

1 **Title:** Cell type-specific gene expression dynamics during human brain maturation
2
3 Christina Steyn^{1,2}, Ruvimbo Mishi^{1,2}, Stephanie Fillmore^{1,2}, Matthijs B. Verhoog^{1,2}, Jessica
4 More^{1,2}, Ursula K. Rohlwink^{2,3}, Roger Melvill³, James Butler^{2,4}, Johannes M. N. Enslin^{2,3},
5 Muazzam Jacobs^{2,5,6,7}, Sadi Quiñones^{8,9}, Chris G. Dulla⁸, Joseph V. Raimondo^{1,2,5}, Anthony
6 Figaji^{2,3} and Dorit Hockman^{1,2,*}
7
8
9

10 **Affiliations:**

11 ¹Division of Cell Biology, Department of Human Biology, University of Cape Town, Cape Town,
12 South Africa

13 ²Neuroscience Institute, University of Cape Town, Cape Town, South Africa

14 ³Division of Neurosurgery, Department of Surgery, University of Cape Town, Cape Town,
15 South Africa

16 ⁴Division of Neurology, Department of Medicine, University of Cape Town, Cape Town, South
17 Africa

18 ⁵Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town,
19 South Africa

20 ⁶Division of Immunology, Department of Pathology University of Cape Town

21 ⁷National Health Laboratory Service, South Africa

22 ⁸Department of Neuroscience, Graduate School of Biomedical Sciences, Tufts University
23 School of Medicine, Boston, MA, USA

24 ⁹Graduate School of Biomedical Science, Tufts University School of Medicine, Boston, MA,
25 USA

26 *Corresponding author

27

28

29 **Abstract**

30

31 The human brain undergoes protracted post-natal maturation, guided by dynamic changes in
32 gene expression. To date, studies exploring these processes have used bulk tissue analyses,
33 which mask cell type-specific gene expression dynamics. Here, using single nucleus (sn)RNA-
34 seq on temporal lobe tissue, including samples of African ancestry, we build a joint paediatric
35 and adult atlas of 54 cell subtypes, which we verify with spatial transcriptomics. We explore
36 the differences in cell states between paediatric and adult cell types, revealing the genes and
37 pathways that change during brain maturation. Our results highlight excitatory neuron
38 subtypes, including the LTK and FREM subtypes, that show elevated expression of genes
39 associated with cognition and synaptic plasticity in paediatric tissue. The new resources we
40 present here improve our understanding of the brain during a critical period of its
41 development and contribute to global efforts to build an inclusive cell map of the brain.

42 **Introduction**

43

44 The adult human brain is a complex assembly of diverse cell types, which has now been
45 defined with unprecedented accuracy using single cell transcriptomics¹⁻⁴. This adult
46 transcriptomic signature is set up over a protracted period of development, which begins in
47 the embryo and continues after birth as the brain matures. However, while the single cell
48 diversity of the embryonic human brain has been explored^{5,6}, little is known about how these
49 cell type-specific gene expression profiles change during childhood. Existing studies of gene
50 expression dynamics during human brain development and maturation have used bulk
51 transcriptomic approaches, which revealed a dramatic period of global gene expression
52 change during the late foetal/early infancy transition, that stabilises during childhood and
53 adolescence⁶⁻¹⁰. Bulk transcriptomics, however, cannot reveal the more subtle, cell type-
54 specific changes in gene expression that drive brain maturation from childhood, through
55 adolescence to adulthood.

56 Childhood and adolescence are periods of important changes in brain structure, during which
57 neuronal connections are refined and strengthened. While synaptogenesis peaks in the early
58 postnatal period, synaptic pruning activity begins during late childhood, peaks during
59 adolescence, and then gradually decreases¹¹⁻¹³. Together, synaptogenesis and synaptic
60 pruning influence brain plasticity, a feature which allows the brain to adapt in response to
61 experience¹⁴. Considering synaptic changes are most prominent in infancy, childhood and
62 adolescence, these stages represent periods of enhanced susceptibility to environmental
63 influence, as well as being periods of increased neuropsychiatric risk¹⁵. Describing the typical
64 cell type-specific gene expression trajectories of the maturing brain will serve as an important
65 reference to assess the effects of genetic perturbations and early adverse experiences on
66 brain maturation. Furthermore, investigating the driving forces behind cell type-specific
67 maturational processes may help in developing targeted therapies for neurological disease¹⁶.

68 To this end, the Paediatric Cell Atlas (PCA)¹⁷, a branch of the Human Cell Atlas (HCA) efforts
69 to map the cellular diversity of the human body³, aims to ensure that the benefits of single
70 cell transcriptomics, which will likely include vast improvements in precision medicine, are
71 available to children as well as adults from diverse populations^{3,17}. Considering that Africa has
72 the most genetically diverse¹⁸ and youngest population¹⁹ worldwide and that, by 2050, 37%
73 of the world's children will grow up in Africa²⁰, the inclusion of the African paediatric
74 population in the PCA's efforts has never been more pertinent. A reference paediatric cell
75 atlas for the brain that includes data from African donors will contribute to developing the
76 best treatment for locally prevalent conditions, such as tuberculosis meningitis and HIV
77 infection^{21,22}. In addition, studying the differences in gene expression dynamics between
78 adult and paediatric brains may explain why the manifestation of neurological conditions and
79 responses to therapies differ across the lifespan¹⁷.

80 To contribute to these endeavours, we present a joint paediatric and adult temporal cortex
81 cell atlas, including samples from eight South African donors. To facilitate a direct comparison
82 of our snRNA-seq datasets with the existing adult temporal cortex cell atlas, we annotate our
83 data using the Allen Brain Map middle temporal gyrus (MTG) cell taxonomy¹. We validate this
84 annotation approach using spatial transcriptomics analysis. In addition, we use *de novo*
85 marker gene analysis with machine learning tools to compare our paediatric and adult
86 datasets to the existing MTG cell taxonomy and highlight markers that define paediatric
87 versus adult cell states. Using differential gene expression analysis, we highlight six cell
88 subtypes, including two layer 2/3 excitatory neuron subtypes, that show differential
89 expression of genes involved in synaptic plasticity and cognition. Overall, we highlight the
90 subtle cell type-specific differences between the paediatric and adult brain and expand the
91 representation of diverse paediatric populations in the HCA.

92

93 **Results**

94

95 **A joint paediatric and adult temporal cortex cell atlas**

96

97 We generated snRNA-seq libraries from five paediatric and three adult donor temporal cortex
98 tissue samples using the 10x Genomics Chromium platform. These new libraries were
99 analysed alongside similar published datasets from one paediatric and three adult donors²³,
100 resulting in a total of 23 snRNA-seq datasets (including technical replicates) from 12
101 individuals (six paediatric and six adult) (Fig. 1a, Extended Data Table 1). The samples were
102 sequenced to a median depth of 19,853 reads per nucleus, with 176,012 nuclei remaining
103 after filtering low quality barcodes (Methods) (Extended data Fig. 1, Extended Data Table 2).

104

105 Using data integration and clustering (Methods), we aligned similar cell types across the 23
106 datasets (Fig. 1a, Extended data Fig. 1h), yielding 40 clusters (Extended data Fig. 1i). To
107 facilitate a direct comparison between our datasets and the current draft human brain cell
108 atlas, we used *Seurat*'s label transfer method²⁴ to classify each nucleus according to the Allen
109 Brain Map MTG atlas¹ (Fig. 1b; Extended Data Table 3). Of the 75 reference cell types, 21
110 neuronal subtypes were absent from our datasets (Extended Data Table 3). The majority of
111 the absent neuronal cell types are rare (<2% of all cells; see Extended Data Table 3), and
112 therefore their absence is likely due to the lower proportion of neurons in our datasets
113 compared to the reference atlas, which was made using cell-sorting to enrich for neurons¹.

114

115 As an initial validation of the label transfer, we confirmed that the majority of annotated cell
116 types expressed the expected cell type-specific marker genes¹ (Fig. 1c). Additionally, we
117 performed a correlation analysis to compare the transcriptomic similarity of the annotated
118 cell types to the reference MTG cell types¹ (Fig. 1d). The non-neuronal cell types showed high
119 correlation with the corresponding reference cell types, as well as high specificity (Fig. 1d).

120 Similarly, most neuronal subtypes showed high correlation with the corresponding subtype
121 in the reference datasets, however, there was also correlation with other subtypes within
122 their class. Exceptions were Exc_L4-6_FEZF2_IL26, which expressed the excitatory neuron
123 marker gene *FEZF2* but correlated more strongly with microglia, and Exc_L5-
124 6_THEMIS_FGF10, which expressed the inhibitory marker *LHX6* and correlated more strongly
125 with the inhibitory neuron subtypes (Fig. 1c-d). The overall cell composition of the paediatric
126 and adult samples was very similar. Oligodendrocytes and oligodendrocyte precursor cells
127 (OPCs) were the most common non-neuronal cell types and Exc_L2_LAMP5_LTK was the most
128 common neuronal cell subtype (Fig. 1e; Extended data Figure 2a-c).

129

130 Neuronal clusters had a greater number of expressed genes and unique molecular identifiers
131 (UMIs) compared to non-neuronal cells (Extended data Figure 3a). Similar to previous snRNA-
132 seq analyses of the adult brain^{1,2}, excitatory neurons had a greater number of genes detected
133 per nucleus than inhibitory neurons, with Exc_L2-3_LINC00507_FREM3 and Exc_L4-
134 5_RORB_FOLH1B among the cell types with the highest median gene detection. When
135 comparing the paediatric to adult samples, only two cell subtypes showed significant
136 differences in the number of genes (Exc_L2_LAMP5_LTK and Exc_L3-5_RORB_FILIP1L) and
137 UMIs (Exc_L2_LAMP5_LTK and Exc_L2-3_LINC00507_FREM3) between the age categories,
138 with the paediatric samples having a significantly larger value in each case (Extended data
139 Figure 3b-c). This result points towards higher transcriptional diversity in these neuronal
140 subtypes during childhood.

141

142

143 **Spatial mapping of cell types reveals similar tissue cytoarchitecture in adult and paediatric 144 temporal cortex**

145

146 Next, we used spatial transcriptomics to verify the positions of our annotated cell types within
147 the layered structure of the temporal cortex. We generated 10x Genomics Visium Spatial
148 Gene Expression datasets for frozen tissue sections from adult (31-year-old) and paediatric
149 (15-year-old) temporal cortex samples (two sections each; Extended Data Table 1; Extended
150 data Fig. 4). The four Visium libraries were sequenced to a median depth of 87,178 reads per
151 spot (median of 5,878 UMIs and 2,745 genes per spot) (Extended Data Table 4).

152

153 Using *cell2location*²⁵ (Methods), we calculated cell type abundance estimates for each Visium
154 spot, with our annotated snRNA-seq dataset as a reference. As seen in our snRNA-seq
155 datasets, oligodendrocytes were the most common cell type, while Exc_L2_LAMP5_LTK was
156 the most abundant neuronal cell type (Extended data Fig. 5a). Spatial plots of estimated cell
157 abundance for a selection of cell types revealed that the annotated cell types mapped to their
158 expected cortical layer locations across all tissue sections (Fig. 2a-b; Extended data Fig. 5b-c).
159 The two cell types that did not correlate strongly with the expected MTG reference atlas cell
160 types in our snRNA-seq analysis, Exc_L4-6_FEZF2_IL26 and Exc_L5-6_THEMIS_FGF10, were

161 most strongly distributed in layers 4-6, providing support for their annotation (Extended data
162 Fig. 5d). The layered pattern of the annotated cell types coincided with the spatial expression
163 of known cortical layer marker genes^{1,26,27} in the Visium datasets (Fig. 2c). These layered
164 expression patterns were verified for a subset of layer-specific marker genes using *in situ*
165 hybridisation analysis on frozen temporal cortex tissue sections from the same 31-year-old
166 and 15-year-old donors (Extended data Fig. 6).

167 To confirm the co-location of cell types within the layered structure of the temporal cortex,
168 non-negative matrix factorization (NMF) was performed using the cell abundance estimates
169 from *cell2location*, resulting in 12 cellular compartments (Fig. 2d). The NMF weights for the
170 identified cellular compartments were visualised across the Visium samples to assess their
171 spatial distribution (Fig. 2e). In both the paediatric and adult datasets, there was clear co-
172 location of the expected neuronal cell types within overlapping compartments across the
173 cortical layers, including layers 1-3 (factor_9), layers 3-5 (factor_3) and layers 4-6 (factor_7).
174 Several excitatory neuron subtypes formed discreet cellular compartments, including Exc_L2-
175 3_LINC00507_FREM (factor_4), Exc_L5-6_THEMEIS_CRABP1 (factor_11) and Exc_L5-
176 6_FEZF2_ABO (factor_6). The two astrocyte subtypes were confirmed to have distinct
177 distributions profiles, with Astro_L1-2_FGFR3_GFAP (factor_5) located primarily in layer 1
178 and the white matter, and Astro_L1-6_FGFR3_SLC14A1 (factor_8) more widely distributed.
179 The remaining non-neuronal cell types were largely associated with factors located in layer 1
180 and the white matter.

181 Overall, our spatial transcriptomic analyses provide support for our annotation approach,
182 showing the expected spatial distribution of annotated cell types, and revealing a similar
183 tissue cytoarchitecture in adult and paediatric temporal cortex tissue.

184

185 **A machine learning approach identifies gene pathways that distinguish paediatric and adult**
186 **cell states**

187

188 To establish a standardized and scalable approach for defining cell types, it has been proposed
189 to use the minimum combination of gene markers that can classify a cell type and distinguish
190 it from other cell types^{28,29}. Towards achieving this, Aevermann et al. (2021)²⁸ developed the
191 machine learning tool, *NS-Forest V2.0*, which they applied to the Allen Brain Map MTG
192 dataset. Ideally, these MTG minimal markers would be conserved in similar datasets to
193 facilitate accurate comparisons across different studies³⁰. We found that the MTG cell atlas
194 minimal markers²⁸ are indeed highly expressed in the expected cell types (Extended data Fig.
195 7).

196

197 Next, we applied the *NS-Forest V2.0*²⁸ algorithm to our datasets, firstly, to assess if the
198 identified minimal markers overlap with the published MTG minimal markers and, secondly,

199 to identify combinations of marker genes that distinguish the paediatric and adult states of
200 each cell type (Methods). 151 paediatric and 149 adult minimal marker genes were identified
201 across 53 cell types (Fig. 3; Extended data Table 5). There was little overlap with the MTG
202 atlas, with only 11 paediatric (7.3%) and 4 adult (2.7%) minimal markers showing overlap with
203 existing datasets^{1,28} (Fig. 3; Extended data Table 5). On the other hand, there was a greater
204 overlap in minimal markers between the paediatric and adult datasets, with 35 markers
205 (~23%) present in both lists.

206

207 Our minimal marker analysis revealed improved markers for several cell types when
208 compared to the reference MTG cell atlas. *DDR2* shows high specificity for *Inh_L1-2_PAX6_CDH12* (Fig. 3; Extended data Fig. 8a), while the existing minimal marker for this cell
209 type, *TGFB2*, is more highly expressed in the microglia and endothelial cells (Extended data
210 Fig. 7; Extended data Fig. 8b). Similarly, *SEMA3E* is very specific to *Exc_L5-6_FEZF2_ABO* (Fig.
211 3; Extended data Fig. 8c), while an existing minimal marker for this cell type, *SULF1*, is also
212 expressed at appreciable levels in other neurons (Extended data Fig. 7; Extended data Fig.
213 8d). Additionally, UMAP analysis of the annotated datasets using our minimal marker gene
214 list for each age group, in comparison to an equivalent number of random genes, resulted in
215 better grouping of the cell subtypes into clusters (Fig. 4 a-b). While the cell clusters are not as
216 clearly separated as the original UMAP plot, (see Fig. 1a), this analysis reveals that our short
217 list of ~150 marker genes captures much of the underlying transcriptomic diversity in our
218 datasets.

219

220 To explore the cellular functions of the paediatric and adult minimal marker genes
221 respectively, we used Gene ontology (GO) analysis (Extended Data Table 6), which revealed
222 significant enrichment of GO terms related to neuronal development and cell signalling for
223 both datasets. Interestingly, only the paediatric dataset was enriched for cellular migration
224 terms (Extended Data Table 6). Genes included in these sets were *RELN*, *CXCL14* and *SEMA3A*,
225 which play roles in neuronal migration during brain development³¹⁻³³. On the other hand, only
226 the adult datasets were enriched for extracellular matrix and cell death terms (Extended Data
227 Table 6). These broad analyses of minimal marker gene function indicate that genes involved
228 in neuronal development pathways remain key to neuronal identity, alongside functional
229 signalling molecules, as the brain matures and in adult life. Our results also suggest that genes
230 involved in cellular migration processes may continue to define cell states during childhood
231 and adolescence.

232

233 To further assess the difference in cell type-specific markers between our paediatric and adult
234 datasets, we expanded our analysis to include the top 50 genes identified as cell type
235 classification features for each cell type. For most cell types, the majority of these top markers
236 (>20 genes) were shared between our paediatric and adult datasets (Fig. 4c; Extended Data
237 Tables 7-8). The non-neuronal cell types showed the highest number of shared marker genes
238 (≥ 40). GO analysis of these shared marker genes showed significant enrichment of terms

240 related to cell type-specific functions, such as “leukocyte proliferation” for microglia, and
241 “myelin sheath” for oligodendrocytes (Extended Data Table 6). These results suggest that
242 paediatric and adult non-neuronal cell states are relatively similar, although it is likely that
243 more diversity in the marker gene profiles could be revealed with subdivision of the cells into
244 further subtypes.

245

246 The cell types with the fewest shared markers between our paediatric and adult datasets
247 (≤ 10) were mostly represented by fewer than 20 nuclei and therefore the lack of marker
248 overlap between our datasets is possibly due to sampling bias (Extended Data Table 6). An
249 exception was Exc_L4-6_FEZF2_IL26, represented by 2,579 nuclei, which had no shared
250 genes, two adult-specific genes (*SNAP25* and *CALM1*) and four paediatric-specific genes
251 (*MEF2A*, *MEF2C*, *DOCK4* and *PLXDC2*) (Fig. 4c; Extended Data Tables 7-8). Interestingly, the
252 paediatric-specific markers for this cell type are implicated in neuronal development
253 processes, including synaptic plasticity³⁴, dendritic branching³⁵ and neuronal proliferation³⁶.
254 The cell type with the greatest number of paediatric-specific marker genes was Exc_L4-
255 5_RORB_DAPK2 (29 paediatric vs 3 adult markers) (Fig. 4c; Extended Data Tables 7-8). GO
256 analysis of the 29 paediatric-specific marker genes for this cell type revealed enriched terms
257 related to synapse development, while similar analysis of the 19 shared genes together with
258 the three adult-specific genes highlighted terms involved in synaptic function (Extended Data
259 Table 6).

