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Abstract

The human brain undergoes protracted post-natal maturation, guided by dynamic changes in
gene expression. To date, studies exploring these processes have used bulk tissue analyses,
which mask cell type-specific gene expression dynamics. Here, using single nucleus (sn)RNA-
seq on temporal lobe tissue, including samples of African ancestry, we build a joint paediatric
and adult atlas of 54 cell subtypes, which we verify with spatial transcriptomics. We explore
the differences in cell states between paediatric and adult cell types, revealing the genes and
pathways that change during brain maturation. Our results highlight excitatory neuron
subtypes, including the LTK and FREM subtypes, that show elevated expression of genes
associated with cognition and synaptic plasticity in paediatric tissue. The new resources we
present here improve our understanding of the brain during a critical period of its
development and contribute to global efforts to build an inclusive cell map of the brain.
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Introduction

The adult human brain is a complex assembly of diverse cell types, which has now been
defined with unprecedented accuracy using single cell transcriptomics*. This adult
transcriptomic signature is set up over a protracted period of development, which begins in
the embryo and continues after birth as the brain matures. However, while the single cell
diversity of the embryonic human brain has been explored®?, little is known about how these
cell type-specific gene expression profiles change during childhood. Existing studies of gene
expression dynamics during human brain development and maturation have used bulk
transcriptomic approaches, which revealed a dramatic period of global gene expression
change during the late foetal/early infancy transition, that stabilises during childhood and
adolescence®°, Bulk transcriptomics, however, cannot reveal the more subtle, cell type-
specific changes in gene expression that drive brain maturation from childhood, through
adolescence to adulthood.

Childhood and adolescence are periods of important changes in brain structure, during which
neuronal connections are refined and strengthened. While synaptogenesis peaks in the early
postnatal period, synaptic pruning activity begins during late childhood, peaks during
adolescence, and then gradually decreases!!!3, Together, synaptogenesis and synaptic
pruning influence brain plasticity, a feature which allows the brain to adapt in response to
experience!*. Considering synaptic changes are most prominent in infancy, childhood and
adolescence, these stages represent periods of enhanced susceptibility to environmental
influence, as well as being periods of increased neuropsychiatric risk'®. Describing the typical
cell type-specific gene expression trajectories of the maturing brain will serve as an important
reference to assess the effects of genetic perturbations and early adverse experiences on
brain maturation. Furthermore, investigating the driving forces behind cell type-specific
maturational processes may help in developing targeted therapies for neurological disease?®.

To this end, the Paediatric Cell Atlas (PCA)*’, a branch of the Human Cell Atlas (HCA) efforts
to map the cellular diversity of the human body?, aims to ensure that the benefits of single
cell transcriptomics, which will likely include vast improvements in precision medicine, are
available to children as well as adults from diverse populations®'’. Considering that Africa has
the most genetically diverse!® and youngest population® worldwide and that, by 2050, 37%
of the world’s children will grow up in Africa?®, the inclusion of the African paediatric
population in the PCA’s efforts has never been more pertinent. A reference paediatric cell
atlas for the brain that includes data from African donors will contribute to developing the
best treatment for locally prevalent conditions, such as tuberculosis meningitis and HIV
infection?422, In addition, studying the differences in gene expression dynamics between
adult and paediatric brains may explain why the manifestation of neurological conditions and
responses to therapies differ across the lifespan?’.
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80 To contribute to these endeavours, we present a joint paediatric and adult temporal cortex
81 cellatlas, including samples from eight South African donors. To facilitate a direct comparison
82  of our snRNA-seq datasets with the existing adult temporal cortex cell atlas, we annotate our
83  data using the Allen Brain Map middle temporal gyrus (MTG) cell taxonomy!. We validate this
84  annotation approach using spatial transcriptomics analysis. In addition, we use de novo
85 marker gene analysis with machine learning tools to compare our paediatric and adult
86 datasets to the existing MTG cell taxonomy and highlight markers that define paediatric
87  versus adult cell states. Using differential gene expression analysis, we highlight six cell
88  subtypes, including two layer 2/3 excitatory neuron subtypes, that show differential
89  expression of genes involved in synaptic plasticity and cognition. Overall, we highlight the
90 subtle cell type-specific differences between the paediatric and adult brain and expand the
91 representation of diverse paediatric populations in the HCA.

92

93  Results

94

95 Ajoint paediatric and adult temporal cortex cell atlas
96

97  We generated snRNA-seq libraries from five paediatric and three adult donor temporal cortex

98 tissue samples using the 10x Genomics Chromium platform. These new libraries were

99 analysed alongside similar published datasets from one paediatric and three adult donors?3,
100 resulting in a total of 23 snRNA-seq datasets (including technical replicates) from 12
101 individuals (six paediatric and six adult) (Fig. 1a, Extended Data Table 1). The samples were
102  sequenced to a median depth of 19,853 reads per nucleus, with 176,012 nuclei remaining
103  after filtering low quality barcodes (Methods) (Extended data Fig. 1, Extended Data Table 2).
104
105 Using data integration and clustering (Methods), we aligned similar cell types across the 23
106  datasets (Fig. 1la, Extended data Fig. 1h), yielding 40 clusters (Extended data Fig. 1i). To
107 facilitate a direct comparison between our datasets and the current draft human brain cell
108 atlas, we used Seurat’s label transfer method?* to classify each nucleus according to the Allen
109  Brain Map MTG atlas® (Fig. 1b; Extended Data Table 3). Of the 75 reference cell types, 21
110 neuronal subtypes were absent from our datasets (Extended Data Table 3). The majority of
111  the absent neuronal cell types are rare (<2% of all cells; see Extended Data Table 3), and
112  therefore their absence is likely due to the lower proportion of neurons in our datasets
113  compared to the reference atlas, which was made using cell-sorting to enrich for neurons?.
114
115  As aninitial validation of the label transfer, we confirmed that the majority of annotated cell
116  types expressed the expected cell type-specific marker genes! (Fig. 1c). Additionally, we
117  performed a correlation analysis to compare the transcriptomic similarity of the annotated
118  cell types to the reference MTG cell types! (Fig. 1d). The non-neuronal cell types showed high
119  correlation with the corresponding reference cell types, as well as high specificity (Fig. 1d).
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120  Similarly, most neuronal subtypes showed high correlation with the corresponding subtype
121 in the reference datasets, however, there was also correlation with other subtypes within
122 their class. Exceptions were Exc_L4-6_FEZF2_IL26, which expressed the excitatory neuron
123 marker gene FEZF2 but correlated more strongly with microglia, and Exc_L5-
124  6_THEMIS_FGF10, which expressed the inhibitory marker LHX6 and correlated more strongly
125  with the inhibitory neuron subtypes (Fig. 1c-d). The overall cell composition of the paediatric
126  and adult samples was very similar. Oligodendrocytes and oligodendrocyte precursor cells
127  (OPCs) were the most common non-neuronal cell types and Exc_L2_LAMP5_LTK was the most
128  common neuronal cell subtype (Fig. 1e; Extended data Figure 2a-c).

129

130 Neuronal clusters had a greater number of expressed genes and unique molecular identifiers
131  (UMlIs) compared to non-neuronal cells (Extended data Figure 3a). Similar to previous snRNA-
132  seq analyses of the adult brain'2, excitatory neurons had a greater number of genes detected
133  per nucleus than inhibitory neurons, with Exc_L2-3_LINCO0507_FREM3 and Exc_L4-
134 5 _RORB_FOLH1B among the cell types with the highest median gene detection. When
135 comparing the paediatric to adult samples, only two cell subtypes showed significant
136  differences in the number of genes (Exc_L2_LAMP5_LTK and Exc_L3-5_RORB_FILIP1L) and
137  UMIs (Exc_L2_LAMP5_LTK and Exc_L2-3_LINCO0507_FREM3) between the age categories,
138  with the paediatric samples having a significantly larger value in each case (Extended data
139  Figure 3b-c). This result points towards higher transcriptional diversity in these neuronal
140  subtypes during childhood.

141

142

143  Spatial mapping of cell types reveals similar tissue cytoarchitecture in adult and paediatric
144  temporal cortex

145

146  Next, we used spatial transcriptomics to verify the positions of our annotated cell types within
147  the layered structure of the temporal cortex. We generated 10x Genomics Visium Spatial
148 Gene Expression datasets for frozen tissue sections from adult (31-year-old) and paediatric
149  (15-year-old) temporal cortex samples (two sections each; Extended Data Table 1; Extended
150 data Fig. 4). The four Visium libraries were sequenced to a median depth of 87,178 reads per
151  spot (median of 5,878 UMIs and 2,745 genes per spot) (Extended Data Table 4).

