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Abstract 19 

Humans are colonized with commensal bacteria soon after birth, and, while this colonization is 20 

affected by lifestyle and other factors, bacterial colonization proceeds through well-studied 21 

phases. However, less is known about phage communities in early human development due to 22 

small study sizes, inability to leverage large databases, and lack of appropriate bioinformatics 23 

tools. In this study, whole genome shotgun sequencing data from the TEDDY study, composed 24 

of 12,262 longitudinal samples from 887 children in 4 countries, is reanalyzed to assess phage 25 

and bacterial dynamics simultaneously. Reads from these samples were mapped to marker 26 

genes from both bacteria and a new database of tens of thousands of phage taxa from human 27 

microbiomes. We uncover that each child is colonized by hundreds of different phages during 28 

the early years, and phages are more transitory than bacteria. Participants9 samples continually 29 

harbor new phage species over time whereas the diversification of bacterial species begins to 30 

saturate. Phage data improves the ability for machine learning models to discriminate samples 31 

by country. Finally, while phage populations were individual-specific, striking patterns arose 32 

from the larger dataset, showing clear trends of ecological succession amongst phages, which 33 

correlated well with putative host bacteria. Improved understanding of phage-bacterial 34 
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relationships may reveal new means by which to shape and modulate the microbiome and its 35 

constituents to improve health and reduce disease, particularly in vulnerable populations where 36 

antibiotic use and/or other more drastic measures may not be advised.  37 

 38 

Introduction 39 

From birth, the guts of all healthy humans play host to commensal bacteria1,2. These bacteria 40 

extensively metabolize our dietary inputs3,4, drive normal development of the immune system5, 41 

and, to our detriment, include some microbes that act as deadly opportunistic pathogens6. 42 

Commensal bacteria are also hosts to (bacterio)phages, which are viruses that infect 43 

bacterial cells. These come in two main types: <virulent phages= which quickly replicate and lyse 44 

their hosts and <temperate phages= which integrate into the host cells as prophage, typically for 45 

many generations, before lysing the bacteria upon some cue or stressor7. Because phages 46 

exert pressure on host cell populations, and many phage genomes encode virulence factors 47 

and toxins8, a role for specific phages or communities of phages in human health seems 48 

plausible. 49 

         Previous studies have begun to explore how communities of bacteria or phages develop 50 

in infants and young children. Bacterial studies have shown that nearly all infants are 51 

initially contacted and/or colonized by bacteria prenatally or during delivery2,9. In the first days of 52 

life, bifidobacteria and other bacteria capable of efficiently metabolizing breast milk and formula 53 

dominate10,11. Then, human developmental stages determine bacterial community structure with 54 

a handful of taxonomic compositions frequently observed at different ages12. Studies of phages 55 

in infants are more limited but have shown that the first recoverable phages are typically 56 

prophages induced from early-colonizing bacteria13. Next, phage diversity and abundance 57 

increase and more virulent phages can be observed14. In infants and adults, phage populations 58 

have been shown to be more individual-specific than bacteria, making further trends and 59 

patterns difficult to uncover15,16. Therefore, answering how phage population dynamics are 60 

related to bacterial population dynamics, and whether bacterial and phage developmental 61 

phases are similarly deterministic, are among the questions that have eluded the field thus far.  62 

In order to answer these questions, we built an extensive phage genome catalog from 63 

several recent gut phage meta-studies17-20 from which we extracted unique marker genes with 64 

essential phage functions and added them to the MetaPhlAn4 bacterial marker gene 65 

database21. We used this combined phage-bacteria marker gene database for the simultaneous 66 

profiling of phage and bacteria in 12,262 longitudinal stool samples from 887 participants in the 67 

TEDDY study22,23. 68 
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Longitudinal analysis showed that phage communities change more quickly than 69 

bacterial communities, with most phages persisting in a participant for a shorter duration. 70 

Subsequently, each participant hosted a more diverse repertoire of phages than bacteria during 71 

early development. Despite this, patterns of ecological succession were observed in the data, 72 

with different phages peaking in abundance at different host ages, largely mirroring the 73 

abundance of putative host bacteria. Adding phage taxonomic profiles improved the ability to 74 

discriminate samples geographically over bacteria taxonomic profiles alone. Furthermore, 75 

modest differences in phage and bacteria communities were observed in participants diagnosed 76 

with type 1 diabetes. 77 

  78 

Results 79 

Simultaneous profiling of viruses and bacteria in whole genome shotgun sequencing data via 80 

the Marker-MAGu pipeline 81 

To enable accurate profiling of phages in whole genome shotgun (WGS) sequence datasets 82 

from stool samples, a more comprehensive database of gut phages (and a small number of 83 

eukaryotic viruses) was compiled from publicly available resources17-20. This database, the 84 

Trove of Gut Virus Genomes (see Materials & Methods), consists of genomes from 110,296 85 

viral Species-level Genome Bins (SGBs)24 derived from human gut metagenome studies. 86 

