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Abstract

Humans are colonized with commensal bacteria soon after birth, and, while this colonization is
affected by lifestyle and other factors, bacterial colonization proceeds through well-studied
phases. However, less is known about phage communities in early human development due to
small study sizes, inability to leverage large databases, and lack of appropriate bioinformatics
tools. In this study, whole genome shotgun sequencing data from the TEDDY study, composed
of 12,262 longitudinal samples from 887 children in 4 countries, is reanalyzed to assess phage
and bacterial dynamics simultaneously. Reads from these samples were mapped to marker
genes from both bacteria and a new database of tens of thousands of phage taxa from human
microbiomes. We uncover that each child is colonized by hundreds of different phages during
the early years, and phages are more transitory than bacteria. Participants’ samples continually
harbor new phage species over time whereas the diversification of bacterial species begins to
saturate. Phage data improves the ability for machine learning models to discriminate samples
by country. Finally, while phage populations were individual-specific, striking patterns arose
from the larger dataset, showing clear trends of ecological succession amongst phages, which

correlated well with putative host bacteria. Improved understanding of phage-bacterial
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relationships may reveal new means by which to shape and modulate the microbiome and its
constituents to improve health and reduce disease, particularly in vulnerable populations where

antibiotic use and/or other more drastic measures may not be advised.

Introduction
From birth, the guts of all healthy humans play host to commensal bacteria'?. These bacteria
extensively metabolize our dietary inputs®#, drive normal development of the immune system®,
and, to our detriment, include some microbes that act as deadly opportunistic pathogens®.

Commensal bacteria are also hosts to (bacterio)phages, which are viruses that infect
bacterial cells. These come in two main types: “virulent phages” which quickly replicate and lyse
their hosts and “temperate phages” which integrate into the host cells as prophage, typically for
many generations, before lysing the bacteria upon some cue or stressor’. Because phages
exert pressure on host cell populations, and many phage genomes encode virulence factors
and toxins®, a role for specific phages or communities of phages in human health seems
plausible.

Previous studies have begun to explore how communities of bacteria or phages develop
in infants and young children. Bacterial studies have shown that nearly all infants are
initially contacted and/or colonized by bacteria prenatally or during delivery?°. In the first days of
life, bifidobacteria and other bacteria capable of efficiently metabolizing breast milk and formula
dominate'®'". Then, human developmental stages determine bacterial community structure with
a handful of taxonomic compositions frequently observed at different ages'2. Studies of phages
in infants are more limited but have shown that the first recoverable phages are typically
prophages induced from early-colonizing bacteria®®. Next, phage diversity and abundance
increase and more virulent phages can be observed'. In infants and adults, phage populations
have been shown to be more individual-specific than bacteria, making further trends and
patterns difficult to uncover'®'6. Therefore, answering how phage population dynamics are
related to bacterial population dynamics, and whether bacterial and phage developmental
phases are similarly deterministic, are among the questions that have eluded the field thus far.

In order to answer these questions, we built an extensive phage genome catalog from
several recent gut phage meta-studies’”?° from which we extracted unique marker genes with
essential phage functions and added them to the MetaPhlAn4 bacterial marker gene
database?'. We used this combined phage-bacteria marker gene database for the simultaneous
profiling of phage and bacteria in 12,262 longitudinal stool samples from 887 participants in the
TEDDY study?>%.
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Longitudinal analysis showed that phage communities change more quickly than
bacterial communities, with most phages persisting in a participant for a shorter duration.
Subsequently, each participant hosted a more diverse repertoire of phages than bacteria during
early development. Despite this, patterns of ecological succession were observed in the data,
with different phages peaking in abundance at different host ages, largely mirroring the
abundance of putative host bacteria. Adding phage taxonomic profiles improved the ability to
discriminate samples geographically over bacteria taxonomic profiles alone. Furthermore,
modest differences in phage and bacteria communities were observed in participants diagnosed
with type 1 diabetes.

Results
Simultaneous profiling of viruses and bacteria in whole genome shotgun sequencing data via
the Marker-MAGuU pipeline

To enable accurate profiling of phages in whole genome shotgun (WGS) sequence datasets

from stool samples, a more comprehensive database of gut phages (and a small number of
eukaryotic viruses) was compiled from publicly available resources'2°. This database, the
Trove of Gut Virus Genomes (see Materials & Methods), consists of genomes from 110,296
viral Species-level Genome Bins (SGBs)?* derived from human gut metagenome studies.
Genomes from 42.6% of the viral SGBs are predicted to be 90 - 100% complete, and the
database contains numerous phages infecting all major taxa of gut bacteria (Fig S1).

To facilitate comparable detection of viral and cellular genomes in WGS data, we
developed a marker gene approach. This approach utilizes the concept that some genes are
more taxonomically informative than others and, therefore, requires representing genomes by a
subset of genes that are species-specific and invariable. For each viral genome in Trove of Gut
Virus Genomes, essential genes (i.e., those involved in virion structure, genome packaging, and
genome replication) were annotated as potential markers. After dereplication, 416,428 unique
viral marker genes were detected. The 49,111 virus genomes with four or more unique marker
genes were used for taxonomic profiling. We developed a bioinformatics tool, Marker-MAGu,
leveraging marker genes and taxonomic identities from MetaPhlAn4 and Trove of Gut Virus
Genomes to generate trans-kingdom taxonomic profiles for gut metagenomes (Fig 1A-B)
(https://github.com/cmmr/Marker-MAGu).

Simulated read data from bacteria and phages show that Marker-MAGu has high
specificity at all coverage levels for bacteria and viruses along with high sensitivity starting at
0.5X average read depth (Fig S2A-C). Archaea and micro-eukaryotes in the Metaphlan 4
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103  database are detectable but only bacteria and viruses are focused on in this manuscript. Using
104 real TEDDY WGS sequencing data, Marker-MAGu returns a consistent ratio of viral SGBs to
105  bacterial SGBs (Fig S2D) which is not affected by the number of reads in a sample (Fig S2E).
106  As expected, Marker-MAGu closely recapitulates Metaphlan4 abundance measurements from
107  sequencing of a bacterial mock community, with slightly lower sensitivity and slightly better
108  specificity (Fig S2F-G).