260

261 Overall, our expanded marker gene analysis suggests that neuronal cell types show greater
262 dissimilarity between their paediatric and adult states than non-neuronal cells, and reveals
263 several paediatric-specific markers that reflect the less mature state of paediatric neuron
264 subtypes.

265

266

267 **Differential gene expression analysis highlights six cell subtypes and enriched expression of**
268 **genes associated with synaptogenesis and cognition in paediatric samples.**

269

270 While our minimal marker gene analysis provides insight into the genetic signatures that
271 distinguish cell types from one another over the course of brain maturation, we were also
272 interested in investigating how the general transcriptomic profile of each cell type differs in
273 children when compared to adults. In particular, we sought to identify genes that were
274 upregulated in the paediatric cell populations and thus might be involved in childhood brain
275 development and function. To this end, we conducted cell type-specific differential gene
276 expression analysis with *DESeq2*³⁷ (Methods).

277

278 In total, we detected 166 unique significantly differentially expressed genes (DEGs) across 12
279 out of the 54 annotated cell types, with some DEGs associated with multiple cell types (Fig.
280 5a; Extended data Table 9). When the magnitude of fold change of the DEGs was considered,

281 143 genes across six cell types changed by at least 10%, with a positive fold change indicating
282 higher expression in our paediatric samples (Fig. 5b-c). The six cell types included four
283 excitatory neuron subtypes, one inhibitory subtype and one astrocyte subtype (Fig. 5b-c;
284 Extended data Table 10). For the majority of DEGs, the change in expression was accompanied
285 by a corresponding change in the percentage of nuclei expressing the gene (Extended data
286 Table 10). We assessed the expression patterns of a subset of DEGs in our Visium datasets
287 using *BayesSpace*³⁸ (Methods), confirming that the genes were expressed at higher levels and
288 in a greater number of spots in the 15-year-old compared to the 31-year-old (Extended data
289 Fig. 9).

290

291 The layer 2/3 excitatory neuron subtypes, *Exc_L2_LAMP5_LTK* and *Exc_L2-3_LINC00507_FREM3*, shared several upregulated DEGs that are developmentally regulated
292 in the mammalian brain (Fig. 5c-d). *FNBP1L* (*TOCA-1*) regulates neurite outgrowth³⁹ and is
293 associated with intelligence⁴⁰. In line with our findings, its expression declines over the course
294 of brain maturation in the rat³⁹. Similarly, both *KCNG1*, a voltage gated-potassium channel
295 (*Kv6.1*), and *MYO16* (*MYR8*), an unconventional myosin protein, decrease in expression with
296 age in the mouse⁴¹ and rat⁴² brain, respectively. These findings indicate that previously
297 reported expression dynamics for these genes in mammalian models are conserved in the
298 human temporal cortex, with higher expression in children. Importantly, our analysis reveals
299 that these patterns are specific to two layer 2/3 excitatory neuron subtypes.

300

301 Two significantly upregulated genes in the layer 2/3 excitatory neurons, *LUZP2* and *RERGL*
302 (Fig. 5c-d), are associated with neuropsychiatric disorders, as well as brain cancers. *LUZP2*, a
303 leucine zipper protein, is associated with Alzheimer's Disease and schizophrenia, as well as
304 cognitive performance in the normal elderly population⁴³. It is differentially expressed in
305 several cancers, including low grade gliomas⁴⁴. Similarly, *RERGL* is differentially expressed in
306 schizophrenia⁴⁵, while its expression is significantly higher in meningiomas compared to
307 healthy tissue⁴⁶. Our results suggest that these genes likely play a role in the maturation of
308 layer 2/3 excitatory neurons.

309

310 The layer 3-5 excitatory neuron subtypes, *Exc_L3-5_RORB_ESR1* and *Exc_L4-5_RORB_DAPK2*,
311 shared 3 upregulated DEGs, which have known roles in the development and reorganisation
312 of neuronal connections (Fig. 5c,e). *XKR4* is a member of a plasma membrane protein family
313 involved in signalling cellular compartments for engulfment, such as during synaptic
314 pruning⁴⁷. These proteins decrease in expression with age in the mouse brain⁴⁸. *TENM1*, is a
315 member of the teneurin transmembrane protein family that regulate cytoskeletal
316 organisation and neurite outgrowth, as well as shaping synaptic connections⁴⁹⁻⁵¹. *AGBL1*
317 (*CCP4*) is a glutamate decarboxylase that mediates deglutamylation of tubulin⁵². This process
318 is essential for the maintenance of neuronal tubulin, and when disrupted, contributes to
319 neurodegeneration^{52,53}. Our results point towards a role for these genes specifically in *Exc_L3-*

321 5_RORB_ESR1 and Exc_L4-5_RORB_DAPK2 neurons, where they possibly contribute to the
322 re-shaping of neuronal connections during brain maturation.

323

324 The majority of the DEGs in the four neuronal subtypes were not shared across the cell types
325 and represent promising candidates for future explorations into molecular mechanisms
326 guiding cell type-specific brain maturation. For example, *FGF13* (*FHF2*) was significantly
327 upregulated in Exc_L3-5_RORB_ESR1 (Fig. 5c). *FGF13* decreases in expression with age in the
328 mouse brain, where it regulates post-natal neurogenesis⁵⁴ and axonal formation⁵⁵. Similarly,
329 *PLPPR1* (*PRG1*) was significantly upregulated in Exc_L2-3_LINC00507_FREM3 (Fig. 5c). *PLPPR1*
330 is higher in the postnatal mouse hippocampus than in the adult⁵⁶ and is also known to
331 regulate axon growth by modulating cytoskeletal dynamics⁵⁷.

332

333 In Inh_L2-6_VIP_QPCT, a single lncRNA, *LINC00276*, was upregulated (Fig. 5b). While this non-
334 coding RNA has been shown to be expressed in the brain⁵⁸, nothing is known of its function
335 there. Similarly, in Astro_L1-6_FGFR3_SLC14A1, a single non-coding gene, *AC109439.2* (*CTB-1/21*),
336 was significantly upregulated (Fig. 5c, f). This lncRNA has recently been identified as a
337 protective factor in oesophageal cancer⁵⁹ and glioma⁶⁰. One of the downregulated genes in
338 this cell type, *ADAM28*, a metalloproteinase, has been found to be upregulated in breast and
339 lung cancers⁶¹. These results provide new molecular candidates to expand our understanding
340 of molecular mechanisms of astrocyte maturation.

341

342 Genes associated with intelligence quotient (IQ) and educational attainment (EA) have
343 recently been shown to be enriched in adult temporal lobe cortical neurons, especially the
344 Exc_L2-3_LINC00507_FREM3 subtype⁶². Since childhood is a key period of cognitive
345 development⁶³, we explored whether the same genes were found amongst our DEGs. Of the
346 137 DEGs found in at least one neuronal cell type, 15 (11%) are known to be significantly
347 associated with EA⁶⁴ and 4 (3%) with IQ⁶⁵. These included several genes enriched in paediatric
348 samples, such as *MYO16*, *KCNG1* and *LUZP2* (Extended data Table 10).

349

350 Overall, our differential expression analysis highlights six cell subtypes that show significant
351 changes in gene expression between children and adults. Several of the genes that are
352 upregulated in children have known roles in brain development and have been associated
353 with cognitive ability. Our analysis builds on this knowledge by implicating specific paediatric
354 cell subtypes and provides new candidate genes that likely contribute to cell type-specific
355 maturation processes.

356

357 **Gene pathways involved in synaptic development and functioning are enriched in
358 paediatric cell types**

359

360 We next used gene set enrichment analysis (GSEA) to conduct a broad analysis of the gene
361 pathways that are differentially regulated across all brain cell types during brain maturation

362 (Methods). GSEA aggregates the information from many genes to identify enriched functional
363 pathways, allowing us to interrogate the gene signature changes across all cell types,
364 including those that did not show any significant DEGs⁶⁶.

365

366 In total, 2,003 GOBP terms were enriched in the paediatric samples compared to the adults,
367 while 866 were depleted ($p<0.01$ and $q<0.1$) (Extended data Table 11). When focusing on the
368 25 most frequently enriched terms, the majority (11 terms) were associated with cellular
369 respiration pathways (Fig. 6; Extended data Table 11). Six of the most commonly enriched
370 terms were linked to synaptic development and functioning. A similar trend was observed
371 when focussing on the cell types from our differential expression analysis, with gene
372 expression, cellular respiration and synapse development pathways dominating the top
373 enriched terms (Fig. 5g).

374

375 Focusing on pathways that are depleted in the paediatric brain, four of the top ten depleted
376 terms, including the top term, were associated with neuronal ensheathment (Fig. 6).
377 Interestingly, none of these terms were significantly enriched in oligodendrocytes or OPCs,
378 while they were associated with neuronal sub types, astrocytes and microglia. The remainder
379 of the top ten depleted terms included neuronal morphogenesis, cell adhesion and gene
380 expression pathways.

381

382 Overall, our GSEA analysis points towards putative genetic pathways that may drive the
383 differences in synaptic plasticity between the paediatric and adult brain. Pathways related to
384 reorganising and strengthening synapses may be enhanced across multiple cell types during
385 childhood, while those required to limit synaptic growth, such as axonal ensheathment
386 pathways, may need to be suppressed.

387

388

389 **Discussion**

390

391 The brain is the most complex organ in the human body, which continuously changes as we
392 mature and age. Existing studies exploring the transcriptomic changes across the full span of
393 brain maturation have used bulk transcriptomic techniques⁶⁻¹⁰, which drown out the subtle
394 molecular events taking place within specific cell types. Here, we unmask these processes,
395 using single cell transcriptomics to compare similar cell types between paediatric and adult
396 datasets.

397

398 To facilitate accurate comparisons of cell types across age groups, we used the existing Allen
399 Brain Map MTG cell atlas¹ to annotate our datasets. This demonstrated that the reference
400 atlas, generated from eight adult snRNA-seq datasets, is indeed generalisable³⁰, and can be
401 used to classify cell types in similar datasets from samples of different ages. This
402 generalisability is essential for healthy human reference atlases to serve as a baseline to

403 improve our understanding of human development and disease³. Our machine-learning
404 marker gene analysis also shows that while the cell type classifications, which are based on
405 the expression of thousands of genes, can be transferred onto new datasets, the minimal
406 markers that define the cell types do vary across datasets. Very few of our *NS-Forest* minimal
407 markers overlap with the existing MTG cell atlas minimal markers^{1,28} and some provide better
408 discrimination between cell type than the existing markers. These results highlight that the
409 minimal markers that currently define the MTG cell taxonomy will likely need to be revised
410 as more samples are made available to ensure that the cell type classification is as widely
411 applicable as possible.

412

413 Similar to previous analyses of aging in the mouse⁶⁶, our integrated analysis of paediatric and
414 adult datasets showed there is little change in cell type composition within the temporal
415 cortex during human brain maturation. However, both our minimal marker analysis and
416 differential gene expression analysis highlight differences in cell states between paediatric
417 and adult cell types. GO analysis of our minimal marker genes revealed a signal for migratory
418 pathways amongst the paediatric minimal markers, including genes that code for
419 chemoattractants, such as *RELN* and *CXCL14*. While these genes are expressed in the
420 mammalian adult brain^{26,67,68}, our analysis suggests that they play a greater role in defining
421 cell identity in childhood, where these signals possibly function to mediate processes such as
422 dendritic outgrowth and the rearrangement of neuronal synaptic connections.

423

424 In recent years, the excitatory pyramidal neurons in the supragranular layers of the MTG have
425 been shown to have high transcriptional diversity^{1,69} and to possess unique features including
426 exceptionally large arborisations⁷⁰ and electrophysiological properties that impact signal
427 integration and encoding⁷¹⁻⁷⁴ in ways that may enhance neuronal computational abilities,
428 contributing to human cognition. Since cognitive ability is a key feature that is established
429 during childhood⁶⁸, our differential expression analysis offers an extraordinary opportunity to
430 explore how cell type-specific gene expression dynamics contribute to cognitive
431 development. We highlight six cell subtypes that show significant gene expression changes
432 between childhood and adulthood. Interestingly, two of these cell types were the layer 2/3
433 excitatory neurons, *Exc_L2_LAMP5_LTK* and *Exc_L2-3_LINC00507_FREM3*, that have recently
434 been associated with human cognition⁶². In line with these findings, several of the DEGs
435 shared by these cell types, including *FNBP1L*⁴⁰ and *LUZP2*⁴³, have been implicated in cognitive
436 ability and intelligence. Overall, our data points towards genes and pathways that likely play
437 key roles in cognitive development specifically within these layer 2/3 excitatory neurons.

438

439 The relatively low number of genes and cell types implicated in our differential expression
440 analysis in comparison to similar studies in mouse⁶⁶ suggests that the difference between the
441 paediatric and adult brain are subtle. However, the inherent high variability in human gene
442 expression data may potentially mask some of the differential gene expression in our limited
443 sample. As the HCA database for the human temporal cortex expands, it will be important to

444 build on these analyses with more samples for each developmental stage to provide more
445 support for our findings.

446

447 We have provided the first single cell gene expression datasets for the brain that includes
448 data from black South African donors, thus increasing the diversity of the HCA database. Our
449 paediatric datasets will form important baseline references for future studies aiming to
450 explore how locally important challenges to child brain health, including infectious diseases
451 and traumatic brain injury, impact on the normal gene expression profiles. Importantly, these
452 investigations will contribute to the development of effective treatments, that are tailored to
453 specific needs of paediatric patients.

454

455

456 **Methods**

457

458 **Human samples**

459 Ethical approval was granted for the collection and use of paediatric and adult human brain
460 tissue by the University of Cape Town Human Research Ethics Committee (UCT HREC REF
461 016/2018; sub-studies 146/2022 and 147/2022). The human brain tissue samples used to
462 generate new 10x Genomics snRNA-seq and Visium datasets were obtained by informed
463 consent for studies during temporal lobe surgical resections to treat epilepsy and/or cancer
464 performed at the Red Cross War Memorial Children's Hospital and Constantiaberg Mediclinic
465 in Cape Town, South Africa. The samples used in this study were of temporal cortex origin and
466 represent radiologically and macroscopically normal neocortex within the pathological
467 context (details in Extended Data Table 1). Upon resection, samples were placed in
468 carbogenated ice-cold artificial cerebral spinal fluid (aCSF) containing in (mM): 110 choline
469 chloride, 26 NaHCO₃, 10 D-glucose, 11.6 sodium ascorbate, 7 MgCl₂, 3.1 sodium pyruvate, 2.5
470 KCl, 1.25 NaH₂PO₄, and 0.5 CaCl₂ (300 mOsm) and immediately transported to the laboratory
471 (~20 minutes). Tissue blocks containing the full span from pia to white matter were prepared
472 and either flash frozen in liquid nitrogen or embedded in optimal cutting temperature
473 compound (OCT) and stored at -80°C. The OCT-embedded samples were flash frozen in a
474 10×10 mm² cryomold which was either frozen directly in liquid nitrogen or placed in a
475 container of isopentane (Merck) which was in turn placed in liquid nitrogen at the same level
476 as the isopentane. The publicly available snRNA-seq datasets²³, generated from samples
477 obtained during elective surgeries performed at Universitair Ziekenhuis Leuven, Belgium,
478 were downloaded from the Sequence Read Archive database.

479

480 **Nuclei isolation for snRNA-seq**

481 Nuclei were isolated according to a protocol adapted from Habib et al. (2017)⁷⁵ and the 10X
482 Genomics nuclei isolation protocol (CG000124, User Guide Rev E). Frozen brain tissue was
483 homogenised in a dounce-homogeniser containing 2 ml ice-cold lysis solution (Nuclei EZ Lysis
484 Buffer [Sigma-Aldrich, NUC101] or Nuclei PURE Lysis buffer [Sigma-Aldrich, NUC201] with 1

485 mM dithiothreitol [DTT, Promega, P1171, US] and 0.1% Triton X-100 [Sigma-Aldrich, NUC201-
486 1KT, US]). Homogenisation was done 20 times with the loose pestle A followed by 20 times
487 with the tight pestle B. An additional 2 ml lysis solution was added, and the sample was
488 incubated for 5 minutes on ice. The sample was centrifuged at 500 x g for 5 minutes at 4°C
489 after which the supernatant was discarded and the nuclei resuspended in 3 ml ice cold nuclei
490 suspension buffer (1x phosphate-buffered saline [PBS, Sigma-Aldrich, P4417-50TAB, US]),
491 0.01% bovine serum albumin [BSA, Sigma-Aldrich, A2153-10G, US], and 0.2 U/μl RNAsin Plus
492 RNase inhibitor [Promega, N2615, US]). Resuspended nuclei were passed through a 40 μm
493 filter and centrifuged at 900 x g for 10 minutes at 4°C. The supernatant was discarded and
494 pelleted nuclei were resuspended in 3 ml blocking buffer (1xPBS [Sigma-Aldrich, P4417-
495 50TAB, US], 1% BSA [Sigma-Aldrich, A2153-10G, US], 0.2 U/μl RNAsin Plus RNase inhibitor
496 [Promega, N2615, US]).

497

498 To remove myelin debris, 30 μl of myelin removal beads [Miltenyi Biotec. 130-096-733, US]
499 was added to the solution which was mixed by gently pipetting 5 times. The sample was
500 incubated for 15 minutes at 4°C after which it was mixed with 3 ml blocking buffer and
501 centrifuged at 300 x g for 5 minutes at 4°C. The supernatant was removed and the nuclei were
502 resuspended in 2 ml clean blocking buffer. The sample was transferred to a 2 ml tube and
503 placed on a Dynamag magnet for 15 minutes at 4°C. The supernatant was transferred to a
504 new tube and stored on ice. An aliquot of trypan blue stained nuclei was counted using a
505 haemocytometer to determine the nuclei concentration and the volume to use in snRNA-seq
506 library preparation.

507

508 **10X Genomics snRNA-seq library preparation**

509 snRNA-seq library preparation was carried out using the 10x Genomics Chromium Next Gen
510 Single Cell 3' Reagent Kit (v3.1) according to manufacturer's protocols (CG000204, User Guide
511 Rev D), targeting 10,000 nuclei per sample. At step 2.2d and 3.5e, the libraries were amplified
512 using 11 cycles and 13 cycles, respectively. Library quality and concentration was assessed
513 using either the TapeStation or Bioanalyser (Agilent) and Qubit (Invitrogen) at the Central
514 Analytical Facility (CAF, University of Stellenbosch). cDNA libraries were sequenced by
515 Novogene (Singapore) on either the Illumina HiSeq or NovaSeq system using the Illumina High
516 Output kits (150 cycles).