152

153  Using cell2location?> (Methods), we calculated cell type abundance estimates for each Visium
154  spot, with our annotated snRNA-seq dataset as a reference. As seen in our snRNA-seq
155 datasets, oligodendrocytes were the most common cell type, while Exc_L2_LAMPS5_LTK was
156  the most abundant neuronal cell type (Extended data Fig. 5a). Spatial plots of estimated cell
157  abundance for a selection of cell types revealed that the annotated cell types mapped to their
158  expected cortical layer locations across all tissue sections (Fig. 2a-b; Extended data Fig. 5b-c).
159  The two cell types that did not correlate strongly with the expected MTG reference atlas cell
160 types in our snRNA-seq analysis, Exc_L4-6_FEZF2_IL26 and Exc_L5-6_THEMIS_FGF10, were
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161  most strongly distributed in layers 4-6, providing support for their annotation (Extended data
162  Fig.5d). The layered pattern of the annotated cell types coincided with the spatial expression
163  of known cortical layer marker genes??7 in the Visium datasets (Fig. 2c). These layered
164  expression patterns were verified for a subset of layer-specific marker genes using in situ
165 hybridisation analysis on frozen temporal cortex tissue sections from the same 31-year-old
166  and 15-year-old donors (Extended data Fig. 6).

167  To confirm the co-location of cell types within the layered structure of the temporal cortex,
168 non-negative matrix factorization (NMF) was performed using the cell abundance estimates
169  from cell2location, resulting in 12 cellular compartments (Fig. 2d). The NMF weights for the
170 identified cellular compartments were visualised across the Visium samples to assess their
171  spatial distribution (Fig. 2e). In both the paediatric and adult datasets, there was clear co-
172  location of the expected neuronal cell types within overlapping compartments across the
173 cortical layers, including layers 1-3 (factor_9), layers 3-5 (factor_3) and layers 4-6 (factor_7).
174  Several excitatory neuron subtypes formed discreet cellular compartments, including Exc_L2-
175  3_LINCOO507_FREM (factor_4), Exc_L5-6_THEMIS_CRABP1 (factor_11) and Exc_L5-
176  6_FEZF2_ABO (factor_6). The two astrocyte subtypes were confirmed to have distinct
177  distributions profiles, with Astro_L1-2_FGFR3_GFAP (factor_5) located primarily in layer 1
178  and the white matter, and Astro_L1-6_FGFR3_SLC14A1 (factor_8) more widely distributed.
179  The remaining non-neuronal cell types were largely associated with factors located in layer 1
180 and the white matter.

181  Overall, our spatial transcriptomic analyses provide support for our annotation approach,
182  showing the expected spatial distribution of annotated cell types, and revealing a similar
183  tissue cytoarchitecture in adult and paediatric temporal cortex tissue.

184

185 A machine learning approach identifies gene pathways that distinguish paediatric and adult
186  cell states

187

188  Toestablish a standardized and scalable approach for defining cell types, it has been proposed
189  to use the minimum combination of gene markers that can classify a cell type and distinguish
190 it from other cell types?®?°. Towards achieving this, Aevermann et al. (2021)?® developed the
191  machine learning tool, NS-Forest V2.0, which they applied to the Allen Brain Map MTG
192  dataset. Ideally, theses MTG minimal markers would be conserved in similar datasets to
193 facilitate accurate comparisons across different studies3’. We found that the MTG cell atlas
194  minimal markers?® are indeed highly expressed in the expected cell types (Extended data Fig.
195 7).

196

197  Next, we applied the NS-Forest V2.0%® algorithm to our datasets, firstly, to assess if the
198 identified minimal markers overlap with the published MTG minimal markers and, secondly,
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199 to identify combinations of marker genes that distinguish the paediatric and adults states of
200 each cell type (Methods). 151 paediatric and 149 adult minimal marker genes were identified
201  across 53 cell types (Fig. 3; Extended data Table 5). There was little overlap with the MTG
202  atlas, with only 11 paediatric (7.3%) and 4 adult (2.7%) minimal markers showing overlap with
203  existing datasets?® (Fig. 3; Extended data Table 5). On the other hand, there was a greater
204  overlap in minimal markers between the paediatric and adult datasets, with 35 markers
205  (~23%) present in both lists.

206

207  Our minimal marker analysis revealed improved markers for several cell types when
208 compared to the reference MTG cell atlas. DDR2 shows high specificity for Inh_L1-
209 2_PAX6_CDH12 (Fig. 3; Extended data Fig. 8a), while the existing minimal marker for this cell
210 type, TGFBR2, is more highly expressed in the microglia and endothelial cells (Extended data
211  Fig. 7; Extended data Fig. 8b). Similarly, SEMA3E is very specific to Exc_L5-6_FEZF2_ABO (Fig.
212 3; Extended data Fig. 8c), while an existing minimal marker for this cell type, SULF1, is also
213  expressed at appreciable levels in other neurons (Extended data Fig. 7; Extended data Fig.
214  8d). Additionally, UMAP analysis of the annotated datasets using our minimal marker gene
215 list for each age group, in comparison to an equivalent number of random genes, resulted in
216  better grouping of the cell subtypes into clusters (Fig. 4 a-b). While the cell clusters are not as
217  clearly separated as the original UMAP plot, (see Fig. 1a), this analysis reveals that our short
218 list of ~150 marker genes captures much of the underlying transcriptomic diversity in our
219  datasets.

220

221  To explore the cellular functions of the paediatric and adult minimal marker genes
222 respectively, we used Gene ontology (GO) analysis (Extended Data Table 6), which revealed
223 significant enrichment of GO terms related to neuronal development and cell signalling for
224  both datasets. Interestingly, only the paediatric dataset was enriched for cellular migration
225 terms (Extended Data Table 6). Genes included in these sets were RELN, CXCL14 and SEMA3A,
226  which play roles in neuronal migration during brain development31-33, On the other hand, only
227  the adult datasets were enriched for extracellular matrix and cell death terms (Extended Data
228 Table 6). These broad analyses of minimal marker gene function indicate that genes involved
229  in neuronal development pathways remain key to neuronal identity, alongside functional
230 signalling molecules, as the brain matures and in adult life. Our results also suggest that genes
231  involved in cellular migration processes may continue to define cell states during childhood
232 and adolescence.

233

234  Tofurther assess the difference in cell type-specific markers between our paediatric and adult
235  datasets, we expanded our analysis to include the top 50 genes identified as cell type
236  classification features for each cell type. For most cell types, the majority of these top markers
237  (>20 genes) were shared between our paediatric and adult datasets (Fig. 4c; Extended Data
238 Tables 7-8). The non-neuronal cell types showed the highest number of shared marker genes
239  (=40). GO analysis of these shared marker genes showed significant enrichment of terms
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240 related to cell type-specific functions, such as “leukocyte proliferation” for microglia, and
241  “myelin sheath” for oligodendrocytes (Extended Data Table 6). These results suggest that
242 paediatric and adult non-neuronal cell states are relatively similar, although it is likely that
243 more diversity in the marker gene profiles could be revealed with subdivision of the cells into
244  further subtypes.

245

246  The cell types with the fewest shared markers between our paediatric and adult datasets
247  (<10) were mostly represented by fewer than 20 nuclei and therefore the lack of marker
248  overlap between our datasets is possibly due to sampling bias (Extended Data Table 6). An
249  exception was Exc_L4-6_FEZF2_IL26, represented by 2,579 nuclei, which had no shared
250 genes, two adult-specific genes (SNAP25 and CALM1) and four paediatric-specific genes
251  (MEF2A, MEF2C, DOCK4 and PLXDC2) (Fig. 4c; Extended Data Tables 7-8). Interestingly, the
252  paediatric-specific markers for this cell type are implicated in neuronal development
253  processes, including synaptic plasticity34, dendritic branching®> and neuronal proliferation3®.
254  The cell type with the greatest number of paediatric-specific marker genes was Exc_L4-
255 5 _RORB_DAPK2 (29 paediatric vs 3 adult markers) (Fig. 4c; Extended Data Tables 7-8). GO
256  analysis of the 29 paediatric-specific marker genes for this cell type revealed enriched terms
257  related to synapse development, while similar analysis of the 19 shared genes together with
258 the three adult-specific genes highlighted terms involved in synaptic function (Extended Data
259 Table 6).

260

261  Overall, our expanded marker gene analysis suggests that neuronal cell types show greater
262  dissimilarity between their paediatric and adult states than non-neuronal cells, and reveals
263  several paediatric-specific markers that reflect the less mature state of paediatric neuron
264  subtypes.

265

266

267  Differential gene expression analysis highlights six cell subtypes and enriched expression of
268 genes associated with synaptogenesis and cognition in paediatric samples.

