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Abstract

Activation of the cyclic adenosine monophosphate (cAMP) pathway generally facilitates
synaptic transmission, serving as one of the common mechanisms underlying long-term
potentiation (LTP). In the Drosophila mushroom body, simultaneous activation of odor-coding
Kenyon cells (KCs) and reinforcement-coding dopaminergic neurons synergistically activates
adenylyl cyclase in KC presynaptic terminals, which is believed to trigger synaptic plasticity
underlying olfactory associative learning. However, learning induces long-term depression
(LTD) at these synapses, contradicting the universal role of cAMP as a facilitator of
transmission. Here, we develop a system to electrophysiologically monitor both short-term and
long-term synaptic plasticity of KC output synapses and demonstrate that Drosophila mushroom
body is indeed a rare, if not the only, exception where increase in cAMP level induces LTD. In
contrary to the prevailing model, we find that cAMP increase alone is insufficient for plasticity
induction; it additionally requires KC activation to replicate presynaptic LTD induced by pairing

of dopamine and KC activation. On the other hand, activation of the cyclic guanosine
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monophosphate pathway paired with KC activation induces slowly developing LTP, proving
antagonistic actions of the two second-messenger pathways predicted by behavioral study.
Furthermore, subtype-specific interrogation of KC output synapses reveals that different KC
subtypes exhibit distinct plasticity duration even among synapses on the same postsynaptic
neuron. Thus, our work not only revises the role of cAMP in synaptic plasticity by uncovering
unexpected convergence point of the cAMP pathway and neuronal activity, but also establishes
the methods to address physiological mechanisms of synaptic plasticity in this historically

important model system.

Introduction

Synaptic plasticity is a fundamental mechanism of learning. Aplysia, the same animal that helped
prove this notion for the first time, also contributed to the identification of cyclic adenosine
monophosphate (cAMP)-dependent pathway as a key molecular basis for synaptic plasticity
(Brunelli et al., 1976, Castellucci et al., 1980). Following this discovery, the cAMP/protein
kinase A (PKA) pathway was found to be one of the ubiquitously important mechanisms
underlying learning-related synaptic plasticity in both vertebrates and invertebrates (Kandel et
al., 2014). In agreement with other systems, behavioral genetics studies in Drosophila have
linked learning defects in olfactory classical conditioning to mutations of the cAMP/PKA
pathway genes, such as cAMP phosphodiesterase dunce (Byers et al., 1981) and

calcium/calmodulin-activated adenylyl cyclase (AC) rutabaga (Livingstone et al., 1984).

The mushroom body (MB) is the central brain area for olfactory learning in Drosophila. A given
odor evokes reliable spiking responses in a sparse population (~5%) of the ~2,000 Kenyon cells
(KCs), the principal neurons of the MB (Turner et al., 2008; Honegger et al., 2011). KCs form
dense axon bundles, constituting the MB lobes, where they synapse on their main postsynaptic
partners, MB output neurons (MBONS). In the MB lobes, KCs also receive dense inputs from the
dopaminergic neurons (DANs), which, depending on cell types, convey either reward or
punishment signals during conditioning (Schwaerzel et al., 2003; Liu et al., 2012; Burke et al.,
2012; Aso & Rubin, 2016). Thus, olfactory and reinforcement signals converge at the KC axons.

This notion is consistent with the fact that memory defects of the mutants of a Gs-linked
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dopamine receptor DopIRI (Kim et al., 2007; Qin et al., 2012) and rutabaga (McGuire et al.,
2003; Blum et al., 2009) can be fully rescued by expressing the corresponding functional
proteins in KCs. These results led to the prevailing working model that Rutabaga AC in the KC
axons acts as a coincidence detector of olfactory and reinforcement signals, represented by
calcium influx and dopamine input, respectively, and the resulting increase in cAMP level
induces presynaptic plasticity at KC-MBON synapses (Heisenberg, 2003). In support of this
model, coactivation of KCs and dopamine receptors synergistically activates cAMP/PKA
pathway in KC axons (Tomchik & Davis, 2009; Gervasi et al., 2010; Handler et al., 2019; but
see also Abe et al., 2023).

In general, action of cAMP on synaptic transmission is excitatory. cAMP increase virtually
always results in potentiation of synapses in both vertebrates and invertebrates. The examples
range from synaptic facilitation of the siphon sensory neurons in Aplysia (Goldsmith & Abrams,
1991) to long-term potentiation (LTP) in rodent hippocampus (Huang et al., 1994) and
cerebellum (Salin ef al., 1996). Conversely, decrease in cAMP underlies multiple forms of long-
term depression (LTD) (Tzounopoulos ef al., 1998; Chevaleyre et al., 2007). This positive
relationship between cAMP level and synaptic strength also seems to apply to Drosophila as
elevated presynaptic cAMP level mediates post-tetanic synaptic potentiation at the
neuromuscular junction (Kuromi & Kidokoro, 2000), which was impaired in dunce and rutabaga
mutants (Zhong & Wu, 1991). Furthermore, multiple pioneering studies of either early (Wang et
al., 2008) or late phase (Yu et al., 2006; Akalal et al., 2010) of memory traces induced by
olfactory learning reported potentiation of odor-evoked calcium activity in the KC axons. Given
this historic background, it was rather unexpected that pairing of odor presentation and
optogenetic activation of DANSs induces robust LTD at KC-to-MBON synapses (Hige et al.,
2015). However, LTD but not LTP fits the circuit logic of the MB. Anatomically, a given cell
type of MBONSs has partner cell types of DANs, and they show matching innervation patterns in
the MB lobes (Aso et al., 2014b). In general, activation of MBONSs signals the valence that is
opposite to the one signaled by the partner DANs (Aso et al., 2014a; Owald et al., 2015; Aso &
Rubin, 2016). Thus, punishment-encoding DANs can induce LTD in approach-directing MBONSs
during aversive learning. Although numerous other studies now support or confirm that odor-
specific depression in MBON responses underlies olfactory learning (Séjourné et al., 2011;

Owald et al., 2015; Cohn et al., 2015; Perisse et al., 2016; Berry et al., 2018; Felsenberg et al.,
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2018; Handler et al., 2019; Awata et al., 2019; Zhang et al., 2019; McCurdy et al., 2021;
Hancock et al., 2022; Schnitzer et al., 2022; Noyes & Davis, 2023; Zeng et al., 2023), there has
been no direct evidence that Drosophila MB is an exception where cAMP-induced synaptic
plasticity is depression rather than potentiation. Providing such evidence is the main objective of

this study.

cAMP signaling is not the only second messenger system implicated in learning-related plasticity
in the Drosophila MB. A subset of the MB-projecting DANSs releases nitric oxide (NO) as a
cotransmitter (Aso et al., 2019). Behavioral evidence suggests that NO acts on KC axons to
induce plasticity that is antagonistic to dopamine-induced LTD via activation of soluble guanylyl
cyclase (sGC) (Aso et al., 2019), although there has been no physiological evidence for it.
Unlike cAMP, the sign of synaptic plasticity induced by cyclic guanosine monophosphate
(cGMP) varies among systems and studies. While cGMP increase predominantly induces
presynaptic LTP in the hippocampus (Arancio et al., 1995) and hyperexcitability of sensory
neurons in Aplysia (Lewin & Walters, 1999), it also induces LTD in the hippocampus (Reyes-
Harde et al., 1999), cerebellum (Shibuki & Okada, 1991; Lev-Ram et al., 1997) and
corticostriatal synapses (Calabresi et al., 1999). At Drosophila neuromuscular junction, cGMP
exerts an excitatory (Wildemann & Bicker, 1999) or no effect (Caplan et al., 2013). Furthermore,
NO-dependent modulation of the Drosophila neuromuscular junction also involves cGMP-
independent, S-nitrosylation of proteins (Robinson ef al., 2018). Thus, it is important to

determine the role of cGMP in KC-to-MBON synaptic plasticity.