Genomes from 42.6% of the viral SGBs are predicted to be 90 - 100% complete, and the 87 

database contains numerous phages infecting all major taxa of gut bacteria (Fig S1). 88 

         To facilitate comparable detection of viral and cellular genomes in WGS data, we 89 

developed a marker gene approach. This approach utilizes the concept that some genes are 90 

more taxonomically informative than others and, therefore, requires representing genomes by a 91 

subset of genes that are species-specific and invariable. For each viral genome in Trove of Gut 92 

Virus Genomes, essential genes (i.e., those involved in virion structure, genome packaging, and 93 

genome replication) were annotated as potential markers. After dereplication, 416,428 unique 94 

viral marker genes were detected. The 49,111 virus genomes with four or more unique marker 95 

genes were used for taxonomic profiling. We developed a bioinformatics tool, Marker-MAGu, 96 

leveraging marker genes and taxonomic identities from MetaPhlAn4 and Trove of Gut Virus 97 

Genomes to generate trans-kingdom taxonomic profiles for gut metagenomes (Fig 1A-B) 98 

(https://github.com/cmmr/Marker-MAGu). 99 

         Simulated read data from bacteria and phages show that Marker-MAGu has high 100 

specificity at all coverage levels for bacteria and viruses along with high sensitivity starting at 101 

0.5X average read depth (Fig S2A-C). Archaea and micro-eukaryotes in the Metaphlan 4 102 
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database are detectable but only bacteria and viruses are focused on in this manuscript. Using 103 

real TEDDY WGS sequencing data, Marker-MAGu returns a consistent ratio of viral SGBs to 104 

bacterial SGBs (Fig S2D) which is not affected by the number of reads in a sample (Fig S2E). 105 

As expected, Marker-MAGu closely recapitulates Metaphlan4 abundance measurements from 106 

sequencing of a bacterial mock community, with slightly lower sensitivity and slightly better 107 

specificity (Fig S2F-G). 108 

____________ 109 

  110 
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Figure 1 111 

112 

Marker-MAGu enables trans-kingdom taxonomic profiling of gut metagenomes. (A) 113 

Schematic of the Marker-MAGu database structure. (B) Marker-MAGu profiling ruleset. (C) 114 

Average Bray-Curtis dissimilarity between adjacent samples for all participants with at least 10 115 

samples for virome and bacteriome.  <****= represents p-value < 1e-04. (D - F) Examples plots of 116 

phages and their putative host bacteria prevalence as measured by Marker-MAGu.  117 

____________ 118 

  119 
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Figure S1 120 

 121 
Features of the Trove of Gut Virus Genomes. (Top) pipeline to process, combine, filter and 122 

characterize extant gut virus databases. (Bottom, first from left) completeness estimate 123 

(CheckV) of 110,451 viral SGBs. (Bottom, second from left) length analysis of representative 124 

contigs for each viral SGB. (Bottom, third from left) distribution of bacterial/archael virus host 125 

prediction (drawn at class level) of viral SGBs. (Bottom, fourth from left), analysis of predicted 126 

virulence of viral SGBs for each predicted host class.  127 

____________ 128 

 129 

  130 
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Figure S2 131 

 132 

Marker-MAGu returns a consistent ratio of Viral:Bacterial SGBs across samples. (A) 133 

Simulated random reads for 68 common phage genomes and 68 common bacterial genomes 134 

were generated at 0.1X average coverage to 4X average coverage (three different random 135 
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seeds each) and these reads were run through Marker-MAGu. F1 Score was calculated. (B) like 136 

(A) but with number of true positives (68 possible). (C) like (A) but with number of false 137 

positives. (D) Scatterplot showing number of viral and bacterial SGBs detected per sample 138 

using entire TEDDY dataset. Linear relationship and pearson correlation calculated in mid-left of 139 

panel. (E) Scatterplot showing the ratio of viral SGBs:bacterial SGBs compared to number of 140 

sequencing reads for each sample, entire TEDDY dataset. (F-G) Bacterial taxa abundance 141 

measurements on sequencing of ATCC bacterial genomic DNA standard 1003 using either 142 

metaphlan4 or Marker-MAGu. Isoptericola variabilis is the only taxa not expected in the 143 

standard. B. cereus and B. wiedmannii are closely related taxa.  144 

____________ 145 

 146 

Viruses Have a Higher Turnover Rate than the Bacteria in Gut Communities 147 

To calculate viral and bacterial SGB prevalence and abundance in 12,262 WGS sequencing 148 

samples from 887 participants from the TEDDY study, sequencing reads (average of 12.0 149 

million reads per sample) were analyzed with the Marker-MAGu marker gene approach. With 150 