269

270  While our minimal marker gene analysis provides insight into the genetic signatures that
271  distinguish cell types from one another over the course of brain maturation, we were also
272  interested in investigating how the general transcriptomic profile of each cell type differs in
273  children when compared to adults. In particular, we sought to identify genes that were
274  upregulated in the paediatric cell populations and thus might be involved in childhood brain
275 development and function. To this end, we conducted cell type-specific differential gene
276  expression analysis with DESeq23” (Methods).

277

278 Intotal, we detected 166 unique significantly differentially expressed genes (DEGs) across 12
279  out of the 54 annotated cell types, with some DEGs associated with multiple cell types (Fig.
280 5a; Extended data Table 9). When the magnitude of fold change of the DEGs was considered,
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281 143 genes across six cell types changed by at least 10%, with a positive fold change indicating
282  higher expression in our paediatric samples (Fig. 5b-c). The six cell types included four
283  excitatory neuron subtypes, one inhibitory subtype and one astrocyte subtype (Fig. 5b-c;
284  Extended data Table 10). For the majority of DEGs, the change in expression was accompanied
285 by a corresponding change in the percentage of nuclei expressing the gene (Extended data
286  Table 10). We assessed the expression patterns of a subset of DEGs in our Visium datasets
287  using BayesSpace®® (Methods), confirming that the genes were expressed at higher levels and
288  in a greater number of spots in the 15-year-old compared to the 31-year-old (Extended data
289  Fig.9).

290

291 The layer 2/3 excitatory neuron subtypes, Exc_L2_LAMP5_LTK and Exc_L2-
292  3_LINCO0507_FREMS3, shared several upregulated DEGs that are developmentally regulated
293  in the mammalian brain (Fig. 5¢-d). FNBP1L (TOCA-1) regulates neurite outgrowth® and is
294  associated with intelligence®. In line with our findings, its expression declines over the course
295  of brain maturation in the rat®. Similarly, both KCNG1, a voltage gated-potassium channel
296  (Kv6.1), and MYO16 (MYRS8), an unconventional myosin protein, decrease in expression with
297 age in the mouse®! and rat*? brain, respectively. These findings indicate that previously
298 reported expression dynamics for these genes in mammalian models are conserved in the
299  human temporal cortex, with higher expression in children. Importantly, our analysis reveals
300 that these patterns are specific to two layer 2/3 excitatory neuron subtypes.

301

302 Two significantly upregulated genes in the layer 2/3 excitatory neurons, LUZP2 and RERGL
303 (Fig. 5¢-d), are associated with neuropsychiatric disorders, as well as brain cancers. LUZP2, a
304 leucine zipper protein, is associated with Alzheimer’s Disease and schizophrenia, as well as
305 cognitive performance in the normal elderly population®. It is differentially expressed in
306  several cancers, including low grade gliomas®*. Similarly, RERGL is differentially expressed in
307 schizophrenia®, while its expression is significantly higher in meningiomas compared to
308 healthy tissue®. Our results suggest that these genes likely play a role in the maturation of
309 layer 2/3 excitatory neurons.

310

311  The layer 3-5 excitatory neuron subtypes, Exc_L3-5_RORB_ESR1 and Exc_L4-5_RORB_DAPK?2,
312  shared 3 upregulated DEGs, which have known roles in the development and reorganisation
313  of neuronal connections (Fig. 5¢,e). XKR4 is a member of a plasma membrane protein family
314 involved in signalling cellular compartments for engulfment, such as during synaptic
315  pruning®’. These proteins decrease in expression with age in the mouse brain®. TENM1, is a
316 member of the teneurin transmembrane protein family that regulate cytoskeletal
317 organisation and neurite outgrowth, as well as shaping synaptic connections*-!, AGBL1
318  (CCP4)is a glutamate decarboxylase that mediates deglutamylation of tubulin®2. This process
319 is essential for the maintenance of neuronal tubulin, and when disrupted, contributes to
320 neurodegeneration®>°3, Our results point towards a role for these genes specifically in Exc_L3-
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321 5_RORB_ESR1 and Exc_L4-5_RORB_DAPK2 neurons, where they possibly contribute to the
322  re-shaping of neuronal connections during brain maturation.

323

324  The majority of the DEGs in the four neuronal subtypes were not shared across the cell types
325 and represent promising candidates for future explorations into molecular mechanisms
326  guiding cell type-specific brain maturation. For example, FGF13 (FHF2) was significantly
327 upregulated in Exc_L3-5_RORB_ESR1 (Fig. 5¢c). FGF13 decreases in expression with age in the
328 mouse brain, where it regulates post-natal neurogenesis®* and axonal formation®>. Similarly,
329  PLPPR1 (PRG1)was significantly upregulated in Exc_L2-3_LINCO0507_FREM3 (Fig. 5c). PLPPR1
330 is higher in the postnatal mouse hippocampus than in the adult>® and is also known to
331 regulate axon growth by modulating cytoskeletal dynamics®’.

332

333 InInh_L2-6_VIP_QPCT, asingle IncRNA, LINC00276, was upregulated (Fig. 5b). While this non-
334  coding RNA has been shown to be expressed in the brain8, nothing is known of its function
335 there. Similarly, in Astro_L1-6_FGFR3_SLC14A1, a single non-coding gene, AC109439.2 (CTB-
336  1/21), was significantly upregulated (Fig. 5c, f). This IncRNA has recently been identified as a
337 protective factor in oesophageal cancer®® and glioma®. One of the downregulated genes in
338 this cell type, ADAM28, a metalloproteinase, has been found to be upregulated in breast and
339  lung cancers®®. These results provide new molecular candidates to expand our understanding
340 of molecular mechanisms of astrocyte maturation.

341

342  Genes associated with intelligence quotient (IQ) and educational attainment (EA) have
343  recently been shown to be enriched in adult temporal lobe cortical neurons, especially the
344  Exc_L2-3_LINCO0507_FREM3 subtype®?. Since childhood is a key period of cognitive
345 development®, we explored whether the same genes were found amongst our DEGs. Of the
346 137 DEGs found in at least one neuronal cell type, 15 (11%) are known to be significantly
347  associated with EA®* and 4 (3%) with 1Q®%°. These included several genes enriched in paediatric
348 samples, such as MYO16, KCNG1 and LUZP2 (Extended data Table 10).

349

350 Overall, our differential expression analysis highlights six cell subtypes that show significant
351 changes in gene expression between children and adults. Several of the genes that are
352  upregulated in in children have known roles in brain development and have been associated
353  with cognitive ability. Our analysis builds on this knowledge by implicating specific paediatric
354  cell subtypes and provides new candidate genes that likely contribute to cell type-specific
355  maturation processes.

356

357 Gene pathways involved in synaptic development and functioning are enriched in
358 paediatric cell types

359

360 We next used gene set enrichment analysis (GSEA) to conduct a broad analysis of the gene
361 pathways that are differentially regulated across all brain cell types during brain maturation
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362 (Methods). GSEA aggregates the information from many genes to identify enriched functional
363 pathways, allowing us to interrogate the gene signature changes across all cell types,
364 including those that did not show any significant DEGs®®.

365

366 Intotal, 2,003 GOBP terms where enriched in the paediatric samples compared to the adults,
367 while 866 were depleted (p<0.01 and g<0.1) (Extended data Table 11). When focusing on the
368 25 most frequently enriched terms, the majority (11 terms) were associated with cellular
369 respiration pathways (Fig. 6; Extended data Table 11). Six of the most commonly enriched
370 terms were linked to synaptic development and functioning. A similar trend was observed
371  when focussing on the cell types from our differential expression analysis, with gene
372  expression, cellular respiration and synapse development pathways dominating the top
373  enriched terms (Fig. 5g).

374

375  Focusing on pathways that are depleted in the paediatric brain, four of the top ten depleted
376 terms, including the top term, were associated with neuronal ensheathment (Fig. 6).
377 Interestingly, none of these terms were significantly enriched in oligodendrocytes or OPCs,
378  while they were associated with neuronal sub types, astrocytes and microglia. The remainder
379  of the top ten depleted terms included neuronal morphogenesis, cell adhesion and gene
380 expression pathways.

381

382  Overall, our GSEA analysis points towards putative genetic pathways that may drive the
383  differences in synaptic plasticity between the paediatric and adult brain. Pathways related to
384  reorganising and strengthening synapses may be enhanced across multiple cell types during
385 childhood, while those required to limit synaptic growth, such as axonal ensheathment
386 pathways, may need to be suppressed.

387

388

389  Discussion

390

391 The brain is the most complex organ in the human body, which continuously changes as we
392  mature and age. Existing studies exploring the transcriptomic changes across the full span of
393  brain maturation have used bulk transcriptomic techniques®°, which drown out the subtle
394 molecular events taking place within specific cell types. Here, we unmask these processes,
395  using single cell transcriptomics to compare similar cell types between paediatric and adult
396 datasets.