In this study, we developed an ex vivo system to test physiological and pharmacological
properties of the synaptic plasticity at KC-to-MBON synapses. In this system, we made whole-
cell recordings from a target MBON to monitor the excitatory postsynaptic currents (EPSCs)
evoked by optogenetic stimulation of a small subset of KCs, while focally injecting various
reagents to the MB lobe at the dendritic region of the MBON to induce or inhibit long-term
plasticity. This system also allowed us to monitor short-term synaptic plasticity by delivering
paired-pulse stimulation to test the involvement of presynaptic factors in synaptic changes
(Zucker & Regehr, 2002). We show that pairing of KC activation and dopamine injection induces
LTD accompanied by an increase in paired-pulse ratio (PPR). Unexpectedly, however, activation

of AC by forskolin alone was insufficient to induce qualitatively similar LTD; it required
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simultaneous KC activation in addition to forskolin application. Pairing of pharmacological
activation of sGC and KC activation induced LTP accompanied by a decrease in PPR. Our
system also allowed for subtype-specific activation of KCs that synapse on the same MBON and
revealed distinct durations of synaptic plasticity between different KC subtypes. Thus, our work
not only revises the role of cAMP in synaptic plasticity by revealing unexpected convergence
point of the cAMP pathway and neuronal activity, but also establishes the methods to address

physiological mechanisms of synaptic plasticity.

Results

Optogenetic paired-pulse stimulation of KCs can be used to assess presynaptic changes in

synaptic transmission

In the field of synaptic physiology, paired-pulse protocol is commonly used to assess the
presynaptic strength of synaptic transmission because the paired pulse ratio (PPR), calculated as
the second EPSC amplitude divided by the first one, generally inversely correlates with
presynaptic vesicular release probability (Zucker & Regehr, 2002). Although paired EPSCs are
typically evoked by fiber stimulation using extracellular electrodes, similar inference can be
made using optogenetically delivered paired pulses (Britt ef al., 2012; Creed et al., 2016; Liu et
al., 2020). This approach is applicable to Drosophila KCs whose densely packed, small bundle
of axons deters the use of an electrode. Since this method has never been used in the Drosophila
MB, to our knowledge, we first asked whether release probability change can induce predicted

change in the PPR.

Among dozens of MBONSs, we targeted MBON-y1pedc because the relatively thick and short
primary neurite of this neuron allows for superior membrane voltage control (i.e. space clamp)
during somatic voltage-clamp recordings and also because the LTD has been best characterized
in this MBON using pairing of odor and DAN activation (Hige et al., 2015). MBON-ylpedc
receives the majority of its inputs from the y subtype of KCs as well as a minor fraction from o/
KCs in the pedunculus region of the MB (Fig. 1A). We therefore first focused on y KC-to-

MBON-y1pedc synaptic transmission. To selectively study these synapses, we expressed red-
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shifted channelrhodopsin, CsChrimson (Klapoetke et al., 2014), in a small subset of y KCs using
v KC-specific split-GAL4 driver MB623C (Shuai ef al., 2023) together with a stochastic
expression system SPARC (Isaacman-Beck et al., 2020). By using the “S” (or sparse) variant of
the SPARC system, we can reliably label a random ~3-7% of y KCs (Isaacman-Beck ef al.,
2020), roughly equivalent to the fraction of KCs reliably responsive to a typical odor (Honegger
etal.,2011).

We made whole-cell voltage-clamp recordings from MBON-ylpedc and delivered two 1-ms light
pulses 400 ms apart to measure PPRs. To test the effect of release probability decrease on PPR,
we changed the extracellular calcium/magnesium concentrations from 1.5/4 to 0.7/5.5 mM. This
manipulation decreased the first EPSC amplitude while concurrently increasing the PPR (Fig.
1B). Conversely, increasing the release probability by changing calcium/magnesium
concentrations to 5/0.5 mM facilitated the first EPSC while decreasing the PPR (Fig. 1C). Thus,
artificial manipulation of release probability shifted PPR in the expected manner. To test whether
the change in PPR is attributable to presynaptic factors, we next bath-applied a low concentration
of mecamylamine (10 uM), a non-competitive antagonist of the nicotinic acetylcholine receptors,
to reduce the availability of postsynaptic ionotropic receptors without changing the release
probability. This manipulation attenuated the first EPSC to an equivalent level to the low calcium
condition (Fig. 1D). However, this decrease was not accompanied by a change in PPR. These
results indicate that PPRs measured by optogenetically evoked EPSCs at KC-to-MBON synapses

can be used as an indicator of presynaptic modulation of transmission.

Pairing y KC activation with focal dopamine application induces presynaptic LTD

Using this experimental setup, we first examined whether dopamine can induce synaptic
plasticity at y KC-to-MBON-y1pedc synapses. Previous studies that demonstrated odor-specific
depression in MBON responses used either actual reinforcement or direct DAN activation using
opto- or chemogenetics, which can promote release of not only dopamine but also cotransmitters
or other neuromodulators (S¢journé et al., 2011; Owald et al., 2015; Hige et al., 2015; Cohn et
al., 2015; Perisse et al., 2016; Berry et al., 2018; Felsenberg et al., 2018; Handler et al., 2019;
Awata et al., 2019; Zhang et al., 2019; McCurdy et al., 2021; Hancock et al., 2022; Schnitzer et
al.,2022; Noyes & Davis, 2023; Zeng et al., 2023). We therefore do not know whether
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dopamine alone is sufficient for the DAN activation-induced LTD. To directly test this
possibility, we focally applied dopamine (1 mM) into ylpedc subregion of the MB lobe, where
the dendrites of MBON-y1pedc are located, by pressure injection via a pipette placed in the MB
lobe (Fig. 2A). By monitoring the signal of Texas Red-conjugated dextran infused in the pipette,
we confirmed that our 1-min injection protocol (30 cycles of 1-s on and 1-s off) is enough to
diffuse the injected solution across the entire y1pedc, but it was largely confined to half the
length of the medial MB lobes (Fig. 2B). Importantly, the signal was quickly washed out before
resuming EPSC recording 2.5 min after the end of injection. After we paired optogenetic
activation of y KCs with dopamine application for 1 min, the synapses underwent LTD, which
lasted at least for 17 min (Figs. 2C and 2D). In 2 of the 6 recordings, we were able to continue
the recording for more than 30 min after pairing. In both these cases, the LTD persisted until the
end of recording without any sign of recovery (data not shown). This LTD was accompanied by
PPR increase, which persisted for the duration of LTD (Figs. 2C and 2D). In contrast, dopamine
application (Figs. 2E and 2F) or y KC activation alone (Figs. 2G and 2H) induced no change in
EPSC amplitude or PPR. These results indicate that coincidence of y KC activation and
dopamine input can induce presynaptic LTD. To test if the action of dopamine is mediated by Gs-
coupled Di-like dopamine receptors, we bath-applied a selective antagonist SCH 23390 (100
uM). Although application of SCH 23390 by itself had no effect on the EPSC amplitude or PPR,
it abolished the effect of y KC-dopamine pairing (Figs. 21 and 2J). In contrast, bath application of
the solvent dimethyl sulfoxide (DMSO, 0.1%) did not have such effects, as y KC-dopamine
pairing still induced robust LTD and PPR increase (Figs. 2K and 2L). Taken together, these
results indicate that the role of DAN activation in LTD induction described in previous studies
(Hige et al., 2015; Cohn et al., 2015; Berry et al., 2018; Handler et al., 2019) is attributable to

dopamine’s action on Di-like dopamine receptors in these synapses.

Presynaptic LTD induction requires both AC activation and KC activity

The dominant hypothesis in the field is that coincidence of KC activity and dopamine input
activates AC in KC axons to elevate cAMP concentration which in turn induces synaptic
plasticity. This model assumes that cAMP increase is sufficient for plasticity induction. To test

this long-standing but unproved hypothesis, we pharmacologically activated the AC by focally
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200  injecting forskolin (20 uM) into ylpedc region (Fig 3) as we did for dopamine. This

201  concentration of forskolin is more than enough to fully activate cAMP/PKA pathway in KCs
202  (Gervasi et al., 2010). However, 1-min injection of forskolin affected neither the EPSC

203  amplitude nor PPR (Figs. 3B and 3C). Increasing the concentration of forskolin to 100 uM did
204  induce a sustained decrease in the EPSC amplitude (Figs. 3D and 3E). However, this effect did
205  not accompany a change in PPR, suggesting postsynaptic origin of the plasticity. It is possible
206  that excessive concentration of forskolin recruited AC in the MBON. In support of this idea, cell-
207  type-specific transcriptome data (Aso et al., 2019) suggests that expression level of AC is much
208  higher in KCs compared to the MBON (Fig. S1). Although the lack of change in PPR does not
209  formally exclude the possibility that high concentrations of forskolin induces plasticity through
210  presynaptic mechanisms, we can at least conclude that the observed plasticity is qualitatively
211  distinct from the plasticity induced by y KC-dopamine pairing. In other words, elevation of

212 cAMP caused by AC activation is not sufficient to replicate the dopamine-induced LTD.