WGS data, we expect to detect virus genomes inside virions, as well as dormant and actively 151 

replicating virus genomes inside host cells. Trans-kingdom taxonomic profiles for each 152 

participant show dynamic interplay between phages and their host bacteria, often revealing 153 

successive waves of phages or phage communities affecting single host bacteria (Fig 1D-F). 154 

Indeed, community change was higher from sample to sample for phage than bacteria (Fig 1C). 155 

Across the entire dataset, 1,709 different bacterial SGBs were detected at least once, 156 

and 15,693 viral SGBs were detected at least once, with higher saturation of bacterial SGBs 157 

(Fig. 2A), with similar observations at the genus level (virus VC9s are computationally imputed 158 

genus-level clusters). While most bacterial SGBs and most viral SGBs were detected in only 159 

one or a few human participants, the skew towards rareness was much greater for viral SGBs 160 

(Fig. 2B), underpinning the individual-specific nature of the virome. Relatedly, when combining 161 

all longitudinal samples by participant, the Bray-Curtis dissimilarity of the virome was greater 162 

between participants than the bacteriome (Fig. 2C), and the alpha diversity of the virome was 163 

greater, on average, than the bacteriome (Fig. 2D).  164 

The longitudinal nature of the data revealed that, over time, the virome has a higher 165 

participant-specific diversity and turnover rate than the bacteriome. First, it was observed that 166 

viral SGBs are detected, on average, in a smaller percentage of a participant9s samples than 167 

bacterial SGBs (Fig. 2E). Next, plotting by number of unique samples per participant, it seems 168 

new viral SGBs accumulate at a nearly linear rate, while new bacterial SGB accumulation 169 
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approaches saturation (Fig. 2F). Indeed, the ratio of cumulative viral to bacterial SGBs 170 

increases from about 1.5:1 to 2.5:1 as the number of available longitudinal participant samples 171 

increases from 1 to 45. 172 

 Similar to previous reports on the bacteriome and virome in early childhood, it was 173 

observed that the alpha diversity of viruses and bacteria increased during infancy and for at 174 

least the first three years (Fig. S3A,B)13, and this was comparable for participants in all four 175 

countries of origin (Fig. S3C,D) . Furthermore, t-SNE analysis, often used to represent 176 

relationships between high dimensional datapoints, of all samples showed samples from early 177 

infancy partitioned into many clusters while samples taken from older children converged (Fig. 178 

S3E). Samples did not partition by eventual type 1 diabetes diagnosis in this analysis (Fig. 179 

S3E). There is some debate about whether Crassvirales (a.k.a crAss-like phages) increase or 180 

decrease in abundance from infancy to early childhood13,18. In TEDDY, 504 putative 181 

Crassvirales genomes were detected in the Trove of Gut Virus Genomes (see Methods), and 182 

the TEDDY cohort showed a clear increase of abundance and prevalence of Crassvirales over 183 

time, with a plateau perhaps being reached 1000 days after birth (Fig. S3F).  184 

 185 

____________ 186 

Figure 2 187 

 188 
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 189 

Virome and Bacteriome community change. (A) rarefaction curves of viral and bacterial taxa. 190 

(B) measurement of participant distribution of viral and bacterial SGBs. Each hash is an SGB, 191 

and the y-axis is log scale. (C) All-vs-all Bray-Curtis distance for bacteriome and virome 192 

communities after averaging microbe abundance across all available samples. . (D) Alpha-193 

diversity measurements for bacteriome and virome in gut communities. Each dot represents the 194 

average value from a participant. (E) SGB <persistence= within participants. Data was filtered to 195 

exclude participants with fewer than 10 samples. Violins represent density of values from each 196 

observation of an SGB in a participant (# times SGB detected/# total samples analyzed). Solid 197 

black line marks 50% quantile, dotted lines are 25% and 75% quantile marks respectively. (F) 198 

Cumulative number of viral and bacterial SGBs per participant. Each participant is represented 199 

by a (blue) dot for viral SGBs detected across all samples and a (gold) dot for bacterial SGBs 200 

detected across all samples connected by a gray line. (G) Ratio of cumulative viral SGBs 201 

detected vs cumulative bacterial SGBs detected. Each dot is a participant. <****= represents p-202 

value < 1e-04. 203 

____________ 204 

  205 
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Figure S3 206 

207 

Developmental trends in the virome and bacteriome. (A) Shannon alpha diversity of 208 

samples by day of life. (B) SGB count of samples by day of life. (C) Shannon alpha diversity of 209 
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samples by country and day of life. (D) SGB count of samples by country and day of life. (E) t-210 

SNE plot of all samples bacteriome (top) and virome (bottom), colored by day of life (left) and 211 

eventual type 1 diabetes diagnosis (right). (F) Prevalence (top) and relative abundance (bottom) 212 

of all Crassvirales by day of life. 213 

___________ 214 

  215 
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Common Gut Viral and Bacterial SGBs Participate in Ecological Succession in Early Childhood 216 

