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ABSTRACT 

Accumulating evidence suggests that rapid eye movement sleep (REM) supports the consolidation 

of extinction memory. REM is disrupted in PTSD, and REM abnormalities after traumatic events 

increase the risk of developing PTSD.  Therefore, it was hypothesized that abnormal REM in 

trauma-exposed individuals may pave the way for PTSD, by interfering with the processing of 

extinction memory. In addition, PTSD patients display reduced vagal activity. Vagal activity 

contributes to the strengthening of memories, including fear extinction memory, and recent studies 

show that the role of vagus in memory processing extends to memory consolidation during sleep. 

Therefore, it is plausible that reduced vagal activity during sleep in trauma-exposed individuals 

may be an additional mechanism that impairs extinction memory consolidation. However, to date, 

the contribution of sleep vagal activity to the consolidation of extinction memory or any emotional 

memory has not been investigated. To test these hypotheses, we examined the association of 

extinction memory with REM characteristics and REM vagal activity (indexed as high frequency 

heart rate variability; HF-HRV) in a large sample of trauma-exposed individuals (n=113). 

Consistent with our hypotheses, REM sleep characteristics (increased REM density and shortened 

REM latency) were associated with poorer physiological and explicit extinction memory. 

Furthermore, higher HF-HRV during REM was associated with better explicit extinction memory. 

These findings support the notion that disrupted REM may contribute to PTSD by impairing the 

consolidation of extinction memory and indicate the potential utility of interventions that target 

REM sleep characteristics and REM vagal activity in fear-related disorders.  
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INTRODUCTION 

PTSD is characterized by excessive fear responses to cues associated with a traumatic event. It is 

hypothesized that this is due to dysfunction in fear extinction, the process whereby fear response 

is gradually reduced after multiple exposures to a conditioned stimulus (CS) without reinforcement 

[1,2]. After a traumatic event, fear extinction is achieved by repeated exposure to reminders of the 

traumatic event without the feared outcome. This mechanism is suggested to be the basis of 

exposure therapy for PTSD and other anxiety disorders [3]. 

 

Fear extinction is not simply an erasure of fear but relies on new learning and memory. While the 

preponderance of studies does not show impaired extinction learning in PTSD (reviewed in [4,5], 

accumulating evidence suggests that impaired retention of extinction memory, acquired after 

trauma exposure [6], may be a critical mechanism that leads to PTSD [1,6-11]. Sleep supports the 

consolidation of different types of memories, which stabilizes and integrates them, and enhances 

their retrieval [12]. Recent evidence suggests that this extends to extinction memory, with rapid 

eye movement sleep (REM) implicated as an important sleep stage involved in its consolidation 

[13]. In healthy people, more REM has been shown to be associated with better extinction recall 

[14-17], and REM deprivation leads to impaired extinction memory [18], suggesting the possibility 

of a causal role for this sleep stage. Several studies and meta-analyses find REM abnormalities in 

PTSD [19-21], which also have been shown to be associated with the risk of developing PTSD 

after trauma [22-24]. Therefore, it is postulated that sleep disruption, specifically of REM, may 

predispose traumatized individuals to develop PTSD symptoms by interfering with extinction 

memory [4,25]. Supporting this hypothesis, in a sample overlapping that of the current report, we 

showed that prefrontal activations during extinction recall were associated with REM density 

during the night before extinction recall [26]. However, much remains to be learned regarding the 

association between REM and extinction memory in trauma-exposed individuals. One preliminary 

study [27] did not find any association of REM with extinction recall in PTSD, however, the small 

sample size (n=13) may explain this negative finding. This study’s sample was also limited to 
those with PTSD diagnoses, and therefore did not provide insight into this association in 

individuals with subthreshold PTSD symptoms. To address this gap in knowledge, we examine 

here the association of REM measures on the night following extinction learning with extinction 

recall the following day in a large sample of trauma-exposed individuals. We hypothesized that 

disruptions in REM sleep would be associated with impaired extinction recall (hypothesis 1).   

 

PTSD is characterized by abnormal autonomic nervous system function, including reduced 

parasympathetic nervous system (PNS) activity [28]. PNS activity can be estimated by measuring 

heart rate variability (HRV), the variation in the interval between successive heart beats. Specific 

HRV measures in the frequency (high frequency; HF-HRV) and  time (root mean square of 

successive differences in the R–R interval; RMSSD) domains reflect control of heart rate by the 

vagus nerve, the main component of PNS outflow from the CNS [29,30]. Meta-analyses show that 
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patients with PTSD display reduced vagal activity, as indexed by HF-HRV and RMSSD, during 

wakefulness [31-33] and in one study, lower baseline HF-HRV predicted the severity of later post-

traumatic stress symptoms [34]. Similar to wakefulness, a small number of recent studies in sleep 

find reduced vagal activity in PTSD [35], including in specific sleep stages [36,37]. Additionally, 

in one study, HF-HRV across actigraphically measured sleep was associated with PTSD symptom 

severity [38].  

