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Abstract

Female sexual receptivity is essential for reproduction of a species. Neuropeptides play
the main role in regulating female receptivity. However, whether neuropeptides regulate
the establishment of neural circuits for female sexual receptivity is unknown. Here we
found the peptide hormone prothoracicotropic hormone (PTTH), which belongs to the
insect PG axis, regulated virgin female receptivity through ecdysone during neural
maturation in Drosophila melanogaster. We identified PG neurons expressing PTTH as
doublesex-positive neurons, they regulated virgin female receptivity before the
metamorphosis during the 3"-instar larval stage. Furthermore, the ecdysone receptor
EcR-A in pC1 neurons regulated virgin female receptivity during metamorphosis. The
reduced EcR-A in pC1 neurons induced abnormal morphological development of pC1
neurons without changing neural activity. Among all subtypes of pC1 neurons, the
function of EcR-A in pC1b neurons was necessary for virgin female copulation rate.
These suggested that the changes of synaptic connections between pC1b and other
neurons decreased female copulation rate. Moreover, analysis of brain transcriptomes
when EcR-A was reduced in pC1 neurons revealed that, additional genes were
regulated downstream of EcR-A function in pC1 neurons. The PG axis has similar
functional strategy as the HPG axis in mammals to trigger the juvenile—adult transition.
Our work suggests a general mechanism underlying which the neurodevelopment

during maturation regulates female sexual receptivity.
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Introduction

The success of copulation is important for the reproduction of a species. Drosophila
melanogaster provides a powerful system to investigate the neuronal and molecular
mechanism of sexual behaviors. Females decide to mate or not according to their
physiological status and the environmental condition (Dickson, 2008). Sexually mature
adult virgin females validate males after sensing the courtship song and male-specific
sex pheromone, receive courtship with pausing and opening the vaginal plate (Ferveur,
2010; Greenspan et al., 2000; Hall, 1994; Wang et al., 2021). If female is not willing to
mate, she may kick the legs, flick the wings, or extrude the ovipositor to deter males
(Connolly et al., 1973). Mated females reject males for several days after mating mainly
through more ovipositor extrusion and less opening the vaginal plate (Fuyama et al.,
1997; Wang et al., 2021). These options need the establishment of neural circuits for
female sexual receptivity. However, the associated mechanism of neural maturation and

the effect of neural maturation on female sexual receptivity is little known.

doublesex (dsx) and fruitless (fru) are the terminal genes in sex determination
regulatory hierarchy. They specify nearly all aspects of somatic sexual differentiation,
including the preparation for sexual behaviors (Dickson, 2008; Manoli et al., 2013;

Manoli et al., 2006; Mellert et al., 2012; Pavlou et al., 2013; Siwicki et al., 2009;
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89 Yamamoto, 2007; Yamamoto et al., 2013). In males, male-specific fru protein (FruM)
90 (Billeter et al., 2006; Demir et al., 2005; Hall, 1978; Manoli et al., 2005; Stockinger et al.,
91  2005) and the male-specific dsx protein (DsxM) (Kohatsu et al., 2011; Pan et al., 2014;
92 Panetal, 2011; Rideout et al., 2010) are important for the male courtship behaviors. In
93 females, functional Fru protein does not exist, while the neurons in that fru P1 promoter
94  or dsx is expressed regulate some aspects of the female sexual behaviors (Kvitsiani et
95 al., 2006; Rideout et al., 2010). Fru and dsx are involved in regulating the sexual
96 dimorphism during neurodevelopment (Yamamoto et al., 2013). For instance, the sexual
97 dimorphism of P1 and mAL neurons which are all associated with male courtship and
98 aggression behaviors (Clowney et al., 2015; Hoopfer et al., 2015; Kimura et al., 2008;
99 Kohatsu et al., 2011; Pan et al., 2012; Sengupta et al., 2022; von Philipsborn et al.,

100 2011) is the result of regulation by Dsx and/or Fru (Ito et al., 2012; Kimura et al., 2008).

101 In the cis-vaccenyl acetate (cVA) pathway, which induces the courtship inhibiting in

102  males (Kurtovic et al., 2007; Wang et al., 2010), the first-order to the fourth-order

103 components are all fruGAL4-positive neurons and are either male-specific or sexually

104  dimorphic (Ruta et al., 2010). However, the role of DsxF in neurodevelopment

105 associated with female sexual behaviors is little understood.

106

107  During postembryonic development, the PG axis triggers the juvenile—adult transition,

108 similar as the function of hypothalamic—pituitary—gonadal (HPG) axis in mammals

109 (Herbison, 2016; Pan et al., 2019). Hormones of the PG axis act to transform the larval

110 nervous system into an adult version (Truman et al., 2023). Ecdysone belonging to the

111 PG axis is the prime mover of insect molting and metamorphosis and is involved in all
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112 phases of neurodevelopment, including neurogenesis, pruning, arbor outgrowth, and
113  cell death (Truman et al., 2023). The neurons read the ecdysteroid titer through two
114 isoforms of the ecdysone receptor, ECR-A and EcR-B1, according to spatial and

115 temporal conditions in the central nervous system (Riddiford et al., 2000; Truman et al.,
116  1994). EcR-A is required in fru P1-expressing neurons for the establishment of male-
117  specific neuronal architecture, and ecdysone receptor deficient males display increased
118 male—male courtship behavior (Dalton et al., 2009; Ganter et al., 2007). However, how
119 ecdysone regulates the neurodevelopment associated with female sexual receptivity,
120 especially the fru® and dsx* neurons, is unknown.

121

122 Much of studies to understand female sexual receptivity has focused on its regulation.
123  How a female respond to males is highly dependent on whether or not she has

124  previously mated. In virgin females, dsx* pCd neurons respond to the cVA, while dsx*
125 pC1 neurons also respond to male courtship song (Zhou et al., 2014). The receptive
126  females open the vaginal plate (VPO) through activation of the dsx™ vpoDN neurons
127  (Wang et al., 2021). After mated, sex peptide in the seminal fluid binds to the fru* dsx*
128  sex peptide sensory neurons (SPSNSs) in the female uterus. Then neuronal activity in
129 the dsx* sex peptide abdominal ganglion (SAG) neurons of the ventral nerve cord and in
130 the pC1 neurons is reduced (Avila et al., 2011; Feng et al., 2014; Hasemeyer et al.,
131 2009; Kubli, 2003; Wang et al., 2020b; Yang et al., 2009; Zhou et al., 2014). Therefore,
132 the sexual receptivity is reduced with less VPO and more ovipositor extrusion (OE)

133 which is controlled by dsx™ DpN13 neurons (Wang et al., 2020a). In addition,

134  neuropeptides and monoamines play a critical role in regulation of the female
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135 receptivity. The neuropeptides Drosulfakinin, myoinhibitory peptides and SIFamide are
136  involved in female sexual receptivity (Jang et al., 2017; Terhzaz et al., 2007; Wang et
137  al., 2022). As monoamines, dopamine, serotonin and octopamine are pivotal to female
138  sexual behaviors (Ishimoto et al., 2020; Ma et al., 2022; Neckameyer, 1998; Rezaval et
139 al., 2014). So far, the identified neuropeptides and monoamines modulating female

140  sexual receptivity all function during the adult stage. However, whether neuropeptides
141 or monoamines regulate the establishment of neural circuits for female sexual

142 receptivity is unknown.

143

144  To explore the factors that regulate Drosophila virgin female receptivity especially

145  during neurodevelopment, we did a knock-out screen including most of CCT members.
146  We discovered a requirement for the prothoracicotropic hormone (PTTH) during

147  postembryonic development for virgin female receptivity. We also found that PG

148 neurons expressing PTTH are dsx* neurons. PTTH, a brain derived neuropeptide

149  hormone, is the primary promoter of the synthesis of steroid hormone 20-

150 hydroxyecdysone (20E) (McBrayer et al., 2007a; Rewitz et al., 2009). Indeed, the

151  enhanced virgin female receptivity due to the loss of PTTH could be rescued through
152  feeding 20E to the 3™-instar larvae. Due to that 20E functions through its receptor EcR
153  (Riddiford et al., 2000), we then tested the function of EcR in pC1 neurons which

154  encode the mating status of females (Zhou et al., 2014). The reduced EcR-A expression
155 in pC1 neurons resulted in the unnormal anatomical pattern of pC1 neurons and the
156 reduced female copulation rate. Furthermore, the decreased female copulation rate was

157 due to the reduced EcR-A in pC1b neurons. To detect the molecular mechanism for the
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regulation of pC1 neurons in virgin female receptivity, we tested the RNAseq when EcR-
A was reduced in pC1 neurons. We found some regulated genes, which provide clues
for our future research in the molecular mechanism by which pC1 neurons regulate
virgin female receptivity. Thus, in addition to demonstrating the function of PTTH in
virgin female receptivity during neural maturation, our study identified the necessary role

of the normal pC1b neural morphology in virgin female receptivity.

