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Abstract 44 

 45 

Female sexual receptivity is essential for reproduction of a species. Neuropeptides play 46 

the main role in regulating female receptivity. However, whether neuropeptides regulate 47 

the establishment of neural circuits for female sexual receptivity is unknown. Here we 48 

found the peptide hormone prothoracicotropic hormone (PTTH), which belongs to the 49 

insect PG axis, regulated virgin female receptivity through ecdysone during neural 50 

maturation in Drosophila melanogaster. We identified PG neurons expressing PTTH as 51 

doublesex-positive neurons, they regulated virgin female receptivity before the 52 

metamorphosis during the 3rd-instar larval stage. Furthermore, the ecdysone receptor 53 

EcR-A in pC1 neurons regulated virgin female receptivity during metamorphosis. The 54 

reduced EcR-A in pC1 neurons induced abnormal morphological development of pC1 55 

neurons without changing neural activity. Among all subtypes of pC1 neurons, the 56 

function of EcR-A in pC1b neurons was necessary for virgin female copulation rate. 57 

These suggested that the changes of synaptic connections between pC1b and other 58 

neurons decreased female copulation rate. Moreover, analysis of brain transcriptomes 59 

when EcR-A was reduced in pC1 neurons revealed that, additional genes were 60 

regulated downstream of EcR-A function in pC1 neurons. The PG axis has similar 61 

functional strategy as the HPG axis in mammals to trigger the juvenile3adult transition. 62 

Our work suggests a general mechanism underlying which the neurodevelopment 63 

during maturation regulates female sexual receptivity. 64 

 65 
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 68 

Introduction 69 

 70 

The success of copulation is important for the reproduction of a species. Drosophila 71 

melanogaster provides a powerful system to investigate the neuronal and molecular 72 

mechanism of sexual behaviors. Females decide to mate or not according to their 73 

physiological status and the environmental condition (Dickson, 2008). Sexually mature 74 

adult virgin females validate males after sensing the courtship song and male-specific 75 

sex pheromone, receive courtship with pausing and opening the vaginal plate (Ferveur, 76 

2010; Greenspan et al., 2000; Hall, 1994; Wang et al., 2021). If female is not willing to 77 

mate, she may kick the legs, flick the wings, or extrude the ovipositor to deter males 78 

(Connolly et al., 1973). Mated females reject males for several days after mating mainly 79 

through more ovipositor extrusion and less opening the vaginal plate (Fuyama et al., 80 

1997; Wang et al., 2021). These options need the establishment of neural circuits for 81 

female sexual receptivity. However, the associated mechanism of neural maturation and 82 

the effect of neural maturation on female sexual receptivity is little known. 83 

 84 

doublesex (dsx) and fruitless (fru) are the terminal genes in sex determination 85 

regulatory hierarchy. They specify nearly all aspects of somatic sexual differentiation, 86 

including the preparation for sexual behaviors (Dickson, 2008; Manoli et al., 2013; 87 

Manoli et al., 2006; Mellert et al., 2012; Pavlou et al., 2013; Siwicki et al., 2009; 88 
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Yamamoto, 2007; Yamamoto et al., 2013). In males, male-specific fru protein (FruM) 89 

(Billeter et al., 2006; Demir et al., 2005; Hall, 1978; Manoli et al., 2005; Stockinger et al., 90 

2005) and the male-specific dsx protein (DsxM) (Kohatsu et al., 2011; Pan et al., 2014; 91 

Pan et al., 2011; Rideout et al., 2010) are important for the male courtship behaviors. In 92 

females, functional Fru protein does not exist, while the neurons in that fru P1 promoter 93 

or dsx is expressed regulate some aspects of the female sexual behaviors (Kvitsiani et 94 

al., 2006; Rideout et al., 2010). Fru and dsx are involved in regulating the sexual 95 

dimorphism during neurodevelopment (Yamamoto et al., 2013). For instance, the sexual 96 

dimorphism of P1 and mAL neurons which are all associated with male courtship and 97 

aggression behaviors (Clowney et al., 2015; Hoopfer et al., 2015; Kimura et al., 2008; 98 

Kohatsu et al., 2011; Pan et al., 2012; Sengupta et al., 2022; von Philipsborn et al., 99 

2011) is the result of regulation by Dsx and/or Fru (Ito et al., 2012; Kimura et al., 2008). 100 

In the cis-vaccenyl acetate (cVA) pathway, which induces the courtship inhibiting in 101 

males (Kurtovic et al., 2007; Wang et al., 2010), the first-order to the fourth-order 102 

components are all fruGAL4-positive neurons and are either male-specific or sexually 103 

dimorphic (Ruta et al., 2010). However, the role of DsxF in neurodevelopment 104 

associated with female sexual behaviors is little understood. 105 

 106 

During postembryonic development, the PG axis triggers the juvenile3adult transition, 107 

similar as the function of hypothalamic3pituitary3gonadal (HPG) axis in mammals 108 

(Herbison, 2016; Pan et al., 2019). Hormones of the PG axis act to transform the larval 109 

nervous system into an adult version (Truman et al., 2023). Ecdysone belonging to the 110 

PG axis is the prime mover of insect molting and metamorphosis and is involved in all 111 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 29, 2023. ; https://doi.org/10.1101/2023.09.28.559939doi: bioRxiv preprint 

https://doi.org/10.1101/2023.09.28.559939
http://creativecommons.org/licenses/by/4.0/


 5 

phases of neurodevelopment, including neurogenesis, pruning, arbor outgrowth, and 112 

cell death (Truman et al., 2023). The neurons read the ecdysteroid titer through two 113 

isoforms of the ecdysone receptor, EcR-A and EcR-B1, according to spatial and 114 

temporal conditions in the central nervous system (Riddiford et al., 2000; Truman et al., 115 

1994). EcR-A is required in fru P1-expressing neurons for the establishment of male-116 

specific neuronal architecture, and ecdysone receptor deficient males display increased 117 

male3male courtship behavior (Dalton et al., 2009; Ganter et al., 2007). However, how 118 

ecdysone regulates the neurodevelopment associated with female sexual receptivity, 119 

especially the fru+ and dsx+ neurons, is unknown. 120 

 121 

Much of studies to understand female sexual receptivity has focused on its regulation. 122 

How a female respond to males is highly dependent on whether or not she has 123 

previously mated. In virgin females, dsx+ pCd neurons respond to the cVA, while dsx+ 124 

pC1 neurons also respond to male courtship song (Zhou et al., 2014). The receptive 125 

females open the vaginal plate (VPO) through activation of the dsx+ vpoDN neurons 126 

(Wang et al., 2021). After mated, sex peptide in the seminal fluid binds to the fru+ dsx+ 127 

sex peptide sensory neurons (SPSNs) in the female uterus. Then neuronal activity in 128 

the dsx+ sex peptide abdominal ganglion (SAG) neurons of the ventral nerve cord and in 129 

the pC1 neurons is reduced (Avila et al., 2011; Feng et al., 2014; Häsemeyer et al., 130 

2009; Kubli, 2003; Wang et al., 2020b; Yang et al., 2009; Zhou et al., 2014). Therefore, 131 

the sexual receptivity is reduced with less VPO and more ovipositor extrusion (OE) 132 

which is controlled by dsx+ DpN13 neurons (Wang et al., 2020a). In addition, 133 

neuropeptides and monoamines play a critical role in regulation of the female 134 
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receptivity. The neuropeptides Drosulfakinin, myoinhibitory peptides and SIFamide are 135 

involved in female sexual receptivity (Jang et al., 2017; Terhzaz et al., 2007; Wang et 136 

al., 2022). As monoamines, dopamine, serotonin and octopamine are pivotal to female 137 

sexual behaviors (Ishimoto et al., 2020; Ma et al., 2022; Neckameyer, 1998; Rezával et 138 

al., 2014). So far, the identified neuropeptides and monoamines modulating female 139 

sexual receptivity all function during the adult stage. However, whether neuropeptides 140 

or monoamines regulate the establishment of neural circuits for female sexual 141 

receptivity is unknown. 142 

 143 

To explore the factors that regulate Drosophila virgin female receptivity especially 144 

during neurodevelopment, we did a knock-out screen including most of CCT members. 145 

We discovered a requirement for the prothoracicotropic hormone (PTTH) during 146 

postembryonic development for virgin female receptivity. We also found that PG 147 

neurons expressing PTTH are dsx+ neurons. PTTH, a brain derived neuropeptide 148 

hormone, is the primary promoter of the synthesis of steroid hormone 20-149 

hydroxyecdysone (20E) (McBrayer et al., 2007a; Rewitz et al., 2009). Indeed, the 150 

enhanced virgin female receptivity due to the loss of PTTH could be rescued through 151 

feeding 20E to the 3rd-instar larvae. Due to that 20E functions through its receptor EcR 152 

(Riddiford et al., 2000), we then tested the function of EcR in pC1 neurons which 153 

encode the mating status of females (Zhou et al., 2014). The reduced EcR-A expression 154 

in pC1 neurons resulted in the unnormal anatomical pattern of pC1 neurons and the 155 

reduced female copulation rate. Furthermore, the decreased female copulation rate was 156 

due to the reduced EcR-A in pC1b neurons. To detect the molecular mechanism for the 157 
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regulation of pC1 neurons in virgin female receptivity, we tested the RNAseq when EcR-158 

