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Abstract

Aggregation of the hyperphosphorylated tau protein is a central driver of Alzheimer’s disease,
and its accumulation exhibits a rich spatio-temporal pattern that unfolds during the course of the
disease, sequentially progressing through the brain across axonal connections. It is unclear how this
spatio-temporal process is orchestrated — namely, to what extent the spread of pathologic tau is
governed by transport between brain regions, local production or both. To address this, we develop
a mechanistic model from tau PET data to describe tau dynamics along the Alzheimer’s disease
timeline. Our analysis reveals longitudinal changes in production and transport dynamics on two
independent cohorts, with subjects in early stage of the disease exhibiting transport-dominated
spread, consistent with an initial spread of pathologic tau seeds, and subjects in late stage disease
(Braak stage 3/4 onwards) characterised primarily by local production of tau. Furthermore, we

demonstrate that the model can accurately predict subject-specific longitudinal tau accumulation

*Data used in preparation of this article were obtained from the Alzheimer’s Disease Neuroimaging Initiative
(ADNI) database (adni.loni.usc.edu). As such, the investigators within the ADNI contributed to the design and
implementation of ADNI and/or provided data but did not participate in analysis or writing of this report. A
complete listing of ADNI investigators can be found at: http://adni.loni.usc.edu/wp-content/uploads/how_to_
apply/ADNI_Acknowledgement_List.pdf
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at a regional level, potentially providing a new clinical tool to monitor and classify patient disease

progression.

Teaser: A mechanistic model reveals tau protein dynamics in Alzheimer’s, showing stage-specific

shifts in transport and local production.

1 Introduction

Alzheimer’s disease (AD) is a devastating neurological condition resulting in progressive brain at-
rophy and cognitive decline. Toxic forms of two proteins, amyloid-8 (AS) and tau protein (7P) are
believed to act in concert to drive AD progression [1, 2]. The pathological roles of these proteins in
the human brain during AD has been investigated using positron emission tomography (PET), with
radiotracers such as ['®F|florbetapir and [!®F|flortaucipir allowing for in-vivo quantification of AJ
and 7P, respectively [3]. While A tends to be more diffusely present throughout the cerebral cortex
[4, 5, 6, 7], TP exhibits richer spatiotemporal dynamics, characterised by Braak staging [8]. Braak
staging describes the trajectory of toxic 7P, starting from the entorhinal cortex and progressing
sequentially into the limbic regions, basal temporal lobes, broad association cortex and finally into
primary sensory cortex. This staging pattern has been validated using 7P-PET imaging [9, 10, 11|
and has been shown to be highly correlated with atrophy and cognitive decline |12, 13], however,
the mechanism for how 7P staging is orchestrated remain unclear.

Growing evidence suggests that the progression of AD depends on two key factors: 1) the trans-
port of toxic proteins throughout the brain; 2) the local production of toxic proteins. However, the
extent to which these factors contribute to AD progression and whether their contributions change
over time has yet to be determined. There is now substantial evidence that 7P propagation fol-
lows a prion-like mechanism, progressively forming toxic oligomeric seeds and neurofibrillary tangles
through an autocatalyic production process [14, 15]. The prion-like nature of 7P has been demon-
strated with transgenic animal models in which cortical injections of 7P seeds induces the formation
of 7P aggregates that grow in concentration over time at the site of injection and surrounding areas
[16, 17]|. In 2012, studies from Liu et al. and de Calignon et al. showed that transgenic mice over-
expressing pathological human 7P in the entorhinal cortex exhibit accumulation of 7P aggregates
and that 7P invades axonally connected regions through trans-synaptic transport to form seeds
in otherwise healthy regions [18, 19]. The prion-like aggregation and axon-based transport of 7P
has also been suggested in human post-mortem studies [20] and by in-vivo studies using structural
connectome-based models of TP PET capable of reproducing observed 7P aggregation and spread-

ing [21, 22, 23, 24, 25, 26]. In a recent investigation, Meisl et al. analysed multimodal 7P data from
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Braak stage 3 onward and showed that 7P production, not transport, is the main contributor of 7P
progression [27]. However the study does not account for the spatial progression across individual
brain regions or estimate dynamics across the full AD progression timeline. It remains unanswered
whether there are changes in the rates of 7P production and transport over time and whether the
balance of these two processes change along the disease timeline. To address these outstanding
questions, we develop a whole-brain model capable of accurately describing longitudinal 7P PET
data and conduct a multi-cohort study to analyse 7P dynamics across the full disease progression
timeline.