Results

PTTH modulates virgin female receptivity

In Drosophila, neuropeptides and monoamines, belonging to the chemoconnectome
(CCT) (Deng et al., 2019), play a critical role in regulation of the female receptivity. To
explore the factors that regulate virgin female receptivity especially during
neurodevelopment, we screened 108 chemoconnectome (CCT) knock-out lines
generated by the CRISPR-Cas9 system (Deng et al., 2019) (unpublished data). The
result showed that prothoracicotropic hormone (PTTH) might regulate virgin female
receptivity. The deletion mutant APtth removed part of the 5" UTR and almost all coding
sequence and is a protein null (Figure 1A). We confirmed the PTTH knock-out flies by
using PCR analysis at the PTTH locus in genomic DNA samples (Figure 1B), by using
RT-PCR to identify the loss of PTTH transcripts in cDNA samples (Figure 1C) and by
detecting the immunoreactivity of PTTH in the central brain (Figure 1H). Primers used

are listed in Supplementary File 1. PTTH immunoreactivity was found in the brain of
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wild-type and heterozygous flies (Figure 1 H1 and H3), but was absent in homozygous
APtth flies (Figure 1H2). As the previous study, the APtth larvae lacking PTTH undergo
metamorphosis with about 1 day delay compared with the wild type control (Shimell et
al., 2018) (data not shown). Besides, the APfth adult male and female flies had the
significant increased weight than wild type flies (Figure 1—figure supplement 1A).
This is also consistent with that PTTH regulates developmental timing and body size in

Drosophila (Mcbrayer et al., 2007b; Shimell et al., 2018).

To confirm the function of PTTH, we tested virgin female receptivity of APtth female
flies. We found that the virgin female losing PTTH had significantly higher copulation
rate and shorter latency to copulation than wild type flies (Figure 1 D-G). In addition, the
APtth flies had higher copulation rate and lower latency to copulation compared to
heterozygous null mutant females within 2 days (Figure 1 D-E) and within 3 days,
respectively (Figure 1 D-F). The enhanced virgin female receptivity had no relationship
either with the attractivity or with the locomotion activity of virgin females (Figure 1—
figure supplement 1B-D). These results suggested that PTTH participates in virgin

female receptivity in a dose-dependent manner.

Furthermore, we carried out genetic rescue experiments to further confirm the function
of PTTH in modulating virgin female receptivity. We used the pan-neuronal driver
elavGAL4 to drive UAS-PTTH expression in PTTH mutant background. We detected the
PTTH signals using PTTH antibody in the rescued female brains (Figure 1H4). We

found that neuron-specific expression of PTTH could restore the enhanced copulation
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rate and shorter latency to copulation in APtth virgin females (Figure 11). These results

confirmed that PTTH modulates virgin female receptivity.

Dsx* PG neurons regulate virgin female receptivity.

We used new PtthGAL4 and PtthLexA which inserts GAL4 or LexA sequence before the
stop codon of the Ptth gene (Deng et al., 2019) to label and manipulate PG neurons
expressing PTTH. The labeled neurons were the same as reported before (McBrayer et
al., 2007a; Yamanaka et al., 2013), a pair of bilateral neurosecretory cells in the brain
directly innervating the prothoracic gland during the larval stage (Figure 2A and Figure
2—figure supplement 1A). The newly emerged flies had the similar anatomical pattern
with that of the larval stage (Figure 2B and Figure 2—figure supplement 1B).
However, while the prothoracic gland cells are gradually degenerating during pharate
adult development (Dai et al., 1991; Roy et al., 2018), the pattern of PG neurons labeled
by PtthGAL4 > UAS-mCD8GFP gradually could not be found before the 10" hour after

eclosion (Figure 2—figure supplement 2).

Most identified neurons associated with female sexual behaviors express doublesex
gene. We asked whether PG neurons are a part of the doublesex circuitry or not.
Double labeling of dsxLexA and PtthGAL4 neurons (LexAop-tomato,UAS-
stingerGFP/PtthLexA;dsxGAL4/+) revealed that PG neurons are all doublesex-positive
(Figure 2C). We then used an intersectional strategy to visualize overlapped expression

between dsxLexA and PtthGAL4 (UAS > stop > myrGFP/+;LexAop2-
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FlpL,dsxLexA/PtthGAL4). We observed all PG neurons with GFP signals (Figure 2D).

These results suggested that PG neurons are dsx™ neurons.

We then analyzed whether PG neurons are involved in the modulation of virgin female
receptivity. First, we activated PG neurons transiently in adult virgin females by driving
the temperature-sensitive activator dTrpA1 (Hamada et al., 2008) using PtthGAL4. PG
neurons were activated at 29°C compared with the control treatment at 23°C. No
significantly different copulation rate or latency to copulation was detected (Figure 2—
figure supplement 3A-C). This suggested that PG neurons do not regulate virgin

female receptivity during the adult stage.

To identify the detail time for the function of PG neurons in virgin female receptivity, we
inactivated PG neurons through kir2.1 under the control of the temporal and regional
gene expression targeting system (McGuire et al., 2004). The inactivation of PG
neurons during larval stage enhanced virgin female copulation rate significantly (Figure
2E). However, when PG neurons were inactivated during pupal or adult stages, virgin
female copulation rate did not change significantly (Figure 2 F-G). Furthermore, we
activated PG neurons at different stages overlapping the postembryonic larval
developmental time using dTrpA1 (Figure 3A). Stage 1 was from the 1s-instar larvae to
six hours before the 3 -instar larvae. Stage 2 was from six hours before the 3" -instar
larvae to the end of the wandering larvae. Stage 3 was from the end of wandering
larvae to the end of the 2" day of the pupal stage. Stage 4 was from the end of the 2"

day of the pupal stage to the eclosion of adults. The copulation rate did not change

10
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significantly when activating PG neurons during the stage 1, stage 3 or stage 4 (Figure
3B, 3D and 3E). However, we found the significant lower copulation rate and the longer
latency to copulation only when PG neurons were activated during the stage 2 (Figure
3C and Figure 3F). The defected copulation was not due to a lower locomotion activity
of virgin females (Figure 3G). Taken together, our findings indicated that the activity of
dsx* PG neurons negatively regulate virgin female receptivity during the stage from the

start of the 3™-instar to the end of wandering stage.

PTTH modulates virgin female receptivity through ecdysone.

The 3-intar larval stage is the critical stage for the initiation of metamorphosis involving
the synthesis of ecdysone (Imura et al., 2020; Lavrynenko et al., 2015; Shimell et al.,
2018). To test whether PTTH regulates virgin female receptivity through regulating the
synthesis of ecdysone, we rescued the enhanced female receptivity by feeding 20E to
the 3"-intar larval APtth flies. The enhanced copulation rate and shorter latency to
copulation of the APtth flies were rescued to the comparable level of wild type females
(Figure 4). Furthermore, the wild type females fed by 20E had no significantly different
copulation rate and latency to copulation compared with the wild type females fed by the
same volume of 95% ethanol which is the solvent of 20E (Figure 4). This suggested

that PTTH regulates virgin female receptivity through the titer of ecdysone.

Ecdysone receptor EcR-A in pC1 neurons regulates virgin female copulation rate.

11
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Given that PTTH regulates virgin female receptivity through ecdysone which acts on its
receptor EcR, we then asked that whether ecdysone regulates the function of neurons
associated with virgin female receptivity through EcR. pC1 and vpoDN neurons are two
main dsx* neurons involved in virgin female receptivity (Wang et al., 2021; Zhou et al.,
2014). pC1 neurons encode the mating status of female flies, vpoDN neurons regulate
the opening of vaginal plate when females attend to accept males. EcR-A and EcR-B1
are the two prominently expressed ecdysone receptors in the CNS (Riddiford et al.,
2000). First, we tested the expression of ECR-A and EcR-B1 in these two neurons on
the 2" day of the pupal stage when ecdysone functions as the main mover in the
metamorphosis (Dalton et al., 2009; Truman et al., 1994). The GFP signals labeled by
pC1-ss2-GAL4 and vpoDN-ss1-GAL4 were merged well with the signals of both ECR-A
and EcR-B1 antibodies respectively (Figure 5—figure supplement 1). This revealed
that EcCR-A and EcR-B1 express in both pC1 and vpoDN neurons. We then tested the
function of EcR in pC1 and vpoDN neurons through reducing the expression of EcR-A
and EcR-B1 respectively. We used the split GAL4 for pC1 and vpoDN neurons to drive
the UAS-EcR-RNAI. First, we reduced the expression of all EcR isoforms in pC1
neurons, this decreased the copulation rate and prolonged the latency to copulation
significantly (Figure 5—figure supplement 2A). Furthermore, we reduced the
expression of ECR-A in pC1 neurons. The virgin female had the significant lower
copulation rate and longer latency to copulation (Figure 5A). The reduced copulation
rate had no relationship with the attractivity (Figure 5E) and the locomotion activity of
virgin females (Figure 5—figure supplement 2B). When reducing the expression of

EcR-B1 in pC1 neurons, virgin females had the significant longer latency to copulation

12
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but the comparable copulation rate to controls (Figure 5B). However, reducing the
expression of EcCR-A (Figure 5—figure supplement 3 A-C) and EcR-B1 (Figure 5—
figure supplement 3 D-F) using three split vpoDNGAL4s in vpoDN neurons all did not
affect virgin female receptivity. This suggested that the expression of EcR-A in pC1
neurons regulates virgin female copulation rate, but EcR isoforms in vpoDN neurons do

not modulate virgin female receptivity.