To understand temporal trends in the TEDDY cohort, SGBs detected in 100 or more 217 

samples were used for further analysis. This subset consists of 446 bacterial SGBs and 1,291 218 

viral SGBs. By calculating the relative abundance of these common SGBs from 0 - 1400 days of 219 

life across all samples, eight high-confidence <Temporal Subsets= could be separated (see 220 

Methods). Interestingly, the temporal subsets describe SGBs that peak at different host ages 221 

(Fig. 3A, B). Namely, Subsets 1 and 2 include SGBs present immediately after birth then 222 

declining thereafter. Subset 3 includes SGBs peaking at 100 - 200 days after birth. Subset 4 223 

includes SGBs peaking at day of life 300 - 400, Subset 5 peaking at day of life 400 - 600, 224 

Subset 6 peaking at day of life 800 - 1100, and Subsets 7 and 8 continually increase over the 225 

days of life covered in this cohort. As expected based on earlier studies11,12, common bacteria in 226 

the earliest subsets include Bifidobacterium breve and Bifidobacterium longum whereas later 227 

subsets include Bacteroidales such as Phocaeicola vulgatus, Bacteroides uniformis, and 228 

Alistipes onderdonkii along with Faecalibacterium species, (Table S1). 229 

The viral and bacterial temporal abundance data were compared, and it was found that 230 

the viral SGBs were almost always well-correlated with their putative bacterial hosts (Fig. 3C). 231 

While this is expected of obligate parasites, the finding validates the approach used here. The 232 

major exception to this correlation was between Lactococcus bacteria and their phages. A 233 

definitive explanation cannot be offered, but it is notable that Lactococcus bacteria are 234 

commonly ingested due to their role in making dairy fermentation products such as cheese. 235 

____________ 236 

  237 
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Figure 3 238 

 239 
Global patterns of viral and bacterial SGBs during development. (A) Temporal Subsets of 240 

prevalent viral SGBs, drawn in separate boxes. Grey lines are individual viral SGBs and thicker 241 

colored lines are average lines. (right) Bars represent temporal cluster membership. (B) Same 242 

as (A) but with bacterial SGBs. (C) Correlation between prevalent viral and bacterial SGBs. 243 

Since host-prediction of phages is most accurate at the genus level, the temporal data from (A) 244 

and (B) was compared for each viral SGB and all bacterial SGBs from the putative host genus 245 

and the best correlation was plotted.  246 

____________ 247 

  248 
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Table S1 249 

Top five most abundant bacterial SGBs in each temporal subset (product of detections and Avg. 250 

