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Abstract

Aggregation of the hyperphosphorylated tau protein is a central driver of Alzheimer’s disease,

and its accumulation exhibits a rich spatio-temporal pattern that unfolds during the course of the

disease, sequentially progressing through the brain across axonal connections. It is unclear how this

spatio-temporal process is orchestrated – namely, to what extent the spread of pathologic tau is

governed by transport between brain regions, local production or both. To address this, we develop

a mechanistic model from tau PET data to describe tau dynamics along the Alzheimer’s disease

timeline. Our analysis reveals longitudinal changes in production and transport dynamics on two

independent cohorts, with subjects in early stage of the disease exhibiting transport-dominated

spread, consistent with an initial spread of pathologic tau seeds, and subjects in late stage disease

(Braak stage 3/4 onwards) characterised primarily by local production of tau. Furthermore, we

demonstrate that the model can accurately predict subject-specific longitudinal tau accumulation

∗Data used in preparation of this article were obtained from the Alzheimer’s Disease Neuroimaging Initiative
(ADNI) database (adni.loni.usc.edu). As such, the investigators within the ADNI contributed to the design and
implementation of ADNI and/or provided data but did not participate in analysis or writing of this report. A
complete listing of ADNI investigators can be found at: http://adni.loni.usc.edu/wp-content/uploads/how_to_
apply/ADNI_Acknowledgement_List.pdf
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at a regional level, potentially providing a new clinical tool to monitor and classify patient disease

progression.

Teaser: A mechanistic model reveals tau protein dynamics in Alzheimer’s, showing stage-specific

shifts in transport and local production.

1 Introduction

Alzheimer’s disease (AD) is a devastating neurological condition resulting in progressive brain at-

rophy and cognitive decline. Toxic forms of two proteins, amyloid-´ (A´) and tau protein (ÄP) are

believed to act in concert to drive AD progression [1, 2]. The pathological roles of these proteins in

the human brain during AD has been investigated using positron emission tomography (PET), with

radiotracers such as [18F]florbetapir and [18F]flortaucipir allowing for in-vivo quantification of A´

and ÄP, respectively [3]. While A´ tends to be more diffusely present throughout the cerebral cortex

[4, 5, 6, 7], ÄP exhibits richer spatiotemporal dynamics, characterised by Braak staging [8]. Braak

staging describes the trajectory of toxic ÄP, starting from the entorhinal cortex and progressing

sequentially into the limbic regions, basal temporal lobes, broad association cortex and finally into

primary sensory cortex. This staging pattern has been validated using ÄP-PET imaging [9, 10, 11]

and has been shown to be highly correlated with atrophy and cognitive decline [12, 13], however,

the mechanism for how ÄP staging is orchestrated remain unclear.

Growing evidence suggests that the progression of AD depends on two key factors: 1) the trans-

port of toxic proteins throughout the brain; 2) the local production of toxic proteins. However, the

extent to which these factors contribute to AD progression and whether their contributions change

over time has yet to be determined. There is now substantial evidence that ÄP propagation fol-

lows a prion-like mechanism, progressively forming toxic oligomeric seeds and neurofibrillary tangles

through an autocatalyic production process [14, 15]. The prion-like nature of ÄP has been demon-

strated with transgenic animal models in which cortical injections of ÄP seeds induces the formation

of ÄP aggregates that grow in concentration over time at the site of injection and surrounding areas

[16, 17]. In 2012, studies from Liu et al. and de Calignon et al. showed that transgenic mice over-

expressing pathological human ÄP in the entorhinal cortex exhibit accumulation of ÄP aggregates

and that ÄP invades axonally connected regions through trans-synaptic transport to form seeds

in otherwise healthy regions [18, 19]. The prion-like aggregation and axon-based transport of ÄP

has also been suggested in human post-mortem studies [20] and by in-vivo studies using structural

connectome-based models of ÄP PET capable of reproducing observed ÄP aggregation and spread-

ing [21, 22, 23, 24, 25, 26]. In a recent investigation, Meisl et al. analysed multimodal ÄP data from

2

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 29, 2023. ; https://doi.org/10.1101/2023.09.28.559911doi: bioRxiv preprint 

https://doi.org/10.1101/2023.09.28.559911
http://creativecommons.org/licenses/by-nd/4.0/


Braak stage 3 onward and showed that ÄP production, not transport, is the main contributor of ÄP

progression [27]. However the study does not account for the spatial progression across individual

brain regions or estimate dynamics across the full AD progression timeline. It remains unanswered

whether there are changes in the rates of ÄP production and transport over time and whether the

balance of these two processes change along the disease timeline. To address these outstanding

questions, we develop a whole-brain model capable of accurately describing longitudinal ÄP PET

data and conduct a multi-cohort study to analyse ÄP dynamics across the full disease progression

timeline.