A was reduced in pC1 neurons. We found some regulated genes, which provide clues 159 

for our future research in the molecular mechanism by which pC1 neurons regulate 160 

virgin female receptivity. Thus, in addition to demonstrating the function of PTTH in 161 

virgin female receptivity during neural maturation, our study identified the necessary role 162 

of the normal pC1b neural morphology in virgin female receptivity. 163 

 164 

Results 165 

 166 

PTTH modulates virgin female receptivity 167 

 168 

In Drosophila, neuropeptides and monoamines, belonging to the chemoconnectome 169 

(CCT) (Deng et al., 2019), play a critical role in regulation of the female receptivity. To 170 

explore the factors that regulate virgin female receptivity especially during 171 

neurodevelopment, we screened 108 chemoconnectome (CCT) knock-out lines 172 

generated by the CRISPR-Cas9 system (Deng et al., 2019) (unpublished data). The 173 

result showed that prothoracicotropic hormone (PTTH) might regulate virgin female 174 

receptivity. The deletion mutant DPtth removed part of the 59 UTR and almost all coding 175 

sequence and is a protein null (Figure 1A). We confirmed the PTTH knock-out flies by 176 

using PCR analysis at the PTTH locus in genomic DNA samples (Figure 1B), by using 177 

RT-PCR to identify the loss of PTTH transcripts in cDNA samples (Figure 1C) and by 178 

detecting the immunoreactivity of PTTH in the central brain (Figure 1H). Primers used 179 

are listed in Supplementary File 1. PTTH immunoreactivity was found in the brain of 180 
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wild-type and heterozygous flies (Figure 1 H1 and H3), but was absent in homozygous 181 

DPtth flies (Figure 1H2). As the previous study, the DPtth larvae lacking PTTH undergo 182 

metamorphosis with about 1 day delay compared with the wild type control (Shimell et 183 

al., 2018) (data not shown). Besides, the DPtth adult male and female flies had the 184 

significant increased weight than wild type flies (Figure 14figure supplement 1A). 185 

This is also consistent with that PTTH regulates developmental timing and body size in 186 

Drosophila (Mcbrayer et al., 2007b; Shimell et al., 2018).  187 

 188 

To confirm the function of PTTH, we tested virgin female receptivity of DPtth female 189 

flies. We found that the virgin female losing PTTH had significantly higher copulation 190 

rate and shorter latency to copulation than wild type flies (Figure 1 D-G). In addition, the 191 

DPtth flies had higher copulation rate and lower latency to copulation compared to 192 

heterozygous null mutant females within 2 days (Figure 1 D-E) and within 3 days, 193 

respectively (Figure 1 D-F). The enhanced virgin female receptivity had no relationship 194 

either with the attractivity or with the locomotion activity of virgin females (Figure 14195 

figure supplement 1B-D). These results suggested that PTTH participates in virgin 196 

female receptivity in a dose-dependent manner. 197 

 198 

Furthermore, we carried out genetic rescue experiments to further confirm the function 199 

of PTTH in modulating virgin female receptivity. We used the pan-neuronal driver 200 

elavGAL4 to drive UAS-PTTH expression in PTTH mutant background. We detected the 201 

PTTH signals using PTTH antibody in the rescued female brains (Figure 1H4). We 202 

found that neuron-specific expression of PTTH could restore the enhanced copulation 203 
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rate and shorter latency to copulation in �Ptth virgin females (Figure 1I). These results 204 

confirmed that PTTH modulates virgin female receptivity. 205 

 206 

Dsx+ PG neurons regulate virgin female receptivity. 207 

We used new PtthGAL4 and PtthLexA which inserts GAL4 or LexA sequence before the 208 

stop codon of the Ptth gene (Deng et al., 2019) to label and manipulate PG neurons 209 

expressing PTTH. The labeled neurons were the same as reported before (McBrayer et 210 

al., 2007a; Yamanaka et al., 2013), a pair of bilateral neurosecretory cells in the brain 211 

directly innervating the prothoracic gland during the larval stage (Figure 2A and Figure 212 

24figure supplement 1A). The newly emerged flies had the similar anatomical pattern 213 

with that of the larval stage (Figure 2B and Figure 24figure supplement 1B). 214 

However, while the prothoracic gland cells are gradually degenerating during pharate 215 

adult development (Dai et al., 1991; Roy et al., 2018), the pattern of PG neurons labeled 216 

by PtthGAL4 > UAS-mCD8GFP gradually could not be found before the 10th hour after 217 

eclosion (Figure 24figure supplement 2). 218 

 219 

Most identified neurons associated with female sexual behaviors express doublesex 220 

gene. We asked whether PG neurons are a part of the doublesex circuitry or not. 221 

Double labeling of dsxLexA and PtthGAL4 neurons (LexAop-tomato,UAS-222 

stingerGFP/PtthLexA;dsxGAL4/+) revealed that PG neurons are all doublesex-positive 223 

(Figure 2C). We then used an intersectional strategy to visualize overlapped expression 224 

between dsxLexA and PtthGAL4 (UAS > stop > myrGFP/+;LexAop2-225 
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FlpL,dsxLexA/PtthGAL4). We observed all PG neurons with GFP signals (Figure 2D). 226 

These results suggested that PG neurons are dsx+ neurons. 227 

 228 

We then analyzed whether PG neurons are involved in the modulation of virgin female 229 

receptivity. First, we activated PG neurons transiently in adult virgin females by driving 230 

the temperature-sensitive activator dTrpA1 (Hamada et al., 2008) using PtthGAL4. PG 231 

neurons were activated at 29oC compared with the control treatment at 23oC. No 232 

significantly different copulation rate or latency to copulation was detected (Figure 24233 

figure supplement 3A-C). This suggested that PG neurons do not regulate virgin 234 

female receptivity during the adult stage. 235 

 236 

To identify the detail time for the function of PG neurons in virgin female receptivity, we 237 

inactivated PG neurons through kir2.1 under the control of the temporal and regional 238 

gene expression targeting system (McGuire et al., 2004). The inactivation of PG 239 

neurons during larval stage enhanced virgin female copulation rate significantly (Figure 240 

2E). However, when PG neurons were inactivated during pupal or adult stages, virgin 241 

female copulation rate did not change significantly (Figure 2 F-G). Furthermore, we 242 

activated PG neurons at different stages overlapping the postembryonic larval 243 

developmental time using dTrpA1 (Figure 3A). Stage 1 was from the 1st-instar larvae to 244 

six hours before the 3rd-instar larvae. Stage 2 was from six hours before the 3rd-instar 245 

larvae to the end of the wandering larvae. Stage 3 was from the end of wandering 246 

larvae to the end of the 2nd day of the pupal stage. Stage 4 was from the end of the 2nd 247 

day of the pupal stage to the eclosion of adults. The copulation rate did not change 248 
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significantly when activating PG neurons during the stage 1, stage 3 or stage 4 (Figure 249 

3B, 3D and 3E). However, we found the significant lower copulation rate and the longer 250 

latency to copulation only when PG neurons were activated during the stage 2 (Figure 251 

3C and Figure 3F). The defected copulation was not due to a lower locomotion activity 252 

of virgin females (Figure 3G). Taken together, our findings indicated that the activity of 253 

dsx+ PG neurons negatively regulate virgin female receptivity during the stage from the 254 

start of the 3rd-instar to the end of wandering stage. 255 

 256 

PTTH modulates virgin female receptivity through ecdysone. 257 

 258 

The 3rd-intar larval stage is the critical stage for the initiation of metamorphosis involving 259 

the synthesis of ecdysone (Imura et al., 2020; Lavrynenko et al., 2015; Shimell et al., 260 

2018). To test whether PTTH regulates virgin female receptivity through regulating the 261 

synthesis of ecdysone, we rescued the enhanced female receptivity by feeding 20E to 262 

the 3rd-intar larval DPtth flies. The enhanced copulation rate and shorter latency to 263 

copulation of the DPtth flies were rescued to the comparable level of wild type females 264 

(Figure 4). Furthermore, the wild type females fed by 20E had no significantly different 265 

copulation rate and latency to copulation compared with the wild type females fed by the 266 

same volume of 95% ethanol which is the solvent of 20E (Figure 4). This suggested 267 

that PTTH regulates virgin female receptivity through the titer of ecdysone. 268 

 269 

Ecdysone receptor EcR-A in pC1 neurons regulates virgin female copulation rate. 270 

 271 
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Given that PTTH regulates virgin female receptivity through ecdysone which acts on its 272 

receptor EcR, we then asked that whether ecdysone regulates the function of neurons 273 

associated with virgin female receptivity through EcR. pC1 and vpoDN neurons are two 274 

main dsx+ neurons involved in virgin female receptivity (Wang et al., 2021; Zhou et al., 275 

2014). pC1 neurons encode the mating status of female flies, vpoDN neurons regulate 276 

the opening of vaginal plate when females attend to accept males. EcR-A and EcR-B1 277 

are the two prominently expressed ecdysone receptors in the CNS (Riddiford et al., 278 