relative abundance) 251 

SGB Temporal 
Assignment 

Detections Avg. relative 
abundance 

Bifidobacterium breve, SGB17247 Subset 1 6037 0.09835657 

Enterococcus faecalis, SGB7962 Subset 1 2090 0.01045272 

Enterocloster aldensis, SGB4762 Subset 1 1854 0.00314846 

Lacticaseibacillus rhamnosus, SGB7144 Subset 1 1376 0.00891543 

Streptococcus sp IMAU 99161, SGB8065 Subset 1 1001 0.00556041 

Bifidobacterium longum, SGB17248 Subset 2 10248 0.10336652 

Ruminococcus gnavus, SGB4584 Subset 2 9445 0.03180361 

Erysipelatoclostridium ramosum, SGB6744 Subset 2 8759 0.01603429 

Escherichia coli, SGB10068 Subset 2 7951 0.02415806 

Bifidobacterium bifidum, SGB17256 Subset 2 4704 0.11227806 

Klebsiella pneumoniae, SGB10115 Subset 3 1046 0.01606891 

Lacticaseibacillus paracasei, SGB7142 Subset 3 890 0.01107291 

Klebsiella oxytoca, SGB10118 Subset 3 707 0.01899808 

Streptococcus lutetiensis, SGB8021 Subset 3 559 0.02053889 

Streptococcus gallolyticus, SGB8018 Subset 3 269 0.0290952 

GGB33317 SGB51734, SGB51734 Subset 4 5210 0.00577784 

Veillonella parvula, SGB6939 Subset 4 3791 0.01382644 

Clostridium sp C5 48, SGB4752 Subset 4 2625 0.01279254 

Veillonella atypica, SGB6936 Subset 4 2212 0.00687096 

Bifidobacterium animalis, SGB17278 Subset 4 799 0.01326186 

GGB33728 SGB47805, SGB47805 Subset 5 8694 0.04043895 

Phocaeicola vulgatus, SGB1814 Subset 5 4805 0.02713746 

Bifidobacterium pseudocatenulatum, 
SGB17237 

Subset 5 4491 0.082582 

Bifidobacterium adolescentis, SGB17244 Subset 5 3475 0.0512531 

Bifidobacterium catenulatum, SGB17241 Subset 5 1870 0.0572846 

GGB31934 SGB59709, SGB59709 Subset 6 7118 0.01796371 

Microbacterium SGB53643, SGB53643 Subset 6 6170 0.02687314 

Bacteroides uniformis, SGB1836 Subset 6 5071 0.02413384 

GGB33221 SGB47464, SGB47464 Subset 6 4542 0.06872922 

Faecalibacterium prausnitzii, SGB15342 Subset 6 4280 0.02701713 

Alistipes onderdonkii, SGB2303 Subset 7 2408 0.00983902 

Clostridium leptum, SGB14853 Subset 7 2063 0.00735367 

Rhodobacteraceae unclassified SGB53604, 
SGB53604 

Subset 7 969 0.01030057 

GGB3277 SGB4327, SGB4327 Subset 7 808 0.01347505 

Ruminococcus sp NSJ 71, SGB4290 Subset 7 486 0.03020412 
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  252 

Ruminococcus bicirculans, SGB4262 Subset 8 2519 0.0085017 

GGB3293 SGB4348, SGB4348 Subset 8 1369 0.03900648 

Bacteroides cellulosilyticus, SGB1844 Subset 8 720 0.00954628 

Faecalibacterium SGB15346, SGB15346 Subset 8 706 0.00884722 

GGB9758 SGB15368, SGB15368 Subset 8 419 0.01269754 
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Virus Abundance Data Increases Power to Discriminate Between Samples from Different 253 

Countries 254 

The TEDDY study cohort consists of children who are vulnerable to development of type 1 255 

diabetes (see Methods) and reside in four western countries (Germany, Finland, Sweden, and 256 

USA). To understand the how type 1 diabetes develops, each of the 114 participants in TEDDY 257 

that developed type 1 diabetes was matched with one of 114 participants who did not develop 258 

type 1 diabetes, based on geography, sex, and family history of type 1 diabetes23. This nested 259 

case-control study design was used here to assess microbial communities during development 260 

of type 1 diabetes. Similar to studies of bacterial community composition in the TEDDY cohort 261 

as well as metastudies of type 1 diabetes, viral and/or bacterial SGB abundance could not 262 

reliably discriminate between children who developed type 1 diabetes and those who did not 263 

(Fig. 4, right panels)12,25. However, random forest classifiers demonstrated that both bacteriome 264 

and virome data had discriminatory power to separate samples geographically, with virome data 265 

outperforming bacteriome data (virome better in 3/4 countries, bacteriome better in 0/4 266 

countries), and a combination of both types of SGBs outperforming either measure alone (4/4 267 

countries). Quantification of the most important features (SGBs) by country and day of life 268 

demonstrates geographic differences for many of these features (Fig S4). 269 

____________ 270 
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Figure 4 272 

 273 

Machine Learning on Virus and Bacteria Abundance Data. Boxes represent data from 50 274 

permutations of a random forest model on the same data split into train/test groups (70%/30%) 275 

wherein all samples from each participants were always kept in the same group. Each iteration 276 

was run with a different random seed. p-values: <ns=: 1 > p >= 0.5, <*=: 0.05 > p >= 0.01, <**=: 277 

0.01 > p >= 0.001, <***=: 0.001 > p >= 1e-4, <****=: p > 1e-4. 278 

____________ 279 
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Figure S4 281 

282 

Viral and bacterial SGBs with high importance for random forest models. SGB abundance 283 

by day of life. (A) USA vs. other countries (B) Germany vs. other countries (C) Finland vs. other 284 

countries. (D) Sweden vs. other countries  285 

____________ 286 
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Differences in Rate of Community Change Between Groups in TEDDY Study 288 

Analysis of viral and bacterial community change over time in each participant was 289 

conducted by calculating Bray-Curtis dissimilarity between each sample and the next, 290 

proceeding temporally. Interestingly, average Bray-Curtis dissimilarity was modestly lower in 291 

participants who went on to develop type 1 diabetes than those who did not for both virome and 292 

bacteriome measurements (Fig 5A,D). Further, when looking at comparisons across age, the 293 

trend is strongest between 400 and 700 days of life (approximately the second year of life) (Fig. 294 

5B,E), whereas median age of diagnosis with type 1 diabetes was 2.4 years23. Some 295 

differences in average Bray-Curtis dissimilarity were also seen between participants from 296 

different countries (Fig 5C,F). Measuring relative abundance of the taxa from different Temporal 297 

Subsets (see Fig 3A-B), samples (particularly Day of Life 700 - 1400) from participants 298 

diagnosed with type 1 diabetes had differential abundance of Temporal Subsets 2, 5, 6, and 7 at 299 

various ages (Fig S5). 300 

____________ 301 
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Figure 5 303 

 304 

Comparison of Community Change and Diversity. (A) Virome Average Bray-Curtis 305 

dissimilarity metrics for type 1 diabetes (T1D) using nested case-control design pairing each 306 

participant who developed type 1 diabetes with a control participant. Each dot is a participant. 307 