To answer questions about temporal changes in AD ÄP dynamics in the human brain requires

an accurate and reliable model of longitudinal ÄP observations. There have been numerous efforts

over the past decade to use mathematical models to better understand the spatiotemporal prop-

erties of AD pathology, ranging from linear diffusion models of ÄP [21, 22] to infinite dimensional

spatiotemporal models of toxic protein aggregation [28]. Each of these models make different as-

sumptions about the physical mechanisms of ÄP spread, however, there has not been a unifying

effort to rigorously compare commonly used models to identify which are best able to accurately

describe longitudinal ÄP PET observations. In addition, the models currently described in the lit-

erature fail to account for regional variations in ÄP dynamics, which has been shown to influence

the progression of ÄP [29, 30, 31] and are incapable of predicting longitudinal changes at a regional

level. Here, we present a novel model that provides a qualitative account of regional vulnerability

and its effect on ÄP progression. Using a previously developed Bayesian pipeline for longitudinal

ÄP modelling [32, 26], we perform hypothesis-driven model selection on a family of common models

from the AD modelling literature, including a new model accounting for regional dynamics. We

show that models relying only on network diffusion or homogeneous ÄP production dynamics are

not sufficient to model regional longitudinal data, whereas models accounting for regional variations

in ÄP dynamics are able to accurately model longitudinal ÄP observations at a regional level.

We combine state-of-the-art modelling and inference methods with longitudinal ÄP PET data

from two independent cohorts to address the outstanding question of how the transport and produc-

tion of ÄP drive AD progression. To determine whether there are changes in the rates of ÄP transport

and production during AD progression, we apply our model to three groups A´−, A´+/ÄP− and

A´+/ÄP+ subjects, representing different stages of the AD timeline [33]. We show that the trans-

port of ÄP is faster in early stage disease (A´+/ÄP−), and that there are primary and secondary

increases in production dynamics of ÄP along the disease timeline. We validate these results on

an independent dataset using a different ÄP tracer, BioFINDER-2, on which the same results are

obtained, further showing that the model and results are robust and generalisable across datasets
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and choice of ÄP tracer. Finally, we validate our model by showing that it can predict regional rates

of ÄP accumulation over time for individual patients. The combination of these methods provide

a novel pipeline for analysing and understanding longitudinal ÄP data, allowing for us to compare

changes in disease dynamics across the AD timeline and predict subject specific, region specific

changes in ÄP over time.

2 Results

2.1 Deriving a generative model of τP dynamics

We first extend previous work [34, 35, 28] to develop a mechanism-based model of ÄP dynamics in

the human brain that can be calibrated using ÄP PET data. This model, called the local FKPP

model (after the well known Fisher-Kolmogorov–Petrovsky–Piskunov equation) and derived in full

detail in Section 4.4, is given by a set of nonlinear ordinary differential equations for the variables

si = si(t) representing ÄP SUVR in different regions of interest on a connectome with N nodes:

dsi
dt

= −Ä

N∑

j=1

Lij (sj − s0,j) + ³ (si − s0,i) [(s∞,i − s0,i)− (si − s0,i)] , i = 1, . . . , N. (1)

The first term represents transport of ÄP between brain regions through a graph Laplacian L

with uniform rate Ä, and is consistent with previous work [21, 22, 24, 35]. In this study, regions

of interest are given by cortical regions of the Desikan-Killiany-Tourville (DKT) atlas, and the

bilateral hippocampus and amygdala (N = 72). We introduce two novel parameter vectors, regional

baseline values, s0,i, and carrying capacities s∞,i, that represent a healthy state and a late-stage AD

state, respectively, which add information about regional variations in production dynamics. These

parameters are estimated using the Gaussian mixture modelling approach developed in [24] (see

Section 4.5 for details). An example of this is shown in Fig. 1a for the right inferior temporal lobe

and the carrying capacities for the right hemisphere are shown in Fig. 1b. Since these parameters are

estimated from tau PET, they also encode specific features of the tracer, such as regional differences

in tracer uptake, specificity to 3R/4R tau pathology, on-target binding and off-target binding, and

allows us to model tau SUVR directly. The simulated transport and production dynamics are shown

in Fig. 1. A consequence of the variation of carrying capacities is that the regional production rates

also vary between regions, as seen in the time series of Fig. 1c, providing a qualitative account of

regional vulnerability. The ability to account for these regional variations extends previous models

with homogeneous dynamics across regions [35, 23] provides a picture of ÄP progression that is more

consistent with observed ÄP staging.
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Figure 1: Simulated transport and production dynamics in the local FKPP model. 1a Two com-
ponent Gaussian mixture model fit to a multi-cohort ÄP PET dataset [24] and data from ADNI
for the right inferior temporal lobe. Baseline values are taken as the mean of the ÄP− distribution
and the carrying capacity as the 99-th percentile of the ÄP+ distrbiution. 1b Right hemisphere
cortical rendering of the SUVR carrying capacities. 1c Simulation from the local FKPP model
using carrying capacities derived from Gaussian mixture models. Simulations are initialised with a
seed of 50% concentration in the bilateral medial temporal lobe (entorhinal cortex, hippocampus
and amygdala), with Ä = 0.15 and ³ = 1.1. Each line represents the SUVR trajectory of one DKT
atlas brain region. Values at time points t = {0, 2, 4, 6, 8} are projected onto a cortical rendering.
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Figure 2: Goodness of fit for four models, local FKPP, global FKPP, diffusion and logistic. For
all panels, each point represents a region in the connectome model, averaged over subjects per
scan. Top row shows estimated vs observed SUVR values. Bottom row shows estimated change vs
observed change in SUVR. Only the local FKPP and logistic model are able to accurately capture
longitudinal changes, while the global FKPP and diffusion models are each structurally incapable
of describing heterogeneous production.