 

Converging evidence indicates that vagal activity facilitates emotional processing and memory, 

likely via its afferents to the brainstem nuclei, which in turn modulate the activity of multiple 

neurotransmitter systems and relevant brain regions including prefrontal cortex (PFC), amygdala 

and hippocampal formation, among others [39,40]. Consistent with this, high vagal tone is 

associated with better extinction learning in humans [41-43], and enhancing vagal activity 

improves extinction learning and retention of extinction memory in both rodents [44-48] and 

humans [49-51].  In addition, a separate line of recent studies shows that vagal activity during 

sleep, as indexed by HF-HRV, independently contributes to memory consolidation over and above 

contributions by sleep architecture and sleep-related brain oscillations [52,53]. However, no study 

to date has examined the role of vagal activity in the sleep-dependent consolidation of extinction 

memory in any population. We thus hypothesized that lower HF-HRV in REM during the night 

following extinction learning would independently predict lower extinction recall in trauma 

exposed individuals (hypothesis 2).   

METHODS 

Participants 

A total of 139 participants, aged between 18 and 40, were recruited from the greater Boston 

metropolitan area, using online and posted advertisements. All participants reported experiencing 

a DSM-5 criterion-A traumatic event (<index trauma=) in the past two years, except within the last 
one month. Further inclusion and exclusion criteria can be found in previous publications 

[26,36,54] and Supplementary Materials. 26 participants were excluded from all analyses because 

of missing or unusable EEG or ECG data (final n=113). History of psychiatric disorders was 

ascertained using the Structured Clinical Interview for DSM-IV-TR for Non-Patients (SCID-I/NP) 

[55]. 49.6% (n=56) met diagnostic criteria for PTSD. This study followed a Research Domain 

Criteria (RDoC) [56] design in which dimensional rather than categorical measures were targeted, 

and PTSD diagnoses were established from diagnostic evaluations. The PTSD Checklist for DSM-

5 (PCL-5) [57] was used to assess post-traumatic stress symptom severity (see Figure S1 for its 

distribution in the sample). The Quick Inventory of Depressive Symptomatology, Self-Report 

(QIDS-SR)[58] and the Pittsburg Structured Clinical Interview for Sleep Disorders (SCID-SLD) 

[59] were administered to evaluate depressive and sleep disorder symptoms, respectively. 

Demographic and clinical characteristics of the final sample are displayed in Table 1. All 

participants provided written consent to participate in the study and were paid for their 
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participation. All procedures were approved by the Partners Healthcare Institutional Review 

Board.  

Procedures 

Participants completed an approximately 2-week sleep assessment period during which they wore 

an actigraph (Actiwatch-2, Philips Respironics) and filled out a daily sleep and nightmare diary. 

Approximately midway through the 14-day period, they underwent a combined sleep-disorders-

screening and acclimation night of ambulatory polysomnography (PSG) recording. This was 

followed by a <baseline= overnight PSG recording. Starting on the evening immediately after the 

baseline night, participants completed a 2-day fear conditioning and extinction protocol with 

simultaneous fMRI recordings. Between fMRI sessions, participants completed a third 

(<consolidation=) night of ambulatory PSG. Details of the PSG methods are included in the 

Supplementary Methods. 

Fear conditioning, extinction learning, and extinction recall A validated 2-day paradigm 

[60,61] was used to probe fear conditioning and extinction during ongoing fMRI recording. This 

protocol consisted of 4 phases, with Habituation, Fear Conditioning, and Extinction Learning 

phases taking place on the first day and Extinction Recall 24-hours later. Images of a colored desk 

lamp (red, yellow, or blue) appearing in a conditioning-and extinction-context background served 

as conditioned stimuli (CS). During fear conditioning, a mild electric shock was paired with the 

presentation of 2 differently colored lamps (CS+), but not a third color (CS-). During extinction 

learning, one CS+ (CS+E) but not the other (CS+U) was extinguished using presentations without 

any electric shock. During each phase, physiologic reactivity for each trial was indexed using skin 

conductance response (SCR), a measure of sympathetic activity [62]. Negative SCRs were coded 

as zero [63] and then all values were square root transformed. <Non-conditioners= were defined as 
those who exhibited less than 2 non-square-root transformed SCR responses to either of the two 

CS+s that were equal to or exceeding .05 µS during the Fear Conditioning phase [64]. 31 non-

conditioners were further excluded from SCR analyses based on these criteria. In addition, SCR 

data for 3 participants were lost.   

Immediately following each phase except Habituation, participants verbally reported shock 

expectancy for the first and last presentations of each CS (i.e. colored light) appearing in that phase 

on a scale from 1 (<not expecting a shock at all=) to 5 (<expecting a shock very much=). Further 

details of the protocol and skin conductance monitoring are provided in previous publications 

[16,65] and in Supplementary Materials.  

