

1 **Title**

2 Phage-bacteria dynamics during the first years of life revealed by trans-kingdom marker gene
3 analysis

4

5 **Authors**

6 Michael Tisza^{1,2}, Richard Lloyd², Kristi Hoffman^{1,2}, Daniel Smith^{1,2}, Marian Rewers³, on behalf of
7 the TEDDY Study Group*, Sara Javornik Cregeen^{1,2†}, Joseph F. Petrosino^{1,2†}

8

9 **Affiliations**

10 ¹ The Alkek Center for Metagenomics and Microbiome Research, Department of
11 Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA

12 ² Department of Molecular Virology and Microbiology, Baylor College of Medicine,
13 Houston, TX, USA

14 ³ Barbara Davis Center for Childhood Diabetes, University of Colorado, Aurora, CO, USA

15

16 * Members of the TEDDY Study Group are listed in the online supplemental appendix.

17 † Corresponding authors

18

19 **Abstract**

20 Humans are colonized with commensal bacteria soon after birth, and, while this colonization is
21 affected by lifestyle and other factors, bacterial colonization proceeds through well-studied
22 phases. However, less is known about phage communities in early human development due to
23 small study sizes, inability to leverage large databases, and lack of appropriate bioinformatics
24 tools. In this study, whole genome shotgun sequencing data from the TEDDY study, composed
25 of 12,262 longitudinal samples from 887 children in 4 countries, is reanalyzed to assess phage
26 and bacterial dynamics simultaneously. Reads from these samples were mapped to marker
27 genes from both bacteria and a new database of tens of thousands of phage taxa from human
28 microbiomes. We uncover that each child is colonized by hundreds of different phages during
29 the early years, and phages are more transitory than bacteria. Participants' samples continually
30 harbor new phage species over time whereas the diversification of bacterial species begins to
31 saturate. Phage data improves the ability for machine learning models to discriminate samples
32 by country. Finally, while phage populations were individual-specific, striking patterns arose
33 from the larger dataset, showing clear trends of ecological succession amongst phages, which
34 correlated well with putative host bacteria. Improved understanding of phage-bacterial

35 relationships may reveal new means by which to shape and modulate the microbiome and its
36 constituents to improve health and reduce disease, particularly in vulnerable populations where
37 antibiotic use and/or other more drastic measures may not be advised.

38

39 **Introduction**

40 From birth, the guts of all healthy humans play host to commensal bacteria^{1,2}. These bacteria
41 extensively metabolize our dietary inputs^{3,4}, drive normal development of the immune system⁵,
42 and, to our detriment, include some microbes that act as deadly opportunistic pathogens⁶.

43 Commensal bacteria are also hosts to (bacterio)phages, which are viruses that infect
44 bacterial cells. These come in two main types: “virulent phages” which quickly replicate and lyse
45 their hosts and “temperate phages” which integrate into the host cells as prophage, typically for
46 many generations, before lysing the bacteria upon some cue or stressor⁷. Because phages
47 exert pressure on host cell populations, and many phage genomes encode virulence factors
48 and toxins⁸, a role for specific phages or communities of phages in human health seems
49 plausible.

50 Previous studies have begun to explore how communities of bacteria or phages develop
51 in infants and young children. Bacterial studies have shown that nearly all infants are
52 initially contacted and/or colonized by bacteria prenatally or during delivery^{2,9}. In the first days of
53 life, bifidobacteria and other bacteria capable of efficiently metabolizing breast milk and formula
54 dominate^{10,11}. Then, human developmental stages determine bacterial community structure with
55 a handful of taxonomic compositions frequently observed at different ages¹². Studies of phages
56 in infants are more limited but have shown that the first recoverable phages are typically
57 prophages induced from early-colonizing bacteria¹³. Next, phage diversity and abundance
58 increase and more virulent phages can be observed¹⁴. In infants and adults, phage populations
59 have been shown to be more individual-specific than bacteria, making further trends and
60 patterns difficult to uncover^{15,16}. Therefore, answering how phage population dynamics are
61 related to bacterial population dynamics, and whether bacterial and phage developmental
62 phases are similarly deterministic, are among the questions that have eluded the field thus far.

63 In order to answer these questions, we built an extensive phage genome catalog from
64 several recent gut phage meta-studies¹⁷⁻²⁰ from which we extracted unique marker genes with
65 essential phage functions and added them to the MetaPhlAn4 bacterial marker gene
66 database²¹. We used this combined phage-bacteria marker gene database for the simultaneous
67 profiling of phage and bacteria in 12,262 longitudinal stool samples from 887 participants in the
68 TEDDY study^{22,23}.

69 Longitudinal analysis showed that phage communities change more quickly than
70 bacterial communities, with most phages persisting in a participant for a shorter duration.
71 Subsequently, each participant hosted a more diverse repertoire of phages than bacteria during
72 early development. Despite this, patterns of ecological succession were observed in the data,
73 with different phages peaking in abundance at different host ages, largely mirroring the
74 abundance of putative host bacteria. Adding phage taxonomic profiles improved the ability to
75 discriminate samples geographically over bacteria taxonomic profiles alone. Furthermore,
76 modest differences in phage and bacteria communities were observed in participants diagnosed
77 with type 1 diabetes.

78

79 **Results**

80 Simultaneous profiling of viruses and bacteria in whole genome shotgun sequencing data via
81 the Marker-MAGu pipeline

82 To enable accurate profiling of phages in whole genome shotgun (WGS) sequence datasets
83 from stool samples, a more comprehensive database of gut phages (and a small number of
84 eukaryotic viruses) was compiled from publicly available resources¹⁷⁻²⁰. This database, the
85 Trove of Gut Virus Genomes (see Materials & Methods), consists of genomes from 110,296
86 viral Species-level Genome Bins (SGBs)²⁴ derived from human gut metagenome studies.
87 Genomes from 42.6% of the viral SGBs are predicted to be 90 - 100% complete, and the
88 database contains numerous phages infecting all major taxa of gut bacteria (Fig S1).

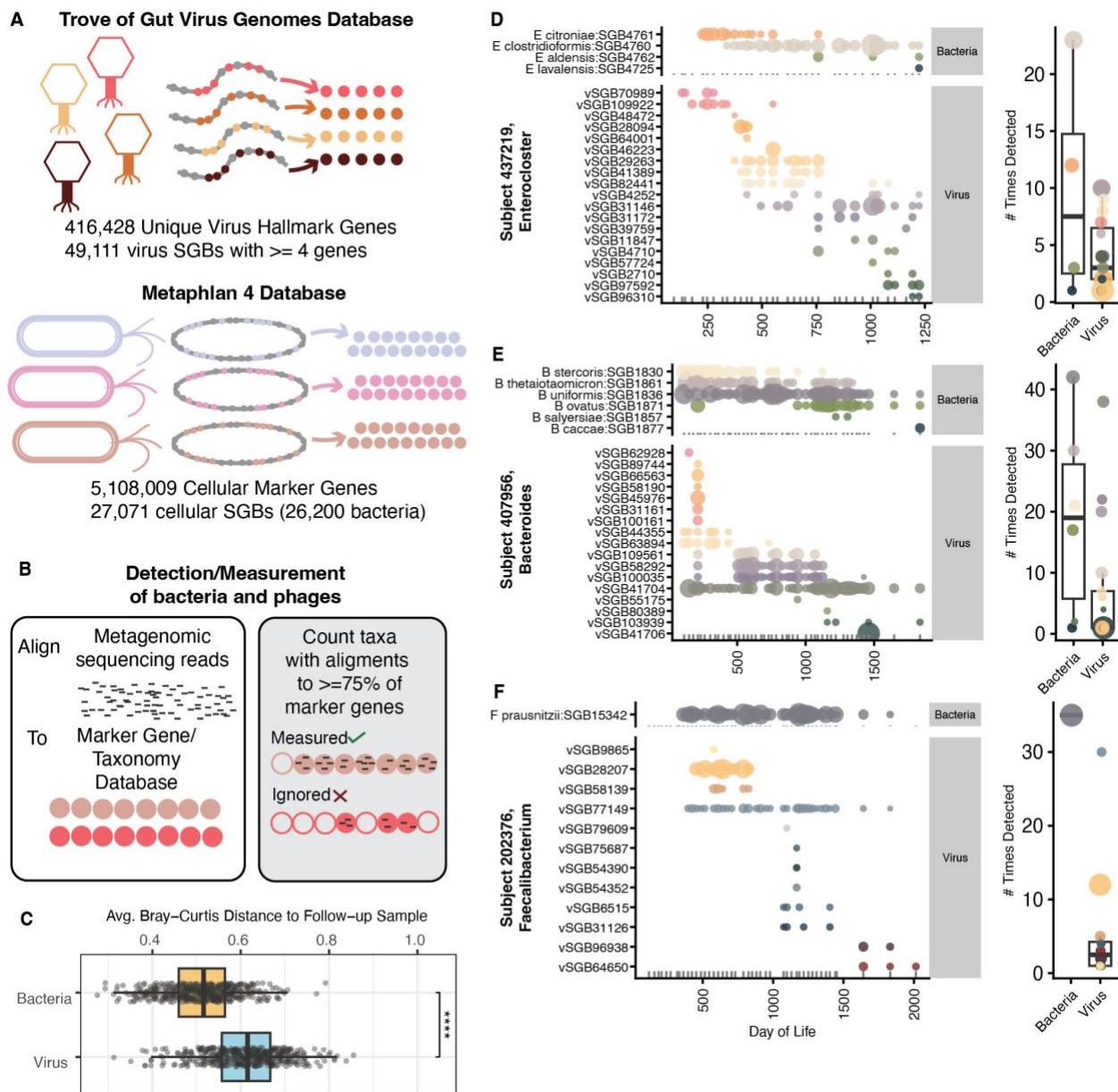
89 To facilitate comparable detection of viral and cellular genomes in WGS data, we
90 developed a marker gene approach. This approach utilizes the concept that some genes are
91 more taxonomically informative than others and, therefore, requires representing genomes by a
92 subset of genes that are species-specific and invariable. For each viral genome in Trove of Gut
93 Virus Genomes, essential genes (i.e., those involved in virion structure, genome packaging, and
94 genome replication) were annotated as potential markers. After dereplication, 416,428 unique
95 viral marker genes were detected. The 49,111 virus genomes with four or more unique marker
96 genes were used for taxonomic profiling. We developed a bioinformatics tool, Marker-MAGu,
97 leveraging marker genes and taxonomic identities from MetaPhlAn4 and Trove of Gut Virus
98 Genomes to generate trans-kingdom taxonomic profiles for gut metagenomes (Fig 1A-B)
99 (<https://github.com/cmmr/Marker-MAGu>).