517

518 **snRNA-seq read alignment and gene expression quantification**

519 Fastq files were aligned to the human reference transcriptome (GRCh38) and quantified using
520 the count function from the 10X Genomics Cell Ranger v6.1.1 software (Cell Ranger, RRID
521 SCR_017344) (Code availability: script 1). The inclusion of introns was specified in the count
522 function. An automatic filtering process was performed to remove barcodes corresponding
523 to background noise which have very low UMI counts.

524

525 **snRNA-seq quality control**

526 The resulting count matrices were processed using a pipeline adapted from the Harvard Chan
527 Bioinformatics Core (https://hbctraining.github.io/scRNA-seq_online/). The filtered gene
528 barcode matrix for each sample was imported into R (V.4.2.0) using the Read10X function
529 from the Seurat (v.2.0)²⁴. Nuclei-level filtering was performed to remove poor quality nuclei
530 according to their number of UMIs (nUMIs) detected, number of genes detected (nGene),
531 number of genes detected per UMI (log10GenesPerUMI), and the fraction of mitochondrial
532 read counts to total read counts (mitoRatio) (Code availability: script 2). Nuclei that met the
533 following criteria were retained: nUMI > 500, nGene > 250, log10GenesPerUMI > 0.8 and
534 mitoRatio < 0.2. Gene-level filtering was performed to remove genes that had zero counts in
535 all nuclei, remove genes expressed in fewer than 10 nuclei, and remove mitochondrial genes
536 from the gene by cell counts matrix. Three doublet removal tools namely
537 DoubletFinder⁷⁶(Code availability: script 3), DoubletDecon⁷⁷ (Code availability: script 4), and
538 Scrublet⁷⁷ (Code availability: script 5,6) were used to identify doublets for each dataset
539 individually. The sample-specific parameters of each of the tools were adjusted according to
540 the specified guidelines. To achieve a balance between the false positive and false negative
541 rate of the different doublet detection tools, all doublets identified by DoubletFinder as well
542 as the intersection of the doublets identified by DoubletDecon and Scrublet, were removed⁷⁷.

543

544 **snRNA-seq data normalization, integration and clustering**

545 Principal component analysis was performed to evaluate known sources of within-sample
546 variation between nuclei, namely the mitoRatio and cell cycle phase (Code availability: script
547 7). The UMI counts of the 3000 most variable features were normalised and scaled on a per
548 sample basis by applying Seurat's SCTransform function with mitoRatio regressed out. A
549 Uniform Manifold Approximation and Projection (UMAP) analysis was performed on the
550 merged object to assess whether integration was necessary. The datasets were subsequently
551 integrated using Seurat's SelectIntegrationFeatures, PrepSCTIntegration,
552 FindIntegrationAnchors, and IntegrateData functions (Code availability: script 7). To cluster
553 the datasets following integration, dimensionality reduction was first performed using UMAP
554 embedding, specifying 40 dimensions (Code availability: script 8). The Seurat FindClusters
555 function was then applied at a resolution of 0.8.

556

557 **snRNA-seq cluster annotation**

558 Label transfer was performed using Seurat's TransferData function with Allen Brain Map MTG
559 atlas¹ as a reference dataset (Code availability: scripts 9-10). This resulted in each barcode in
560 the query dataset receiving a predicted annotation based on a similarity score to an
561 annotated cell type in the reference. To validate the annotation, the expression of known
562 marker genes was assessed. Additionally, cosine similarity scores were computed to compare
563 the transcriptomic similarity of each of the 54 annotated query cell types to the 75 reference
564 middle temporal gyrus cell types using the SCP package (<https://github.com/zhanghao->

565 [njmu/SCP](#) (Code availability: script 11). This was achieved by computing cosine similarity
566 scores for each pair of query and reference cell types using the expression of the top 2000
567 shared highly variable features between the query and reference datasets. The log
568 normalised expression counts were used for this purpose (RNA assay, data slot).

569

570 **NS-Forest machine learning marker analysis of snRNA-seq datasets**

571 The NS-Forest tool (v2.0)^{28,29} was used to identify combinations of marker genes uniquely
572 defining each annotated cell type (Code availability: script 12-14) in the paediatric and adult
573 datasets separately. The number of nuclei per sample was randomly down-sampled to that
574 of the sample with the fewest nuclei (n=4865). A random-forest model was used to select a
575 maximum of 50 marker genes per cell type based on them being both highly expressed as
576 well as uniquely expressed within a cell type compared to other cell types (i.e., the top Gini
577 Index ranked features with positive expression values). The number of trees chosen for this
578 model was 35,000, the cluster median expression threshold was set to the default value of
579 zero, the number of genes used to rank permutations of genes by their F-beta-score was 6,
580 and the beta weight of the F score was set to 0.5 allowing the outputs to be directly compared
581 to the Allen Brain Map MTG atlas minimal markers¹. To assess the relevance of these markers
582 in terms of their capacity to distinguish different cell types in a UMAP analysis, the SCT and
583 integration methods were repeated using either a random set of genes or the NS-Forest
584 markers as anchors²⁸ (Code availability: script 15).

585

586 **DESeq2 age-dependent differential gene expression analysis of snRNA-seq datasets**

587 DESeq2³⁷ was used to identify genes that were differentially expressed with age (Code
588 availability: script 16). The unnormalized counts were aggregated across all nuclei for each
589 cluster and sample to generate a 'pseudobulk' counts matrix with the counts from technical
590 replicates collapsed to the level of biological replicates. Genes were filtered to only include
591 those expressed in more than 10% of nuclei for a given cell type. Principal component analysis
592 was performed on each cell type separately in order to assess the variation between samples
593 and determine which variables were contributing most to inter-sample variation from a set
594 of possible variables. The collapsed counts served as input into DESeq2's
595 DESeqDataSetFromMatrix function in which the design formula ~single_cell_chemistry +
596 age_group was specified to treat the age_group (paediatric vs adult) as the variable of interest
597 while the effect of single_cell_chemistry (version2 vs version3 chemistry) was regressed out.
598 A hypothesis test was performed using the Wald test. The null hypothesis for each gene was
599 that there is no difference in gene expression between the sample groups (i.e Log2 Fold
600 Change = 0). A Wald test statistic was determined for each gene together with the associated
601 p-value after which the p-values were adjusted for multiple testing using the Benjamini and
602 Hochberg method. Positive log2 Fold Changes represent genes which are upregulated in
603 paediatric samples compared to adult samples ($p_{adj} < 0.05$).

604

605

606 **Pathway enrichment analysis of snRNA-seq datasets**

607 GO analysis of NS-Forest marker genes was performed on the gProfiler web server⁷⁸ using
608 default settings ($p_{adj} < 0.05$) with “highlight diver terms in GO” selected.

609

610 Neuronal DEGs identified by DESeq2 (see Extended data Table 10) that were associated with
611 EA and IQ were determined by comparing the list of neuronal DEGs to the EA and IQ gene
612 lists used by Driessens et al. (2023)⁶², which were subsets of the lists from Lee et al. (2018)⁶⁴
613 and Savage et al. (2018)⁶⁵ respectively.

614

615 GSEA on the DESeq2 output for all genes was performed using the Broad Institute’s GSEA
616 software (<https://www.gsea-msigdb.org/gsea/msigdb>) (Code availability: script 17). The gene
617 lists for each cell type were queried against the C5 GO Biological Processes collection
618 comprising of gene sets derived from the GO Biological Process ontology. The input lists of
619 genes were ranked according to the $-\log(p\text{-value}) * \log_2\text{FoldChange}$ for each gene. The
620 parameters specified to the GSEA function included number of permutations ($nperm=1000$),
621 minimum gene set size ($set_min=15$), maximum gene set size ($set_max=200$), excludes genes
622 that have no gene symbols ($collapse=$ No_Collapse, value to use for the single identifier that
623 will represent all identifiers for the gene ($mode=$ Max_probe, normalised enrichment score
624 method ($norm=$ meandiv, weighted scoring scheme ($scoring_scheme=$ classic. Positive
625 Normalised Enrichment Scores (NES) represent genes that were upregulated in the paediatric
626 population compared to the adult population ($p<0.01$ and $q<0.1$). To visualise the output of
627 universally enriched pathways across multiple cell types, the top 25 most frequently
628 appearing positively and negatively associated terms were plotted. Additionally, for five cell
629 types of interest [which had DEGs meeting the threshold of $p<0.05$ and $\text{abs}(\log_2\text{FC})>0.1$], the
630 top 5 positively associated terms were plotted.

631

632 **snRNA-seq data plots**

633 Plots were produced with Seurat²⁴, ggplot2⁷⁹, ShinyCell⁸⁰ and Microsoft Excel.

634

635 **10x Genomics Visium library preparation**

636 Frozen OCT embedded brain tissue samples were scored using a pre-chilled razor blade to fit
637 in the Spatial Gene Expression slide capture areas. 10 μm -thick sections were cut using a
638 cryostat (Leica CM1860/CM1950) and collected onto the Spatial Gene Expression slide
639 capture areas. Two replicate sections of the 15-year-old (10 μm apart) and two replicate
640 sections of 31-year-old (40 μm apart) were collected. The spatial Gene Expression slides with
641 tissue sections were stored in a sealed container at -80°C. Captured sections were
642 Haematoxylin and Eosin (H&E) stained according to the 10x Genomics Demonstrated Protocol
643 Guide (CG000160, Rev B). Brightfield images of the stained sections were captured using an
644 EVOS M5000 microscope (Thermo Fisher Scientific) at 20x magnification without
645 coverslipping. Overlapping images of the sections including the fiducial frame were stitched
646 together using Image Composite Editor-2.0.3 (Microsoft). Visium libraries were prepared

647 from the stained tissue sections following the Visium Spatial Gene Expression Reagents Kit
648 User Guide (CG000239, Rev D). At Step 1.1 the tissue was permeabilised for 12 minutes as
649 determined using the Visium Spatial Gene Expression Tissue Optimisation User Guide
650 (CG000238, Rev D). At Step 3.2, cDNA was amplified using 20 cycles. Library quality and
651 concentration was assessed using TapeStation (Agilent) and Qubit (Invitrogen) at the Central
652 Analytical Facility (CAF, University of Stellenbosch). Libraries were sequenced by Novogene
653 (Singapore) on the Illumina NovaSeq system using the Illumina High Output kits (150 cycles).
654

655 **Visium read alignment and gene expression quantification**

656 The H&E images were processed using the 10X Genomics Loupe Browser V4.0 Visium Manual
657 Alignment Wizard. 10X Genomics Space Ranger *count* (10X Space Ranger V1.3.0) was used to
658 perform alignment of FASTQ files to the human reference transcriptome (GRCh38), tissue
659 detection, fiducial detection and barcode/UMI counting.

660

661 **cell2location analysis of Visium datasets**

662 The average number of nuclei per Visium spot was determined using Vistoseg⁸¹ (Code
663 availability: script 18). Cell2location (version 0.7a0)²⁵ was used to spatially map the brain cell
664 types by integrating the Visium data count matrices (Space Ranger output) with the
665 annotated snRNAseq datasets (Code availability: script 19). To avoid mapping artifacts,
666 mitochondrial genes were removed from the Visium datasets prior to spatial mapping.
667 Reference signatures of the 54 annotated cell populations were derived using a negative
668 binomial regression model using the default values. Unnormalized and untransformed
669 snRNA-seq mRNA counts were used as input in the regression model for estimating the
670 reference signatures (Code availability: script 20). The snRNA-seq mRNA counts were filtered
671 to 13,870 genes and 176,012 cells. The cell2location model for estimating the spatial
672 abundance of cell populations was filtered to 13,858 genes and 14,324 cells that were shared
673 in both the snRNA-seq and Visium data. The following cell2location parameters were used:
674 training iterations = 30,000 cell per location, $N^a = 10$ (estimated using Vistoseg segmentation
675 results), Normalization (ys) alpha prior = 20 (Code availability: script 21). To visualise the cell
676 abundance in spatial coordinates 5 % quantile of the posterior distribution was used, which
677 represents the value of cell abundance that the model has high confidence in (Code
678 availability: script 22). Cell2location's Non-negative Matrix Factorization (NMF) was used to
679 identify cellular compartments and cell types that co-locate from the cell type abundance
680 estimates, using n_fact=12 (Code availability: script 23)

681

682 **BayesSpace analysis of Visium datasets**

683 The raw gene expression counts from Space Ranger were normalized, log transformed and
684 principal component analysis was performed on the top 2000 highly variable genes. To obtain
685 high-resolution gene expression, the principal component values were mapped back to their
686 original log-transformed gene expression space (spot level) using the default BayeSpace³⁸
687 regression (Code availability: script 24). To do this the principal components from the original

688 data were used as predictors in training the model for each gene, in which the results were
689 the measured gene expression at the spot level. The trained model was then used to predict
690 the gene expression at sub spot level using high resolution PCs. The high-resolution model
691 was trained using default values except for the following parameters: 7 PCs, Number of
692 clusters = 8, nrep = 100,000, burn-in = 10,000.

693

694 ***In situ* Hybridisation Chain Reaction (HCR) on frozen human tissue sections**

695 10 µm thick frozen sections were collected on Histobond+ slides (Marienfeld) and stored at -
696 20°C. The *In situ* HCR protocol was carried out on tissue sections as detailed in Choi et al.
697 (2016)⁸² using reagents, probes and hairpins purchased from Molecular Instruments. Probes
698 were ordered for the following genes: *RELN* (NM_005045.4), *FABP7* (CR457057.1), *AQP4*
699 (NM_001650.5), *RORB* (NM_006914.4), *CLSTN2* (NM_022131.3) and *TSHZ2* (NM_173485.6).
700 When necessary to quench lipofuscin autofluorescence, sections were rinsed after HCR in 1x
701 PBS and treated with 200 µl TrueBlack (Biotium) for 30 sec. Slides were rinsed in PBS, stained
702 with Hoescht (Thermofisher) and mounted using SlowFade Gold Antifade Reagent
703 (Invitrogen). Sections were imaged using the LSM 880 Airyscan confocal microscope (Carl
704 Zeiss, ZEN SP 2 software) using the 40X or 60X objective.

705

706

707 **References**

708

- 709 1 Hodge, R. D. *et al.* Conserved cell types with divergent features in human versus
710 mouse cortex. *Nature* **573**, 61-68 (2019).
- 711 2 Bakken, T. E. *et al.* Comparative cellular analysis of motor cortex in human, marmoset
712 and mouse. *Nature* **598**, 111-119, doi:10.1038/s41586-021-03465-8 (2021).
- 713 3 Regev, A. *et al.* The Human Cell Atlas. *Elife* **6**, doi:10.7554/elife.27041 (2017).
- 714 4 Network, B. I. C. C. A multimodal cell census and atlas of the mammalian primary
715 motor cortex. *Nature* **598**, 86-102, doi:10.1038/s41586-021-03950-0 (2021).
- 716 5 Darmanis, S. *et al.* A survey of human brain transcriptome diversity at the single cell
717 level. *Proc Natl Acad Sci U S A* **112**, 7285-7290, doi:10.1073/pnas.1507125112 (2015).
- 718 6 Li, M. *et al.* Integrative functional genomic analysis of human brain development and
719 neuropsychiatric risks. *Science* **362**, doi:10.1126/science.aat7615 (2018).
- 720 7 Werling, D. M. *et al.* Whole-Genome and RNA Sequencing Reveal Variation and
721 Transcriptomic Coordination in the Developing Human Prefrontal Cortex. *Cell Rep* **31**,
722 107489, doi:10.1016/j.celrep.2020.03.053 (2020).
- 723 8 Kang, H. J. *et al.* Spatio-temporal transcriptome of the human brain. *Nature* **478**, 483-
724 489, doi:10.1038/nature10523 (2011).
- 725 9 Colantuoni, C. *et al.* Temporal dynamics and genetic control of transcription in the
726 human prefrontal cortex. *Nature* **478**, 519-523, doi:10.1038/nature10524 (2011).
- 727 10 Donertas, H. M. *et al.* Gene expression reversal toward pre-adult levels in the aging
728 human brain and age-related loss of cellular identity. *Sci Rep* **7**, 5894,
729 doi:10.1038/s41598-017-05927-4 (2017).

730 11 Bourgeois, J. P. & Rakic, P. Changes of synaptic density in the primary visual cortex of
731 the macaque monkey from fetal to adult stage. *J. Neurosci.* **13**, 2801-2820,
732 doi:10.1523/JNEUROSCI.13-07-02801.1993 (1993).

733 12 Huttenlocher, P. R. & Dabholkar, A. S. Regional differences in synaptogenesis in human
734 cerebral cortex. *J. Comp. Neurol.* **387**, 167-178, doi:10.1002/(sici)1096-
735 9861(19971020)387:2<167::aid-cne1>3.0.co;2-z (1997).

736 13 Petanjek, Z. *et al.* Extraordinary neoteny of synaptic spines in the human prefrontal
737 cortex. *Proc Natl Acad Sci U S A* **108**, 13281-13286, doi:10.1073/pnas.1105108108
738 (2011).

739 14 Fu, M. & Zuo, Y. Experience-dependent structural plasticity in the cortex. *Trends
740 Neurosci.* **34**, 177-187, doi:10.1016/j.tins.2011.02.001 (2011).

741 15 Paus, T., Keshavan, M. & Giedd, J. N. Why do many psychiatric disorders emerge
742 during adolescence? *Nature Reviews Neuroscience* **9**, 947-957, doi:10.1038/nrn2513
743 (2008).

744 16 Jaffe, A. E. *et al.* Developmental and genetic regulation of the human cortex
745 transcriptome illuminate schizophrenia pathogenesis. *Nat. Neurosci.* **21**, 1117-1125,
746 doi:10.1038/s41593-018-0197-y (2018).

747 17 Taylor, D. M. *et al.* The pediatric cell atlas: defining the growth phase of human
748 development at single-cell resolution. *Dev. Cell* **49**, 10-29 (2019).

749 18 Tishkoff, S. A. *et al.* The genetic structure and history of Africans and African
750 Americans. *Science* **324**, 1035-1044, doi:10.1126/science.1172257 (2009).

751 19 PRB. *World Population Datasheet 2022*, <<https://www.prb.org/wp-content/uploads/2022/09/2022-World-Population-Data-Sheet-Booklet.pdf>> (2022).

752 20 O'Malley, J., Wardlaw, T., You, D., Hug, L. & Anthony, D. Africa's child demographics
753 and the world's future. *Lancet* **384**, 730-732, doi:10.1016/S0140-6736(14)61331-3
755 (2014).

756 21 Schutte, C. M. Analysis of HIV-related mortality data in a tertiary South African
757 neurology unit, 2006-2012. *Southern African Journal of HIV Medicine* **14**, 121-124
758 (2013).

759 22 Rohlwink, U. K. *et al.* Clinical characteristics and neurodevelopmental outcomes of
760 children with tuberculous meningitis and hydrocephalus. *Dev Med Child Neurol* **58**,
761 461-468, doi:10.1111/dmcn.13054 (2016).