109

110
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113  Marker-MAGu enables trans-kingdom taxonomic profiling of gut metagenomes. (A)

114  Schematic of the Marker-MAGu database structure. (B) Marker-MAGu profiling ruleset. (C)

115  Average Bray-Curtis dissimilarity between adjacent samples for all participants with at least 10
116  samples for virome and bacteriome. “****” represents p-value < 1e-04. (D - F) Examples plots of

117  phages and their putative host bacteria prevalence as measured by Marker-MAGu.
118
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123  characterize extant gut virus databases. (Bottom, first from left) completeness estimate

124  (CheckV) of 110,451 viral SGBs. (Bottom, second from left) length analysis of representative
125  contigs for each viral SGB. (Bottom, third from left) distribution of bacterial/archael virus host
126  prediction (drawn at class level) of viral SGBs. (Bottom, fourth from left), analysis of predicted
127  virulence of viral SGBs for each predicted host class.
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133  Marker-MAGu returns a consistent ratio of Viral:Bacterial SGBs across samples. (A)
134  Simulated random reads for 68 common phage genomes and 68 common bacterial genomes
135 were generated at 0.1X average coverage to 4X average coverage (three different random
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seeds each) and these reads were run through Marker-MAGu. F1 Score was calculated. (B) like
(A) but with number of true positives (68 possible). (C) like (A) but with number of false
positives. (D) Scatterplot showing number of viral and bacterial SGBs detected per sample
using entire TEDDY dataset. Linear relationship and pearson correlation calculated in mid-left of
panel. (E) Scatterplot showing the ratio of viral SGBs:bacterial SGBs compared to number of
sequencing reads for each sample, entire TEDDY dataset. (F-G) Bacterial taxa abundance
measurements on sequencing of ATCC bacterial genomic DNA standard 1003 using either
metaphlan4 or Marker-MAGu. Isoptericola variabilis is the only taxa not expected in the

standard. B. cereus and B. wiedmannii are closely related taxa.

Viruses Have a Higher Turnover Rate than the Bacteria in Gut Communities

To calculate viral and bacterial SGB prevalence and abundance in 12,262 WGS sequencing
samples from 887 participants from the TEDDY study, sequencing reads (average of 12.0
million reads per sample) were analyzed with the Marker-MAGu marker gene approach. With
WGS data, we expect to detect virus genomes inside virions, as well as dormant and actively
replicating virus genomes inside host cells. Trans-kingdom taxonomic profiles for each
participant show dynamic interplay between phages and their host bacteria, often revealing
successive waves of phages or phage communities affecting single host bacteria (Fig 1D-F).
Indeed, community change was higher from sample to sample for phage than bacteria (Fig 1C).

Across the entire dataset, 1,709 different bacterial SGBs were detected at least once,
and 15,693 viral SGBs were detected at least once, with higher saturation of bacterial SGBs
(Fig. 2A), with similar observations at the genus level (virus VC’s are computationally imputed
genus-level clusters). While most bacterial SGBs and most viral SGBs were detected in only
one or a few human participants, the skew towards rareness was much greater for viral SGBs
(Fig. 2B), underpinning the individual-specific nature of the virome. Relatedly, when combining
all longitudinal samples by participant, the Bray-Curtis dissimilarity of the virome was greater
between participants than the bacteriome (Fig. 2C), and the alpha diversity of the virome was
greater, on average, than the bacteriome (Fig. 2D).

The longitudinal nature of the data revealed that, over time, the virome has a higher
participant-specific diversity and turnover rate than the bacteriome. First, it was observed that
viral SGBs are detected, on average, in a smaller percentage of a participant’s samples than
bacterial SGBs (Fig. 2E). Next, plotting by number of unique samples per participant, it seems

new viral SGBs accumulate at a nearly linear rate, while new bacterial SGB accumulation
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170  approaches saturation (Fig. 2F). Indeed, the ratio of cumulative viral to bacterial SGBs

171 increases from about 1.5:1 to 2.5:1 as the number of available longitudinal participant samples
172  increases from 1 to 45.

173 Similar to previous reports on the bacteriome and virome in early childhood, it was

174  observed that the alpha diversity of viruses and bacteria increased during infancy and for at
175  least the first three years (Fig. S3A,B)'3, and this was comparable for participants in all four
176  countries of origin (Fig. S3C,D) . Furthermore, t-SNE analysis, often used to represent

177  relationships between high dimensional datapoints, of all samples showed samples from early
178 infancy partitioned into many clusters while samples taken from older children converged (Fig.
179  S8E). Samples did not partition by eventual type 1 diabetes diagnosis in this analysis (Fig.

180  S3E). There is some debate about whether Crassvirales (a.k.a crAss-like phages) increase or
181  decrease in abundance from infancy to early childhood'®'®. In TEDDY, 504 putative

182  Crassvirales genomes were detected in the Trove of Gut Virus Genomes (see Methods), and
183 the TEDDY cohort showed a clear increase of abundance and prevalence of Crassvirales over
184  time, with a plateau perhaps being reached 1000 days after birth (Fig. S3F).
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Virome and Bacteriome community change. (A) rarefaction curves of viral and bacterial taxa.
(B) measurement of participant distribution of viral and bacterial SGBs. Each hash is an SGB,
and the y-axis is log scale. (C) All-vs-all Bray-Curtis distance for bacteriome and virome
communities after averaging microbe abundance across all available samples. . (D) Alpha-
diversity measurements for bacteriome and virome in gut communities. Each dot represents the
average value from a participant. (E) SGB “persistence” within participants. Data was filtered to
exclude participants with fewer than 10 samples. Violins represent density of values from each
observation of an SGB in a participant (# times SGB detected/# total samples analyzed). Solid
black line marks 50% quantile, dotted lines are 25% and 75% quantile marks respectively. (F)
Cumulative number of viral and bacterial SGBs per participant. Each participant is represented
by a (blue) dot for viral SGBs detected across all samples and a (gold) dot for bacterial SGBs
detected across all samples connected by a gray line. (G) Ratio of cumulative viral SGBs
detected vs cumulative bacterial SGBs detected. Each dot is a participant. “****” represents p-
value < 1e-04.