100 Simulated read data from bacteria and phages show that Marker-MAGu has high
101 specificity at all coverage levels for bacteria and viruses along with high sensitivity starting at
102 0.5X average read depth (Fig S2A-C). Archaea and micro-eukaryotes in the Metaphlan 4

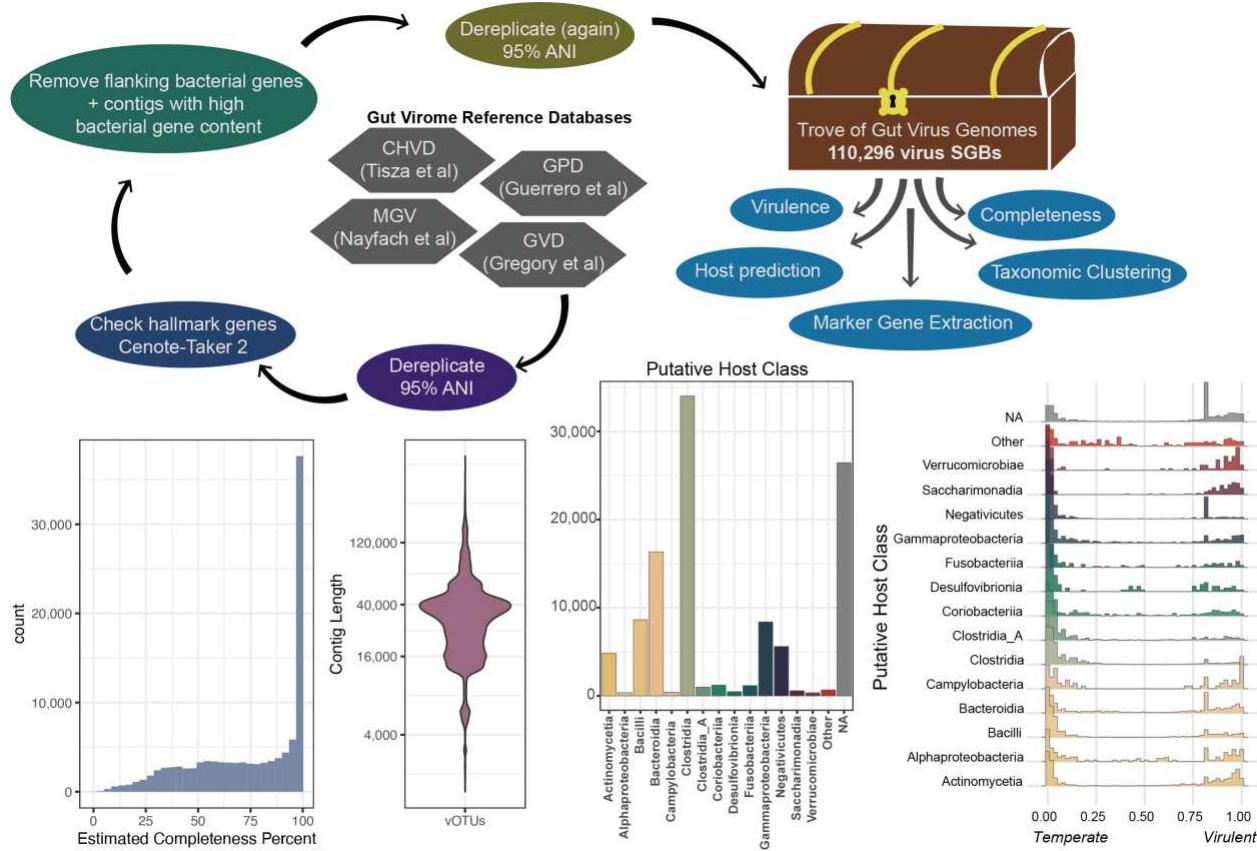
103 database are detectable but only bacteria and viruses are focused on in this manuscript. Using
104 real TEDDY WGS sequencing data, Marker-MAGu returns a consistent ratio of viral SGBs to
105 bacterial SGBs (Fig S2D) which is not affected by the number of reads in a sample (Fig S2E).
106 As expected, Marker-MAGu closely recapitulates Metaphlan4 abundance measurements from
107 sequencing of a bacterial mock community, with slightly lower sensitivity and slightly better
108 specificity (Fig S2F-G).

109 _____
110

111 **Figure 1**



120 **Figure S1**



121

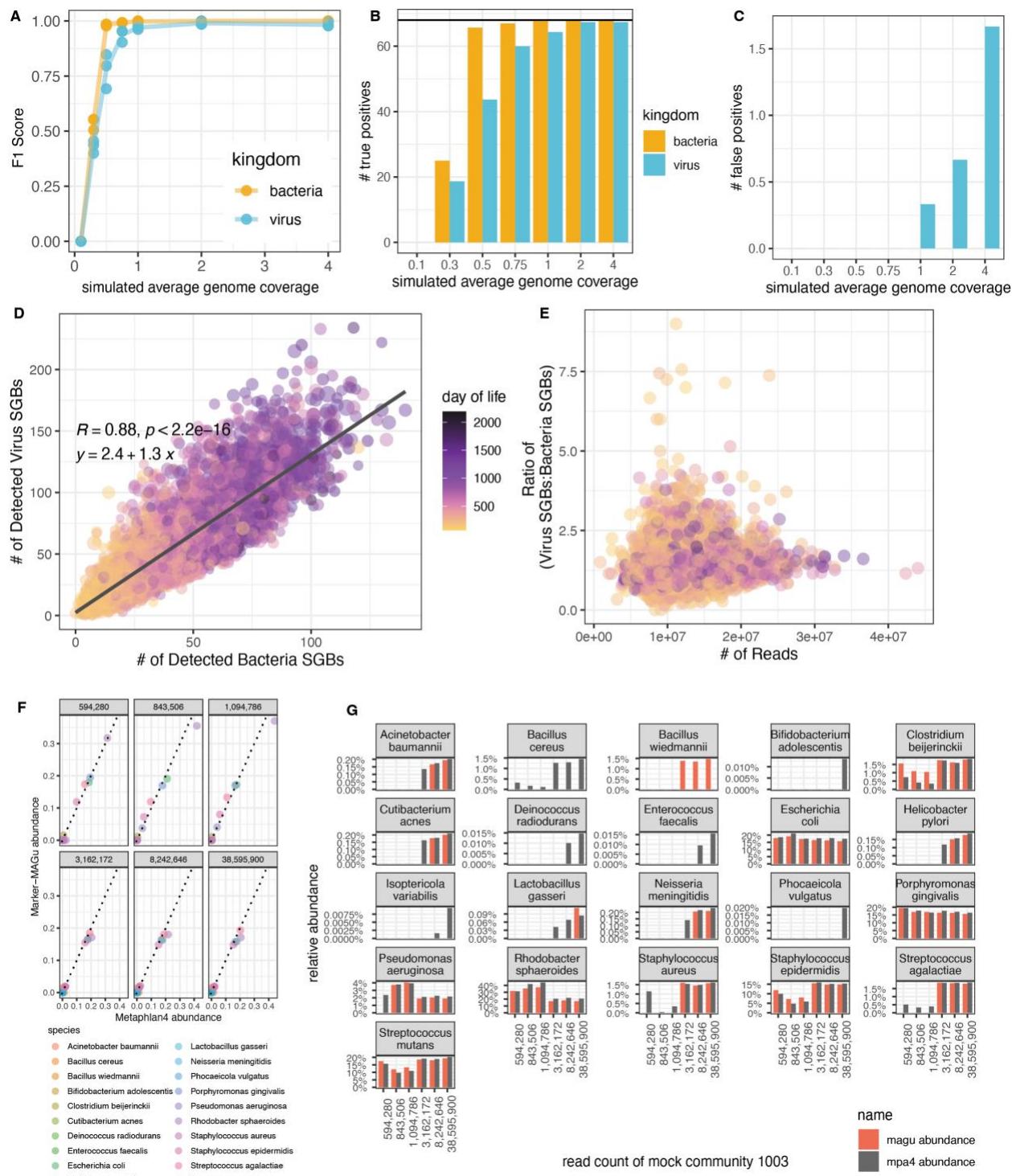
122 **Features of the Trove of Gut Virus Genomes.** (Top) pipeline to process, combine, filter and
123 characterize extant gut virus databases. (Bottom, first from left) completeness estimate
124 (CheckV) of 110,451 viral SGBs. (Bottom, second from left) length analysis of representative
125 contigs for each viral SGB. (Bottom, third from left) distribution of bacterial/archaeal virus host
126 prediction (drawn at class level) of viral SGBs. (Bottom, fourth from left), analysis of predicted
127 virulence of viral SGBs for each predicted host class.

128

129

130

131 **Figure S2**



132

133 **Marker-MAGu returns a consistent ratio of Viral:Bacterial SGBs across samples. (A)**

134 Simulated random reads for 68 common phage genomes and 68 common bacterial genomes

135 were generated at 0.1X average coverage to 4X average coverage (three different random

136 seeds each) and these reads were run through Marker-MAGu. F1 Score was calculated. (B) like
137 (A) but with number of true positives (68 possible). (C) like (A) but with number of false
138 positives. (D) Scatterplot showing number of viral and bacterial SGBs detected per sample
139 using entire TEDDY dataset. Linear relationship and pearson correlation calculated in mid-left of
140 panel. (E) Scatterplot showing the ratio of viral SGBs:bacterial SGBs compared to number of
141 sequencing reads for each sample, entire TEDDY dataset. (F-G) Bacterial taxa abundance
142 measurements on sequencing of ATCC bacterial genomic DNA standard 1003 using either
143 metaphlan4 or Marker-MAGu. Isoptericola variabilis is the only taxa not expected in the
144 standard. *B. cereus* and *B. wiedmannii* are closely related taxa.