Lines are drawn between case-control pairs. Statistical test was paired Wilcoxon test. (B) 308 

Samples are binned by day of life of collection and plotted by Bray-Curtis dissimilarity to follow 309 

up sample when both participants in pair had one or more samples from that time period. (C) 310 

Virome Average Bray-Curtis dissimilarity metrics by country (not nested case-control) (D-F) Like 311 

(A-C) but for bacteriome. (All) p-values: <ns=: 1 > p >= 0.05, <*=: 0.05 > p >= 0.01, <**=: 0.01 > p 312 

>= 0.001, <***=: 0.001 > p >= 1e-4, <****=: p > 1e-4. 313 

____________ 314 
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Figure S5 316 

 317 

Dissimilarity for type 1 diabetes sub-groups. Abundance of prevalent Temporal Subset 318 

species (see Fig 3) for T1D and non-T1D groups across days of life. Each dot is a participant. 319 

Lines are drawn between case-control pairs. Paired Wilcoxon tests with Benjamini-Hochberg 320 

Multiple test correction. (All) p-values: <ns=: 1 > p >= 0.5, <*=: 0.05 > p >= 0.01, <**=: 0.01 > p >= 321 

0.001, <***=: 0.001 > p >= 1e-4, <****=: p > 1e-4. 322 
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 325 

Discussion 326 

In this study, we dissect the dynamics of the gut phages and bacteria in developing 327 

children and find individual specificity but multi-layered pattens of ecological succession. As a 328 

previous study of bacterial communities in the TEDDY cohort12 suggested, certain bacterial 329 

SGBs thrive at different stages of human development. This was similarly observed for viral 330 

SGBs in this study. The more complex layer of ecological succession emerged when we noticed 331 

that phages typically come and go from participants9 guts more quickly than bacteria. We then 332 

observed that many long-lived gut bacteria hosted temporally separated phages and/or phage 333 

communities during their tenure. The likely model is that newly introduced bacterial species 334 

colonize guts and succeed extant bacteria as participant diet and immune development change, 335 

(i.e. new niches emerge). With this succession, the phage communities also change, reflecting 336 

host availability. On top of this, the observation that the phages are more transitory points to an 337 

<arms race= between phages and bacteria that often results in temporary success of the phage 338 

followed by evolution of resistance in the bacterial host, rather than concurrent extinction of the 339 

phage and its host. Bacterial resistance probably emerges via point mutation, horizontal gene 340 

transfer, or introduction of a new resistant bacterial strain of the same species replacing 341 

susceptible strains. In addition, some studies suggest that strain-level replacement of bacterial 342 

species occurs frequently in the human gut26, and this type of switch is not detected with the 343 

abundance/detection tools used here. In a strain-level replacement, prophages would 344 

appear/disappear in the analysis while susceptibility to specific phage infections is expected to 345 

change as well.  346 

By sampling many times longitudinally during the first years of life, it becomes clear that 347 

each participant9s gut is exposed to many more distinct phages than distinct bacteria, and this 348 

may have implications for human immune systems. Ordered arrays of antigens are highly 349 

immunogenic and likely used by B cells in detecting pathogenic viruses and bacteria27,28. 350 

Phages, too, have arrayed capsid shells and tails that human immune systems may be primed 351 

to recognize and generate antibodies and memory B cells against. While some work has 352 

examined the interaction of phage and human immune systems29, the data presented here 353 

suggest that phages may occupy a larger share of the total antigenic surveillance space of 354 

immune systems than was previously considered. Phage antigens should be considered in 355 

future studies interested in how cross-reactivity affects inflammation, allergies, and protection 356 

against novel pathogens30. 357 
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While this study demonstrates that viral SGBs often quickly enter and exit the gut 358 

ecosystems of individuals, these findings do not directly contradict previous work showing that 359 

some phages can be detected in an individual9s gut over a long period of time (Fig. 1D-F)31. 360 

The superiority of combining bacterial and viral SGBs over either data type alone for use 361 

in random forest models may improve the prospects for microbiome-based diagnostics. The 362 

improvement seen by including viral SGBs may be related to the geographic correlation of some 363 

bacterial strain-level phylogenies32. Different bacterial strains likely have unique 364 

functions/phenotypes, but also, to some extent, have distinct prophage content and phage 365 

susceptibility. However, it could also provide clues to the question <where do our gut phages 366 

come from?=, pointing towards acquisition dependent on a mixture of environmental 367 

conditions11. We also note that by keeping all the samples from a given participant together in 368 

either the testing or training group for model development likely reduced participant-specific 369 

biasing of the models (Methods). 370 

 As the attention of microbiome scientists turns towards phages, we believe it will be 371 

important to establish the rules of engagement of these viruses and their host bacteria. Phage-372 

aware or trans-kingdom approaches, such as Marker-MAGu or recently developed Phanta33, will 373 

need to be adopted to this end. For example, can we identify promising phages for use in phage 374 

therapy based on how their appearance or disappearance in individuals9 guts effects potentially 375 

pathogenic bacteria. Do any phages have an effect on their host9s response to perturbations 376 

such as antibiotics, change in diet, or introgression of new bacteria? By evaluating temporal 377 

trends in the guts of developing children, we help lay the groundwork for therapeutics and 378 

diagnostics that aim to leverage the microbiome and its constituents.  379 

  380 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 29, 2023. ; https://doi.org/10.1101/2023.09.28.559994doi: bioRxiv preprint 

https://doi.org/10.1101/2023.09.28.559994
http://creativecommons.org/licenses/by-nd/4.0/