Extinction Recall Variables 

To examine the association of physiologically expressed and subjective extinction recall with sleep 

and HRV measures, we used an Extinction Retention Index (ERI) [66] and a Subjective Extinction 

Retention Index (sERI) [16], respectively. ERI was calculated as: [(Average of the SCRs of the 
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first 4 CS+E presentations at Extinction Recall phase/maximum SCR to a CS+ during the Fear 

Conditioning phase) x 100]. Only the first 4 CS+E trials were included in this calculation in order 

to avoid confounding recalled extinction with new extinction learning occurring during the 

Extinction Recall phase. Higher ERI reflected lower extinction memory. sERI was calculated as: 

Expectancy to the first CS+E in Extinction Recall/mean expectancy for the last of each CS+ during 

Fear Conditioning × 100. Larger sERI indicated lower extinction memory. These indices were 

selected to align with our previous publications acknowledging that different extinction indices 

may not intercorrelate [66]. 

Sleep Measures  

The PSG data analyzed in the present study were recorded during the consolidation night. For 

regression analyses, we selected the REM measures that have been associated with PTSD, 

including %REM [20], REM density (REMD) [19], REM fragmentation (REMF) [22,67-71], and 

REM latency (REML) [72]. These measures were calculated as follows: Percent time spent in each 

sleep stage (%N1-N3, %REM) were computed as a percentage of total sleep time (TST); REML 

was calculated as the number of minutes occurring after sleep onset before the first REM epoch. 

REMD is the number of rapid eye movements per minute of REM sleep and was calculated using 

an automatic algorithm [73]. REMF was calculated as the average duration of REM segments [22]. 

REM segments were defined as continuous REM from the start of at least 1 minute of REM to the 

onset of at least 1 minute of non-REM or wake [22].  

Heart Rate Variability 

HRV was calculated in continuous ECG segments of ≥5 minutes within REM (REM-HRV) using 

Kubios HRV premium software (Kubios Oy, Kuopio, Finland). Prior to analysis, ECG traces were 

visually inspected, and artifacts were removed. Segments that did not provide reliable estimates 

due to excessive artifacts were excluded from the analysis. High frequency (.15-.4 Hz) absolute 

power (HF[ms2]) and relative power (HF[%]), as well as RMSSD were calculated.  For frequency 

domain analyses, default settings of Welch’s periodogram method (window width=300 seconds, 

50% overlap) and fast fourier transformation (FFT) were used. HF[%] is the relative power with 

respect to the total power (HF[ms2]/total power[ms2] × 100%). HF[%] was used as a predictor 

variable in the hierarchical regression analyses because this measure takes into account the inter-

individual variability in the full frequency range of HRV [30], including in the low and very low 

frequency bands, which have also been found to be associated with PTSD and memory [74,75].  

Statistical Analyses 

Correlations were explored between extinction recall indices (ERI and sERI), and age, months 

since index trauma, and scores of symptom scales (PCL-5 and QIDS). Pearson and Spearman’s 
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correlations were used depending on the distribution of variables. Demographic, clinical and sleep 

variables were compared between sexes using student’s t tests. 

We used linear regression models to test whether REM sleep variables predicted extinction recall 

(Hypothesis 1). For this purpose, we carried out separate analyses with ERI and sERI as dependent 

variables. The models included REM%, REMD, REMF and REML as predictor variables. Because 

sex and age were associated with log transformed ERI (see below) and sERI respectively, they 

were also included in the respective models.  

Next, hierarchical regression analyses were used to test the hypothesis that vagal activity would 

improve the predictions of sERI and ERI above and beyond REM sleep measures alone 

(Hypothesis 2). For this purpose, two models were built. Model 1 included demographic variables 

(age or sex) and REM measures, and HF[%] was added in Model 2.  

In all regression analyses, partial regression plots and a plot of studentized residuals against the 

predicted values indicated that assumptions of linear relationship were met. Variance inflation 

factors were within acceptable ranges (1.1-1.6), indicating that there was no multicollinearity. For 

ERI, the distribution histogram and P-P plot of standardized residuals showed non-normal 

distribution. In addition, plotting standardized residuals and predictors revealed heteroscedasticity. 

Therefore, ERI was log-transformed. After transformation, normal distributions of residuals and 

homoscedasticity were confirmed. Residuals for sERI analyses showed normal distribution and 

homoscedasticity.  

For all variables, outliers ± 3 standard deviations from the mean were removed. All analyses were 

two-tailed. Significance level for hypothesis testing (α) was set at .05.  

RESULTS 

Association of Extinction Recall Indexes with Demographic and Clinical Measures 

Across the whole sample, sERI was negatively correlated with age (rs= -.25, p=.006), while age 

was not significantly correlated with ERI (rs= .11, p=.290). There were no significant correlations 

between extinction recall indices and the number of months since index trauma, or PCL-5 or QIDS 

scores. REMD and PCL-5 score were higher in females than males [t(106)=2.45, p=.016 and 

t(135)=2.04, p=.043, respectively].  

Regression Analyses Predicting ERI and sERI 

Measures of REM characteristics and sleep architecture are displayed in Table 2. The multiple 

regression model with log transformed ERI as the dependent variable included REM%, REML, 

REMD, REMF, and sex, as predictor variables. The latter was included because there was a strong 

trend for the log transformed ERI to be significantly higher in males (t(83)=1.97, p=.052). The 
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overall model explained a significant proportion of the variance (Adj. R2=.14, p=.021), with sex, 

REMD and REML emerging as significant predictors (Table 3). Poorer physiological extinction 

recall was associated with male sex (β=.33, p=.020), increased REMD (β=.31, p=.020) and shorter 

REML (β=.38, p=.007).   