2.2 Regional Heterogeneity Is Necessary for Longitudinal Prediction

To determine whether the local FKPP is capable of fitting observed AD trajectories, we compare it

to ÄP PET data. For comparison, we also consider simpler models that can be obtained from the

local FKPP model Eq. (1), namely the global FKPP model, Eq. (10), obtained by assuming that

none of the parameters vary locally, the diffusion modelEq. (5) obtained by taking ³ = 0 in Eq. (1),

and the logistic model obtained by neglecting transport between regions (Ä = 0 and given explicitly

by Eq. (12)).

We use hierarchical Bayesian inference to calibrate each model to ÄP PET data, allowing us to

quantify whether the model parameters can be identified from patient data and provides bounds

on uncertainty for group and individual level parameters. We use ÄP PET data from ADNI,

selecting A´+ subjects who have at least three scans and are ÄP+ in the medial temporal or lateral

temporal lobe (see Section 4.1 for details). We employ two metrics to compare models, the maximum

likelihood value (Lmax) to measure in-sample fit and the expected log predictive density (ELPD)
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Local FKPP Global FKPP Diffusion Logistic

Lmax 10279.40 9357.79 6635.11 9873.54
ELPD 300.10 67.12 -450.00 261.84

Table 1: Assessment of model fit using the maximum log-likelihood Lmax and the expected log
predictive density; higher values correspond to better models. The local FKPP model performs
best in both metrics.

to measure out-of-sample predictive accuracy, both provided in Table 1. Fig. 2 shows the in-sample

longitudinal fit for each of the four models. The out-of-sample fit for the local FKPP model is

shown in Fig. 4 and and in Fig. S1 for the remaining models.

The local FKPP performs best for both in-sample fit and out-of-sample predictive accuracy,

closely followed by the logistic model. The results show that the global FKPP and diffusion models

are ill-equipped for longitudinal modelling of ÄP PET data, shown clearly in Fig. 2 and Fig. S1.

The diffusion model underestimates SUVR evolution in time since there is no mechanism for ÄP

production or clearance and therefore total concentration is conserved. The global FKPP model

is able to capture the changes in ÄP load, but it cannot describe the regional heterogeneity in ÄP

production. The deficiencies in production dynamics of the diffusion and global FKPP models are

addressed with the local FKPP model and the logistic model and the ability of these models to

accurately describe longitudinal ÄP PET underlines the importance of including regionally specific

production rates. The model selection results support the role of ÄP production playing a dominant

role in driving AD pathology. The logistic model is able to describe the trajectory of ÄP PET despite

not being able to capture the transport of ÄP through the structural connectome. This could either

suggest that A´+/ÄP+ subjects already have widespread invasion of ÄP seeds or that the diffusion

of ÄP occurs over a very long timescale and the effects are not prominent in the relatively short

time window over which longitudinal ADNI data is available. The error in model fit relative to

the final in-sample scan is shown in Fig. S3 for the local FKPP and logistic model and show that

the logistic model is prone to overestimated the SUVR (albeit very slightly), whereas the error in

the local FKPP fit is more balanced across regions, possibly due to the effect of transport between

regions. Overall, the data support the use of local FKPP model, evidenced by it being the most

capable at describing in-sample and out-of-sample data, while also capturing the role of both tau

transport and local tau production.

2.3 Early AD progression is driven by τP transport

We next sought to determine whether there are any changes in ÄP production and transport dy-

namics across the AD progression timeline. To do so, we use two cohorts of ÄP PET data, ADNI
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and BioFINDER-2 (BF2), each divided into three groups, A´−, A´+/ÄP−, A´+/ÄP+, represent-

ing different stages of AD. Since BF2 uses a different ÄP PET radiotracer, we rerun the Gaussian

mixture modelling analysis to recover tracer specific baseline and carrying capacities. We then fit

a hierarchical Bayesian model to each of the groups and examine the population level production

and transport parameters.

The population parameter distributions for the A´−, A´+/ÄP−, A´+/ÄP+ groups are shown in

Fig. 3a for ADNI and Fig. 3b for BF2 and summarised in Table 2. The posterior distributions across

cohorts are qualitatively the same, with changes likely reflecting differences in cohort and tracers.

The inferred parameters show an increase in the transport rate for the A´+/ÄP− group relative to

the A´+/ÄP+ and A´− groups, suggesting that ÄP more readily spreads between regions during

early stages of disease, and is minimal in later stages of AD. The inferred posterior distributions for

the production parameter show a progressive increase in production rate along the disease timeline,

with a primary increase from A´− to A´+/ÄP− group and a secondary increase from the A´+/ÄP−

group to the A´+/ÄP+ group. The negative production rate for the A´− group indicates that

the signal, on average, decreases. This could reflect changes in noise due to off-target, nonspecific

binding or atrophy from non-AD related neurodegeneration. Therefore, any observed clearance

dynamics likely reflect fluctuations in noise or age-related atrophy. These results that in early AD,

ÄP begins in a transport dominated phase (Ä > ³) and later switches to a production dominated

phase (³ > Ä).