 25 

Methods 381 

Cohort and Study Design 382 

In this study, whole genome shotgun data from the TEDDY study, composed of over 12,262 383 

longitudinal samples from 887 children in 4 countries, is reanalyzed to assess phage and 384 

bacterial dynamics simultaneously. Detailed descriptions of the TEDDY Study, its cohort, and 385 

the sequencing of stool samples can be found in previous publications12,22,23. Briefly, the TEDDY 386 

Study is composed of six clinical research centers: three in the United States (Colorado, 387 

Georgia/Florida and Washington), and three in Europe (Finland, Germany and Sweden). The 388 

population (both cases and controls) is based on children at high risk for T1D based on their 389 

HLA genotype with 10% based on family history in addition to HLA. Collection of stool samples 390 

and associated metadata, collected using validated questionnaires, began as of 31 May 2012. 391 

Matching factors for case and control children were geographical location, sex and family history 392 

of T1D. Enrolled children were followed prospectively from three months to 15 years with stool 393 

samples collected monthly from 3 to 48 months of life, then every three months until the age of 394 

10 years. Bacterial DNA was extracted using the PowerMag Microbiome DNA isolation kit 395 

following the manufacturer9s instructions. For whole-genome shotgun sequencing, individual 396 

libraries were constructed from each sample, pooled and loaded onto the HiSeq 2000 platform 397 

(Illumina) and sequenced using the 2 × 100 bp paired-end read protocol.  398 

12,22,23. The whole-genome shotgun sequencing metagenome reads are deposited in NCBI9s 399 

SRA repository under PRJNA416160. To download reads, individuals must request access to 400 

project phs001442 through the dbGaP authorization system. 401 

 402 

Compilation and Processing of the Trove of Gut Virus Genomes 403 

Sequences from the Gut Virome Database, the Cenote Human Virome Database, the 404 

Metagenomic Gut Virus catalog, and the Gut Phage Database17-20 were downloaded and 405 

dereplicated at 95% average nucleotide identity (ANI) across 85% alignment fraction (AF) using 406 

anicalc.py and aniclust.py from the CheckV (version 0.9.0) package34, in line with metagenomic 407 

virus sequence community standards24. Exemplar sequences from each cluster/singleton from 408 

the input sequences were kept and ran through Cenote-Taker 2 (version 2.1.5)35 to predict virus 409 

hallmark genes within each sequence using the 8virion9 hallmark gene database. Sequences 410 

were kept if they 1) encoded direct terminal repeats (signature of complete virus genome), one 411 

or more virus hallmark genes, and were over 1.5 kilobases or longer, or 2) encoded 2 or more 412 

virus hallmark genes and were over 12 kilobases. Sequences passing this threshold were run 413 

through CheckV to remove flanking host (bacterial) sequences and quantify the virus 414 
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gene/bacteria gene ratio for each contig. Sequences with 3 or fewer virus genes and 3 or more 415 

bacterial genes after pruning/were discarded. Finally, sequences passing this threshold were 416 

dereplicated again with CheckV scripts at 95% ANI and 85% AF to yield the Trove of Gut Virus 417 

Genomes of 110,296 genomes/genome fragments each representing a viral SGB (Fig. S1). 418 

 For each sequence in the Trove of Gut Virus Genomes CheckV was used to estimate 419 

completeness, ipHOP (version 1.1.0)36 was used to predict bacterial/archael host genus. 420 

Bacphlip (version 0.9.3)37 was run on each of the sequences predicted to be 90% or more 421 

complete to predict phage virulence. 422 

 vConTACT2 (version 0.11.3)38 was used to cluster viral SGBs from the Trove of Gut 423 

Virus Genomes into virus clusters. In addition to viral SGBs with vConTACT2 <Singleton= labels, 424 

viral SGBs with vConTACT2 labels <Unassigned=, <Outlier=, <Overlap=, <Clustered/Singleton= 425 

were also considered <Singletons= for downstream analysis. 426 

 427 

Constructing a trans-kingdom marker gene database 428 

Hallmark genes (i.e. genes involved in replication, packaging, assembly, and virion structure) 429 

were extracted from each virus exemplar genome from the Trove of Gut Virus Genomes using 430 