145

146

147 Viruses Have a Higher Turnover Rate than the Bacteria in Gut Communities

148 To calculate viral and bacterial SGB prevalence and abundance in 12,262 WGS sequencing
149 samples from 887 participants from the TEDDY study, sequencing reads (average of 12.0
150 million reads per sample) were analyzed with the Marker-MAGu marker gene approach. With
151 WGS data, we expect to detect virus genomes inside virions, as well as dormant and actively
152 replicating virus genomes inside host cells. Trans-kingdom taxonomic profiles for each
153 participant show dynamic interplay between phages and their host bacteria, often revealing
154 successive waves of phages or phage communities affecting single host bacteria (Fig 1D-F).
155 Indeed, community change was higher from sample to sample for phage than bacteria (Fig 1C).

156 Across the entire dataset, 1,709 different bacterial SGBs were detected at least once,
157 and 15,693 viral SGBs were detected at least once, with higher saturation of bacterial SGBs
158 (Fig. 2A), with similar observations at the genus level (virus VC's are computationally imputed
159 genus-level clusters). While most bacterial SGBs and most viral SGBs were detected in only
160 one or a few human participants, the skew towards rareness was much greater for viral SGBs
161 (Fig. 2B), underpinning the individual-specific nature of the virome. Relatedly, when combining
162 all longitudinal samples by participant, the Bray-Curtis dissimilarity of the virome was greater
163 between participants than the bacteriome (Fig. 2C), and the alpha diversity of the virome was
164 greater, on average, than the bacteriome (Fig. 2D).

165 The longitudinal nature of the data revealed that, over time, the virome has a higher
166 participant-specific diversity and turnover rate than the bacteriome. First, it was observed that
167 viral SGBs are detected, on average, in a smaller percentage of a participant's samples than
168 bacterial SGBs (Fig. 2E). Next, plotting by number of unique samples per participant, it seems
169 new viral SGBs accumulate at a nearly linear rate, while new bacterial SGB accumulation

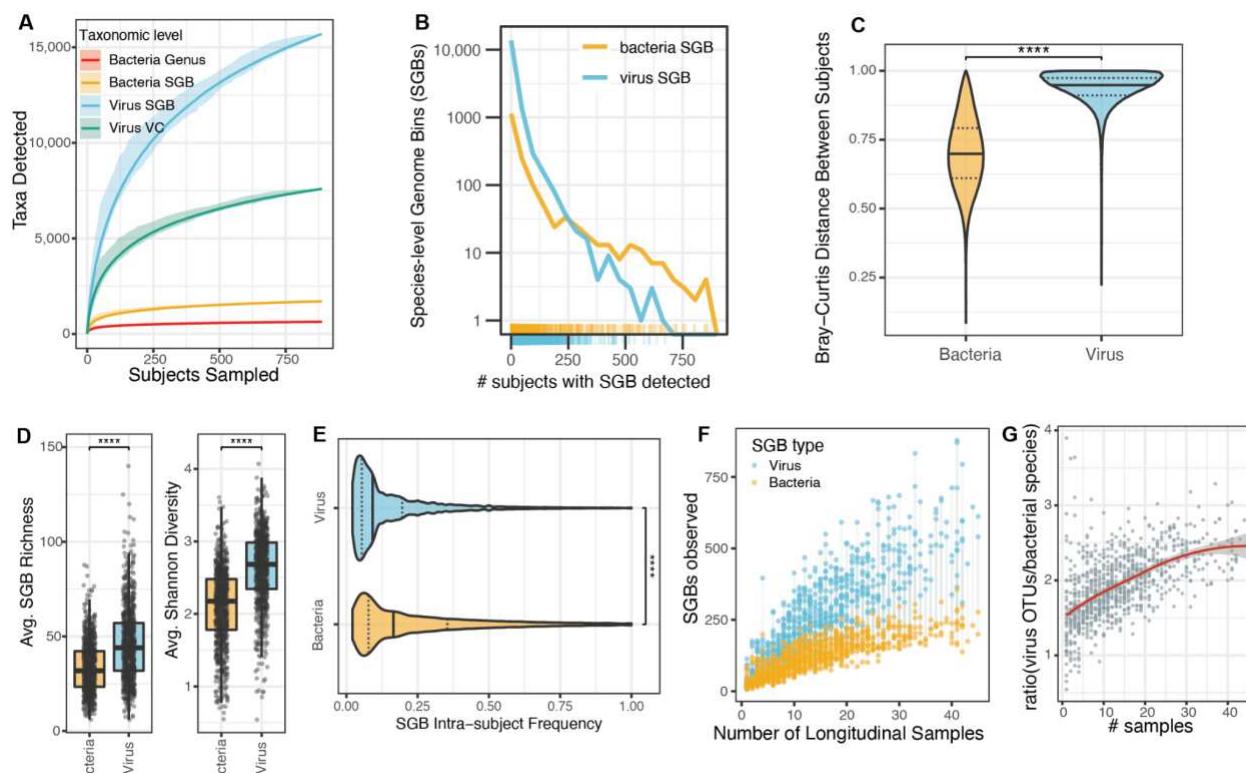
170 approaches saturation (Fig. 2F). Indeed, the ratio of cumulative viral to bacterial SGBs
171 increases from about 1.5:1 to 2.5:1 as the number of available longitudinal participant samples
172 increases from 1 to 45.

173 Similar to previous reports on the bacteriome and virome in early childhood, it was
174 observed that the alpha diversity of viruses and bacteria increased during infancy and for at
175 least the first three years (Fig. S3A,B)¹³, and this was comparable for participants in all four
176 countries of origin (Fig. S3C,D) . Furthermore, t-SNE analysis, often used to represent
177 relationships between high dimensional datapoints, of all samples showed samples from early
178 infancy partitioned into many clusters while samples taken from older children converged (Fig.
179 S3E). Samples did not partition by eventual type 1 diabetes diagnosis in this analysis (Fig.
180 S3E). There is some debate about whether Crassvirales (a.k.a crAss-like phages) increase or
181 decrease in abundance from infancy to early childhood^{13,18}. In TEDDY, 504 putative
182 Crassvirales genomes were detected in the Trove of Gut Virus Genomes (see Methods), and
183 the TEDDY cohort showed a clear increase of abundance and prevalence of Crassvirales over
184 time, with a plateau perhaps being reached 1000 days after birth (Fig. S3F).

185

186

187 **Figure 2**



188

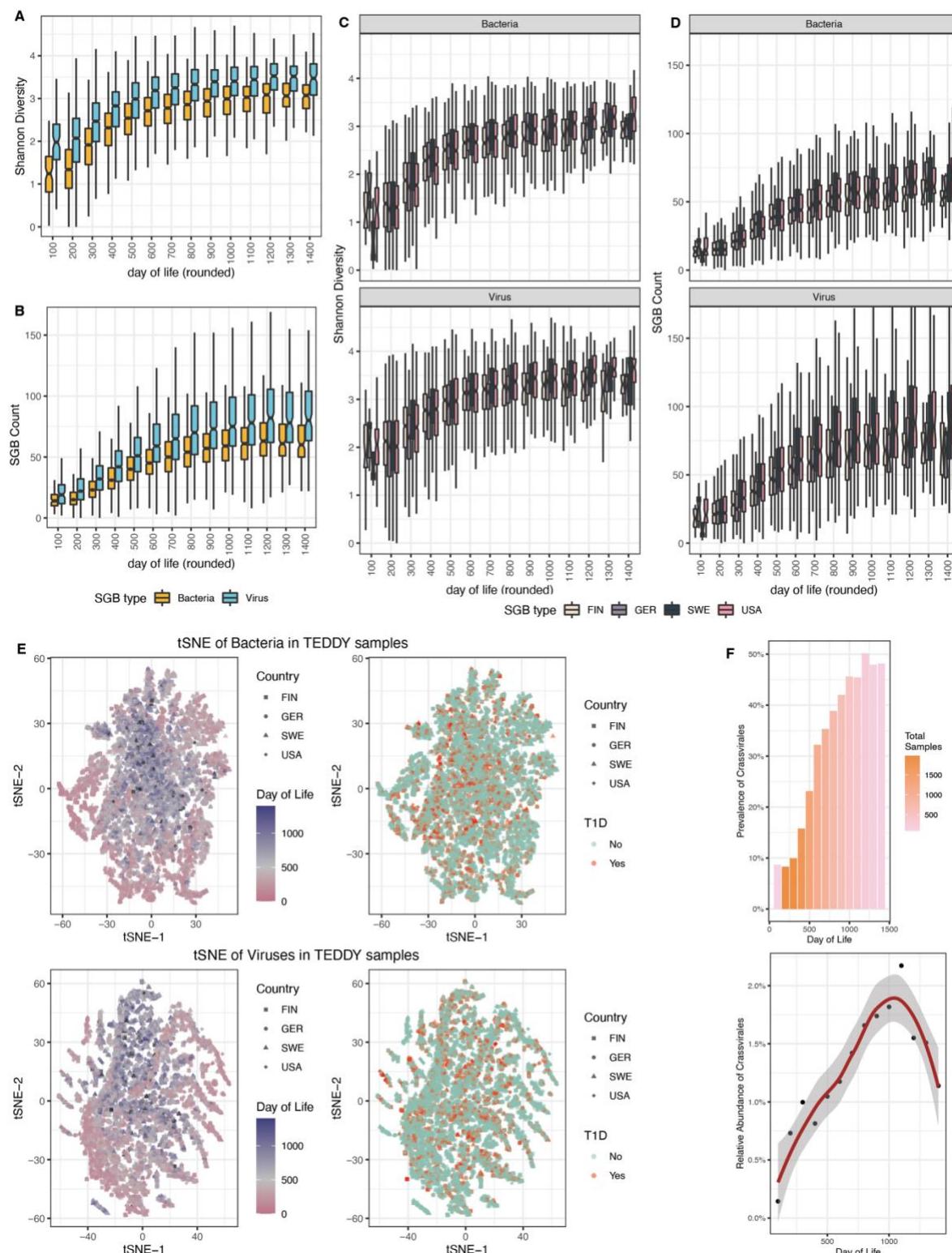
189

190 **Virome and Bacteriome community change.** (A) rarefaction curves of viral and bacterial taxa.
191 (B) measurement of participant distribution of viral and bacterial SGBs. Each hash is an SGB,
192 and the y-axis is log scale. (C) All-vs-all Bray-Curtis distance for bacteriome and virome
193 communities after averaging microbe abundance across all available samples. . (D) Alpha-
194 diversity measurements for bacteriome and virome in gut communities. Each dot represents the
195 average value from a participant. (E) SGB “persistence” within participants. Data was filtered to
196 exclude participants with fewer than 10 samples. Violins represent density of values from each
197 observation of an SGB in a participant (# times SGB detected/# total samples analyzed). Solid
198 black line marks 50% quantile, dotted lines are 25% and 75% quantile marks respectively. (F)
199 Cumulative number of viral and bacterial SGBs per participant. Each participant is represented
200 by a (blue) dot for viral SGBs detected across all samples and a (gold) dot for bacterial SGBs
201 detected across all samples connected by a gray line. (G) Ratio of cumulative viral SGBs
202 detected vs cumulative bacterial SGBs detected. Each dot is a participant. “****” represents p-
203 value < 1e-04.

