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Abstract 29 

 30 

The human brain undergoes protracted post-natal maturation, guided by dynamic changes in 31 

gene expression. To date, studies exploring these processes have used bulk tissue analyses, 32 

which mask cell type-specific gene expression dynamics. Here, using single nucleus (sn)RNA-33 

seq on temporal lobe tissue, including samples of African ancestry, we build a joint paediatric 34 

and adult atlas of 54 cell subtypes, which we verify with spatial transcriptomics. We explore 35 

the differences in cell states between paediatric and adult cell types, revealing the genes and 36 

pathways that change during brain maturation. Our results highlight excitatory neuron 37 

subtypes, including the LTK and FREM subtypes, that show elevated expression of genes 38 

associated with cognition and synaptic plasticity in paediatric tissue. The new resources we 39 

present here improve our understanding of the brain during a critical period of its 40 

development and contribute to global efforts to build an inclusive cell map of the brain. 41 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 29, 2023. ; https://doi.org/10.1101/2023.09.29.560114doi: bioRxiv preprint 

https://doi.org/10.1101/2023.09.29.560114
http://creativecommons.org/licenses/by-nc-nd/4.0/


Introduction 42 

 43 

The adult human brain is a complex assembly of diverse cell types, which has now been 44 

defined with unprecedented accuracy using single cell transcriptomics1-4. This adult 45 

transcriptomic signature is set up over a protracted period of development, which begins in 46 

the embryo and continues after birth as the brain matures. However, while the single cell 47 

diversity of the embryonic human brain has been explored5,6, little is known about how these 48 

cell type-specific gene expression profiles change during childhood. Existing studies of gene 49 

expression dynamics during human brain development and maturation have used bulk 50 

transcriptomic approaches, which revealed a dramatic period of global gene expression 51 

change during the late foetal/early infancy transition, that stabilises during childhood and 52 

adolescence6-10. Bulk transcriptomics, however, cannot reveal the more subtle, cell type-53 

specific changes in gene expression that drive brain maturation from childhood, through 54 

adolescence to adulthood. 55 

Childhood and adolescence are periods of important changes in brain structure, during which 56 

neuronal connections are refined and strengthened. While synaptogenesis peaks in the early 57 

postnatal period, synaptic pruning activity begins during late childhood, peaks during 58 

adolescence, and then gradually decreases11-13. Together, synaptogenesis and synaptic 59 

pruning influence brain plasticity, a feature which allows the brain to adapt in response to 60 

experience14. Considering synaptic changes are most prominent in infancy, childhood and 61 

adolescence, these stages represent periods of enhanced susceptibility to environmental 62 

influence, as well as being periods of increased neuropsychiatric risk15. Describing the typical 63 

cell type-specific gene expression trajectories of the maturing brain will serve as an important 64 

reference to assess the effects of genetic perturbations and early adverse experiences on 65 

brain maturation. Furthermore, investigating the driving forces behind cell type-specific 66 

maturational processes may help in developing targeted therapies for neurological disease16.  67 

To this end, the Paediatric Cell Atlas (PCA)17, a branch of the Human Cell Atlas (HCA) efforts 68 

to map the cellular diversity of the human body3, aims to ensure that the benefits of single 69 

cell transcriptomics, which will likely include vast improvements in precision medicine, are 70 

available to children as well as adults from diverse populations3,17. Considering that Africa has 71 

the most genetically diverse18 and youngest population19 worldwide and that, by 2050, 37% 72 

of the world9s children will grow up in Africa20, the inclusion of the African paediatric 73 

population in the PCA9s efforts has never been more pertinent. A reference paediatric cell 74 

atlas for the brain that includes data from African donors will contribute to developing the 75 

best treatment for locally prevalent conditions, such as tuberculosis meningitis and HIV 76 

infection21,22. In addition, studying the differences in gene expression dynamics between 77 

adult and paediatric brains may explain why the manifestation of neurological conditions and 78 

responses to therapies differ across the lifespan17.  79 
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To contribute to these endeavours, we present a joint paediatric and adult temporal cortex 80 

cell atlas, including samples from eight South African donors.  To facilitate a direct comparison 81 

of our snRNA-seq datasets with the existing adult temporal cortex cell atlas, we annotate our 82 

data using the Allen Brain Map middle temporal gyrus (MTG) cell taxonomy1. We validate this 83 

annotation approach using spatial transcriptomics analysis. In addition, we use de novo 84 

marker gene analysis with machine learning tools to compare our paediatric and adult 85 

datasets to the existing MTG cell taxonomy and highlight markers that define paediatric 86 

versus adult cell states. Using differential gene expression analysis, we highlight six cell 87 

subtypes, including two layer 2/3 excitatory neuron subtypes, that show differential 88 

expression of genes involved in synaptic plasticity and cognition. Overall, we highlight the 89 

subtle cell type-specific differences between the paediatric and adult brain and expand the 90 

representation of diverse paediatric populations in the HCA.  91 

 92 

Results 93 

 94 

A joint paediatric and adult temporal cortex cell atlas 95 

 96 

We generated snRNA-seq libraries from five paediatric and three adult donor temporal cortex 97 

tissue samples using the 10x Genomics Chromium platform. These new libraries were 98 

analysed alongside similar published datasets from one paediatric and three adult donors23, 99 

resulting in a total of 23 snRNA-seq datasets (including technical replicates) from 12 100 

individuals (six paediatric and six adult) (Fig. 1a, Extended Data Table 1). The samples were 101 

sequenced to a median depth of 19,853 reads per nucleus, with 176,012 nuclei remaining 102 

after filtering low quality barcodes (Methods) (Extended data Fig. 1, Extended Data Table 2).  103 

 104 

Using data integration and clustering (Methods), we aligned similar cell types across the 23 105 

datasets (Fig. 1a, Extended data Fig. 1h), yielding 40 clusters (Extended data Fig. 1i). To 106 

facilitate a direct comparison between our datasets and the current draft human brain cell 107 

atlas, we used Seurat9s label transfer method24 to classify each nucleus according to the Allen 108 

Brain Map MTG atlas1 (Fig. 1b; Extended Data Table 3). Of the 75 reference cell types, 21 109 

neuronal subtypes were absent from our datasets (Extended Data Table 3). The majority of 110 

the absent neuronal cell types are rare (<2% of all cells; see Extended Data Table 3), and 111 

therefore their absence is likely due to the lower proportion of neurons in our datasets 112 

compared to the reference atlas, which was made using cell-sorting to enrich for neurons1.  113 

 114 

As an initial validation of the label transfer, we confirmed that the majority of annotated cell 115 

types expressed the expected cell type-specific marker genes1 (Fig. 1c). Additionally, we 116 

performed a correlation analysis to compare the transcriptomic similarity of the annotated 117 

cell types to the reference MTG cell types1 (Fig. 1d). The non-neuronal cell types showed high 118 

correlation with the corresponding reference cell types, as well as high specificity (Fig. 1d). 119 
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Similarly, most neuronal subtypes showed high correlation with the corresponding subtype 120 

in the reference datasets, however, there was also correlation with other subtypes within 121 

their class. Exceptions were Exc_L4-6_FEZF2_IL26, which expressed the excitatory neuron 122 

marker gene FEZF2 but correlated more strongly with microglia, and Exc_L5-123 

6_THEMIS_FGF10, which expressed the inhibitory marker LHX6 and correlated more strongly 124 

with the inhibitory neuron subtypes (Fig. 1c-d). The overall cell composition of the paediatric 125 

and adult samples was very similar. Oligodendrocytes and oligodendrocyte precursor cells 126 

(OPCs) were the most common non-neuronal cell types and Exc_L2_LAMP5_LTK was the most 127 

common neuronal cell subtype (Fig. 1e; Extended data Figure 2a-c).  128 

 129 

Neuronal clusters had a greater number of expressed genes and unique molecular identifiers 130 

(UMIs) compared to non-neuronal cells (Extended data Figure 3a). Similar to previous snRNA-131 

seq analyses of the adult brain1,2, excitatory neurons had a greater number of genes detected 132 

per nucleus than inhibitory neurons, with Exc_L2-3_LINC00507_FREM3 and Exc_L4-133 

5_RORB_FOLH1B among the cell types with the highest median gene deteckon. When 134 

comparing the paediatric to adult samples, only two cell subtypes showed significant 135 

differences in the number of genes (Exc_L2_LAMP5_LTK and Exc_L3-5_RORB_FILIP1L) and 136 

UMIs (Exc_L2_LAMP5_LTK and Exc_L2-3_LINC00507_FREM3) between the age categories, 137 

with the paediatric samples having a significantly larger value in each case (Extended data 138 

Figure 3b-c). This result points towards higher transcriptional diversity in these neuronal 139 

subtypes during childhood. 140 

 141 

 142 

Spatial mapping of cell types reveals similar tissue cytoarchitecture in adult and paediatric 143 

temporal cortex 144 

 145 

Next, we used spatial transcriptomics to verify the positions of our annotated cell types within 146 

the layered structure of the temporal cortex. We generated 10x Genomics Visium Spatial 147 

Gene Expression datasets for frozen tissue sections from adult (31-year-old) and paediatric 148 

(15-year-old) temporal cortex samples (two sections each; Extended Data Table 1; Extended 149 

data Fig. 4). The four Visium libraries were sequenced to a median depth of 87,178 reads per 150 

spot (median of 5,878 UMIs and 2,745 genes per spot) (Extended Data Table 4).  151 