To confirm that the parameter distributions reflect meaningful dynamics present in the data and

are not as a result of statistical patterns, we re-run the analysis on the A´+/ÄP− and A´+/ÄP+

groups using spatially shuffled data. The results of these for the production and transport parame-

ters are shown in Figs. 3c and 3d. Note that we only spatially shuffle the data and therefore expect

minimal changes to the estimated production parameters. We note a marked difference in estimated

transport dynamics in both the A´+/ÄP− and A´+/ÄP+ groups between the true and shuffled data,

confirming that dynamics present in the data are not a consequence of statistical patterns in the data

but represent ÄP dynamics as measured through PET. The transport dominated phase of the early

AD subjects supports evidence showing ÄP seeds are present throughout the cortex before symptom

onset [20, 36] and, together with the small role of transport in the A´+/ÄP+ groups, helps explain

the strong performance of the logistic model in Section 2.2. Overall the results reveal temporal

changes in the dynamics of ÄP progression, with an initial transport dominated phase, perhaps in

which seeds are deposited around the cortex, followed by a production dominated phase indicative

of secondary tauopathy, likely due to spatial colocalisation with A´ catalysing ÄP production.
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Figure 3: Inferred population level parameters using ADNI and BF2 ÄP data. 3a & 3b Population
production and transport parameters across A´+/ÄP+, A´+/ÄP− and A´− groups for ADNI (3a)
and BF2 (3b) ÄP PET data. 3c & 3d Inferred population production and transport parameters
from spatially shuffled data (shown in grey) for A´+/ÄP+ (3c), A´+/ÄP− (3d) ADNI groups.
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Group
Äµ Äσ ³µ ³σ

mean s.d. mean s.d. mean s.d. mean s.d.

ADNI
A´+/ÄP+ 0.01 0.003 0.02 0.003 0.12 0.02 0.11 0.02
A´+/ÄP− 0.04 0.01 0.15 0.03 −0.005 0.05 0.26 0.04

A´− 0.02 0.01 0.05 0.01 −0.05 0.03 0.19 0.02

BF2
A´+/ÄP+ 0.004 0.001 0.01 0.001 0.11 0.01 0.09 0.01
A´+/ÄP− 0.02 0.01 0.02 0.01 0.02 0.05 0.22 0.04

A´− 0.02 0.01 0.08 0.01 −0.03 0.03 0.19 0.03

Table 2: Posterior summary providing the means of inferred population parameters for ADNI and
BF2.
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2.4 Local model predicts regional τP progression
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Figure 4: Out-of-sample fit and regional posterior predictive plots. 4a Predicted vs observed out-
of-sample SUVR for all ten subjects used for out of sample prediction. Each color represents a
different patient and each point of a given color represents a region. 4b Predicted vs observed
SUVR per region, averaged over subject. Each point represents a region in the DKT atlas. 4c

Predicted regional changes in SUVR for a subject with five scans. The model is trained on the first
three observed scans (circles), with the last two scans (squares) left out. We show three regions
of the DKT atlas, the right fusiform, entorhinal cortex and inferior temporal lobe and the mean
SUVR. 2000 simulations were run using values from the posterior distributions. Predictions for the
remaining subjects who have greater than three scans are provided in Fig. S2.

A major utility of mathematical modelling of AD lies in the application to pharmacological and

clinical research, particularly through predicting patient disease progression. Here, we show that the

local FKPP model can be used to accurately predict the trajectory of ÄP PET. Taking A´+/ÄP+

subjects from ADNI who have at least four scans (N = 10), we use the first three scans for calibrating

the model and the remaining scans for prediction. The results of this for the local FKPP model are

displayed in Fig. 4 and show that the model is capable of predicting longitudinal regional ÄP PET
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data. However, it still does so imperfectly, with variations in accuracy across regions, suggesting

that there are still unexplained factors contributing to the regional production parameters. Fig. 4c

shows longitudinal predictions in regions of interest for a single subject with five scans (the greatest

number of scans in the cohort). With the exception of the right entorhinal cortex, all data points

shown are captured within the confidence intervals, including the average increase across regions.

The same predictions are shown for the remaining subjects in Fig. S2 and all show a similar level

of accuracy. These results demonstrate the power of a simple model with two free parameters in

accurately predicting the regional progression of a individual ÄP PET progression that may provide

benefit for clinical researchers.

3 Discussion

We have derived a physics based generative model to describe ÄP PET data in terms of underlying

ÄP dynamics and applied it data from ADNI and BF2 to understand how it compares to other models

present in the literature and how it can inform us about ÄP transport and production dynamics

in the human brain. We have shown that this model can predict accurately longitudinal regional

ÄP PET progression in AD subjects. Furthermore, by performing inference across different patient

groups across the AD disease timeline, we uncover temporal changes in transport and production

dynamics, showing an initial transport dominated phase associated with primary tauopathy and

seeding, followed by an accelerated production dominated phase indicative of secondary tauopathy.

There have been several studies proposing different models of proteopathy in AD, a key difference

among them being descriptions of the ÄP production process, which vary widely in complexity [22,

28, 24, 37, 27, 25, 26]. Here we present a parsimonious model of ÄP transport that relies on regionally

specific carrying capacities and we showed through model selection, Section 2.2, that it is able to

outperform other models proposed in the literature. A possible cause of regional heterogeneity in

carrying capacities is heterogeneity in regional risk factors that promote ÄP proliferation, the most

likely of which is A´. A´ has its own spatial topography within AD patients, being particularly

present throughout the fronto-partietal-temporal default mode network and stimulating neuronal

hyperactivation [11, 38, 39]. The presence of A´ will have a two-fold effect on ÄP dynamics, first

through a catalysing effect on the production of ÄP [40, 41, 42] and second by promoting the

activity dependent spread and production through the functional networks [43, 44]. In Thompson

et al 2020, we formulated a model describing the dynamic interaction between A´ and ÄP, that

predicts an increase in carrying capacities based on A´ concentration [45], however, further work

toward simplifying the model will be necessary before it can be used for inference with patient data.