762 23 Thrupp, N. *et al.* Single-nucleus RNA-Seq is not suitable for detection of microglial
763 activation genes in humans. *Cell reports* **32**, 108189 (2020).

764 24 Stuart, T. *et al.* Comprehensive Integration of Single-Cell Data. *Cell* **177**, 1888-
765 1902.e1821, doi:<https://doi.org/10.1016/j.cell.2019.05.031> (2019).

766 25 Kleshchevnikov, V. *et al.* Cell2location maps fine-grained cell types in spatial
767 transcriptomics. *Nat. Biotechnol.* **40**, 661-671, doi:10.1038/s41587-021-01139-4
768 (2022).

769 26 Maynard, K. R. *et al.* Transcriptome-scale spatial gene expression in the human
770 dorsolateral prefrontal cortex. *Nat. Neurosci.* **24**, 425-436 (2021).

771 27 Hintsch, G. *et al.* The calsyntenins—a family of postsynaptic membrane proteins with
772 distinct neuronal expression patterns. *Mol. Cell. Neurosci.* **21**, 393-409 (2002).

773 28 Aevermann, B. *et al.* A machine learning method for the discovery of minimum marker
774 gene combinations for cell type identification from single-cell RNA sequencing.
775 *Genome Res.* **31**, 1767-1780 (2021).

776 29 Aevermann, B. D. *et al.* Cell type discovery using single-cell transcriptomics:
777 implications for ontological representation. *Hum. Mol. Genet.* **27**, R40-R47,
778 doi:10.1093/hmg/ddy100 (2018).

779 30 Tan, S. Z. K. *et al.* Brain Data Standards - A method for building data-driven cell-type
780 ontologies. *Sci Data* **10**, 50, doi:10.1038/s41597-022-01886-2 (2023).

781 31 Tissir, F. & Goffinet, A. M. Reelin and brain development. *Nat. Rev. Neurosci.* **4**, 496-
782 505, doi:10.1038/nrn1113 (2003).

783 32 Park, C. R. *et al.* Spatiotemporal expression and functional implication of CXCL14 in
784 the developing mice cerebellum. *Mol Cells* **34**, 289-293, doi:10.1007/s10059-012-
785 0116-0 (2012).

786 33 Tamamaki, N., Fujimori, K., Nojyo, Y., Kaneko, T. & Takaaji, R. Evidence that Sema3A
787 and Sema3F regulate the migration of GABAergic neurons in the developing
788 neocortex. *J. Comp. Neurol.* **455**, 238-248 (2003).

789 34 Akhtar, M. W. *et al.* In vivo analysis of MEF2 transcription factors in synapse regulation
790 and neuronal survival. *PLoS One* **7**, e34863, doi:10.1371/journal.pone.0034863
791 (2012).

792 35 Ueda, S., Fujimoto, S., Hiramoto, K., Negishi, M. & Katoh, H. Dock4 regulates dendritic
793 development in hippocampal neurons. *J. Neurosci. Res.* **86**, 3052-3061,
794 doi:10.1002/jnr.21763 (2008).

795 36 Miller-Delaney, S. F., Lieberam, I., Murphy, P. & Mitchell, K. J. Plxdc2 is a mitogen for
796 neural progenitors. *PLoS one* **6**, e14565 (2011).

797 37 Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and
798 dispersion for RNA-seq data with DESeq2. *Genome biology* **15**, 1-21 (2014).

799 38 Zhao, E. *et al.* Spatial transcriptomics at subspot resolution with BayesSpace. *Nat.*
800 *Biotechnol.* **39**, 1375-1384 (2021).

801 39 Kakimoto, T., Katoh, H. & Negishi, M. Regulation of neuronal morphology by Toca-1,
802 an F-BAR/EFC protein that induces plasma membrane invagination. *J. Biol. Chem.* **281**,
803 29042-29053 (2006).

804 40 Benyamin, B. *et al.* Childhood intelligence is heritable, highly polygenic and associated
805 with FNBP1L. *Mol. Psychiatry* **19**, 253-258 (2014).

806 41 Khatir, I. *et al.* Decoupling of mRNA and Protein Expression in Aging Brains Reveals the
807 Age-Dependent Adaptation of Specific Gene Subsets. *Cells* **12**,
808 doi:10.3390/cells12040615 (2023).

809 42 Patel, K. G., Liu, C., Cameron, P. L. & Cameron, R. S. Myr 8, a novel unconventional
810 myosin expressed during brain development associates with the protein phosphatase
811 catalytic subunits 1alpha and 1gamma1. *J. Neurosci.* **21**, 7954-7968,
812 doi:10.1523/JNEUROSCI.21-20-07954.2001 (2001).

813 43 Stepanov, V. *et al.* Analysis of Association of Genetic Markers in the LUZP2 and FBXO40
814 Genes with the Normal Variability in Cognitive Performance in the Elderly. *Int J*
815 *Alzheimers Dis* **2018**, 2686045, doi:10.1155/2018/2686045 (2018).

816 44 Feng, D. *et al.* A pan-cancer analysis of the oncogenic role of leucine zipper protein 2
817 in human cancer. *Exp Hematol Oncol* **11**, 55, doi:10.1186/s40164-022-00313-x (2022).

818 45 Perez-Santiago, J. *et al.* A combined analysis of microarray gene expression studies of
819 the human prefrontal cortex identifies genes implicated in schizophrenia. *J Psychiatr*
820 *Res* **46**, 1464-1474, doi:10.1016/j.jpsychires.2012.08.005 (2012).

821 46 Chen, J. *et al.* Identification of the Key Immune Cells and Genes for the Diagnostics
822 and Therapeutics of Meningioma. *World Neurosurg* **176**, e501-e514,
823 doi:10.1016/j.wneu.2023.05.090 (2023).

824 47 Maruoka, M. & Suzuki, J. Regulation of phospholipid dynamics in brain. *Neurosci Res*
825 **167**, 30-37, doi:10.1016/j.neures.2021.01.003 (2021).

826 48 Neniskyte, U. *et al.* Phospholipid scramblase Xkr8 is required for developmental axon
827 pruning via phosphatidylserine exposure. *The EMBO Journal*, e111790 (2023).

828 49 Zhang, X., Lin, P.-Y., Liakath-Ali, K. & Südhof, T. C. Teneurins assemble into presynaptic
829 nanoclusters that promote synapse formation via postsynaptic non-teneurin ligands.
830 *Nature Communications* **13**, 2297 (2022).

831 50 Cheung, A. *et al.* Teneurin paralogues are able to localise synaptic sites driven by the
832 intracellular domain and have the potential to form cis-heterodimers. *Front Neurosci*
833 **16**, 915149, doi:10.3389/fnins.2022.915149 (2022).

834 51 Beckmann, J., Schubert, R., Chiquet-Ehrismann, R. & Müller, D. J. Deciphering teneurin
835 domains that facilitate cellular recognition, cell–cell adhesion, and neurite outgrowth
836 using atomic force microscopy-based single-cell force spectroscopy. *Nano Lett.* **13**,
837 2937-2946 (2013).

838 52 Rogowski, K. *et al.* A family of protein-deglutamylating enzymes associated with
839 neurodegeneration. *Cell* **143**, 564-578, doi:10.1016/j.cell.2010.10.014 (2010).

840 53 Bodakuntla, S., Janke, C. & Magiera, M. M. Tubulin polyglutamylation, a regulator of
841 microtubule functions, can cause neurodegeneration. *Neurosci. Lett.* **746**, 135656,
842 doi:10.1016/j.neulet.2021.135656 (2021).

843 54 Yang, Q. Q. *et al.* Nuclear isoform of FGF13 regulates post-natal neurogenesis in the
844 hippocampus through an epigenomic mechanism. *Cell Rep* **35**, 109127,
845 doi:10.1016/j.celrep.2021.109127 (2021).

846 55 Wu, Q.-F. *et al.* Fibroblast growth factor 13 is a microtubule-stabilizing protein
847 regulating neuronal polarization and migration. *Cell* **149**, 1549-1564 (2012).

848 56 Bräuer, A. U. *et al.* A new phospholipid phosphatase, PRG-1, is involved in axon growth
849 and regenerative sprouting. *Nat. Neurosci.* **6**, 572-578 (2003).

850 57 Agbaegbu Iweka, C., Hussein, R. K., Yu, P., Katagiri, Y. & Geller, H. M. The lipid
851 phosphatase-like protein PLPPR1 associates with RhoGDI1 to modulate RhoA
852 activation in response to axon growth inhibitory molecules. *J. Neurochem.* **157**, 494-
853 507, doi:10.1111/jnc.15271 (2021).

854 58 Fagerberg, L. *et al.* Analysis of the human tissue-specific expression by genome-wide
855 integration of transcriptomics and antibody-based proteomics. *Mol. Cell. Proteomics*
856 **13**, 397-406, doi:10.1074/mcp.M113.035600 (2014).

857 59 Zheng, Z.-J. *et al.* Construction of the Six-lncRNA prognosis signature as a novel
858 biomarker in esophageal squamous cell carcinoma. *Frontiers in Genetics* **13**, 839589
859 (2022).

860 60 Xing, Z. *et al.* Clinical Significance and Immune Landscape of a Pyroptosis-Derived
861 LncRNA Signature for Glioblastoma. *Front Cell Dev Biol* **10**, 805291,
862 doi:10.3389/fcell.2022.805291 (2022).

863 61 Mochizuki, S. *et al.* Effect of ADAM28 on carcinoma cell metastasis by cleavage of von
864 Willebrand factor. *J. Natl. Cancer Inst.* **104**, 906-922, doi:10.1093/jnci/djs232 (2012).

865 62 Driessens, S. L. *et al.* Genes associated with cognitive ability and HAR show overlapping
866 expression patterns in human cortical neuron types. *Nature communications* **14**, 4188
867 (2023).

868 63 Gauvain, M. *Cognitive development in infancy and childhood*. (Cambridge University
869 Press, 2022).

870 64 Lee, J. J. *et al.* Gene discovery and polygenic prediction from a genome-wide
871 association study of educational attainment in 1.1 million individuals. *Nat. Genet.* **50**,
872 1112-1121, doi:10.1038/s41588-018-0147-3 (2018).

873 65 Savage, J. E. *et al.* Genome-wide association meta-analysis in 269,867 individuals
874 identifies new genetic and functional links to intelligence. *Nat. Genet.* **50**, 912-919,
875 doi:10.1038/s41588-018-0152-6 (2018).

876 66 Ximerakis, M. *et al.* Single-cell transcriptomic profiling of the aging mouse brain. *Nat.*
877 *Neurosci.* **22**, 1696-1708, doi:10.1038/s41593-019-0491-3 (2019).

878 67 Wu, J., Zhao, Z., Shi, Y. & He, M. Cortical VIP(+) Interneurons in the Upper and Deeper
879 Layers Are Transcriptionally Distinct. *J. Mol. Neurosci.* **72**, 1779-1795,
880 doi:10.1007/s12031-022-02040-8 (2022).

881 68 Tasic, B. *et al.* Shared and distinct transcriptomic cell types across neocortical areas.
882 *Nature* **563**, 72-78, doi:10.1038/s41586-018-0654-5 (2018).

883 69 Berg, J. *et al.* Human neocortical expansion involves glutamatergic neuron
884 diversification. *Nature* **598**, 151-158, doi:10.1038/s41586-021-03813-8 (2021).

885 70 Mohan, H. *et al.* Dendritic and Axonal Architecture of Individual Pyramidal Neurons
886 across Layers of Adult Human Neocortex. *Cereb. Cortex* **25**, 4839-4853,
887 doi:10.1093/cercor/bhv188 (2015).

888 71 Gidon, A. *et al.* Dendritic action potentials and computation in human layer 2/3
889 cortical neurons. *Science* **367**, 83-87, doi:10.1126/science.aax6239 (2020).

890 72 Eyal, G. *et al.* Human Cortical Pyramidal Neurons: From Spines to Spikes via Models.
891 *Front Cell Neurosci* **12**, 181, doi:10.3389/fncel.2018.00181 (2018).

892 73 Testa-Silva, G. *et al.* High bandwidth synaptic communication and frequency tracking
893 in human neocortex. *PLoS Biol.* **12**, e1002007, doi:10.1371/journal.pbio.1002007
894 (2014).

895 74 Beaulieu-Laroche, L. *et al.* Enhanced Dendritic Compartmentalization in Human
896 Cortical Neurons. *Cell* **175**, 643-651 e614, doi:10.1016/j.cell.2018.08.045 (2018).

897 75 Habib, N. *et al.* Massively parallel single-nucleus RNA-seq with DroNc-seq. *Nat.*
898 *Methods* **14**, 955-958, doi:10.1038/nmeth.4407 (2017).

899 76 McGinnis, C. S., Murrow, L. M. & Gartner, Z. J. DoubletFinder: Doublet Detection in
900 Single-Cell RNA Sequencing Data Using Artificial Nearest Neighbors. *Cell Syst* **8**, 329-
901 337 e324, doi:10.1016/j.cels.2019.03.003 (2019).

902 77 DePasquale, E. A. K. *et al.* DoubletDecon: Deconvoluting Doublets from Single-Cell
903 RNA-Sequencing Data. *Cell Rep* **29**, 1718-1727 e1718,
904 doi:10.1016/j.celrep.2019.09.082 (2019).

905 78 Raudvere, U. *et al.* g:Profiler: a web server for functional enrichment analysis and
906 conversions of gene lists (2019 update). *Nucleic Acids Res.* **47**, W191-W198,
907 doi:10.1093/nar/gkz369 (2019).

908 79 Wickham, H. *ggplot2: elegant graphics for data analysis*. (Springer, 2016).

909 80 Ouyang, J. F., Kamaraj, U. S., Cao, E. Y. & Rackham, O. J. L. ShinyCell: simple and
910 sharable visualization of single-cell gene expression data. *Bioinformatics* **37**, 3374-
911 3376, doi:10.1093/bioinformatics/btab209 (2021).

912 81 Tippanni, M. *et al.* Vistoseg: a matlab pipeline to process, analyze and visualize high
913 resolution histology images for visium spatial transcriptomics data. *bioRxiv* (2021).

914 82 Choi, H. M. *et al.* Mapping a multiplexed zoo of mRNA expression. *Development* **143**,
915 3632-3637, doi:10.1242/dev.140137 (2016).

916

917

918 **Data Availability**

919 All scripts used to analyse the data are indicated in the methods section and are available in
920 the supplementary material. A description of the raw and analysed data files will be made
921 available on the University of Cape Town's [ZivaHub](#) data sharing platform on publication. As
922 the data is from living donors, access to the data will be mediated through contact with the
923 corresponding author. A ShinyApp will be made publicly available on publication for
924 exploration of the annotated snRNA-seq data.

925

926 **Acknowledgments**

927 This research was support by a Royal Society/Global Challenges Research Fund/African
928 Academy of Sciences Future Leaders African Independent Researcher Fellowship to DH
929 (FLR\R1\191008), a National Research Foundation (NRF) Research Development Grant for
930 Y-rated Researchers Award to DH (CSRP210415595025), a University of Cape Town (UCT)
931 Building Research Active Academic Staff Grant award to DH and a National Institutes of
932 Health (NIH) R21 Exploratory/Development Grant to DH, JVR, CGD and MJ (TW011225).
933 CS was supported by a Harry Crossley Research Scholarship, an Oppenheimer Memorial
934 Trust scholarship, an NRF scholarship and a UCT Vice Chancellor's Research Scholarship.
935 SF was supported by a DAAD-NRF joint In-country Scholarship and a UCT Vice Chancellor's
936 Research Scholarship. MBV was supported by an EMBO long-term fellowship (ALTF 415-
937 2018) and a Claude Leon Foundation research fellowship. AF was supported by the NRF
938 SARCHI Chair of Clinical Neurosciences. Computations were performed using facilities
939 provided by the University of Cape Town's ICTS High Performance Computing
940 team: hpc.uct.ac.za. This publication is part of the Human Cell Atlas:
941 www.humancellatlas.org/publications/