397

398 To facilitate accurate comparisons of cell types across age groups, we used the existing Allen
399  Brain Map MTG cell atlas! to annotate our datasets. This demonstrated that the reference
400 atlas, generated from eight adult snRNA-seq datasets, is indeed generalisable®®, and can be
401 used to classify cell types in similar datasets from samples of different ages. This
402  generalisability is essential for healthy human reference atlases to serve as a baseline to
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403 improve our understanding of human development and disease®. Our machine-learning
404  marker gene analysis also shows that while the cell type classifications, which are based on
405 the expression of thousands of genes, can be transferred onto new datasets, the minimal
406  markers that define the cell types do vary across datasets. Very few of our NS-Forest minimal
407  markers overlap with the existing MTG cell atlas minimal markers'?® and some provide better
408 discrimination between cell type than the existing markers. These results highlight that the
409 minimal markers that currently define the MTG cell taxonomy will likely need to be revised
410 as more samples are made available to ensure that the cell type classification is as widely
411  applicable as possible.

412

413  Similar to previous analyses of aging in the mouse®®, our integrated analysis of paediatric and
414  adult datasets showed there is little change in cell type composition within the temporal
415  cortex during human brain maturation. However, both our minimal marker analysis and
416  differential gene expression analysis highlight differences in cell states between paediatric
417  and adult cell types. GO analysis of our minimal marker genes revealed a signal for migratory
418 pathways amongst the paediatric minimal markers, including genes that code for
419 chemoattractants, such as RELN and CXCL14. While these genes are expressed in the
420 mammalian adult brain?®®7.%8 our analysis suggests that they play a greater role in defining
421  cellidentity in childhood, where these signals possibly function to mediate processes such as
422  dendritic outgrowth and the rearrangement of neuronal synaptic connections.

423

424  Inrecentyears, the excitatory pyramidal neurons in the supragranular layers of the MTG have
425  been shown to have high transcriptional diversity®® and to possess unique features including
426  exceptionally large arborisations’® and electrophysiological properties that impact signal
427 integration and encoding’!’4 in ways that may enhance neuronal computational abilities,
428  contributing to human cognition. Since cognitive ability is a key feature that is established
429  during childhood®®, our differential expression analysis offers an extraordinary opportunity to
430 explore how cell type-specific gene expression dynamics contribute to cognitive
431 development. We highlight six cell subtypes that show significant gene expression changes
432  between childhood and adulthood. Interestingly, two of these cell types were the layer 2/3
433  excitatory neurons, Exc_L2_LAMPS5_LTK and Exc_L2-3_LINCO0507_FREM3, that have recently
434  been associated with human cognition®2. In line with these findings, several of the DEGS
435 shared by these cell types, including FNBP1L%° and LUZP2%, have been implicated in cognitive
436  ability and intelligence. Overall, our data points towards genes and pathways that likely play
437  key roles in cognitive development specifically within these layer 2/3 excitatory neurons.
438

439  The relatively low number of genes and cell types implicated in our differential expression
440 analysis in comparison to similar studies in mouse®® suggests that the difference between the
441  paediatric and adult brain are subtle. However, the inherent high variability in human gene
442  expression data may potentially mask some of the differential gene expression in our limited
443  sample. As the HCA database for the human temporal cortex expands, it will be important to
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444 build on these analyses with more samples for each developmental stage to provide more
445  support for our findings.

446

447  We have provided the first single cell gene expression datasets for the brain that includes
448  data from black South African donors, thus increasing the diversity of the HCA database. Our
449  paediatric datasets will form important baseline references for future studies aiming to
450 explore how locally important challenges to child brain health, including infectious diseases
451  andtraumatic brain injury, impact on the normal gene expression profiles. Importantly, these
452  investigations will contribute to the development of effective treatments, that are tailored to
453  specific needs of paediatric patients.

454

455

456  Methods

457

458 Human samples

459  Ethical approval was granted for the collection and use of paediatric and adult human brain
460 tissue by the University of Cape Town Human Research Ethics Committee (UCT HREC REF
461 016/2018; sub-studies 146/2022 and 147/2022). The human brain tissue samples used to
462  generate new 10x Genomics snRNA-seq and Visium datasets were obtained by informed
463  consent for studies during temporal lobe surgical resections to treat epilepsy and/or cancer
464  performed at the Red Cross War Memorial Children’s Hospital and Constantiaberg Mediclinic
465  in Cape Town, South Africa. The samples used in this study were of temporal cortex origin and
466  represent radiologically and macroscopically normal neocortex within the pathological
467  context (details in Extended Data Table 1). Upon resection, samples were placed in
468 carbogenated ice-cold artificial cerebral spinal fluid (aCSF) containing in (mM): 110 choline
469  chloride, 26 NaHCOs3, 10 D-glucose, 11.6 sodium ascorbate, 7 MgCl,, 3.1 sodium pyruvate, 2.5
470  KCl, 1.25 NaH;P0O4, and 0.5 CaCl, (300 mOsm) and immediately transported to the laboratory
471  (~20 minutes). Tissue blocks containing the full span from pia to white matter were prepared
472  and either flash frozen in liquid nitrogen or embedded in optimal cutting temperature
473  compound (OCT) and stored at -80°C. The OCT-embedded samples were flash frozen in a
474  10x10 mm? cryomold which was either frozen directly in liquid nitrogen or placed in a
475  container of isopentane (Merck) which was in turn placed in liquid nitrogen at the same level
476  as the isopentane. The publicly available snRNA-seq datasets?3, generated from samples
477  obtained during elective surgeries performed at Universitair Ziekenhuis Leuven, Belgium,
478  were downloaded from the Sequence Read Archive database.

479

480  Nuclei isolation for snRNA-seq

481  Nuclei were isolated according to a protocol adapted from Habib et al. (2017)’> and the 10X
482  Genomics nuclei isolation protocol (CG000124, User Guide Rev E). Frozen brain tissue was
483  homogenised in a dounce-homogeniser containing 2 ml ice-cold lysis solution (Nuclei EZ Lysis
484  Buffer [Sigma-Aldrich, NUC101] or Nuclei PURE Lysis buffer [Sigma-Aldrich, NUC201] with 1
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485 mM dithiothreitol [DTT, Promega, P1171, US] and 0.1% Triton X-100 [Sigma-Aldrich, NUC201-
486  1KT, US]). Homogenisation was done 20 times with the loose pestle A followed by 20 times
487  with the tight pestle B. An additional 2 ml lysis solution was added, and the sample was
488 incubated for 5 minutes on ice. The sample was centrifuged at 500 x g for 5 minutes at 4°C
489  after which the supernatant was discarded and the nuclei resuspended in 3 ml ice cold nuclei
490 suspension buffer (1x phosphate-buffered saline [PBS, Sigma-Aldrich, P4417-50TAB, US]),
491  0.01% bovine serum albumin [BSA, Sigma-Aldrich, A2153-10G, US], and 0.2 U/ul RNAsin Plus
492  RNase inhibitor [Promega, N2615, US]). Resuspended nuclei were passed through a 40 um
493  filter and centrifuged at 900 x g for 10 minutes at 4°C. The supernatant was discarded and
494  pelleted nuclei were resuspended in 3 ml blocking buffer (1xPBS [Sigma-Aldrich, P4417-
495  50TAB, US], 1% BSA [Sigma-Aldrich, A2153-10G, US], 0.2 U/ul RNAsin Plus RNase inhibitor
496 [Promega, N2615, US]).

497

498 To remove myelin debris, 30 pl of myelin removal beads [Miltenyi Biotec. 130-096-733, US]
499  was added to the solution which was mixed by gently pipetting 5 times. The sample was
500 incubated for 15 minutes at 4°C after which it was mixed with 3 ml blocking buffer and
501 centrifuged at 300 x g for 5 minutes at 4°C. The supernatant was removed and the nuclei were
502 resuspended in 2 ml clean blocking buffer. The sample was transferred to a 2 ml tube and
503 placed on a Dynamag magnet for 15 minutes at 4°C. The supernatant was transferred to a
504 new tube and stored on ice. An aliquot of trypan blue stained nuclei was counted using a
505 haemocytometer to determine the nuclei concentration and the volume to use in snRNA-seq
506 library preparation.