2000). First, we tested the expression of EcR-A and EcR-B1 in these two neurons on 279 

the 2nd day of the pupal stage when ecdysone functions as the main mover in the 280 

metamorphosis (Dalton et al., 2009; Truman et al., 1994). The GFP signals labeled by 281 

pC1-ss2-GAL4 and vpoDN-ss1-GAL4 were merged well with the signals of both EcR-A 282 

and EcR-B1 antibodies respectively (Figure 54figure supplement 1). This revealed 283 

that EcR-A and EcR-B1 express in both pC1 and vpoDN neurons. We then tested the 284 

function of EcR in pC1 and vpoDN neurons through reducing the expression of EcR-A 285 

and EcR-B1 respectively. We used the split GAL4 for pC1 and vpoDN neurons to drive 286 

the UAS-EcR-RNAi. First, we reduced the expression of all EcR isoforms in pC1 287 

neurons, this decreased the copulation rate and prolonged the latency to copulation 288 

significantly (Figure 54figure supplement 2A). Furthermore, we reduced the 289 

expression of EcR-A in pC1 neurons. The virgin female had the significant lower 290 

copulation rate and longer latency to copulation (Figure 5A). The reduced copulation 291 

rate had no relationship with the attractivity (Figure 5E) and the locomotion activity of 292 

virgin females (Figure 54figure supplement 2B). When reducing the expression of 293 

EcR-B1 in pC1 neurons, virgin females had the significant longer latency to copulation 294 
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but the comparable copulation rate to controls (Figure 5B). However, reducing the 295 

expression of EcR-A (Figure 54figure supplement 3 A-C) and EcR-B1 (Figure 54296 

figure supplement 3 D-F) using three split vpoDNGAL4s in vpoDN neurons all did not 297 

affect virgin female receptivity. This suggested that the expression of EcR-A in pC1 298 

neurons regulates virgin female copulation rate, but EcR isoforms in vpoDN neurons do 299 

not modulate virgin female receptivity. 300 

 301 

Two split-GAL4 drivers for pC1 neurons had been obtained previously. pC1-ss1-GAL4 302 

labels pC1-a, c and -e neurons, and pC1-ss2-GAL4 labels all pC1-a, -b, -c, -d and -e 303 

neurons (Wang et al., 2020b). We also tested virgin female receptivity when EcR-A or 304 

EcR-B1 were reduced in pC1-a, -c and -e neurons simultaneously using pC1-ss1-GAL4 305 

respectively. While the copulation rate or the latency to copulation did not change 306 

significantly (Figure 5 C-D). This suggested that, pC1b and/or pC1d neurons are 307 

necessary for the functions of EcR-A and EcR-B1 in pC1 neurons on virgin female 308 

receptivity. Whether pC1d is involved in the regulation of female receptivity is uncertain 309 

(Deutsch et al., 2020; Schretter et al., 2020; Taisz et al., 2023). However, when 310 

reducing EcR-A in pC1d neurons alone using the specific split GAL4 SS56987 311 

(Schretter et al., 2020), virgin female receptivity including copulation rate and latency to 312 

copulation did not change significantly compared with controls (Figure 54figure 313 

supplement 4). These results suggested that the function of EcR-A in pC1b neurons is 314 

necessary for virgin female copulation rate. 315 

 316 
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As recently mated females may reduce sexual receptivity and increase egg laying (Avila 317 

et al., 2011; Kubli, 2003). we asked whether the decreased copulation rate induced by 318 

EcR-A could be a post-mating response and correlate with elevated egg laying. To 319 

address this, we examined the number of eggs laid by virgin females when EcR-A was 320 

reduced in pC1 neurons. We found that manipulation of EcR-A did not enhance egg 321 

laying significantly in virgin females (Figure 5F). Meanwhile, we further analyzed 322 

whether reduction of EcR-A in pC1 neurons regulates the opening of vaginal plate 323 

(VPO) or the ovipositor extrusion (OE). We found that reducing the EcR-A expression in 324 

pC1 neurons lead to the significantly less VPO and more OE (Figure 5 G-H). These 325 

results suggested that reduced EcR-A expression in pC1 neurons results in the similar 326 

phenotype to that of mated females. 327 

 328 

EcR-A participates in the morphological development of pC1 neurons. 329 

 330 

EcR isoforms have distinct temporal and spatial expression patterns in the CNS 331 

(Riddiford et al., 2000; Truman et al., 1994). It is unknown when EcR-A functions in pC1 332 

neurons for virgin female receptivity. Thus, we examined virgin female receptivity when 333 

EcR-A expression was conditionally reduced through RNAi via the pC1-ss2-GAL4 under 334 

the control of the temporal and regional gene expression targeting system (McGuire et 335 

al., 2004). EcR-A was reduced during the larval, pupal and adult stage respectively 336 

(Figure 5 I-K). Only during the pupal stage, reducing EcR-A made the significant lower 337 

copulation rate and longer latency to copulation (Figure 5J). The result suggested that 338 

EcR-A in pC1 neurons plays a role in virgin female receptivity during metamorphosis. 339 
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This is consistent with that PTTH regulates virgin female receptivity before the start of 340 

metamorphosis which is around the puparium formation. 341 

 342 

We then tested how EcR-A functions in pC1 neurons to modulate virgin female 343 

receptivity. First, we tested the morphology of pC1 neurons when reducing the 344 

expression of EcR-A in pC1 neurons. We found that the morphology of pC1 neurons 345 

appeared after the formation of the white pupa (Figure 6A1). The reduced EcR-A 346 

expression induced the more elaborated morphologies of the pC1-d/e cells, especially 347 

the extra vertical projection (EVP) near the midline of brains (Figure 6 B-D) (Deutsch et 348 

al., 2020). These changes exhibited from the second day of the pupal stage (Figure 6 349 

B1-B2 and 6E) and maintained at the adult stage (Figure 6 D1-D2 and 6F). Meanwhile, 350 

the number of pC1 cell bodies in adult flies when EcR-A was reduced were the same as 351 

that of wild type flies (Figure 6G). Previous studies suggested that pC1d cells serve as 352 

a hub within the central brain for dsx+ and fru+ neurons (Deutsch et al., 2020). Thus, the 353 

unnormal development of pC1d neurons may induce the changes between pC1d 354 

neurons and other dsx+ and fru+ neurons to affect associated behaviors. 355 

 356 

Furthermore, we asked whether reduced female copulation rate was due to that EcR-A 357 

expression affected the activity of pC1 neurons. Because all pC1 cells characterized so 358 

far project to the lateral junction of the lateral protocerebral complex (LPC) (Kimura et 359 

al., 2015; Rezával et al., 2016; Scheffer et al., 2020; Wang et al., 2020b; Wu et al., 360 

2019; Zhou et al., 2014), we expressed GCamp6s in all pC1 neurons and tested the 361 

calcium signals in the lateral junction of LPC when EcR-A was knocked down (Figure 6 362 
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D1-D2). Reduced EcR-A did not induce significantly different calcium responses in the 363 

LPC (Figure 6H). Thus, our results suggested that the decreased female copulation 364 

rate induced by reduced EcR-A in pC1 neurons was mainly due to the morphological 365 

changes of pC1b neurons, which then modulate the connections of pC1b neurons with 366 

other neurons. 367 

 368 

Reduction of EcR-A in pC1 neurons affects gene expression. 369 

 370 

To further detect the factors that were regulated downstream of EcR-A in pC1 neurons 371 

for the function in virgin female receptivity, we tested the transcriptome of brain in adult 372 

virgin females when EcR-A was knocked down in pC1 neurons. We focused on the 373 

differently expressed genes of the 4th day after eclosion when mating behaviors were 374 

tested. We identified 527 differentially expressed (p < 0.01) genes, 123 of which passed 375 

a false discovery rate (FDR) cutoff of 0.01 (Figure 7, Supplementary File 2 and 376 

Supplementary File 3). 377 

 378 

The gene encoding dopamine beta-monooxygenase (DBM) was the top most down-379 

regulated gene (Figure 7 A-B). The mammal homolog of DBM is monooxygenase 380 

DBH-like 1 (Moxd1). Moxd1 has the similar structure as the mammal dopamine ³-381 

hydroxylase (DBH) which is the enzyme for transition from dopamine to norepinephrine 382 

(Park et al., 1976; Prigge et al., 2000; Vendelboe et al., 2016). This implied that DBM is 383 

probably related to the dopamine metabolism. It will be interesting to study the function 384 

of DBM in virgin female receptivity. Besides, CG30428 protein was also down-regulated 385 
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(Supplementary File 2). It is predicted to be active in nucleus, suggesting its role in 386 

gene expression and cellular metabolism. This is consistent with that reduction of EcR-387 

A in pC1 neurons induced the unnormal anatomical morphology of pC1 neurons, which 388 

may due to the unnormal cell death and cellular differentiation during development. 389 

 390 

Discussion 391 

 392 

In this study, we found that peptide hormone PTTH modulates virgin female receptivity 393 

through ecdysone during neural maturation. PG neurons expressing PTTH are 394 

doublesex-positive and regulate virgin female receptivity during the 3rd-instar larval 395 

stage. Furthermore, ecdysone receptor EcR-A functions in pC1 neurons to regulate 396 

virgin female copulation rate during the metamorphosis mainly through modulating the 397 

anatomical morphology of pC1b neurons. Taken together, our results identified the 398 

function of PTTH-ecdysone and their downstream pathway, EcR-A in pC1 neurons, on 399 

regulating virgin female copulation rate during neural maturation mainly through 400 

modulating the morphology of pC1b neurons. 401 

 402 

Our results suggested a regulatory role of PTTH in virgin female receptivity. Even 403 

though insects and mammals represent highly diverged classes, insects have evolved a 404 

similar strategy for triggering the juvenile3adult transition (Herbison, 2016; Pan et al., 405 

2019). The juvenile3adult transition involves the hypothalamic3pituitary3gonadal (HPG) 406 

axis in mammals and the PG axis in insects. Among the neurons belonging to the axis, 407 