10


https://doi.org/10.1101/2023.09.28.559994
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.09.28.559994; this version posted September 29, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

206  Figure S3

A Cc Bacteria D Bacteria
4 1504
g ‘1
%] i
3 :
34
§2 1 1004
8
F
» 24
14
504
04 1
3838333338388 %38¢38 »
2RBIBBREELEBBE £
day of life (rounded) 201 £ O
(=]
c Virus g Virus
B § o
g 3
1504 7] 1504
44
1004 4
€ 3 1004
3
o
2 : : 21
@ 507
] . 504
u
14
04
25535588 3s¢8288¢§8 o i
day oflfe (rounded) Bg855888858888¢8 88588888888¢88¢8
SGB type $ — . Virus day of life (rounded) day of life (rounded)
SGBtype E3 FIN B3 GER Bl SWE B3 UsA
E tSNE of Bacteria in TEDDY samples
60 60 F s
Country
v EN Country %
* GER 304 = FIN o
4 SWE 3 Total
* GER £ Samples
+ USA 8 300
o o 4 SWE I3
d M - usa 3 N
3 Dayoftife & °] 8 1000
& 20%
l TID : i
1000 N @
o
-304 10%
500 LA
i |||
0%
= 500 1000 1500
Day of Life
tSNE of Viruses in TEDDY samples .
Country 601 20%
= FIN
Country @
* GER " . EN §
s SWE 3 15%
USA * iGER g
3 Y 4 SWE 'g
w w + USA
z Dayoflite Z °] g
- :
2
-304 No 5“
- 500 ¢ Yes
' .
0 -604 0.0%
B 5 P o 3 p ~ —
20 7 tSNE-1 ISNE-1 Day of Life

208 Developmental trends in the virome and bacteriome. (A) Shannon alpha diversity of
209 samples by day of life. (B) SGB count of samples by day of life. (C) Shannon alpha diversity of
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210 samples by country and day of life. (D) SGB count of samples by country and day of life. (E) t-
211 SNE plot of all samples bacteriome (top) and virome (bottom), colored by day of life (left) and
212  eventual type 1 diabetes diagnosis (right). (F) Prevalence (top) and relative abundance (bottom)
213  of all Crassvirales by day of life.
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216  Common Gut Viral and Bacterial SGBs Participate in Ecological Succession in Early Childhood
217 To understand temporal trends in the TEDDY cohort, SGBs detected in 100 or more

218  samples were used for further analysis. This subset consists of 446 bacterial SGBs and 1,291

219  viral SGBs. By calculating the relative abundance of these common SGBs from 0 - 1400 days of
220 life across all samples, eight high-confidence “Temporal Subsets” could be separated (see

221  Methods). Interestingly, the temporal subsets describe SGBs that peak at different host ages
222  (Fig. 3A, B). Namely, Subsets 1 and 2 include SGBs present immediately after birth then

223  declining thereafter. Subset 3 includes SGBs peaking at 100 - 200 days after birth. Subset 4
224  includes SGBs peaking at day of life 300 - 400, Subset 5 peaking at day of life 400 - 600,

225  Subset 6 peaking at day of life 800 - 1100, and Subsets 7 and 8 continually increase over the
226  days of life covered in this cohort. As expected based on earlier studies'"'2, common bacteria in
227  the earliest subsets include Bifidobacterium breve and Bifidobacterium longum whereas later
228  subsets include Bacteroidales such as Phocaeicola vulgatus, Bacteroides uniformis, and

229  Alistipes onderdonkii along with Faecalibacterium species, (Table S1).

230 The viral and bacterial temporal abundance data were compared, and it was found that
231  the viral SGBs were almost always well-correlated with their putative bacterial hosts (Fig. 3C).
232  While this is expected of obligate parasites, the finding validates the approach used here. The
233  major exception to this correlation was between Lactococcus bacteria and their phages. A

234  definitive explanation cannot be offered, but it is notable that Lactococcus bacteria are

235 commonly ingested due to their role in making dairy fermentation products such as cheese.

236

237
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238  Figure 3
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240 Global patterns of viral and bacterial SGBs during development. (A) Temporal Subsets of

Bacteria SGBs in Subset

°

0.04

241  prevalent viral SGBs, drawn in separate boxes. Grey lines are individual viral SGBs and thicker
242  colored lines are average lines. (right) Bars represent temporal cluster membership. (B) Same
243  as (A) but with bacterial SGBs. (C) Correlation between prevalent viral and bacterial SGBs.
244  Since host-prediction of phages is most accurate at the genus level, the temporal data from (A)
245 and (B) was compared for each viral SGB and all bacterial SGBs from the putative host genus
246  and the best correlation was plotted.
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249  Table S1
250 Top five most abundant bacterial SGBs in each temporal subset (product of detections and Avg.
251 relative abundance)