A similar multiple regression model with subjective extinction recall (sERI) as the dependent 

variable included the same REM measures, as well as age, as predictor variables. The latter was 

included because it was correlated with sERI (see above). This model also explained a significant 

proportion of the variance (Adj. R2=.14, p=.004). In this model, REMD was the only significant 

predictor (Table 4), and as with ERI, increased REMD was associated with poorer subjective 

extinction recall (β=.34, p=.002).    

Hierarchical regressions with HF HRV predicting ERI and sERI  

Average HRV values are displayed in Table 2. For the hierarchical regression analyses with log 

transformed ERI as the dependent variable, REM sleep measures (REM%, REML, REMD, 

REMF) and sex were included in the first model. In the second model, REM-HF[%] was added to 

the predictors. Addition of REM-HF[%] did not lead to a significant increase in the variance 

accounted by the model (ΔR2=1.2x10-4, p=.936), indicating that vagal activity did not contribute 

to the prediction of physiological extinction recall beyond REM sleep measures.  

A similar hierarchical regression analysis was carried out for sERI. The first model included the 

same REM variables and age and, in the second model, REM-HF[%] was added to the predictors. 

Addition of REM-HF[%] led to a significant increase in the variance accounted for by the model 

(ΔR2=.06, p=.046), indicating that vagal activity contributed to the prediction of subjective 

extinction recall above and beyond REM sleep measures.  The final model was significant (Adj. 

R2=.17, p=.021), and REMD and REM-HF[%] emerged as significant predictors. Poorer 

subjective extinction recall was associated with higher REMD (β=.29, p=.018) and lower REM-

HF[%] (β=.25, p=.009) (Table 5).   

For completeness, we repeated the same hierarchical regression analyses by adding other REM 

HRV measures (REM-HF[ms2] or REM-RMSS) instead in the second model. In these exploratory 

analyses, addition of HRV parameters did not significantly increase the variation explained. 

However, the effects of other REM-HRV measures on sERI, as indicated by the standardized 

coefficients (β), were in the same direction with REM-HF[%] (Supplementary Tables S3 and S4). 

DISCUSSION 

We investigated the association of REM measures with the consolidation of physiological and 

subjective extinction memory in a large sample of trauma-exposed individuals. Confirming our 

first hypothesis, we found that shorter REML and higher REMD independently predicted poorer 
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physiological extinction recall. Similarly, poorer subjective extinction recall was predicted by high 

REMD. Furthermore, our second hypothesis, that higher HF HRV during REM would predict 

greater extinction recall above and beyond REM measures, was supported for subjective extinction 

recall. To the best of our knowledge, this is the first study to show that features of REM are 

associated with the consolidation of extinction memory in trauma-exposed individuals. In addition, 

we show here for the first time that vagal activity during a specific sleep stage contributes to the 

consolidation of an emotional memory.           

REM measures predicting extinction recall is in agreement with previous research in healthy 

individuals [13,76] and in insomnia disorder [16]. In healthy individuals, better extinction recall 

was associated with presence of REM during a nap [14], higher overnight %REM [17], less 

fragmented REM and increased REM theta power [16]. In addition, late-night (REM-rich) sleep 

but not early-night sleep benefited extinction memory [15] and selective REM, but not NREM, 

deprivation impaired extinction recall [18]. In contrast, among individuals with insomnia disorder 

[16], better extinction recall was associated with less %REM, shorter REM bouts and longer 

REML. Findings are also in agreement with the general notion that REM is involved in processing 

emotional memories [77], although it is not backed by consistent evidence [78].  

We further showed that specific REM features were independently associated with extinction 

recall. There is a sizable literature that implicates both REML and REMD in a variety of 

psychiatric disorders, including PTSD [79]. However, in PTSD, alterations in these variables are 

not consistently found and the direction of change shows variability across studies, possibly due 

to the heterogeneity in samples and the settings in which data are collected [19,20,79]. It was also 

proposed that two competing processes may be at play simultaneously, REM dysregulation and 

the resulting pressure to achieve REM (Mellman 1997), which would explain the contradictory 

findings across studies (e.g. shorter or longer REML, depending on which of these processes 

predominate). Nonetheless, shortened REML and increased REMD have emerged as 

characteristics of PTSD in meta-analyses [19,20,79]. Our findings advance insight into the 

significance of these REM alterations and indicate that they are associated with impaired extinction 

memory, a mechanism that is considered central to the development of PTSD [5].   