HMMs from Cenote-Taker 2 (database version June 16th, 2021). Next, hallmark genes were 431 

concatenated by genome and these concatenated sequences were dereplicated at 95% ANI 432 

and 85% AF. Based on this dereplication, 70,573 virus genomes had unique virus hallmark sets 433 

based on this dereplication, indicating reduced diversity compared to whole-genome 434 

dereplication. These viruses encoded of 416,420 putative marker genes. In order to be 435 

comparable with bacterial/archaeal species-level genome bins (SGBs) from Metaphlan421, 436 

which have dozens of marker genes each, detection was limited to the 49,111 viral SGBs with 437 

four or more marker genes. These genes were added to the Metaphlan4 database (version 438 

Jan21) which has marker genes from 27,071 bacteria, archaea, and micro-eukaryotes. The 439 

resulting database, which was used in these analyses, is Marker-MAGu_markerDB_v1.0.  440 

 441 

Marker-MAGu pipeline for marker gene-based taxonomic profiling 442 

To quality control Illumina reads and filter out human sequences, BBDuk from BBTools 443 

was used to remove Illumina adapters, reads less than 50 nt in length and with a Q score less 444 

than 23, then read pairs were aligned to the human reference genome hg38 and phiX spike-in 445 

sequence. Unaligned read pairs were used in subsequent analyses. 446 

 Marker-MAGu is a simple pipeline. First, reads are aligned to the Marker-447 

MAGu_markerDB_v1.0 using minimap239, treated as unpaired reads. Alignments are filtered so 448 
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that only reads with a single unique alignment are kept (Samtools40) and only reads with at least 449 

90% identity to the reference genome across at least 50% of the read length are kept (CoverM). 450 

Read alignment information for each gene is calculated with CoverM 451 

(https://github.com/wwood/CoverM). Then, genes are grouped by taxon and, with 8standard9 452 

settings, only taxa with at least 75% of genes with two aligned reads are considered detected (R 453 

tyidyverse packages) (10.21105/joss.01686). Relative abundance of each taxon is then 454 

calculated. The data in this study were processed with Marker-MAGu v0.4.0 with <–detection 455 

standard=, and database v1.0. 456 

For benchmarking, samples were processed as above and run through Metaphlan v4.0.6 with 457 

default settings.  458 

 459 

Identifying Crassvirales Contigs 460 

A BLAST database was constructed from amino acid sequences of Large Terminase genes 461 

from available Crassvirales genomes in RefSeq August 17th, 2022. All contigs from Trove of Gut 462 

Virus Genomes were queried against this database using BLASTX with cutoffs of evalue <= 1e-463 

5, average amino acid identity of >= 40%, and alignmnent length of >= 500 amino acids. This 464 

threshold was used as it returned 0 hits against non-Crassvirales virus genomes in GenBank. 465 

 466 

Diversity and Community Metrics 467 

R package vegan was used to calculate Shannon diversity, SGB richness, and Bray-Curtis 468 

dissimilarity. Rarefaction curves were calculated using R package micropan41. T-SNE 469 

calculations were done using RtSNE (v0.16) (https://github.com/jkrijthe/Rtsne) 470 

 471 

Temporal cluster analysis 472 

SGBs detected in 100 or more samples were analyzed to calculate average abundance from 473 

day of life 0 - 100 through day of life 1300 - 1400, in 100-day increments. Temporal clusters 474 

were calculated and assigned using R package latrend (https://github.com/philips-475 

software/latrend). 476 

Random forest modeling 477 

Random forest models were generated by using SGBs present in 1% or more samples, and by 478 

grouping all samples from each participant together either in the test or training group. Training 479 

groups were composed of samples from 70% of participants, and test groups were composed of 480 

samples from 30% of participants. A different random seed was used in each of 50 iterations of 481 

the model training/testing with python package scikitlearn42 to get receiver operating 482 
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characteristic area under the curve (ROC AUC) and feature importance. The twelve features 483 

(SGBs) with the highest average importance over 50 iterations were chosen for supplementary 484 

plots. 485 

 486 

Data and reproducible script availability 487 

The Marker-MAGu pipeline is available at https://github.com/cmmr/Marker-MAGu. 488 

Read abundance table for bacterial and viral SGBs as well as files containing other 489 

metadata that are needed to reproduce the analyses and figures are available on Zenodo, 490 

doi:10.5281/zenodo.8384307. 491 

 R notebooks and Jupyter Notebooks, which can be used to reproduce each figure and 492 

analysis are publicly available on github. 493 

Data was processed and parsed with R tidyverse libraries. Most figures were drawn with 494 

ggplot2 and packages ggridges (https://wilkelab.org/ggridges/), wesanderson 495 

(https://github.com/karthik/wesanderson), and nationalparkcolors 496 

(https://github.com/katiejolly/nationalparkcolors) were also used. 497 
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