 152 

Using cell2location25 (Methods), we calculated cell type abundance estimates for each Visium 153 

spot, with our annotated snRNA-seq dataset as a reference. As seen in our snRNA-seq 154 

datasets, oligodendrocytes were the most common cell type, while Exc_L2_LAMP5_LTK was 155 

the most abundant neuronal cell type (Extended data Fig. 5a). Spatial plots of estimated cell 156 

abundance for a selection of cell types revealed that the annotated cell types mapped to their 157 

expected cortical layer locations across all tissue sections (Fig. 2a-b; Extended data Fig. 5b-c). 158 

The two cell types that did not correlate strongly with the expected MTG reference atlas cell 159 

types in our snRNA-seq analysis, Exc_L4-6_FEZF2_IL26 and Exc_L5-6_THEMIS_FGF10, were 160 
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most strongly distributed in layers 4-6, providing support for their annotation (Extended data 161 

Fig. 5d).  The layered pattern of the annotated cell types coincided with the spatial expression 162 

of known cortical layer marker genes1,26,27 in the Visium datasets (Fig. 2c). These layered 163 

expression patterns were verified for a subset of layer-specific marker genes using in situ 164 

hybridisation analysis on frozen temporal cortex tissue sections from the same 31-year-old 165 

and 15-year-old donors (Extended data Fig. 6).  166 

To confirm the co-location of cell types within the layered structure of the temporal cortex, 167 

non-negative matrix factorization (NMF) was performed using the cell abundance estimates 168 

from cell2location, resulting in 12 cellular compartments (Fig. 2d). The NMF weights for the 169 

identified cellular compartments were visualised across the Visium samples to assess their 170 

spatial distribution (Fig. 2e). In both the paediatric and adult datasets, there was clear co-171 

location of the expected neuronal cell types within overlapping compartments across the 172 

cortical layers, including layers 1-3 (factor_9), layers 3-5 (factor_3) and layers 4-6 (factor_7). 173 

Several excitatory neuron subtypes formed discreet cellular compartments, including Exc_L2-174 

3_LINC00507_FREM (factor_4), Exc_L5-6_THEMIS_CRABP1 (factor_11) and Exc_L5-175 

6_FEZF2_ABO (factor_6). The two astrocyte subtypes were confirmed to have distinct 176 

distributions profiles, with Astro_L1-2_FGFR3_GFAP (factor_5) located primarily in layer 1 177 

and the white matter, and Astro_L1-6_FGFR3_SLC14A1 (factor_8) more widely distributed.  178 

The remaining non-neuronal cell types were largely associated with factors located in layer 1 179 

and the white matter.  180 

Overall, our spatial transcriptomic analyses provide support for our annotation approach, 181 

showing the expected spatial distribution of annotated cell types, and revealing a similar 182 

tissue cytoarchitecture in adult and paediatric temporal cortex tissue.  183 

 184 

A machine learning approach identifies gene pathways that distinguish paediatric and adult 185 

cell states 186 

 187 

To establish a standardized and scalable approach for defining cell types, it has been proposed 188 

to use the minimum combination of gene markers that can classify a cell type and distinguish 189 

it from other cell types28,29. Towards achieving this, Aevermann et al. (2021)28 developed the 190 

machine learning tool, NS-Forest V2.0, which they applied to the Allen Brain Map MTG 191 

dataset. Ideally, theses MTG minimal markers would be conserved in similar datasets to 192 

facilitate accurate comparisons across different studies30. We found that the MTG cell atlas 193 

minimal markers28 are indeed highly expressed in the expected cell types (Extended data Fig. 194 

7).  195 

 196 

Next, we applied the NS-Forest V2.028 algorithm to our datasets, firstly, to assess if the 197 

identified minimal markers overlap with the published MTG minimal markers and, secondly, 198 
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to identify combinations of marker genes that distinguish the paediatric and adults states of 199 

each cell type (Methods). 151 paediatric and 149 adult minimal marker genes were identified 200 

across 53 cell types (Fig. 3; Extended data Table 5). There was little overlap with the MTG 201 

atlas, with only 11 paediatric (7.3%) and 4 adult (2.7%) minimal markers showing overlap with 202 

existing datasets1,28 (Fig. 3; Extended data Table 5). On the other hand, there was a greater 203 

overlap in minimal markers between the paediatric and adult datasets, with 35 markers 204 

(~23%) present in both lists. 205 

 206 

Our minimal marker analysis revealed improved markers for several cell types when 207 

compared to the reference MTG cell atlas. DDR2 shows high specificity for Inh_L1-208 

2_PAX6_CDH12 (Fig. 3; Extended data Fig. 8a), while the existing minimal marker for this cell 209 

type, TGFBR2, is more highly expressed in the microglia and endothelial cells (Extended data 210 

Fig. 7; Extended data Fig. 8b). Similarly, SEMA3E is very specific to Exc_L5-6_FEZF2_ABO (Fig. 211 

3; Extended data Fig. 8c), while an existing minimal marker for this cell type, SULF1, is also 212 

expressed at appreciable levels in other neurons (Extended data Fig. 7; Extended data Fig. 213 

8d).  Additionally, UMAP analysis of the annotated datasets using our minimal marker gene 214 

list for each age group, in comparison to an equivalent number of random genes, resulted in 215 

better grouping of the cell subtypes into clusters (Fig. 4 a-b). While the cell clusters are not as 216 

clearly separated as the original UMAP plot, (see Fig. 1a), this analysis reveals that our short 217 

list of ~150 marker genes captures much of the underlying transcriptomic diversity in our 218 

datasets.  219 

 220 

To explore the cellular functions of the paediatric and adult minimal marker genes 221 

respectively, we used Gene ontology (GO) analysis (Extended Data Table 6), which revealed 222 

significant enrichment of GO terms related to neuronal development and cell signalling for 223 

both datasets. Interestingly, only the paediatric dataset was enriched for cellular migration 224 

terms (Extended Data Table 6). Genes included in these sets were RELN, CXCL14 and SEMA3A, 225 

which play roles in neuronal migration during brain development31-33. On the other hand, only 226 

the adult datasets were enriched for extracellular matrix and cell death terms (Extended Data 227 

Table 6). These broad analyses of minimal marker gene function indicate that genes involved 228 

in neuronal development pathways remain key to neuronal identity, alongside functional 229 

signalling molecules, as the brain matures and in adult life. Our results also suggest that genes 230 

involved in cellular migration processes may continue to define cell states during childhood 231 

and adolescence. 232 

 233 

To further assess the difference in cell type-specific markers between our paediatric and adult 234 

datasets, we expanded our analysis to include the top 50 genes identified as cell type 235 

classification features for each cell type. For most cell types, the majority of these top markers 236 

(>20 genes) were shared between our paediatric and adult datasets (Fig. 4c; Extended Data 237 

Tables 7-8). The non-neuronal cell types showed the highest number of shared marker genes 238 

(g40). GO analysis of these shared marker genes showed significant enrichment of terms 239 
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related to cell type-specific functions, such as <leukocyte proliferation= for microglia, and 240 

<myelin sheath= for oligodendrocytes (Extended Data Table 6). These results suggest that 241 

paediatric and adult non-neuronal cell states are relatively similar, although it is likely that 242 

more diversity in the marker gene profiles could be revealed with subdivision of the cells into 243 

further subtypes. 244 

 245 

The cell types with the fewest shared markers between our paediatric and adult datasets 246 

(f10) were mostly represented by fewer than 20 nuclei and therefore the lack of marker 247 

overlap between our datasets is possibly due to sampling bias (Extended Data Table 6). An 248 

exception was Exc_L4-6_FEZF2_IL26, represented by 2,579 nuclei, which had no shared 249 

genes, two adult-specific genes (SNAP25 and CALM1) and four paediatric-specific genes 250 

(MEF2A, MEF2C, DOCK4 and PLXDC2) (Fig. 4c; Extended Data Tables 7-8). Interestingly, the 251 

paediatric-specific markers for this cell type are implicated in neuronal development 252 

processes, including synaptic plasticity34, dendritic branching35 and neuronal proliferation36. 253 

The cell type with the greatest number of paediatric-specific marker genes was Exc_L4-254 

5_RORB_DAPK2 (29 paediatric vs 3 adult markers) (Fig. 4c; Extended Data Tables 7-8). GO 255 

analysis of the 29 paediatric-specific marker genes for this cell type revealed enriched terms 256 

related to synapse development, while similar analysis of the 19 shared genes together with 257 

the three adult-specific genes highlighted terms involved in synaptic function (Extended Data 258 

Table 6). 259 

 260 

Overall, our expanded marker gene analysis suggests that neuronal cell types show greater 261 

dissimilarity between their paediatric and adult states than non-neuronal cells, and reveals 262 

several paediatric-specific markers that reflect the less mature state of paediatric neuron 263 

subtypes.  264 

 265 

 266 

Differential gene expression analysis highlights six cell subtypes and enriched expression of 267 

genes associated with synaptogenesis and cognition in paediatric samples. 268 

 269 

While our minimal marker gene analysis provides insight into the genetic signatures that 270 

distinguish cell types from one another over the course of brain maturation, we were also 271 

interested in investigating how the general transcriptomic profile of each cell type differs in 272 

children when compared to adults. In particular, we sought to identify genes that were 273 

upregulated in the paediatric cell populations and thus might be involved in childhood brain 274 

development and function.  To this end, we conducted cell type-specific differential gene 275 

expression analysis with DESeq237 (Methods).  276 

 277 

In total, we detected 166 unique significantly differentially expressed genes (DEGs) across 12 278 

out of the 54 annotated cell types, with some DEGs associated with multiple cell types (Fig. 279 