213 These unexpected results prompted us to test whether KC activation in addition to cAMP

214  elevation is necessary to induce presynaptic LTD. To this end, we paired y KC activation and
215  injection of a low concentration of forskolin. This pairing was able to induce a long-lasting

216  suppression (at least for 17 min) of the EPSC amplitude and concurrent increase in PPR (Figs.
217  3F and 3QG), replicating dopamine-induced LTD. In contrast, pairing of y KC activation with

218  injection of DMSO (0.1%; solvent of forskolin) did not show any effect (Figs. 3H and 31). These
219  results suggest that some intracellular signal triggered by KC activity is required to converge

220  somewhere in the downstream pathway of the cAMP production to express presynaptic LTD.

221  Dopamine-induced LTD depends on PKA but not calcium/calmodulin-dependent protein
222 Kkinase II (CaMKII)

223 Our results so far demonstrated that cAMP pathway is a critical molecular basis for LTD, even
224 though its activation alone may not be sufficient. We therefore tested pharmacologically which
225  molecules downstream of cAMP are required for LTD induction (Fig. 4A). As with many other
226  organisms, PKA plays a crucial role in Drosophila olfactory learning (Drain et al., 1991;

227  Skoulakis et al., 1993). However, its role in the LTD at the KC output synapse has not been

228  examined. To test this, we bath-applied a PKA inhibitor H-89 (10 uM). H-89 itself did not affect
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the EPSC amplitude or PPR but completely blocked the LTD induced by y KC-dopamine pairing
(Figs. 4B and 4C). As shown in Figs. 2K and 2L, bath application of the solvent alone did not
show any effect. CaMKII is another protein kinase that has a conserved role in synaptic plasticity
across species (Bayer & Schulman, 2019). In Drosophila, it is also implicated in some form of
associative learning other than olfactory learning (Griftith ez al., 1993). Since our results suggest
an important role of KC activity, which may lead to CaMKII activation via calcium influx, we
tested the effect of a CaMKII inhibitor KN-93, which is effective in Drosophila (Peretz et al.,
1998). However, in the presence of KN-93 (10 uM), y KC-dopamine pairing induced robust, or
even more pronounced, LTD and PPR increases (Figs. 4D and 4E). Since application of KN-93
itself slightly decreased the EPSC amplitude (but not PPR), phosphorylation by CaMKII may
play a role in maintaining normal synaptic transmission, perhaps on the postsynaptic side. Taken
together, dopamine-induced LTD in y KCs depends on PKA, but CaMKII activation is not

critical for this form of synaptic plasticity.

Simultaneous activation of cGMP pathway and y KCs induces presynaptic LTP

A behavioral study in dopamine-deficient flies (i.e. the mutant flies that cannot synthase
dopamine in neurons) identified NO as a cotransmitter of a subset of DANs (Aso ef al., 2019).
Since pairing of odor presentation and optogenetic activation of those DANs in dopamine-
deficient flies induced memories with opposite valence to normal flies, it has been hypothesized
that cGMP pathway downstream of NO induces synaptic potentiation and opposes dopamine-
induced LTD. To test this hypothesis, we used sGC agonist BAY 41-2272 (Fig. 5A), which can
activate the Drosophila sGC consisting of Gyca99B/Gycf100B subunits (Morton et al., 2005)
expressed in KCs (Fig. S1) (Aso et al., 2019). When 1-min focal injection of BAY 41-2272 (100
uM) was repeated three times, it slowly potentiated the y KC-to-MBON-y1pedc synaptic
transmission over ~15 min in some cells, but this effect was not highly consistent between cells
(Figs. 5B and 5C). This variable potentiation was not accompanied by a change in PPR. In
contrast, when the same BAY 41-2272 injection pattern was paired with y KC activation, we
reproducibly observed slowly developing LTP with concurrent decrease in PPR (Figs. 5D and
SE). Thus, as reminiscent of the role of cAMP pathway in LTD, it requires simultaneous KC
stimulation for activation of cGMP pathway to induce presynaptic plasticity, but the direction of

plasticity is opposite to the one induced by cAMP. Of note, our preliminary attempt with one
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time 1-min pairing of BAY 41-2272 injection with y KC activation did not induce LTP (n = 2;
data not shown). The requirement of multiple rounds of pairing for LTP induction and the slow
kinetics of LTP are consistent with the behavioral study that showed that NO-dependent learning
requires longer training than dopamine-dependent one and that NO-dependent memory develops

slowly over time, taking ~10 min after training (Aso ef al., 2019).

Depression at o/ KC-to-MBON-y1pedc synapses is short lasting

In our plasticity induction method, odor-evoked KC activation, which occurs across all KC
subtypes, is substituted with subtype-specific optogenetic activation. This feature allowed us to
compare the properties of synaptic plasticity between different subtypes of KCs that share the
same postsynaptic MBON. To test if the o/ KC-to-MBON-yIpedc synapses undergo similar
long-term synaptic plasticity to y KC-to-MBON-y1pedc synapses, we next expressed
CsChrimson in a subset of o/ KCs using o/} KC-specific split-GAL4 driver MBO08C (Aso et
al.,2014b) and the SPARC system (Fig. 6A). As with the case of y KCs, activation of a/f KCs
paired with focal dopamine injection caused LTD with a concurrent increase in PPR (Figs. 6B
and 6C). However, the duration of LTD was markedly shorter. The EPSC amplitude as well as
PPR started showing recovery within 5 min after induction, and both became indistinguishable
from the baseline after ~10 min. In contrast, at y KC-to-MBON-y1pedc synapses, LTD lasted at
least for 30 min. Dopamine injection (Figs. 6D and 6E) or o/ KC activation (Figs. 6F and 6G)
alone did not induce any plasticity. These results indicate that the properties of dopamine-

induced synaptic plasticity are different between KC subtypes even among the synapses on the

same MBON.

To test whether difference in the duration of plasticity also applies to LTD induced by direct
activation of AC, we next injected forskolin (Fig. 7A). Neither a low (10 uM; Figs. 7B and 7C)
nor a high (100 uM; Figs. 7D and 7E) concentration of forskolin induced robust LTD or parallel
increase in PPRs. In contrast, when we paired injection of a low concentration of forskolin with
activation of o/ KCs, we observed transient but robust LTD accompanying parallel increase in
PPRs (Figs. 7F and 7G). Thus, as with the case of y KCs, elevation of cAMP level by AC
activation is not sufficient to induce LTD at o/} KC-to-MBON-y1pedc synapses, as it
additionally requires KC activation. On the other hand, the duration of LTD induced by a/p KC-
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forskolin pairing was reminiscent of that induced by o/ KC-dopamine pairing. To exclude the
possibility that the short duration of LTD reflects insufficient diffusion of forskolin into the
pedunculus subregion, where o/f KC-to-MBON-y1pedc synapses are located, we repeated the
same pairing experiment with a high concentration of forskolin (100 uM). The results mirrored
those with the lower concentration; LTD and accompanying increase in PPRs were robust but
still transient (Figs. 7H and 71). Pairing of a/f3 KC activation with injection of DMSO (0.1%) did
not show any effect (Figs. 7J and 7K). These results confirm the short-lasting nature of cAMP-
induced LTD at o/ KC-to-MBON-y1pedc synapses.

In contrast, cGMP-induced plasticity appeared similar between KC subtypes (Fig. 8A). As
observed at y KC synapses, three times 1-min injection of BAY 41-2272 alone did not induce
LTP paralleled by PPR change at o/ KC-to-MBON-y1pedc synapses (Figs. 8B and 8C). Pairing
of a/P KC activation and BAY 41-2272 injection induced robust LTP with a concurrent decrease
of PPR, which slowly developed over the period of ~10 min (Figs. 8D and 8E), again replicating
the observation in y KCs. Taken together, y and o/ KCs may share similar induction
mechanisms of cyclic nucleotide-induced synaptic plasticity but exhibit distinct durations

specifically for cAMP-dependent plasticity.