SGB Temporal Detections Avg. relative
Assignment abundance
Bifidobacterium breve, SGB17247 Subset 1 6037 0.09835657
Enterococcus faecalis, SGB7962 Subset 1 2090 0.01045272
Enterocloster aldensis, SGB4762 Subset 1 1854 0.00314846
Lacticaseibacillus rhamnosus, SGB7144 Subset 1 1376 0.00891543
Streptococcus sp IMAU 99161, SGB8065 Subset 1 1001 0.00556041
Bifidobacterium longum, SGB17248 Subset 2 10248 0.10336652
Ruminococcus gnavus, SGB4584 Subset 2 9445 0.03180361
Erysipelatoclostridium ramosum, SGB6744 Subset 2 8759 0.01603429
Escherichia coli, SGB10068 Subset 2 7951 0.02415806
Bifidobacterium bifidum, SGB17256 Subset 2 4704 0.11227806
Klebsiella pneumoniae, SGB10115 Subset 3 1046 0.01606891
Lacticaseibacillus paracasei, SGB7142 Subset 3 890 0.01107291
Klebsiella oxytoca, SGB10118 Subset 3 707 0.01899808
Streptococcus lutetiensis, SGB8021 Subset 3 559 0.02053889
Streptococcus gallolyticus, SGB8018 Subset 3 269 0.0290952
GGB33317 SGB51734, SGB51734 Subset 4 5210 0.00577784
Veillonella parvula, SGB6939 Subset 4 3791 0.01382644
Clostridium sp C5 48, SGB4752 Subset 4 2625 0.01279254
Veillonella atypica, SGB6936 Subset 4 2212 0.00687096
Bifidobacterium animalis, SGB17278 Subset 4 799 0.01326186
GGB33728 SGB47805, SGB47805 Subset 5 8694 0.04043895
Phocaeicola vulgatus, SGB1814 Subset 5 4805 0.02713746
Bifidobacterium pseudocatenulatum, Subset 5 4491 0.082582
SGB17237
Bifidobacterium adolescentis, SGB17244 Subset 5 3475 0.0512531
Bifidobacterium catenulatum, SGB17241 Subset 5 1870 0.0572846
GGB31934 SGB59709, SGB59709 Subset 6 7118 0.01796371
Microbacterium SGB53643, SGB53643 Subset 6 6170 0.02687314
Bacteroides uniformis, SGB1836 Subset 6 5071 0.02413384
GGB33221 SGB47464, SGB47464 Subset 6 4542 0.06872922
Faecalibacterium prausnitzii, SGB15342 Subset 6 4280 0.02701713
Alistipes onderdonkii, SGB2303 Subset 7 2408 0.00983902
Clostridium leptum, SGB14853 Subset 7 2063 0.00735367
Rhodobacteraceae unclassified SGB53604, Subset 7 969 0.01030057
SGB53604
GGB3277 SGB4327, SGB4327 Subset 7 808 0.01347505
Ruminococcus sp NSJ 71, SGB4290 Subset 7 486 0.03020412
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Ruminococcus bicirculans, SGB4262 Subset 8 2519 0.0085017

GGB3293 SGB4348, SGB4348 Subset 8 1369 0.03900648
Bacteroides cellulosilyticus, SGB1844 Subset 8 720 0.00954628
Faecalibacterium SGB15346, SGB15346 Subset 8 706 0.00884722
GGB9758 SGB15368, SGB15368 Subset 8 419 0.01269754

252
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Virus Abundance Data Increases Power to Discriminate Between Samples from Different

Countries

The TEDDY study cohort consists of children who are vulnerable to development of type 1
diabetes (see Methods) and reside in four western countries (Germany, Finland, Sweden, and
USA). To understand the how type 1 diabetes develops, each of the 114 participants in TEDDY
that developed type 1 diabetes was matched with one of 114 participants who did not develop
type 1 diabetes, based on geography, sex, and family history of type 1 diabetes?3. This nested
case-control study design was used here to assess microbial communities during development
of type 1 diabetes. Similar to studies of bacterial community composition in the TEDDY cohort
as well as metastudies of type 1 diabetes, viral and/or bacterial SGB abundance could not
reliably discriminate between children who developed type 1 diabetes and those who did not
(Fig. 4, right panels)'>2%5. However, random forest classifiers demonstrated that both bacteriome
and virome data had discriminatory power to separate samples geographically, with virome data
outperforming bacteriome data (virome better in 3/4 countries, bacteriome better in 0/4
countries), and a combination of both types of SGBs outperforming either measure alone (4/4
countries). Quantification of the most important features (SGBs) by country and day of life
demonstrates geographic differences for many of these features (Fig S4).
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272  Figure 4
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274  Machine Learning on Virus and Bacteria Abundance Data. Boxes represent data from 50
275  permutations of a random forest model on the same data split into train/test groups (70%/30%)
276  wherein all samples from each participants were always kept in the same group. Each iteration
277  was run with a different random seed. p-values: “ns”: 1 > p >= 0.5, “*”: 0.05 > p >=0.01, “**”:
278  0.01 >p >=0.001, “***7: 0.001 > p >= 1e-4, “****”: p > 1e-4.
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281  Figure S4
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283  Viral and bacterial SGBs with high importance for random forest models. SGB abundance
284 by day of life. (A) USA vs. other countries (B) Germany vs. other countries (C) Finland vs. other
285  countries. (D) Sweden vs. other countries
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Differences in Rate of Community Change Between Groups in TEDDY Study

Analysis of viral and bacterial community change over time in each participant was
conducted by calculating Bray-Curtis dissimilarity between each sample and the next,
proceeding temporally. Interestingly, average Bray-Curtis dissimilarity was modestly lower in
participants who went on to develop type 1 diabetes than those who did not for both virome and
bacteriome measurements (Fig 5A,D). Further, when looking at comparisons across age, the
trend is strongest between 400 and 700 days of life (approximately the second year of life) (Fig.
5B,E), whereas median age of diagnosis with type 1 diabetes was 2.4 years?. Some
differences in average Bray-Curtis dissimilarity were also seen between participants from
different countries (Fig 5C,F). Measuring relative abundance of the taxa from different Temporal
Subsets (see Fig 3A-B), samples (particularly Day of Life 700 - 1400) from participants
diagnosed with type 1 diabetes had differential abundance of Temporal Subsets 2, 5, 6, and 7 at
various ages (Fig S5).
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303 Figure 5
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304
305 Comparison of Community Change and Diversity. (A) Virome Average Bray-Curtis

306  dissimilarity metrics for type 1 diabetes (T1D) using nested case-control design pairing each
307  participant who developed type 1 diabetes with a control participant. Each dot is a participant.
308 Lines are drawn between case-control pairs. Statistical test was paired Wilcoxon test. (B)