5a; Extended data Table 9).  When the magnitude of fold change of the DEGs was considered, 280 
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143 genes across six cell types changed by at least 10%, with a positive fold change indicating 281 

higher expression in our paediatric samples (Fig. 5b-c). The six cell types included four 282 

excitatory neuron subtypes, one inhibitory subtype and one astrocyte subtype (Fig. 5b-c; 283 

Extended data Table 10). For the majority of DEGs, the change in expression was accompanied 284 

by a corresponding change in the percentage of nuclei expressing the gene (Extended data 285 

Table 10). We assessed the expression patterns of a subset of DEGs in our Visium datasets 286 

using BayesSpace38 (Methods), confirming that the genes were expressed at higher levels and 287 

in a greater number of spots in the 15-year-old compared to the 31-year-old (Extended data 288 

Fig. 9).  289 

 290 

The layer 2/3 excitatory neuron subtypes, Exc_L2_LAMP5_LTK and Exc_L2-291 

3_LINC00507_FREM3, shared several upregulated DEGs that are developmentally regulated 292 

in the mammalian brain (Fig. 5c-d). FNBP1L (TOCA-1) regulates neurite outgrowth39 and is 293 

associated with intelligence40. In line with our findings, its expression declines over the course 294 

of brain maturation in the rat39. Similarly, both KCNG1, a voltage gated-potassium channel 295 

(Kv6.1), and MYO16 (MYR8), an unconventional myosin protein, decrease in expression with 296 

age in the mouse41 and rat42 brain, respectively. These findings indicate that previously 297 

reported expression dynamics for these genes in mammalian models are conserved in the 298 

human temporal cortex, with higher expression in children. Importantly, our analysis reveals 299 

that these patterns are specific to two layer 2/3 excitatory neuron subtypes. 300 

 301 

Two significantly upregulated genes in the layer 2/3 excitatory neurons, LUZP2 and RERGL 302 

(Fig. 5c-d), are associated with neuropsychiatric disorders, as well as brain cancers. LUZP2, a 303 

leucine zipper protein, is associated with Alzheimer9s Disease and schizophrenia, as well as 304 

cognitive performance in the normal elderly population43. It is differentially expressed in 305 

several cancers, including low grade gliomas44. Similarly, RERGL is differentially expressed in 306 

schizophrenia45, while its expression is significantly higher in meningiomas compared to 307 

healthy tissue46. Our results suggest that these genes likely play a role in the maturation of 308 

layer 2/3 excitatory neurons. 309 

 310 

The layer 3-5 excitatory neuron subtypes, Exc_L3-5_RORB_ESR1 and Exc_L4-5_RORB_DAPK2, 311 

shared 3 upregulated DEGs, which have known roles in the development and reorganisation 312 

of neuronal connections (Fig. 5c,e). XKR4 is a member of a plasma membrane protein family 313 

involved in signalling cellular compartments for engulfment, such as during synaptic 314 

pruning47. These proteins decrease in expression with age in the mouse brain48. TENM1, is a 315 

member of the teneurin transmembrane protein family that regulate cytoskeletal 316 

organisation and neurite outgrowth, as well as shaping synaptic connections49-51. AGBL1 317 

(CCP4) is a glutamate decarboxylase that mediates deglutamylation of tubulin52. This process 318 

is essential for the maintenance of neuronal tubulin, and when disrupted, contributes to 319 

neurodegeneration52,53. Our results point towards a role for these genes specifically in Exc_L3-320 
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5_RORB_ESR1 and Exc_L4-5_RORB_DAPK2 neurons, where they possibly contribute to the 321 

re-shaping of neuronal connections during brain maturation.  322 

 323 

The majority of the DEGs in the four neuronal subtypes were not shared across the cell types 324 

and represent promising candidates for future explorations into molecular mechanisms 325 

guiding cell type-specific brain maturation. For example, FGF13 (FHF2) was significantly 326 

upregulated in Exc_L3-5_RORB_ESR1 (Fig. 5c). FGF13 decreases in expression with age in the 327 

mouse brain, where it regulates post-natal neurogenesis54 and axonal formation55. Similarly, 328 

PLPPR1 (PRG1) was significantly upregulated in Exc_L2-3_LINC00507_FREM3 (Fig. 5c). PLPPR1 329 

is higher in the postnatal mouse hippocampus than in the adult56 and is also known to 330 

regulate axon growth by modulating cytoskeletal dynamics57. 331 

 332 

In Inh_L2-6_VIP_QPCT, a single lncRNA, LINC00276, was upregulated (Fig. 5b). While this non-333 

coding RNA has been shown to be expressed in the brain58, nothing is known of its function 334 

there. Similarly, in Astro_L1-6_FGFR3_SLC14A1, a single non-coding gene, AC109439.2 (CTB-335 

1l21), was significantly upregulated (Fig. 5c, f). This lncRNA has recently been identified as a 336 

protective factor in oesophageal cancer59 and glioma60. One of the downregulated genes in 337 

this cell type, ADAM28, a metalloproteinase, has been found to be upregulated in breast and 338 

lung cancers61. These results provide new molecular candidates to expand our understanding 339 

of molecular mechanisms of astrocyte maturation.  340 

 341 

Genes associated with intelligence quotient (IQ) and educational attainment (EA) have 342 

recently been shown to be enriched in adult temporal lobe cortical neurons, especially the 343 

Exc_L2-3_LINC00507_FREM3 subtype62. Since childhood is a key period of cognitive 344 

development63, we explored whether the same genes were found amongst our DEGs. Of the 345 

137 DEGs found in at least one neuronal cell type, 15 (11%) are known to be significantly 346 

associated with EA64 and 4 (3%) with IQ65. These included several genes enriched in paediatric 347 

samples, such as MYO16, KCNG1 and LUZP2 (Extended data Table 10). 348 

 349 

Overall, our differential expression analysis highlights six cell subtypes that show significant 350 

changes in gene expression between children and adults. Several of the genes that are 351 

upregulated in in children have known roles in brain development and have been associated 352 

with cognitive ability. Our analysis builds on this knowledge by implicating specific paediatric 353 

cell subtypes and provides new candidate genes that likely contribute to cell type-specific 354 

maturation processes. 355 

 356 

Gene pathways involved in synaptic development and functioning are enriched in 357 

paediatric cell types  358 

 359 

We next used gene set enrichment analysis (GSEA) to conduct a broad analysis of the gene 360 

pathways that are differentially regulated across all brain cell types during brain maturation 361 
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(Methods). GSEA aggregates the information from many genes to identify enriched functional 362 

pathways, allowing us to interrogate the gene signature changes across all cell types, 363 

including those that did not show any significant DEGs66.   364 

 365 

In total, 2,003 GOBP terms where enriched in the paediatric samples compared to the adults, 366 

while 866 were depleted (p<0.01 and q<0.1) (Extended data Table 11). When focusing on the 367 

25 most frequently enriched terms, the majority (11 terms) were associated with cellular 368 

respiration pathways (Fig. 6; Extended data Table 11). Six of the most commonly enriched 369 

terms were linked to synaptic development and functioning. A similar trend was observed 370 

when focussing on the cell types from our differential expression analysis, with gene 371 

expression, cellular respiration and synapse development pathways dominating the top 372 

enriched terms (Fig. 5g).  373 

 374 

Focusing on pathways that are depleted in the paediatric brain, four of the top ten depleted 375 

terms, including the top term, were associated with neuronal ensheathment (Fig. 6). 376 

Interestingly, none of these terms were significantly enriched in oligodendrocytes or OPCs, 377 

while they were associated with neuronal sub types, astrocytes and microglia. The remainder 378 

of the top ten depleted terms included neuronal morphogenesis, cell adhesion and gene 379 

expression pathways. 380 

 381 

Overall, our GSEA analysis points towards putative genetic pathways that may drive the 382 

differences in synaptic plasticity between the paediatric and adult brain. Pathways related to 383 

reorganising and strengthening synapses may be enhanced across multiple cell types during 384 

childhood, while those required to limit synaptic growth, such as axonal ensheathment 385 

pathways, may need to be suppressed.  386 

 387 

 388 

Discussion 389 

 390 

The brain is the most complex organ in the human body, which continuously changes as we 391 

mature and age. Existing studies exploring the transcriptomic changes across the full span of 392 

brain maturation have used bulk transcriptomic techniques6-10, which drown out the subtle 393 

molecular events taking place within specific cell types. Here, we unmask these processes, 394 

using single cell transcriptomics to compare similar cell types between paediatric and adult 395 

datasets.  396 

 397 

To facilitate accurate comparisons of cell types across age groups, we used the existing Allen 398 