PG neurons and GnRH neurons have the similar function to stimulate the PG gland and 408 
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pituitary gland to release hormones which trigger maturation, respectively. It will be 409 

interesting to study the function of GnRH neurons in the mammal sexual behaviors. 410 

Most of neurons regulating sexual behaviors in female flies are dsx+ neurons. Our 411 

results showed that PG neurons are also dsx+ neurons. This suggested that PG 412 

neurons have relationships with other dsx+ neurons and the juvenile3adult transition is 413 

regulated by doublesex gene. 414 

 415 

In our study, PTTH regulates virgin female receptivity in an ecdysone-dependent 416 

manner before the peak of ecdysone for the metamorphosis. Ecdysone functions 417 

through its receptor EcR which is involved in all phases of the nervous system 418 

development. Previous studies have demonstrated that the fru+ neuron development 419 

need EcR-A in male Drosophila melanogaster. Furthermore, reduced EcR-A in fru+ 420 

neurons induced the male-male courtship (Dalton et al., 2009). In females, we detected 421 

the expression of EcR-A and EcR-B1 in both dsx+ pC1 and dsx+ vpoDN neurons. 422 

However, EcR regulates virgin female receptivity in pC1 neurons but not in vpoDN 423 

neurons. This may due to that EcR does not regulate the morphology of vpoDN neurons 424 

and thus the synaptic connections with other neurons. Alternatively, EcR regulates the 425 

morphology of vpoDN neurons without changing functional connectivity or gene 426 

expressions within associated neurons. It is worth noting that the losing of PTTH 427 

resulted in the enhanced virgin female receptivity, which is contrary to the reduced 428 

receptivity when knocking down EcR-A in pC1 neurons. This may due to that 20E and 429 

EcR regulates multiple neurodevelopment associated with virgin female receptivity 430 
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when PTTH is knocked out, but not only functions in pC1 neurons. This may also due to 431 

that PTTH mutant results in increased EcR expression in pC1 neurons. 432 

 433 

Reduced EcR-A expression in all pC1 neurons lead to the decreased copulation rate, 434 

while reduced EcR-A in pC1-a, c and e simultaneously did not reduce the copulation 435 

rate significantly. This suggested that EcR-A plays the critical role in pC1-b or/and -d 436 

neurons for regulating virgin female receptivity. Our results revealed that reduced EcR-437 

A induced the more elaborated morphologies of pC1d neurons. Previous studies 438 

detected the synaptic connections between the axons of pC1d and the dendrites of 439 

DNp13 neurons (Deutsch et al., 2020; Mezzera et al., 2020). DNp13 neurons are 440 

command neurons for ovipositor extrusion. When females extruded, the ovipositor 441 

physically impedes copulation (Mezzera et al., 2020; Wang et al., 2020a). However, 442 

reduced EcR-A expression in pC1d neurons did not affect virgin female receptivity 443 

(Figure 54figure supplement 4). This might be due to three possibilities. First, the 444 

more elaborated morphologies of pC1d neurons did not affect synaptic connections 445 

between pC1d and DNp13 neurons. Second, the unchanged pC1 neural activity could 446 

not affect the neural activity of DNp13 neurons. Third, the morphological change of 447 

pC1d neurons is not sufficient for the decreased copulation rate. To sum, these suggest 448 

that the morphological change of pC1b neurons is necessary for the decreased 449 

copulation rate. However, due to the lack of pC1b drivers, we could not rule out 450 

morphological changes in pC1b neurons when EcR-A was reduced. 451 

 452 
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We identified DBM as the mostly down-regulated gene when EcR-A was reduced in 453 

pC1 neurons. DBM is the insect homolog of MOXd1 in mammals. However, the function 454 

of MOXd1 has not been identified but is predicted to hydroxylate a hydrophobic 455 

substrate (Xin et al., 2004). The similar structure between MOXd1 and dopamine beta-456 

monooxygenase in mammals suggests the possible role of DBM in dopamine 457 

metabolism (Cubells et al., 2004; Kim et al., 2002; Timmers et al., 2004). Besides, 458 

previous study identified the Moxd1 as a useful marker for the sexually dimorphic nuclei 459 

and may be involved in the regulation of sex-biased physiology and behaviors in 460 

mammals (Tsuneoka et al., 2017). These make it interesting to further study on the 461 

molecular mechanism by which DBM and Moxd1 regulate sexual behaviors in flies and 462 

mammals respectively. 463 

 464 

Taken together, this study demonstrates that the peptide hormone PTTH, expresses in 465 

dsx+ PG neurons, regulates virgin female receptivity during neural maturation. It also 466 

revealed that the morphological development of pC1b neurons regulated by EcR-A is 467 

necessary for virgin female copulation rate. This work extends the understanding of how 468 

neurodevelopmental processes regulate adult sexual behavior. 469 

 470 

Materials and methods 471 

 472 

 473 

 474 

 475 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 29, 2023. ; https://doi.org/10.1101/2023.09.28.559939doi: bioRxiv preprint 

https://doi.org/10.1101/2023.09.28.559939
http://creativecommons.org/licenses/by/4.0/


 21 

Key Resources Table 

Reagent type 
(species) or 
resource 

Designation 
Source or 
reference 

Identifiers Additional information 

antibody 

Mouse anti-

Bruchpilot antibody 
(nc82) 

Developmental 

Studies 
Hybridoma 
Bank 

Cat# nc82, RRID: 
AB_2314866 

IHC (1:40) 

antibody 

Mouse Anti-
Drosophila 
ecdysone receptor 

(EcR-A) 
Monoclonal 
Antibody 

Developmental 
Studies 

Hybridoma 
Bank 

Cat# 15G1a (EcR-

A), RRID: 
AB_528214 

IHC (1:10) 

antibody 

mouse Anti-
Drosophila 
ecdysone receptor 

(EcR-B1) Antibody 

Developmental 
Studies 
Hybridoma 

Bank 

Cat# AD4.4(EcR-
B1), RRID: 
AB_2154902 

IHC (1:10) 

antibody 
Rabbit polyclonal 
anti-GFP 

Thermo Fisher 
Scientific 

Cat# A-11122, 
RRID: AB_221569 

IHC (1:1000) 

antibody 
chicken polyclonal 
anti-GFP 

Thermo Fisher 
Scientific 

Cat# A10262, RRID: 
AB_2534023 

IHC (1:1000) 

antibody 
Goat anti-rabbit, 

Alexa Fluor 488 

Thermo Fisher 

Scientific 

Cat# A-11034, 

RRID: AB_2576217 
IHC (1:500) 

antibody 
Goat anti-chickent, 

Alexa Fluor 488 

Thermo Fisher 

Scientific 

Cat#A-11039; RRID: 

AB_2534096 
IHC (1:500) 

antibody 
Goat anti-mouse, 

Alexa Fluor 488 

Thermo Fisher 

Scientific 

Cat# A-11029, 

RRID: AB_2534088 
IHC (1:500) 

antibody 
Goat anti-rabbit, 
Alexa Fluor 546 

Thermo Fisher 
Scientific 

Cat# A-11010, 
RRID: AB_2534077 

IHC (1:500) 

antibody 
Rabbit polyclonal 

anti-RFP 

Thermo Fisher 

Scientific 

Cat# R10367, RRID: 

AB_10563941 
IHC (1:500) 

antibody 
Goat anti-mouse, 
Alexa Fluor 647 

Thermo Fisher 
Scientific 

Cat# A-21235, 
RRID: AB_2535804 

IHC (1:500) 

antibody 
Rabbit polyclonal 
anti-PTTH 

Zhou Lab, 
Chinese 
Academy of 

Sciences, this 
paper 

N/A IHC (1:1300) 

chemical 

compound, drug 

Paraformaldehyde 

(PFA) 

Electron 

Microscopy 
Sciences 

Cat#15713 
8% PFA diluted in 

1XPBS at 1:4 or 1:2 

chemical 

compound, drug 
DPX Mountant 

Sigma- 

Aldrich 
Cat#44581  

chemical 
compound, drug 

Normal goat serum 
Sigma- 
Aldrich 

Cat#G9023  

chemical 
compound, drug 

20-
hydroxyecdysone 

Cayman Cat#16145 
dissolved in 95% 
ethanol, 0.2 mg/ml 

chemical 

compound, drug 
TRIzol Ambion Cat#15596018  

Genetic reagent 
(D.melanogaster) 

LexAop2-
mCD8::GFP 

Bloomington 
Stock Center 

BL#32203  

Genetic reagent 
(D.melanogaster) 

;;UAS-mCD8::GFP 
Bloomington 
Stock Center 

BL#32194  

Genetic reagent 
(D.melanogaster) 

;UAS-mCD8::GFP; 
Bloomington 
Stock Center 

BL#5137 
 

Genetic reagent 
(D.melanogaster) 

UAS-dTrpA1/cyo 
Garrity Lab, 
Brandeis 

University 

N/A 
 

Genetic reagent 

(D.melanogaster) 

UAS-Kir2.1 
Bloomington 

Stock Center 
BL#6595 
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Genetic reagent 

(D.melanogaster) 

PtthGAL4 

Rao Lab, 

Peking 
University 

N/A 
 

Genetic reagent 

(D.melanogaster) 

PtthLexA 
Rao Lab, 
Peking 

University 

N/A 
 

Genetic reagent 

(D.melanogaster) 

·PTTH 

Rao Lab, 
Peking 
University 

N/A 
 

Genetic reagent 

(D.melanogaster) 