309 Samples are binned by day of life of collection and plotted by Bray-Curtis dissimilarity to follow
310 up sample when both participants in pair had one or more samples from that time period. (C)
311 Virome Average Bray-Curtis dissimilarity metrics by country (not nested case-control) (D-F) Like
312  (A-C) but for bacteriome. (All) p-values: “ns”: 1 > p >=0.05, “*: 0.05 > p >=0.01, “***: 0.01 > p
313  >=0.001, “**”: 0.001 > p >= 1e-4, “****”: p > 1e-4.
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316  Figure S5
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317

318 Dissimilarity for type 1 diabetes sub-groups. Abundance of prevalent Temporal Subset
319  species (see Fig 3) for T1D and non-T1D groups across days of life. Each dot is a participant.
320 Lines are drawn between case-control pairs. Paired Wilcoxon tests with Benjamini-Hochberg
321  Multiple test correction. (All) p-values: “ns™: 1 > p >= 0.5, “**: 0.05 > p >= 0.01, “**”: 0.01 > p >=
322  0.001, “**”: 0.001 > p >= 1e-4, “****”: p > 1e-4.
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Discussion
In this study, we dissect the dynamics of the gut phages and bacteria in developing

children and find individual specificity but multi-layered pattens of ecological succession. As a
previous study of bacterial communities in the TEDDY cohort'? suggested, certain bacterial
SGBs thrive at different stages of human development. This was similarly observed for viral
SGBs in this study. The more complex layer of ecological succession emerged when we noticed
that phages typically come and go from participants’ guts more quickly than bacteria. We then
observed that many long-lived gut bacteria hosted temporally separated phages and/or phage
communities during their tenure. The likely model is that newly introduced bacterial species
colonize guts and succeed extant bacteria as participant diet and immune development change,
(i.e. new niches emerge). With this succession, the phage communities also change, reflecting
host availability. On top of this, the observation that the phages are more transitory points to an
“arms race” between phages and bacteria that often results in temporary success of the phage
followed by evolution of resistance in the bacterial host, rather than concurrent extinction of the
phage and its host. Bacterial resistance probably emerges via point mutation, horizontal gene
transfer, or introduction of a new resistant bacterial strain of the same species replacing
susceptible strains. In addition, some studies suggest that strain-level replacement of bacterial
species occurs frequently in the human gut®®, and this type of switch is not detected with the
abundance/detection tools used here. In a strain-level replacement, prophages would
appear/disappear in the analysis while susceptibility to specific phage infections is expected to
change as well.

By sampling many times longitudinally during the first years of life, it becomes clear that
each participant’s gut is exposed to many more distinct phages than distinct bacteria, and this
may have implications for human immune systems. Ordered arrays of antigens are highly
immunogenic and likely used by B cells in detecting pathogenic viruses and bacteria®”%.
Phages, too, have arrayed capsid shells and tails that human immune systems may be primed
to recognize and generate antibodies and memory B cells against. While some work has
examined the interaction of phage and human immune systems?®, the data presented here
suggest that phages may occupy a larger share of the total antigenic surveillance space of
immune systems than was previously considered. Phage antigens should be considered in
future studies interested in how cross-reactivity affects inflammation, allergies, and protection

against novel pathogens®°.
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While this study demonstrates that viral SGBs often quickly enter and exit the gut
ecosystems of individuals, these findings do not directly contradict previous work showing that
some phages can be detected in an individual's gut over a long period of time (Fig. 1D-F)3'.

The superiority of combining bacterial and viral SGBs over either data type alone for use
in random forest models may improve the prospects for microbiome-based diagnostics. The
improvement seen by including viral SGBs may be related to the geographic correlation of some
bacterial strain-level phylogenies®. Different bacterial strains likely have unique
functions/phenotypes, but also, to some extent, have distinct prophage content and phage
susceptibility. However, it could also provide clues to the question “where do our gut phages
come from?’, pointing towards acquisition dependent on a mixture of environmental
conditions''. We also note that by keeping all the samples from a given participant together in
either the testing or training group for model development likely reduced participant-specific
biasing of the models (Methods).

As the attention of microbiome scientists turns towards phages, we believe it will be
important to establish the rules of engagement of these viruses and their host bacteria. Phage-
aware or trans-kingdom approaches, such as Marker-MAGu or recently developed Phanta®3, will
need to be adopted to this end. For example, can we identify promising phages for use in phage
therapy based on how their appearance or disappearance in individuals’ guts effects potentially
pathogenic bacteria. Do any phages have an effect on their host’s response to perturbations
such as antibiotics, change in diet, or introgression of new bacteria? By evaluating temporal
trends in the guts of developing children, we help lay the groundwork for therapeutics and
diagnostics that aim to leverage the microbiome and its constituents.
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381 Methods
382  Cohort and Study Design
383 In this study, whole genome shotgun data from the TEDDY study, composed of over 12,262

384 longitudinal samples from 887 children in 4 countries, is reanalyzed to assess phage and

385  bacterial dynamics simultaneously. Detailed descriptions of the TEDDY Study, its cohort, and
386 the sequencing of stool samples can be found in previous publications 22223, Briefly, the TEDDY
387  Study is composed of six clinical research centers: three in the United States (Colorado,

388  Georgia/Florida and Washington), and three in Europe (Finland, Germany and Sweden). The
389  population (both cases and controls) is based on children at high risk for T1D based on their
390 HLA genotype with 10% based on family history in addition to HLA. Collection of stool samples
391  and associated metadata, collected using validated questionnaires, began as of 31 May 2012.
392  Matching factors for case and control children were geographical location, sex and family history
393 of T1D. Enrolled children were followed prospectively from three months to 15 years with stool
394  samples collected monthly from 3 to 48 months of life, then every three months until the age of
395 10 years. Bacterial DNA was extracted using the PowerMag Microbiome DNA isolation kit

396 following the manufacturer’s instructions. For whole-genome shotgun sequencing, individual
397 libraries were constructed from each sample, pooled and loaded onto the HiSeq 2000 platform
398 (lllumina) and sequenced using the 2 x 100 bp paired-end read protocol.