To answer questions about temporal changes in AD 7P dynamics in the human brain requires
an accurate and reliable model of longitudinal 7P observations. There have been numerous efforts
over the past decade to use mathematical models to better understand the spatiotemporal prop-
erties of AD pathology, ranging from linear diffusion models of 7P [21, 22] to infinite dimensional
spatiotemporal models of toxic protein aggregation [28]. Each of these models make different as-
sumptions about the physical mechanisms of 7P spread, however, there has not been a unifying
effort to rigorously compare commonly used models to identify which are best able to accurately
describe longitudinal 7P PET observations. In addition, the models currently described in the lit-
erature fail to account for regional variations in 7P dynamics, which has been shown to influence
the progression of 7P [29, 30, 31| and are incapable of predicting longitudinal changes at a regional
level. Here, we present a novel model that provides a qualitative account of regional vulnerability
and its effect on 7P progression. Using a previously developed Bayesian pipeline for longitudinal
7P modelling [32, 26|, we perform hypothesis-driven model selection on a family of common models
from the AD modelling literature, including a new model accounting for regional dynamics. We
show that models relying only on network diffusion or homogeneous 7P production dynamics are
not sufficient to model regional longitudinal data, whereas models accounting for regional variations
in 7P dynamics are able to accurately model longitudinal 7P observations at a regional level.

We combine state-of-the-art modelling and inference methods with longitudinal 7P PET data
from two independent cohorts to address the outstanding question of how the transport and produc-
tion of 7P drive AD progression. To determine whether there are changes in the rates of 7P transport
and production during AD progression, we apply our model to three groups A=, A3* /7P~ and
ABT /7P* subjects, representing different stages of the AD timeline [33]. We show that the trans-
port of 7P is faster in early stage disease (ABT/TP7), and that there are primary and secondary
increases in production dynamics of 7P along the disease timeline. We validate these results on
an independent dataset using a different 7P tracer, BioFINDER-2, on which the same results are

obtained, further showing that the model and results are robust and generalisable across datasets
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and choice of 7P tracer. Finally, we validate our model by showing that it can predict regional rates
of TP accumulation over time for individual patients. The combination of these methods provide
a novel pipeline for analysing and understanding longitudinal 7P data, allowing for us to compare
changes in disease dynamics across the AD timeline and predict subject specific, region specific

changes in 7P over time.

2 Results
2.1 Deriving a generative model of 7P dynamics

We first extend previous work [34, 35, 28] to develop a mechanism-based model of 7P dynamics in
the human brain that can be calibrated using 7P PET data. This model, called the local FKPP
model (after the well known Fisher-Kolmogorov—Petrovsky—Piskunov equation) and derived in full
detail in Section 4.4, is given by a set of nonlinear ordinary differential equations for the variables

s; = s;(t) representing TP SUVR in different regions of interest on a connectome with N nodes:

N

= —pZEij (sj —s0) +a(si—504) [(Seo,i — S0,i) — (i — 50.4)] 5 i=1,...,N. (1)
)

dsi
dt

The first term represents transport of 7P between brain regions through a graph Laplacian £
with uniform rate p, and is consistent with previous work [21, 22, 24, 35|]. In this study, regions
of interest are given by cortical regions of the Desikan-Killiany-Tourville (DKT) atlas, and the
bilateral hippocampus and amygdala (N = 72). We introduce two novel parameter vectors, regional
baseline values, sq;, and carrying capacities s ;, that represent a healthy state and a late-stage AD
state, respectively, which add information about regional variations in production dynamics. These
parameters are estimated using the Gaussian mixture modelling approach developed in [24] (see
Section 4.5 for details). An example of this is shown in Fig. 1a for the right inferior temporal lobe
and the carrying capacities for the right hemisphere are shown in Fig. 1b. Since these parameters are
estimated from tau PET, they also encode specific features of the tracer, such as regional differences
in tracer uptake, specificity to 3R /4R tau pathology, on-target binding and off-target binding, and
allows us to model tau SUVR, directly. The simulated transport and production dynamics are shown
in Fig. 1. A consequence of the variation of carrying capacities is that the regional production rates
also vary between regions, as seen in the time series of Fig. 1c, providing a qualitative account of
regional vulnerability. The ability to account for these regional variations extends previous models
with homogeneous dynamics across regions 35, 23] provides a picture of 7P progression that is more