Two split-GAL4 drivers for pC1 neurons had been obtained previously. pC1-ss1-GAL4
labels pC1-a, ¢ and -e neurons, and pC1-ss2-GAL4 labels all pC1-a, -b, -c, -d and -e
neurons (Wang et al., 2020b). We also tested virgin female receptivity when EcR-A or
EcR-B1 were reduced in pC1-a, -c and -e neurons simultaneously using pC1-ss1-GAL4
respectively. While the copulation rate or the latency to copulation did not change
significantly (Figure 5 C-D). This suggested that, pC1b and/or pC1d neurons are
necessary for the functions of ECR-A and EcR-B1 in pC1 neurons on virgin female
receptivity. Whether pC1d is involved in the regulation of female receptivity is uncertain
(Deutsch et al., 2020; Schretter et al., 2020; Taisz et al., 2023). However, when
reducing EcR-A in pC1d neurons alone using the specific split GAL4 SS56987
(Schretter et al., 2020), virgin female receptivity including copulation rate and latency to
copulation did not change significantly compared with controls (Figure 5—figure
supplement 4). These results suggested that the function of ECR-A in pC1b neurons is

necessary for virgin female copulation rate.
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317  As recently mated females may reduce sexual receptivity and increase egg laying (Avila
318 etal., 2011; Kubli, 2003). we asked whether the decreased copulation rate induced by
319 EcR-A could be a post-mating response and correlate with elevated egg laying. To

320 address this, we examined the number of eggs laid by virgin females when EcR-A was
321 reduced in pC1 neurons. We found that manipulation of EcCR-A did not enhance egg
322 laying significantly in virgin females (Figure 5F). Meanwhile, we further analyzed

323 whether reduction of EcR-A in pC1 neurons regulates the opening of vaginal plate

324  (VPO) or the ovipositor extrusion (OE). We found that reducing the EcR-A expression in
325 pC1 neurons lead to the significantly less VPO and more OE (Figure 5 G-H). These
326  results suggested that reduced EcR-A expression in pC1 neurons results in the similar
327 phenotype to that of mated females.

328

329 EcR-A participates in the morphological development of pC1 neurons.

330

331 EcR isoforms have distinct temporal and spatial expression patterns in the CNS

332 (Riddiford et al., 2000; Truman et al., 1994). It is unknown when EcR-A functions in pC1
333  neurons for virgin female receptivity. Thus, we examined virgin female receptivity when
334 EcR-A expression was conditionally reduced through RNAi via the pC1-ss2-GAL4 under
335 the control of the temporal and regional gene expression targeting system (McGuire et
336 al,, 2004). EcR-A was reduced during the larval, pupal and adult stage respectively

337 (Figure 5 I-K). Only during the pupal stage, reducing EcR-A made the significant lower
338 copulation rate and longer latency to copulation (Figure 5J). The result suggested that

339 EcR-Ain pC1 neurons plays a role in virgin female receptivity during metamorphosis.
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This is consistent with that PTTH regulates virgin female receptivity before the start of

metamorphosis which is around the puparium formation.

We then tested how EcR-A functions in pC1 neurons to modulate virgin female
receptivity. First, we tested the morphology of pC1 neurons when reducing the
expression of ECR-A in pC1 neurons. We found that the morphology of pC1 neurons
appeared after the formation of the white pupa (Figure 6A1). The reduced EcR-A
expression induced the more elaborated morphologies of the pC1-d/e cells, especially
the extra vertical projection (EVP) near the midline of brains (Figure 6 B-D) (Deutsch et
al., 2020). These changes exhibited from the second day of the pupal stage (Figure 6
B1-B2 and 6E) and maintained at the adult stage (Figure 6 D1-D2 and 6F). Meanwhile,
the number of pC1 cell bodies in adult flies when EcR-A was reduced were the same as
that of wild type flies (Figure 6G). Previous studies suggested that pC1d cells serve as
a hub within the central brain for dsx* and fru* neurons (Deutsch et al., 2020). Thus, the
unnormal development of pC1d neurons may induce the changes between pC1d

neurons and other dsx* and fru® neurons to affect associated behaviors.

Furthermore, we asked whether reduced female copulation rate was due to that ECR-A
expression affected the activity of pC1 neurons. Because all pC1 cells characterized so
far project to the lateral junction of the lateral protocerebral complex (LPC) (Kimura et
al., 2015; Rezaval et al., 2016; Scheffer et al., 2020; Wang et al., 2020b; Wu et al.,
2019; Zhou et al., 2014), we expressed GCamp6s in all pC1 neurons and tested the

calcium signals in the lateral junction of LPC when EcR-A was knocked down (Figure 6
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D1-D2). Reduced EcR-A did not induce significantly different calcium responses in the
LPC (Figure 6H). Thus, our results suggested that the decreased female copulation
rate induced by reduced EcR-A in pC1 neurons was mainly due to the morphological
changes of pC1b neurons, which then modulate the connections of pC1b neurons with

other neurons.

Reduction of EcR-A in pC1 neurons affects gene expression.

To further detect the factors that were regulated downstream of ECR-A in pC1 neurons
for the function in virgin female receptivity, we tested the transcriptome of brain in adult
virgin females when EcR-A was knocked down in pC1 neurons. We focused on the
differently expressed genes of the 4" day after eclosion when mating behaviors were
tested. We identified 527 differentially expressed (p < 0.01) genes, 123 of which passed
a false discovery rate (FDR) cutoff of 0.01 (Figure 7, Supplementary File 2 and

Supplementary File 3).

The gene encoding dopamine beta-monooxygenase (DBM) was the top most down-
regulated gene (Figure 7 A-B). The mammal homolog of DBM is monooxygenase
DBH-like 1 (Moxd1). Moxd1 has the similar structure as the mammal dopamine -
hydroxylase (DBH) which is the enzyme for transition from dopamine to norepinephrine
(Park et al., 1976; Prigge et al., 2000; Vendelboe et al., 2016). This implied that DBM is
probably related to the dopamine metabolism. It will be interesting to study the function

of DBM in virgin female receptivity. Besides, CG30428 protein was also down-regulated
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386 (Supplementary File 2). It is predicted to be active in nucleus, suggesting its role in
387 gene expression and cellular metabolism. This is consistent with that reduction of EcR-
388 A in pC1 neurons induced the unnormal anatomical morphology of pC1 neurons, which
389 may due to the unnormal cell death and cellular differentiation during development.

390

391 Discussion

392

393 In this study, we found that peptide hormone PTTH modulates virgin female receptivity
394 through ecdysone during neural maturation. PG neurons expressing PTTH are

395 doublesex-positive and regulate virgin female receptivity during the 3"-instar larval

396 stage. Furthermore, ecdysone receptor ECR-A functions in pC1 neurons to regulate
397 virgin female copulation rate during the metamorphosis mainly through modulating the
398 anatomical morphology of pC1b neurons. Taken together, our results identified the

399 function of PTTH-ecdysone and their downstream pathway, ECR-A in pC1 neurons, on
400 regulating virgin female copulation rate during neural maturation mainly through

401 modulating the morphology of pC1b neurons.

402

403  Our results suggested a regulatory role of PTTH in virgin female receptivity. Even

404  though insects and mammals represent highly diverged classes, insects have evolved a
405 similar strategy for triggering the juvenile—adult transition (Herbison, 2016; Pan et al.,
406  2019). The juvenile—adult transition involves the hypothalamic—pituitary—gonadal (HPG)
407 axis in mammals and the PG axis in insects. Among the neurons belonging to the axis,

408 PG neurons and GnRH neurons have the similar function to stimulate the PG gland and
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pituitary gland to release hormones which trigger maturation, respectively. It will be
interesting to study the function of GhnRH neurons in the mammal sexual behaviors.
Most of neurons regulating sexual behaviors in female flies are dsx™ neurons. Our
results showed that PG neurons are also dsx™ neurons. This suggested that PG
neurons have relationships with other dsx* neurons and the juvenile—adult transition is

regulated by doublesex gene.