507

508 10X Genomics snRNA-seq library preparation

509 snRNA-seq library preparation was carried out using the 10x Genomics Chromium Next Gen
510 Single Cell 3’ Reagent Kit (v3.1) according to manufacturer’s protocols (CG000204, User Guide
511  Rev D), targeting 10,000 nuclei per sample. At step 2.2d and 3.5e, the libraries were amplified
512  using 11 cycles and 13 cycles, respectively. Library quality and concentration was assessed
513  using either the TapeStation or Bioanalyser (Agilent) and Qubit (Invitrogen) at the Central
514  Analytical Facility (CAF, University of Stellenbosch). cDNA libraries were sequenced by
515 Novogene (Singapore) on either the Illumina HiSeq or NovaSeq system using the lllumina High
516  Output kits (150 cycles).

517

518 snRNA-seq read alignment and gene expression quantification

519 Fastqfiles were aligned to the human reference transcriptome (GRCh38) and quantified using
520 the count function from the 10X Genomics Cell Ranger v6.1.1 software (Cell Ranger, RRID
521 SCR_017344) (Code availability: script 1). The inclusion of introns was specified in the count
522  function. An automatic filtering process was performed to remove barcodes corresponding
523  to background noise which have very low UMI counts.

524
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525  snRNA-seq quality control

526  The resulting count matrices were processed using a pipeline adapted from the Harvard Chan
527 Bioinformatics Core (https://hbctraining.github.io/scRNA-seq_online/). The filtered gene
528  barcode matrix for each sample was imported into R (V.4.2.0) using the Read10X function
529  from the Seurat (v.2.0)**. Nuclei-level filtering was performed to remove poor quality nuclei
530 according to their number of UMIs (nUMIs) detected, number of genes detected (nGene),
531 number of genes detected per UMI (log10GenesPerUMI), and the fraction of mitochondrial
532 read counts to total read counts (mitoRatio) (Code availability: script 2). Nuclei that met the
533  following criteria were retained: nUMI > 500, nGene > 250, logl0GenesPerUMI > 0.8 and
534  mitoRatio < 0.2. Gene-level filtering was performed to remove genes that had zero counts in
535 all nuclei, remove genes expressed in fewer than 10 nuclei, and remove mitochondrial genes
536 from the gene by cell counts matrix. Three doublet removal tools namely
537  DoubletFinder’®(Code availability: script 3), DoubletDecon’” (Code availability: script 4), and
538  Scrublet’” (Code availability: script 5,6) were used to identify doublets for each dataset
539 individually. The sample-specific parameters of each of the tools were adjusted according to
540 the specified guidelines. To achieve a balance between the false positive and false negative
541 rate of the different doublet detection tools, all doublets identified by DoubletFinder as well
542  astheintersection of the doublets identified by DoubletDecon and Scrublet, were removed””.
543

544  snRNA-seq data normalization, integration and clustering

545  Principal component analysis was performed to evaluate known sources of within-sample
546  variation between nuclei, namely the mitoRatio and cell cycle phase (Code availability: script
547 7). The UMI counts of the 3000 most variable features were normalised and scaled on a per
548  sample basis by applying Seurat’s SCTransform function with mitoRatio regressed out. A
549  Uniform Manifold Approximation and Projection (UMAP) analysis was performed on the
550 merged object to assess whether integration was necessary. The datasets were subsequently
551 integrated using Seurat’s SelectIntegrationFeatures, PrepSCTintegration,
552  FindIntegrationAnchors, and IntegrateData functions (Code availability: script 7). To cluster
553 the datasets following integration, dimensionality reduction was first performed using UMAP
554  embedding, specifying 40 dimensions (Code availability: script 8). The Seurat FindClusters
555  function was then applied at a resolution of 0.8.

556

557  snRNA-seq cluster annotation

558 Label transfer was performed using Seurat’s TransferData function with Allen Brain Map MTG
559 atlas! as a reference dataset (Code availability: scripts 9-10). This resulted in each barcode in
560 the query dataset receiving a predicted annotation based on a similarity score to an
561 annotated cell type in the reference. To validate the annotation, the expression of known
562  marker genes was assessed. Additionally, cosine similarity scores were computed to compare
563  the transcriptomic similarity of each of the 54 annotated query cell types to the 75 reference
564 middle temporal gyrus cell types using the SCP package (https://github.com/zhanghao-
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565 njmu/SCP) (Code availability: script 11). This was achieved by computing cosine similarity
566  scores for each pair of query and reference cell types using the expression of the top 2000
567 shared highly variable features between the query and reference datasets. The log
568 normalised expression counts were used for this purpose (RNA assay, data slot).

569

570  NS-Forest machine learning marker analysis of shnRNA-seq datasets

571  The NS-Forest tool (v2.0)%2° was used to identify combinations of marker genes uniquely
572  defining each annotated cell type (Code availability: script 12-14) in the paediatric and adult
573  datasets separately. The number of nuclei per sample was randomly down-sampled to that
574  of the sample with the fewest nuclei (n=4865). A random-forest model was used to select a
575 maximum of 50 marker genes per cell type based on them being both highly expressed as
576  well as uniquely expressed within a cell type compared to other cell types (i.e., the top Gini
577 Index ranked features with positive expression values). The number of trees chosen for this
578 model was 35,000, the cluster median expression threshold was set to the default value of
579  zero, the number of genes used to rank permutations of genes by their F-beta-score was 6,
580 andthe beta weight of the F score was set to 0.5 allowing the outputs to be directly compared
581 tothe Allen Brain Map MTG atlas minimal markers?. To assess the relevance of these markers
582 in terms of their capacity to distinguish different cell types in a UMAP analysis, the SCT and
583 integration methods were repeated using either a random set of genes or the NS-Forest
584  markers as anchors?® (Code availability: script 15).

585

586 DESeq2 age-dependent differential gene expression analysis of snRNA-seq datasets

587 DESeq2%’ was used to identify genes that were differentially expressed with age (Code
588 availability: script 16). The unnormalized counts were aggregated across all nuclei for each
589 cluster and sample to generate a ‘pseudobulk’ counts matrix with the counts from technical
590 replicates collapsed to the level of biological replicates. Genes were filtered to only include
591 those expressed in more than 10% of nuclei for a given cell type. Principal component analysis
592  was performed on each cell type separately in order to assess the variation between samples
593  and determine which variables were contributing most to inter-sample variation from a set
594  of possible variables. The collapsed counts served as input into DESeq2’s
595  DESeqDataSetFromMatrix function in which the design formula ~single_cell_chemistry +
596 age_group was specified to treat the age_group (paediatric vs adult) as the variable of interest
597  while the effect of single_cell_chemistry (version2 vs version3 chemistry) was regressed out.
598 A hypothesis test was performed using the Wald test. The null hypothesis for each gene was
599 that there is no difference in gene expression between the sample groups (i.e Log2 Fold
600 Change =0). A Wald test statistic was determined for each gene together with the associated
601  p-value after which the p-values were adjusted for multiple testing using the Benjamini and
602  Hochberg method. Positive log2 Fold Changes represent genes which are upregulated in
603  paediatric samples compared to adult samples (pag; <0.05).

604

605
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606 Pathway enrichment analysis of shARNA-seq datasets

607 GO analysis of NS-Forest marker genes was performed on the gProfiler web server’® using
608  default settings (pagj <0.05) with “highlight diver terms in GO” selected.

609

610 Neuronal DEGs identified by DESeq2 (see Extended data Table 10) that were associated with
611 EA and IQ were determined by comparing the list of neuronal DEGS to the EA and 1Q gene
612 lists used by Driessens et al. (2023)%2, which were subsets of the lists from Lee et al. (2018)%
613  and Savage et al. (2018)% respectively.

614

615  GSEA on the DESeqg2 output for all genes was performed using the Broad Institute’s GSEA
616  software (https://www.gsea-msigdb.org/gsea/msigdb) (Code availability: script 17). The gene
617 lists for each cell type were queried against the C5 GO Biological Processes collection
618 comprising of gene sets derived from the GO Biological Process ontology. The input lists of
619 genes were ranked according to the -log(p-value)*log.FoldChange for each gene. The
620 parameters specified to the GSEA function included number of permutations (nperm)=1000,

621  minimum gene set size (set_min=15), maximum gene set size (set_max=200), excludes genes
622  that have no gene symbols (collapse)= No_Collapse, value to use for the single identifier that
623  will represent all identifiers for the gene (mode)=Max_probe, normalised enrichment score
624 method (norm)= meandiv, weighted scoring scheme (scoring_scheme) = classic. Positive
625 Normalised Enrichment Scores (NES) represent genes that were upregulated in the paediatric
626  population compared to the adult population (p<0.01 and g<0.1). To visualise the output of
627  universally enriched pathways across multiple cell types, the top 25 most frequently
628  appearing positively and negatively associated terms were plotted. Additionally, for five cell
629  types of interest [which had DEGs meeting the threshold of p<0.05 and abs(log,FC)>0.1], the
630 top 5 positively associated terms were plotted.