UAS-PTTH 

Zhou Lab, 
Chinese 

Academy of 
Sciences, this 
paper 

N/A 
 

 

Genetic reagent 
(D.melanogaster) 

isoCS 
Rao Lab, 
Peking 
University 

N/A 
 

Genetic reagent 

(D.melanogaster) 

elav-GAL4 

Rao Lab, 

Peking 
University 

N/A 
 

Genetic reagent 
(D.melanogaster) 

UAS-GFPStinger 
Janelia 
Research 
Campus 

N/A 
 

Genetic reagent 
(D.melanogaster) 

LexAop-tomato 
Janelia 
Research 
Campus 

N/A 
 

Genetic reagent 
(D.melanogaster) 

LexAop2-FlpL 
Janelia 
Research 
Campus 

N/A 
 

Genetic reagent 
(D.melanogaster) 

UAS > stop > 
mCD8-GFP 

Janelia 
Research 
Campus 

N/A 
 

Genetic reagent 
(D.melanogaster) 

dsxGAL4 
Janelia 
Research 
Campus 

N/A 
 

Genetic reagent 
(D.melanogaster) 

dsxLexA 
Janelia 
Research 

Campus 

N/A 
 

Genetic reagent 
(D.melanogaster) 

tub-GAL80ts 
Pan Lab, 
Southeast 

University 

BL#7018 
 

Genetic reagent 

(D.melanogaster) 
pC1-ss1-GAL4 

Wang Lab, 
Lingang 

Laboratory 

N/A 
 

Genetic reagent 

(D.melanogaster) 
pC1-ss2 GAL4 

Wang Lab, 
Lingang 

Laboratory 

N/A 
 

Genetic reagent 

(D.melanogaster) 
vpoDN-ss1-GAL4 

Wang Lab, 

Lingang 
Laboratory 

N/A 
 

Genetic reagent 

(D.melanogaster) 
vpoDN-ss2-GAL4 

Wang Lab, 

Lingang 
Laboratory 

N/A 
 

Genetic reagent 
(D.melanogaster) 

vpoDN-ss3-GAL4 

Wang Lab, 

Lingang 
Laboratory 

N/A 
 

Genetic reagent 
(D.melanogaster) 

UAS-EcR-RNAi 
Bloomington 
Stock Center 

BL#9327 
 

Genetic reagent 
(D.melanogaster) 

UAS-EcR-A-RNAi 
Bloomington 
Stock Center 

BL#9328 
 

Genetic reagent 

(D.melanogaster) 
UAS-EcR-B1-RNAi 

Bloomington 

Stock Center 
BL#9329 

 

Genetic reagent 
(D.melanogaster) 

pC1d-GAL4 
Bloomington 
Stock Center 

BL#86847 
 

recombinant DNA 
reagent 

pBSK-attP-3P3-
RFP-loxP 

Bowen Deng et 
al., 2019 

N/A 
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recombinant DNA 

reagent 

pBSK-attB-loxP-
myc-T2A-Gal4-

GMR-miniwhite 

Bowen Deng et 

al., 2019 
N/A 

 

recombinant DNA 

reagent 

pBSK-attB-loxP-
V5-T2A-LexA::p65-

GMR-miniwhite 

Bowen Deng et 

al., 2019 
N/A 

 

software, algorithm 
MATLAB 

MathWorks, 

Natick, MA 

https://www.mathwor

ks.com/products/mat
lab.html 

 

software, algorithm 
ImageJ 

National 

Institutes of 
Health 

https://imagej.nih.go

v/ij/  

software, algorithm 
Prism 7 GraphPad 

https://www.graphpa
d.com/  

software, algorithm 
R 4.1.3 RStudio 

https://www.r-
project.org  

 476 

Fly stocks 477 

 478 

Flies were reared on standard cornmeal-yeast medium under a 12 hr:12 hr dark:light 479 

cycle at 25oC and 60% humidity. All the knock-out lines in this study for screening have 480 

been published [49]. The following strains were obtained from Dr. Yi Rao: isoCS (wild-481 

type), �Ptth, PtthGAL4, PtthLexA, elavGAL4 and UAS-Kir2.1 (BL#6595). UAS-dTrpA1 482 

was a gift from Dr. Paul Garrity. UAS-GFPStinger, LexAop-tomato, LexAop2-FlpL, 483 

UAS > stop > mCD8-GFP, dsxGAL4 and dsxLexA (Mellert et al., 2010) have been 484 

described previously (Pfeiffer et al., 2008; Pfeiffer et al., 2010) and are obtained from 485 

Janelia Research Campus. tub-GAL80ts (BL#7018) was provided by Dr. Yufeng Pan. 486 

pC1-ss1-GAL4, pC1-ss2 GAL4, vpoDN-ss1-GAL4, vpoDN-ss2-GAL4 and vpoDN-ss3-487 

GAL4 were provided by Dr. Kaiyu Wang. The following lines were obtained from the 488 

Bloomington Drosophila Stock Center: UAS-EcR-RNAi (BL#9327), UAS-EcR-A-RNAi 489 

(BL#9328), UAS-EcR-B1-RNAi (BL#9329), UAS-mCD8::GFP (BL#32194), LexAop2-490 

mCD8::GFP (BL#32203), UAS-mCD8::GFP (BL#5137) and pC1d-GAL4 (BL#86847).  491 

 492 

Behavioral assays 493 
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 494 

Flies were reared at 25oC and 60% humidity under a 12 hr light:12 hr dark cycle. Virgin 495 

females and wild-type males were collected upon eclosion, placed in groups of 12 flies 496 

each and aged 436 days (except for the assays for PTTH mutant on different days after 497 

eclosion, and the molecular rescue assay for the 24h-old females) before carrying out 498 

behavioral assay except for the transient thermogenetic experiments. Female receptivity 499 

assays were conducted as previously described (Wang et al., 2022; Zhou et al., 2014). 500 

A virgin female of defined genotype and a wild type male were gently cold anesthetized 501 

and respectively introduced into two layers of the courtship chambers separated by a 502 

removable transparent film. The flies were allowed to recover for at least 45 min before 503 

the film was removed to allow the pair of flies to contact. The mating behavior was 504 

recorded using a camera (Canon VIXIA HF R500) for 30 min at 17 fps for further 505 

analysis.  506 

 507 

For transient activation experiment by dTrpA1 in adult stage, flies were reared at 23oC. 508 

Flies were loaded into courtship chamber and recovered for at least 30 min at 23oC, 509 

then were placed at 23oC (control group) or 29oC (experimental group) for 30 min prior 510 

to removing the film and videotaping. For activation experiment by dTrpA1 during 511 

development, flies were reared at 29oC during the specific stages compared with the 512 

controls who were reared at 23oC all the time. Flies were loaded into courtship chamber 513 

and recovered for at least 45 min at 23oC prior to removing the film and videotaping.  514 

 515 

Quantification and statistical analysis of female receptivity behavior 516 
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 517 

Two parameters including copulation rate and latency to copulation were used to 518 

characterize receptivity and we got the data sets of two parameters from the same flies. 519 

The time from removing the film to successful copulation was measured for each 520 

female. The number of females that had engaged in copulation by the end of each 1 521 

min interval within 30 min were summed and plotted as a percentage of successful 522 

copulation. The latency to copulation was the time from removing the film to successful 523 

copulation. All the time points that female successfully copulated were manually 524 

analyzed and the data of unhealthy flies were discarded. 525 

 526 

Temporally restricted RNAi 527 

 528 

tub-GAL80ts crosses were reared at either 18oC for control groups or 30oC for 529 

experimental groups. Virgin females were collected at eclosion and were placed in 530 

groups of 12 flies each and aged 436 days before carrying out behavior assay. Assays 531 

were tested at 23oC. 532 

 533 

Male courtship index 534 

 535 

Courtship index was defined as the proportion of time the male followed, oriented 536 

toward and attempted to copulate the female within 5 min of courtship initiation, marked 537 

by the initial orientation toward and following the female.  538 

 539 
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Vaginal plate opening and ovipositor extrusion 540 

 541 

A virgin female of defined genotype and a wild type male were aspirated into the 542 

courtship chambers and respectively introduced into two layers of the courtship 543 

chambers separated by a removable transparent film. The flies were allowed to recover 544 

for 30 min before the film was removed. To allow visualization of vaginal plate opening, 545 

we recorded uncompressed image sequences at 896 x 896 pixels and 50 frames per 546 

second using a Photron Mini AX camera (Photron) with an AF-S VR Micro-Nikkor 547 

105mm lens (Nikon). Instances of vaginal plate opening and ovipositor extrusion were 548 

scored blind to genotype from frame by-frame playback during the first 5 min of 549 

courtship or until copulation if it occurred within 5 min. Courtship initiation was defined 550 

as the male orienting toward and beginning to follow the female. Rare trials with fewer 551 

than 30 s of total courtship were discarded. 552 

 553 

Locomotion assays 554 

 555 

The rearing and experimental conditions in locomotion assays were the same as that in 556 

the corresponding female receptivity assays, excepting that individual females were 557 

loaded in the chambers without males. Spontaneous movements of the flies were 558 

recorded with a camera (Canon VIXIA HF R500) for 30 min at 30 fps for further 559 

analysis. The activity of flies during the middle 10 min was analyzed to calculate the 560 

average walking speed using Ctrax software.  561 

 562 
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Egg Laying 563 

 564 

Virgin females were collected upon eclosion and one fly was housed on standard 565 

medium at 25oC, 60% relative humidity, 12 hr light:12 hr dark and allowed to lay eggs in 566 

single vials. Each fly was transferred into new food tube every 24 hr. The number of 567 

eggs was counted at the end of each 24 hr period. The numbers during the 3rd and 4th 568 

day were summed for statistics and plot. 569 

 570 

Immunohistochemistry 571 

 572 

Whole brains of flies were dissected in 1x PBS and fixed in 2% paraformaldehyde 573 

diluted in 1x PBS for 55 min at room temperature. The samples were washed with PBT 574 