Discussion

In many species, brain areas and cell types, activation of cAMP/PKA pathway has been almost
exclusively implicated in potentiation rather than depression of synapses in the context of
synaptic plasticity. In this study, we provide the direct evidence that the output synapse of the
Drosophila MB is a rare, if not the only, exception where the sign of cAMP-induced plasticity is
inverted. Our results show that potentiation is instead mediated by cGMP pathway. Against
prevailing working model, increase in neither of the cyclic nucleotides was sufficient to induce
presynaptic plasticity; it additionally required simultaneous neuronal activity. Our experimental
design also allowed for a separate interrogation of synaptic plasticity exhibited by different

presynaptic cell types and uncovered similar but distinct properties.
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Like in many sensory cortical areas, KCs show sparse sensory representations (Turner et al.,
2008; Honegger et al., 2011). For this representation format to benefit the stimulus specificity of
learning (Field, 1994; Olshausen & Field, 2004), the effect of neuromodulation must be
restricted to the small fraction of synapses participating the sensory representation. This requires
synaptic plasticity to be induced only when neuromodulatory input coincides with synaptic
activity. Calcium/calmodulin-activated AC has been long postulated as a molecular basis for
such coincidence detection in multiple organisms because of its dual sensitivity to calcium influx
triggered by neuronal activity and G protein signaling triggered by neuromodulatory input (Mons
et al., 1999; Heisenberg, 2003). In Drosophila MB, multiple studies have indeed observed
synergistic action of KC activity and DAN activation (or bath-applied dopamine) on the
cAMP/PKA pathway in the KC axons (Tomchik & Davis, 2009; Gervasi ef al., 2010; Handler et
al., 2019). However, these and other studies also showed that DAN activation or dopamine
application alone can induce considerable increase in cAMP level (Tomchik & Davis, 2009; Boto
et al., 2014; Handler et al., 2019). Moreover, DAN activity is strongly modulated by the animal’s
instantaneous locomotion (Cohn et al., 2015; Siju et al., 2020; Zolin et al., 2021; Marquis &
Wilson, 2022). Thus, the resulting “aberrant” fluctuation of the cAMP level may prevent it from
being a faithful biochemical reporter of coincidence. Furthermore, a recent study squarely
challenged the role of cAMP as a coincidence reporter by showing that odor-electric shock
pairing evoked a similar degree of cAMP elevation in the KC axons regardless of their
responsiveness to the odor (Abe et al., 2023). These results collectively suggest that it would be
problematic if cAMP increase is sufficient to induce synaptic plasticity as assumed in the
currently prevailing view (Heisenberg, 2003). That is, without another layer of coincidence
detection, synapse specificity of plasticity would be compromised. Our results indicate the
existence of such a mechanism. Activation of AC alone by focal application of forskolin at the
synaptic site failed to induce LTD. Forskolin injection at a high concentration (100 uM) did
induce LTD, but this LTD did not accompany a change in PPR. We speculate that excessive
concentration of forskolin may have recruited AC in the MBON to induce postsynaptic LTD.
This idea is supported by the fact that the MBON has a much lower level of AC expression
compared to KCs (Fig. S1). However, the lack of a change in PPR alone is not enough to specify
the site of the plasticity; we were unable to analyze the miniature EPSCs, the size of which could

have provided more mechanistic insight, due their small size. Regardless of the origin of the
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plasticity, we can firmly conclude that the LTD induced by high concentration of forskolin is
qualitatively distinct from that induced by KC-dopamine pairing because only the latter showed
clear increase in PPR. In contrast to our results, a recent study reported that forskolin treatment
(100 uM) alone is sufficient to induce suppression of acetylcholine release from KCs (Abe et al.,
2023). However, this study used bath application of forskolin, and acetylcholine release was
evoked by an odor. Thus, the observed effect could be the result of forskolin’s action on any part
of the upstream circuit of the KCs. Moreover, they observed that the depression induced by
forskolin quickly disappeared after washing out forskolin, suggesting that it is not LTD. In
contrast, we focally applied forskolin only to a limited area of the MB lobes. In this small area,
the resident MBON and DAN show much lower expression levels of AC compared to KCs (Fig.
S1), making it unlikely that the observed effect of forskolin is mediated by non-KC cell types.
Moreover, the depression induced by KC-dopamine pairing lasted for at least 30 min after
forskolin was washed out from the area. We were able to replicate the LTD induced by KC-
dopamine pairing only when focal forskolin application was paired with KC activation. Taken
together, we propose a model that the convergence point of the signal triggered by KC activity
and that by dopamine input resides somewhere downstream of the cAMP synthesis. This view
and the traditional view of AC as a coincidence detector are not mutually exclusive as KC
activity may have a dual role at both convergence points. This double-layered mechanism of
coincidence detection could help secure the synapse specificity of plasticity (hence stimulus
specificity of learning) and prevent the synapses from undergoing plasticity every time the
cAMP level is affected by ongoing DAN activity. It would be important to understand the signal
mediating the neuronal activity and the detailed molecular mechanism of the downstream
convergence, especially given the fact that the direction of cAMP-induced plasticity is opposite

to many other systems. Our results suggest that PKA but not CaMKII is involved in this process.

Bidirectional synaptic plasticity has been reported in KC-to-MBON-y4 synapses, where the
direction of the plasticity is determined by the temporal order of KC and DAN activation
(Handler et al., 2019). DAN activation in the absence of KC activity is also reported to
strengthen the MBON response (Cohn ef al., 2015; Berry et al., 2018). Our results demonstrate
the presence of another format of synaptic potentiation mediated by cGMP. The direction of the

plasticity, higher threshold for plasticity induction, and slow kinetics of plasticity development
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we observed match the expectation from the behavioral study that identified NO as a
cotramsmitter of a subset of DANs (Aso ef al., 2019). Since the DANs expressing NO synthase
are paired up with the MBONSs implicated in short-term memory, it has been proposed that NO-
induced plasticity antagonizes dopamine-induced plasticity to shorten the memory retention
time. However, it is not clear whether these two plasticity pathways target the same presynaptic
machinery to change the synaptic strength or exist in parallel. Just like the cAMP pathway,
cGMP pathway also needs simultaneous neuronal activity to trigger the presynaptic plasticity. To
understand the detailed interaction of these two pathways, the downstream molecular target
needs to be identified. Recent study reported that NO-dependent cGMP signaling can trigger
transcriptional changes in KCs, which are essential for forgetting of memory at 6 hours after
training (Takakura ef al., 2023). Thus, the antagonistic relationship between cAMP and cGMP
second-messenger pathways controls memory acquisition and retention over multiple timescales

spanning minutes to hours to days.

By taking advantage of our experimental design that allows for subtype-specific activation of
KCs, we showed that the synapses made by o/ KCs on MBON-y1pedc display shorter
dopamine-induced LTD compared to the ones made by y KCs on the same postsynaptic neuron.
This result may be somewhat unexpected because the output of o/ KCs is generally considered
to be important for long-term memory retrieval (Isabel et al., 2004; Krashes & Waddell, 2008;
Trannoy et al., 2011; Huang et al., 2013). It is unlikely, however, that the observed difference
between o/ KCs and y KCs is caused by incomplete diffusion of the injected reagents because
we confirmed that the signal of Texas Red-conjugated dextran infused in the injection pipette
covers the entire ylpedc region. In addition, the duration of LTD induced by pairing of a/p KC
activation with 10 uM forskolin did not change even if we used 100 uM forskolin. Furthermore,
the time course of cGMP-induced LTP was similar between o/ KCs and y KCs. Thus, we
conclude that the difference reflects the different properties of the synapses. It is possible that
properties of synapses in the pedunculus region, which is an uncommon area for KCs to make
synapses with MBONSs, are somewhat different from those of typical synapses in the MB lobes.
Alternatively, it is also possible that the plasticity properties observed at o/ff KCs-to-MBON-
yIpedc synapses generally apply to all synapses made by o/ KCs. Transcription levels of some
of the PKA isoforms are markedly lower in o/ KCs than in y KCs (Fig. S1), which might
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explain the difference. Importantly, the study using in vivo pairing of odor presentation and
optogenetic DAN activation revealed that induction of LTD in MBON-a2sc took longer pairing
than that in MBON-y1 (Hige et al., 2015). Thus, it is possible that the shorter LTD in o/f§ KCs-
to-MBON-y1pedc synapses reflects higher threshold of plasticity induction in o/ KCs. It
requires recording from other types of MBONs with various pairing parameters to discriminate

these potential scenarios.

For a long time, the learning and memory field in Drosophila has been strongly driven by
behavioral genetics studies, which successfully made links between key molecules and
behavioral defects. However, the link between those molecules and their potential roles in
synaptic plasticity has not been extensively tested. In the rodent learning and memory field, a
series of experiments using slice physiology provided countless key insight into the molecular
and physiological basis of long-term synaptic plasticity. Our ex vivo system developed in this
study provides an equivalent platform to interrogate the molecular machinery of synaptic

plasticity in this historically important model organism.