Brain Map MTG cell atlas1 to annotate our datasets. This demonstrated that the reference 399 

atlas, generated from eight adult snRNA-seq datasets, is indeed generalisable30, and can be 400 

used to classify cell types in similar datasets from samples of different ages. This 401 

generalisability is essential for healthy human reference atlases to serve as a baseline to 402 
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improve our understanding of human development and disease3. Our machine-learning 403 

marker gene analysis also shows that while the cell type classifications, which are based on 404 

the expression of thousands of genes, can be transferred onto new datasets, the minimal 405 

markers that define the cell types do vary across datasets. Very few of our NS-Forest minimal 406 

markers overlap with the existing MTG cell atlas minimal markers1,28 and some provide better 407 

discrimination between cell type than the existing markers. These results highlight that the 408 

minimal markers that currently define the MTG cell taxonomy will likely need to be revised 409 

as more samples are made available to ensure that the cell type classification is as widely 410 

applicable as possible.  411 

 412 

Similar to previous analyses of aging in the mouse66, our integrated analysis of paediatric and 413 

adult datasets showed there is little change in cell type composition within the temporal 414 

cortex during human brain maturation. However, both our minimal marker analysis and 415 

differential gene expression analysis highlight differences in cell states between paediatric 416 

and adult cell types. GO analysis of our minimal marker genes revealed a signal for migratory 417 

pathways amongst the paediatric minimal markers, including genes that code for 418 

chemoattractants, such as RELN and CXCL14. While these genes are expressed in the 419 

mammalian adult brain26,67,68, our analysis suggests that they play a greater role in defining 420 

cell identity in childhood, where these signals possibly function to mediate processes such as 421 

dendritic outgrowth and the rearrangement of neuronal synaptic connections.  422 

 423 

In recent years, the excitatory pyramidal neurons in the supragranular layers of the MTG have 424 

been shown to have high transcriptional diversity1,69 and to possess unique features including 425 

exceptionally large arborisations70 and electrophysiological properties that impact signal 426 

integration and encoding71-74 in ways that may enhance neuronal computational abilities, 427 

contributing to human cognition. Since cognitive ability is a key feature that is established 428 

during childhood68, our differential expression analysis offers an extraordinary opportunity to 429 

explore how cell type-specific gene expression dynamics contribute to cognitive 430 

development. We highlight six cell subtypes that show significant gene expression changes 431 

between childhood and adulthood. Interestingly, two of these cell types were the layer 2/3 432 

excitatory neurons, Exc_L2_LAMP5_LTK and Exc_L2-3_LINC00507_FREM3, that have recently 433 

been associated with human cognition62. In line with these findings, several of the DEGS 434 

shared by these cell types, including FNBP1L40 and LUZP243, have been implicated in cognitive 435 

ability and intelligence. Overall, our data points towards genes and pathways that likely play 436 

key roles in cognitive development specifically within these layer 2/3 excitatory neurons. 437 

 438 

The relatively low number of genes and cell types implicated in our differential expression 439 

analysis in comparison to similar studies in mouse66 suggests that the difference between the 440 

paediatric and adult brain are subtle. However, the inherent high variability in human gene 441 

expression data may potentially mask some of the differential gene expression in our limited 442 

sample. As the HCA database for the human temporal cortex expands, it will be important to 443 
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build on these analyses with more samples for each developmental stage to provide more 444 

support for our findings.  445 

 446 

We have provided the first single cell gene expression datasets for the brain that includes 447 

data from black South African donors, thus increasing the diversity of the HCA database. Our 448 

paediatric datasets will form important baseline references for future studies aiming to 449 

explore how locally important challenges to child brain health, including infectious diseases 450 

and traumatic brain injury, impact on the normal gene expression profiles. Importantly, these 451 

investigations will contribute to the development of effective treatments, that are tailored to 452 

specific needs of paediatric patients.    453 

 454 

 455 

Methods  456 

 457 

Human samples 458 

Ethical approval was granted for the collection and use of paediatric and adult human brain 459 

tissue by the University of Cape Town Human Research Ethics Committee (UCT HREC REF 460 

016/2018; sub-studies 146/2022 and 147/2022). The human brain tissue samples used to 461 

generate new 10x Genomics snRNA-seq and Visium datasets were obtained by informed 462 

consent for studies during temporal lobe surgical resections to treat epilepsy and/or cancer 463 

performed at the Red Cross War Memorial Children9s Hospital and Constantiaberg Mediclinic 464 

in Cape Town, South Africa. The samples used in this study were of temporal cortex origin and 465 

represent radiologically and macroscopically normal neocortex within the pathological 466 

context (details in Extended Data Table 1). Upon resection, samples were placed in 467 

carbogenated ice-cold artificial cerebral spinal fluid (aCSF) containing in (mM): 110 choline 468 

chloride, 26 NaHCO3, 10 D-glucose, 11.6 sodium ascorbate, 7 MgCl2, 3.1 sodium pyruvate, 2.5 469 

KCl, 1.25 NaH2PO4, and 0.5 CaCl2 (300 mOsm) and immediately transported to the laboratory 470 

(~20 minutes). Tissue blocks containing the full span from pia to white matter were prepared 471 

and either flash frozen in liquid nitrogen or embedded in optimal cutting temperature 472 

compound (OCT) and stored at -80°C. The OCT-embedded samples were flash frozen in a 473 

10×10 mm2 cryomold which was either frozen directly in liquid nitrogen or placed in a 474 

container of isopentane (Merck) which was in turn placed in liquid nitrogen at the same level 475 

as the isopentane. The publicly available snRNA-seq datasets23, generated from samples 476 

obtained during elective surgeries performed at Universitair Ziekenhuis Leuven, Belgium, 477 

were downloaded from the Sequence Read Archive database. 478 

 479 

Nuclei isolation for snRNA-seq  480 

Nuclei were isolated according to a protocol adapted from Habib et al. (2017)75 and the 10X 481 

Genomics nuclei isolation protocol (CG000124, User Guide Rev E). Frozen brain tissue was 482 

homogenised in a dounce-homogeniser containing 2 ml ice-cold lysis solution (Nuclei EZ Lysis 483 

Buffer [Sigma-Aldrich, NUC101] or Nuclei PURE Lysis buffer [Sigma-Aldrich, NUC201] with 1 484 
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mM dithiothreitol [DTT, Promega, P1171, US] and 0.1% Triton X-100 [Sigma-Aldrich, NUC201-485 

1KT, US]). Homogenisation was done 20 times with the loose pestle A followed by 20 times 486 

with the tight pestle B. An additional 2 ml lysis solution was added, and the sample was 487 

incubated for 5 minutes on ice. The sample was centrifuged at 500 x g for 5 minutes at 4°C 488 

after which the supernatant was discarded and the nuclei resuspended in 3 ml ice cold nuclei 489 

suspension buffer (1x phosphate-buffered saline [PBS, Sigma-Aldrich, P4417-50TAB, US]), 490 

0.01% bovine serum albumin [BSA, Sigma-Aldrich, A2153-10G, US], and 0.2 U/µl RNAsin Plus 491 

RNase inhibitor [Promega, N2615, US]). Resuspended nuclei were passed through a 40 µm 492 

filter and centrifuged at 900 x g for 10 minutes at 4°C. The supernatant was discarded and 493 

pelleted nuclei were resuspended in 3 ml blocking buffer (1xPBS [Sigma-Aldrich, P4417-494 

50TAB, US], 1% BSA [Sigma-Aldrich, A2153-10G, US], 0.2 U/µl RNAsin Plus RNase inhibitor 495 

[Promega, N2615, US]).  496 

 497 

To remove myelin debris, 30 µl of myelin removal beads [Miltenyi Biotec. 130-096-733, US] 498 

was added to the solution which was mixed by gently pipetting 5 times. The sample was 499 

incubated for 15 minutes at 4°C after which it was mixed with 3 ml blocking buffer and 500 

centrifuged at 300 x g for 5 minutes at 4°C. The supernatant was removed and the nuclei were 501 

resuspended in 2 ml clean blocking buffer. The sample was transferred to a 2 ml tube and 502 

placed on a Dynamag magnet for 15 minutes at 4°C. The supernatant was transferred to a 503 

new tube and stored on ice. An aliquot of trypan blue stained nuclei was counted using a 504 

haemocytometer to determine the nuclei concentration and the volume to use in snRNA-seq 505 

library preparation.  506 

 507 

10X Genomics snRNA-seq library preparation 508 

snRNA-seq library preparation was carried out using the 10x Genomics Chromium Next Gen 509 

Single Cell 39 Reagent Kit (v3.1) according to manufacturer9s protocols (CG000204, User Guide 510 

Rev D), targeting 10,000 nuclei per sample. At step 2.2d and 3.5e, the libraries were amplified 511 

using 11 cycles and 13 cycles, respectively. Library quality and concentration was assessed 512 

using either the TapeStation or Bioanalyser (Agilent) and Qubit (Invitrogen) at the Central 513 

Analytical Facility (CAF, University of Stellenbosch). cDNA libraries were sequenced by 514 

Novogene (Singapore) on either the Illumina HiSeq or NovaSeq system using the Illumina High 515 

Output kits (150 cycles).  516 

 517 

snRNA-seq read alignment and gene expression quantification 518 

Fastq files were aligned to the human reference transcriptome (GRCh38) and quantified using 519 

the count function from the 10X Genomics Cell Ranger v6.1.1 software (Cell Ranger, RRID 520 

