) model. The LBUM was pretrained using Env sequences with no associated 
neutralization data and fine-tuned with Env sequences with both non-bnAb and bnAb 
outcome data. We first showed that the LBUM’s performance is comparable to that of 
Gradient Boosting Machine (GBM) models and Random Forest (RF) models, with some 
improvements over both methods (Table 1, S1 Table). Unlike the other two methods, 
the LBUM does not require aligning input Env sequences, which is an advantage given 
the incredible variability of Env, including structural variability that makes alignment 
challenging. As for previous methods, all models in this work were trained to predict in 
vitro bnAb resistance: we did not validate them with clinical outcomes, and we relied on 
data showing correlations between in vitro susceptibility to bnAbs and in vivo outcomes 
(30).  
 
A thorough systematic comparison between published methods requires testing 
different combinations of preprocessing techniques, feature selection methods and 
learning algorithms. In this work, we only compared learning algorithms applied on full 
Env sequences with neutralization data preprocessed similarly. We compared the 
LBUM to both RF and GBM models because both boosting trees and RF underlie 
recently published methods that do not use neural networks (5,7).  
 
The most common subtypes in sub-Saharan Africa are A, C, D and several circulating 
recombinant forms (CRFs) (14). CATNAP, from which most of the training datasets 
come, has mostly subtype B and subtype C sequences (Fig S1). This subtype mismatch 
is problematic because, as we have shown, models do not necessarily generalize 
across subtypes (Fig 2A, Fig S2A, Fig S3A). MTL and pretraining give access to more 
data with potentially more subtype representativeness. Although no solution trumps 
having all subtypes represented in bnAb data, our results suggest that MTL can 
alleviate subtype bias if neutralization data with all subtypes is available for antibodies 
not considered bnAbs (Fig 2B, Fig S2B, Fig S3B). 
 
We introduced the concept of antibody contexts, which we defined as vector 
representations unique to each antibody and updated during the fine-tuning process. 
We showed that bnAbs targeting similar epitopes tended to have similar contexts, to 
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such an extent that we could use closeness between antibody contexts to predict 
antibody epitopes (Table 2). In this regard, our methods can be used to generate 
hypotheses about epitopes targeted by new antibodies, as long as relevant 
neutralization data is part of the LBUM’s training data. Nonetheless, some bnAbs had 
distant contexts despite targeting similar epitopes (Fig 3), and we highlighted known 
mechanistic reasons that support our hypothesis that differences in antibody contexts 
capture differences in resistance profiles. A possible limitation is that negatively 
correlated resistance profiles can possibly lead to similar bnAb contexts, the same way 
antonyms can have similar word embeddings in the English language (31). 
Nonetheless, we assumed that such cases were rare if present at all, given that most 
bnAb contexts tended to cluster per epitope. Analyses of structural data on antibodies 
and their respective targets on Env will help further show the extent to which antibody 
contexts capture co-resistance patterns. 
 
An interesting extension of our methods could be to pretrain using generic protein 
language models, such as those in the BERT and ESM families (32,33). We expect 
MTL models’ performance to increase as their size increases along with the increase in 
the quantity and diversity of their training data. We chose small architectures because of 
computational requirements imposed by deep neural network models and because of 
the availability of only small amounts of data on which to fine-tune. 
 
The potential of MTL revealed in our study addresses key challenges in HIV-1 vaccine 
research. All models developed in this work, along with the used code, can be found at 
https://github.com/iaime/LBUM. The framework presented here is a starting point 
towards designing effective immunotherapies. We hope that our analyses can be 
relevant to other infectious diseases for which monoclonal antibodies are being 
explored as therapeutic solutions. 
 

Materials and methods 
 
Data preprocessing 
 
We binarized the neutralization outcome—resistant or sensitive—i.e., we aimed to 
predict whether positive neutralization is observed within a certain range of antibody 
concentrations. This is because the main use-case envisioned for our models is the 
identification of bnAbs that are likely to neutralize most viruses in given populations. 
Once bnAbs with largest coverage are identified, other methods will need to be used to 
determine the bnAbs’ exact potencies. 
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We determined the phenotype based on IC50 because this was more commonly 
available than IC80 for Env sequences in CATNAP. We transformed left-censored IC50 
values to the detection threshold. That is, <x values became x. Since CATNAP Env 
sequences could have multiple IC50 values from different studies, we calculated the 
geometric mean whenever more than one value was available, as long as none of the 
values was right-censored. If any reported IC50 value for a sequence-antibody pair was 
right-censored, the sequence was deemed resistant to the antibody, unless the 
detection threshold was lower than 10 µg/mL, in which case the sequence-antibody 
entry was discarded. If no right-censored IC50 values were recorded for the sequence-
antibody entry and if the geometric mean IC50 was greater than 50 µg/mL, the sequence 
was also labeled as resistant to the antibody. Otherwise, the sequence was labeled as 
sensitive to that antibody (i.e., sensitive sequences had no right-censored IC50 values 
and the geometric mean IC50 was less than 50 µg/mL).  
 