204

205

206 **Figure S3**



207

208 **Developmental trends in the virome and bacteriome.** (A) Shannon alpha diversity of
209 samples by day of life. (B) SGB count of samples by day of life. (C) Shannon alpha diversity of

210 samples by country and day of life. (D) SGB count of samples by country and day of life. (E) t-
211 SNE plot of all samples bacteriome (top) and virome (bottom), colored by day of life (left) and
212 eventual type 1 diabetes diagnosis (right). (F) Prevalence (top) and relative abundance (bottom)
213 of all Crassvirales by day of life.

214 _____
215

216 Common Gut Viral and Bacterial SGBs Participate in Ecological Succession in Early Childhood

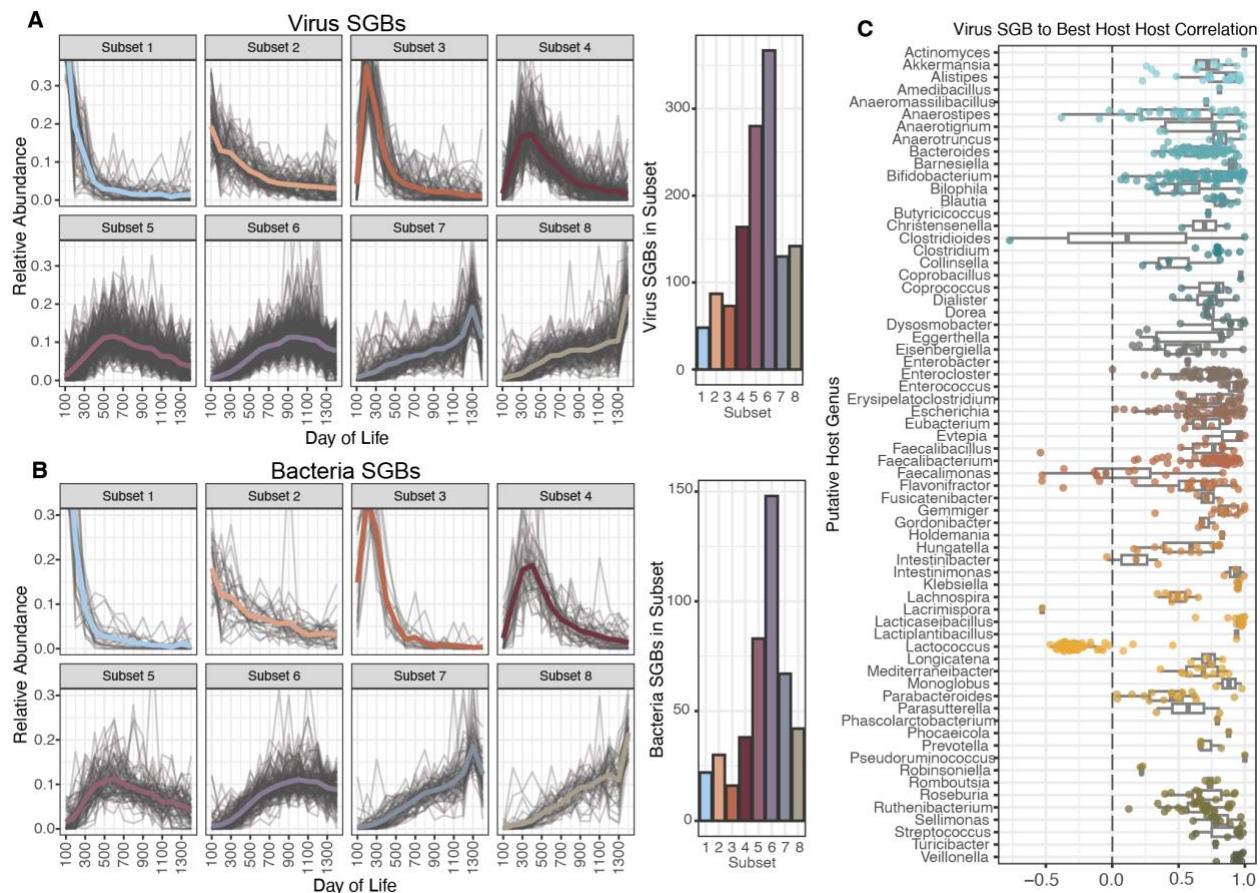
217 To understand temporal trends in the TEDDY cohort, SGBs detected in 100 or more
218 samples were used for further analysis. This subset consists of 446 bacterial SGBs and 1,291
219 viral SGBs. By calculating the relative abundance of these common SGBs from 0 - 1400 days of
220 life across all samples, eight high-confidence “Temporal Subsets” could be separated (see
221 Methods). Interestingly, the temporal subsets describe SGBs that peak at different host ages
222 (Fig. 3A, B). Namely, Subsets 1 and 2 include SGBs present immediately after birth then
223 declining thereafter. Subset 3 includes SGBs peaking at 100 - 200 days after birth. Subset 4
224 includes SGBs peaking at day of life 300 - 400, Subset 5 peaking at day of life 400 - 600,
225 Subset 6 peaking at day of life 800 - 1100, and Subsets 7 and 8 continually increase over the
226 days of life covered in this cohort. As expected based on earlier studies^{11,12}, common bacteria in
227 the earliest subsets include *Bifidobacterium breve* and *Bifidobacterium longum* whereas later
228 subsets include *Bacteroidales* such as *Phocaeicola vulgatus*, *Bacteroides uniformis*, and
229 *Alistipes onderdonkii* along with *Faecalibacterium species*, (Table S1).

230 The viral and bacterial temporal abundance data were compared, and it was found that
231 the viral SGBs were almost always well-correlated with their putative bacterial hosts (Fig. 3C).
232 While this is expected of obligate parasites, the finding validates the approach used here. The
233 major exception to this correlation was between *Lactococcus* bacteria and their phages. A
234 definitive explanation cannot be offered, but it is notable that *Lactococcus* bacteria are
235 commonly ingested due to their role in making dairy fermentation products such as cheese.

236

237

238 **Figure 3**



239

240 **Global patterns of viral and bacterial SGBs during development.** (A) Temporal Subsets of
 241 prevalent viral SGBs, drawn in separate boxes. Grey lines are individual viral SGBs and thicker
 242 colored lines are average lines. (right) Bars represent temporal cluster membership. (B) Same
 243 as (A) but with bacterial SGBs. (C) Correlation between prevalent viral and bacterial SGBs.
 244 Since host-prediction of phages is most accurate at the genus level, the temporal data from (A)
 245 and (B) was compared for each viral SGB and all bacterial SGBs from the putative host genus
 246 and the best correlation was plotted.

247

248

249 **Table S1**

250 Top five most abundant bacterial SGBs in each temporal subset (product of detections and Avg.
251 relative abundance)

SGB	Temporal Assignment	Detections	Avg. relative abundance
Bifidobacterium breve, SGB17247	Subset 1	6037	0.09835657
Enterococcus faecalis, SGB7962	Subset 1	2090	0.01045272
Enterocloster aldensis, SGB4762	Subset 1	1854	0.00314846
Lacticaseibacillus rhamnosus, SGB7144	Subset 1	1376	0.00891543
Streptococcus sp IMAU 99161, SGB8065	Subset 1	1001	0.00556041
Bifidobacterium longum, SGB17248	Subset 2	10248	0.10336652
Ruminococcus gnavus, SGB4584	Subset 2	9445	0.03180361
Erysipelatoclostridium ramosum, SGB6744	Subset 2	8759	0.01603429
Escherichia coli, SGB10068	Subset 2	7951	0.02415806
Bifidobacterium bifidum, SGB17256	Subset 2	4704	0.11227806
Klebsiella pneumoniae, SGB10115	Subset 3	1046	0.01606891
Lacticaseibacillus paracasei, SGB7142	Subset 3	890	0.01107291
Klebsiella oxytoca, SGB10118	Subset 3	707	0.01899808
Streptococcus lutetiensis, SGB8021	Subset 3	559	0.02053889
Streptococcus galloyticus, SGB8018	Subset 3	269	0.0290952
GGB33317 SGB51734, SGB51734	Subset 4	5210	0.00577784
Veillonella parvula, SGB6939	Subset 4	3791	0.01382644
Clostridium sp C5 48, SGB4752	Subset 4	2625	0.01279254
Veillonella atypica, SGB6936	Subset 4	2212	0.00687096
Bifidobacterium animalis, SGB17278	Subset 4	799	0.01326186
GGB33728 SGB47805, SGB47805	Subset 5	8694	0.04043895
Phocaeicola vulgatus, SGB1814	Subset 5	4805	0.02713746
Bifidobacterium pseudocatenulatum, SGB17237	Subset 5	4491	0.082582
Bifidobacterium adolescentis, SGB17244	Subset 5	3475	0.0512531
Bifidobacterium catenulatum, SGB17241	Subset 5	1870	0.0572846
GGB31934 SGB59709, SGB59709	Subset 6	7118	0.01796371
Microbacterium SGB53643, SGB53643	Subset 6	6170	0.02687314
Bacteroides uniformis, SGB1836	Subset 6	5071	0.02413384
GGB33221 SGB47464, SGB47464	Subset 6	4542	0.06872922
Faecalibacterium prausnitzii, SGB15342	Subset 6	4280	0.02701713
Alistipes onderdonkii, SGB2303	Subset 7	2408	0.00983902
Clostridium leptum, SGB14853	Subset 7	2063	0.00735367
Rhodobacteraceae unclassified SGB53604, SGB53604	Subset 7	969	0.01030057
GGB3277 SGB4327, SGB4327	Subset 7	808	0.01347505
Ruminococcus sp NSJ 71, SGB4290	Subset 7	486	0.03020412