consistent with observed 7P staging.
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Figure 1: Simulated transport and production dynamics in the local FKPP model. 1a Two com-
ponent Gaussian mixture model fit to a multi-cohort 7P PET dataset [24] and data from ADNI
for the right inferior temporal lobe. Baseline values are taken as the mean of the 7P~ distribution
and the carrying capacity as the 99-th percentile of the 7P™ distrbiution. 1b Right hemisphere
cortical rendering of the SUVR carrying capacities. 1c Simulation from the local FKPP model
using carrying capacities derived from Gaussian mixture models. Simulations are initialised with a
seed of 50% concentration in the bilateral medial temporal lobe (entorhinal cortex, hippocampus
and amygdala), with p = 0.15 and « = 1.1. Each line represents the SUVR trajectory of one DKT
atlas brain region. Values at time points t = {0, 2, 4,6, 8} are projected onto a cortical rendering.
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Figure 2: Goodness of fit for four models, local FKPP, global FKPP, diffusion and logistic. For
all panels, each point represents a region in the connectome model, averaged over subjects per
scan. Top row shows estimated vs observed SUVR values. Bottom row shows estimated change vs
observed change in SUVR. Only the local FKPP and logistic model are able to accurately capture
longitudinal changes, while the global FKPP and diffusion models are each structurally incapable
of describing heterogeneous production.

2.2 Regional Heterogeneity Is Necessary for Longitudinal Prediction

To determine whether the local FKPP is capable of fitting observed AD trajectories, we compare it
to 7P PET data. For comparison, we also consider simpler models that can be obtained from the
local FKPP model Eq. (1), namely the global FKPP model, Eq. (10), obtained by assuming that
none of the parameters vary locally, the diffusion modelEq. (5) obtained by taking o = 0 in Eq. (1),
and the logistic model obtained by neglecting transport between regions (p = 0 and given explicitly
by Eq. (12)).

We use hierarchical Bayesian inference to calibrate each model to 7P PET data, allowing us to
quantify whether the model parameters can be identified from patient data and provides bounds
on uncertainty for group and individual level parameters. We use 7P PET data from ADNI,
selecting ABT subjects who have at least three scans and are 7P in the medial temporal or lateral
temporal lobe (see Section 4.1 for details). We employ two metrics to compare models, the maximum

likelihood value (L) to measure in-sample fit and the expected log predictive density (ELPD)
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Local FKPP Global FKPP Diffusion Logistic
Loz 10279.40 9357.79 6635.11 9873.54
ELPD 300.10 67.12 -450.00 261.84

Table 1: Assessment of model fit using the maximum log-likelihood L,,., and the expected log
predictive density; higher values correspond to better models. The local FKPP model performs
best in both metrics.

to measure out-of-sample predictive accuracy, both provided in Table 1. Fig. 2 shows the in-sample
longitudinal fit for each of the four models. The out-of-sample fit for the local FKPP model is
shown in Fig. 4 and and in Fig. S1 for the remaining models.

The local FKPP performs best for both in-sample fit and out-of-sample predictive accuracy,
closely followed by the logistic model. The results show that the global FKPP and diffusion models
are ill-equipped for longitudinal modelling of 7P PET data, shown clearly in Fig. 2 and Fig. S1.
The diffusion model underestimates SUVR evolution in time since there is no mechanism for 7P
production or clearance and therefore total concentration is conserved. The global FKPP model
is able to capture the changes in 7P load, but it cannot describe the regional heterogeneity in 7P
production. The deficiencies in production dynamics of the diffusion and global FKPP models are
addressed with the local FKPP model and the logistic model and the ability of these models to
accurately describe longitudinal 7P PET underlines the importance of including regionally specific
production rates. The model selection results support the role of 7P production playing a dominant
role in driving AD pathology. The logistic model is able to describe the trajectory of 7P PET despite
not being able to capture the transport of 7P through the structural connectome. This could either
suggest that ABT /7P subjects already have widespread invasion of 7P seeds or that the diffusion
of 7P occurs over a very long timescale and the effects are not prominent in the relatively short
time window over which longitudinal ADNI data is available. The error in model fit relative to
the final in-sample scan is shown in Fig. S3 for the local FKPP and logistic model and show that
the logistic model is prone to overestimated the SUVR (albeit very slightly), whereas the error in
the local FKPP fit is more balanced across regions, possibly due to the effect of transport between
regions. Overall, the data support the use of local FKPP model, evidenced by it being the most
capable at describing in-sample and out-of-sample data, while also capturing the role of both tau

transport and local tau production.