In our study, PTTH regulates virgin female receptivity in an ecdysone-dependent
manner before the peak of ecdysone for the metamorphosis. Ecdysone functions
through its receptor EcR which is involved in all phases of the nervous system
development. Previous studies have demonstrated that the fru* neuron development
need EcR-A in male Drosophila melanogaster. Furthermore, reduced EcR-A in fru*
neurons induced the male-male courtship (Dalton et al., 2009). In females, we detected
the expression of ECR-A and EcR-B1 in both dsx* pC1 and dsx* vpoDN neurons.
However, EcR regulates virgin female receptivity in pC1 neurons but not in vpoDN
neurons. This may due to that EcR does not regulate the morphology of vpoDN neurons
and thus the synaptic connections with other neurons. Alternatively, EcR regulates the
morphology of vpoDN neurons without changing functional connectivity or gene
expressions within associated neurons. It is worth noting that the losing of PTTH
resulted in the enhanced virgin female receptivity, which is contrary to the reduced
receptivity when knocking down EcR-A in pC1 neurons. This may due to that 20E and

EcR regulates multiple neurodevelopment associated with virgin female receptivity
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431 when PTTH is knocked out, but not only functions in pC1 neurons. This may also due to
432 that PTTH mutant results in increased EcR expression in pC1 neurons.

433

434 Reduced EcR-A expression in all pC1 neurons lead to the decreased copulation rate,
435  while reduced EcR-A in pC1-a, ¢ and e simultaneously did not reduce the copulation
436 rate significantly. This suggested that ECR-A plays the critical role in pC1-b or/and -d
437  neurons for regulating virgin female receptivity. Our results revealed that reduced EcR-
438 A induced the more elaborated morphologies of pC1d neurons. Previous studies

439 detected the synaptic connections between the axons of pC1d and the dendrites of
440 DNp13 neurons (Deutsch et al., 2020; Mezzera et al., 2020). DNp13 neurons are

441  command neurons for ovipositor extrusion. When females extruded, the ovipositor

442  physically impedes copulation (Mezzera et al., 2020; Wang et al., 2020a). However,
443  reduced EcR-A expression in pC1d neurons did not affect virgin female receptivity

444  (Figure 5—figure supplement 4). This might be due to three possibilities. First, the
445 more elaborated morphologies of pC1d neurons did not affect synaptic connections
446  between pC1d and DNp13 neurons. Second, the unchanged pC1 neural activity could
447  not affect the neural activity of DNp13 neurons. Third, the morphological change of
448 pC1d neurons is not sufficient for the decreased copulation rate. To sum, these suggest
449 that the morphological change of pC1b neurons is necessary for the decreased

450 copulation rate. However, due to the lack of pC1b drivers, we could not rule out

451  morphological changes in pC1b neurons when EcR-A was reduced.

452
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We identified DBM as the mostly down-regulated gene when EcR-A was reduced in
pC1 neurons. DBM is the insect homolog of MOXd1 in mammals. However, the function
of MOXd1 has not been identified but is predicted to hydroxylate a hydrophobic
substrate (Xin et al., 2004). The similar structure between MOXd1 and dopamine beta-
monooxygenase in mammals suggests the possible role of DBM in dopamine
metabolism (Cubells et al., 2004; Kim et al., 2002; Timmers et al., 2004). Besides,
previous study identified the Moxd1 as a useful marker for the sexually dimorphic nuclei
and may be involved in the regulation of sex-biased physiology and behaviors in
mammals (Tsuneoka et al., 2017). These make it interesting to further study on the
molecular mechanism by which DBM and Moxd1 regulate sexual behaviors in flies and

mammals respectively.

Taken together, this study demonstrates that the peptide hormone PTTH, expresses in
dsx® PG neurons, regulates virgin female receptivity during neural maturation. It also
revealed that the morphological development of pC1b neurons regulated by EcR-A is
necessary for virgin female copulation rate. This work extends the understanding of how

neurodevelopmental processes regulate adult sexual behavior.

Materials and methods
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Key Resources Table
Reagent type Source or
(species) or Designation Identifiers Additional information
reference
resource
Mouse anti- Developmental
. . . Studies Cat# nc82, RRID: .
antibody Bruchpilot antibody Hybridoma AB_2314866 IHC (1:40)
(nc82)
Bank
Mouse Anti-
OISO or | PN | ot 15t e
antibody . A), RRID: IHC (1:10)
(EcR-A) Hybridoma AB 528214
Monoclonal Bank -
Antibody
posehe Dol | o aDaaeon
antibody . B1), RRID: IHC (1:10)
ecdysone receptor | Hybridoma AB 2154902
(EcR-B1) Antibody | Bank =
. Rabbit polyclonal Thermo Fisher Cat# A-11122, .
antibody anti-GFP Scientific RRID: AB_221569 | 'MC (1:1000)
. chicken polyclonal Thermo Fisher Cat# A10262, RRID: .
antibody anti-GFP Scientific AB_2534023 IHC (1:1000)
. Goat anti-rabbit, Thermo Fisher Cat# A-11034, .
antibody Alexa Fluor 488 | Scientific RRID: AB_2576217 | 'HC (1:500)
. Goat anti-chickent, | Thermo Fisher Cat#A-11039; RRID: .
antibody Alexa Fluor 488 | Scientific AB_2534096 IHC (1:500)
. Goat anti-mouse, Thermo Fisher Cat# A-11029, .
antibody Alexa Fluor 488 Scientific RRID: AB_2534088 | '1C (1:500)
. Goat anti-rabbit, Thermo Fisher Cat# A-11010, .
antibody Alexa Fluor 546 | Scientific RRID: AB_2534077 | 'HC (1:500)
. Rabbit polyclonal Thermo Fisher Cat# R10367, RRID: .
antibody anti-RFP Scientific AB_10563941 IHC (1:500)

. Goat anti-mouse, Thermo Fisher Cat# A-21235, .
antibody Alexa Fluor 647 Scientific RRID: AB_2535804 | 'MC (1:500)
Zhou Lab,

. Chinese
antibody Rabbit polyclonal | \¢ojemy of N/A IHC (1:1300)
anti-PTTH ) .
Sciences, this
paper
. Electron . .
chemical Paraformaldehyde . 8% PFA diluted in
compound, drug (PFA) Mharoscopy Cat#15713 1XPBS at 1:4 or 1:2
ciences
chemical Sigma-
compound, drug DPX Mountant Aldrich Cat#44581
chemical Sigma-
compound, drug Normal goat serum Aldrich Cat#G9023
chemical 20- dissolved in 95%
compound, drug hydroxyecdysone Cayman Cat#16145 ethanol, 0.2 mg/ml
chemical TRizol Ambion Cat#15596018
compound, drug
Genetic reagent LexAop2- Bloomington
(D.melanogaster) mCD8::GFP Stock Center BL#32203
Genetic reagent . B Bloomington
(D.melanogaster) »UAS-mCD8::GFP Stock Center BL#32194
Genetic reagent . . . | Bloomington
(D.melanogaster) ;UAS-mCD8::GFP, Stock Center BL#5137
Genetic reagent Garrity Lab,
UAS-dTrpA1/cyo Brandeis N/A
(D.melanogaster) . )
University
Genetic reagent Bloominaton
UAS-Kir2.1 "9 BL#6595
Stock Center
(D.melanogaster)
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Genetic reagent Rao Lab,
PtthGAL4 Peking N/A
(D.melanogaster) University
Genetic reagent Rao Lab,
PtthLexA Peking N/A
(D.melanogaster) University
Genetic reagent Rao Lab,
APTTH Peking N/A
(D.melanogaster) University
Zhou Lab,
Genetic reagent Chinese
UAS-PTTH Academy of N/A
(D.melanogaster) Sciences, this
paper
. Rao Lab
Genetic reagent . ) ’
(D.melanogaster) isoCS Bel_(lng . N/A
niversity
Genetic reagent Rao Lab,
elav-GAL4 Peking N/A
(D.melanogaster) University
. Janelia
%e;ee“,g;iagggr) UAS-GFPStinger | Research N/A
) g Campus
. Janelia
?De:qeet',g,:iagig,) LexAop-tomato Research N/A
) g Campus
. Janelia
%e;ee“,g;iagggr) LexAop2-FlpL Research N/A
) g Campus
. Janelia
Genetic reagent UAS > stop >
(D.melanogaster) mCD8-GFP (R;esearch N/A
ampus
. Janelia
%e;ee“,g;iagggr) dsxGAL4 Research N/A
) g Campus
. Janelia
%e;ee“,g;iagggr) dsxLexA Research N/A
) g Campus
. Pan Lab,
%e;ee“,g;iagggr) tub-GAL80' Southeast BL#7018
) g University
. Wang Lab
Genetic reagent . ’
(Dume Ianoggs o) pC1-ss1-GAL4 Lingang N/A
) Laboratory
. Wang Lab
Genetic reagent . ’
(Dume Ianoggs o) pC1-ss2 GAL4 Lingang N/A
) Laboratory
Genetic reagent Wang Lab,
(D.melanogaster) vpoDN-ss1-GAL4 Lingang N/A
) g Laboratory
Genetic reagent Wang Lab,
(D.melanogaster) vpoDN-ss2-GAL4 Lingang N/A
) g Laboratory
. Wang Lab,
%e;ee“,g;iagggr) VpoDN-ss3-GAL4 | Lingang N/A
) g Laboratory
Genetic reagent . Bloomington
(D.melanogaster) UAS-EcR-RNAI Stock Center BL#9327
Genetic reagent . Bloomington
(D.melanogaster) UAS-ECR-A-RNAI | g4k Center BL#0328
Genetic reagent . | Bloomington
(D.melanogaster) UAS-ECR-BT-RNAI | g4k Center BL#9329
Genetic reagent Bloomington
(D.melanogaster) pC1d-GAL4 Stock Center BL#86847
recombinant DNA pBSK-attP-3P3- Bowen Deng et N/A
reagent RFP-loxP al., 2019
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. pBSK-attB-loxP-
:zggoznbtmant DNA myc-T2A-Gald- Sr)wzzr; 9Deng et N/A
9 GMR-miniwhite ”
. pBSK-attB-loxP-
:2g°;”nt’t'”a”t DNA | V/5-T2A-LexA::p65- Z‘""’Z%q ge”g et | niA
9 GMR-miniwhite ”
https://www.mathwor
it lqorith MATLAB “NA:;:XV?\;IIS ks.com/products/mat
software, algorithm , lab_htrml
National . Lo
) https://imagej.nih.go
software, algorithm ImageJ Institutes of v/ij‘/) % g
-ag Health
. https://www.graphpa
software, algorithm Prism 7 GraphPad d.com/
R4.1.3 RStudio hitps:/Awww.r-
software, algorithm project.org