SCR_017344) (Code availability: script 1). The inclusion of introns was specified in the count 521 

function. An automatic filtering process was performed to remove barcodes corresponding 522 

to background noise which have very low UMI counts.  523 

 524 
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snRNA-seq quality control 525 

The resulting count matrices were processed using a pipeline adapted from the Harvard Chan 526 

Bioinformatics Core (https://hbctraining.github.io/scRNA-seq_online/). The filtered gene 527 

barcode matrix for each sample was imported into R (V.4.2.0) using the Read10X function 528 

from the Seurat (v.2.0)24. Nuclei-level filtering was performed to remove poor quality nuclei 529 

according to their number of UMIs (nUMIs) detected, number of genes detected (nGene), 530 

number of genes detected per UMI (log10GenesPerUMI), and the fraction of mitochondrial 531 

read counts to total read counts (mitoRatio) (Code availability: script 2). Nuclei that met the 532 

following criteria were retained: nUMI > 500, nGene > 250, log10GenesPerUMI > 0.8 and 533 

mitoRatio < 0.2. Gene-level filtering was performed to remove genes that had zero counts in 534 

all nuclei, remove genes expressed in fewer than 10 nuclei, and remove mitochondrial genes 535 

from the gene by cell counts matrix. Three doublet removal tools namely 536 

DoubletFinder76(Code availability: script 3), DoubletDecon77 (Code availability: script 4), and 537 

Scrublet77 (Code availability: script 5,6) were used to identify doublets for each dataset 538 

individually. The sample-specific parameters of each of the tools were adjusted according to 539 

the specified guidelines. To achieve a balance between the false positive and false negative 540 

rate of the different doublet detection tools, all doublets identified by DoubletFinder as well 541 

as the intersection of the doublets identified by DoubletDecon and Scrublet, were removed77.  542 

 543 

snRNA-seq data normalization, integration and clustering 544 

Principal component analysis was performed to evaluate known sources of within-sample 545 

variation between nuclei, namely the mitoRatio and cell cycle phase (Code availability: script 546 

7). The UMI counts of the 3000 most variable features were normalised and scaled on a per 547 

sample basis by applying Seurat9s SCTransform function with mitoRatio regressed out. A 548 

Uniform Manifold Approximation and Projection (UMAP) analysis was performed on the 549 

merged object to assess whether integration was necessary. The datasets were subsequently 550 

integrated using Seurat9s SelectIntegrationFeatures, PrepSCTIntegration, 551 

FindIntegrationAnchors, and IntegrateData functions (Code availability: script 7). To cluster 552 

the datasets following integration, dimensionality reduction was first performed using UMAP 553 

embedding, specifying 40 dimensions (Code availability: script 8). The Seurat FindClusters 554 

function was then applied at a resolution of 0.8.  555 

 556 

snRNA-seq cluster annotation 557 

Label transfer was performed using Seurat9s TransferData function with Allen Brain Map MTG 558 

atlas1 as a reference dataset (Code availability: scripts 9-10). This resulted in each barcode in 559 

the query dataset receiving a predicted annotation based on a similarity score to an 560 

annotated cell type in the reference. To validate the annotation, the expression of known 561 

marker genes was assessed. Additionally, cosine similarity scores were computed to compare 562 

the transcriptomic similarity of each of the 54 annotated query cell types to the 75 reference 563 

middle temporal gyrus cell types using the SCP package (https://github.com/zhanghao-564 
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njmu/SCP) (Code availability: script 11). This was achieved by computing cosine similarity 565 

scores for each pair of query and reference cell types using the expression of the top 2000 566 

shared highly variable features between the query and reference datasets. The log 567 

normalised expression counts were used for this purpose (RNA assay, data slot).  568 

 569 

NS-Forest machine learning marker analysis of snRNA-seq datasets 570 

The NS-Forest tool (v2.0)28,29 was used to identify combinations of marker genes uniquely 571 

defining each annotated cell type (Code availability: script 12-14) in the paediatric and adult 572 

datasets separately. The number of nuclei per sample was randomly down-sampled to that 573 

of the sample with the fewest nuclei (n=4865). A random-forest model was used to select a 574 

maximum of 50 marker genes per cell type based on them being both highly expressed as 575 

well as uniquely expressed within a cell type compared to other cell types (i.e., the top Gini 576 

Index ranked features with positive expression values). The number of trees chosen for this 577 

model was 35,000, the cluster median expression threshold was set to the default value of 578 

zero, the number of genes used to rank permutations of genes by their F-beta-score was 6, 579 

and the beta weight of the F score was set to 0.5 allowing the outputs to be directly compared 580 

to the Allen Brain Map MTG atlas minimal markers1. To assess the relevance of these markers 581 

in terms of their capacity to distinguish different cell types in a UMAP analysis, the SCT and 582 

integration methods were repeated using either a random set of genes or the NS-Forest 583 

markers as anchors28 (Code availability: script 15).  584 

 585 

DESeq2 age-dependent differential gene expression analysis of snRNA-seq datasets 586 

DESeq237 was used to identify genes that were differentially expressed with age (Code 587 

availability: script 16). The unnormalized counts were aggregated across all nuclei for each 588 

cluster and sample to generate a 8pseudobulk9 counts matrix with the counts from technical 589 

replicates collapsed to the level of biological replicates. Genes were filtered to only include 590 

those expressed in more than 10% of nuclei for a given cell type. Principal component analysis 591 

was performed on each cell type separately in order to assess the variation between samples 592 

and determine which variables were contributing most to inter-sample variation from a set 593 

of possible variables. The collapsed counts served as input into DESeq29s 594 

DESeqDataSetFromMatrix function in which the design formula ~single_cell_chemistry + 595 

age_group was specified to treat the age_group (paediatric vs adult) as the variable of interest 596 

while the effect of single_cell_chemistry (version2 vs version3 chemistry) was regressed out. 597 

A hypothesis test was performed using the Wald test. The null hypothesis for each gene was 598 

that there is no difference in gene expression between the sample groups (i.e Log2 Fold 599 

Change = 0). A Wald test statistic was determined for each gene together with the associated 600 

p-value after which the p-values were adjusted for multiple testing using the Benjamini and 601 

Hochberg method. Positive log2 Fold Changes represent genes which are upregulated in 602 

paediatric samples compared to adult samples (padj <0.05). 603 

 604 

 605 
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Pathway enrichment analysis of snRNA-seq datasets 606 

GO analysis of NS-Forest marker genes was performed on the gProfiler web server78 using 607 

default settings (padj <0.05) with <highlight diver terms in GO= selected.  608 

 609 

Neuronal DEGs identified by DESeq2 (see Extended data Table 10) that were associated with 610 

EA and IQ were determined by comparing the list of neuronal DEGS to the EA and IQ gene 611 

lists used by Driessens et al. (2023)62, which were subsets of the lists from Lee et al. (2018)64 612 

and Savage et al. (2018)65 respectively.   613 

 614 

GSEA on the DESeq2 output for all genes was performed using the Broad Institute9s GSEA 615 

software (https://www.gsea-msigdb.org/gsea/msigdb) (Code availability: script 17). The gene 616 

lists for each cell type were queried against the C5 GO Biological Processes collection 617 

comprising of gene sets derived from the GO Biological Process ontology. The input lists of 618 

genes were ranked according to the -log(p-value)*log2FoldChange for each gene. The 619 

parameters specified to the GSEA function included number of permutations (nperm)=1000, 620 

minimum gene set size (set_min=15), maximum gene set size (set_max=200), excludes genes 621 

that have no gene symbols (collapse)= No_Collapse, value to use for the single identifier that 622 

will represent all identifiers for the gene (mode)=Max_probe, normalised enrichment score 623 

method (norm)= meandiv, weighted scoring scheme (scoring_scheme) = classic. Positive 624 

Normalised Enrichment Scores (NES) represent genes that were upregulated in the paediatric 625 

population compared to the adult population (p<0.01 and q<0.1). To visualise the output of 626 

universally enriched pathways across multiple cell types, the top 25 most frequently 627 

appearing positively and negatively associated terms were plotted. Additionally, for five cell 628 

types of interest [which had DEGs meeting the threshold of p<0.05 and abs(log2FC)>0.1], the 629 

top 5 positively associated terms were plotted.  630 

 631 

snRNA-seq data plots 632 

Plots were produced with Seurat24, ggplot279, ShinyCell80 and Microsoft Excel. 633 

 634 

10x Genomics Visium library preparation 635 

Frozen OCT embedded brain tissue samples were scored using a pre-chilled razor blade to fit 636 

in the Spatial Gene Expression slide capture areas. 10 ¿m-thick sections were cut using a 637 

cryostat (Leica CM1860/CM1950) and collected onto the Spatial Gene Expression slide 638 

capture areas. Two replicate sections of the 15-year-old (10 ¿m apart) and two replicate 639 

sections of 31-year-old (40 ¿m apart) were collected. The spatial Gene Expression slides with 640 

tissue sections were stored in a sealed container at -80°C. Captured sections were 641 

Haematoxylin and Eosin (H&E) stained according to the 10x Genomics Demonstrated Protocol 642 

Guide (CG000160, Rev B). Brightfield images of the stained sections were captured using an 643 

EVOS M5000 microscope (Thermo Fisher Scientific) at 20x magnification without 644 

coverslipping. Overlapping images of the sections including the fiducial frame were stitched 645 

together using Image Composite Editor-2.0.3 (Microsoft). Visium libraries were prepared 646 
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from the stained tissue sections following the Visium Spatial Gene Expression Reagents Kit 647 