The mechanisms underlying REM alterations in PTSD, and by extension, how they might be 

associated with impaired extinction recall are not clear. However, it was proposed that 

hyperarousal, characterized by impairment in the inhibitory control of amygdala activity by the 

medial PFC (mPFC) with a concomitant increase in noradrenergic activity, contributes to REM 

dysregulation [4,80,81]. Indeed, increased REMD may be a direct manifestation of hyperarousal 

in PTSD [82]. Rapid eye movements are associated with activation in the limbic and paralimbic 

structures [83-88], as well as heart rate surges [89] and nightmares concurrent with autonomic 

arousal [90]. Furthermore, in an overlapping sample, we recently showed that REMD was one of 

the predictors of self-reported hyperarousal symptoms in trauma-exposed individuals [36]. 

Therefore, our results suggest that hyperarousal during REM interferes with the consolidation of 
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extinction memory. On the other hand, REML has been considered an indicator of REM pressure, 

and shortening of REML in PTSD has been attributed to an <unmet need= due to shortening or 

fragmentation of REM [91]. This interpretation would suggest that a history of insufficient REM 

or a latent factor associated with a REM deficit may impair the consolidation of extinction 

memory. Although the measures that directly reflect REM length and fragmentation (%REM and 

REMF) were not significantly associated with extinction recall, it is plausible that arousals were 

not captured by these measures. Alternatively, this association may be due to an adaptive REM 

enhancement to facilitate emotional processing [91]. Yet another possibility is that shortened 

REML may reflect depression [92]. However, self-reported depressive symptoms were not 

correlated with REML (rs=.05, p=.65) or ERI (rs=.02, p=.86). Finally, a more speculative 

possibility is that, shortened REML may disrupt the sequential organization of NREM-REM 

segments and thus impair memory consolidation [93-95].       

Vagal activity during REM, indexed as HF HRV, was a significant predictor of subjective 

extinction recall. This novel finding is consistent with the role of the vagal nerve in supporting 

memory formation [39] and emotional regulation [96], as well as the growing body of evidence 

indicating that vagal activity is causally involved in fear processing [44,45,97]. Vagal activity in 

response to cognitive and emotional demands, and vagally mediated HRV are considered to reflect 

the tonic inhibitory control of the amygdala by the mPFC [98,99], circuitry that is also critical for 

fear extinction [1]. Consistent with this, high vagal activity during wake was repeatedly shown to 

be associated with better fear extinction in humans [41-43,100]. Furthermore, vagal nerve 

stimulation (VNS) facilitated plasticity in ventromedial PFC-amygdala connectivity in rodents 

[44], and improved extinction learning and recall in both rodents [44-46,48,97,101-105] and 

humans [49-51,106]. Our results suggest that the contribution of vagal activity continues beyond 

extinction learning to its consolidation during sleep and supports the potential utility of 

interventions that can enhance sleep vagal activity in the prevention and treatment of fear related 

disorders [107].  

We found an association of HRV with extinction recall measured as expectancy ratings, but not 

SCR, which is at odds with the findings in rodents [44,45]. Notably, a similar distinction has been 

observed in some of the previous studies in humans, which used VNS during extinction training 

and found an improvement in extinction learning indexed by expectancy ratings but not SCR or 

blink startle response [50,106]. It was proposed that vagal activity modified the hippocampus-

mediated declarative aspect of extinction memory but not the amygdala-mediated <emotional 
load= [50,108]. However, a later study found VNS-related improvement in both expectancy ratings 

and startle response [49] and speculated that differential-cue conditioning, such as used in our 

study, may be the reason for this discrepancy. Further studies are needed to clarify the boundary 

conditions of vagally mediated extinction memory.  

Our study had several limitations. First, we had to exclude a substantial number of participants, 

because of lost or unusable sleep data. Our study employed ambulatory recordings which allow 
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capture of sleep characteristics in ecologically valid settings. However, lack of oversight during 

the recording can lead to more artifacts and data loss than in laboratory studies. Second, there is a 

significant variability across studies in fear conditioning/extinction protocols and methods in 

analyzing generated data [63]. Nonetheless, we used the widely employed Milad et al. 2007 fear 

conditioning and extinction protocol [1], and we attempted to be consistent with our own and 

others’ previously used metrics to index extinction recall. Third, SCR as a measure of fear response 

has its inherent limitations, including habituation, which can confound the extinction data. To 

avoid this and still remain consistent with the literature, we used only the initial trials from the 

Extinction Recall phase and applied range correction using the maximum SCR produced during 

the Conditioning phase. Fourth, a portion of our sample did not achieve physiological fear 

conditioning and were therefore excluded from the analysis. Nonetheless, the proportion of <non-

conditioners= in our sample (49/139, 35%) was smaller than in many previous studies [109]. In 

addition, we found similar results with the expectancy ratings in a sample that included all the 

participants for whom we had the REM measures. A strength of our study is the large sample size. 

Many of the prior studies linking REM features to emotional processing in general and extinction 

in particular were based on small sample sizes, a limitation that reduces statistical power and can 

lead to Type 1 error and overestimation of effect sizes [110]. Therefore, analyses of larger samples, 

such as the current study, are important next steps in testing such hypotheses [111,112].  