476

477  Fly stocks

478

479  Flies were reared on standard cornmeal-yeast medium under a 12 hr:12 hr dark:light
480 cycle at 25°C and 60% humidity. All the knock-out lines in this study for screening have
481  been published [49]. The following strains were obtained from Dr. Yi Rao: isoCS (wild-
482  type), APtth, PtthGAL4, PtthLexA, elavGAL4 and UAS-Kir2.1 (BL#6595). UAS-dTrpA1
483  was a gift from Dr. Paul Garrity. UAS-GFPStinger, LexAop-tomato, LexAop2-FIpL,
484  UAS > stop > mCD8-GFP, dsxGAL4 and dsxLexA (Mellert et al., 2010) have been
485  described previously (Pfeiffer et al., 2008; Pfeiffer et al., 2010) and are obtained from
486 Janelia Research Campus. tub-GAL80"™ (BL#7018) was provided by Dr. Yufeng Pan.
487 pC1-ss1-GAL4, pC1-ss2 GAL4, vpoDN-ss1-GAL4, vpoDN-ss2-GAL4 and vpoDN-ss3-
488  GAL4 were provided by Dr. Kaiyu Wang. The following lines were obtained from the
489  Bloomington Drosophila Stock Center: UAS-EcR-RNAi (BL#9327), UAS-EcR-A-RNAi
490 (BL#9328), UAS-EcR-B1-RNAi (BL#9329), UAS-mCD8::GFP (BL#32194), LexAop2-
491 mCD8::GFP (BL#32203), UAS-mCD8::GFP (BL#5137) and pC1d-GAL4 (BL#86847).
492

493 Behavioral assays
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Flies were reared at 25°C and 60% humidity under a 12 hr light:12 hr dark cycle. Virgin
females and wild-type males were collected upon eclosion, placed in groups of 12 flies
each and aged 4—6 days (except for the assays for PTTH mutant on different days after
eclosion, and the molecular rescue assay for the 24h-old females) before carrying out
behavioral assay except for the transient thermogenetic experiments. Female receptivity
assays were conducted as previously described (Wang et al., 2022; Zhou et al., 2014).
A virgin female of defined genotype and a wild type male were gently cold anesthetized
and respectively introduced into two layers of the courtship chambers separated by a
removable transparent film. The flies were allowed to recover for at least 45 min before
the film was removed to allow the pair of flies to contact. The mating behavior was
recorded using a camera (Canon VIXIA HF R500) for 30 min at 17 fps for further

analysis.

For transient activation experiment by dTrpA1 in adult stage, flies were reared at 23°C.
Flies were loaded into courtship chamber and recovered for at least 30 min at 23°C,
then were placed at 23°C (control group) or 29°C (experimental group) for 30 min prior
to removing the film and videotaping. For activation experiment by dTrpA1 during
development, flies were reared at 29°C during the specific stages compared with the
controls who were reared at 23°C all the time. Flies were loaded into courtship chamber

and recovered for at least 45 min at 23°C prior to removing the film and videotaping.

Quantification and statistical analysis of female receptivity behavior
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Two parameters including copulation rate and latency to copulation were used to
characterize receptivity and we got the data sets of two parameters from the same flies.
The time from removing the film to successful copulation was measured for each
female. The number of females that had engaged in copulation by the end of each 1
min interval within 30 min were summed and plotted as a percentage of successful
copulation. The latency to copulation was the time from removing the film to successful
copulation. All the time points that female successfully copulated were manually

analyzed and the data of unhealthy flies were discarded.

Temporally restricted RNAi

tub-GALB8O' crosses were reared at either 18°C for control groups or 30°C for

experimental groups. Virgin females were collected at eclosion and were placed in

groups of 12 flies each and aged 4—-6 days before carrying out behavior assay. Assays

were tested at 23°C.

Male courtship index

Courtship index was defined as the proportion of time the male followed, oriented

toward and attempted to copulate the female within 5 min of courtship initiation, marked

by the initial orientation toward and following the female.
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Vaginal plate opening and ovipositor extrusion

A virgin female of defined genotype and a wild type male were aspirated into the
courtship chambers and respectively introduced into two layers of the courtship
chambers separated by a removable transparent film. The flies were allowed to recover
for 30 min before the film was removed. To allow visualization of vaginal plate opening,
we recorded uncompressed image sequences at 896 x 896 pixels and 50 frames per
second using a Photron Mini AX camera (Photron) with an AF-S VR Micro-Nikkor
105mm lens (Nikon). Instances of vaginal plate opening and ovipositor extrusion were
scored blind to genotype from frame by-frame playback during the first 5 min of
courtship or until copulation if it occurred within 5 min. Courtship initiation was defined
as the male orienting toward and beginning to follow the female. Rare trials with fewer

than 30 s of total courtship were discarded.

Locomotion assays

The rearing and experimental conditions in locomotion assays were the same as that in
the corresponding female receptivity assays, excepting that individual females were
loaded in the chambers without males. Spontaneous movements of the flies were
recorded with a camera (Canon VIXIA HF R500) for 30 min at 30 fps for further
analysis. The activity of flies during the middle 10 min was analyzed to calculate the

average walking speed using Ctrax software.
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Egg Laying

Virgin females were collected upon eclosion and one fly was housed on standard
medium at 25°C, 60% relative humidity, 12 hr light:12 hr dark and allowed to lay eggs in
single vials. Each fly was transferred into new food tube every 24 hr. The number of
eggs was counted at the end of each 24 hr period. The numbers during the 3 and 4%

day were summed for statistics and plot.

Immunohistochemistry

Whole brains of flies were dissected in 1x PBS and fixed in 2% paraformaldehyde
diluted in 1x PBS for 55 min at room temperature. The samples were washed with PBT
(1x PBS containing 0.3% Triton X-100) for 1 hour (3 x 20 min), followed by blocking in
5% normal goat serum (Blocking solution, diluted in 0.3% PBT) for 1 hour at room
temperature. Then, the samples were incubated in primary antibodies (diluted in
blocking solution) for 18—24 hours at 4°C. Samples were washed with 0.3% PBT for 1
hour (3 x 20 min), then were incubated in secondary antibodies (diluted in blocking
solution) for 18—24 hours at 4°C. Samples were washed with 0.3% PBT for 1 hour (3 x
20 min), then were fixed in 4% paraformaldehyde for 4 hours at room temperature. After
washed with 0.3% PBT for 1 hour (3 x 20 min), brains were mounted on poly-L-lysine-
coated coverslip in 1x PBS. The coverslip was dipped for 5 min with ethanol of
30%—50%—70%—95%—100% sequentially at room temperature, and then dipped for

5 min three times with xylene. Finally, brains were mounted with DPX and allowed DPX
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to dry for 2 days before imaging. Primary antibodies used were: chicken anti-GFP
(1:1000; Life Technologies #A10262), rabbit anti-GFP (1:1000; Life Technologies
#A11122), rabbit anti-RFP (1:1000; Life Technologies #R10367), rabbit anti-PTTH
antibody (1:1300), mouse anti-nc82 (1:40; DSHB), mouse anti-EcR-A (1:10;
AB_528214) and mouse anti-EcR-B1 (1:10; AB_2154902). Secondary antibodies used
were: Alexa Fluor goat anti-chicken 488 (1:500; Life Technologies #A11039), Alexa
Fluor goat anti-rabbit 488 (1:500; Life Technologies #A11034), Alexa Fluor goat anti-
rabbit 546 (1:500; Life Technologies #A11010), Alexa Fluor goat anti-mouse 647 (1:500;
Life Technologies #A21235), and Alexa Fluor goat anti-mouse 488 (1:500; Life

Technologies #A11029).