Ruminococcus bicirculans, SGB4262	Subset 8	2519	0.0085017
GGB3293 SGB4348, SGB4348	Subset 8	1369	0.03900648
Bacteroides cellulosilyticus, SGB1844	Subset 8	720	0.00954628
Faecalibacterium SGB15346, SGB15346	Subset 8	706	0.00884722
GGB9758 SGB15368, SGB15368	Subset 8	419	0.01269754

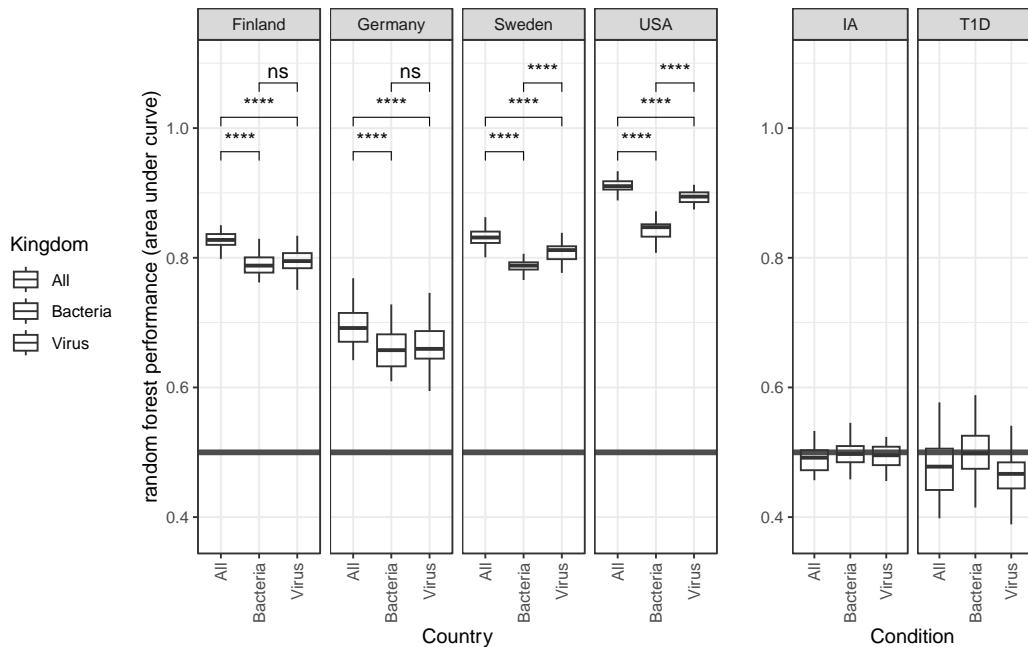
252

253 Virus Abundance Data Increases Power to Discriminate Between Samples from Different
254 Countries

255 The TEDDY study cohort consists of children who are vulnerable to development of type 1
256 diabetes (see Methods) and reside in four western countries (Germany, Finland, Sweden, and
257 USA). To understand the how type 1 diabetes develops, each of the 114 participants in TEDDY
258 that developed type 1 diabetes was matched with one of 114 participants who did not develop
259 type 1 diabetes, based on geography, sex, and family history of type 1 diabetes²³. This nested
260 case-control study design was used here to assess microbial communities during development
261 of type 1 diabetes. Similar to studies of bacterial community composition in the TEDDY cohort
262 as well as metastudies of type 1 diabetes, viral and/or bacterial SGB abundance could not
263 reliably discriminate between children who developed type 1 diabetes and those who did not
264 (Fig. 4, right panels)^{12,25}. However, random forest classifiers demonstrated that both bacteriome
265 and virome data had discriminatory power to separate samples geographically, with virome data
266 outperforming bacteriome data (virome better in 3/4 countries, bacteriome better in 0/4
267 countries), and a combination of both types of SGBs outperforming either measure alone (4/4
268 countries). Quantification of the most important features (SGBs) by country and day of life
269 demonstrates geographic differences for many of these features (Fig S4).

270 _____
271

272 **Figure 4**



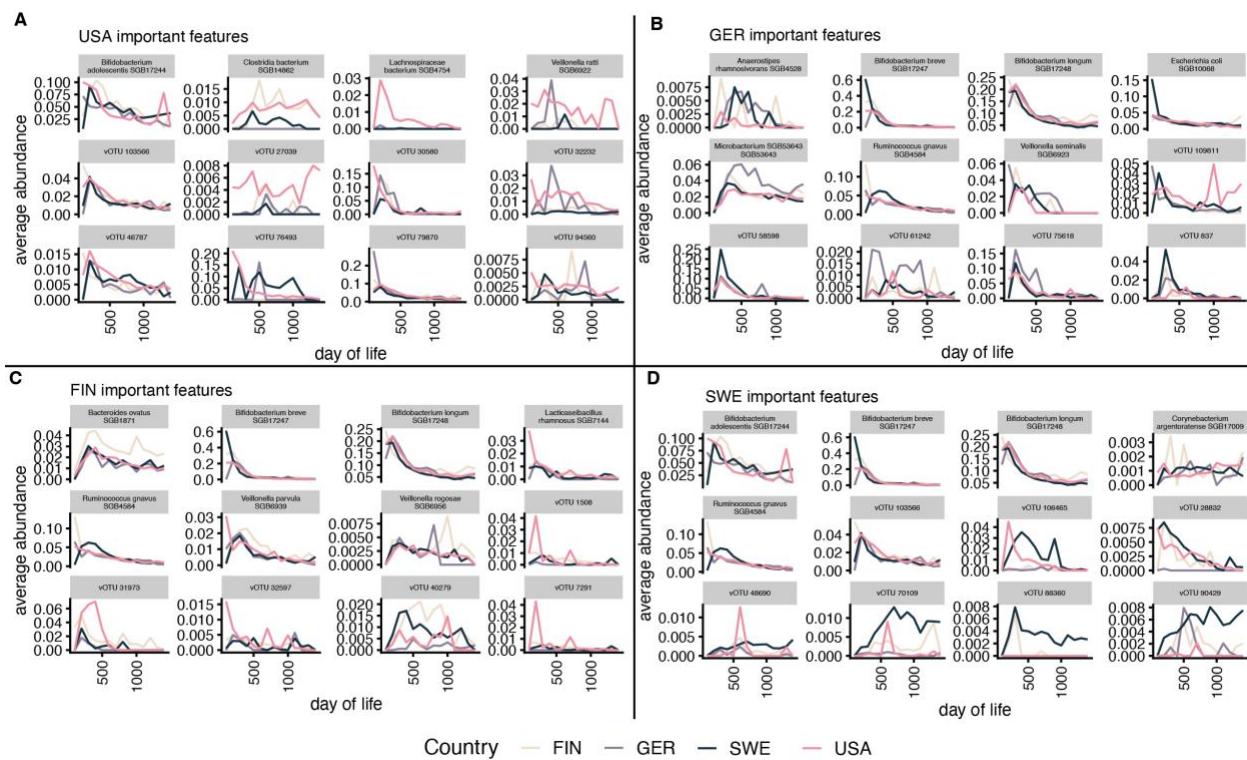
273

274 **Machine Learning on Virus and Bacteria Abundance Data.** Boxes represent data from 50
275 permutations of a random forest model on the same data split into train/test groups (70%/30%)
276 wherein all samples from each participants were always kept in the same group. Each iteration
277 was run with a different random seed. p-values: "ns": $1 > p \geq 0.5$, "**": $0.05 > p \geq 0.01$, "***":
278 $0.01 > p \geq 0.001$, "****": $0.001 > p \geq 1e-4$, "*****": $p > 1e-4$.

279

280

281 **Figure S4**



282

283 **Viral and bacterial SGBs with high importance for random forest models.** SGB abundance
284 by day of life. (A) USA vs. other countries (B) Germany vs. other countries (C) Finland vs. other
285 countries. (D) Sweden vs. other countries

286

287

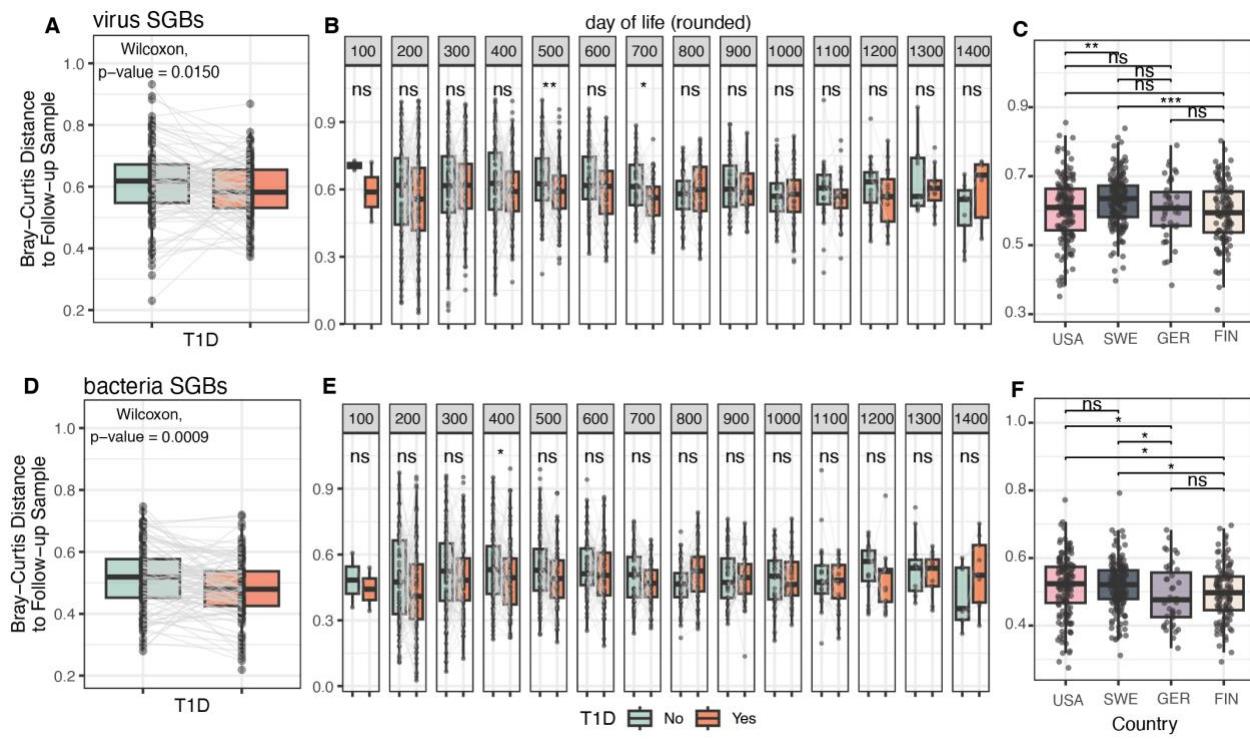
288 Differences in Rate of Community Change Between Groups in TEDDY Study