942

943

944

945

946

947

948

949

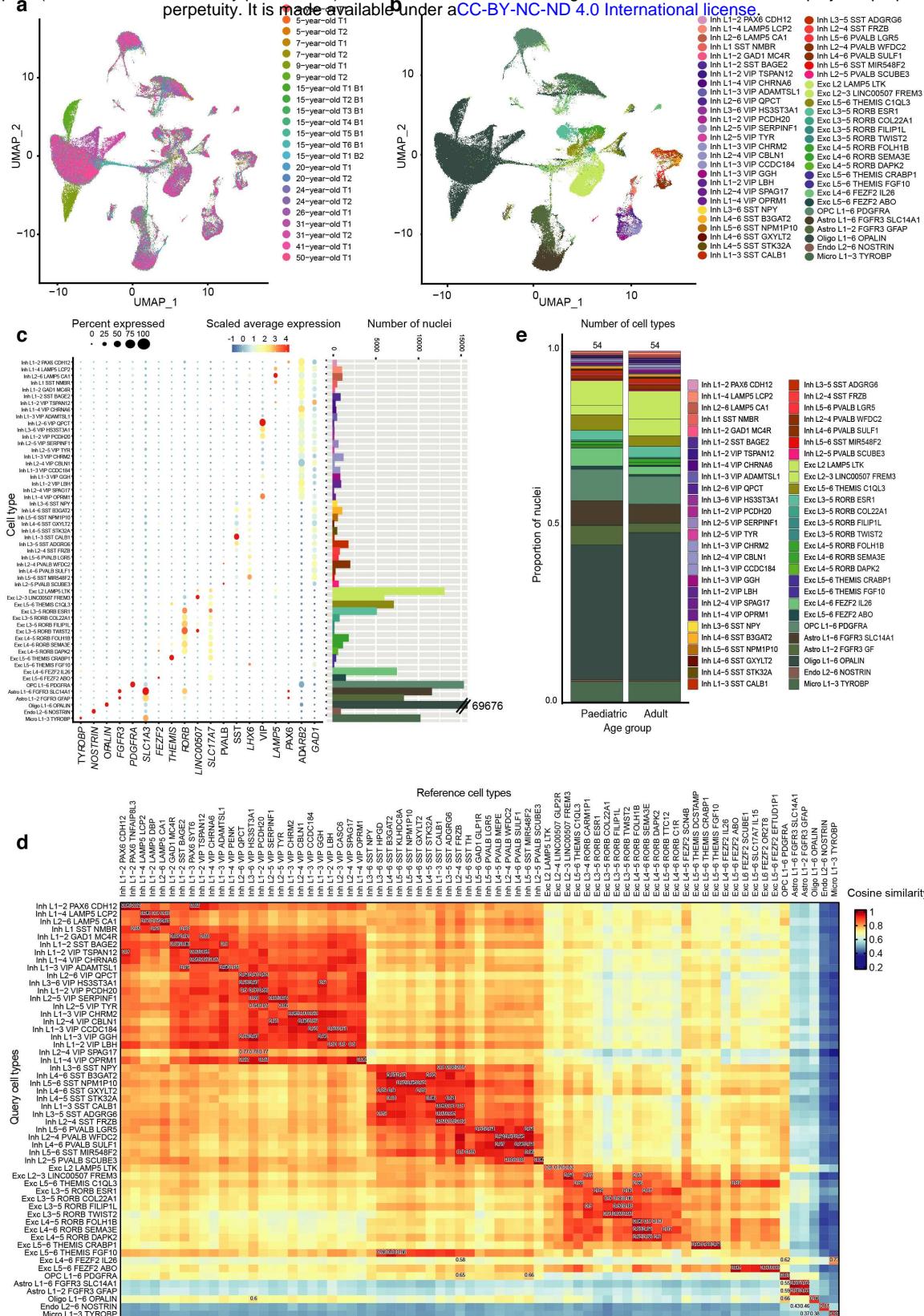
950

951

952

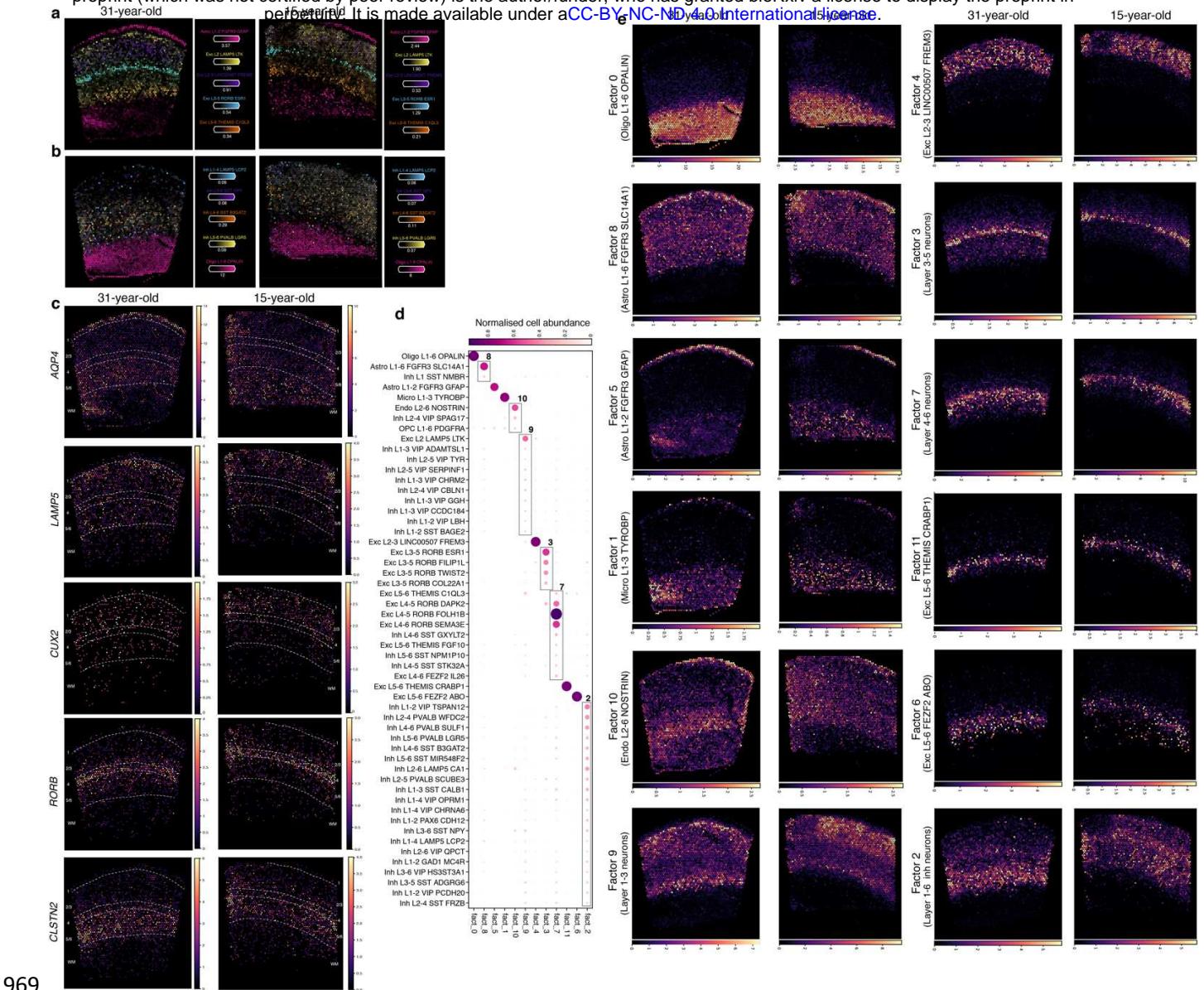
953

954



955

Fig. 1: Annotation of nuclei by label transfer identifies 54 cortical subtypes across the 23 datasets. a, Data integration shows alignment of nuclei across the technical (T) and biological (B) replicates from donors ranging in age from 4 to 50 years. **b,** Annotated UMAP plot for the 23 merged datasets identifies 34 inhibitory, 14 excitatory, and 6 non-neuronal populations using the Allen Brain Map MTG dataset as a reference. Each cell type is annotated with 1) a major cell class (e.g. Exc for excitatory neuron), 2) the cortical layer the cell is associated with (e.g. L2 for layer 2), 3) a subclass marker gene and 4) a cluster-specific marker gene. **c,** Validation of the high-resolution cell type annotations shows a high degree of correspondence in the expression of known cell type-specific markers (x axis) with their expected cell type (y axis) (left). Number of nuclei per cell type (right). **d,** Correlation plot showing the cosine similarity scores assessing similarity between the annotated cell types in our dataset (y axis) and the MTG reference dataset (x axis) based on the log normalized expression counts of the top 2000 shared highly variable features between query and reference datasets. **e,** Stacked barplot showing the proportion of nuclei per cell type (y axis) for each age category (x axis) out of the total number of nuclei for each group. The colour scheme for the cell types is in accordance with the MTG cell taxonomy.



969

970 **Fig. 2: Visium spatial transcriptomics in the adult and paediatric temporal cortex validates snRNA-seq**
971 **annotation.** **a,b,** Estimated cell type abundances (colour intensity) in the 31-year-old and 15-year-old temporal
972 cortex tissue sections for a selection of cell types including non-neuronal cell types (**a,b**), excitatory neurons (**a**)
973 and inhibitory neurons (**b**). **c,** Visium gene expression profiles (colour intensity) for a selection of known cortical
974 layer marker genes in the 31-year-old and 15-year-old temporal cortex tissue sections including *AQP4* (layer 1),
975 *LAMP5* (layer 2), *CUX2* (layer 2-3), *RORB* (layer 4) and *CLSTN2* (layer 5-6). Dashed white lines and numbers
976 indicate estimated cortical layer boundaries. **d,e,** Identification of co-locating cell types using NMF. The dot plot
977 (**d**) shows the NMF weights of the cell types (rows) across each of the NMF factors (columns), which correspond
978 to tissue compartments. Block boxes indicate cell types that co-locate within the indicated tissue compartments.
979 Spatial plots show (**e**) show the NMF weights for each NMF factor/tissue compartment across the 31-year-old
980 and 15-year-old temporal cortex tissue sections. Panels are displayed in the same order as the dotplot in (**d**),
981 with the dominant cell types for each factor indicated in brackets. WM: white matter. See also Extended Data
982 Figs 4-6.

983

984

985

986

987

988

989

990

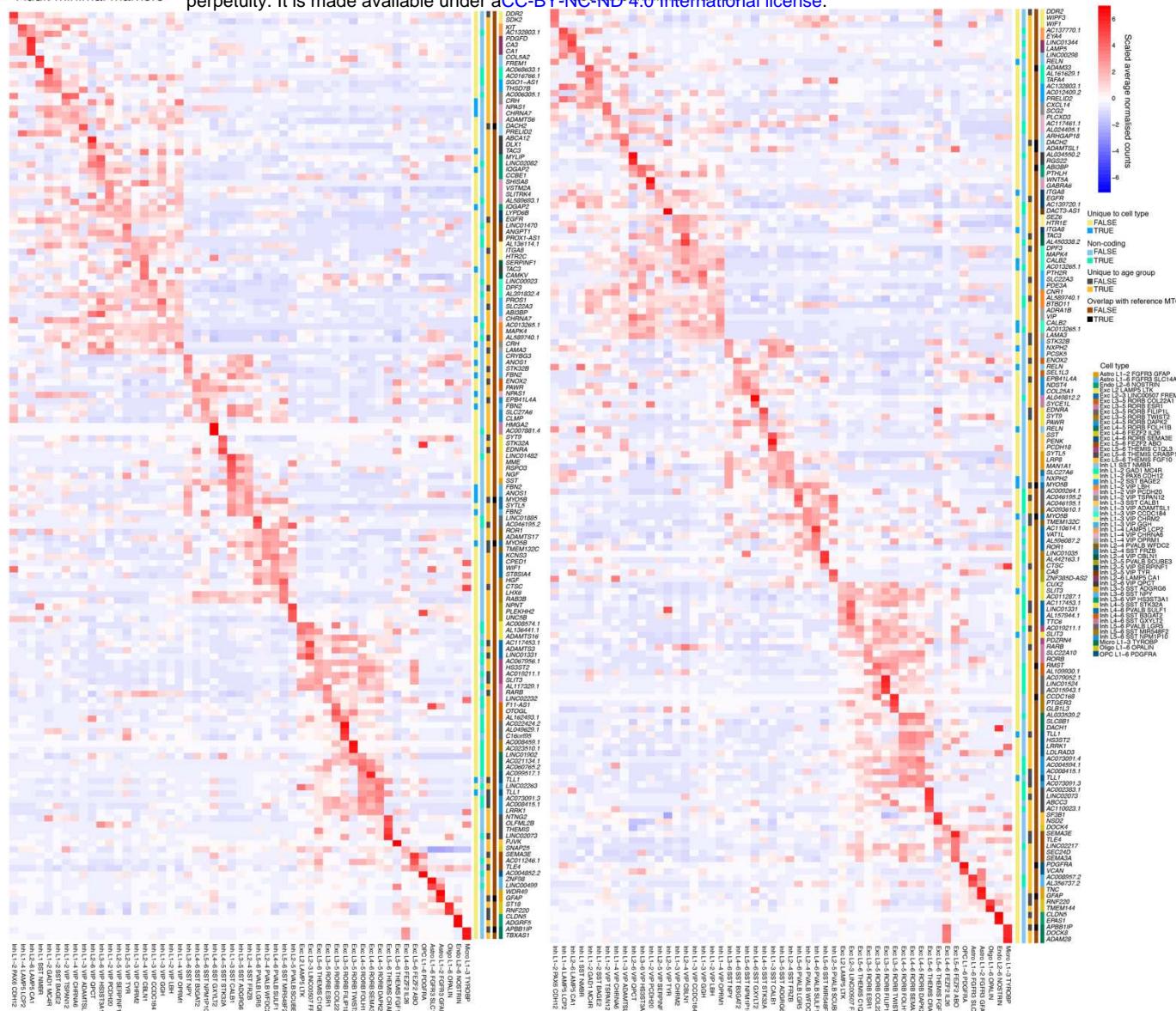


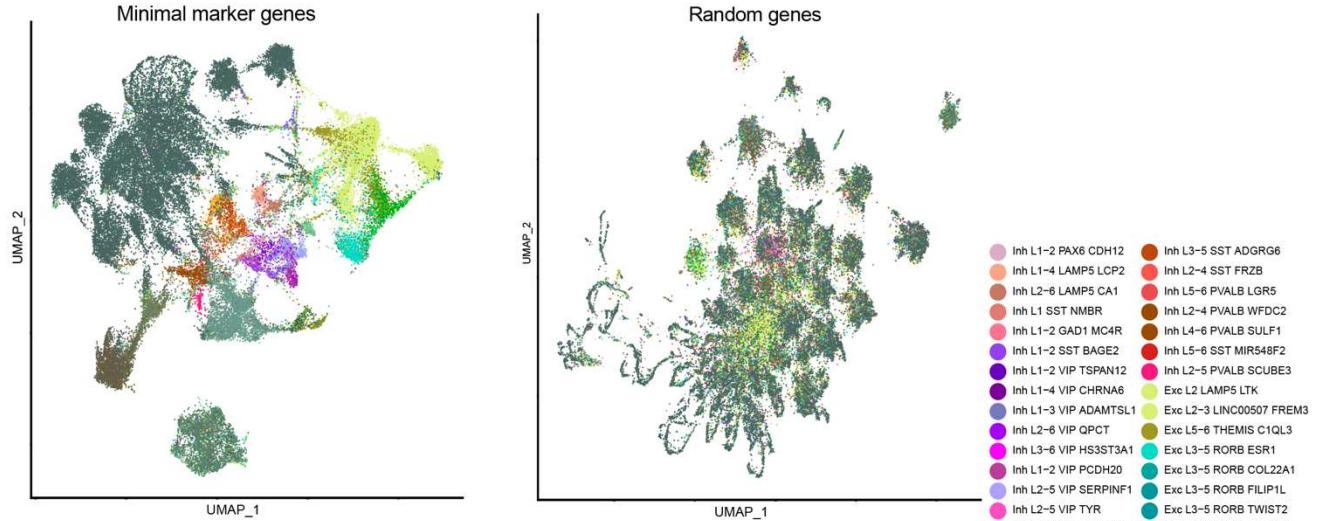
Fig. 3: NS-Forest identifies minimal marker genes distinguishing the cell types in the paediatric and adult temporal cortex snRNA-seq datasets. a,b, Heatmap showing the scaled average normalised expression counts of the NS-Forest minimal marker genes (y-axis) identified for 53 cortical cell types (x-axis) across the six adult (a) and six paediatric (b) datasets. As input into NS-Forest, the nuclei of each sample were randomly down-sampled to the size of the sample with the fewest nuclei. Heatmaps show gene expression values for the down-sampled datasets. Inh_L2-4_VIP_SPAG17 was excluded from the down-sampled datasets due to a low number of nuclei. The minimal marker genes are annotated (colour codes on the y-axes) according to whether they are unique to a given cell type, whether they are coding/non-coding genes, whether they are unique to the indicated age group, whether they overlap with existing MTG minimal marker gene sets for the same cell type, and according to the cell type they define.

991

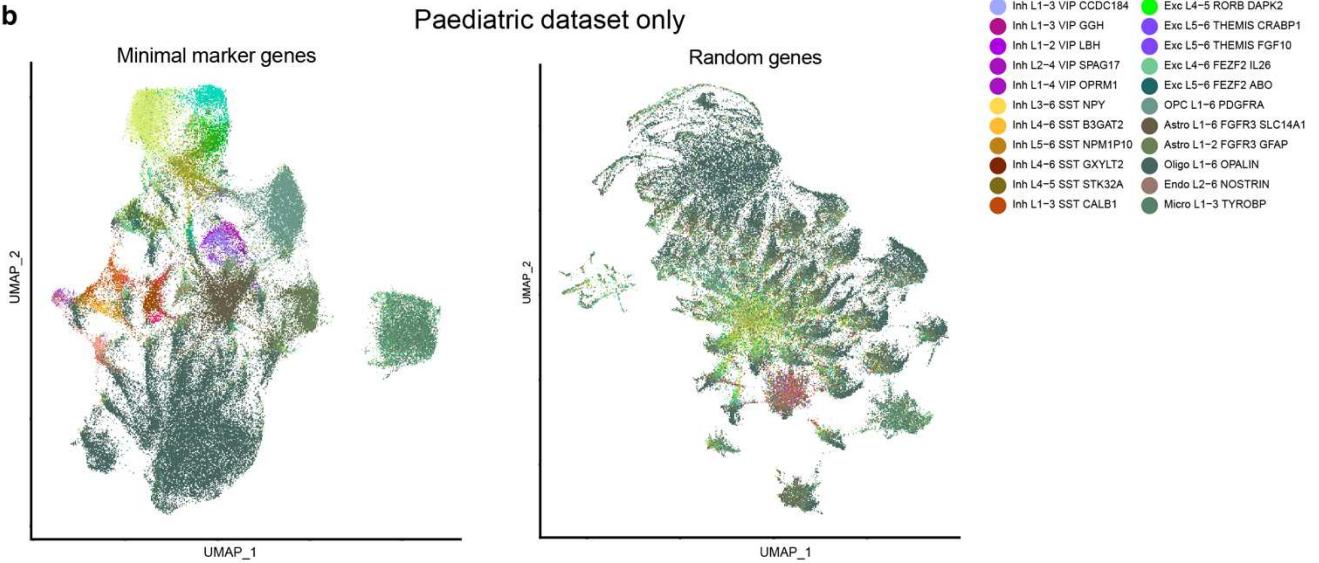
992
993
994
995
996
997
998
999
1000
1001