(1x PBS containing 0.3% Triton X-100) for 1 hour (3 x 20 min), followed by blocking in 575 

5% normal goat serum (Blocking solution, diluted in 0.3% PBT) for 1 hour at room 576 

temperature. Then, the samples were incubated in primary antibodies (diluted in 577 

blocking solution) for 18324 hours at 4oC. Samples were washed with 0.3% PBT for 1 578 

hour (3 x 20 min), then were incubated in secondary antibodies (diluted in blocking 579 

solution) for 18324 hours at 4oC. Samples were washed with 0.3% PBT for 1 hour (3 x 580 

20 min), then were fixed in 4% paraformaldehyde for 4 hours at room temperature. After 581 

washed with 0.3% PBT for 1 hour (3 x 20 min), brains were mounted on poly-L-lysine-582 

coated coverslip in 1x PBS. The coverslip was dipped for 5 min with ethanol of 583 

30%³50%³70%³95%³100% sequentially at room temperature, and then dipped for 584 

5 min three times with xylene. Finally, brains were mounted with DPX and allowed DPX 585 
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to dry for 2 days before imaging. Primary antibodies used were: chicken anti-GFP 586 

(1:1000; Life Technologies #A10262), rabbit anti-GFP (1:1000; Life Technologies 587 

#A11122), rabbit anti-RFP (1:1000; Life Technologies #R10367), rabbit anti-PTTH 588 

antibody (1:1300), mouse anti-nc82 (1:40; DSHB), mouse anti-EcR-A (1:10; 589 

AB_528214) and mouse anti-EcR-B1 (1:10; AB_2154902). Secondary antibodies used 590 

were: Alexa Fluor goat anti-chicken 488 (1:500; Life Technologies #A11039), Alexa 591 

Fluor goat anti-rabbit 488 (1:500; Life Technologies #A11034), Alexa Fluor goat anti-592 

rabbit 546 (1:500; Life Technologies #A11010), Alexa Fluor goat anti-mouse 647 (1:500; 593 

Life Technologies #A21235), and Alexa Fluor goat anti-mouse 488 (1:500; Life 594 

Technologies #A11029).  595 

 596 

Confocal microscopy and image analysis 597 

 598 

Confocal imaging was performed under an LSM 710 inverted confocal microscope 599 

(ZEISS, Germany), with a Plan-Apochromat 20×/0.8 M27 objective or an EC Plan-600 

Neofluar 40x/1.30 oil DIC M27 objective, and later analyzed using Fiji software.	601 

 602 

Generation of anti-PTTH antibody 603 

 604 

The antisera used to recognize PTTH peptide were raised in New Zealand white rabbits 605 

using the synthetic peptide N9- TSQSDHPYSWMNKDQPWQFKC -C9. The synthesis of 606 

antigen peptide, the production and purification of antiserum were performed by Beijing 607 

Genomics Institute (BGI). 608 
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 609 

Generation of UAS-PTTH 610 

 611 

pJFRC28-5XUAS-IVS-GFP-p10 (#12073; Fungene Biotechnology, Shanghai, China) 612 

was used for the generation of the pJFRC28-UAS-PTTH construct. The pJFRC28-613 

10XUAS-IVS-GFP-p10 plasmid was digested with NotI and XbaI to remove the GFP 614 

coding sequence, and then the cDNA of PTTH was cloned into this plasmid by Gibson 615 

Assembly. The Kozak sequence was added right upstream of the ATG. UAS-PTTH 616 

constructs were injected and integrated into the attP2 site on the third chromosome 617 

through phiC31 integrase mediated transgenesis. The construct was confirmed using 618 

DNA sequencing through PCR. The primers used for cloning PTTH cDNA were as 619 

follows: 620 

UAS-PTTH-F 621 

ATTCTTATCCTTTACTTCAGGCGGCCGCAAAATGGATATAAAAGTATGGCGACTCC 622 

UAS-PTTH-R 623 

GTTATTTTAAAAACGATTCATTCTAGATCACTTTGTGCAGAAGCAGCCG 624 

 625 

Genomic DNA extraction and RT-PCR 626 

 627 

Genomic DNA was extracted from 10 whole bodies of wandering flies using MightyPrep 628 

reagent for DNA (Takara #9182). Whole body RNA was extracted from 10 whole bodies 629 

of wandering flies using TRIzol (Ambion #15596018). cDNA was generated from total 630 

RNA using the Prime Script reagent kit (Takara #RR047A). Candidates of �Ptth were 631 
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characterized by the loss of DNA band in the deleted areas through PCR on the 632 

genomic DNA and cDNA. Primer sequences used in Figure 1 are listed in Table S1. 633 

 634 

Measurements of pupariation timing and adult mass 635 

 636 

The flies were reared at 25°C and 60% humidity under a 12 hr light:12 hr dark cycle. 637 

Two-hour time collections of embryos laid on standard food vials. Each vial contained 638 

20-30 eggs. The range of time for pupariation were recorded for each vial. Sexed adults 639 

of 24h-old were weighted in groups of ten flies using a NENVER-TP-214 microbalance 640 

at the same time. 641 

 642 

Identification of sex in Drosophila larvae 643 

 644 

Third instar larvae can be sexed (True et al., 2014). Gonads are translucent and visible 645 

in side view in the posterior third of the larva. The male gonads are about five times 646 

bigger than the female gonads. The identified wandering female and male larvae were 647 

reared in different vials for the subsequent experiments. 648 

 649 

Rescue by 20-hydroxyecdysone feeding 650 

 651 

Thirty freshly ecdysed �Ptth L3 larvae, grown at 25°C and 60% humidity under a 12 hr 652 

light:12 hr dark cycle, were washed with water and transferred to normal food for 653 

additional aging. After 20 h, larvae were washed and transferred to a vial supplemented 654 
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with either 20-hydroxyecdysone (20E, Cayman #16145, dissolved in 95% ethanol, final 655 

concentration 0.2 mg/ml) or 95% ethanol (same volume as 20E). The wild type larvae 656 

were directly transferred to vials supplemented with 20E or 95% ethanol upon L3 657 

ecdysis. Once seeded with L3 larvae, the vials were returned to 25°C and 60% humidity 658 

under a 12 hr light:12 hr dark cycle. 659 

 660 

Quantification of fluorescence intensity 661 

 662 

The fluorescence intensity was quantified using Fiji software. The areas of interest 663 

(ROI) were marked in the slices including the interested regions and quantified using 664 

the <plot z-axis profile= function. The fluorescence intensity in each slice was summed 665 

for statistics and plot. The parameters used for confocal imaging of each brain were the 666 

same. 667 

 668 

Calcium imaging 669 

 670 

Flies aged 4-6 days were immobilized on ice for ~30 s. The brain was then dissected 671 

out in extra-cellular solution (ECS) that contains (in millimoles): 108 NaCl, 5 KC1, 5 672 

trehalose, 5 sucrose, 5 HEPES, 26 NaHCO3, 1 NaH2PO4, 2 CaCl2, and 1.5 MgCl2 [pH 673 

7.1 3 7.3 when bubbled with 95% (vol/vol) O2/5% (vol/vol) CO2, ~290 mOsm] and 674 

mounted on a poly-D-lysine coated coverslip. The samples were continuously perfused 675 

with ECS.  676 

 677 
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Calcium imaging was performed at 21°C on a customized two-photon microscope 678 

equipped with a resonant scanner (Nikon), a piezo objective scanner (Nikon) and a 40x 679 

water-immersion objective (Nikon). GCaMP6s was excited at 920 nm. 680 

 681 

Analysis of calcium imaging data was done offline with NIS-Elements AR 5.30.01. 682 

Briefly, the square region of interest (ROIs), 25 pixels on the pC1 neurons in the center 683 

of lateral junction, was chosen for measurements. For each frame, the average 684 

fluorescence intensity of pixels within ROIs was calculated blind to genotype. The 685 

average fluorescence intensity of ROIs in each frame covering pC1 neurons were 686 

summed for statistics and plot. 687 

 688 

RNA isolation and sequencing 689 

 690 

About 100 female fly brains were dissected from single individuals and the total RNA 691 

was extracted using TRIzol (Ambion #15596018). Sequencing was performed on an 692 

Illumina Novoseq6000 PE150 (Illumina, CA). Three biological replicates were performed 693 

for each genetic type. The library preparation and sequencing were performed by 694 

Novogene in China. 695 

 696 

RNA-seq analyses 697 

 698 

RNA-seq reads were mapped to the reference dmel-all-r6.42 (flaybase) using STAR 699 

(v2.7.6a) (Dobin et al., 2013) with default parameters. Aligned reads were assigned to 700 
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dmel-all-r6.43.gtf gene annotation model, mapping reads were counted by 701 

featureCounts from subread package with default parameters (Liao et al., 2013), and 702 

then the transcript per millions (TPMs) was calculated. Differential expression was 703 

analyzed with the DESeq2 package (Love et al., 2014) and visualized by volcano plots 704 

using the maximum a posteriori estimated log-fold change using the log2(fold-change) 705 

calculated from TPMs. 706 

 707 

qRT-PCR 708 

 709 

Whole brain RNA was extracted from about 100 fly brains using TRIzol (Ambion 710 

#15596018). The cDNA was synthesized using Prime Script reagent kit (Takara 711 

#RR047A). Quantitative PCR was performed on Thermo Piko Real 96 (Thermo) using 712 