User Guide (CG000239, Rev D). At Step 1.1 the tissue was permeabilised for 12 minutes as 648 

determined using the Visium Spatial Gene Expression Tissue Optimisation User Guide 649 

(CG000238, Rev D). At Step 3.2, cDNA was amplified using 20 cycles. Library quality and 650 

concentration was assessed using TapeStation (Agilent) and Qubit (Invitrogen) at the Central 651 

Analytical Facility (CAF, University of Stellenbosch). Libraries were sequenced by Novogene 652 

(Singapore) on the Illumina NovaSeq system using the Illumina High Output kits (150 cycles).  653 

 654 

Visium read alignment and gene expression quantification 655 

The H&E images were processed using the 10X Genomics Loupe Browser V4.0 Visium Manual 656 

Alignment Wizard. 10X Genomics Space Ranger count (10X Space Ranger V1.3.0) was used to 657 

perform alignment of FASTQ files to the human reference transcriptome (GRCh38), tissue 658 

detection, fiducial detection and barcode/UMI counting.  659 

 660 

cell2location analysis of Visium datasets 661 

The average number of nuclei per Visium spot was determined using Vistoseg81 (Code 662 

availability: script 18). Cell2location (version 0.7a0)25 was used to spatially map the brain cell 663 

types by integrating the Visium data count matrices (Space Ranger output) with the 664 

annotated snRNAseq datasets (Code availability: script 19). To avoid mapping artifacts, 665 

mitochondrial genes were removed from the Visium datasets prior to spatial mapping. 666 

Reference signatures of the 54 annotated cell populations were derived using a negative 667 

binomial regression model using the default values. Unnormalized and untransformed 668 

snRNA-seq mRNA counts were used as input in the regression model for estimating the 669 

reference signatures (Code availability: script 20). The snRNA-seq mRNA counts were filtered 670 

to 13,870 genes and 176,012 cells. The cell2location model for estimating the spatial 671 

abundance of cell populations was filtered to 13,858 genes and 14,324 cells that were shared 672 

in both the snRNA-seq and Visium data. The following cell2location parameters were used: 673 

training iterations = 30,000 cell per location, N^ = 10 (estimated using Vistoseg segmentation 674 

results), Normalization (ys) alpha prior = 20 (Code availability: script 21). To visualise the cell 675 

abundance in spatial coordinates 5 % quantile of the posterior distribution was used, which 676 

represents the value of cell abundance that the model has high confidence in (Code 677 

availability: script 22). Cell2location9s Non-negative Matrix Factorization (NMF) was used to 678 

identify cellular compartments and cell types that co-locate from the cell type abundance 679 

estimates, using n_fact=12 (Code availability: script 23) 680 

 681 

BayesSpace analysis of Visium datasets 682 

The raw gene expression counts from Space Ranger were normalized, log transformed and 683 

principal component analysis was performed on the top 2000 highly variable genes. To obtain 684 

high-resolution gene expression, the principal component values were mapped back to their 685 

original log-transformed gene expression space (spot level) using the default BayeSpace38 686 

regression (Code availability: script 24). To do this the principal components from the original 687 
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data were used as predictors in training the model for each gene, in which the results were 688 

the measured gene expression at the spot level. The trained model was then used to predict 689 

the gene expression at sub spot level using high resolution PCs. The high-resolution model 690 

was trained using default values except for the following parameters: 7 PCs, Number of 691 

clusters = 8, nrep = 100,000, burn-in = 10,000.  692 

 693 

In situ Hybridisation Chain Reaction (HCR) on frozen human tissue sections 694 

10 ¿m thick frozen sections were collected on Histobond+ slides (Marienfeld) and stored at -695 

20°C. The In situ HCR protocol was carried out on tissue sections as detailed in Choi et al. 696 

(2016)82 using reagents, probes and hairpins purchased from Molecular Instruments. Probes 697 

were ordered for the following genes: RELN (NM_005045.4), FABP7 (CR457057.1), AQP4 698 

(NM_001650.5), RORB (NM_006914.4), CLSTN2 (NM_022131.3) and TSHZ2 (NM_173485.6). 699 

When necessary to quench lipofuscin autofluorescence, sections were rinsed after HCR in 1x 700 

PBS and treated with 200 ¿l TrueBlack (Biotium) for 30 sec. Slides were rinsed in PBS, stained 701 

with Hoescht (Thermofisher) and mounted using SlowFade Gold Antifade Reagent 702 

(Invitrogen). Sections were imaged using the LSM 880 Airyscan confocal microscope (Carl 703 

Zeiss, ZEN SP 2 software) using the 40X or 60X objective. 704 
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Data Availability 918 

All scripts used to analyse the data are indicated in the methods section and are available in 919 

the supplementary material. A description of the raw and analysed data files will be made 920 

available on the University of Cape Town9s ZivaHub data sharing platform on publication. As 921 

the data is from living donors, access to the data will be mediated through contact with the 922 

corresponding author. A ShinyApp will be made publicly available on publication for 923 

exploration of the annotated snRNA-seq data.  924 
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 955 

Fig. 1: Annota-on of nuclei by label transfer iden-ûes 54 cor-cal subtypes across the 23 datasets. a, Data 956 

integra+on shows alignment of nuclei across the technical (T) and biological (B) replicates from donors ranging 957 

in age from 4 to 50 years. b, Annotated UMAP plot for the 23 merged datasets iden+ûes 34 inhibitory, 14 958 

excitatory, and 6 non-neuronal popula+ons using the Allen Brain Map MTG dataset as a reference. Each cell type 959 

is annotated with 1) a major cell class (e.g. Exc for excitatory neuron), 2) the cor+cal layer the cell is associated 960 

with (e.g. L2 for layer 2), 3) a subclass marker gene and 4) a cluster-speciûc marker gene. c, Valida+on of the 961 

high-resolu+on cell type annota+ons shows a high degree of correspondence in the expression of known cell 962 

type-speciûc markers (x axis) with their expected cell type (y axis) (leR). Number of nuclei per cell type (right). d, 963 

Correla+on plot showing the cosine similarity scores assessing similarity between the annotated cell types in our 964 

dataset (y axis) and the MTG reference dataset (x axis) based on the log normalized expression counts of the top 965 

2000 shared highly variable features between query and reference datasets. e, Stacked barplot showing the 966 

propor+on of nuclei per cell type (y axis) for each age category (x axis) out of the total number of nuclei for each 967 

group. The colour scheme for the cell types is in accordance with the MTG cell taxonomy. 968 
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 969 

Fig. 2: Fig. 2: Visium spatial transcriptomics in the adult and paediatric temporal cortex validates snRNA-seq 970 

annotation. a,b, Estimated cell type abundances (colour intensity) in the 31-year-old and 15-year-old temporal 971 

cortex tissue sections for a selection of cell types including non-neuronal cell types (a,b), excitatory neurons (a) 972 

and inhibitory neurons (b). c, Visium gene expression profiles (colour intensity) for a selection of known cortical 973 

layer marker genes in the 31-year-old and 15-year-old temporal cortex tissue sections including AQP4 (layer 1), 974 

LAMP5 (layer 2), CUX2 (layer 2-3), RORB (layer 4) and CLSTN2 (layer 5-6). Dashed white lines and numbers 975 

indicate estimated cortical layer boundaries. d,e, Identification of co-locating cell types using NMF. The dot plot 976 

(d) shows the NMF weights of the cell types (rows) across each of the NMF factors (columns), which correspond 977 

to tissue compartments. Block boxes indicate cell types that co-locate within the indicated tissue compartments. 978 

Spatial plots show (e) show the NMF weights for each NMF factor/tissue compartment across the 31-year-old 979 

and 15-year-old temporal cortex tissue sections. Panels are displayed in the same order as the dotplot in (d), 980 

with the dominant cell types for each factor indicated in brackets. WM: white matter. See also Extended Data 981 

Figs 4-6. 982 
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 991 

Fig. 3: NS-Forest iden-ûes minimal marker genes dis-nguishing the cell types in the paediatric and adult 992 

temporal cortex snRNA-seq datasets. a,b, Heatmap showing the scaled average normalised expression counts 993 

of the NS-Forest minimal marker genes (y-axis) iden+ûed for 53 cor+cal cell types (x-axis) across the six adult (a) 994 

and six paediatric (b) datasets. As input into NS-Forest, the nuclei of each sample were randomly down-sampled 995 

to the size of the sample with the fewest nuclei. Heatmaps show gene expression values for the down-sampled 996 

datasets. Inh_L224_VIP_SPAG17 was excluded from the down-sampled datasets due to a low number of nuclei. 997 

The minimal marker genes are annotated (colour codes on the y-axes) according to whether they are unique to 998 

a given cell type, whether they are coding/non-coding genes, whether they are unique to the indicated age 999 

group, whether they overlap with exis+ng MTG minimal marker gene sets for the same cell type, and according 1000 

to the cell type they deûne. 1001 
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 1010 

Fig. 4: Valida-on of NS-Forest minimal markers and assessment of the top 50 NS-forest markers. a,b, Annotated 1011 