289 Analysis of viral and bacterial community change over time in each participant was
290 conducted by calculating Bray-Curtis dissimilarity between each sample and the next,
291 proceeding temporally. Interestingly, average Bray-Curtis dissimilarity was modestly lower in
292 participants who went on to develop type 1 diabetes than those who did not for both virome and
293 bacteriome measurements (Fig 5A,D). Further, when looking at comparisons across age, the
294 trend is strongest between 400 and 700 days of life (approximately the second year of life) (Fig.
295 5B,E), whereas median age of diagnosis with type 1 diabetes was 2.4 years²³. Some
296 differences in average Bray-Curtis dissimilarity were also seen between participants from
297 different countries (Fig 5C,F). Measuring relative abundance of the taxa from different Temporal
298 Subsets (see Fig 3A-B), samples (particularly Day of Life 700 - 1400) from participants
299 diagnosed with type 1 diabetes had differential abundance of Temporal Subsets 2, 5, 6, and 7 at
300 various ages (Fig S5).

301 _____

302

303 **Figure 5**



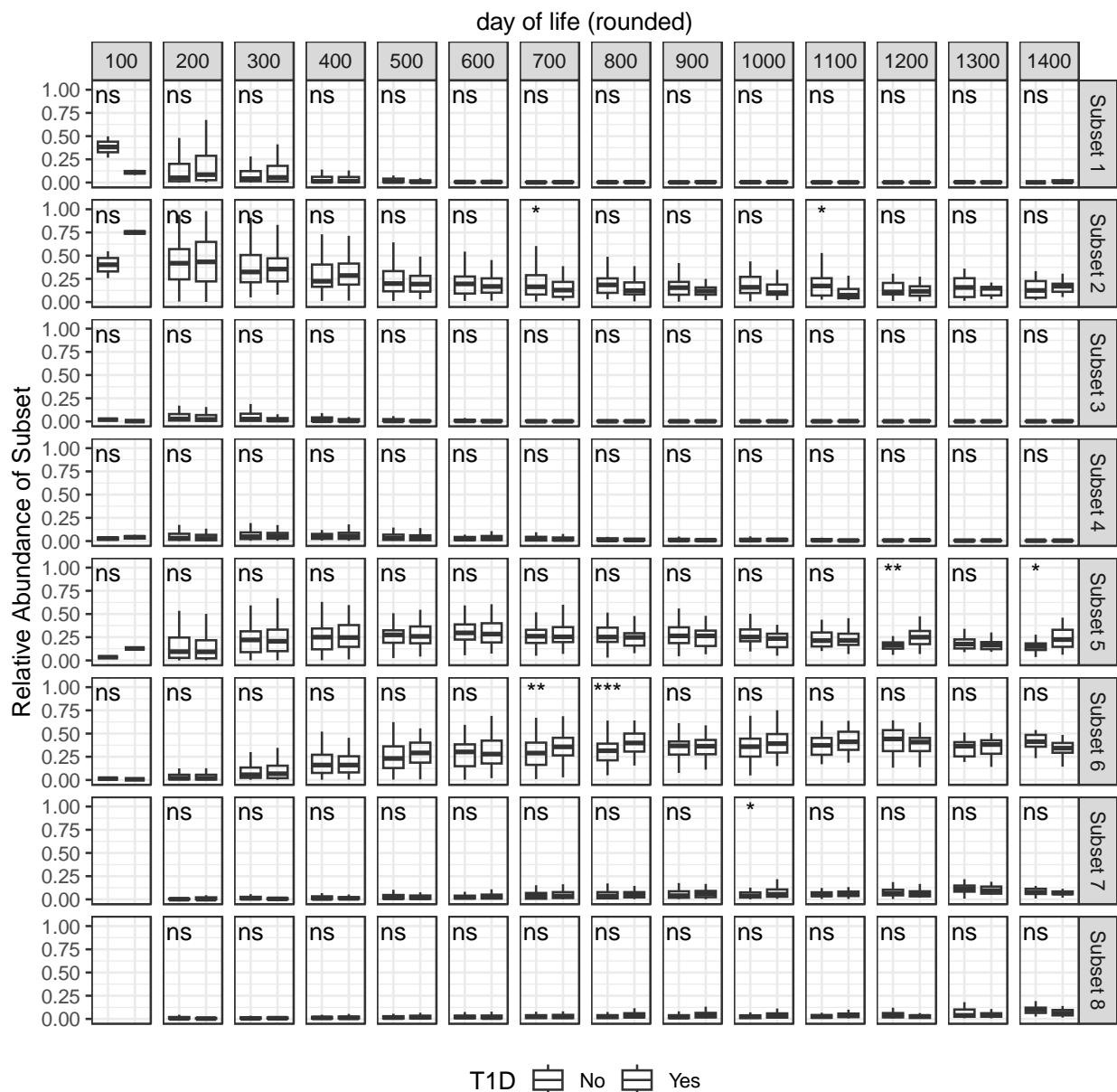
304

305 **Comparison of Community Change and Diversity.** (A) Virome Average Bray-Curtis
306 dissimilarity metrics for type 1 diabetes (T1D) using nested case-control design pairing each
307 participant who developed type 1 diabetes with a control participant. Each dot is a participant.
308 Lines are drawn between case-control pairs. Statistical test was paired Wilcoxon test. (B)
309 Samples are binned by day of life of collection and plotted by Bray-Curtis dissimilarity to follow
310 up sample when both participants in pair had one or more samples from that time period. (C)
311 Virome Average Bray-Curtis dissimilarity metrics by country (not nested case-control) (D-F) Like
312 (A-C) but for bacteriome. (All) p-values: "ns": $1 > p \geq 0.05$, "**": $0.05 > p \geq 0.01$, "***": $0.01 > p$
313 ≥ 0.001 , "****": $0.001 > p \geq 1e-4$, "*****": $p > 1e-4$.

314

315

316 **Figure S5**



317

318 **Dissimilarity for type 1 diabetes sub-groups.** Abundance of prevalent Temporal Subset
 319 species (see Fig 3) for T1D and non-T1D groups across days of life. Each dot is a participant.
 320 Lines are drawn between case-control pairs. Paired Wilcoxon tests with Benjamini-Hochberg
 321 Multiple test correction. (All) p-values: "ns": $1 > p \geq 0.5$, **: $0.05 > p \geq 0.01$, ***: $0.01 > p \geq 0.001$, ****: $0.001 > p \geq 1e-4$, *****: $p > 1e-4$.

323

324

325

326 Discussion

327 In this study, we dissect the dynamics of the gut phages and bacteria in developing
328 children and find individual specificity but multi-layered patterns of ecological succession. As a
329 previous study of bacterial communities in the TEDDY cohort¹² suggested, certain bacterial
330 SGBs thrive at different stages of human development. This was similarly observed for viral
331 SGBs in this study. The more complex layer of ecological succession emerged when we noticed
332 that phages typically come and go from participants' guts more quickly than bacteria. We then
333 observed that many long-lived gut bacteria hosted temporally separated phages and/or phage
334 communities during their tenure. The likely model is that newly introduced bacterial species
335 colonize guts and succeed extant bacteria as participant diet and immune development change,
336 (i.e. new niches emerge). With this succession, the phage communities also change, reflecting
337 host availability. On top of this, the observation that the phages are more transitory points to an
338 "arms race" between phages and bacteria that often results in temporary success of the phage
339 followed by evolution of resistance in the bacterial host, rather than concurrent extinction of the
340 phage and its host. Bacterial resistance probably emerges via point mutation, horizontal gene
341 transfer, or introduction of a new resistant bacterial strain of the same species replacing
342 susceptible strains. In addition, some studies suggest that strain-level replacement of bacterial
343 species occurs frequently in the human gut²⁶, and this type of switch is not detected with the
344 abundance/detection tools used here. In a strain-level replacement, prophages would
345 appear/disappear in the analysis while susceptibility to specific phage infections is expected to
346 change as well.

347 By sampling many times longitudinally during the first years of life, it becomes clear that
348 each participant's gut is exposed to many more distinct phages than distinct bacteria, and this
349 may have implications for human immune systems. Ordered arrays of antigens are highly
350 immunogenic and likely used by B cells in detecting pathogenic viruses and bacteria^{27,28}.
351 Phages, too, have arrayed capsid shells and tails that human immune systems may be primed
352 to recognize and generate antibodies and memory B cells against. While some work has
353 examined the interaction of phage and human immune systems²⁹, the data presented here
354 suggest that phages may occupy a larger share of the total antigenic surveillance space of
355 immune systems than was previously considered. Phage antigens should be considered in
356 future studies interested in how cross-reactivity affects inflammation, allergies, and protection
357 against novel pathogens³⁰.

358 While this study demonstrates that viral SGBs often quickly enter and exit the gut
359 ecosystems of individuals, these findings do not directly contradict previous work showing that
360 some phages can be detected in an individual's gut over a long period of time (Fig. 1D-F)³¹.

361 The superiority of combining bacterial and viral SGBs over either data type alone for use
362 in random forest models may improve the prospects for microbiome-based diagnostics. The
363 improvement seen by including viral SGBs may be related to the geographic correlation of some
364 bacterial strain-level phylogenies³². Different bacterial strains likely have unique
365 functions/phenotypes, but also, to some extent, have distinct prophage content and phage
366 susceptibility. However, it could also provide clues to the question "*where do our gut phages*
367 *come from?*", pointing towards acquisition dependent on a mixture of environmental
368 conditions¹¹. We also note that by keeping all the samples from a given participant together in
369 either the testing or training group for model development likely reduced participant-specific
370 biasing of the models (Methods).