SYBR Green PCR Master Mix (Takara #RR820A). The mRNA expression level was 713 

calculated by the 23��Ct method and the results were plotted by using tubulin as the 714 

reference gene. Primers are listed in Table S1. All reactions were performed in 715 

triplicate. The average of four biological replicates ± SEM was plotted. 716 

 717 

Statistical analysis 718 

 719 

Statistical analyses were carried out using R software version 3.4.3 or Prism7 720 

(GraphPad software). For the copulation rate, chi-square test is applied. The Mann-721 

Whitney U test was applied for analyzing the significance of two columns. Kruskal-722 
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Wallis ANOVA test followed by post-hoc Mann-Whitney U test, was used to identify 723 

significant differences between multiple groups. 724 

 725 

Data, Materials, and Software Availability 726 

 727 

All study data are included in the main text and supporting information, except for the 728 

sequence data of RNAseq (Supplementary File 3) has been deposited in the Genome 729 

Sequence Archive under the accession number CRA012130 in PRJCA018750. This 730 

study does not involve new code. Fly stocks and reagents used in this study are 731 

available from the corresponding author upon reasonable request. 732 
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Figure Legends 1033 

 1034 

Figure 1 Ptth null mutants have increased virgin female receptivity.  1035 
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(A-C) Generation and validation of a 974 bp deletion mutant of the Ptth gene. (D-G) 1036 

Virgin female receptivity of Ptth null mutants on the 1st (D), 2nd (E), 3rd (F) and 6th day 1037 

(G) respectively. (H) Brain of indicated genotype, immunostained with anti-PTTH 1038 

antibody (green) and counterstained with nc82 (magenta). Arrows show signals (green) 1039 

stained with anti-PTTH antibody. Scale bars, 50 ¿m. (I) Enhanced virgin female 1040 

receptivity of �Ptth null mutants was rescued by elavGAL4 driving UAS-PTTH. The 1041 

increased copulation rate and decreased latency to copulation on the 1st day after 1042 

eclosion were rescued to the comparable level of control. The number of female flies 1043 

paired with wild type males is displayed in parentheses. For the copulation rate, chi-1044 

square test is applied. For the latency to copulation, Kruskal-Wallis ANOVA and post 1045 

hoc Mann-Whitney U tests are applied. Error bars indicate SEM. *p < 0.05, **p < 0.01, 1046 

***p < 0.001, ****p < 0.0001, ns indicates no significant difference. 1047 
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 1060 

Figure 2 Inactivation of doublesex-positive PG neurons expressing PTTH 1061 

enhances virgin female receptivity during the larval stage. 1062 

(A-B) Expression pattern of PtthGAL4 revealed by anti-GFP in larvae central nervous 1063 

system (CNS) (A) and adult CNS (B). Representative of five female flies. Scale bars, 50 1064 

¿m. (C) All PG neurons were colabeled by dsxGAL4 driving UAS-GFPStinger (red) and 1065 

PtthLexA driving LexAop-tomato (green). Representative of five female brains. Scale 1066 

bars, 50 ¿m and 5 ¿m (zoom-in). (D) All PG neurons were Ptth and Dsx co-expressing, 1067 

labeled by intersectional strategy. Representative of 5 female brains. Scale bars, 50 ¿m. 1068 

(E-G) PG neurons were inactivated during larval (E), pupal (F) and adult (G) stages 1069 

respectively by kir2.1, restricted by shifts from 18°C to 30°C. The inactivation during the 1070 

larval stage significantly increased the copulation rate (E). The number of female flies 1071 

paired with wild-type males is displayed in parentheses. For the copulation rate, chi-1072 

square test is applied. Error bars indicate SEM. *p < 0.05, **p < 0.01, ***p < 0.001, ****p 1073 

< 0.0001, ns indicates no significant difference. 1074 
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Figure 3 Activation of PG neurons expressing PTTH during the 3rd-instar larvae 1078 

inhibits virgin female receptivity. 1079 

(A) Four developmental stages of Drosophila before eclosion when PG neurons were 1080 

thermogenetic activated by dTrpA1. L1, L2, and L3: start of three larval stages, W: start 1081 

of wandering stage, Pp: puparium formation, P1 and P2: start of the 1st and 2nd day of 1082 

pupal stage. (B-E) PtthGAL4 driving UAS-dTrpA1 activated PG neurons at 29oC. 1083 

Activation of PG neurons at the stage 2 significantly decreased copulation rate (C), but 1084 

not at the stage 1 (B), stage 3 (D) and stage 4 (E). (F) Activation of PG neurons at the 1085 

stage 2 significantly increased the latency to copulation. (G) Mean velocity had no 1086 

significant change when PG neurons were activated during the stage 2 compared with 1087 

control females (ns = not significant, Kruskal-Wallis ANOVA and post hoc Mann-1088 

Whitney U tests, mean ± SEM, n = 8-12). The number of female flies paired with wild-1089 

type males is displayed in parentheses. For the copulation rate, chi-square test is 1090 

applied. For the latency to copulation, Mann-Whitney U test is applied. Error bars 1091 

indicate SEM. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001, ns indicates no 1092 

significant difference. 1093 
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 1108 

Figure 4 Feeding 20E restores virgin female receptivity of Ptth null mutant flies. 1109 

(A-B) The increased copulation rate and decreased latency to copulation of the 24h-old 1110 

DPtth flies were rescued to the comparable level of wild type females by feeding 20E to 1111 

the 3rd-instar larval DPtth flies. The wild type larval females fed by 20E had no 1112 

significantly different copulation rate and latency to copulation compared with the wild 1113 

type females fed by the same volume of 95% ethanol which is the solvent of 20E. The 1114 

number of female flies paired with wild-type males is displayed in parentheses. For the 1115 

copulation rate, chi-square test is applied. For the latency to copulation, Kruskal-Wallis 1116 

ANOVA and post hoc Mann-Whitney U tests are applied. Error bars indicate SEM. *p < 1117 

0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001, ns indicates no significant difference. 1118 
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1132 

Figure 5 Virgin females with reduced EcR-A in pC1 neurons have reduced sexual 1133 

receptivity. 1134 

(A) Knock-down of EcR-A in pC1 neurons driven by pC1-ss2-GAL4 significantly 1135 

decreased the copulation rate and increased the latency to copulation. (B) Knock-down 1136 

of EcR-B1 in pC1 neurons driven by pC1-ss2-GAL4 significantly prolonged the latency 1137 

to copulation. (C-D) Knock-down of EcR-A (C) or EcR-B1 (D) in pC1 neurons driven by 1138 
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pC1-ss1-GAL4 did not affect the copulation rate or the latency to copulation. (E) 1139 

Courtship index of wild-type males towards a female with the indicated genotype (n = 1140 

8). (F) The number of eggs laid by virgin females during the 3rd - 4th day after eclosion 1141 

when EcR-A was knocked down in pC1 neurons (n = 17-36). (G) Knock-down of EcR-A 1142 

in pC1 neurons decreased the opening of vaginal plate of virgin females compared with 1143 

controls (n = 8). (H) Knock-down of EcR-A in pC1 neurons increased the ovipositor 1144 

extrusion of virgin females compared with controls (n = 8). (I-K) Virgin female copulation 1145 

rate when EcR-A was knocked down in pC1 neurons temporally restricted by shifts from 1146 

18°C to 30°C. EcR-A was knocked down during larval (I), pupal (J) and adult (K) stages 1147 

respectively. Knock-down of EcR-A during pupal stage significantly decreased the 1148 

copulation rate (J). The number of female flies paired with wild-type males is displayed 1149 

in parentheses. For the copulation rate, chi-square test is applied. For other 1150 

comparisons, Kruskal-Wallis ANOVA and post hoc Mann-Whitney U tests are applied. 1151 

Error bars indicate SEM. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001, ns indicates 1152 

no significant difference. 1153 
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 1170 

Figure 6 Reduced EcR-A in pC1 neurons induces the morphological changes. 1171 

(A1-A2) pC1 neurons appeared at the start of the pupal stage. (B-D) Reduced EcR-A in 1172 

pC1 neurons induced more elaborated morphologies of pC1d axons, especially the 1173 

extra vertical projection (EVP). The EVP regions of pC1d neurons was indicated by 1174 

arrows. The morphological changes appeared on the 2nd day of the pupal stage (B1-B2) 1175 

and retained to the adult stage including the 1st day (C1-C2) and the 4th day (D1-D2) of 1176 

the adult stage. p0, the 1st day of the pupal stage; p2, the 2nd day of the pupal stage; 1177 

A1, the 1st day of the adult stage; A4, the 4th day of the adult stage. (E-F) Fluorescence 1178 

intensity of EVP in pC1d neurons on the 2nd day of the pupal stage (E) and the 4th day 1179 

of the adult stage (F) was quantified when EcR-A was reduced in pC1 neurons (n=7). 1180 