1002
1003
1004
1005
1006
1007
1008
1009

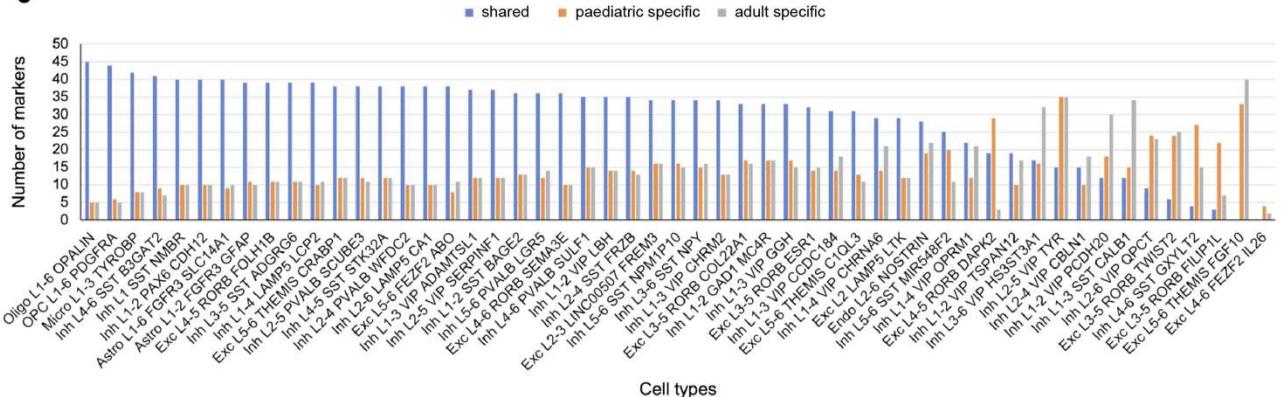
a



b



c



1010

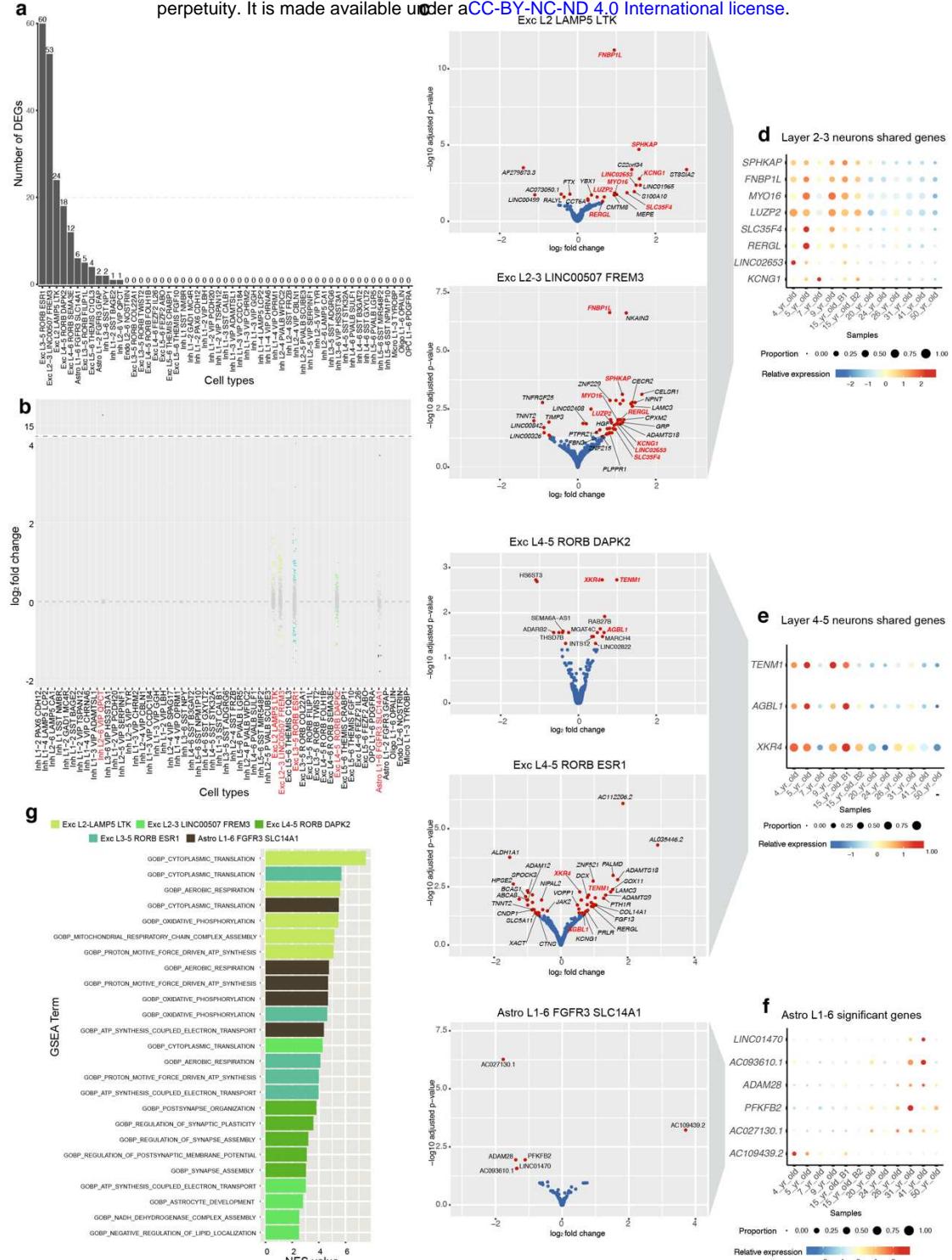
1011 **Fig. 4: Validation of NS-Forest minimal markers and assessment of the top 50 NS-Forest markers.** a,b, Annotated
1012 UMAP plots following data integration using either the minimal marker genes (left) or the equivalent number of
1013 a random set of genes (right) as anchors for the adult (a) and paediatric (b) datasets. The colour scheme for the
1014 cell types is in accordance with the MTG cell taxonomy. c, Overlap of the top 50 paediatric and top 50 adult NS-
1015 Forest markers per cell type. The bar plot shows the number of shared markers between paediatric and adult
1016 datasets (blue), the number of markers unique to the paediatric datasets (orange), and the number of markers
1017 unique to the adult datasets (grey) for each cell type.

1018

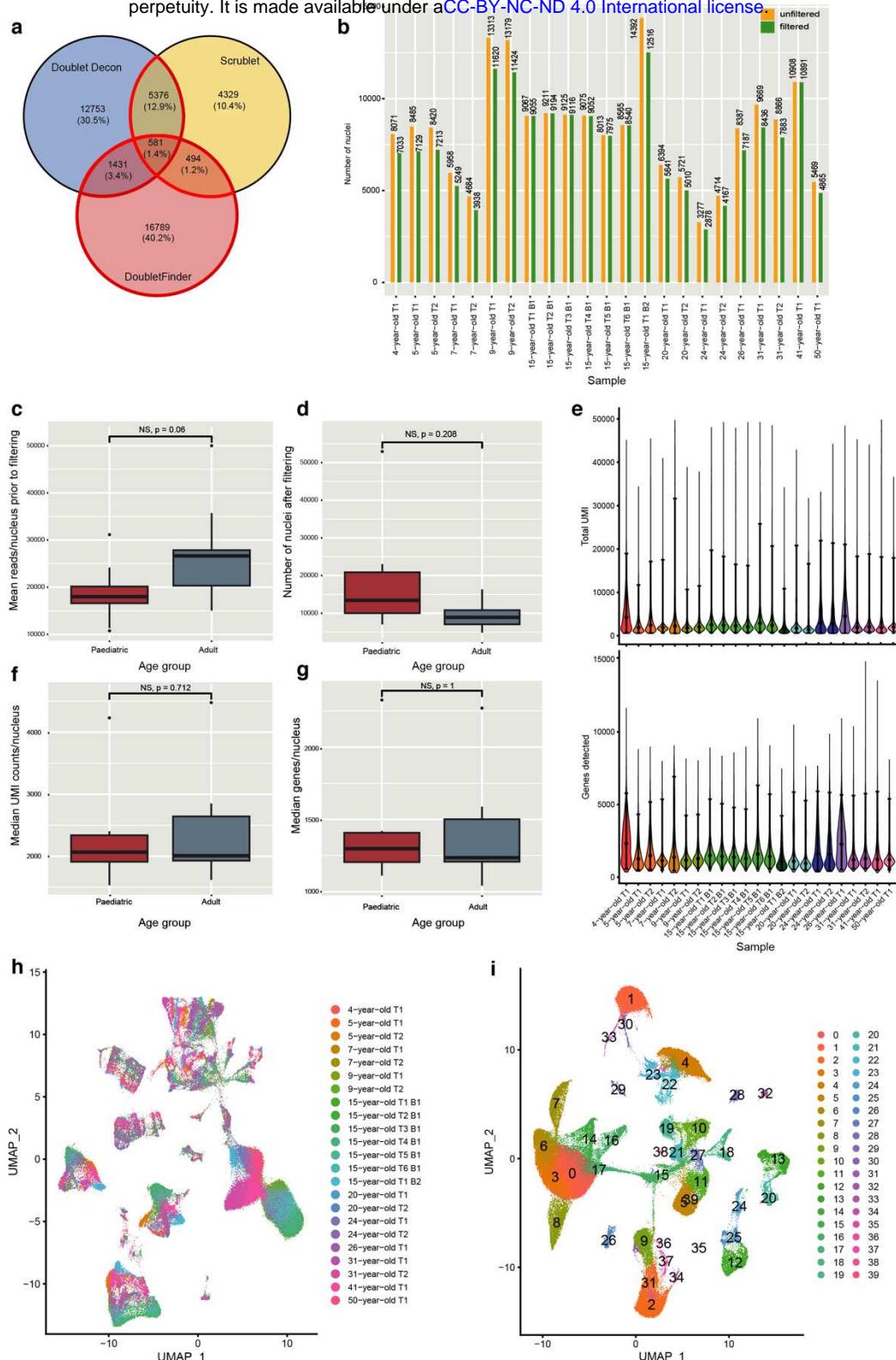
1019

1020

1021

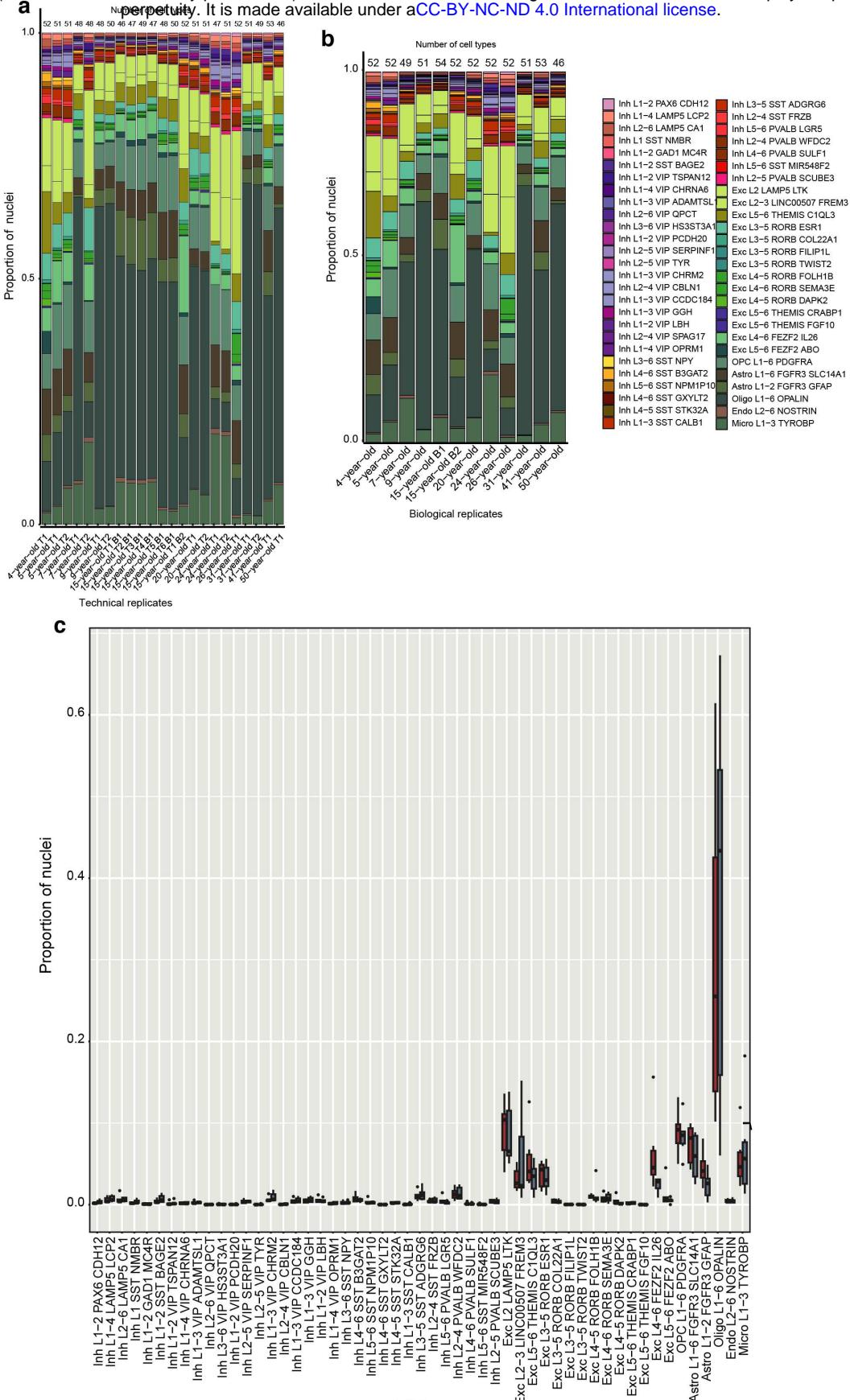


1023 **Fig. 5: Differential expression analysis reveals genes guiding temporal cortex maturation.** **a**, The number of
 1024 differentially expressed genes (DEGs) identified per cell type. **b**, Strip chart showing the log₂FoldChange for all
 1025 DESeq2-tested genes (dots) across 54 cell types (x axis). Genes that were significantly upregulated (110) or
 1026 downregulated (52) in paediatric samples [padj<0.05 and abs(log₂FoldChange)>10%] are coloured according to
 1027 the MTG cell taxonomy. Non-significant genes [padj>0.05 or abs(log₂FoldChange)<10%] are coloured in grey. Cell
 1028 types with significant DEGs are coloured red. **c**, Volcano plots showing log₂FoldChange (x axis) and -log₁₀padj
 1029 values (y axis) for all DESeq2-tested genes in Exc_L2_LAMP5_LTK, Exc_L2-3_LINC00507_FREM3, Exc_L4-
 1030 5_RORB_DAPK2, Exc_L3-5_RORB_ESR1 and Astro_L1-6_FGFR3_SLC14A1. Genes that were significantly
 1031 upregulated or downregulated in paediatric samples (padj<0.05 & abs(log₂FoldChange)>10%) are coloured in red
 1032 and selected genes are labelled. Non-significant genes (padj>0.05 or abs(log₂FoldChange)<10%) are coloured in
 1033 blue. Red labels indicate DEGs shared between similar cell types. **d,e**, Dot plots showing the scaled average
 1034 normalized expression across samples for DEGs shared between either Exc_L2_LAMP5_LTK and Exc_L2-
 1035 3_LINC00507_FREM3 (**d**) or Exc_L4-5_RORB_DAPK2 and Exc_L3-5_RORB_ESR1 (**e**). **f**, Dot plot showing the
 1036 scaled average normalized expression across samples of DEGs in Astro_L1-6_FGFR3_SLC14A1. **g**, Enrichment plot
 1037 showing the top 5 GSEA terms (y axis) that were enriched in the paediatric datasets and their associated NES
 1038 values (x axis) for the five indicated cell types.



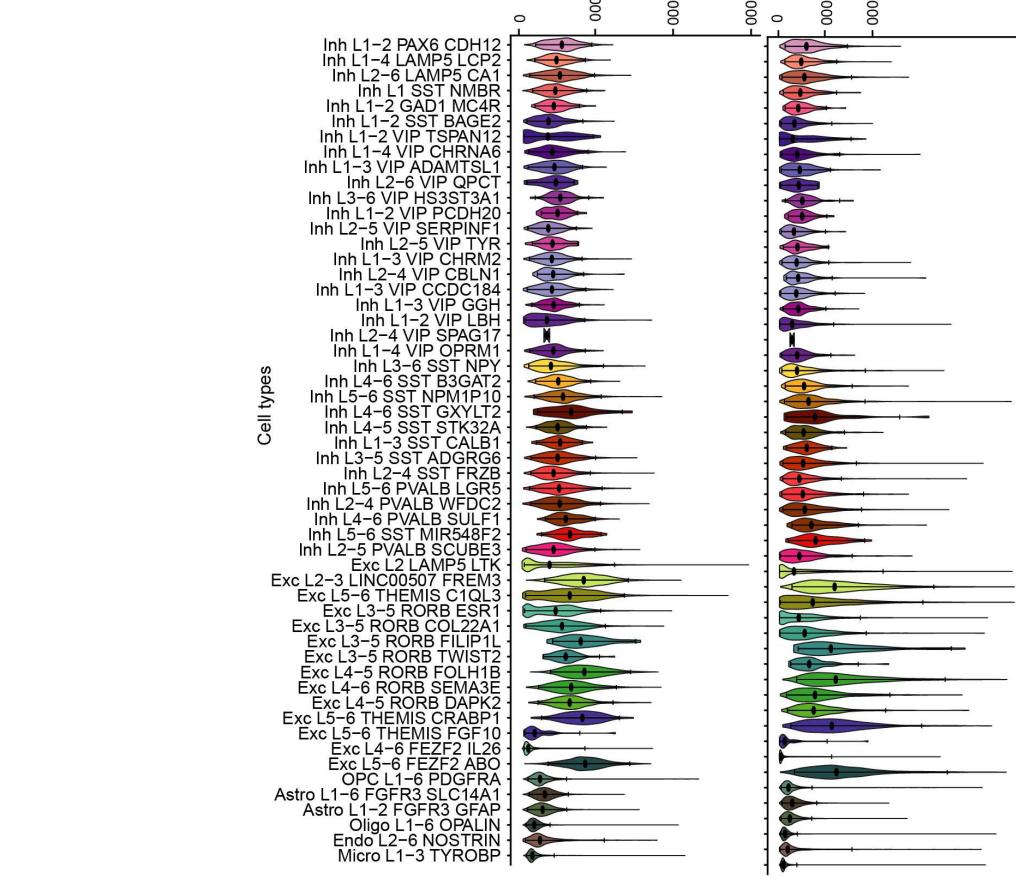
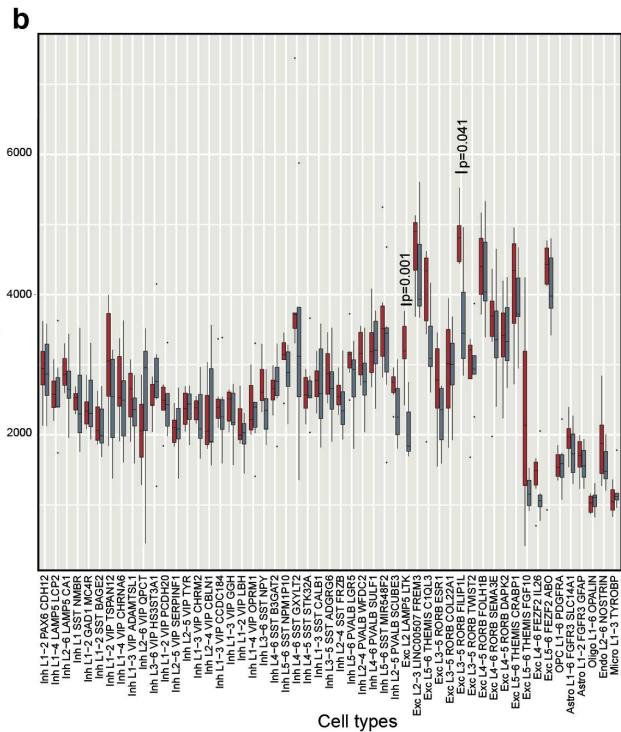
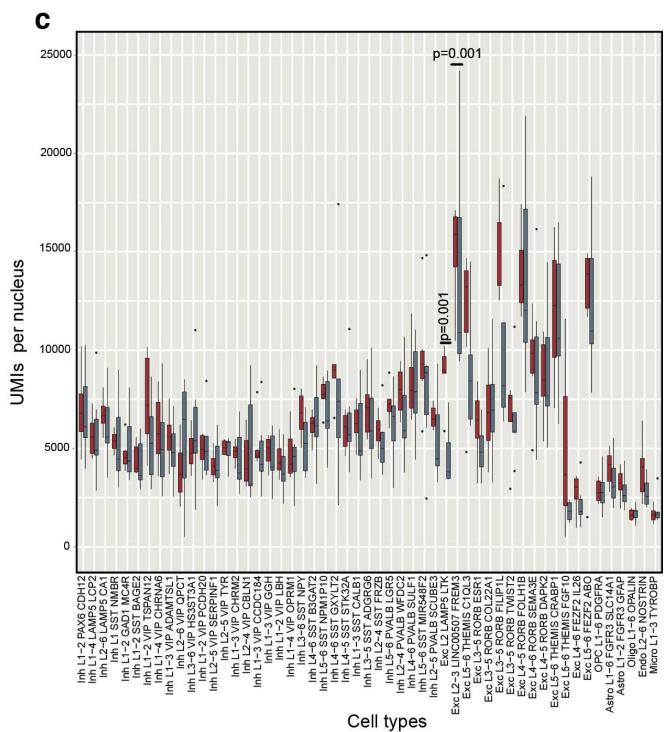
1051

1052 **Extended Data Fig. 1: Nuclei filtering and clustering.** **a**, Number of doublets identified across all 23 datasets by
 1053 DoubleDecon, DoubletFinder, and Scrublet. Red outline indicates the subset of barcodes called as doublets that
 1054 were removed. **b**, Total number of nuclei per dataset before (yellow) and after filtering (green). **c**, Mean number
 1055 of reads per nucleus (y axis) by dataset prior to filtering split by age group (x axis). p value determined by two-
 1056 tailed Welch's t-test. **d**, Number of nuclei (y axis) by sample after filtering split by age group (x axis). p value
 1057 determined by Brunnermunzel permutation test. **e**, Violin plots showing the number of unique molecular
 1058 identifiers (UMIs) (top) and the number of genes detected (bottom) per nucleus per sample after filtering. Black
 1059 dots indicate the median value. Error bars show 95% confidence intervals. **f,g**, Median number of UMIs (2,263
 1060 paediatric and 2,011 adult) (**f**) and the median number of genes (1,372 paediatric and 1,226 adult) (**g**) detected
 1061 per nucleus (y axes) by sample after filtering split by age group (x axis). p values determined by two-tailed
 1062 Brunnermunzel permutation test. **h**, UMAP plot for the 23 datasets prior to integration. **i**, UMAP plot showing
 1063 the resulting clusters determined by the shared nearest neighbour algorithm. Data in all box plots represent
 1064 mean \pm sem for six paediatric and six adult samples. No significant differences were detected between paediatric
 1065 and adult samples. B, biological replicate; NS, not significant; T, technical replicate. See also Extended Data Table
 1066 2.