Material and Methods
Flies

All fly stocks were maintained at room temperature on conventional cornmeal-based medium.
However, in most cases, we kept the final crosses for experiments in the dark at 18 °C to
minimize the potential phototoxicity on KCs expressing CsChrimson. Flies were selected for
desired genotypes on the day of eclosion, transferred to all-trans-retinal food (0.5 mM) and used
for experiments after 48-72 hours. For experiments to record y KC-to-MBON-y1pedc synaptic
currents (Figs. 1-5), we used nSyb-1VS-phiC31 attp18/w; 20XUAS-SPARC2-S-Syn21-
CsChrimson::tdTomato-3.1 CR-P40/R12G04-LexA attP40; MB623C/pJFRC57-13XLexAop2-
1VS-GFP-p10 VK00005. For a/p KC-to-MBON-y1pedc synapses (Figs. 6-8), we used MB00OSC
instead of MB623C. nSyb-1VS-phiC31 attpl8 and 20XUAS-SPARC2-S-Syn21-
CsChrimson::tdTomato-3.1 CR-P40 flies were obtained from the Bloomington Drosophila Stock
Center, and MB623C flies were gifted from Yoshinori Aso (Janelia, HHMI).
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Electrophysiology

We first attempted to perform all experiments in vivo. However, light stimulation we used for
optogenetic activation of KCs evoked an EPSC-like inward current in MBON-ylIpedc as well as
many of the randomly selected neurons in flies without CsChrimson transgene (data not shown).
These responses persisted even in the presence of tetrodotoxin (1 uM), but they almost
disappeared in blind norpA mutants and were completely absent when we removed the retina.
We therefore decided to switch to the ex vivo preparation. This strategy also improved the

recording condition by minimizing the spontaneous circuit activity.

We dissected out a brain from a head capsule in ice-cold external saline, which contains (in mM)
103 NacCl, 3 KCI, 1.5 CaCl», 4 MgCl,, 26 NaHCO3, 5 N-[tris(hydroxymethyl)-methyl]-2-
aminoethane-sulfonic acid, 1 NaH,POs4, 10 trehalose and 10 glucose (pH 7.3 when bubbled with
95% O3 and 5% CO», 275 mOsm), and then transferred it to a recording chamber, where the
brain was pinned to the Sylgard-coated bottom using sharpened tungsten rods inserted at the
optic lobes. In some experiments, we treated the brain with Type IV collagenase (0.2-0.5 mg/ml)
for 30-90 s to make it easier to remove the glial sheath. After removing the sheath around the
region of interest by forceps and pipettes under an upright microscope (OpenStand; Prior
Scientific) equipped with a 60x water-immersion objective (LUMPIlanFI/IR; Olympus), we
inserted an injection pipette containing external saline with Texas Red-conjugated dextran (3,000
MW; 100-200 uM) and additional drugs as described in each figure legend. The tip of injection
pipette was placed near the dendritic region of MBON-y1pedc under the guidance of the GFP
signal in the MBON. Both injection and patch pipettes were made from borosilicate glass
capillaries with filament (Sutter Instrument) by a micropipette puller (P-97, Sutter Instrument).
Patch pipettes were further heat-polished at the tip and had a resistance of 3.5-5.5 MQ. Pipettes
with a slightly larger tip diameter were used as injection pipettes. Patch pipettes were filled with
internal saline containing (in mM) 140 cesium aspartate, 10 HEPES, 1 EGTA, 1 KCI, 4 Mg-ATP,
0.5 Na-GTP and 10 QX-314 (pH adjusted to 7.3 with CsOH, 265 mOsm). Whole-cell voltage-
clamp recordings were made from MBON-ylpedc using Axon MultiClamp 700B amplifier
(Molecular Probes). Cells were held at =60 mV. Leak current was typically < 150 pA. Series

resistance was compensated up to 70% so that the uncompensated component remains constant
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at around 5 MQ. Signals were low-pass filtered at 5 kHz before being digitized at 10 kHz.

Sample traces shown in figures were further low-pass filtered.

KCs were stimulated by 1-ms light pulses delivered through the objective at 4.25 mW/mm? by a
high-power LED source (LED4D067; Thorlabs) equipped with 625 nm LED. To measure PPR,
we first recorded a single-pulse EPSC to be used as a reference trace. After 10 s, we delivered 4
paired pulses with 400-ms intervals every 10 s. We repeated this set every minute. A second
EPSC waveform was obtained every minute by subtracting a reference trace from the average of
4 paired-pulse EPSCs. PPR was then calculated every minute by dividing the second EPSC
amplitude by the first EPSC amplitude. To ensure the stability of response, we recorded baseline
responses for at least 3 min. For focal injection of drugs, we applied 1-s pressure pulses (0.4-0.6
psi) every 2 s for 1 min by a microinjector (PV850, World Precision Instruments). In some
experiments, we repeated it three times with 1-min intervals. When we paired KC activation with
focal injection, photostimuli were delivered at 2 Hz for 1 min with the first pulse delivered 0.3 s
before the onset of the first injection pulse. Recording was resumed 2.5 min after the end of
injection. For bath application of drugs, we waited for 2 min after the normal bath saline was
exchanged with the one containing a drug via perfusion. We then recorded EPSCs for 3 min to
assess the effect of the drug itself before starting the pairing procedure described above. All
stimulus delivery and data acquisition were controlled by custom MATLAB (Mathworks) codes.
Data analyses were also performed on MATLAB. Statistical analyses were performed on

MATLAB or Prism (GraphPad). All statistical tests used raw data before normalization.
Drugs

Drug-containing external saline was freshly prepared on the day of experiment from stock
solutions stored at —20 °C. Stock solutions of mecamylamine and KN-93 phosphate were made
with water at 100 mM, and SCH 23390, forskolin, H-89 and BAY 41-2272 were dissolved in
DMSO at 100 mM. Final concentration of DMSO did not exceed 0.1%. Dopamine was stored at
100 mM in external saline. When a drug was bath applied, that drug was also included in the

injection pipette at the same concentration.
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Figure Legends

Figure 1. Optogenetic assessment of short-term synaptic plasticity at KC-to-MBON

synapses

A, a schematic of the experiments. Optogenetically evoked EPSCs were measured at y KC-to-
MBON-ylpedc synapses by whole-cell voltage-clamp recordings from MBON-y1pedc. Short-
term plasticity induced by paired pulses (pulse width, 1 ms; interval, 400 ms) was monitored
while changing the extracellular concentrations of divalent cations or partially blocking
postsynaptic ionotropic receptors.

B, changing the extracellular calcium/magnesium concentrations from 1.5/4 mM (normal) to
0.7/5.5 mM (low Ca/Mg) decreased the first EPSC amplitude (left, mean £ s.em;n=6,p < 1074,
paired t-test) while increasing the PPR (right, p = 0.00658). Gray lines indicate data from
individual cells. Upper left traces show overlaid representative EPSCs before (black) and after

(red) changing the extracellular saline. Horizontal and vertical scale bars in this and the other
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728  panels indicate 300 ms and 30 pA, respectively. Upper right traces show the same EPSCs

729  normalized with the first EPSC amplitude. Asterisks denote p < 0.05.

730  C, changing the extracellular calcium/magnesium concentrations to 5/0.5 mM (high Ca/Mg)
731  increased the first EPSC amplitude (left; n =5, p = 0.00778, paired t-test) while decreasing the
732 PPR (right; p < 107%).

733 D, bath application of mecamylamine (Mec; 10 uM), a non-competitive antagonist of the

734 nicotinic acetylcholine receptors, reduced the first EPSC amplitude (left; n=15, p=0.0144,
735  paired t-test) without affecting the PPR (right, p = 0.854).

736  Figure 2. Pairing y KC activation with focal dopamine application induces presynaptic LTD

737  via Di-like dopamine receptors

738 A, a schematic of the experiments. Dopamine (1 mM) was focally applied to the dendritic region
739  of the MBON-ylpedc via an injection pipette while measuring optogenetically evoked y KC-to-
740  MBON-ylpedc EPSCs. See Methods for detailed parameters for injections and recordings.

741 B, arepresentative image (lower left) to show the spread of the fluorescent signal of Texas Red
742 dextran, which was infused with dopamine in the injection pipette, after 1-min injection. Upper
743 left image shows a widefield view of the same sample. The y lobe and part of the vertical lobes
744  are outlined by yellow. Light blue line indicates the approximate location of the y1pedc region.
745  Signals measured in four regions of interest (light magenta squares) were plotted on the right.
746  Horizontal red bar denotes the timing of the injection. D: dorsal, L: lateral, scale bar: 20 um.