371 As the attention of microbiome scientists turns towards phages, we believe it will be
372 important to establish the rules of engagement of these viruses and their host bacteria. Phage-
373 aware or trans-kingdom approaches, such as Marker-MAGu or recently developed Phanta³³, will
374 need to be adopted to this end. For example, can we identify promising phages for use in phage
375 therapy based on how their appearance or disappearance in individuals' guts effects potentially
376 pathogenic bacteria. Do any phages have an effect on their host's response to perturbations
377 such as antibiotics, change in diet, or introgression of new bacteria? By evaluating temporal
378 trends in the guts of developing children, we help lay the groundwork for therapeutics and
379 diagnostics that aim to leverage the microbiome and its constituents.

380

381 **Methods**

382 Cohort and Study Design

383 In this study, whole genome shotgun data from the TEDDY study, composed of over 12,262
384 longitudinal samples from 887 children in 4 countries, is reanalyzed to assess phage and
385 bacterial dynamics simultaneously. Detailed descriptions of the TEDDY Study, its cohort, and
386 the sequencing of stool samples can be found in previous publications^{12,22,23}. Briefly, the TEDDY
387 Study is composed of six clinical research centers: three in the United States (Colorado,
388 Georgia/Florida and Washington), and three in Europe (Finland, Germany and Sweden). The
389 population (both cases and controls) is based on children at high risk for T1D based on their
390 HLA genotype with 10% based on family history in addition to HLA. Collection of stool samples
391 and associated metadata, collected using validated questionnaires, began as of 31 May 2012.
392 Matching factors for case and control children were geographical location, sex and family history
393 of T1D. Enrolled children were followed prospectively from three months to 15 years with stool
394 samples collected monthly from 3 to 48 months of life, then every three months until the age of
395 10 years. Bacterial DNA was extracted using the PowerMag Microbiome DNA isolation kit
396 following the manufacturer's instructions. For whole-genome shotgun sequencing, individual
397 libraries were constructed from each sample, pooled and loaded onto the HiSeq 2000 platform
398 (Illumina) and sequenced using the 2 × 100 bp paired-end read protocol.

399 ^{12,22,23}. The whole-genome shotgun sequencing metagenome reads are deposited in NCBI's
400 SRA repository under PRJNA416160. To download reads, individuals must request access to
401 project phs001442 through the dbGaP authorization system.

402

403 Compilation and Processing of the Trove of Gut Virus Genomes

404 Sequences from the Gut Virome Database, the Cenote Human Virome Database, the
405 Metagenomic Gut Virus catalog, and the Gut Phage Database¹⁷⁻²⁰ were downloaded and
406 dereplicated at 95% average nucleotide identity (ANI) across 85% alignment fraction (AF) using
407 anicalc.py and aniclust.py from the CheckV (version 0.9.0) package³⁴, in line with metagenomic
408 virus sequence community standards²⁴. Exemplar sequences from each cluster/singleton from
409 the input sequences were kept and ran through Cenote-Taker 2 (version 2.1.5)³⁵ to predict virus
410 hallmark genes within each sequence using the 'virion' hallmark gene database. Sequences
411 were kept if they 1) encoded direct terminal repeats (signature of complete virus genome), one
412 or more virus hallmark genes, and were over 1.5 kilobases or longer, or 2) encoded 2 or more
413 virus hallmark genes and were over 12 kilobases. Sequences passing this threshold were run
414 through CheckV to remove flanking host (bacterial) sequences and quantify the virus

415 gene/bacteria gene ratio for each contig. Sequences with 3 or fewer virus genes and 3 or more
416 bacterial genes after pruning/were discarded. Finally, sequences passing this threshold were
417 dereplicated again with CheckV scripts at 95% ANI and 85% AF to yield the Trove of Gut Virus
418 Genomes of 110,296 genomes/genome fragments each representing a viral SGB (Fig. S1).

419 For each sequence in the Trove of Gut Virus Genomes CheckV was used to estimate
420 completeness, ipHOP (version 1.1.0)³⁶ was used to predict bacterial/archaeal host genus.
421 Bacphlip (version 0.9.3)³⁷ was run on each of the sequences predicted to be 90% or more
422 complete to predict phage virulence.

423 vConTACT2 (version 0.11.3)³⁸ was used to cluster viral SGBs from the Trove of Gut
424 Virus Genomes into virus clusters. In addition to viral SGBs with vConTACT2 “Singleton” labels,
425 viral SGBs with vConTACT2 labels “Unassigned”, “Outlier”, “Overlap”, “Clustered/Singleton”
426 were also considered “Singletons” for downstream analysis.

427

428 Constructing a trans-kingdom marker gene database

429 Hallmark genes (i.e. genes involved in replication, packaging, assembly, and virion structure)
430 were extracted from each virus exemplar genome from the Trove of Gut Virus Genomes using
431 HMMs from Cenote-Taker 2 (database version June 16th, 2021). Next, hallmark genes were
432 concatenated by genome and these concatenated sequences were dereplicated at 95% ANI
433 and 85% AF. Based on this dereplication, 70,573 virus genomes had unique virus hallmark sets
434 based on this dereplication, indicating reduced diversity compared to whole-genome
435 dereplication. These viruses encoded of 416,420 putative marker genes. In order to be
436 comparable with bacterial/archaeal species-level genome bins (SGBs) from Metaphlan4²¹,
437 which have dozens of marker genes each, detection was limited to the 49,111 viral SGBs with
438 four or more marker genes. These genes were added to the Metaphlan4 database (version
439 Jan21) which has marker genes from 27,071 bacteria, archaea, and micro-eukaryotes. The
440 resulting database, which was used in these analyses, is Marker-MAGu_markerDB_v1.0.

441

442 Marker-MAGu pipeline for marker gene-based taxonomic profiling

443 To quality control Illumina reads and filter out human sequences, BBduk from BBTools
444 was used to remove Illumina adapters, reads less than 50 nt in length and with a Q score less
445 than 23, then read pairs were aligned to the human reference genome hg38 and phiX spike-in
446 sequence. Unaligned read pairs were used in subsequent analyses.

447 Marker-MAGu is a simple pipeline. First, reads are aligned to the Marker-
448 MAGu_markerDB_v1.0 using minimap2³⁹, treated as unpaired reads. Alignments are filtered so

449 that only reads with a single unique alignment are kept (Samtools⁴⁰) and only reads with at least
450 90% identity to the reference genome across at least 50% of the read length are kept (CoverM).
451 Read alignment information for each gene is calculated with CoverM
452 (<https://github.com/wwood/CoverM>). Then, genes are grouped by taxon and, with ‘standard’
453 settings, only taxa with at least 75% of genes with two aligned reads are considered detected (R
454 tidyverse packages) (10.21105/joss.01686). Relative abundance of each taxon is then
455 calculated. The data in this study were processed with Marker-MAGu v0.4.0 with “–detection
456 standard”, and database v1.0.

457 For benchmarking, samples were processed as above and run through Metaphlan v4.0.6 with
458 default settings.

459

460 Identifying Crassvirales Contigs

461 A BLAST database was constructed from amino acid sequences of Large Terminase genes
462 from available Crassvirales genomes in RefSeq August 17th, 2022. All contigs from Trove of Gut
463 Virus Genomes were queried against this database using BLASTX with cutoffs of evalue <= 1e-
464 5, average amino acid identity of >= 40%, and alignmnent length of >= 500 amino acids. This
465 threshold was used as it returned 0 hits against non-Crassvirales virus genomes in GenBank.

466

467 Diversity and Community Metrics

468 R package vegan was used to calculate Shannon diversity, SGB richness, and Bray-Curtis
469 dissimilarity. Rarefaction curves were calculated using R package micropan⁴¹. T-SNE
470 calculations were done using RtsNE (v0.16) (<https://github.com/jkrijthe/Rtsne>)

471

472 Temporal cluster analysis

473 SGBs detected in 100 or more samples were analyzed to calculate average abundance from
474 day of life 0 - 100 through day of life 1300 - 1400, in 100-day increments. Temporal clusters
475 were calculated and assigned using R package latrend (<https://github.com/philips-software/latrend>).

477 Random forest modeling

478 Random forest models were generated by using SGBs present in 1% or more samples, and by
479 grouping all samples from each participant together either in the test or training group. Training
480 groups were composed of samples from 70% of participants, and test groups were composed of
481 samples from 30% of participants. A different random seed was used in each of 50 iterations of
482 the model training/testing with python package scikitlearn⁴² to get receiver operating

483 characteristic area under the curve (ROC AUC) and feature importance. The twelve features
484 (SGBs) with the highest average importance over 50 iterations were chosen for supplementary
485 plots.

486

487 **Data and reproducible script availability**

488 The Marker-MAGu pipeline is available at <https://github.com/cmmr/Marker-MAGu>.

489 Read abundance table for bacterial and viral SGBs as well as files containing other
490 metadata that are needed to reproduce the analyses and figures are available on [Zenodo](https://zenodo.org/record/8384307),
491 doi:10.5281/zenodo.8384307.

492 R notebooks and Jupyter Notebooks, which can be used to reproduce each figure and
493 analysis are publicly available on [github](https://github.com/cmmr/Marker-MAGu).

494 Data was processed and parsed with R tidyverse libraries. Most figures were drawn with
495 ggplot2 and packages ggridges (<https://wilkelab.org/ggridges/>), wesanderson
496 (<https://github.com/karthik/wesanderson>), and nationalparkcolors
497 (<https://github.com/katiejolly/nationalparkcolors>) were also used.

498

499 **Acknowledgements**

500 The TEDDY Study is funded by U01 DK63829, U01 DK63861, U01 DK63821, U01 DK63865,
501 U01 DK63863, U01 DK63836, U01 DK63790, UC4 DK63829, UC4 DK63861, UC4 DK63821,
502 UC4 DK63865, UC4 DK63863, UC4 DK63836, UC4 DK95300, UC4 DK100238, UC4
503 DK106955, UC4 DK112243, UC4 DK117483, U01 DK124166, U01 DK128847, and Contract
504 No. HHSN267200700014C from the National Institute of Diabetes and Digestive and Kidney
505 Diseases (NIDDK), National Institute of Allergy and Infectious Diseases (NIAID), Eunice
506 Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National
507 Institute of Environmental Health Sciences (NIEHS), Centers for Disease Control and
508 Prevention (CDC), and JDRF. This work is supported in part by the NIH/NCATS Clinical and
509 Translational Science Awards to the University of Florida (UL1 TR000064) and the University of
510 Colorado (UL1 TR002535). The content is solely the responsibility of the authors and does not
511 necessarily represent the official views of the National Institutes of Health.