Confocal microscopy and image analysis

Confocal imaging was performed under an LSM 710 inverted confocal microscope

(ZEISS, Germany), with a Plan-Apochromat 20%/0.8 M27 objective or an EC Plan-

Neofluar 40x/1.30 oil DIC M27 objective, and later analyzed using Fiji software.

Generation of anti-PTTH antibody

The antisera used to recognize PTTH peptide were raised in New Zealand white rabbits

using the synthetic peptide N’- TSQSDHPYSWMNKDQPWQFKC -C’. The synthesis of

antigen peptide, the production and purification of antiserum were performed by Beijing

Genomics Institute (BGlI).
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Generation of UAS-PTTH

pJFRC28-5XUAS-IVS-GFP-p10 (#12073; Fungene Biotechnology, Shanghai, China)
was used for the generation of the pJFRC28-UAS-PTTH construct. The pJFRC28-
10XUAS-IVS-GFP-p10 plasmid was digested with Notl and Xbal to remove the GFP
coding sequence, and then the cDNA of PTTH was cloned into this plasmid by Gibson
Assembly. The Kozak sequence was added right upstream of the ATG. UAS-PTTH
constructs were injected and integrated into the attP2 site on the third chromosome
through phiC31 integrase mediated transgenesis. The construct was confirmed using
DNA sequencing through PCR. The primers used for cloning PTTH cDNA were as
follows:

UAS-PTTH-F
ATTCTTATCCTTTACTTCAGGCGGCCGCAAAATGGATATAAAAGTATGGCGACTCC
UAS-PTTH-R

GTTATTTTAAAAACGATTCATTCTAGATCACTTTGTGCAGAAGCAGCCG

Genomic DNA extraction and RT-PCR

Genomic DNA was extracted from 10 whole bodies of wandering flies using MightyPrep

reagent for DNA (Takara #9182). Whole body RNA was extracted from 10 whole bodies

of wandering flies using TRIzol (Ambion #15596018). cDNA was generated from total

RNA using the Prime Script reagent kit (Takara #RR047A). Candidates of APtth were
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characterized by the loss of DNA band in the deleted areas through PCR on the

genomic DNA and cDNA. Primer sequences used in Figure 1 are listed in Table S1.

Measurements of pupariation timing and adult mass

The flies were reared at 25°C and 60% humidity under a 12 hr light:12 hr dark cycle.
Two-hour time collections of embryos laid on standard food vials. Each vial contained
20-30 eggs. The range of time for pupariation were recorded for each vial. Sexed adults
of 24h-old were weighted in groups of ten flies using a NENVER-TP-214 microbalance

at the same time.

Identification of sex in Drosophila larvae

Third instar larvae can be sexed (True et al., 2014). Gonads are translucent and visible

in side view in the posterior third of the larva. The male gonads are about five times

bigger than the female gonads. The identified wandering female and male larvae were

reared in different vials for the subsequent experiments.

Rescue by 20-hydroxyecdysone feeding

Thirty freshly ecdysed APtth L3 larvae, grown at 25°C and 60% humidity under a 12 hr

light:12 hr dark cycle, were washed with water and transferred to normal food for

additional aging. After 20 h, larvae were washed and transferred to a vial supplemented
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655  with either 20-hydroxyecdysone (20E, Cayman #16145, dissolved in 95% ethanol, final
656  concentration 0.2 mg/ml) or 95% ethanol (same volume as 20E). The wild type larvae
657 were directly transferred to vials supplemented with 20E or 95% ethanol upon L3

658 ecdysis. Once seeded with L3 larvae, the vials were returned to 25°C and 60% humidity
659 under a 12 hr light:12 hr dark cycle.

660

661 Quantification of fluorescence intensity

662

663  The fluorescence intensity was quantified using Fiji software. The areas of interest

664  (ROI) were marked in the slices including the interested regions and quantified using
665 the “plot z-axis profile” function. The fluorescence intensity in each slice was summed
666  for statistics and plot. The parameters used for confocal imaging of each brain were the
667 same.

668

669 Calcium imaging

670

671 Flies aged 4-6 days were immobilized on ice for ~30 s. The brain was then dissected
672  out in extra-cellular solution (ECS) that contains (in millimoles): 108 NaCl, 5 KC1, 5
673 trehalose, 5 sucrose, 5 HEPES, 26 NaHCO3, 1 NaH2PO4, 2 CaCl,, and 1.5 MgCl, [pH
674 7.1 —7.3 when bubbled with 95% (vol/vol) O2/5% (vol/vol) CO2, ~290 mOsm] and

675 mounted on a poly-D-lysine coated coverslip. The samples were continuously perfused
676  with ECS.

677
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Calcium imaging was performed at 21°C on a customized two-photon microscope
equipped with a resonant scanner (Nikon), a piezo objective scanner (Nikon) and a 40x

water-immersion objective (Nikon). GCaMP6s was excited at 920 nm.

Analysis of calcium imaging data was done offline with NIS-Elements AR 5.30.01.
Briefly, the square region of interest (ROIs), 25 pixels on the pC1 neurons in the center
of lateral junction, was chosen for measurements. For each frame, the average
fluorescence intensity of pixels within ROls was calculated blind to genotype. The
average fluorescence intensity of ROls in each frame covering pC1 neurons were

summed for statistics and plot.

RNA isolation and sequencing

About 100 female fly brains were dissected from single individuals and the total RNA

was extracted using TRIzol (Ambion #15596018). Sequencing was performed on an

lllumina Novoseq6000 PE150 (lllumina, CA). Three biological replicates were performed

for each genetic type. The library preparation and sequencing were performed by

Novogene in China.

RNA-seq analyses

RNA-seq reads were mapped to the reference dmel-all-r6.42 (flaybase) using STAR

(v2.7.6a) (Dobin et al., 2013) with default parameters. Aligned reads were assigned to
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dmel-all-r6.43.gtf gene annotation model, mapping reads were counted by
featureCounts from subread package with default parameters (Liao et al., 2013), and
then the transcript per millions (TPMs) was calculated. Differential expression was
analyzed with the DESeq2 package (Love et al., 2014) and visualized by volcano plots
using the maximum a posteriori estimated log-fold change using the logz(fold-change)

calculated from TPMs.

gRT-PCR

Whole brain RNA was extracted from about 100 fly brains using TRIzol (Ambion
#15596018). The cDNA was synthesized using Prime Script reagent kit (Takara
#RR047A). Quantitative PCR was performed on Thermo Piko Real 96 (Thermo) using
SYBR Green PCR Master Mix (Takara #RR820A). The mRNA expression level was
calculated by the 2-22Ct method and the results were plotted by using tubulin as the
reference gene. Primers are listed in Table S1. All reactions were performed in

triplicate. The average of four biological replicates + SEM was plotted.

Statistical analysis

Statistical analyses were carried out using R software version 3.4.3 or Prism7

(GraphPad software). For the copulation rate, chi-square test is applied. The Mann-

Whitney U test was applied for analyzing the significance of two columns. Kruskal-
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Wallis ANOVA test followed by post-hoc Mann-Whitney U test, was used to identify

significant differences between multiple groups.

Data, Materials, and Software Availability

All study data are included in the main text and supporting information, except for the
sequence data of RNAseq (Supplementary File 3) has been deposited in the Genome
Sequence Archive under the accession number CRA012130 in PRJCA018750. This
study does not involve new code. Fly stocks and reagents used in this study are

available from the corresponding author upon reasonable request.
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(A-C) Generation and validation of a 974 bp deletion mutant of the Ptth gene. (D-G)
Virgin female receptivity of Ptth null mutants on the 1st(D), 2" (E), 3 (F) and 6" day
(G) respectively. (H) Brain of indicated genotype, immunostained with anti-PTTH
antibody (green) and counterstained with nc82 (magenta). Arrows show signals (green)
stained with anti-PTTH antibody. Scale bars, 50 um. (I) Enhanced virgin female
receptivity of APtth null mutants was rescued by elavGAL4 driving UAS-PTTH. The
increased copulation rate and decreased latency to copulation on the 15t day after
eclosion were rescued to the comparable level of control. The number of female flies
paired with wild type males is displayed in parentheses. For the copulation rate, chi-
square test is applied. For the latency to copulation, Kruskal-Wallis ANOVA and post
hoc Mann-Whitney U tests are applied. Error bars indicate SEM. *p < 0.05, **p < 0.01,

***p < 0.001, ****p < 0.0001, ns indicates no significant difference.
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Figure 2 Inactivation of doublesex-positive PG neurons expressing PTTH

enhances virgin female receptivity during the larval stage.

(A-B) Expression pattern of PtthGAL4 revealed by anti-GFP in larvae central nervous
system (CNS) (A) and adult CNS (B). Representative of five female flies. Scale bars, 50
pum. (C) All PG neurons were colabeled by dsxGAL4 driving UAS-GFPStinger (red) and
PtthLexA driving LexAop-tomato (green). Representative of five female brains. Scale

bars, 50 ym and 5 ym (zoom-in). (D) All PG neurons were Ptth and Dsx co-expressing,

labeled by intersectional strategy. Representative of 5 female brains. Scale bars, 50 ym.