12

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 29, 2023. ; https://doi.org/10.1101/2023.09.28.559911doi: bioRxiv preprint 

https://doi.org/10.1101/2023.09.28.559911
http://creativecommons.org/licenses/by-nd/4.0/


Another key set of factors contributing to regional vulnerability are genetic markers. It has

already been shown in mice models of AD that gene expression patterns can inform spreading

of ÄP [31] and human modelling of Parkinson’s disease has shown how gene expression patterns

can inform regional vulnerability to create a model of toxic protein spread in Parkinson’s disease

[46]. There are several candidate genes for modelling regional vulnerability in AD, most notably

microtubule association protein tau (MAPT), as a proxy for relative baseline ÄP vulnerability [47]

and apolipoprotein-E (APOE) for those patients with the APOEϵ4 mutation [29, 48, 49]. While

there are many other candidate genes that may influence regional vulnerability, care should be taken

to avoid creating overdetermined models. In sum, while the work here provides compelling evidence

for the necessity of regional vulnerabilty, further work should seek to explain the mechanisms through

which regional carrying capacities emerge from a culmination of regional risk factors, such as A´

deposition and gene expression patterns.

There is extensive evidence of ÄP transport and production throughout the brain, however, it

has not yet been determined whether one of these processes dominate the other and whether their

relative contributions to disease progression changes over time. To this end, we sought to determine

whether inferred parameters of our model change in groups across the disease timeline. We find

that during early stages of disease, when there is a low ÄP concentration in the medial temporal

lobe, ÄP dynamics are transport dominated but become production dominated later in disease.

This supports previous work by Meisl et al. [27] who show through an analysis of multiple datasets

and methods of ÄP quantification that ÄP dynamics are production dominated from Braak stage 3

onwards. This is consistent with our work, considering individuals who are positive on tau-PET in

early Braak stage regions may already show fairly advanced Braak stages at autopsy [50] analogous

to individuals at middle Braak stages used by Meisl et al. 2021. These results suggest that, in early

AD, ÄP seeds invade connected regions from the medial temporal lobe, but the overall concentration

does not grow substantially. Only in later stages of AD is the spread production-dominated and

driven by fast increases in concentration gradients, leading to progressive Braak-like staging. These

results also support the utility of the logistic production model in being able to describe longitudinal

A´+/ÄP+ data (Fig. 2 & Fig. S1), since seeds would already be densely present around the cortex

and progression is driven by ÄP production. The results are also consistent with experimental

evidence showing that ÄP seeds are present before ÄP pathology [20, 36].

Together the results are indicative of an intrinsically spatiotemporal process, with a primary,

transport dominated tauopathy resulting in ÄP seeds spreading from the medial temporal lobe

to axonally connected regions, followed by a secondary, production dominated tauopathy, likely

resulting from A´ interaction, resulting in fast regional accumulation and sequential, Braak-like
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staging. This is in slight contrast to the largely temporal process of A´, described by [51], where

A´ begins as being diffusely present throughout the brain, but increases in concentration at different

rates due to regional vulnerabilities. . These results suggest that the early period of AD during

which tau is more readily transported between brain regions may be a critical time for intervention.

Many immunotherapies currently being developed act on extracellular tau [52] and should therefore

interrupt tau transmission through the extracellular space of the synaptic junction. If AD is a

consequence of first tau spread and then production, it will be crucial for these immunotherapies

to be administered early in the AD process to halt the widespread transmission of tau before

accelerated local production can occur. In contrast, therapies that act to reduce intracellular tau

concentration should be effective in slowing AD progression across the AD continuum, regardless

of whether widespread tau transmission has occurred [53].

This work presents a step forward in whole brain ÄP modelling, however, there are still many

obstacles that are not addressed here. First, there are limitations that pertain to the sparsity of

longitudinal data. In this work, we fix a number of parameters to ensure the practical identifiability

of the models given the available data. In particular, we fix baseline values and carrying carrying in

the dynamical system, and subject initial conditions in the probabilistic model. By fixing baseline

values and carrying capacities, we are unable to determine whether these also undergo dynamical

changes. This also limits the direct application of the model to other tauopathies that exhibit

different tau PET profiles. This will, in part, be addressed by including dynamical regional risk

factors, however, the time over which changes in these factors can be observed will remain limited

until more longitudinal data is available. Second, there are limitations related to the scale at which

we are modelling. While the model we present here is derived from a physics-based model, the model

reduction comes at the cost of a loss in mechanistic insight into precise transport and production

mechanisms. This will remain a hard limitation while we work with macroscale brain data. In

addition, tau PET data is intrinsically limited by resolution, inability to detect early changes, and

non-specific and off-target binding sources, collectively providing a source of uncertainty that affects

parameter identifiability of intricate processes such as transport. Therefore, while the modelling

results suggest changes to transport and production across the AD continuum, our conclusions

are limited by the nature of PET measurements and require experimental validation. A potential

avenue to address this limitation will be the development of multiscale models that rely on in-vitro

or animal studies for calibration and permit macro-scale reduced order models.