747  C, first EPSC amplitudes (open circles, mean £ s.e.m; n = 6) and PPRs (filled circles) plotted
748  against time after the end of 1-min pairing of y KC activation and dopamine injection. The data
749  were normalized to the average of a 3-min baseline recorded before pairing. Upper right traces
750  show overlaid representative EPSCs sampled before (at —2 min; black) and after (at 3 min; red)
751  pairing. Horizontal and vertical scale bars in this and the other panels indicate 300 ms and 30 pA,
752 respectively. Lower right traces show the same EPSCs normalized with the first EPSC

753  amplitude.

754 D, quantification of the data shown in C at early, middle and late periods after pairing (mean *
755  s.e.m.). Black dots indicate data from individual cells. First EPSC amplitudes (open bars) and

756  PPRs (filled bars) showed depression and an increase, respectively, at all three time points. P
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757  values for EPSCs are (from left to right) < 1073, < 107 and < 10~ (Dunnett’s multiple

758  comparisons test following repeated measures one-way ANOVA, p < 1073), and for PPRs, < 1073,
759 < 10*and < 1073 (repeated measures one-way ANOVA, p < 107%).

760  E, same as C, but KC activation was omitted during pairing (n = 5).

761  F, quantification of the data shown in E. 1-min dopamine injection alone affected neither first
762  EPSC amplitudes (p = 0.372, repeated measures one-way ANOVA) nor PPRs (p = 0.160).

763 @G, same as C, but dopamine application was omitted during pairing (n = 5).

764  H, quantification of the data shown in G. 1-min KC activation alone affected neither first EPSC
765  amplitudes (p = 0.632, repeated measures one-way ANOVA) nor PPRs (p = 0.676).

766 1, same as C, but Di-like dopamine receptor antagonist SCH 23390 (100 uM) was bath-applied
767  prior to pairing and continuously until the end of experiments (n = 5). Sample traces (right)

768  include an example recorded after application of SCH 23390 but before pairing (at —2 min; blue).
769 J, quantification of the data shown in I. Pairing was ineffective in the presence of SCH 23390,
770  while SCH 23390 alone did not affect first EPSC amplitudes (p = 0.791, repeated measures one-
771  way ANOVA) or PPRs (p = 0.464).

772 K, same as I, but instead of SCH 23390, only the solvent DMSO (0.1%) was bath-applied (n =
773 6).

774 L, quantification of the data shown in I. The effects of pairing were unaffected by DMSO, while
775  DMSO alone did not affect first EPSC amplitudes or PPRs. P values for EPSCs are (from left to
776  right) 0.973, <107 <10™* and < 10~* (Dunnett’s multiple comparisons test following repeated
777  measures one-way ANOVA, p < 107°), and for PPRs, 1.00, 0.00896, 0.00304 and < 103

778  (repeated measures one-way ANOVA, p < 107%).

779  Figure 3. Presynaptic LTD induction at y KC-to-MBON-y1pedc synapses requires both AC
780  activation and KC activity

781 A, a schematic of the experiments. AC activator forskolin was focally applied to the dendritic
782 region of the MBON-ylIpedc via an injection pipette while measuring optogenetically evoked y
783  KC-to-MBON-ylpedc EPSCs.

784 B, first EPSC amplitudes (open circles, mean £ s.e.m; n = 7) and PPRs (filled circles) plotted
785  against time after the end of 1-min injection of forskolin (20 uM). The data were normalized to

786  the average of a 3-min baseline recorded before pairing. Upper right traces show overlaid
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787  representative EPSCs sampled before (at —2 min; black) and after (at 3 min; red) injection.

788  Horizontal and vertical scale bars in this and the other panels indicate 300 ms and 30 pA,

789  respectively. Lower right traces show the same EPSCs normalized with the first EPSC

790  amplitude.

791  C, quantification of the data shown in B at early, middle and late periods after injection (mean *
792  s.e.m.). Black dots indicate data from individual cells. 1-min injection of a low concentration of
793  forskolin alone affected neither first EPSC amplitudes (open bars; p = 0.0866, repeated measures
794  one-way ANOVA) nor PPRs (filled bars; p = 0.553).

795 D, same as B, but with a higher concentration of forskolin (100 uM; n = 7).

796  E, quantification of the data shown in D. 1-min injection of a high concentration of forskolin
797  decreased first EPSC amplitudes at all three time points (p = 0.0151, 0.00645, and 0.00495 from
798 left to right, Dunnett’s multiple comparisons test following repeated measures one-way ANOVA,
799  p=0.00502) but did not affect PPRs (p = 0.494, repeated measures one-way ANOVA).

800 F, same as B, but 1-min forskolin (20 pM) injection was paired with y KC activation (n = 6).

801 @G, quantification of the data shown in F. 1-min pairing of a low concentration of forskolin and y
802  KC activation depressed first EPSC amplitudes and increased PPRs at all three time points. P
803  values for EPSCs are (from left to right) < 107, < 107% and < 107® (Dunnett’s multiple

804  comparisons test following repeated measures one-way ANOVA, p < 1077), and for PPRs, < 1073,
805 < 10*and 107 (repeated measures one-way ANOVA, p < 107%).

806  H, same as B, but instead of forskolin, only the solvent DMSO (0.1 %) was injected (n = 5). 1-
807  min injection was repeated 3 times with 1-min intervals so that the data could also serve as

808  control for the experiments shown in Fig. 5.

809 I, quantification of the data shown in H. DMSO injection alone did not affect first EPSC

810  amplitudes (p = 0.908, repeated measures one-way ANOVA) or PPRs (p = 0.708).

811  Figure 4. Dopamine-induced LTD depends on PKA but not CaMKII

812 A, a schematic of the experiments. Dopamine (1 mM) injection was paired with y KC activation
813  while measuring optogenetically evoked y KC-to-MBON-y1pedc EPSCs as in Fig. 2C, except
814  kinase inhibitors were bath-applied prior to pairing and applied continuously until the end of
815  experiments.

816 B, effects of PKA inhibitor, H-89 (10 uM). First EPSC amplitudes (open circles, mean * s.e.m; n
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=5) and PPRs (filled circles) plotted against time after the end of 1-min pairing of y KC
activation and dopamine injection. The data were normalized to the average of a 3-min baseline
recorded before pairing. A horizontal blue bar indicates the period of H-89 application. Upper
right traces show overlaid representative EPSCs sampled before (at —7 min; black) and 4.5 min
after drug application (at —2 min; blue), and after pairing (at 3 min; red). Horizontal and vertical
scale bars in this and the other panels indicate 300 ms and 30 pA, respectively. Lower right
traces show the same EPSCs normalized with the first EPSC amplitude.

C, quantification of the data shown in B before pairing and at early, middle and late periods after
pairing (mean + s.e.m.). Black dots indicate data from individual cells. H-89 alone did not affect
first EPSC amplitudes (open bars) or PPRs (filled bars), and the subsequent pairing did not
depress EPSCs (p = 0.392, repeated measures one-way ANOVA) or increase PPRs (p = 0.205,
0.171, 1.00 and 0.0174 from left to right, Dunnett’s multiple comparisons test following repeated
measures one-way ANOVA, p < 1073).

D, same as B, but instead of H-89, CaMKII inhibitor KN-93 (10 uM) was bath-applied (n = 4).
E, quantification of the data shown in D. KN-93 alone slightly depressed EPSCs without
affecting PPRs, and the subsequent pairing further induced robust depression of EPSCs and
facilitation of PPRs. P values for EPSCs are (from left to right) < 1073, <107°, <10 and < 107
(Dunnett’s multiple comparisons test following repeated measures one-way ANOVA, p < 1077),

and for PPRs, 0.984, < 1073, 0.00397 and < 1073 (repeated measures one-way ANOVA, p < 1073).
Figure 5. Simultaneous activation of cGMP pathway and y KCs induces presynaptic LTP

A, a schematic of the experiments. sGC agonist BAY 41-2272 was focally applied to the
dendritic region of the MBON-yIpedc via an injection pipette while measuring optogenetically
evoked y KC-to-MBON-y1pedc EPSCs.