In all our experiments, we only considered sequences that are 800 to 900 amino acid 
long (ignoring non-amino-acid characters) to match the expected length of a full Env 
sequence. Part of our analysis compared our model to random forests (RF) and 
gradient boosting machines (GBM) models. Since RF and GBM models required 
aligned sequences, we used the alignment provided in CATNAP to one-hot encode 
sequences. That is, each amino acid was represented as a vector of all zeros except a 
1 at the index of that amino acid. For non-amino acid characters, the vector was all 
zeros. The LBUM did not require aligning sequences, and all non-amino acid characters 
were removed from their input sequences.  
 
Gradient Boosting Machines and Random Forests 
 
Both GBM and RF build ensemble models based on decision trees. For complete 
mathematical descriptions of GBM and RF, we refer to (34) and (35), respectively. 5-
fold nested cross-validation was used to select and evaluate both types of models. Log 
Loss was used to select the best classifiers. Table 3 provides all hyperparameters 
considered. Both GBM and RF models were implemented using scikit-learn (v1.1.1) 
(36). 
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Table 3. Hyperparameters considered in the development of different models 
 

Model type Hyperparameters 

Random Forests max depth: 1, 2, 3, 4, 5 
max features: 0.03, 0.1, 0.2, 0.3, 0.5 
number of trees: 10, 50, 100, 500, 1000 
calibration method: “sigmoid”, “isotonic” 

Gradient Boosting Machines learning rate: 0.001, 0.01, 0.05, 0.1, 0.2  
max features: 0.03, 0.1, 0.2, 0.3, 0.5  
max depth: 1, 2, 3, 4, 5  
number of trees: 10, 50, 100, 500, 1000 
calibration method: “sigmoid”, “isotonic” 

Language-based universal 
model 

learning rate: 0.0001, 0.0003, 0.001, 0.003 
antibody context dimension: 32, 64, 128, 256 
dropout rate: 0.1, 0.2, 0.3, 0.4, 0.5 
number of pretrained layers to unfreeze: 0, 2, 4, all 
classification loss weight: 0.5, 0.6, 0.7, 0.8, 0.9, 1 

 
Language-based universal model (LBUM) 
 
The overall architecture of the proposed LBUM is illustrated in Fig 1 and rationalized in 
the Results section. There were two main steps in the development of the LBUM, 
namely pretraining and fine-tuning. First, we pretrained the model using the same 
architectural and training details as Hie et al’s method (19). Essentially, the method was 
a two-layer bidirectional Long Short-Term Memory (LSTM) model (37). Next, we fine-
tuned the LBUM using data on 378 antibodies in addition to the 33 bnAbs of interest. 
During fine-tuning, we froze all pretrained layers except the last right and left LSTM 
layers, and we applied early stopping with a 10-epoch patience.  
 
As a regularization technique, we added a secondary output layer in the LBUM that 
directly predicts log10(IC50). However, sequence-antibody pairs with IC50 beyond the 
detection threshold (i.e., right-censored IC50) did not contribute towards the training of 
the regression branch. A question not addressed here is how to incorporate censored 
data into the training data of models that predict IC50. For now, we recommend against 
making predictions with the regression branch of the trained model, as it cannot be 
relied on given its biased training data. The LBUM’s overall loss function was simply the 
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weighted average of binary cross-entropy and mean squared error, with weights of 0.6 
and 0.4, respectively. 
 
The dimension of antibody context vectors was set to 128. These vectors were fine-
tuned through an attention mechanism that was a combination of at least three methods 
(20–22). To visualize the antibody contexts in Fig 3, we used the Uniform Manifold 
Approximation and Projection algorithm (UMAP) (38). Below we detail the attention 
layer. 
 
Let �� be the context of an antibody �. Let �� be the embedding of a token � in a 

sequence � of length �. The attention weight �� to the token � given the antibody � 

context was calculated as follows: 
 

	�  
  �����
 ��  � �� 

 �� 
 	�  ·  ��  

��  
  
���

∑ ����
���

 

 
where 
 and � are weight matrix and bias vector, respectively, and ���� is the 
hyperbolic tangent used as an activation function. We note that ∑ ��

�
��� 
  1 for each 

sequence. The weighted average embedding � 
  ∑ ��
�
��� � �� was then input to a 

dense output layer. We added two dropout layers at a 10% rate, one before the 
attention layer and another before the final dense layer. We also used temperature 
scaling as the calibration method (39). Each antibody had its own temperature value 
initialized to 1.5 and optimized during the fine-tuning process. At inference time, we 
averaged predictions from running 10 forward passes with dropout turned on.  
 
The LBUM hyperparameters were tuned on non-bnAb data to avoid data leakage. Using 
Bayesian optimization implemented in KeraTuner (40), we tuned the learning rate for 
the fine-tuning phase, the dimension of antibody context vectors, the dropout rate, the 
number of pretrained layers to unfreeze during fine-tuning, and the weights for the 
classification and regression output branches of the LBUM. Considered values for these 
hyperparameters are shown in Table 3. Values that achieved the lowest binary cross-
entropy within 10 trials were chosen for the final model. All the other hyperparameters of 
the LBUM were set to default values in Tensorflow Keras (v2.12.0). 
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