(E-G) PG neurons were inactivated during larval (E), pupal (F) and adult (G) stages

respectively by kir2.1, restricted by shifts from 18°C to 30°C. The inactivation during the

larval stage significantly increased the copulation rate (E). The number of female flies

paired with wild-type males is displayed in parentheses. For the copulation rate, chi-
square test is applied. Error bars indicate SEM. *p < 0.05, **p < 0.01, ***p < 0.001, ****p

< 0.0001, ns indicates no significant difference.
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Figure 3 Activation of PG neurons expressing PTTH during the 3"-instar larvae
inhibits virgin female receptivity.

(A) Four developmental stages of Drosophila before eclosion when PG neurons were
thermogenetic activated by dTrpA1. L1, L2, and L3: start of three larval stages, W: start
of wandering stage, Pp: puparium formation, P1 and P2: start of the 15t and 2"¢ day of
pupal stage. (B-E) PtthGAL4 driving UAS-dTrpA1 activated PG neurons at 29°C.
Activation of PG neurons at the stage 2 significantly decreased copulation rate (C), but
not at the stage 1 (B), stage 3 (D) and stage 4 (E). (F) Activation of PG neurons at the
stage 2 significantly increased the latency to copulation. (G) Mean velocity had no
significant change when PG neurons were activated during the stage 2 compared with
control females (ns = not significant, Kruskal-Wallis ANOVA and post hoc Mann-
Whitney U tests, mean £ SEM, n = 8-12). The number of female flies paired with wild-
type males is displayed in parentheses. For the copulation rate, chi-square test is
applied. For the latency to copulation, Mann-Whitney U test is applied. Error bars
indicate SEM. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001, ns indicates no

significant difference.
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1110 (A-B) The increased copulation rate and decreased latency to copulation of the 24h-old
1111  APtth flies were rescued to the comparable level of wild type females by feeding 20E to
1112  the 3"-instar larval APtth flies. The wild type larval females fed by 20E had no

1113  significantly different copulation rate and latency to copulation compared with the wild
1114  type females fed by the same volume of 95% ethanol which is the solvent of 20E. The
1115 number of female flies paired with wild-type males is displayed in parentheses. For the
1116  copulation rate, chi-square test is applied. For the latency to copulation, Kruskal-Wallis
1117  ANOVA and post hoc Mann-Whitney U tests are applied. Error bars indicate SEM. *p <

1118 0.05, **p < 0.01, **p < 0.001, ****p < 0.0001, ns indicates no significant difference.
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1133  Figure 5 Virgin females with reduced EcR-A in pC1 neurons have reduced sexual
1134  receptivity.

1135  (A) Knock-down of EcR-A in pC1 neurons driven by pC1-ss2-GAL4 significantly

1136  decreased the copulation rate and increased the latency to copulation. (B) Knock-down
1137  of EcR-B1 in pC1 neurons driven by pC1-ss2-GAL4 significantly prolonged the latency
1138  to copulation. (C-D) Knock-down of ECR-A (C) or EcR-B1 (D) in pC1 neurons driven by
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1139 pC1-ss1-GAL4 did not affect the copulation rate or the latency to copulation. (E)

1140 Courtship index of wild-type males towards a female with the indicated genotype (n =
1141  8). (F) The number of eggs laid by virgin females during the 3" - 41" day after eclosion
1142  when EcR-A was knocked down in pC1 neurons (n = 17-36). (G) Knock-down of ECcR-A
1143  in pC1 neurons decreased the opening of vaginal plate of virgin females compared with
1144  controls (n = 8). (H) Knock-down of EcR-A in pC1 neurons increased the ovipositor
1145 extrusion of virgin females compared with controls (n = 8). (I-K) Virgin female copulation
1146  rate when EcR-A was knocked down in pC1 neurons temporally restricted by shifts from
1147 18°C to 30°C. EcR-A was knocked down during larval (I), pupal (J) and adult (K) stages
1148 respectively. Knock-down of EcR-A during pupal stage significantly decreased the

1149  copulation rate (J). The number of female flies paired with wild-type males is displayed
1150 in parentheses. For the copulation rate, chi-square test is applied. For other

1151 comparisons, Kruskal-Wallis ANOVA and post hoc Mann-Whitney U tests are applied.
1152  Error bars indicate SEM. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001, ns indicates

1153  no significant difference.
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1170
1171  Figure 6 Reduced EcR-A in pC1 neurons induces the morphological changes.

1172 (A1-A2) pC1 neurons appeared at the start of the pupal stage. (B-D) Reduced EcR-A in
1173  pC1 neurons induced more elaborated morphologies of pC1d axons, especially the
1174  extra vertical projection (EVP). The EVP regions of pC1d neurons was indicated by
1175 arrows. The morphological changes appeared on the 2" day of the pupal stage (B1-B2)
1176  and retained to the adult stage including the 15t day (C1-C2) and the 4" day (D1-D2) of
1177  the adult stage. p0, the 15t day of the pupal stage; p2, the 2" day of the pupal stage;
1178 A1, the 15t day of the adult stage; A4, the 4t" day of the adult stage. (E-F) Fluorescence
1179 intensity of EVP in pC1d neurons on the 2" day of the pupal stage (E) and the 4" day
1180 of the adult stage (F) was quantified when EcR-A was reduced in pC1 neurons (n=7).
1181 The quantified EVP regions were marked in (B) and (D) with orange ellipses. (G) pC1
1182  neurons of the 4" day adults had comparable cell body number when EcR-A was

1183 reduced in pC1 neurons or not (n = 7). (H) Basal GCaMP6s signals in the LPC region of
1184 pC1 neurons when EcR-A was reduced in pC1 neurons (n = 22). LPC regions, the

1185 neurites extending from pC1 cell bodies, were marked with orange square in (D1) and
1186 (D2). Scale bars are 50 ym. For all comparisons, Mann-Whitney U test is applied. Error
1187 bars indicate SEM. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001, ns indicates no
1188  significant difference.

1189
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Figure 7 Reduced EcR-A in pC1 neurons induces the down-regulated dopamine
beta-monooxygenase (DBM) level.

(A) Volcano plot of RNA-seq from virgin female brains in which EcR-A was knocked
down in pC1 neurons or not. Each circle represents a protein-coding gene. Differential
genes with a p-value < 0.01 are highlighted in blue. Differential genes with a fold
change > 4 are highlighted in green. Differential genes with a p-value < 0.01 and fold
change > 4 are highlighted in red. DBM, the most down-regulated genes with
annotation, are indicated by black arrow. Data are from three replicates, each contains
about 100 brains. (B) gRT-PCR for DBM when EcR-A was knocked down in pC1
neurons. Bars represent mean + SEM. p values are from Mann-Whitney U test (n = 12
based on four replicates for each, each contains about 100 brains). *p < 0.05, **p <
0.01, *™*p < 0.001, ****p < 0.0001, ns indicates no significant difference.
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1211  Figure 1—figure supplement 1 Weight, attractiveness and locomotion behavior of
1212 Ptth null mutant virgin females.

1213  (A) The weight of 24h-old adult APfth null mutant females was significantly higher than
1214  that of wild type females (Mann-Whitney U test, n=8 groups, 10 flies in each group). (B)
1215  Courtship index of wild-type males during the first 5 min of courtship towards a female
1216  with the indicated genotype (Kruskal-Wallis ANOVA and post hoc Mann-Whitney U
1217  tests, n = 7-9). (C-D) Mean velocity had no significant change in APtth null mutant

1218 females on the 15t day (C) and the 6" day (D) compared with control females (Kruskal-
1219  Wallis ANOVA and post hoc Mann-Whitney U tests, n = 7-12). Error bars indicate SEM.
1220 *p <0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001, ns = not significant.
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PtthLexA>LexAop-GFP

1230

1231  Figure 2—figure supplement 1 PG neurons expressing PTTH labeled by PtthLexA.

PtthLexA>LexAop-GFP

1232 Expression pattern of PtthLexA in the brain revealed by anti-GFP (green) in larvae brain

1233  (A) and adult brain (B). Representative of five female flies. Scale bars, 50 ym.
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GFP  nc82 PtthGAL4/+,UAS-mCD8-GFP/+

Figure 2—figure supplement 2 The anatomical pattern of PG neurons expressing
PTTH at different developmental stages.

Expression pattern of PtthGAL4 in the brain revealed by anti-GFP from the 3™ larval
stage to the 4" day after eclosion. Arrows show PTTH signals (green) stained with anti-
GFP antibody. L3, the 3" -instar larvae; wander, the wandering larvae; P4, the 4™ day
of the pupal stage; AOh, the 15t hour of the adult stage; A3h, the 3™ hour of the adult
stage; A6h, the 6" hour of the adult stage; A9h, the 9" hour of the adult stage; A12h,
the 12t hour of the adult stage; A4d, the 4™ day of the adult stage. Representative of

five female flies. Scale bars, 50 um.
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1278 Figure 2—figure supplement 3 PG neurons expressing PTTH do not regulate

1279  virgin female copulation rate during adult stage.