 

Conclusions 

Abnormalities in REM have repeatedly been reported in individuals diagnosed with PTSD and 

shown to be associated with increased risk to develop PTSD after a traumatic event. Results of this 

study further our insight into the role of REM disruptions and indicate that they are associated with 

impaired consolidation of extinction memory, a mechanism proposed to be critical in the 

pathogenesis of PTSD.    
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Age  24.0±4.8 (18-39) 

Sex (%female) 69.9% 

Race (%)  

American Indian  

or Alaskan Native 

2.7% 

Asian 9.8% 

Black or African 

American 

16.8% 

More than one race 6.2% 

Unknown/unreported 1.8% 

White 62.9% 

Ethnicity  

Hispanic or Latino 9.7% 

Not Hispanic or 

Latino 

85% 

Unknow/unreported 3.5% 

Type of trauma  

Transportation 

accident 

26.5% 

Violent assault 19.5% 

Rape or sexual 

assault 

17.7% 

Mass shooting 2.7% 

Sudden loss of family 

or friend 

4.5% 

Combat incident 2.7% 

Multiple or other 26.4% 

Trauma Severity  

PCL-5 29.5±15.4 (0-69) 

Depression Severity  

QIDS 7.4±4.4 (0-18) 

Months since 

trauma 

13.0±6.8 (1-28) 

Table 1.  Demographic and clinical characteristics of the participants. Some of the data is 

displayed as mean ± standard deviation as well as range (minimum - maximum).  
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REMD 6.6±4 (1.0-20.9) 

REML 102.3±45.9 (0-238.0) 

REMF 9.8±4.0 (2.8-23.4) 

%N1 5.7±3.8 (0.8-27.0) 

%N2 54.5±9.3 (26-81.7) 

%N3 21.7±10.6 (1.7-63.3) 

%REM 18.3±6.5 (2.0-35.0) 

REM-HF[ms2] 1173.5±1068 (36.9-4620.5) 

REM-HF[%] 17.5±9.0 (1.9-45.9) 

REM-RMSSD 54.3±26.8 (13.0-128.3) 

  

Table 2. Sleep and HRV measures in the participants. Data is displayed as mean ± standard 

deviation and range (minimum - maximum). 
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       Model ANOVA 

Predictors B SE � t p 95% CI Adj. R2 F p 

Sex -0.33 0.14 -0.33 -2.40 0.020 -0.60 -0.05 0.14 2.91 0.021 

%REM -0.02 0.01 -0.22 -1.53 0.132 -0.04 0.01    

REMD 0.04 0.02 0.31 2.39 0.020 0.01 0.07    

REML 0.00 0.00 -0.38 -2.81 0.007 -0.01 0.00    

REMF 0.03 0.02 0.21 1.50 0.140 -0.01     

Table 3. Linear regression analysis with ERI as the dependent variable. Overall model was 

significant, with sex, REMD and REML emerging as significant predictors.  
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       Model ANOVA 

Predictors B SE � t p 95% CI Adj. R2 F p 

Age -0.61 0.62 -0.1 -0.98 0.329 -1.86 0.63 0.14 3.79 0.004 

%REM -0.01 0.61 0 -0.02 0.984 -1.22 1.2    

REMD 2.41 0.74 0.34 3.24 0.002 0.93 3.89    

REML 0.05 0.07 0.08 0.66 0.51 -0.1 0.19    

REMF 1.44 0.89 0.2 1.63 0.108 -0.32 3.21    

Table 4. Linear regression analysis with sERI as the dependent variable. Overall model was 

significant, with REMD emerging as the only significant predictor.  
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Model Predictors B SE β t p 95% CI 
     

1 Age -0.20 0.75 -0.03 -0.27 0.788 -1.69 1.29 
     

 
%REM -0.18 0.68 -0.04 -0.26 0.795 -1.55 1.19 

     

 
REMD 2.65 0.93 0.34 2.85 0.006 0.79 4.51 

     

 
REML 0.00 0.09 0.00 0.03 0.975 -0.18 0.19 

     

 
REMF 2.22 1.06 0.29 2.09 0.041 0.09 4.34 

     

          
Change  ANOVA          

Adj. R2 �F �p F p 

2 Age -0.33 0.73 -0.05 -0.45 0.653 -1.79 1.13 0.17 4.17 0.046 3.19 0.009 

%REM 0.05 0.68 0.01 0.07 0.944 -1.30 1.40 
     

 
REMD 2.42 0.91 0.31 2.66 0.010 0.60 4.25 

     

 
REML -0.02 0.09 -0.02 -0.18 0.859 -0.20 0.17 

     

 
REMF 1.81 1.05 0.23 1.72 0.091 -0.30 3.92 

     

 
REM-HF[%] -0.89 0.44 -0.25 -2.04 0.046 -1.77 -0.02 

     

 
        

     

Table 5. Hierarchical regression analysis with sERI as the dependent variable. Addition of 
REM-HF[%] significantly increased the proportion of variance explained by the model.  
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SUPPLEMENTARY MATERIAL 

 

 

Inclusion and Exclusion Criteria  

All participants reported experiencing a DSM-5 criterion-A traumatic event (<index trauma=) in 
the past two years, except within the last one month. Participants were allowed with a concurrent 

anxiety disorder, dysthymia, Major Depressive Disorder (remitted or on case-by-case basis), or if 

on a stable dose of an antidepressant (≥8 weeks). Exclusion criteria included: history of chronic 
childhood abuse or neglect; PTSD diagnosis preceding traumatic event indexed at study interview; 

neurological disorder or injury; major medical disorders; psychotic, bipolar, autism spectrum or 

other neurodevelopmental disorders; current drug or alcohol abuse or dependence; history of sleep 

disorder other than insomnia or nightmare disorder; current use of hypnotic or recently adjusted 

psychiatric medications; shift work; and any contraindication to MRI scans.  