B, first EPSC amplitudes (open circles, mean * s.e.m; n = 5) and PPRs (filled circles) plotted
against time after the end of the three repeats of 1-min injection of BAY 41-2272 (100 uM). The
data were normalized to the average of a 3-min baseline recorded before pairing. Upper right
traces show overlaid representative EPSCs sampled before (at —6 min; black) and after (at 17
min; red) injection. Horizontal and vertical scale bars in this and the other panels indicate 300 ms
and 60 pA, respectively. Lower right traces show the same EPSCs normalized with the first

EPSC amplitude.
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C, quantification of the data shown in B at early, middle and late periods after injection (mean +
s.e.m.). Black dots indicate data from individual cells. BAY 41-2272 injection alone did not
induce consistent changes in first EPSC amplitudes (open bars; p = 0.0633, repeated measures
one-way ANOVA) or PPRs (filled bars; p = 0.565).

D, same as B, but BAY 41-2272 injection was paired with y KC activation (n = 5).

E, quantification of the data shown in D. pairing of BAY 41-2272 and y KC activation
potentiated first EPSC amplitudes and decreased PPRs at middle and late time points. P values
for EPSCs are (from left to right) 0.314, < 107 and < 10~ (Dunnett’s multiple comparisons test
following repeated measures one-way ANOVA, p < 107, and for PPRs, 0.350, 0.00486 and
0.00902 (repeated measures one-way ANOVA, p = 0.00553).

Figure 6. Pairing o/ KC activation with focal dopamine application induces transient

presynaptic LTD

A, a schematic of the experiments. Dopamine (1 mM) was focally applied to the dendritic region
of the MBON-y1pedc via an injection pipette while measuring optogenetically evoked o/ KC-
to-MBON-ylpedc EPSCs.

B, first EPSC amplitudes (open circles, mean * s.e.m; n = 6) and PPRs (filled circles) plotted
against time after the end of 1-min pairing of o/ KC activation and dopamine injection. The
data were normalized to the average of a 3-min baseline recorded before pairing. Upper right
traces show overlaid representative EPSCs sampled before (at —2 min; black) and after (at 3 min;
red) pairing. Horizontal and vertical scale bars in this and the other panels indicate 300 ms and
100 pA, respectively. Lower right traces show the same EPSCs normalized with the first EPSC
amplitude.

C, quantification of the data shown in B at early, middle and late periods after pairing (mean +
s.e.m.). Black dots indicate data from individual cells. First EPSC amplitudes (open bars) and
PPRs (filled bars) showed depression and increase, respectively, but only transiently at the early
time point. P values for EPSCs are (from left to right) < 107*, 0.100 and 0.593 (Dunnett’s
multiple comparisons test following repeated measures one-way ANOVA, p < 107, and for
PPRs, <107, 0.253 and 0.999 (repeated measures one-way ANOVA, p < 107).

D, same as B, but KC activation was omitted during pairing (n =5).
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E, quantification of the data shown in D. 1-min dopamine injection alone affected neither first
EPSC amplitudes (p = 0.208, repeated measures one-way ANOVA) nor PPRs (p = 0.350).

F, same as B, but dopamine application was omitted during pairing (n = 5).

G, quantification of the data shown in G. 1-min KC activation alone affected neither first EPSC

amplitudes (p = 0.213, repeated measures one-way ANOVA) nor PPRs (p = 0.518).

Figure 7. Presynaptic LTD induction at a/f KC-to-MBON-y1pedc synapses requires both
AC activation and KC activity

A, a schematic of the experiments. Forskolin was focally applied to the dendritic region of the
MBON-ylpedc via an injection pipette while measuring optogenetically evoked a/f KC-to-
MBON-y1pedc EPSCs.

B, first EPSC amplitudes (open circles, mean * s.e.m; n = 6) and PPRs (filled circles) plotted
against time after the end of 1-min injection of forskolin (10 uM). The data were normalized to
the average of a 3-min baseline recorded before pairing. Upper right traces show overlaid
representative EPSCs sampled before (at —2 min; black) and after (at 3 min; red) injection.
Horizontal and vertical scale bars indicate 300 ms and 100 pA, respectively. Lower right traces
show the same EPSCs normalized with the first EPSC amplitude.

C, quantification of the data shown in B at early and late periods after injection (mean * s.e.m.).
Black dots indicate data from individual cells. 1-min injection of a low concentration of forskolin
alone did not induce consistent changes in first EPSC amplitudes (open bars; p = 0.999 and
0.0119 from left to right, Dunnett’s multiple comparisons test following repeated measures one-
way ANOVA, p = 0.00922) and PPRs (filled bars; p = 0.512, repeated measures one-way
ANOVA, p = 0.00922).

D, same as B, but with a higher concentration of forskolin (100 uM; n = 6). Horizontal and
vertical scale bars indicate 300 ms and 50 pA, respectively.

E, quantification of the data shown in D. 1-min injection of a high concentration of forskolin
alone did not induce consistent changes in first EPSC amplitudes (p = 0.0886, repeated measures
one-way ANOVA) and PPRs (p = 0.0370 and 0.419 from left to right, Dunnett’s multiple
comparisons test following repeated measures one-way ANOVA, p = 0.00796).

F, same as B, but 1-min forskolin (10 uM) injection was paired with o/ KC activation (n =5).

Horizontal and vertical scale bars indicate 300 ms and 100 pA, respectively.
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G, quantification of the data shown in F. 1-min pairing of a low concentration of forskolin and
o/p KC activation induced coherent but transient depression in first EPSC amplitudes and
facilitation of PPRs. P values for EPSCs are (from left to right) < 107>, 0.0105 and 0.0505
(Dunnett’s multiple comparisons test following repeated measures one-way ANOVA, p < 1074
and for PPRs, 0.0117, 0.415 and 0.187 (repeated measures one-way ANOVA, p < 107%).

H, same as F, but with a higher concentration of forskolin (100 uM; n =5). Horizontal and
vertical scale bars indicate 300 ms and 50 pA, respectively.

I, quantification of the data shown in H. 1-min pairing of a high concentration of forskolin and
o/p KC activation induced coherent but transient depression in first EPSC amplitudes and
facilitation of PPRs. P values for EPSCs are (from left to right) < 1073, 0.208 and 0.997
(Dunnett’s multiple comparisons test following repeated measures one-way ANOVA, p < 1073)
and for PPRs, 0.00258, 0.998 and 0.206 (repeated measures one-way ANOVA, p < 1073).

J, same as B, but instead of forskolin, only the solvent DMSO (0.1 %) was injected (n = 4). 1-
min injection was repeated 3 times with 1-min intervals so that the data could also serve as
control for the experiments shown in Fig. 8. Horizontal and vertical scale bars indicate 300 ms
and 100 pA, respectively.

K, quantification of the data shown in J. DMSO injection alone did not affect first EPSC
amplitudes (p = 0.272, repeated measures one-way ANOVA) or PPRs (p = 0.108).

Figure 8. Simultaneous activation of cGMP pathway and o/ KCs induces presynaptic LTP

A, a schematic of the experiments. BAY 41-2272 was focally applied to the dendritic region of
the MBON-y1pedc via an injection pipette while measuring optogenetically evoked a/pp KC-to-
MBON-y1pedc EPSCs.

B, first EPSC amplitudes (open circles, mean * s.e.m; n = 4) and PPRs (filled circles) plotted
against time after the end of the three repeats of 1-min injection of BAY 41-2272 (100 uM). The
data were normalized to the average of a 3-min baseline recorded before pairing. Upper right
traces show overlaid representative EPSCs sampled before (at —6 min; black) and after (at 17
min; red) injection. Horizontal and vertical scale bars in this and the other panels indicate 300 ms
and 100 pA, respectively. Lower right traces show the same EPSCs normalized with the first
EPSC amplitude.

C, quantification of the data shown in B at early, middle and late periods after injection (mean +
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936  s.e.m.). Black dots indicate data from individual cells. BAY 41-2272 injection alone a delayed
937  potentiation of first EPSC amplitudes (open bars) without coherent changes in PPRs (filled bars).
938 P values for EPSCs are (from left to right), 0.631, 0.00915 and 0.00302 (Dunnett’s multiple

939  comparisons test following repeated measures one-way ANOVA, p = 0.00307), and for PPRs,
940  0.383, 0.760 and 0.261 (repeated measures one-way ANOVA, p = 0.0579).

941 D, same as B, but BAY 41-2272 injection was paired with o/3 KC activation (n = 5).

942  E, quantification of the data shown in D. pairing of BAY 41-2272 and o/ KC activation

943  potentiated first EPSC amplitudes and decreased PPRs at the later time points. P values for

944  EPSCs are (from left to right) 0.488, 0.0605, and 0.0360 (Dunnett’s multiple comparisons test
945  following repeated measures one-way ANOVA, p = 0.0502), and for PPRs, < 1075, < 107> and <
946 107 (repeated measures one-way ANOVA, p < 1079).