UMAP plots following data integra+on using either the minimal marker genes (leR) or the equivalent number of 1012 

a random set of genes (right) as anchors for the adult (a) and paediatric (b) datasets. The colour scheme for the 1013 

cell types is in accordance with the MTG cell taxonomy. c, Overlap of the top 50 paediatric and top 50 adult NS-1014 

Forest markers per cell type. The bar plot shows the number of shared markers between paediatric and adult 1015 

datasets (blue), the number of markers unique to the paediatric datasets (orange), and the number of markers 1016 

unique to the adult datasets (grey) for each cell type.  1017 
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 1022 

Fig. 5: Diûeren-al expression analysis reveals genes guiding temporal cortex matura-on. a, The number of 1023 

diûeren+ally expressed genes (DEGs) iden+ûed per cell type. b, Strip chart showing the log2FoldChange for all 1024 

DESeq2-tested genes (dots) across 54 cell types (x axis). Genes that were signiûcantly upregulated (110) or 1025 

downregulated (52) in paediatric samples [padj<0.05 and abs(log2FoldChange)>10%)] are coloured according to 1026 

the MTG cell taxonomy. Non-signiûcant genes [padj>0.05 or abs(log2FoldChange)<10%] are coloured in grey. Cell 1027 

types with signiûcant DEGS are coloured red. c, Volcano plots showing log2FoldChange (x axis) and -log10padj 1028 

values (y axis) for all DESeq2-tested genes in Exc_L2_LAMP5_LTK, Exc L2-3_LINC00507_FREM3, Exc_L4-1029 

5_RORB_DAPK2, Exc_L3-5_RORB_ESR1 and Astro_L1-6_FGFR3_SLC14A1. Genes that were signiûcantly 1030 

upregulated or downregulated in paediatric samples (padj<0.05 & abs(log2FoldChange)>10%) are coloured in red 1031 

and selected genes are labelled. Non-signiûcant genes (padj>0.05 or abs(log2FoldChange)<10%) are coloured in 1032 

blue. Red labels indicate DEGs shared between similar cell types. d,e, Dot plots showing the scaled average 1033 

normalised expression across samples for DEGS shared between either Exc_L2_LAMP5_LTK and Exc L2-1034 

3_LINC00507_FREM3 (d) or Exc_L4-5_RORB_DAPK2 and Exc_L3-5_RORB_ESR1  (e).   f, Dot plot showing the 1035 

scaled average normalised expression across samples of DEGs in Astro_L1-6_FGFR3_SLC14A1. g, Enrichment plot 1036 

showing the top 5 GSEA terms (y axis) that were enriched in the paediatric datasets and their associated NES 1037 

values (x axis) for the ûve indicated cell types. 1038 
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 1039 

Fig. 6: Pathways that are enriched or depleted across mul-ple cell types in paediatric cell types. GSEA heatmap 1040 

showing the top 25 most frequently enriched (top 25 rows) or depleted (bolom 25 rows) terms appearing across 1041 

all cell types. Only signiûcantly (p)<)0.01 and q)<)0.1) terms are shown. NES value represents the normalized 1042 

enrichment scores. Grey indicates that the term was not signiûcantly enriched or depleted in the indicted cell 1043 

type. See also Extended Data Table 11. 1044 
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 1051 

Extended Data Fig. 1: Nuclei ûltering and clustering. a, Number of doublets iden+ûed across all 23 datasets by 1052 

DoubletDecon, DoubletFinder, and Scrublet. Red outline indicates the subset of barcodes called as doublets that 1053 

were removed. b, Total number of nuclei per dataset before (yellow) and aRer ûltering (green). c, Mean number 1054 

of reads per nucleus (y axis) by dataset prior to ûltering split by age group (x axis). p value determined by two-1055 

tailed Welch's t-test. d, Number of nuclei (y axis) by sample aRer ûltering split by age group (x axis). p value 1056 

determined by Brunnermunzel permuta+on test. e, Violin plots showing the number of unique molecular 1057 

iden+ûers (UMIs) (top) and the number of genes detected (bolom) per nucleus per sample aRer ûltering. Black 1058 

dots indicate the median value. Error bars show 95% conûdence intervals. f,g, Median number of UMIs (2,263 1059 

paediatric and 2,011 adult) (f) and the median number of genes (1,372 paediatric and 1,226 adult) (g) detected 1060 

per nucleus (y axes) by sample aRer ûltering split by age group (x axis). p values determined by two-tailed 1061 

Brunnermunzel permuta+on test. h, UMAP plot for the 23 datasets prior to integra+on. i, UMAP plot showing 1062 

the resul+ng clusters determined by the shared nearest neighbour algorithm. Data in all box plots represent 1063 

mean ± sem for six paediatric and six adult samples. No signiûcant diûerences were detected between paediatric 1064 

and adult samples. B, biological replicate; NS, not signiûcant; T, technical replicate. See also Extended Data Table 1065 

2.  1066 
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 1067 

Extended Data Fig. 2: Assessment of cell composi-on across datasets. a, b, Stacked barplots showing the 1068 

propor+on of nuclei per cell type (y axis) for each technical replicate (a) or biological replicate (b) (x axis) out of 1069 

the total number of nuclei for each group. The colour scheme for the cell types is in accordance with the MTG 1070 

cell taxonomy. Samples with technical replicates showed high degrees of similarity in cell composi+on between 1071 

their replicates (a). Technical replicates from each donor were merged to allow comparisons between the 12 1072 

samples (b). c, Boxplots showing the propor+on of nuclei (y axis) per cell type per sample (x axis)  split by age 1073 

group (red: paediatric, grey: adult). Data represents mean ± sem for six paediatric and six adult samples. No 1074 

signiûcant diûerences were detected between paediatric and adult samples; See also Extended Data Table 3  for 1075 

details of sta+s+cal tests performed. 1076 
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 1077 

Extended Data Fig. 3: Assessment of the sequencing metrics for the annotated cell types. a, Violin plots showing 1078 

the distribu+on of the number of genes (leR) and transcripts (right) detected per nucleus per cell type across all 1079 

datasets. Black dots indicate the median value. Error bars show 95% conûdence intervals. b,c, Boxplots showing 1080 

the number of genes (b) and the number of UMIs (c) (y axis) detected per cell type per sample (x axis) split by 1081 

age group (red: paediatric, grey: adult). Data in all box plots represent mean ± sem for six paediatric and six adult 1082 

samples for each cell type. p values are given for cell types that showed a signiûcant diûerence between 1083 

paediatric and adult samples.  See also Extended Data Table 3 for details of sta+s+cal tests performed. 1084 
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 1087 

Extended Data Fig. 4: Visium Spa-al Gene Expression samples. a,b, 31-year-old (a) and 15-year-old (b) temporal 1088 

cortex +ssue blocks embedded in OCT. Black dashed boxes outline the regions collected onto the Visium Spa+al 1089 

Gene Expression slide. c-f, H&E stained technical replicate +ssue sec+ons used to generate Visium Spa+al Gene 1090 

Expression libraries for the 31-year-old (c,e) and 15-year-old (d,f) +ssue samples. T, technical replicate.  1091 
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 1098 

Extended Data Fig. 5: Spatial mapping of cell types in the human temporal cortex.  a, Estimated cell abundance 1099 

of 52 cell types across all Visium samples. Shown is a heatmap with the colour indicating the relative cell 1100 

abundance of cell types (rows) across the different samples (columns). b, Estimated cell type abundances (colour 1101 

intensity) in the technical replicate 31-year-old and 15-year-old temporal cortex tissue sections for a selection 1102 

of cell types including non-neuronal cell types (b,c), excitatory neurons (b) and inhibitory neurons (c). d, 1103 

Estimated cell type abundances (colour intensity) for Exc_L4-6 _FEZF2_IL26 and Exc_L5-6_THEMIS_FGF10 in the 1104 

31-year-old and 15-year-old temporal cortex tissue sections. T, technical replicate. 1105 
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 1115 

Extended Data Fig. 6: In situ HCR analysis of selected cor-cal layer marker genes. a, Expression of layer 1 1116 

markers AQP4, FABP7 and RELN in 31-year-old and 15-year-old temporal cortex +ssue sec+ons, with high 1117 

magniûca+on views of layer 1 indica+ng AQP4/RELN-posi+ve cells (yellow arrowheads) and FABP7 posi+ve cells 1118 

(green arrowhead). b, Expression of layer 4-6 markers RORB, CLSTN2 and TSHZ2 in 31-year-old and 15-year-old 1119 

temporal cortex +ssue sec+ons. In high magniûca+on views of layer 4 in the 31-year-old +ssue sec+on 1120 

RORB/CLSTN2-posi+ve (white arrowhead) and RORB/TSHZ2-posi+ve cells (green arrowhead) are indicated. In 1121 

high magniûca+on views of layer 4 in the 15-year-old +ssue sec+on RORB/CLSTN2/TSHZ2-posi+ve cells (white 1122 

arrowheads) are indicated. Dashed white lines indicate layer boundaries. Solid white line indicates +ssue edge. 1123 

Scale bars are 100 µm in low magniûca+on views (+le scan at 40x) and 20 µm in high magniûca+on views (63x).  1124 
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 1127 

Extended Data Fig. 7: Expression of the reference MTG atlas minimal markers. Heatmap showing the scaled 1128 

average normalised expression counts of the NS-Forest minimal marker genes iden+ûed for the reference MTG 1129 

cell atlas dataset (y-axis) in each of the 54 query cor+cal cell types iden+ûed in the combined adult and paediatric 1130 

snRNA-seq datasets (x-axis).  The minimal marker genes are annotated (colour codes on the y-axes) according to 1131 

the cell type they deûne. 1132 
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 1137 