Ambulatory PSG 

Ambulatory PSG was recorded on 3 nights using the Somte-PSG ambulatory sleep monitor 

(Compumedics USA, Charlotte, NC, USA). Sampling rate was 256 Hz. EEG data were acquired 

using six EEG channels (F3, F4, C3, C4, O1, O2; positioned according to the 10-20 system). 

Additional electrodes were placed on bilateral mastoids, above the right and below the left eye 

(EOG), under the chin (EMG), and below the right clavicle and in the left fifth intercostal space 

(ECG). Participants returned home to sleep after being instrumented. During the 

acclimation/screening (first) PSG night, additional channels for pulse-oximeter, respiration 

transducer belts, nasal cannula and tibialis movement sensors were added to screen for obstructive 

sleep apnea (OSA) and Periodic Limb Movement Disorder (PLMD). No participant met criteria 

for clinically significant OSA or PLMD. All sleep records were scored by an experienced, 

registered polysomnographic technologist according to American Academy of Sleep Medicine 

criteria [113].  

Fear conditioning, extinction learning, and extinction recall procedures 

A well validated 2-day paradigm [60] was used to probe fear conditioning, extinction learning, 

and extinction memory during ongoing fMRI recording. This protocol consisted of 4 phases, with 

Habituation, Fear Conditioning, and Extinction Learning phases taking place on the first day and 

Extinction Recall 24-hours later. During each phase, images of a colored desk lamp (red, yellow, 

or blue) appearing in a contextual background (office for conditioning context and conference 

room for extinction context) served as conditioned stimuli (CS). Context images were presented 

for nine seconds, with three seconds with the lamp off and six seconds with the lamp on (red, 

yellow or blue). The unconditioned stimulus (US) was a mild (0.8-4.0 mA), 500 msec electric 

shock delivered to the index and middle fingers of participants’ right hand using a Coulbourn 
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Transcutaneous Aversive Finger Stimulator (Coulbourn Instruments, Allentown, PA). Prior to 

entering the scanner, participants were administered increasing intensities of shock and they each 

selected a level that they perceived as <highly annoying but not painful= [64].   

During Habituation, all six possible combinations of lamp colors and contexts were presented 

across six trials. During the following Fear Conditioning phase, two of the three colored lamps 

(CS+) were each presented 8 times paired with the US at stimulus offset, on a partial reinforcement 

schedule (5 out of 8 presentations were paired with US). The third lamp color, which was never 

paired with US (CS-), was interspersed among the CS+s for a total of 16 presentations. Fear 

Conditioning was followed by Extinction Learning, during which one CS+ (CS+E) was presented 

in the extinction context 16 times without the US along with 16 interspersed presentations of the 

CS-. The other CS+ remained conditioned but unextinguished (CS+U). During Extinction Recall, 

which took place 24 hours later, each CS+ was presented 8 times in the extinction context, with 

no US, along with 16 interspersed CS-.      
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Figure S1. Distribution of PCL-5 scores in the sample.  
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Hierarchical Regression Analyses for ERI 

 

Model 
 

B SE β t p 95% CI 
     

1 (Constant) 1.739 0.313 
 

5.557 <0.001 1.108 2.371 
     

 
Sex -0.219 0.147 -0.221 -1.483 0.145 -0.516 0.079 

     

 
%REM -0.022 0.012 -0.286 -1.739 0.089 -0.047 0.003 

     

 
REMD 0.049 0.019 0.371 2.600 0.013 0.011 0.087 

     

 
REML -0.005 0.002 -0.410 -2.692 0.010 -0.008 -0.001 

     

 
REMF 0.043 0.021 0.311 1.987 0.053 -0.001 0.086 

     

          
Change  ANOVA 

         
Adj. R2 ΔF  Δp F p 

2 (Constant) 1.814 0.327 
 

5.554 <0.001 1.155 2.473 0.159 0.697 0.409 2.507 0.037 
 

Sex -0.232 0.149 -0.235 -1.560 0.126 -0.533 0.068 
     

 
%REM -0.020 0.013 -0.267 -1.603 0.116 -0.046 0.005 

     

 
REMD 0.048 0.019 0.364 2.534 0.015 0.010 0.086 

     

 
REML -0.005 0.002 -0.408 -2.672 0.011 -0.008 -0.001 

     

 
REMF 0.040 0.022 0.289 1.816 0.077 -0.004 0.083 

     