The quantified EVP regions were marked in (B) and (D) with orange ellipses. (G) pC1 1181 

neurons of the 4th day adults had comparable cell body number when EcR-A was 1182 

reduced in pC1 neurons or not (n = 7). (H) Basal GCaMP6s signals in the LPC region of 1183 

pC1 neurons when EcR-A was reduced in pC1 neurons (n = 22). LPC regions, the 1184 

neurites extending from pC1 cell bodies, were marked with orange square in (D1) and 1185 

(D2). Scale bars are 50 ¿m. For all comparisons, Mann-Whitney U test is applied. Error 1186 

bars indicate SEM. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001, ns indicates no 1187 

significant difference. 1188 
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 1190 

Figure 7 Reduced EcR-A in pC1 neurons induces the down-regulated dopamine 1191 

beta-monooxygenase (DBM) level.  1192 

(A) Volcano plot of RNA-seq from virgin female brains in which EcR-A was knocked 1193 

down in pC1 neurons or not. Each circle represents a protein-coding gene. Differential 1194 

genes with a p-value < 0.01 are highlighted in blue. Differential genes with a fold 1195 

change > 4 are highlighted in green. Differential genes with a p-value < 0.01 and fold 1196 

change > 4 are highlighted in red. DBM, the most down-regulated genes with 1197 

annotation, are indicated by black arrow. Data are from three replicates, each contains 1198 

about 100 brains. (B) qRT-PCR for DBM when EcR-A was knocked down in pC1 1199 

neurons. Bars represent mean ± SEM. p values are from Mann-Whitney U test (n = 12 1200 

based on four replicates for each, each contains about 100 brains). *p < 0.05, **p < 1201 

0.01, ***p < 0.001, ****p < 0.0001, ns indicates no significant difference. 1202 
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 1210 

Figure 14figure supplement 1 Weight, attractiveness and locomotion behavior of 1211 

Ptth null mutant virgin females. 1212 

(A) The weight of 24h-old adult �Ptth null mutant females was significantly higher than 1213 

that of wild type females (Mann-Whitney U test, n=8 groups, 10 flies in each group). (B) 1214 

Courtship index of wild-type males during the first 5 min of courtship towards a female 1215 

with the indicated genotype (Kruskal-Wallis ANOVA and post hoc Mann-Whitney U 1216 

tests, n = 7-9). (C-D) Mean velocity had no significant change in �Ptth null mutant 1217 

females on the 1st day (C) and the 6th day (D) compared with control females (Kruskal-1218 

Wallis ANOVA and post hoc Mann-Whitney U tests, n = 7-12). Error bars indicate SEM. 1219 

*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001, ns = not significant. 1220 
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 1230 

Figure 24figure supplement 1 PG neurons expressing PTTH labeled by PtthLexA. 1231 

Expression pattern of PtthLexA in the brain revealed by anti-GFP (green) in larvae brain 1232 

(A) and adult brain (B). Representative of five female flies. Scale bars, 50 ¿m. 1233 
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 1257 

Figure 24figure supplement 2 The anatomical pattern of PG neurons expressing 1258 

PTTH at different developmental stages. 1259 

Expression pattern of PtthGAL4 in the brain revealed by anti-GFP from the 3rd larval 1260 

stage to the 4th day after eclosion. Arrows show PTTH signals (green) stained with anti-1261 

GFP antibody. L3, the 3rd -instar larvae; wander, the wandering larvae; P4, the 4th day 1262 

of the pupal stage; A0h, the 1st hour of the adult stage; A3h, the 3rd hour of the adult 1263 

stage; A6h, the 6th hour of the adult stage; A9h, the 9th hour of the adult stage; A12h, 1264 

the 12th hour of the adult stage; A4d, the 4th day of the adult stage. Representative of 1265 

five female flies. Scale bars, 50 ¿m. 1266 
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 1277 

Figure 24figure supplement 3 PG neurons expressing PTTH do not regulate 1278 

virgin female copulation rate during adult stage. 1279 

PG neurons were activated during adult stage by dTrpA1 at 29°C. The female 1280 

copulation rate and the latency to copulation did not change significantly. The number of 1281 

female flies paired with wild-type males is displayed in parentheses. For the copulation 1282 

rate, chi-square test is applied. For the latency to copulation, Mann-Whitney U test is 1283 

applied. Error bars indicate SEM. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001, ns 1284 

indicates no significant difference. 1285 
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 1305 

Figure 54figure supplement 1 Expression of EcR-A and EcR-B1 in pC1 and 1306 

vpoDN neurons.  1307 

(A-C) pC1 neurons were colabeled by pC1-ss2 driving UAS-mCD8-GFP (green, A) and 1308 

EcR-A antibodies (red, B). Magnification of green boxed region in (C) is shown in (D131309 

D3). (E-G) pC1 neurons were colabeled by pC1-ss2 driving UAS-mCD8-GFP (green, E) 1310 

and EcR-B1 antibodies (red, F). Magnification of green boxed region in (G) is shown in 1311 

(H13H3). (I-K) vpoDN neurons were colabeled by vpo-ss1 driving UAS-mCD8-GFP 1312 

(green, I) and EcR-A antibodies (red, J). Magnification of green boxed region in (K) is 1313 

shown in (L13L3). (M-O) vpoDN neurons were colabeled by vpo-ss1 driving UAS-1314 

mCD8-GFP (green, M) and EcR-B1 antibodies (red, N). Magnification of green boxed 1315 
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region in (O) is shown in (P13P3). Scale bars for magnified regions are 5 ¿m, for others 1316 

are 50 ¿m. 1317 
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 1347 

Figure 54figure supplement 2 Reduced EcR in pC1 neurons reduces virgin 1348 

female receptivity.  1349 

(A) Knock-down of EcR in pC1 neurons driven by pC1-ss2-GAL4 significantly 1350 

decreased the copulation rate and increased the latency to copulation. (B) Mean 1351 

velocity had no significant change when EcR-A was knocked down in pC1 neurons 1352 

compared with controls (Kruskal-Wallis ANOVA and post hoc Mann-Whitney U tests, n 1353 

= 8-11). The number of female flies paired with wild-type males is displayed in 1354 

parentheses. For the copulation rate, chi-square test is applied. For the latency to 1355 

copulation, Kruskal-Wallis ANOVA and post hoc Mann-Whitney U tests are applied. 1356 

Error bars indicate SEM. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001, ns indicates 1357 

no significant difference. 1358 
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 1373 

Figure 54figure supplement 3 Reduced EcR in vpoDN neurons has no effect on 1374 

virgin female receptivity. 1375 

(A-C) Knock-down of EcR-A in vpoDN neurons driven by vpoDN-ss1-GAL4, vpoDN-1376 

ss2-GAL4 and vpoDN-ss3-GAL4 had no effect on virgin female receptivity. (D-F) Knock-1377 

down of EcR-B1 in vpoDN neurons driven by vpoDN-ss1-GAL4, vpoDN-ss2-GAL4 and 1378 

vpoDN-ss3-GAL4 had no effect on virgin female receptivity. The number of female flies 1379 

paired with wild-type males is displayed in parentheses. For the copulation rate, chi-1380 

square test is applied. For the latency to copulation, Kruskal-Wallis ANOVA and post 1381 

hoc Mann-Whitney U tests are applied. Error bars indicate SEM. *p < 0.05, **p < 0.01, 1382 

***p < 0.001, ****p < 0.0001, ns indicates no significant difference.  1383 
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 1388 

Figure 54figure supplement 4 Reduced EcR-A in pC1d neurons has no effect on 1389 

virgin female receptivity. 1390 

(A) Knock-down of EcR-A in pC1d neurons had no effect on virgin female copulation 1391 

rate and latency to copulation. The number of female flies paired with wild-type males is 1392 

displayed in parentheses. For the copulation rate, chi-square test is applied. For the 1393 

latency to copulation, Kruskal-Wallis ANOVA and post hoc Mann-Whitney U tests are 1394 

applied. Error bars indicate SEM, *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001, ns 1395 

indicates no significant difference. 1396 
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Supplementary File 1. The primers used for the verification of �Ptth null mutant flies 1412 

and for the real-time quantitative PCR of dopamine beta-monooxygenase (DBM). 1413 

 1414 

Supplementary File 2. The differently expressed genes in whole brains between flies 1415 

having reduced EcR-A expression in pC1 neurons and the control flies. 1416 

 1417 

Supplementary File 3. The raw data of transcriptomes in whole brains when EcR-A 1418 

was knocked down in pC1 neurons or not. 1419 

 1420 

Figure 14Source Data 1. Photo of nucleic acid electrophoresis and copulation time. 1421 

 1422 

Figure 24Source Data 1. Copulation time. 1423 

 1424 

Figure 34Source Data 1. Copulation time and walking speed. 1425 

 1426 

Figure 44Source Data 1. Copulation time. 1427 

 1428 

Figure 54Source Data 1. Copulation time, courtship index, number of eggs, number of 1429 

vaginal plate opening (VPO), and number of ovipositor extrusion (OE). 1430 

 1431 

Figure 64Source Data 1. Fluorescence intensity, cell number and calcium activity. 1432 

 1433 

Figure 74Source Data 1. Relative mRNA level. 1434 

 1435 

Figure 14figure supplement 14Source Data 1. Body weight, courtship index and 1436 

walking speed. 1437 

 1438 

Figure 24figure supplement 34Source Data 1. Copulation time. 1439 

 1440 

Figure 54figure supplement 24Source Data 1. Copulation time and walking speed. 1441 
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Figure 54figure supplement 34Source Data 1. Copulation time. 1443 

 1444 

Figure 54figure supplement 44Source Data 1. Copulation time. 1445 
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