947  Figure S1. Transcriptome data related to pharmacological target molecules

948  Cell-type-specific transcriptome data of the genes encoding the target molecules of

949  pharmacology used in this work. This figure was recreated based on published data (Aso et al.,
950  2019). PPL-ylpedc is the DAN whose axonal innervation pattern in the MB lobes matches the
951  dendritic arborization of MBON-y1pedc.
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Full name FlyBase ID Symbol = o
rutabaga FBtr0073992 rut-RA 4 3
rutabaga FBtr0305581 rut-RB 2 12
rutabaga FBtr0333654 rut-RC 1 (0]
rutabaga FBtr0333655 rut-RD 2 2
rutabaga FBtr0333656 rut-RE 2 11
rutabaga FBtr0333657 rut-RF 2 1
rutabaga FBtr0340467 rut-RG (0] 1 (0]
Adenylyl cyclase 13E FBtr0074073 Ac13E-RA 1 (0] (0]
Adenylyl cyclase 13E FBtr0100142 Ac13E-RB (0] 1 1
Adenylyl cyclase 13E FBtr0332497 Ac13E-RC (0] 9 )
Adenylyl cyclase 76E FBtr0074897 Ac76E-RA 3 2 20
Adenylyl cyclase 76E FBtr0304746 Ac76E-RB (0] 6 1
Adenylyl cyclase 78C FBtr0301701 Ac78C-RB 1 1 (0]
Adenylyl cyclase 78C FBtr0305501 Ac78C-RC (0] (0] 8]
Adenylyl cyclase 78C FBtr0330066 Ac78C-RD 2 1 (0]
Adenylyl cyclase 78C FBtr0330067 Ac78C-RE 1 1 (0]
Adenylyl cyclase 78C FBtr0333358 Ac78C-RF (0] 0 1
Adenylyl cyclase X A FBtr0080415 ACXA-RA (0] (0] (0] (0]
Adenylyl cyclase X A FBtr0305490 ACXA-RC 0 (0] 0 (0]
Adenylyl cyclase X A FBtr0305491 ACXA-RD (0] (0] (0] (0]
Adenylyl cyclase X A FBtr0333225 ACXA-RG 0 (0] 0 (0]
Adenylyl cyclase X A FBtr0344132 ACXA-RH (0] [0] (0] 0]
Adenylyl cyclase X B FBtr0080414 ACXB-RA 0 (0] 0 (0]
Adenylyl cyclase X C FBtr0080413 ACXC-RA (0] 1 (0] (0]
Adenylyl cyclase X C FBtr0100494 ACXC-RB 0 (0] 0 (0]
Adenylyl cyclase X D FBtr0072874 ACXD-RA (0] (0] (0] (0]
Adenylyl cyclase X D FBtr0332662 ACXD-RB 0 (0] 0 (0]
Adenylyl cyclase X E FBtr0310556 ACXE-RB (0] [0] (0] [0]
Protein kinase, cAMP-dependent, catalytic subunit 1 FBtr0079851 Pka-C1-RB | 69 | 378 |
Protein kinase, cAMP-dependent, catalytic subunit 1 FBtr0079852 Pka-C1-RC | 194 | 204 [ Y|
Protein kinase, cCAMP-dependent, catalytic subunit 1 FBtr0335495 Pka-C1-RD 31 19
Protein kinase, CAMP-dependent, catalytic subunit 2 FBtr0085727 Pka-C2-RB (0] 0
Protein kinase, cAMP-dependent, catalytic subunit 2 FBtr0335454 Pka-C2-RC
Protein kinase, CAMP-dependent, catalytic subunit 3 FBtr0075529 Pka-C3-RA
Protein kinase, cAMP-dependent, catalytic subunit 3 FBtr0075528 Pka-C3-RB

Protein kinase, CAMP-dependent, regulatory subunit type 1 FBtr0302641 Pka-R1-RAA
Protein kinase, cAMP-dependent, regulatory subunit type 1 FBtr0302642 Pka-R1-RAB
Protein kinase, CAMP-dependent, regulatory subunit type 1 FBtr0302643 Pka-R1-RAC
Protein kinase, cAMP-dependent, regulatory subunit type 1 FBtr0299891 Pka-R1-RK
Protein kinase, CAMP-dependent, regulatory subunit type 1 FBtr0299892 Pka-R1-RL (0] (0]

Protein kinase, cAMP-dependent, regulatory subunit type 1 FBtr0300528 Pka-R1-RM
Protein kinase, CAMP-dependent, regulatory subunit type 1 FBtr0300529 Pka-R1-RN
Protein kinase, cAMP-dependent, regulatory subunit type 1 FBtr0299893 Pka-R1-RO
Protein kinase, cAMP-dependent, regulatory subunit type 1 FBtr0300530 Pka-R1-RP
Protein kinase, cAMP-dependent, regulatory subunit type 1 FBtr0300531 Pka-R1-RQ
Protein kinase, CAMP-dependent, regulatory subunit type 1 FBtr0300532 Pka-R1-RR
Protein kinase, cAMP-dependent, regulatory subunit type 1 FBtr0300533 Pka-R1-RS
Protein kinase, CAMP-dependent, regulatory subunit type 1 FBtr0300534 Pka-R1-RT
Protein kinase, CAMP-dependent, regulatory subunit type 1 FBtr0300535 Pka-R1-RU
Protein kinase, CAMP-dependent, regulatory subunit type 1 FBtr0302637 Pka-R1-RV
Protein kinase, cAMP-dependent, regulatory subunit type 1 FBtr0302638 Pka-R1-RW
Protein kinase, CAMP-dependent, regulatory subunit type 1 FBtr0302639 Pka-R1-RX
Protein kinase, cCAMP-dependent, regulatory subunit type 1 FBtr0302640 Pka-R1-RZ
Protein kinase, CAMP-dependent, regulatory subunit type 2 FBtr0088437 Pka-R2-RA
Protein kinase, CAMP-dependent, regulatory subunit type 2 FBtr0088438 Pka-R2-RB
Protein kinase, CAMP-dependent, regulatory subunit type 2 FBtr0112901 Pka-R2-RD
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Protein kinase, CAMP-dependent, regulatory subunit type 2 FBtr0112902 Pka-R2-RE 6
Calcium/calmodulin-dependent protein kinase Il FBtr0089218 CaMKII-RA
Calcium/calmodulin-dependent protein kinase Il FBtr0089219 CaMKII-RB 0 (0]
Calcium/calmodulin-dependent protein kinase Il FBtr0089217 CaMKII-RC [0] [0]
Calcium/calmodulin-dependent protein kinase I FBtr0100146 CaMKII-RD 23 =
Calcium/calmodulin-dependent protein kinase Il FBtr0100147 CaMKII-RE el 69 | L
Calcium/calmodulin-dependent protein kinase Il FBtr0100148 CaMKII-RG 2 14 E
Calcium/calmodulin-dependent protein kinase Il FBtr0300377 CaMKII-RH 20 23 -
Calcium/calmodulin-dependent protein kinase Il FBtr0300378 CaMKII-RI 0 12 8
Calcium/calmodulin-dependent protein kinase Il FBtr0300379 CaMKII-RJ 13 ®* 100
Calcium/calmodulin-dependent protein kinase Il FBtr0333673 CaMKII-RK o
Calcium/calmodulin-dependent protein kinase Il FBtr0333674 CaMKII-RL =
Calcium/calmodulin-dependent protein kinase Il FBtr0333675 CaMKII-RM 8

Guanylyl cyclase a-subunit at 99B FBtr0085453 Gyca99B-RA c
Guanylyl cyclase B-subunit at 100B FBtr0085753 GycB100B-RA o
Dopamine 1-like receptor 1 FBtr0290283 Dop1R1-RB =
Dopamine 1-like receptor 1 FBtr0301351 Dop1R1-RC
Dopamine 1-like receptor 1 FBtr0308191 Dop1R1-RD
Dopamine 1-like receptor 1 FBtr0330711 Dop1R1-RE
Dopamine 1-like receptor 1 FBtr0346763 Dop1R1-RF
Dopamine 1-like receptor 2 FBtr0085467 Dop1R2-RA
Dopamine 1-like receptor 2 FBtr0085468 Dop1R2-RB
Dopamine 1-like receptor 2 FBtr0330293 Dop1R2-RC

Figure S1
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