631
632 snRNA-seq data plots

633  Plots were produced with Seurat??, ggplot27°, ShinyCell®® and Microsoft Excel.

634

635 10x Genomics Visium library preparation

636  Frozen OCT embedded brain tissue samples were scored using a pre-chilled razor blade to fit
637 in the Spatial Gene Expression slide capture areas. 10 um-thick sections were cut using a
638  cryostat (Leica CM1860/CM1950) and collected onto the Spatial Gene Expression slide
639 capture areas. Two replicate sections of the 15-year-old (10 um apart) and two replicate
640  sections of 31-year-old (40 um apart) were collected. The spatial Gene Expression slides with
641  tissue sections were stored in a sealed container at -80°C. Captured sections were
642  Haematoxylin and Eosin (H&E) stained according to the 10x Genomics Demonstrated Protocol
643  Guide (CG000160, Rev B). Brightfield images of the stained sections were captured using an
644 EVOS MS5000 microscope (Thermo Fisher Scientific) at 20x magnification without
645  coverslipping. Overlapping images of the sections including the fiducial frame were stitched
646  together using Image Composite Editor-2.0.3 (Microsoft). Visium libraries were prepared
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647  from the stained tissue sections following the Visium Spatial Gene Expression Reagents Kit
648  User Guide (CG000239, Rev D). At Step 1.1 the tissue was permeabilised for 12 minutes as
649 determined using the Visium Spatial Gene Expression Tissue Optimisation User Guide
650 (CG000238, Rev D). At Step 3.2, cDNA was amplified using 20 cycles. Library quality and
651 concentration was assessed using TapeStation (Agilent) and Qubit (Invitrogen) at the Central
652  Analytical Facility (CAF, University of Stellenbosch). Libraries were sequenced by Novogene
653  (Singapore) on the lllumina NovaSeq system using the lllumina High Output kits (150 cycles).
654

655  Visium read alighment and gene expression quantification

656 The H&E images were processed using the 10X Genomics Loupe Browser V4.0 Visium Manual
657  Alignment Wizard. 10X Genomics Space Ranger count (10X Space Ranger V1.3.0) was used to
658 perform alignment of FASTQ files to the human reference transcriptome (GRCh38), tissue
659  detection, fiducial detection and barcode/UMI counting.

660

661 cell2location analysis of Visium datasets

662 The average number of nuclei per Visium spot was determined using Vistoseg® (Code
663  availability: script 18). Cell2location (version 0.7a0)?> was used to spatially map the brain cell
664  types by integrating the Visium data count matrices (Space Ranger output) with the
665 annotated snRNAseq datasets (Code availability: script 19). To avoid mapping artifacts,
666  mitochondrial genes were removed from the Visium datasets prior to spatial mapping.
667  Reference signatures of the 54 annotated cell populations were derived using a negative
668  binomial regression model using the default values. Unnormalized and untransformed
669  snRNA-seq mRNA counts were used as input in the regression model for estimating the
670 reference signatures (Code availability: script 20). The snRNA-seq mRNA counts were filtered
671 to 13,870 genes and 176,012 cells. The cell2location model for estimating the spatial
672  abundance of cell populations was filtered to 13,858 genes and 14,324 cells that were shared
673  in both the snRNA-seq and Visium data. The following cell2location parameters were used:
674  training iterations = 30,000 cell per location, N* = 10 (estimated using Vistoseg segmentation
675  results), Normalization (ys) alpha prior = 20 (Code availability: script 21). To visualise the cell
676  abundance in spatial coordinates 5 % quantile of the posterior distribution was used, which
677 represents the value of cell abundance that the model has high confidence in (Code
678  availability: script 22). Cell2location’s Non-negative Matrix Factorization (NMF) was used to
679 identify cellular compartments and cell types that co-locate from the cell type abundance
680  estimates, using n_fact=12 (Code availability: script 23)

681

682  BayesSpace analysis of Visium datasets

683  The raw gene expression counts from Space Ranger were normalized, log transformed and
684  principal component analysis was performed on the top 2000 highly variable genes. To obtain
685  high-resolution gene expression, the principal component values were mapped back to their
686  original log-transformed gene expression space (spot level) using the default BayeSpace3®
687  regression (Code availability: script 24). To do this the principal components from the original
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688  data were used as predictors in training the model for each gene, in which the results were
689 the measured gene expression at the spot level. The trained model was then used to predict
690 the gene expression at sub spot level using high resolution PCs. The high-resolution model
691  was trained using default values except for the following parameters: 7 PCs, Number of
692  clusters =8, nrep = 100,000, burn-in = 10,000.

693

694  In situ Hybridisation Chain Reaction (HCR) on frozen human tissue sections

695 10 um thick frozen sections were collected on Histobond+ slides (Marienfeld) and stored at -
696  20°C. The In situ HCR protocol was carried out on tissue sections as detailed in Choi et al.
697  (2016)% using reagents, probes and hairpins purchased from Molecular Instruments. Probes
698 were ordered for the following genes: RELN (NM_005045.4), FABP7 (CR457057.1), AQP4
699 (NM_001650.5), RORB (NM_006914.4), CLSTN2 (NM_022131.3) and TSHZ2 (NM_173485.6).
700  When necessary to quench lipofuscin autofluorescence, sections were rinsed after HCR in 1x
701  PBS and treated with 200 pl TrueBlack (Biotium) for 30 sec. Slides were rinsed in PBS, stained
702  with Hoescht (Thermofisher) and mounted using SlowFade Gold Antifade Reagent
703  (Invitrogen). Sections were imaged using the LSM 880 Airyscan confocal microscope (Carl
704  Zeiss, ZEN SP 2 software) using the 40X or 60X objective.

705

706
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All scripts used to analyse the data are indicated in the methods section and are available in
the supplementary material. A description of the raw and analysed data files will be made
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the data is from living donors, access to the data will be mediated through contact with the
corresponding author. A ShinyApp will be made publicly available on publication for
exploration of the annotated snRNA-seq data.
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Fig. 1: Annotation of nuclei by label transfer identifies 54 cortical subtypes across the 23 datasets. a, Data
integration shows alignment of nuclei across the technical (T) and biological (B) replicates from donors ranging
in age from 4 to 50 years. b, Annotated UMAP plot for the 23 merged datasets identifies 34 inhibitory, 14
excitatory, and 6 non-neuronal populations using the Allen Brain Map MTG dataset as a reference. Each cell type
is annotated with 1) a major cell class (e.g. Exc for excitatory neuron), 2) the cortical layer the cell is associated
with (e.g. L2 for layer 2), 3) a subclass marker gene and 4) a cluster-specific marker gene. ¢, Validation of the
high-resolution cell type annotations shows a high degree of correspondence in the expression of known cell
type-specific markers (x axis) with their expected cell type (y axis) (left). Number of nuclei per cell type (right). d,
Correlation plot showing the cosine similarity scores assessing similarity between the annotated cell types in our
dataset (y axis) and the MTG reference dataset (x axis) based on the log normalized expression counts of the top
2000 shared highly variable features between query and reference datasets. e, Stacked barplot showing the
proportion of nuclei per cell type (y axis) for each age category (x axis) out of the total number of nuclei for each
group. The colour scheme for the cell types is in accordance with the MTG cell taxonomy.
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970 Fig. 2: Fig. 2: Visium spatial transcriptomics in the adult and paediatric temporal cortex validates snRNA-seq
971 annotation. a,b, Estimated cell type abundances (colour intensity) in the 31-year-old and 15-year-old temporal
972 cortex tissue sections for a selection of cell types including non-neuronal cell types (a,b), excitatory neurons (a)
973 and inhibitory neurons (b). ¢, Visium gene expression profiles (colour intensity) for a selection of known cortical

974 layer marker genes in the 31-year-old and 15-year-old temporal cortex tissue sections including AQP4 (layer 1),
975 LAMPS5 (layer 2), CUX2 (layer 2-3), RORB (layer 4) and CLSTN2 (layer 5-6). Dashed white lines and numbers
976 indicate estimated cortical layer boundaries. d,e, Identification of co-locating cell types using NMF. The dot plot