2.3 Early AD progression is driven by 7P transport

We next sought to determine whether there are any changes in 7P production and transport dy-

namics across the AD progression timeline. To do so, we use two cohorts of 7P PET data, ADNI
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and BioFINDER-2 (BF2), each divided into three groups, A3~, A3+ /7P, Ap*/7P*, represent-
ing different stages of AD. Since BF2 uses a different 7P PET radiotracer, we rerun the Gaussian
mixture modelling analysis to recover tracer specific baseline and carrying capacities. We then fit
a hierarchical Bayesian model to each of the groups and examine the population level production
and transport parameters.

The population parameter distributions for the A3~, A3 /7P~ AB*/7PT groups are shown in
Fig. 3a for ADNI and Fig. 3b for BF2 and summarised in Table 2. The posterior distributions across
cohorts are qualitatively the same, with changes likely reflecting differences in cohort and tracers.
The inferred parameters show an increase in the transport rate for the A3* /7P~ group relative to
the ABT /7Pt and AB~ groups, suggesting that 7P more readily spreads between regions during
early stages of disease, and is minimal in later stages of AD. The inferred posterior distributions for
the production parameter show a progressive increase in production rate along the disease timeline,
with a primary increase from A3~ to AS™ /7P~ group and a secondary increase from the A" /7P~
group to the AB*/7PT group. The negative production rate for the A3~ group indicates that
the signal, on average, decreases. This could reflect changes in noise due to off-target, nonspecific
binding or atrophy from non-AD related neurodegeneration. Therefore, any observed clearance
dynamics likely reflect fluctuations in noise or age-related atrophy. These results that in early AD,
7P begins in a transport dominated phase (p > «) and later switches to a production dominated
phase (a > p).

To confirm that the parameter distributions reflect meaningful dynamics present in the data and
are not as a result of statistical patterns, we re-run the analysis on the A3 /7P~ and At /7P
groups using spatially shuffled data. The results of these for the production and transport parame-
ters are shown in Figs. 3c and 3d. Note that we only spatially shuffle the data and therefore expect
minimal changes to the estimated production parameters. We note a marked difference in estimated
transport dynamics in both the A3+ /7P~ and A+ /7P ™ groups between the true and shuffled data,
confirming that dynamics present in the data are not a consequence of statistical patterns in the data
but represent 7P dynamics as measured through PET. The transport dominated phase of the early
AD subjects supports evidence showing 7P seeds are present throughout the cortex before symptom
onset [20, 36] and, together with the small role of transport in the A3+ /7P™ groups, helps explain
the strong performance of the logistic model in Section 2.2. Overall the results reveal temporal
changes in the dynamics of 7P progression, with an initial transport dominated phase, perhaps in
which seeds are deposited around the cortex, followed by a production dominated phase indicative

of secondary tauopathy, likely due to spatial colocalisation with AS catalysing 7P production.


https://doi.org/10.1101/2023.09.28.559911
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.09.28.559911; this version posted September 29, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

Production Transport
AB+ TP+ L,
" —
2
2
S AB TP~ e — m
Ag- _L
g 3 S A 1
I T I T I T I T I I T I T I T I T I
0.2 -0.1 0.0 0.1 0.2 0.000 0.025 0.050 0.075 0.100
1/yr 1/yr
(a)
Production Transport
AB* TP+ ‘L L
© N E &
2
2
S AB TP~ —— : ;
A~ ‘.‘_M L _____
O R T/ £ - & TPCT
I T I T I T I T I I T I T T I T I T I
-0.20 -0.10 0.00 0.10 0.20 0.00 0.01 0.02 0.03 0.04 0.05
1/yr 1/yr
(b)
Production Transport Production Transport
B Shuffled B Shuffled
mAB TPt ABY TP~
2 2
£ £
C c
[0 [
a [a]
0.00 0.05 0.10 0.15 0.20 0.000 0.005 0.010 0.015 0.020 -0.2 -0.1 0.0 01 0.2 0.00 0.05 0.10 0.15
1/yr 1/yr 1/yr 1/yr
(d)