 
REM-

HF[ms2] 

<0.001 <0.001 -0.113 -0.835 0.409 <0.001 <0.001 
     

Table S1. Hierarchical regression analysis with ERI as the dependent variable. REM-HF[ms2] is 

included in the second model. 
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Model 
 

B SE β t p 95% CI 
     

1 (Constant) 1.739 0.313 
 

5.557 <0.001 1.108 2.371 
     

 
Sex -0.219 0.147 -0.221 -1.483 0.145 -0.516 0.079 

     

 
%REM -0.022 0.012 -0.286 -1.739 0.089 -0.047 0.003 

     

 
REMD 0.049 0.019 0.371 2.600 0.013 0.011 0.087 

     

 
REML -0.005 0.002 -0.410 -2.692 0.010 -0.008 -0.001 

     

 
REMF 0.043 0.021 0.311 1.987 0.053 -0.001 0.086 

     

          
Change  ANOVA 

         
Adj. R2 ΔF Δp F p 

2 (Constant) 1.905 0.343 
 

5.561 0.000 1.214 2.597 0.171 1.360 0.250 2.655 0.028 
 

Sex -0.240 0.148 -0.243 -1.624 0.112 -0.539 0.058 
     

 
%REM -0.020 0.013 -0.262 -1.586 0.120 -0.045 0.005 

     

 
REMD 0.048 0.019 0.365 2.563 0.014 0.010 0.086 

     

 
REML -0.004 0.002 -0.406 -2.681 0.010 -0.008 -0.001 

     

 
REMF 0.039 0.022 0.285 1.811 0.077 -0.004 0.082 

     

 
REM-

RMSSD 

-0.003 0.002 -0.157 -1.166 0.250 -0.007 0.002 
     

Table S2. Hierarchical regression analysis with ERI as the dependent variable. REM-RMSSD is 

included in the second model. 
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Hierarchical Regression Analyses for sERI 

 

 

Table S3. Hierarchical regression analysis with sERI as the dependent variable. REM-HF[ms2] 

is included in the second model.  

  

Model 
 

B SE β t p 95% CI 
     

1 (Constant) -12.638 25.774 
 

-0.490 0.626 -64.211 38.935 
     

 
Age -0.218 0.738 -0.035 -0.296 0.769 -1.695 1.259 

     

 
%REM -0.166 0.678 -0.035 -0.245 0.807 -1.522 1.190 

     

 
REMD 2.581 0.908 0.338 2.841 0.006 0.763 4.399 

     

 
REML 0.009 0.091 0.013 0.102 0.919 -0.173 0.191 

     

 
REMF 2.171 1.047 0.281 2.074 0.042 0.077 4.266 

     

          
Change ANOVA 

         
Adj. R2 ΔF Δp F p 

2 (Constant) 1.750 27.139 
 

0.064 0.949 -52.574 56.074 0.141 1.994 0.163 2.757 0.017 
 

Age -0.443 0.744 -0.071 -0.595 0.554 -1.933 1.047 
     

 
%REM -0.107 0.671 -0.023 -0.160 0.874 -1.451 1.236 

     

 
REMD 2.413 0.905 0.316 2.668 0.010 0.603 4.224 

     

 
REML 0.000 0.090 0.000 0.003 0.997 -0.180 0.181 

     

 
REMF 1.984 1.042 0.257 1.904 0.062 -0.102 4.070 

     

 
REM-

HF[ms2] 

-0.005 0.003 -0.184 -1.540 0.129 -0.012 0.002 
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Table S4. Hierarchical regression analysis with sERI as the dependent variable. REM-RMSSD is 

included in the second model. 

  

Model 
 

B SE β t p 95% CI 
     

1 (Constant) -12.638 25.774 
 

-0.490 0.626 -64.211 38.935 
     

 
Age -0.218 0.738 -0.035 -0.296 0.769 -1.695 1.259 

     

 
%REM -0.166 0.678 -0.035 -0.245 0.807 -1.522 1.190 

     

 
REMD 2.581 0.908 0.338 2.841 0.006 0.763 4.399 

     

 
REML 0.009 0.091 0.013 0.102 0.919 -0.173 0.191 

     

 
REMF 2.171 1.047 0.281 2.074 0.042 0.077 4.266 

     

          
Change ANOVA 

         
Adj. R2 ΔF Δp F p 

2 (Constant) 3.022 27.677 
 

0.109 0.913 -52.379 58.422 0.144 2.144 0.148 2.788 0.019 
 

Age -0.368 0.738 -0.059 -0.498 0.620 -1.846 1.110 
     

 
%REM -0.107 0.673 -0.023 -0.159 0.874 -1.453 1.240 

     

 
REMD 2.475 0.903 0.324 2.743 0.008 0.669 4.282 

     

 
REML 0.002 0.090 0.002 0.019 0.985 -0.179 0.182 

     

 
REMF 2.079 1.039 0.269 2.002 0.050 0.000 4.159 

     

 
REM-

RMSSD 

-0.194 0.133 -0.172 -1.464 0.148 -0.460 0.071 
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