399 122223 The whole-genome shotgun sequencing metagenome reads are deposited in NCBI's
400  SRA repository under PRUJNA416160. To download reads, individuals must request access to
401  project phs001442 through the dbGaP authorization system.

402

403  Compilation and Processing of the Trove of Gut Virus Genomes

404  Sequences from the Gut Virome Database, the Cenote Human Virome Database, the

405 Metagenomic Gut Virus catalog, and the Gut Phage Database'’2° were downloaded and

406 dereplicated at 95% average nucleotide identity (ANI) across 85% alignment fraction (AF) using
407  anicalc.py and aniclust.py from the CheckV (version 0.9.0) package®, in line with metagenomic
408  virus sequence community standards?*. Exemplar sequences from each cluster/singleton from
409 the input sequences were kept and ran through Cenote-Taker 2 (version 2.1.5)% to predict virus
410 hallmark genes within each sequence using the ‘virion’ hallmark gene database. Sequences
411 were kept if they 1) encoded direct terminal repeats (signature of complete virus genome), one
412  or more virus hallmark genes, and were over 1.5 kilobases or longer, or 2) encoded 2 or more
413  virus hallmark genes and were over 12 kilobases. Sequences passing this threshold were run
414  through CheckV to remove flanking host (bacterial) sequences and quantify the virus
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gene/bacteria gene ratio for each contig. Sequences with 3 or fewer virus genes and 3 or more
bacterial genes after pruning/were discarded. Finally, sequences passing this threshold were
dereplicated again with CheckV scripts at 95% ANI and 85% AF to yield the Trove of Gut Virus
Genomes of 110,296 genomes/genome fragments each representing a viral SGB (Fig. S1).

For each sequence in the Trove of Gut Virus Genomes CheckV was used to estimate
completeness, ipHOP (version 1.1.0)% was used to predict bacterial/archael host genus.
Bacphlip (version 0.9.3)% was run on each of the sequences predicted to be 90% or more
complete to predict phage virulence.

vConTACT2 (version 0.11.3)% was used to cluster viral SGBs from the Trove of Gut
Virus Genomes into virus clusters. In addition to viral SGBs with vConTACT2 “Singleton” labels,
viral SGBs with vConTACT2 labels “Unassigned”, “Outlier”, “Overlap”, “Clustered/Singleton”

were also considered “Singletons” for downstream analysis.

Constructing a trans-kingdom marker gene database

Hallmark genes (i.e. genes involved in replication, packaging, assembly, and virion structure)
were extracted from each virus exemplar genome from the Trove of Gut Virus Genomes using
HMMs from Cenote-Taker 2 (database version June 16th, 2021). Next, hallmark genes were
concatenated by genome and these concatenated sequences were dereplicated at 95% ANI
and 85% AF. Based on this dereplication, 70,573 virus genomes had unique virus hallmark sets
based on this dereplication, indicating reduced diversity compared to whole-genome
dereplication. These viruses encoded of 416,420 putative marker genes. In order to be
comparable with bacterial/archaeal species-level genome bins (SGBs) from Metaphlan4?’,
which have dozens of marker genes each, detection was limited to the 49,111 viral SGBs with
four or more marker genes. These genes were added to the Metaphlan4 database (version
Jan21) which has marker genes from 27,071 bacteria, archaea, and micro-eukaryotes. The

resulting database, which was used in these analyses, is Marker-MAGu_markerDB_v1.0.

Marker-MAGu pipeline for marker gene-based taxonomic profiling

To quality control lllumina reads and filter out human sequences, BBDuk from BBTools
was used to remove lllumina adapters, reads less than 50 nt in length and with a Q score less
than 23, then read pairs were aligned to the human reference genome hg38 and phiX spike-in
sequence. Unaligned read pairs were used in subsequent analyses.

Marker-MAGu is a simple pipeline. First, reads are aligned to the Marker-
MAGu_markerDB_v1.0 using minimap2*, treated as unpaired reads. Alignments are filtered so
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that only reads with a single unique alignment are kept (Samtools*’) and only reads with at least
90% identity to the reference genome across at least 50% of the read length are kept (CoverM).
Read alignment information for each gene is calculated with CoverM
(https://github.com/wwood/CoverM). Then, genes are grouped by taxon and, with ‘standard’
settings, only taxa with at least 75% of genes with two aligned reads are considered detected (R
tyidyverse packages) (10.21105/joss.01686). Relative abundance of each taxon is then
calculated. The data in this study were processed with Marker-MAGu v0.4.0 with “~detection
standard”, and database v1.0.

For benchmarking, samples were processed as above and run through Metaphlan v4.0.6 with

default settings.

Identifying Crassvirales Contigs

A BLAST database was constructed from amino acid sequences of Large Terminase genes
from available Crassvirales genomes in RefSeq August 17, 2022. All contigs from Trove of Gut
Virus Genomes were queried against this database using BLASTX with cutoffs of evalue <= 1e-
5, average amino acid identity of >= 40%, and alignmnent length of >= 500 amino acids. This
threshold was used as it returned 0 hits against non-Crassvirales virus genomes in GenBank.

Diversity and Community Metrics

R package vegan was used to calculate Shannon diversity, SGB richness, and Bray-Curtis
dissimilarity. Rarefaction curves were calculated using R package micropan*'. T-SNE
calculations were done using RtSNE (v0.16) (https://github.com/jkrijthe/Rtsne)

Temporal cluster analysis

SGBs detected in 100 or more samples were analyzed to calculate average abundance from
day of life 0 - 100 through day of life 1300 - 1400, in 100-day increments. Temporal clusters
were calculated and assigned using R package latrend (https://github.com/philips-
software/latrend).