The primary contribution of this work has been to supply a parsimonious account of regional

ÄP dynamics in AD. Future work should seek to build upon this, adding more information and data

to probe the unexplained dynamics in AD. Most pressingly, these include dynamical interactions
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between A´ and ÄP in a sufficiently simple way to accommodate the ability to perform inference with

patient data. Furthermore, the study sheds light on potential avenues of clinical investigation into

anti-tau therapies by showing how targeting different tau processes (transport or local production)

at different times during the AD continuum may be essential for effective intervention.

4 Methods

4.1 Data Processing

We use PET from the Alzheimer’s Disease Neuroimaging Initiative (adni.loni.usc.edu). ADNI is

a public-private partnership with the aim of using serial biomarkers for measuring the progression

of AD. For up-to-date information, see www.adni-info.org. We download the fully processed ÄP

PET and magnetic resonance image (MRI) data, summarised as standardized uptake value ratios

(SUVR) and volumes for each of the regions in the Desikan-Killiany-Tourville (DKT) atlas. We

re-normalise individual SUVR using an inferior cerebellum SUVR reference region. Amyloid status

for ADNI subjects was also downloaded from ADNI and used to classify subjects.

We also use data from BioFINDER2 study, which uses the RO948 ÄP PET radiotracer. The

ÄP data are analysed using a the analysis pipeline detailed in [54]. Four subjects from the BF2

A´+/ÄP− group are removed due to high off-target binding in the skull/meninges or MRI registra-

tion issues. Amyloid status was determined by Gaussian mixture modelling as detailed in [55, 56].

In both cohorts we select only subjects who have at least three ÄP PET scans to allow for inference

on the time-series model. ADNI and BF2 ÄP PET data are summarised in table 3.

We also use data from the Swedish BioFINDER-2 study (NCT03174938), which uses the RO948

ÄP PET radiotracer. All participants were recruited at Skåne University Hospital and the Hospital

of Ängelholm, Sweden and the cohort covers the full spectrum of AD, ranging from cognitively

normal individuals, patients with mild cognitive impairment (MCI) and with dementia. All details

about the cohort have been described previously [54]. Amyloid status was determined by amyloid-

PET (flutemetamol) based on a previously established cutoff from Gaussian mixture modelling as

detailed in [55]. Patients with dementia do not undergo amyloid-PET and thus amyloid status was

based on the CSF A´ 42/40 ratio [56]. The ÄP data are analysed using the analysis pipeline detailed

in [54]. Briefly, SUVR images were generated using the inferior cerebellum as reference region and

average SUVR were extracted from the DKT atlas. Four subjects from the BF2 A´+/ÄP− group

are removed due to high off-target binding in the skull/meninges or MRI registration issues. In

both cohorts we select only subjects who have at least three ÄP PET scans to allow for inference

on the time-series model. ADNI and BF2 ÄP PET data are summarised in table 3.
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Group N. Subjects Age Female Education CN MCI AD

ADNI
A´+/ÄP+ 31 74.6 0.61 16.45 0.39 0.45 0.16
A´+/ÄP− 29 78.6 0.41 16.59 0.51 0.45 0.03

A´− 59 73.1 0.54 16.71 0.63 0.36 0.01

BF2
A´+/ÄP+ 54 73.9 0.65 11.6 0.2 0.43 0.37
A´+/ÄP− 18 72.1 0.5 13.2 0.61 0.31 0.08

A´− 53 66.9 0.5 12.8 0.81 0.19 0.0

Table 3: Demographics for ADNI and BF2 cohorts.

We perform inference over three groups: A´−, A´+/ÄP−, A´+/ÄP+ We distinguish between

ÄP− and ÄP+ using a ÄP PET SUVR cut-off for two composite regions, as detailed in [33]. There

are two cut-offs, one for determining ÄP positivity in the medial temporal lobe (MTL, defined as

the mean of the bilateral entorhinal and amygdala), and another for neocortical positivity (defined

as the middle temporal and inferior temporal gyri). The thresholds for the composite regions are

based on regional Gaussian mixture models, as previously described [24]. For each composite, we

average the SUVR values from the constituent regions and fit a two component Gaussian mixture

model. The threshold for the region is then set to the SUVR at which there is a 50% chance of

being ÄP+. For ADNI, the thresholds are 1.375 and 1.395 and for BF2 they are 1.248 and 1.451

for the MTL and cortical composites, respectively. We define a subject as being ÄP+ if their last

scan is suprathreshold in either the MTL or cortical ÄP PET SUVR and ÄP− if the SUVR value is

below both SUVR thresholds.