Extended Data Fig. 8: Evalua-on of NS-Forest minimal marker gene expression across cell types in comparison 1138 

to MTG cell taxonomy markers. a-d, Boxplots showing the normalised expression counts for DDR2 (a), TGFBR2 1139 

(b), SEMA3E (c) and SULF1 (d) in paediatric (top) and adult (bolom) datasets. The cell types expressing the 1140 

markers at high levels are indicated in bold.   1141 
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 1142 

Extended Data Fig. 9: BayesSpace analysis of diûeren-ally expressed genes. High resolu+on Visium spa+al gene 1143 

expression proûles for selected DEGs using BayesSpace analysis to compare sub-spot level expression intensi+es 1144 

between 31-year-old and 15-year-old temporal cortex +ssue sec+ons.  1145 
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Extended data Tables: 1157 

 1158 

Extended Data Table 1: Summary of snRNA-seq and Visium sample metadata. Samples are ordered by age. The 1159 

eight <P00= datasets were generated in the Hockman laboratory while the four <Nuc= datasets were generated 1160 

by Thrupp et al. (2020). 1161 

 1162 

Extended Data Table 2: Summary of average quality control metrics for snRNA-seq datasets across nuclei for 1163 

each sample before and aZer ûltering. Several measures for quality control were evaluated on a per sample 1164 

basis including the sequencing satura+on, the mean number of reads per nucleus, the number of barcodes, the 1165 

median number of genes detected per nucleus, the median number of UMIs detected per nucleus, and the 1166 

number of doublets removed.  1167 

 1168 

Extended Data Table 3: Label transfer annota-on of snRNA-seq datasets using the Allen Brain Map MTG atlas 1169 

as a reference. Sheet 1, Number of nuclei per MTG cell type per sample. The number of barcodes corresponding 1170 

to each MTG cell type and sample is shown. Addi+onally, the total, minimum, and maximum number of nuclei 1171 

per cell type and sample was computed. The number of cell types represented per sample was also determined. 1172 

Sheet 2, Cell types present in reference MTG dataset which are absent from the query datasets. Label transfer 1173 

resulted in 21 cell popula+ons that were not annotated in the query datasets but were present in the reference 1174 

MTG dataset. The cluster size and percentage of the total cell count for each cell type in the reference MTG 1175 

dataset is also shown. Sheet 3-5, p values and the test performed for each cell type when comparing the 1176 

propor+on of nuclei (sheet 3; see Extended Data Fig. 2c), number of genes (sheet 4; see Extended Data Fig. 3b) 1177 

and number of UMIs (sheet 5; see Extended Data Fig. 3c) for each cell type between paediatric and adult samples 1178 

shown.  1179 

 1180 

Extended Data Table 4: Summary of average quality control metrics for Visium datasets. Several measures for 1181 

quality control were evaluated on a per sample basis including the sequencing satura+on, the percentage of read 1182 

mapped to the transcriptome, the number of spots under the +ssue, the average number of nuclei per spot 1183 

determined by Vistoseg analysis, the mean reads detected per spot, the median genes detected per spot, the 1184 

total number of genes detected, the median UMI Counts per Spot and the total number of nuclei.  1185 

 1186 

Extended Data Table 5: NS-Forest minimal marker analysis. Sheet 1, Sta+s+cs from NS-Forest analysis including 1187 

the mean F-beta score (the measure of the discrimina+ve power of a given combina+on of marker genes) and 1188 

the mean binary expression score per cell type (a measure of an individual gene9s classiûca+on power). Sheets 1189 

2-3, Metadata for each feature iden+ûed by NS-Forest marker in the down-sampled paediatric (sheet 2) and 1190 

down-sampled adult (sheet 3) datasets describing the cell type, overlap with Aevermann et al. (2021) and Hodge 1191 

et al. (2019), uniqueness to the age group of interest, coding status, and uniqueness to the associated cell type 1192 

as shown in Fig. 3. As input to NS-Forest, all datasets (six paediatric and six adult) were randomly down-sampled 1193 

such that the total number of nuclei per sample was equal to the sample with the fewest number of nuclei. 1194 

 1195 

Extended Data Table 6: gProûler analysis of NS-forest markers.  (Sheet1-2) Signiûcantly enriched GO terms 1196 

associated with the paediatric (sheet1) and adult (sheet2) minimal marker genes iden+ûed by NS-forest. 1197 

(Sheet3-7) Signiûcantly enriched GO terms associated with shared (i.e associated with both adult and paediatric 1198 

sample) or paediatric-speciûc marker genes from the list of top 50 posi+ve NS-Forest markers for selected cell 1199 

types. Terms for which <highlighted= is true are driver terms. 1200 

 1201 

Extended Data Table 7: Summary of metadata for the top 50 posi-ve NS-Forest markers per cell type. The top 1202 

50 posi+ve NS-Forest markers (or total number of posi+ve markers if < 50) per cell type for the down-sampled 1203 

paediatric and down-sampled adult datasets. The number of intersec+ng markers, the number of markers unique 1204 

to paediatric samples, and the number of markers unique to adults is shown for each cell type. The number of 1205 

nuclei per cell type is shown for the combined paediatric and adult down-sampled datasets, the down-sampled 1206 

paediatric datasets, and down-sampled adult datasets.  1207 

 1208 
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Extended Data Table 8: Overlap of the top 50 posi-ve NS-Forest markers per cell type between the paediatric 1209 

and adult datasets. The top 50 posi+ve NS-Forest markers (or total number of posi+ve markers if < 50) per cell 1210 

type were extracted for the down-sampled paediatric and down-sampled adult datasets. Each sheet represents 1211 

1 of 53 cor+cal cell types (Inh_L2-4_VIP_SPAG17 was excluded due to too few nuclei) and the NS-Forest features 1212 

which were shared between the paediatric and adult datasets, unique to paediatric datasets, or unique to adult 1213 

datasets are shown (sheet 1-53).  1214 

 1215 

Extended Data Table 9: DESeq2 output of all genes tested for diûeren-al expression between paediatric and 1216 

adult brains per cell type. (Sheet 1-53) Diûeren+al expression analysis was performed using DESeq29s Wald Test 1217 

for each cell type separately (Inh L2-4 VIP SPAG17 was excluded due to too few nuclei).  Genes were ûltered prior 1218 

to tes+ng to only include those expressed in > 10% of nuclei for that cell type across all paediatric and adult 1219 

datasets. The associated log2FoldChanges, p-adjusted values (padj), and descrip+on of each feature are shown. 1220 

Posi+ve log2FoldChanges represent genes upregulated in paediatrics versus adults. See DESeq2 documenta+on 1221 

for explana+on of NA values 1222 

(hlps://bioconductor.org/packages/release/bioc/vigneles/DESeq2/inst/doc/DESeq2.html#why-are-some-p-1223 

values-set-to-na). 1224 

 1225 

Extended Data Table 10: DESeq2 output of signiûcant DEGs between paediatric and adult brains in a subset of 1226 

cell types. (sheet 1-5) Signiûcant DEGs (padj < 0.05) for Exc_L2_LAMP5_LTK, Exc_L2-3_LINC00507 _FREM3, 1227 

Exc_L3-5_RORB_ESR1, Exc_L4-5_RORB_DAPK2 and Astro_L1-6_FGFR3_SLC14A1. The associated 1228 

log2FoldChanges, p-adjusted values (padj), descrip+on, percentage of paediatric nuclei expressing the gene, 1229 

percentage of adult nuclei expressing the gene, average normalised expression across paediatric nuclei, and 1230 

average normalised expression across adult nuclei are shown. Posi+ve log2FoldChanges represent genes 1231 

upregulated in paediatric versus adults datasets. See DESeq2 documenta+on for explana+on of NA values 1232 

(hlps://bioconductor.org/packages/release/bioc/vigneles/DESeq2/inst/doc/DESeq2.html#why-are-some-p-1233 

values-set-to-na). (sheet 6-7) EA (sheet 6) and IQ (sheet7) associated DEGs and their associated cell types. 1234 

 1235 

Extended Data Table 11: GSEA terms associated with each cell type showing enriched or depleted pathways in 1236 

paediatric versus adult samples. GSEA was performed using DESeq29s output gene lists for each cell type ranked 1237 

according to the log2FoldChange*-log2(padj) for each gene. All DESeq2-tested genes served as input into GSEA 1238 

(genes were expressed in > 10% of nuclei for the cell type of interest). Matrix shows the corresponding posi+ve 1239 

(sheet 1) and nega+ve (sheet 2) NES values for each GSEA term (y axis) and cell type (x axis) based on the analysis 1240 

using the ranked list of genes for each cell type. Terms were ûltered to only include signiûcantly associated terms 1241 

(p<0.01, q<0.1). Posi+ve NES values indicate pathways that are enriched in paediatric versus adult samples; 1242 

nega+ve NES values indicate pathways that are depleted in paediatric versus adult samples. The total number of 1243 

terms per cell type and the total number of cell types associated with a given term are shown. 1,290 terms were 1244 

enriched in at least two cell types, while 250 were depleted in at least two cell types. 1245 
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