1067

1068 **Extended Data Fig. 2: Assessment of cell composition across datasets.** **a, b**, Stacked barplots showing the
 1069 proportion of nuclei per cell type (y axis) for each technical replicate (a) or biological replicate (b) (x axis) out of
 1070 the total number of nuclei for each group. The colour scheme for the cell types is in accordance with the MTG
 1071 cell taxonomy. Samples with technical replicates showed high degrees of similarity in cell composition between
 1072 their replicates (a). Technical replicates from each donor were merged to allow comparisons between the 12
 1073 samples (b). **c**, Boxplots showing the proportion of nuclei (y axis) per cell type per sample (x axis) split by age
 1074 group (red: paediatric, grey: adult). Data represents mean \pm sem for six paediatric and six adult samples. No
 1075 significant differences were detected between paediatric and adult samples; See also Extended Data Table 3 for
 1076 details of statistical tests performed.

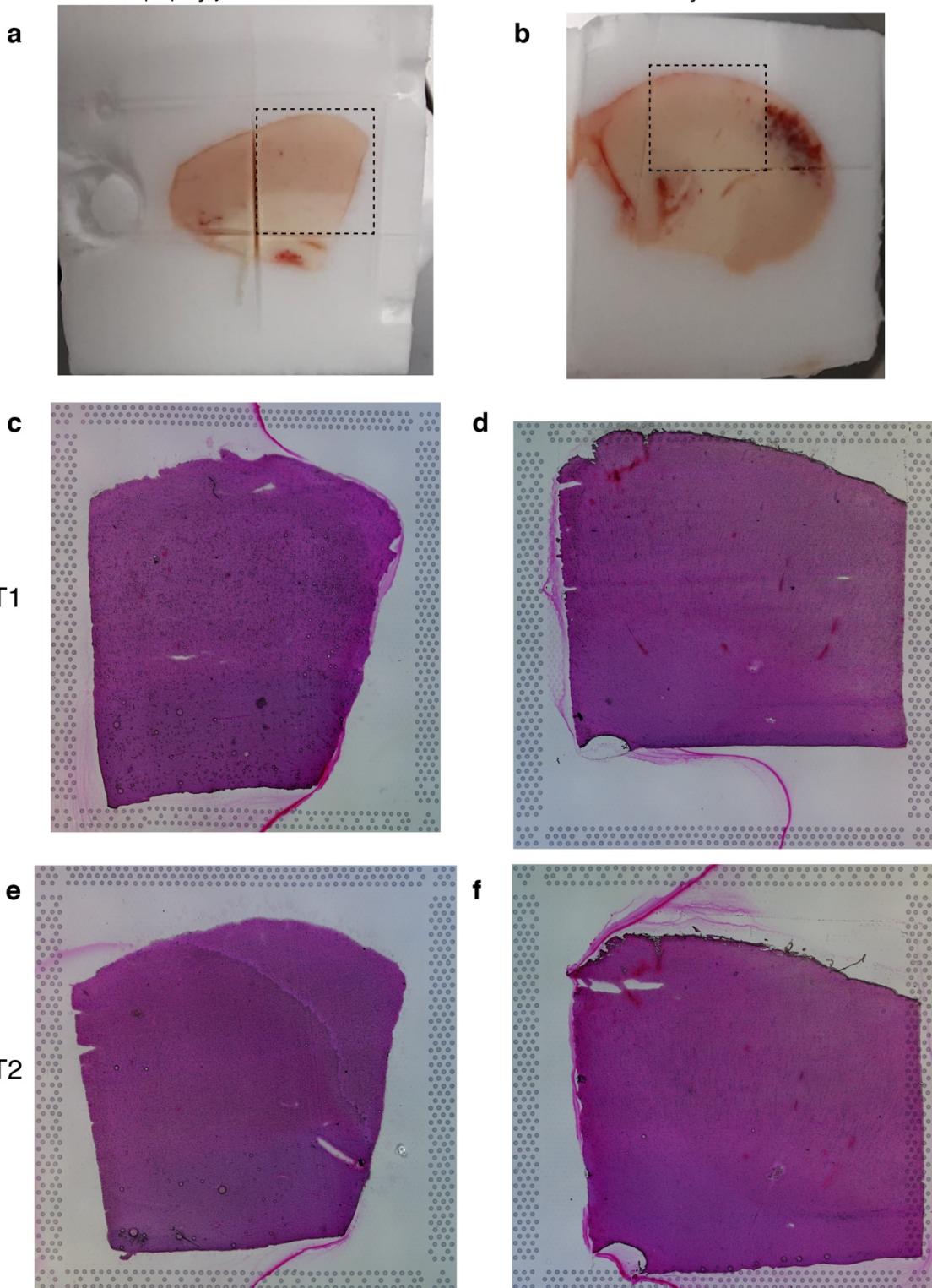


1077

1078 **Extended Data Fig. 3: Assessment of the sequencing metrics for the annotated cell types. a,** Violin plots showing the distribution of the number of genes (left) and transcripts (right) detected per nucleus per cell type across all datasets. Black dots indicate the median value. Error bars show 95% confidence intervals. **b,c,** Boxplots showing the number of genes (b) and the number of UMIs (c) (y axis) detected per cell type per sample (x axis) split by age group (red: paediatric, grey: adult). Data in all box plots represent mean \pm sem for six paediatric and six adult samples for each cell type. p values are given for cell types that showed a significant difference between paediatric and adult samples. See also Extended Data Table 3 for details of statistical tests performed.

1085

1086



1087

1088 **Extended Data Fig. 4: Visium Spatial Gene Expression samples.** a,b, 31-year-old (a) and 15-year-old (b) temporal
1089 cortex tissue blocks embedded in OCT. Black dashed boxes outline the regions collected onto the Visium Spatial
1090 Gene Expression slide. c-f, H&E stained technical replicate tissue sections used to generate Visium Spatial Gene
1091 Expression libraries for the 31-year-old (c,e) and 15-year-old (d,f) tissue samples. T, technical replicate.

1092

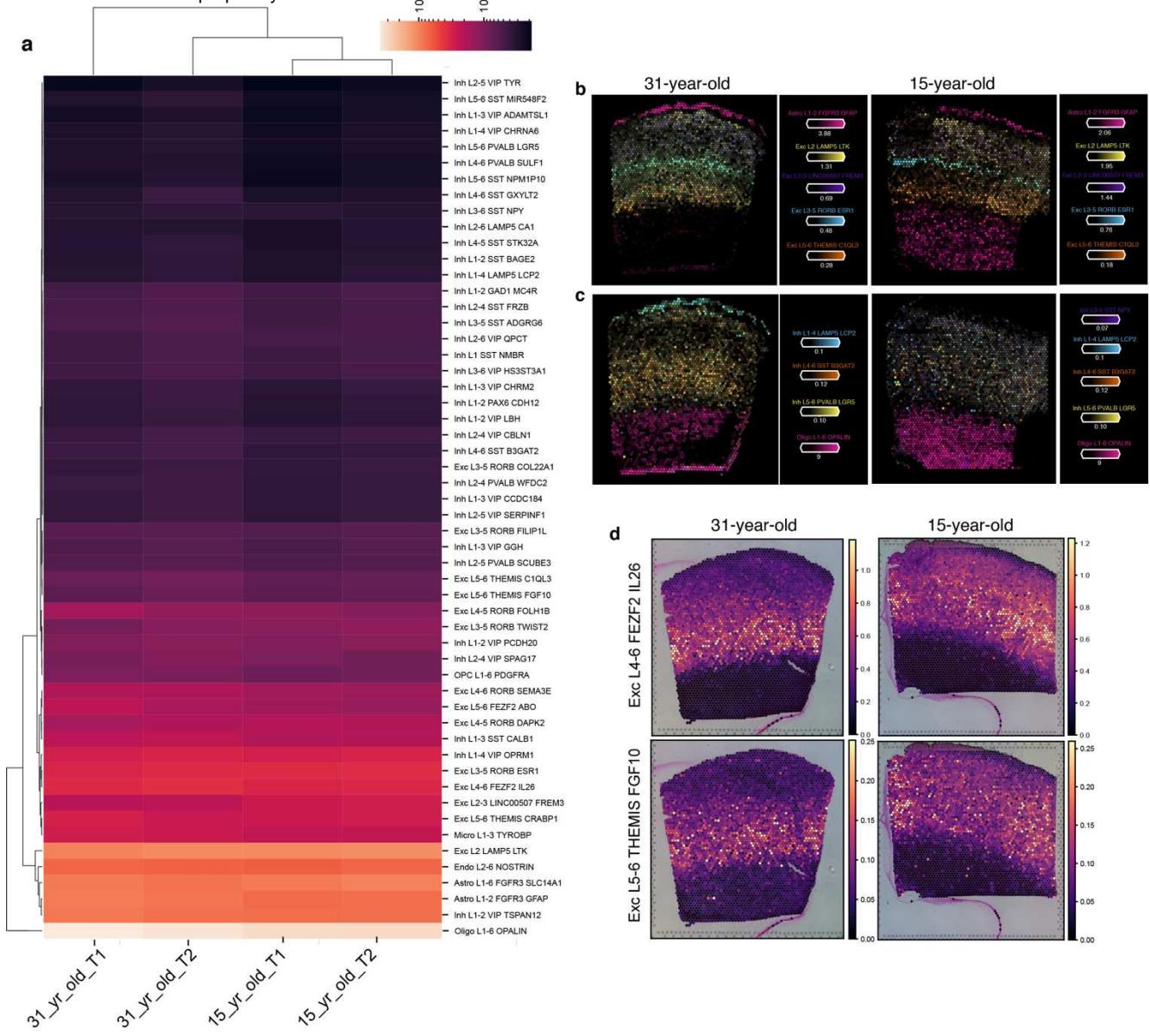
1093

1094

1095

1096

1097



1099 **Extended Data Fig. 5: Spatial mapping of cell types in the human temporal cortex.** **a**, Estimated cell abundance
1100 of 52 cell types across all Visium samples. Shown is a heatmap with the colour indicating the relative cell
1101 abundance of cell types (rows) across the different samples (columns). **b**, Estimated cell type abundances (colour
1102 intensity) in the technical replicate 31-year-old and 15-year-old temporal cortex tissue sections for a selection
1103 of cell types including non-neuronal cell types (**b,c**), excitatory neurons (**b**) and inhibitory neurons (**c**). **d**,
1104 Estimated cell type abundances (colour intensity) for Exc_L4-6_FEZF2_IL26 and Exc_L5-6_THEMIS_FGF10 in the
1105 31-year-old and 15-year-old temporal cortex tissue sections. T, technical replicate.