4.2 Mathematical Models of proteopathy

4.3 Structural Connectome Modelling

We use the structural connectome to model the transport of ÄP between brain regions. To generate

structural connectomes, we use diffusion weighted MRI images of 150 healthy individuals from

the Human Connectome Project (HCP) [57, 58]. From these data, connectomes are derived using

the probabilistic tractography algorithm probtrackx [59], available in FSL, using 10000 samples per

voxel, randomly sampled from a sphere around the voxel centre. The number of streamlines between

each of R regions in the DKT atlas are summarised as an adjacency matrix, A, that defines our

connectome graph, G. To model transport of ÄP between regions, we use the graph Laplacian of

G, given by:

L = D−A, (2)
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where D is the degree matrix, D = diag(A · 1). To ensure a transport process respects mass

conservation across regions of varying volumes, we weight the graph Laplacian by regional volumes,

L = V−1L (3)

where V = diag (v/vr), and v = (v1, v2, . . . vR) is a vector of regional volumes and vr is a reference

region. In Section 2, we model three groups of subjects, A´−, A´+/ÄP− and A´+/ÄP+, to reflect

changes in volume across the disease timeline and variation in individual brain volumes, we define

v and vr on a group and individual level, respectively. For a given group with N subjects, we define

the normalised volume of a region vi as

vi =
1

N

N
∑

n

vni
vnr

, (4)

taking vni as the initial volume of the ith region and nth subject and vnr is as the maximum initial

regional volume for the nth subject. Then v is the average normalised volume per subject in a

cohort.

Using the graph Laplacian, we define the diffusion model,

dpi
dt

= −Ä
R
∑

j=1

Lijpj , i = 1, . . . , R, (5)

where pi is the protein concentration at node i and Ä is a transport coefficient.

4.4 Local model of Tau Proliferation

We start with a coupled model of healthy and toxic protein, the heterodimer model, from which we

aim to derive a simplified model of toxic protein dynamics that includes regional information. The

heterodimer model on a network is:

dpi
dt

= −Ä
R
∑

j=1

Lijpj + k0 − k1pi − k12pip̃i, i = 1, . . . , R, (6a)

dp̃i
dt

= −Ä

R
∑

j=1

Lij p̃j − k̃1p̃i + k12pip̃i, i = 1, . . . , R, (6b)

where pi , p̃ are, respectively, the healthy and toxic protein concentration at node i, k0 is the natural

production rate of healthy protein, k1 and k̃1 are the clearance rates of healthy and toxic proteins,

respectively, and k12 is the rate of conversion from healthy proteins into toxic proteins [35]. To

simplify the heterodimer model, we can follow a similar procedure to that presented in [35], by
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linearising around a healthy state. Assuming an homogenous state with p̃i j pi, implies dpi
dt

= 0

and −
∑R

j Lijpj = 0 for i = 1 . . . R. Then, linearising around p̃ = 0, we have

pi(p̃i) ≈
k0
k1

(

1−
k12
k1

p̃i

)

.

Substituting this expression for pi into equation (6b) we obtain,

dp̃i
dt

= −Ä

R
∑

j=1

Lij p̃j + ³p̃i − ´p̃i
2, i = 1, . . . , R, (7)

where

³ =
k0
k1

k12 − k̃1 and ´ =
k0k

2
12

k21
. (8)

To derive the canonical FKPP model, we perform a change of variables into p̃ = c³/´, rescaling by

the carrying capacity giving:

dci
dt

= −Ä

R
∑

j=1

Lijcj + ³ci (1− ci) , i = 1, . . . , R. (9)

In practice, we introduce a new variable p∞ = ³/´, to obtain the global FKPP model:

dp̃i
dt

= −Ä

R
∑

j=1

Lij p̃j + ³p̃

(

1−
p̃i
p∞

)

, i = 1, . . . , R, (10)

and set p∞ to be the maximum regional carrying capacity inferred from mixture modelling. This

ensure the data used for fitting are the same across models.

Next, we derive a model for SUVR concentration si with regional carrying capacities and baseline

values to model with the requirement that at node i, the healthy state corresponds to a baseline

value of si = s0,i and the fully toxic state has asymptotic value si = s∞,i as t → ±∞. This model

is a small generalisation of Eq. (7) that amounts to take ³ and ´ as regionally dependent. It takes

the form of the local FKPP model :

dsi
dt

= −Ä
R
∑

j=1

Lij (sj − s0,j) + ³ (si − s0,i) [(s∞,i − s0,i)− (si − s0,i)] , i = 1, . . . , R. (11)

The logistic model is then simply obtained by taking Ä = 0:

dsi
dt

= ³ (si − s0,i) [(s∞,i − s0,i)− (si − s0,i)] , i = 1, . . . , R, (12)

where at each node the variable si connects asymptotically, for t → ±∞, the healthy state s0,i to

the toxic state s∞,i (which implies there is no mechanism for propagation from node to node in this

model).
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4.5 Estimating fixed model parameters

To estimate the fixed parameters for s0 and s∞, we fit a two component Gaussian mixture model to

population level data of regional SUVR. For regions in which a reliable measure of ÄP SUVR can be

obtained, we expect to see two separate distributions, a ÄP− distribution capturing the expected ÄP

load in a given region, and a ÄP+ distribution describing the pathological ÄP load [24]. Using the

fitted Gaussian mixture models, we approximate s0 as the mean of the ÄP− distributions and s∞

as the 99-th percentile of the ÄP+ distributions. For subcortical regions it is not possible to obtain

reliable ÄP PET signal due to off-target binding [60, 61] and we therefore exclude these regions from

our model, leaving a total of 72 regions. For ADNI, we use the multi-tau cohort of AV1451 PET

data, detailed in [24]. For BF2 data, we use all available RO948 PET scans.