Random forest modeling

Random forest models were generated by using SGBs present in 1% or more samples, and by
grouping all samples from each participant together either in the test or training group. Training
groups were composed of samples from 70% of participants, and test groups were composed of
samples from 30% of participants. A different random seed was used in each of 50 iterations of
the model training/testing with python package scikitlearn*? to get receiver operating
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characteristic area under the curve (ROC AUC) and feature importance. The twelve features
(SGBs) with the highest average importance over 50 iterations were chosen for supplementary
plots.

Data and reproducible script availability

The Marker-MAGu pipeline is available at https://github.com/cmmr/Marker-MAGu.

Read abundance table for bacterial and viral SGBs as well as files containing other
metadata that are needed to reproduce the analyses and figures are available on Zenodo,
doi:10.5281/zen0d0.8384307.

R notebooks and Jupyter Notebooks, which can be used to reproduce each figure and
analysis are publicly available on github.

Data was processed and parsed with R tidyverse libraries. Most figures were drawn with
ggplot2 and packages ggridges (https://wilkelab.org/ggridges/), wesanderson
(https://github.com/karthik/wesanderson), and nationalparkcolors

(https://github.com/katiejolly/nationalparkcolors) were also used.

Acknowledgements

The TEDDY Study is funded by U01 DK63829, U0O1 DK63861, UO1 DK63821, U0O1 DK63865,
U01 DK63863, U0O1 DK63836, U0O1 DK63790, UC4 DK63829, UC4 DK63861, UC4 DK63821,
UC4 DK63865, UC4 DK63863, UC4 DK63836, UC4 DK95300, UC4 DK100238, UC4
DK106955, UC4 DK112243, UC4 DK117483, U0O1 DK124166, U0O1 DK128847, and Contract
No. HHSN267200700014C from the National Institute of Diabetes and Digestive and Kidney
Diseases (NIDDK), National Institute of Allergy and Infectious Diseases (NIAID), Eunice
Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National
Institute of Environmental Health Sciences (NIEHS), Centers for Disease Control and
Prevention (CDC), and JDRF. This work is supported in part by the NIH/NCATS Clinical and
Translational Science Awards to the University of Florida (UL1 TR000064) and the University of
Colorado (UL1 TR002535). The content is solely the responsibility of the authors and does not
necessarily represent the official views of the National Institutes of Health.

28


https://zenodo.org/record/8384307
https://github.com/mtisza1/teddy_vir_bac_marker_gene
https://doi.org/10.1101/2023.09.28.559994
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.09.28.559994; this version posted September 29, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

512
513

514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560

available under aCC-BY-ND 4.0 International license.

References

10

11

12

13

14

15
16

17

18

19

Bosco, N. & Noti, M. The aging gut microbiome and its impact on host immunity. Genes
Immun 22, 289-303, doi:10.1038/s41435-021-00126-8 (2021).

Moore, R. E. & Townsend, S. D. Temporal development of the infant gut microbiome.
Open Biol 9, 190128, doi:10.1098/rsob.190128 (2019).

Nieuwdorp, M., Gilijamse, P. W., Pai, N. & Kaplan, L. M. Role of the microbiome in
energy regulation and metabolism. Gastroenterology 146, 1525-1533,
doi:10.1053/j.gastro.2014.02.008 (2014).

Jameson, K. G., Olson, C. A., Kazmi, S. A. & Hsiao, E. Y. Toward Understanding
Microbiome-Neuronal Signaling. Mol Cell 78, 577-583, doi:10.1016/j.molcel.2020.03.006
(2020).

Rosshart, S. P. et al. Laboratory mice born to wild mice have natural microbiota and
model human immune responses. Science 365, doi:10.1126/science.aaw4361 (2019).
Antimicrobial Resistance, C. Global burden of bacterial antimicrobial resistance in 2019:
a systematic analysis. Lancet 399, 629-655, doi:10.1016/S0140-6736(21)02724-0
(2022).

Bobay, L. M., Rocha, E. P. & Touchon, M. The adaptation of temperate bacteriophages
to their host genomes. Mol Biol Evol 30, 737-751, doi:10.1093/molbev/mss279 (2013).
Gamage, S. D., Patton, A. K., Hanson, J. F. & Weiss, A. A. Diversity and host range of
Shiga toxin-encoding phage. Infect Immun 72, 7131-7139, doi:10.1128/IA1.72.12.7131-
7139.2004 (2004).

Kapourchali, F. R. & Cresci, G. A. M. Early-Life Gut Microbiome-The Importance of
Maternal and Infant Factors in Its Establishment. Nutr Clin Pract 35, 386-405,
doi:10.1002/ncp.10490 (2020).

Duranti, S. et al. Maternal inheritance of bifidobacterial communities and bifidophages in
infants through vertical transmission. Microbiome 5, 66, doi:10.1186/s40168-017-0282-6
(2017).

OIm, M. R. et al. Robust variation in infant gut microbiome assembly across a spectrum
of lifestyles. Science 376, 1220-1223, doi:10.1126/science.abj2972 (2022).

Stewart, C. J. et al. Temporal development of the gut microbiome in early childhood from
the TEDDY study. Nature 562, 583-588, doi:10.1038/s41586-018-0617-x (2018).

Liang, G. et al. The stepwise assembly of the neonatal virome is modulated by
breastfeeding. Nature 581, 470-474, doi:10.1038/s41586-020-2192-1 (2020).
Shamash, M. & Maurice, C. F. Phages in the infant gut: a framework for virome
development during early life. ISME J 16, 323-330, doi:10.1038/s41396-021-01090-x
(2022).

Shkoporov, A. N. et al. The Human Gut Virome Is Highly Diverse, Stable, and Individual
Specific. Cell Host Microbe 26, 527-541 €525, doi:10.1016/j.chom.2019.09.009 (2019).
Taboada, B. et al. The gut virome of healthy children during the first year of life is diverse
and dynamic. PLoS One 16, €0240958, doi:10.1371/journal.pone.0240958 (2021).
Tisza, M. J. & Buck, C. B. A catalog of tens of thousands of viruses from human
metagenomes reveals hidden associations with chronic diseases. Proc Natl Acad Sci U
S A118, doi:10.1073/pnas.2023202118 (2021).