1106

1107

1108

1109

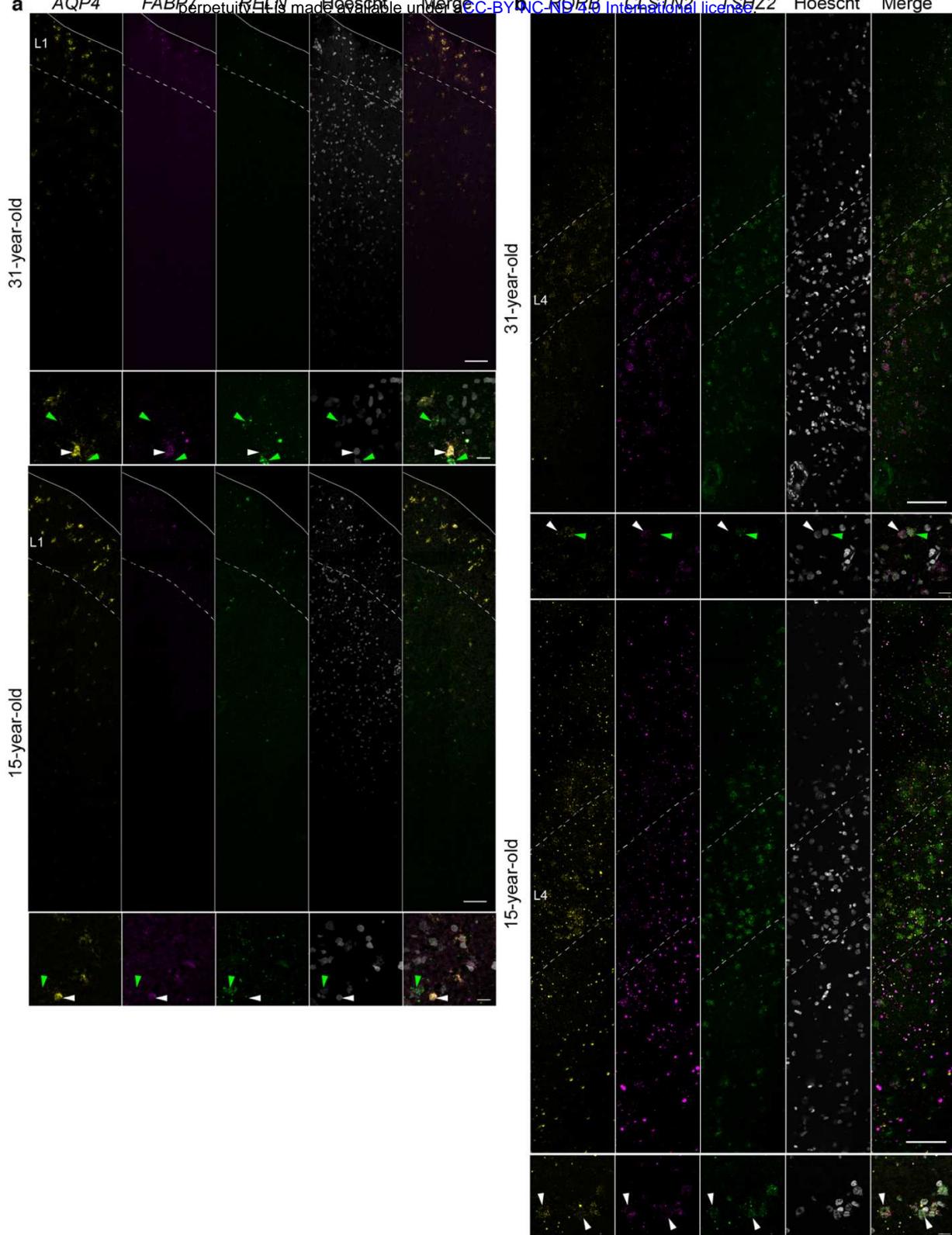
1110

1111

1112

1113

1114

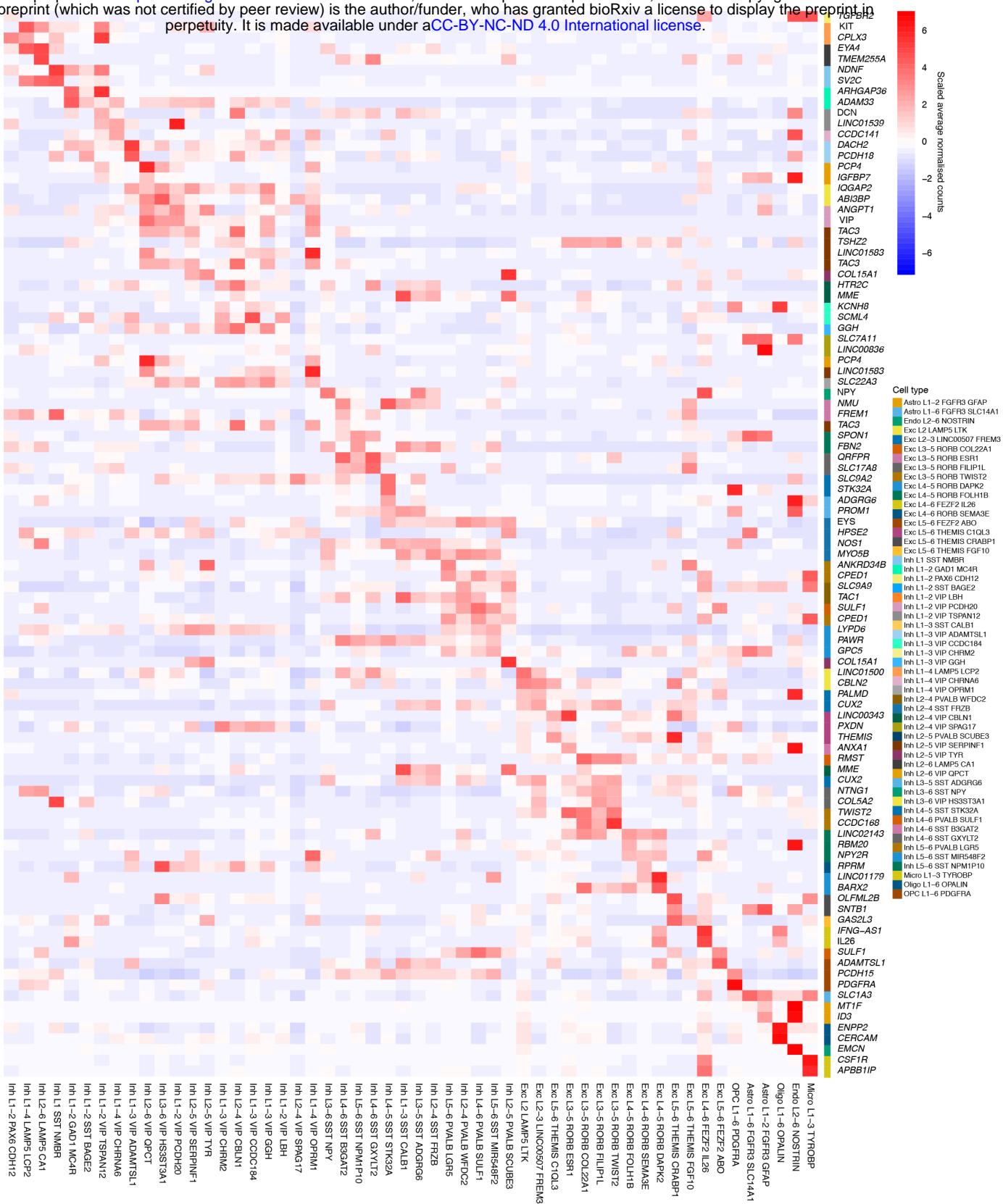


1115

1116 **Extended Data Fig. 6: *In situ* HCR analysis of selected cortical layer marker genes.** **a**, Expression of layer 1
1117 markers *AQP4*, *FABP7* and *RELN* in 31-year-old and 15-year-old temporal cortex tissue sections, with high
1118 magnification views of layer 1 indicating *AQP4/RELN*-positive cells (yellow arrowheads) and *FABP7* positive cells
1119 (green arrowhead). **b**, Expression of layer 4-6 markers *RORB*, *CLSTN2* and *TSHZ2* in 31-year-old and 15-year-old
1120 temporal cortex tissue sections. In high magnification views of layer 4 in the 31-year-old tissue section
1121 *RORB/CLSTN2*-positive (white arrowhead) and *RORB/TSHZ2*-positive cells (green arrowhead) are indicated. In
1122 high magnification views of layer 4 in the 15-year-old tissue section *RORB/CLSTN2/TSHZ2*-positive cells (white
1123 arrowheads) are indicated. Dashed white lines indicate layer boundaries. Solid white line indicates tissue edge.
1124 Scale bars are 100 μ m in low magnification views (tile scan at 40x) and 20 μ m in high magnification views (63x).

1125

1126



1127

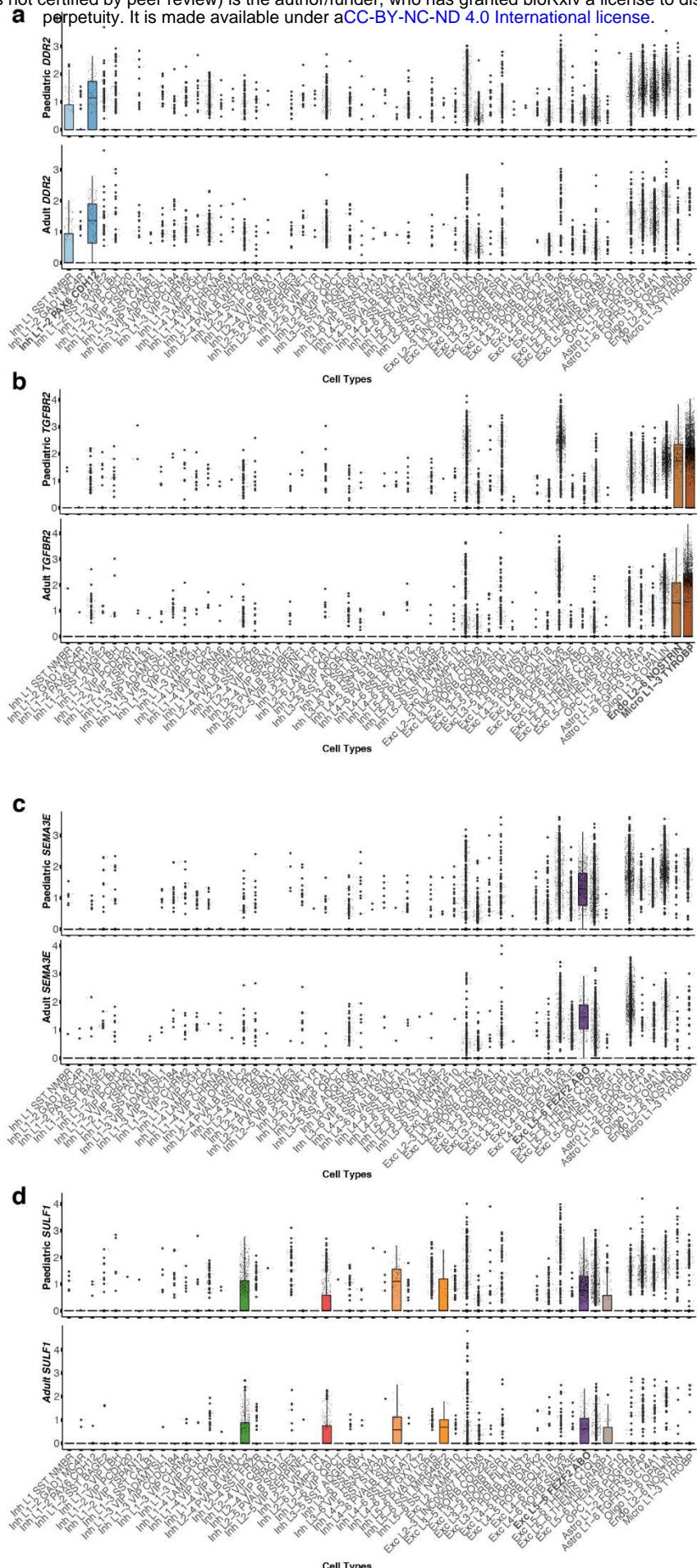
1128 **Extended Data Fig. 7: Expression of the reference MTG atlas minimal markers.** Heatmap showing the scaled
1129 average normalised expression counts of the NS-Forest minimal marker genes identified for the reference MTG
1130 cell atlas dataset (y-axis) in each of the 54 query cortical cell types identified in the combined adult and paediatric
1131 snRNA-seq datasets (x-axis). The minimal marker genes are annotated (colour codes on the y-axes) according to
1132 the cell type they define.

1133

1134

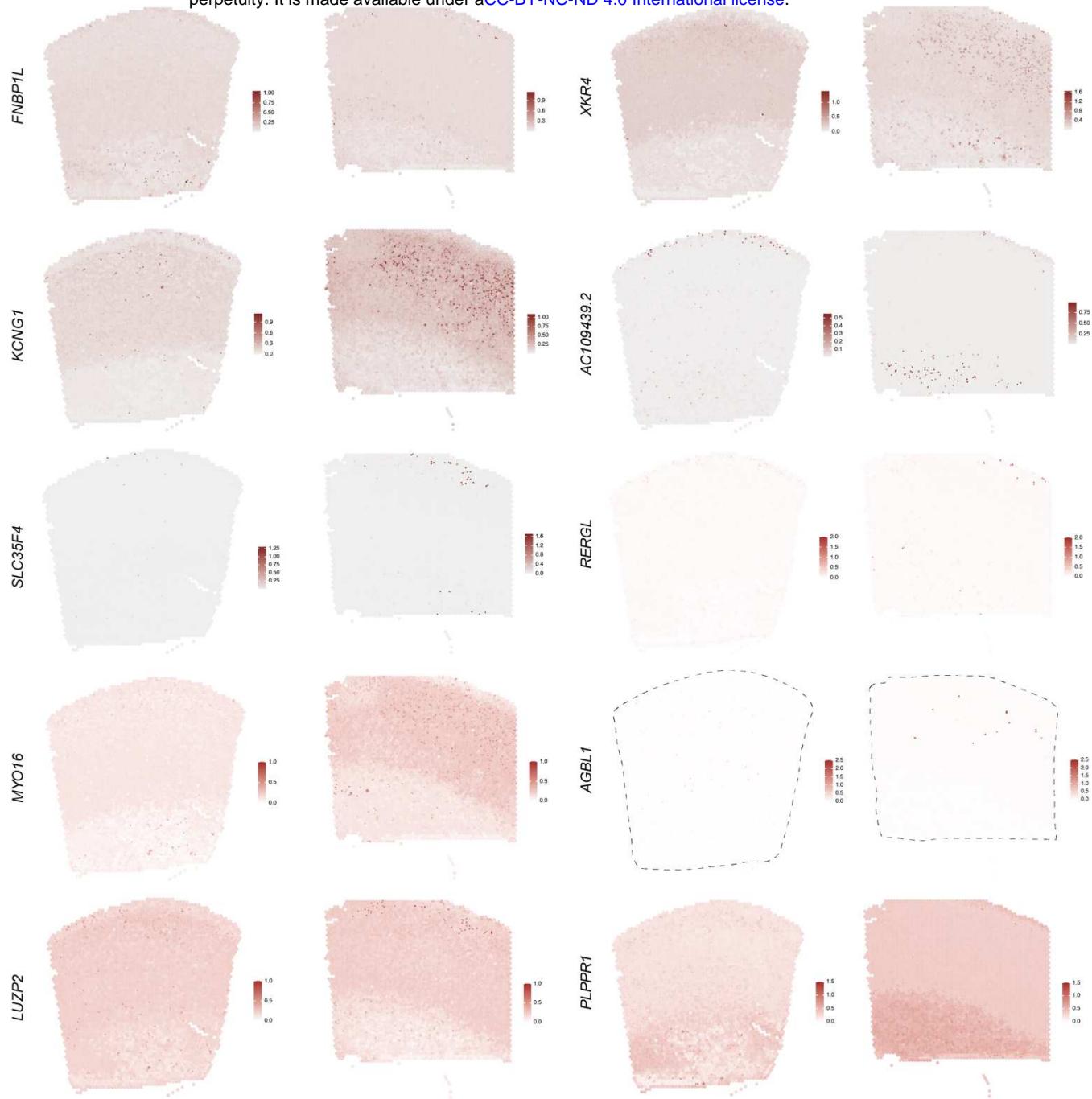
1135

1136



1137

1138 **Extended Data Fig. 8: Evaluation of NS-Forest minimal marker gene expression across cell types in comparison**
1139 **to MTG cell taxonomy markers. a-d,** Boxplots showing the normalised expression counts for *DDR2* (a), *TGFBR2*
1140 (b), *SEMA3E* (c) and *SULF1* (d) in paediatric (top) and adult (bottom) datasets. The cell types expressing the
1141 markers at high levels are indicated in bold.



1142

1143 **Extended Data Fig. 9: BayesSpace analysis of differentially expressed genes.** High resolution Visium spatial gene
1144 expression profiles for selected DEGs using BayesSpace analysis to compare sub-spot level expression intensities
1145 between 31-year-old and 15-year-old temporal cortex tissue sections.

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

Extended Data Table 1: Summary of snRNA-seq and Visium sample metadata. Samples are ordered by age. The eight “P00” datasets were generated in the Hockman laboratory while the four “Nuc” datasets were generated by Thrupp et al. (2020).

1162

1163

1164

1165

1166

1167

Extended Data Table 2: Summary of average quality control metrics for snRNA-seq datasets across nuclei for each sample before and after filtering. Several measures for quality control were evaluated on a per sample basis including the sequencing saturation, the mean number of reads per nucleus, the number of barcodes, the median number of genes detected per nucleus, the median number of UMIs detected per nucleus, and the number of doublets removed.

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

Extended Data Table 3: Label transfer annotation of snRNA-seq datasets using the Allen Brain Map MTG atlas as a reference. **Sheet 1**, Number of nuclei per MTG cell type per sample. The number of barcodes corresponding to each MTG cell type and sample is shown. Additionally, the total, minimum, and maximum number of nuclei per cell type and sample was computed. The number of cell types represented per sample was also determined. **Sheet 2**, Cell types present in reference MTG dataset which are absent from the query datasets. Label transfer resulted in 21 cell populations that were not annotated in the query datasets but were present in the reference MTG dataset. The cluster size and percentage of the total cell count for each cell type in the reference MTG dataset is also shown. **Sheet 3-5**, p values and the test performed for each cell type when comparing the proportion of nuclei (sheet 3; see Extended Data Fig. 2c), number of genes (sheet 4; see Extended Data Fig. 3b) and number of UMIs (sheet 5; see Extended Data Fig. 3c) for each cell type between paediatric and adult samples shown.

1180

1181

1182

1183

1184

1185

Extended Data Table 4: Summary of average quality control metrics for Visium datasets. Several measures for quality control were evaluated on a per sample basis including the sequencing saturation, the percentage of read mapped to the transcriptome, the number of spots under the tissue, the average number of nuclei per spot determined by Vistoseg analysis, the mean reads detected per spot, the median genes detected per spot, the total number of genes detected, the median UMI Counts per Spot and the total number of nuclei.

1186

1187

1188

1189

1190

1191

1192

1193

1194

Extended Data Table 5: NS-Forest minimal marker analysis. **Sheet 1**, Statistics from NS-Forest analysis including the mean F-beta score (the measure of the discriminative power of a given combination of marker genes) and the mean binary expression score per cell type (a measure of an individual gene’s classification power). **Sheets 2-3**, Metadata for each feature identified by NS-Forest marker in the down-sampled paediatric (**sheet 2**) and down-sampled adult (**sheet 3**) datasets describing the cell type, overlap with Aevermann et al. (2021) and Hodge et al. (2019), uniqueness to the age group of interest, coding status, and uniqueness to the associated cell type as shown in Fig. 3. As input to NS-Forest, all datasets (six paediatric and six adult) were randomly down-sampled such that the total number of nuclei per sample was equal to the sample with the fewest number of nuclei.

1195

1196

1197

1198

1199

1200

Extended Data Table 6: gProfiler analysis of NS-forest markers. (**Sheet1-2**) Significantly enriched GO terms associated with the paediatric (**sheet1**) and adult (**sheet2**) minimal marker genes identified by NS-forest. (**Sheet3-7**) Significantly enriched GO terms associated with shared (i.e. associated with both adult and paediatric sample) or paediatric-specific marker genes from the list of top 50 positive NS-Forest markers for selected cell types. Terms for which “highlighted” is true are driver terms.

1201

1202

1203

1204

1205

1206

1207

Extended Data Table 7: Summary of metadata for the top 50 positive NS-Forest markers per cell type. The top 50 positive NS-Forest markers (or total number of positive markers if < 50) per cell type for the down-sampled paediatric and down-sampled adult datasets. The number of intersecting markers, the number of markers unique to paediatric samples, and the number of markers unique to adults is shown for each cell type. The number of nuclei per cell type is shown for the combined paediatric and adult down-sampled datasets, the down-sampled paediatric datasets, and down-sampled adult datasets.

1208

1209 and adult datasets. The top 50 positive NS-Forest markers (or total number of positive markers if < 50) per cell
1210 type were extracted for the down-sampled paediatric and down-sampled adult datasets. Each sheet represents
1211 1 of 53 cortical cell types (Inh_L2-4_VIP_SPAG17 was excluded due to too few nuclei) and the NS-Forest features
1212 which were shared between the paediatric and adult datasets, unique to paediatric datasets, or unique to adult
1213 datasets are shown (sheet 1-53).

1215

1216 **Extended Data Table 9: DESeq2 output of all genes tested for differential expression between paediatric and**
1217 **adult brains per cell type. (Sheet 1-53)** Differential expression analysis was performed using DESeq2's Wald Test
1218 for each cell type separately (Inh L2-4 VIP SPAG17 was excluded due to too few nuclei). Genes were filtered prior
1219 to testing to only include those expressed in > 10% of nuclei for that cell type across all paediatric and adult
1220 datasets. The associated log2FoldChanges, p-adjusted values (padj), and description of each feature are shown.
1221 Positive log2FoldChanges represent genes upregulated in paediatrics versus adults. See DESeq2 documentation
1222 for explanation of NA values (<https://bioconductor.org/packages/release/bioc/vignettes/DESeq2/inst/doc/DESeq2.html#why-are-some-p-values-set-to-na>).

1225

1226 **Extended Data Table 10: DESeq2 output of significant DEGs between paediatric and adult brains in a subset of**
1227 **cell types. (sheet 1-5)** Significant DEGs (padj < 0.05) for Exc_L2_LAMP5_LTK, Exc_L2-3_LINCO0507_FREM3,
1228 Exc_L3-5_RORB_ESR1, Exc_L4-5_RORB_DAPK2 and Astro_L1-6_FGFR3_SLC14A1. The associated
1229 log2FoldChanges, p-adjusted values (padj), description, percentage of paediatric nuclei expressing the gene,
1230 percentage of adult nuclei expressing the gene, average normalised expression across paediatric nuclei, and
1231 average normalised expression across adult nuclei are shown. Positive log2FoldChanges represent genes
1232 upregulated in paediatric versus adults datasets. See DESeq2 documentation for explanation of NA values
1233 (<https://bioconductor.org/packages/release/bioc/vignettes/DESeq2/inst/doc/DESeq2.html#why-are-some-p-values-set-to-na>). (sheet 6-7) EA (sheet 6) and IQ (sheet7) associated DEGs and their associated cell types.

1235

1236 **Extended Data Table 11: GSEA terms associated with each cell type showing enriched or depleted pathways in**
1237 **paediatric versus adult samples.** GSEA was performed using DESeq2's output gene lists for each cell type ranked
1238 according to the log2FoldChange*-log₂(padj) for each gene. All DESeq2-tested genes served as input into GSEA
1239 (genes were expressed in > 10% of nuclei for the cell type of interest). Matrix shows the corresponding positive
1240 (sheet 1) and negative (sheet 2) NES values for each GSEA term (y axis) and cell type (x axis) based on the analysis
1241 using the ranked list of genes for each cell type. Terms were filtered to only include significantly associated terms
1242 (p<0.01, q<0.1). Positive NES values indicate pathways that are enriched in paediatric versus adult samples;
1243 negative NES values indicate pathways that are depleted in paediatric versus adult samples. The total number of
1244 terms per cell type and the total number of cell types associated with a given term are shown. 1,290 terms were
1245 enriched in at least two cell types, while 250 were depleted in at least two cell types.

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256