4.6 Probabilistic model

For each of the three groups, A´−, A´+/ÄP−, A´+/ÄP+, we use a hierarchical model, factoring

over patients and scans. In each group there are N subjects, each of whom have Tn scans, for

n = 1 . . . N subjects, summarised over R regions, (R = 72). The observations times, i.e. scan dates,

are denoted by t = tnj for j = 1 . . . Tn, n = 1 . . . N . We denote the full data set for a group as Y

and individual subject data as Y n
ij , corresponding to the nth subject, at scan j and region i. For a

single subject, we have the following data generating function:

Yn = f(yn
0 , ¹

n, tn) + ϵ. (13)

where Yn is the individual data for R regions and Tn time points, with initial conditions y0, model

parameters ¹, and observations times t. The data are generated by a dynamical systems, f , with

observation error ϵ. To derive a likelihood function from Eq. (13), we assume the observations

errors are independently and identically distributed and sampled from a Gaussian distribution with

standard deviation Ã. The data generating distribution for a single observation from a subject is

then:

ϵ ∼ N (0, Ã2) (14)

Yn ∼ N (f(yn
0 , ¹, t

n), Ã2I) (15)

To extend this to a hierarchical population model, we define random variables, Θ = {(Äi, ³i)}
N
i=1,

encoding subject specific model parameters and hierarchical population parameters, Ω = {Äµ, Äσ, ³µ, ³σ},

upon which each Θi depends. In Sections 2.2 and 2.3, we assume fixed initial conditions, yn
0 , and
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observations times, tn, taken as the first ÄP PET scan and scan dates respectively. Then the

likelihood function for a single subject under the hierarchical model is:

p(Yn,Θn | Ω, Ã,yn
0 , t

n) =

Tn
∏

j

R
∏

i

p(Y n
ij | Θn, Ã,y

n
0 , t

n
j ) p(Θn | Ω) (16)

where the first term inside the product on the right hand side is the contribution of the subject

level model and the second term is the hierarchical model. Then the posterior for all subjects,

hierarchical parameters, subject specific parameters and observation noise is:

p(Θ,Ω, Ã | Y, t,y0) ∝
N
∏

n

p(Yn,Θn | Ω, Ã,yn
0 , t

n) p(Ω, Ã). (17)

4.7 Inference Algorithm

We run inference for each patient group separately using a Hamiltonian Monte Carlo No-U-Turn

Sampler (NUTS) to sample from the group posterior distribution. We use the same priors across

patient groups, provided in table 4. We use weakly informative priors based on scales at which

we expect to observe parameter values and ensure the transport parameter is positive. The NUTS

sampler is initialised with a unit diagonal Euclidean metric and a target acceptance ratio of 0.8.

For each patient group, we collected four chains each with 2000 samples. All chains showed good

convergence (measured by 0.99 < r̂ < 1.01) with no post warm-up numerical errors associated with

the NUTS sampler.

Parameter Prior Support

Äµ Lognormal(0, 1) [0,∞]
Äσ Lognormal(0, 1) [0,∞]
³µ N (0, 1) [∞,∞]
³σ Lognormal(0, 1) [0,∞]
Äi N (Äµ, Äσ) [0,∞]
³i N (³µ, ³σ) [−∞,∞]
Ã Lognormal(0, 1) [0,∞]

Table 4: Prior distributions for hierarchical model parameters.

4.8 Model Assessment

In Section 2.2 we use two metrics to compare a family of models, the maximum log-likelihood and

the expected log predictive density (ELPD). The maximum log-likelihood is used to compare the

in-sample accuracy of each of the model’s fit to the data using a NUTS sampler. The maximum
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log-likelihood estimate is taken as the maximum log-likelihood from the posterior samples, from

inference on all available patient data.

The ELPD is used for estimating the out-of-sample predictive accuracy and is adapted from

[62]. To do this, we use A´+/ÄP+ subjects who have more than three ÄP PET scans (N = 10),

using only the first three scans for training and remaining scans to measure predictive accuracy.

For our model, the ELPD is then calculated as:

ELPD =

N
∑

i

[

log

(

1

S

S
∑

s

p (Yn | Θn
s ,y

n
0 , t

n)

)]

(18)

where Yn are the unobserved data, Θn
s = {(Ä, ³)}Ss=1 are posterior samples of model parameters,

yn
0 are subjects initial condition and tn are scan dates, each for n = 1 . . . N subjects.

The final method we use for model assessment is the comparison to shuffled data to examine

whether the posterior distributions generated inferred from the true data are due to meaningful ÄP

signal or statistical properties of the data. We perform this test on the A´+/ÄP+ and A´+/ÄP−

groups by random spatial shuffling of the data. The same random permutation are applied to

the regional baseline values and carrying capacities. The inference algorithm in Section 4.7 was

then applied to the shuffled dataset and 1000 posterior samples were collected. This process was

repeated 10 times for each group. In the A´+/ÄP+ positive group, one chain failed to converge and

was discarded.
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5 Supplementary Information
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Figure S1: Out-of-sample fits for four models of proteopathy Top row: predicted vs observed out-
of-sample SUVR. Bottom row: predicted change vs observed change from first in-sample scan to
last out-of-sample scan. Each color represents a different patient and each point of a given color
represents a region.
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Figure S2: posterior predictive for ADNI A´+/ÄP+ subjects with at least four scans. Each row is
a different subject, each of the first three columns are regions of interest and the final column is the
mean SUVR across all regions.
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(a)

(b)

Figure S3: Regional error for in-sample fit against last scan for the A´+/ÄP+ group. Local FKPP
model Fig. S3a and Logistic model Fig. S3b .
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