977 (d) shows the NMF weights of the cell types (rows) across each of the NMF factors (columns), which correspond
978 to tissue compartments. Block boxes indicate cell types that co-locate within the indicated tissue compartments.
979 Spatial plots show (e) show the NMF weights for each NMF factor/tissue compartment across the 31-year-old
980 and 15-year-old temporal cortex tissue sections. Panels are displayed in the same order as the dotplot in (d),
981 with the dominant cell types for each factor indicated in brackets. WM: white matter. See also Extended Data
982 Figs 4-6.
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Fig. 3: NS-Forest identifies minimal marker genes distinguishing the cell types in the paediatric and adult
temporal cortex snRNA-seq datasets. a,b, Heatmap showing the scaled average normalised expression counts
of the NS-Forest minimal marker genes (y-axis) identified for 53 cortical cell types (x-axis) across the six adult (a)
and six paediatric (b) datasets. As input into NS-Forest, the nuclei of each sample were randomly down-sampled
to the size of the sample with the fewest nuclei. Heatmaps show gene expression values for the down-sampled
datasets. Inh_L2-4_VIP_SPAG17 was excluded from the down-sampled datasets due to a low number of nuclei.
The minimal marker genes are annotated (colour codes on the y-axes) according to whether they are unique to
a given cell type, whether they are coding/non-coding genes, whether they are unique to the indicated age
group, whether they overlap with existing MTG minimal marker gene sets for the same cell type, and according
to the cell type they define.
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1011 Fig. 4: Validation of NS-Forest minimal markers and assessment of the top 50 NS-forest markers. a,b, Annotated
1012 UMAP plots following data integration using either the minimal marker genes (left) or the equivalent number of
1013 a random set of genes (right) as anchors for the adult (a) and paediatric (b) datasets. The colour scheme for the
1014 cell types is in accordance with the MTG cell taxonomy. ¢, Overlap of the top 50 paediatric and top 50 adult NS-
1015 Forest markers per cell type. The bar plot shows the number of shared markers between paediatric and adult
1016 datasets (blue), the number of markers unique to the paediatric datasets (orange), and the number of markers
1017 unique to the adult datasets (grey) for each cell type.
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Fig. 5: Differential expression analysis reveals genes guiding temporal cortex maturation. a, The number of
differentially expressed genes (DEGs) identified per cell type. b, Strip chart showing the log,FoldChange for all
DESeq2-tested genes (dots) across 54 cell types (x axis). Genes that were significantly upregulated (110) or
downregulated (52) in paediatric samples [padj<0.05 and abs(log.FoldChange)>10%)] are coloured according to
the MTG cell taxonomy. Non-significant genes [padj>0.05 or abs(log.FoldChange)<10%] are coloured in grey. Cell
types with significant DEGS are coloured red. c, Volcano plots showing log,FoldChange (x axis) and -logiopadj
values (y axis) for all DESeq2-tested genes in Exc_L2_LAMPS5_LTK, Exc L2-3_LINCOO507_FREM3, Exc_L4-
5_RORB_DAPK2, Exc_L3-5_RORB_ESR1 and Astro_L1-6_FGFR3_SLC14Al. Genes that were significantly
upregulated or downregulated in paediatric samples (padj<0.05 & abs(logzFoldChange)>10%) are coloured in red
and selected genes are labelled. Non-significant genes (padj>0.05 or abs(log,FoldChange)<10%) are coloured in
blue. Red labels indicate DEGs shared between similar cell types. d,e, Dot plots showing the scaled average
normalised expression across samples for DEGS shared between either Exc_L2_LAMPS5_LTK and Exc L2-

3_LINC00507_FREMS3 (d) or Exc_L4-5_RORB_DAPK2 and Exc_L3-5_RORB_ESR1 (e).

f, Dot plot showing the

scaled average normalised expression across samples of DEGs in Astro_L1-6_FGFR3_SLC14A1l. g, Enrichment plot
showing the top 5 GSEA terms (y axis) that were enriched in the paediatric datasets and their associated NES

values (x axis) for the five indicated cell types.
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Fig. 6: Pathways that are enriched or depleted across multiple cell types in paediatric cell types. GSEA heatmap
showing the top 25 most frequently enriched (top 25 rows) or depleted (bottom 25 rows) terms appearing across
all cell types. Only significantly (p <0.01 and q<0.1) terms are shown. NES value represents the normalized
enrichment scores. Grey indicates that the term was not significantly enriched or depleted in the indicted cell
type. See also Extended Data Table 11.
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1052 Extended Data Fig. 1: Nuclei filtering and clustering. a, Number of doublets identified across all 23 datasets by
1053 DoubletDecon, DoubletFinder, and Scrublet. Red outline indicates the subset of barcodes called as doublets that
1054 were removed. b, Total number of nuclei per dataset before (yellow) and after filtering (green). ¢, Mean number
1055 of reads per nucleus (y axis) by dataset prior to filtering split by age group (x axis). p value determined by two-
1056 tailed Welch's t-test. d, Number of nuclei (y axis) by sample after filtering split by age group (x axis). p value
1057 determined by Brunnermunzel permutation test. e, Violin plots showing the number of unique molecular
1058 identifiers (UMIs) (top) and the number of genes detected (bottom) per nucleus per sample after filtering. Black
1059 dots indicate the median value. Error bars show 95% confidence intervals. f,g, Median number of UMIs (2,263
1060 paediatric and 2,011 adult) (f) and the median number of genes (1,372 paediatric and 1,226 adult) (g) detected
1061 per nucleus (y axes) by sample after filtering split by age group (x axis). p values determined by two-tailed
1062 Brunnermunzel permutation test. h, UMAP plot for the 23 datasets prior to integration. i, UMAP plot showing
1063 the resulting clusters determined by the shared nearest neighbour algorithm. Data in all box plots represent
1064 mean * sem for six paediatric and six adult samples. No significant differences were detected between paediatric
1065 and adult samples. B, biological replicate; NS, not significant; T, technical replicate. See also Extended Data Table
1066 2.
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Extended Data Fig. 2: Assessment of cell composition across datasets. a, b, Stacked barplots showing the

proportion of nuclei per cell type (y axis) for each technical replicate (a) or biological replicate (b) (x axis) out of
the total number of nuclei for each group. The colour scheme for the cell types is in accordance with the MTG
cell taxonomy. Samples with technical replicates showed high degrees of similarity in cell composition between
their replicates (a). Technical replicates from each donor were merged to allow comparisons between the 12
samples (b). ¢, Boxplots showing the proportion of nuclei (y axis) per cell type per sample (x axis) split by age

group (red: paediatric, grey: adult). Data represents mean

+ sem for six paediatric and six adult samples. No

significant differences were detected between paediatric and adult samples; See also Extended Data Table 3 for

details of statistical tests performed.
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Extended Data Fig. 3: Assessment of the sequencing metrics for the annotated cell types. a, Violin plots showing
the distribution of the number of genes (left) and transcripts (right) detected per nucleus per cell type across all
datasets. Black dots indicate the median value. Error bars show 95% confidence intervals. b,c, Boxplots showing
the number of genes (b) and the number of UMIs (c) (y axis) detected per cell type per sample (x axis) split by
age group (red: paediatric, grey: adult). Data in all box plots represent mean + sem for six paediatric and six adult
samples for each cell type. p values are given for cell types that showed a significant difference between
paediatric and adult samples. See also Extended Data Table 3 for details of statistical tests performed.
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Extended Data Fig. 4: Visium Spatial Gene Expression samples. a,b, 31-year-old (a) and 15-year-old (b) temporal
cortex tissue blocks embedded in OCT. Black dashed boxes outline the regions collected onto the Visium Spatial
Gene Expression slide. c-f, H&E stained technical replicate tissue sections used to generate Visium Spatial Gene
Expression libraries for the 31-year-old (c,e) and 15-year-old (d,f) tissue samples. T, technical replicate.
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1099 Extended Data Fig. 5: Spatial mapping of cell types in the human temporal cortex. a, Estimated cell abundance
1100 of 52 cell types across all Visium samples. Shown is a heatmap with the colour indicating the relative cell
1101 abundance of cell types (rows) across the different samples (columns). b, Estimated cell type abundances (colour
1102 intensity) in the technical replicate 31-year-old and 15-year-old temporal cortex tissue sections for a selection
1103 of cell types including non-neuronal cell types (b,c), excitatory neurons (b) and inhibitory neurons (c). d,
1104 Estimated cell type abundances (colour intensity) for Exc_L4-6 _FEZF2_IL26 and Exc_L5-6_THEMIS_FGF10 in the
1105 31-year-old and 15-year-old temporal cortex tissue sections. T, technical replicate.
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31-year-old