Gregory, A. C. et al. The Gut Virome Database Reveals Age-Dependent Patterns of
Virome Diversity in the Human Gut. Cell Host Microbe 28, 724-740 e728,
doi:10.1016/j.chom.2020.08.003 (2020).

Nayfach, S. et al. Metagenomic compendium of 189,680 DNA viruses from the human
gut microbiome. Nat Microbiol 6, 960-970, doi:10.1038/s41564-021-00928-6 (2021).

29


https://doi.org/10.1101/2023.09.28.559994
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.09.28.559994; this version posted September 29, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610

20

21

22

23
24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

available under aCC-BY-ND 4.0 International license.

Camarillo-Guerrero, L. F., Almeida, A., Rangel-Pineros, G., Finn, R. D. & Lawley, T. D.
Massive expansion of human gut bacteriophage diversity. Cell 184, 1098-1109 1099,
doi:10.1016/j.cell.2021.01.029 (2021).

Blanco-Miguez, A. et al. Extending and improving metagenomic taxonomic profiling with
uncharacterized species using MetaPhlAn 4. Nat Biotechnol, doi:10.1038/s41587-023-
01688-w (2023).

Group, T. S. The Environmental Determinants of Diabetes in the Young (TEDDY) study:
study design. Pediatr Diabetes 8, 286-298, doi:10.1111/j.1399-5448.2007.00269.x
(2007).

Rewers, M. et al. The Environmental Determinants of Diabetes in the Young (TEDDY)
Study: 2018 Update. Curr Diab Rep 18, 136, doi:10.1007/s11892-018-1113-2 (2018).
Roux, S. et al. Minimum Information about an Uncultivated Virus Genome (MIUViG). Nat
Biotechnol 37, 29-37, doi:10.1038/nbt.4306 (2019).

Tierney, B. T. et al. Systematically assessing microbiome-disease associations identifies
drivers of inconsistency in metagenomic research. PLoS Biol 20, e3001556,
doi:10.1371/journal.pbio.3001556 (2022).

Chen, D. W. & Garud, N. R. Rapid evolution and strain turnover in the infant gut
microbiome. Genome Res 32, 1124-1136, doi:10.1101/gr.276306.121 (2022).
Veneziano, R. et al. Role of nanoscale antigen organization on B-cell activation probed
using DNA origami. Nat Nanotechnol 15, 716-723, doi:10.1038/s41565-020-0719-0
(2020).

Bachmann, M. F. & Jennings, G. T. Vaccine delivery: a matter of size, geometry, kinetics
and molecular patterns. Nat Rev Immunol 10, 787-796, doi:10.1038/nri2868 (2010).
Gembara, K. & Dabrowska, K. Phage-specific antibodies. Curr Opin Biotechnol 68, 186-
192, doi:10.1016/j.copbio.2020.11.011 (2021).

Bartolo, L. et al. SARS-CoV-2-specific T cells in unexposed adults display broad
trafficking potential and cross-react with commensal antigens. Sci Immunol 7, eabn3127,
doi:10.1126/sciimmunol.abn3127 (2022).

Minot, S. et al. Rapid evolution of the human gut virome. Proc Nat/ Acad Sci U S A110,
12450-12455, doi:10.1073/pnas.1300833110 (2013).

Suzuki, T. A. et al. Codiversification of gut microbiota with humans. Science 377, 1328-
1332, doi:10.1126/science.abm7759 (2022).

Pinto, Y., Chakraborty, M., Jain, N. & Bhatt, A. S. Phage-inclusive profiling of human gut
microbiomes with Phanta. Nat Biotechnol, doi:10.1038/s41587-023-01799-4 (2023).
Nayfach, S. et al. CheckV assesses the quality and completeness of metagenome-
assembled viral genomes. Nat Biotechnol 39, 578-585, doi:10.1038/s41587-020-00774-
7 (2021).

Tisza, M. J., Belford, A. K., Dominguez-Huerta, G., Bolduc, B. & Buck, C. B. Cenote-
Taker 2 democratizes virus discovery and sequence annotation. Virus Evol 7, veaa100,
doi:10.1093/ve/veaal100 (2021).

Roux, S. et al. iPHoP: An integrated machine learning framework to maximize host
prediction for metagenome-derived viruses of archaea and bacteria. PLoS Biol 21,
3002083, doi:10.1371/journal.pbio.3002083 (2023).

Hockenberry, A. J. & Wilke, C. O. BACPHLIP: predicting bacteriophage lifestyle from
conserved protein domains. PeerJ9, e11396, doi:10.7717/peerj.11396 (2021).

Bin Jang, H. et al. Taxonomic assignment of uncultivated prokaryotic virus genomes is
enabled by gene-sharing networks. Nat Biotechnol 37, 632-639, doi:10.1038/s41587-
019-0100-8 (2019).

Li, H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics 34, 3094-
3100, doi:10.1093/bioinformatics/bty191 (2018).

30


https://doi.org/10.1101/2023.09.28.559994
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.09.28.559994; this version posted September 29, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

611 40 Danecek, P. et al. Twelve years of SAMtools and BCFtools. Gigascience 10,

612 doi:10.1093/gigascience/giab008 (2021).

613 41 Snipen, L. & Liland, K. H. micropan: an R-package for microbial pan-genomics. BMC
614 Bioinformatics 16, 79, doi:10.1186/s12859-015-0517-0 (2015).

615 42 Pedregosa, F. a. V., G. and Gramfort, A. and Michel, V., and Thirion, B. a. G., O. and
616 Blondel, M. and Prettenhofer, P., and Weiss, R. a. D., V. and Vanderplas, J. and

617 Passos, A. and & Cournapeau, D. a. B., M. and Perrot, M. and Duchesnay, E. Scikit-
618 learn: Machine Learning in Python. Journal of Machine Learning Research 12, 2825-
619 2830 (2011).

620

31


https://doi.org/10.1101/2023.09.28.559994
http://creativecommons.org/licenses/by-nd/4.0/