1280 PG neurons were activated during adult stage by dTrpA1 at 29°C. The female

1281  copulation rate and the latency to copulation did not change significantly. The number of
1282 female flies paired with wild-type males is displayed in parentheses. For the copulation
1283 rate, chi-square test is applied. For the latency to copulation, Mann-Whitney U test is
1284  applied. Error bars indicate SEM. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001, ns

1285 indicates no significant difference.
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GAL4 > UAS-mCD8-GFP anti-EcR

pC1-ss2-GAL4

pPC1-ss2-GAL4

1305
1306  Figure 5—figure supplement 1 Expression of EcR-A and EcR-B1 in pC1 and

1307 vpoDN neurons.

1308 (A-C) pC1 neurons were colabeled by pC1-ss2 driving UAS-mCD8-GFP (green, A) and
1309 EcR-A antibodies (red, B). Magnification of green boxed region in (C) is shown in (D1-
1310 D3). (E-G) pC1 neurons were colabeled by pC1-ss2 driving UAS-mCD8-GFP (green, E)
1311  and EcR-B1 antibodies (red, F). Magnification of green boxed region in (G) is shown in
1312 (H1-H3). (I-K) vpoDN neurons were colabeled by vpo-ss1 driving UAS-mCD8-GFP
1313  (green, |) and EcR-A antibodies (red, J). Magnification of green boxed region in (K) is
1314  shown in (L1-L3). (M-O) vpoDN neurons were colabeled by vpo-ss1 driving UAS-

1315 mCD8-GFP (green, M) and EcR-B1 antibodies (red, N). Magnification of green boxed
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1316  region in (O) is shown in (P1-P3). Scale bars for magnified regions are 5 ym, for others

1317 are 50 ym.
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1348 Figure 5—figure supplement 2 Reduced EcR in pC1 neurons reduces virgin

1349 female receptivity.

1350  (A) Knock-down of EcR in pC1 neurons driven by pC1-ss2-GAL4 significantly

1351  decreased the copulation rate and increased the latency to copulation. (B) Mean

1352  velocity had no significant change when EcR-A was knocked down in pC1 neurons
1353  compared with controls (Kruskal-Wallis ANOVA and post hoc Mann-Whitney U tests, n
1354 = 8-11). The number of female flies paired with wild-type males is displayed in

1355 parentheses. For the copulation rate, chi-square test is applied. For the latency to

1356  copulation, Kruskal-Wallis ANOVA and post hoc Mann-Whitney U tests are applied.
1357  Error bars indicate SEM. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001, ns indicates

1358  no significant difference.
1359
1360

1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372

58


https://doi.org/10.1101/2023.09.28.559939
http://creativecommons.org/licenses/by/4.0/

1373
1374

1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387

bioRxiv preprint doi: https://doi.org/10.1101/2023.09.28.559939; this version posted September 29, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY 4.0 International license.

A VPoDN-ss1-GAL4/+ (118)
~ VpoDN-ss1-GAL4/UAS-EcR-A-RNAi (112)
~ UAS-EcR-A-RNAi/+ (139)

o

D VpoDN-ss1-GAL4/+ (118)
- vpoDN-ss1-GAL4/UAS-EcR-B1-RNAi (129) 10
- UAS-EcR-B1-RNAi/+ (154)

0 5 10 15 20 25 30

5 z ns
§ ns 100 §
g 5 S g
X 5] < 2
8 © 5 ns g8 75 5 *k
© c s c I
o o
5 £ I 5w £
s 32 K E
3 3
g 8 g 8
(&) o
0 0 o /= 7]=
0 5 1015 20 25 30 ypoDN-ss1-GAL4 0 5 10 15 20 25 30 vpoDN-ss1-GAL4 + +
Time(min) UAS-EcR-A-RNAi Time(min) UAS-EcR-B1-RNAI *
B E VpoDN-ss2-GAL4/+ (110)
vpoDN-ss2-GAL4/+ (110) ) 10 ~ VpoDN-ss2-GAL4/UAS-EcR-B1-RNAi (115) 10
~ VPODN-ss2-GAL4/UAS-EcR-A-RNAi (114) ~ UAS-ECR-B1-RNAi/+ (154)
~ UAS-EcR-A-RNAi/+ (139) = = ns
...... EER E £
A100 . N E ns A100 5
€ 15 5 s o
2 S5 - £ g 5 *
s - ®
g% g I, g 1
© = F H
3 25 3 2 25 8
o O o) o
(&) [&]
of 4 0 0 0
0 5 10 15 20 25 0 5 10 15 20 25 30 . . .
Ti i vpoDN-ss2-GAL4 - Ti : vpoDN-ss2-GAL4 N :
ime(min) UAS ERARNAT - ime(min) UAS-EcR-B1-RNAi .
VPODN-553-GAL4/+ (124)
C VPODN-5s3-GAL4/+ (124) ) 10 F ~ VpODN-553-GAL4/UAS-EcR-B1-RNAI (104) 10
— VpoDN-5s3-GAL4/UAS-EcR-A-RNAI (118) Z UAS-EcR.B1.RNA?+ (139)
—~ UAS-EcR-A-RNAi/+ (139) ~ _
< £ ns
100 ottt E ns 100 B
—_ > —_ >
S 2 ns S 2 *
T g T 75 g
g gs L g 1
§ % g § % g
3 3 B 3
g% s 2 25 g
o © 8 o
0 0 0 0

vpoDN-ss3-GAL4

Time(min) UAS-ECRA-RNAI

0 5 10 15 20 25 30

Time(min) vpoDN-ss3-GAL4

UAS-EcR-B1-RNAI

Figure 5—figure supplement 3 Reduced EcR in vpoDN neurons has no effect on

virgin female receptivity.

(A-C) Knock-down of EcR-A in vpoDN neurons driven by vpoDN-ss1-GAL4, vpoDN-
ss2-GAL4 and vpoDN-ss3-GAL4 had no effect on virgin female receptivity. (D-F) Knock-
down of ECR-B1 in vpoDN neurons driven by vpoDN-ss1-GAL4, vpoDN-ss2-GAL4 and
vpoDN-ss3-GAL4 had no effect on virgin female receptivity. The number of female flies

paired with wild-type males is displayed in parentheses. For the copulation rate, chi-

square test is applied. For the latency to copulation, Kruskal-Wallis ANOVA and post

hoc Mann-Whitney U tests are applied. Error bars indicate SEM. *p < 0.05, **p < 0.01,

***p < 0.001, ****p < 0.0001, ns indicates no significant difference.
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1389  Figure 5—figure supplement 4 Reduced EcR-A in pC1d neurons has no effect on
1390 virgin female receptivity.

1391  (A) Knock-down of EcR-A in pC1d neurons had no effect on virgin female copulation
1392 rate and latency to copulation. The number of female flies paired with wild-type males is
1393  displayed in parentheses. For the copulation rate, chi-square test is applied. For the
1394  latency to copulation, Kruskal-Wallis ANOVA and post hoc Mann-Whitney U tests are
1395 applied. Error bars indicate SEM, *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001, ns
1396 indicates no significant difference.

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410
1411

60


https://doi.org/10.1101/2023.09.28.559939
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.09.28.559939; this version posted September 29, 2023. The copyright holder for this preprint

1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442

(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY 4.0 International license.

Supplementary File 1. The primers used for the verification of APtth null mutant flies
and for the real-time quantitative PCR of dopamine beta-monooxygenase (DBM).

Supplementary File 2. The differently expressed genes in whole brains between flies
having reduced EcR-A expression in pC1 neurons and the control flies.

Supplementary File 3. The raw data of transcriptomes in whole brains when EcR-A

was knocked down in pC1 neurons or not.

Figure 1—Source Data 1. Photo of nucleic acid electrophoresis and copulation time.

Figure 2—Source Data 1. Copulation time.

Figure 3—Source Data 1. Copulation time and walking speed.

Figure 4—Source Data 1. Copulation time.

Figure 5—Source Data 1. Copulation time, courtship index, number of eggs, number of
vaginal plate opening (VPO), and number of ovipositor extrusion (OE).

Figure 6—Source Data 1. Fluorescence intensity, cell number and calcium activity.

Figure 7—Source Data 1. Relative mRNA level.

Figure 1—figure supplement 1—Source Data 1. Body weight, courtship index and
walking speed.

Figure 2—figure supplement 3—Source Data 1. Copulation time.

Figure 5—figure supplement 2—Source Data 1. Copulation time and walking speed.
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1443  Figure 5—figure supplement 3—Source Data 1. Copulation time.
1444
1445  Figure 5—figure supplement 4—Source Data 1. Copulation time.
1446
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