512 **References**

513

514 1 Bosco, N. & Noti, M. The aging gut microbiome and its impact on host immunity. *Genes Immun* **22**, 289-303, doi:10.1038/s41435-021-00126-8 (2021).

515 2 Moore, R. E. & Townsend, S. D. Temporal development of the infant gut microbiome. *Open Biol* **9**, 190128, doi:10.1098/rsob.190128 (2019).

516 3 Nieuwdorp, M., Gilijamse, P. W., Pai, N. & Kaplan, L. M. Role of the microbiome in energy regulation and metabolism. *Gastroenterology* **146**, 1525-1533, doi:10.1053/j.gastro.2014.02.008 (2014).

517 4 Jameson, K. G., Olson, C. A., Kazmi, S. A. & Hsiao, E. Y. Toward Understanding Microbiome-Neuronal Signaling. *Mol Cell* **78**, 577-583, doi:10.1016/j.molcel.2020.03.006 (2020).

518 5 Rosshart, S. P. *et al.* Laboratory mice born to wild mice have natural microbiota and model human immune responses. *Science* **365**, doi:10.1126/science.aaw4361 (2019).

519 6 Antimicrobial Resistance, C. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. *Lancet* **399**, 629-655, doi:10.1016/S0140-6736(21)02724-0 (2022).

520 7 Bobay, L. M., Rocha, E. P. & Touchon, M. The adaptation of temperate bacteriophages to their host genomes. *Mol Biol Evol* **30**, 737-751, doi:10.1093/molbev/mss279 (2013).

521 8 Gamage, S. D., Patton, A. K., Hanson, J. F. & Weiss, A. A. Diversity and host range of Shiga toxin-encoding phage. *Infect Immun* **72**, 7131-7139, doi:10.1128/IAI.72.12.7131-7139.2004 (2004).

522 9 Kapourchali, F. R. & Cresci, G. A. M. Early-Life Gut Microbiome-The Importance of Maternal and Infant Factors in Its Establishment. *Nutr Clin Pract* **35**, 386-405, doi:10.1002/ncp.10490 (2020).

523 10 Duranti, S. *et al.* Maternal inheritance of bifidobacterial communities and bifidophages in infants through vertical transmission. *Microbiome* **5**, 66, doi:10.1186/s40168-017-0282-6 (2017).

524 11 Olm, M. R. *et al.* Robust variation in infant gut microbiome assembly across a spectrum of lifestyles. *Science* **376**, 1220-1223, doi:10.1126/science.abj2972 (2022).

525 12 Stewart, C. J. *et al.* Temporal development of the gut microbiome in early childhood from the TEDDY study. *Nature* **562**, 583-588, doi:10.1038/s41586-018-0617-x (2018).

526 13 Liang, G. *et al.* The stepwise assembly of the neonatal virome is modulated by breastfeeding. *Nature* **581**, 470-474, doi:10.1038/s41586-020-2192-1 (2020).

527 14 Shamash, M. & Maurice, C. F. Phages in the infant gut: a framework for virome development during early life. *ISME J* **16**, 323-330, doi:10.1038/s41396-021-01090-x (2022).

528 15 Shkoporov, A. N. *et al.* The Human Gut Virome Is Highly Diverse, Stable, and Individual Specific. *Cell Host Microbe* **26**, 527-541 e525, doi:10.1016/j.chom.2019.09.009 (2019).

529 16 Taboada, B. *et al.* The gut virome of healthy children during the first year of life is diverse and dynamic. *PLoS One* **16**, e0240958, doi:10.1371/journal.pone.0240958 (2021).

530 17 Tisza, M. J. & Buck, C. B. A catalog of tens of thousands of viruses from human metagenomes reveals hidden associations with chronic diseases. *Proc Natl Acad Sci U S A* **118**, doi:10.1073/pnas.2023202118 (2021).

531 18 Gregory, A. C. *et al.* The Gut Virome Database Reveals Age-Dependent Patterns of Virome Diversity in the Human Gut. *Cell Host Microbe* **28**, 724-740 e728, doi:10.1016/j.chom.2020.08.003 (2020).

532 19 Nayfach, S. *et al.* Metagenomic compendium of 189,680 DNA viruses from the human gut microbiome. *Nat Microbiol* **6**, 960-970, doi:10.1038/s41564-021-00928-6 (2021).

561 20 Camarillo-Guerrero, L. F., Almeida, A., Rangel-Pineros, G., Finn, R. D. & Lawley, T. D.
562 Massive expansion of human gut bacteriophage diversity. *Cell* **184**, 1098-1109 e1099,
563 doi:10.1016/j.cell.2021.01.029 (2021).

564 21 Blanco-Miguez, A. *et al.* Extending and improving metagenomic taxonomic profiling with
565 uncharacterized species using MetaPhlAn 4. *Nat Biotechnol*, doi:10.1038/s41587-023-
566 01688-w (2023).

567 22 Group, T. S. The Environmental Determinants of Diabetes in the Young (TEDDY) study:
568 study design. *Pediatr Diabetes* **8**, 286-298, doi:10.1111/j.1399-5448.2007.00269.x
(2007).

570 23 Rewers, M. *et al.* The Environmental Determinants of Diabetes in the Young (TEDDY)
571 Study: 2018 Update. *Curr Diab Rep* **18**, 136, doi:10.1007/s11892-018-1113-2 (2018).

572 24 Roux, S. *et al.* Minimum Information about an Uncultivated Virus Genome (MIUViG). *Nat*
573 *Biotechnol* **37**, 29-37, doi:10.1038/nbt.4306 (2019).

574 25 Tierney, B. T. *et al.* Systematically assessing microbiome-disease associations identifies
575 drivers of inconsistency in metagenomic research. *PLoS Biol* **20**, e3001556,
576 doi:10.1371/journal.pbio.3001556 (2022).

577 26 Chen, D. W. & Garud, N. R. Rapid evolution and strain turnover in the infant gut
578 microbiome. *Genome Res* **32**, 1124-1136, doi:10.1101/gr.276306.121 (2022).

579 27 Veneziano, R. *et al.* Role of nanoscale antigen organization on B-cell activation probed
580 using DNA origami. *Nat Nanotechnol* **15**, 716-723, doi:10.1038/s41565-020-0719-0
(2020).

582 28 Bachmann, M. F. & Jennings, G. T. Vaccine delivery: a matter of size, geometry, kinetics
583 and molecular patterns. *Nat Rev Immunol* **10**, 787-796, doi:10.1038/nri2868 (2010).

584 29 Gembara, K. & Dabrowska, K. Phage-specific antibodies. *Curr Opin Biotechnol* **68**, 186-
585 192, doi:10.1016/j.copbio.2020.11.011 (2021).

586 30 Bartolo, L. *et al.* SARS-CoV-2-specific T cells in unexposed adults display broad
587 trafficking potential and cross-react with commensal antigens. *Sci Immunol* **7**, eabn3127,
588 doi:10.1126/sciimmunol.abn3127 (2022).

589 31 Minot, S. *et al.* Rapid evolution of the human gut virome. *Proc Natl Acad Sci U S A* **110**,
590 12450-12455, doi:10.1073/pnas.1300833110 (2013).

591 32 Suzuki, T. A. *et al.* Codiversification of gut microbiota with humans. *Science* **377**, 1328-
592 1332, doi:10.1126/science.abm7759 (2022).

593 33 Pinto, Y., Chakraborty, M., Jain, N. & Bhatt, A. S. Phage-inclusive profiling of human gut
594 microbiomes with Phanta. *Nat Biotechnol*, doi:10.1038/s41587-023-01799-4 (2023).

595 34 Nayfach, S. *et al.* CheckV assesses the quality and completeness of metagenome-
596 assembled viral genomes. *Nat Biotechnol* **39**, 578-585, doi:10.1038/s41587-020-00774-
597 7 (2021).

598 35 Tisza, M. J., Belford, A. K., Dominguez-Huerta, G., Bolduc, B. & Buck, C. B. Cenote-
599 Taker 2 democratizes virus discovery and sequence annotation. *Virus Evol* **7**, veaa100,
600 doi:10.1093/ve/veaa100 (2021).

601 36 Roux, S. *et al.* iPHoP: An integrated machine learning framework to maximize host
602 prediction for metagenome-derived viruses of archaea and bacteria. *PLoS Biol* **21**,
603 e3002083, doi:10.1371/journal.pbio.3002083 (2023).

604 37 Hockenberry, A. J. & Wilke, C. O. BACPHLIP: predicting bacteriophage lifestyle from
605 conserved protein domains. *PeerJ* **9**, e11396, doi:10.7717/peerj.11396 (2021).

606 38 Bin Jang, H. *et al.* Taxonomic assignment of uncultivated prokaryotic virus genomes is
607 enabled by gene-sharing networks. *Nat Biotechnol* **37**, 632-639, doi:10.1038/s41587-
608 019-0100-8 (2019).

609 39 Li, H. Minimap2: pairwise alignment for nucleotide sequences. *Bioinformatics* **34**, 3094-
610 3100, doi:10.1093/bioinformatics/bty191 (2018).

611 40 Danecek, P. *et al.* Twelve years of SAMtools and BCFtools. *Gigascience* **10**,
612 doi:10.1093/gigascience/giab008 (2021).
613 41 Snipen, L. & Liland, K. H. micropan: an R-package for microbial pan-genomics. *BMC*
614 *Bioinformatics* **16**, 79, doi:10.1186/s12859-015-0517-0 (2015).
615 42 Pedregosa, F. a. V., G. and Gramfort, A. and Michel, V., and Thirion, B. a. G., O. and
616 Blondel, M. and Prettenhofer, P., and Weiss, R. a. D., V. and Vanderplas, J. and
617 Passos, A. and & Cournapeau, D. a. B., M. and Perrot, M. and Duchesnay, E. Scikit-
618 learn: Machine Learning in Python. *Journal of Machine Learning Research* **12**, 2825-
619 2830 (2011).
620