Extended Data Fig. 6: In situ HCR analysis of selected cortical layer marker genes. a, Expression of layer 1
markers AQP4, FABP7 and RELN in 31-year-old and 15-year-old temporal cortex tissue sections, with high
magnification views of layer 1 indicating AQP4/RELN-positive cells (yellow arrowheads) and FABP7 positive cells
(green arrowhead). b, Expression of layer 4-6 markers RORB, CLSTN2 and TSHZ2 in 31-year-old and 15-year-old
temporal cortex tissue sections. In high magnification views of layer 4 in the 31-year-old tissue section
RORB/CLSTN2-positive (white arrowhead) and RORB/TSHZ2-positive cells (green arrowhead) are indicated. In
high magnification views of layer 4 in the 15-year-old tissue section RORB/CLSTN2/TSHZ2-positive cells (white
arrowheads) are indicated. Dashed white lines indicate layer boundaries. Solid white line indicates tissue edge.
Scale bars are 100 um in low magnification views (tile scan at 40x) and 20 um in high magnification views (63x).
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Extended Data Fig. 7: Expression of the reference MTG atlas minimal markers. Heatmap showing the scaled
average normalised expression counts of the NS-Forest minimal marker genes identified for the reference MTG
cell atlas dataset (y-axis) in each of the 54 query cortical cell types identified in the combined adult and paediatric
snRNA-seq datasets (x-axis). The minimal marker genes are annotated (colour codes on the y-axes) according to

the cell type they define.
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Extended Data Fig. 9: BayesSpace analysis of differentially expressed genes. High resolution Visium spatial gene
expression profiles for selected DEGs using BayesSpace analysis to compare sub-spot level expression intensities
between 31-year-old and 15-year-old temporal cortex tissue sections.
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1158

1159 Extended Data Table 1: Summary of snRNA-seq and Visium sample metadata. Samples are ordered by age. The
1160 eight “P00” datasets were generated in the Hockman laboratory while the four “Nuc” datasets were generated
1161 by Thrupp et al. (2020).

1162

1163 Extended Data Table 2: Summary of average quality control metrics for snRNA-seq datasets across nuclei for
1164 each sample before and after filtering. Several measures for quality control were evaluated on a per sample
1165 basis including the sequencing saturation, the mean number of reads per nucleus, the number of barcodes, the
1166 median number of genes detected per nucleus, the median number of UMIs detected per nucleus, and the
1167 number of doublets removed.

1168

1169 Extended Data Table 3: Label transfer annotation of snRNA-seq datasets using the Allen Brain Map MTG atlas
1170 as a reference. Sheet 1, Number of nuclei per MTG cell type per sample. The number of barcodes corresponding
1171 to each MTG cell type and sample is shown. Additionally, the total, minimum, and maximum number of nuclei
1172 per cell type and sample was computed. The number of cell types represented per sample was also determined.
1173 Sheet 2, Cell types present in reference MTG dataset which are absent from the query datasets. Label transfer
1174 resulted in 21 cell populations that were not annotated in the query datasets but were present in the reference
1175 MTG dataset. The cluster size and percentage of the total cell count for each cell type in the reference MTG
1176 dataset is also shown. Sheet 3-5, p values and the test performed for each cell type when comparing the
1177 proportion of nuclei (sheet 3; see Extended Data Fig. 2c), number of genes (sheet 4; see Extended Data Fig. 3b)
1178 and number of UMIs (sheet 5; see Extended Data Fig. 3c) for each cell type between paediatric and adult samples
1179 shown.

1180

1181 Extended Data Table 4: Summary of average quality control metrics for Visium datasets. Several measures for
1182 quality control were evaluated on a per sample basis including the sequencing saturation, the percentage of read
1183 mapped to the transcriptome, the number of spots under the tissue, the average number of nuclei per spot
1184 determined by Vistoseg analysis, the mean reads detected per spot, the median genes detected per spot, the
1185 total number of genes detected, the median UMI Counts per Spot and the total number of nuclei.

1186

1187 Extended Data Table 5: NS-Forest minimal marker analysis. Sheet 1, Statistics from NS-Forest analysis including
1188 the mean F-beta score (the measure of the discriminative power of a given combination of marker genes) and
1189 the mean binary expression score per cell type (a measure of an individual gene’s classification power). Sheets
1190 2-3, Metadata for each feature identified by NS-Forest marker in the down-sampled paediatric (sheet 2) and
1191 down-sampled adult (sheet 3) datasets describing the cell type, overlap with Aevermann et al. (2021) and Hodge
1192 et al. (2019), uniqueness to the age group of interest, coding status, and uniqueness to the associated cell type
1193 as shown in Fig. 3. As input to NS-Forest, all datasets (six paediatric and six adult) were randomly down-sampled
1194 such that the total number of nuclei per sample was equal to the sample with the fewest number of nuclei.

1195

1196 Extended Data Table 6: gProfiler analysis of NS-forest markers. (Sheetl1-2) Significantly enriched GO terms
1197 associated with the paediatric (sheetl) and adult (sheet2) minimal marker genes identified by NS-forest.
1198 (Sheet3-7) Significantly enriched GO terms associated with shared (i.e associated with both adult and paediatric
1199 sample) or paediatric-specific marker genes from the list of top 50 positive NS-Forest markers for selected cell
1200 types. Terms for which “highlighted” is true are driver terms.

1201

1202 Extended Data Table 7: Summary of metadata for the top 50 positive NS-Forest markers per cell type. The top
1203 50 positive NS-Forest markers (or total number of positive markers if < 50) per cell type for the down-sampled
1204 paediatric and down-sampled adult datasets. The number of intersecting markers, the number of markers unique
1205 to paediatric samples, and the number of markers unique to adults is shown for each cell type. The number of
1206 nuclei per cell type is shown for the combined paediatric and adult down-sampled datasets, the down-sampled
1207 paediatric datasets, and down-sampled adult datasets.
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1210 and adult datasets. The top 50 positive NS-Forest markers (or total number of positive markers if < 50) per cell
1211 type were extracted for the down-sampled paediatric and down-sampled adult datasets. Each sheet represents
1212 1 of 53 cortical cell types (Inh_L2-4_VIP_SPAG17 was excluded due to too few nuclei) and the NS-Forest features
1213 which were shared between the paediatric and adult datasets, unique to paediatric datasets, or unique to adult
1214 datasets are shown (sheet 1-53).

1215

1216 Extended Data Table 9: DESeq2 output of all genes tested for differential expression between paediatric and
1217 adult brains per cell type. (Sheet 1-53) Differential expression analysis was performed using DESeq2’s Wald Test
1218 for each cell type separately (Inh L2-4 VIP SPAG17 was excluded due to too few nuclei). Genes were filtered prior
1219 to testing to only include those expressed in > 10% of nuclei for that cell type across all paediatric and adult
1220 datasets. The associated log2FoldChanges, p-adjusted values (padj), and description of each feature are shown.
1221 Positive log,FoldChanges represent genes upregulated in paediatrics versus adults. See DESeq2 documentation
1222 for explanation of NA values
1223 (https://bioconductor.org/packages/release/bioc/vignettes/DESeq2/inst/doc/DESeq2.htmlt#twhy-are-some-p-
1224 values-set-to-na).

1225

1226 Extended Data Table 10: DESeq2 output of significant DEGs between paediatric and adult brains in a subset of
1227 cell types. (sheet 1-5) Significant DEGs (padj < 0.05) for Exc_L2_LAMPS5_LTK, Exc_L2-3_LINCO0507 _FREMS3,
1228  Exc_L3-5_RORB_ESR1, Exc_L4-5 RORB_DAPK2 and Astro_L1-6_FGFR3_SLC14A1. The associated
1229 logoFoldChanges, p-adjusted values (padj), description, percentage of paediatric nuclei expressing the gene,
1230 percentage of adult nuclei expressing the gene, average normalised expression across paediatric nuclei, and
1231 average normalised expression across adult nuclei are shown. Positive log;FoldChanges represent genes
1232 upregulated in paediatric versus adults datasets. See DESeq2 documentation for explanation of NA values
1233 (https://bioconductor.org/packages/release/bioc/vignettes/DESeq2/inst/doc/DESeq2.html#why-are-some-p-
1234 values-set-to-na). (sheet 6-7) EA (sheet 6) and IQ (sheet7) associated DEGs and their associated cell types.

1235

1236 Extended Data Table 11: GSEA terms associated with each cell type showing enriched or depleted pathways in
1237 paediatric versus adult samples. GSEA was performed using DESeq2’s output gene lists for each cell type ranked
1238 according to the log2FoldChange*-log,(padj) for each gene. All DESeq2-tested genes served as input into GSEA
1239 (genes were expressed in > 10% of nuclei for the cell type of interest). Matrix shows the corresponding positive
1240 (sheet 1) and negative (sheet 2) NES values for each GSEA term (y axis) and cell type (x axis) based on the analysis
1241 using the ranked list of genes for each cell type. Terms were filtered to only include significantly associated terms
1242 (p<0.01, g<0.1). Positive NES values indicate pathways that are enriched in paediatric versus adult samples;
1243 negative NES values indicate pathways that are depleted in paediatric versus adult samples. The total number of
1244 terms per cell type and the total number of cell types associated with a given term are shown. 1,290 terms were
1245 enriched in at least two cell types, while 250 were depleted in at least two cell types.
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