(c)
Figure 3: Inferred population level parameters using ADNI and BF2 7P data. 3a & 3b Population
production and transport parameters across A3 /7PT, ABT /7P~ and A3~ groups for ADNI (3a)
and BF2 (3b) 7P PET data. 3c & 3d Inferred population production and transport parameters
from spatially shuffled data (shown in grey) for A3 /7Pt (3c), AB" /7P~ (3d) ADNI groups.
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Pu Po Qy Qo
mean s.d. mean s.d. mean s.d. mean s.d.
ApT/rPT  0.01 0.003 0.02 0.003 0.12 0.02 0.11 0.02
ADNI AB* /7P~ 0.04 0.01 015 0.03 —=0.005 0.05 0.26 0.04
Ap~ 0.02 001 005 0.01 —-0.05 0.03 0.19 0.02
At /rPT 0.004 0.001 0.01 0.001 0.11 0.01 0.09 0.01
BF2 AB*t/rP~ 0.02 0.01 002 0.01 0.02 0.05 0.22 0.04
ApB~ 0.02 001 008 0.01 -=0.03 0.03 0.19 0.03

Group

Table 2: Posterior summary providing the means of inferred population parameters for ADNI and
BF2.
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2.4 Local model predicts regional 7P progression

Individual prediction

Regional prediction
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Figure 4: Out-of-sample fit and regional posterior predictive plots. 4a Predicted vs observed out-
of-sample SUVR for all ten subjects used for out of sample prediction. Each color represents a
different patient and each point of a given color represents a region. 4b Predicted vs observed
SUVR per region, averaged over subject. Each point represents a region in the DKT atlas. 4c
Predicted regional changes in SUVR for a subject with five scans. The model is trained on the first
three observed scans (circles), with the last two scans (squares) left out. We show three regions
of the DKT atlas, the right fusiform, entorhinal cortex and inferior temporal lobe and the mean
SUVR. 2000 simulations were run using values from the posterior distributions. Predictions for the
remaining subjects who have greater than three scans are provided in Fig. S2.

—Right Mean Pred.
Right 95th Quantile

A major utility of mathematical modelling of AD lies in the application to pharmacological and
clinical research, particularly through predicting patient disease progression. Here, we show that the
local FKPP model can be used to accurately predict the trajectory of 7P PET. Taking Ag+ /7P
subjects from ADNI who have at least four scans (N = 10), we use the first three scans for calibrating
the model and the remaining scans for prediction. The results of this for the local FKPP model are

displayed in Fig. 4 and show that the model is capable of predicting longitudinal regional 7P PET

11
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data. However, it still does so imperfectly, with variations in accuracy across regions, suggesting
that there are still unexplained factors contributing to the regional production parameters. Fig. 4c
shows longitudinal predictions in regions of interest for a single subject with five scans (the greatest
number of scans in the cohort). With the exception of the right entorhinal cortex, all data points
shown are captured within the confidence intervals, including the average increase across regions.
The same predictions are shown for the remaining subjects in Fig. S2 and all show a similar level
of accuracy. These results demonstrate the power of a simple model with two free parameters in
accurately predicting the regional progression of a individual 7P PET progression that may provide

benefit for clinical researchers.

3 Discussion

We have derived a physics based generative model to describe 7P PET data in terms of underlying
7P dynamics and applied it data from ADNI and BF2 to understand how it compares to other models
present in the literature and how it can inform us about 7P transport and production dynamics
in the human brain. We have shown that this model can predict accurately longitudinal regional
7P PET progression in AD subjects. Furthermore, by performing inference across different patient
groups across the AD disease timeline, we uncover temporal changes in transport and production
dynamics, showing an initial transport dominated phase associated with primary tauopathy and
seeding, followed by an accelerated production dominated phase indicative of secondary tauopathy.

There have been several studies proposing different models of proteopathy in AD, a key difference
among them being descriptions of the 7P production process, which vary widely in complexity [22,
28,24, 37, 27, 25, 26]. Here we present a parsimonious model of 7P transport that relies on regionally
specific carrying capacities and we showed through model selection, Section 2.2, that it is able to
outperform other models proposed in the literature. A possible cause of regional heterogeneity in
carrying capacities is heterogeneity in regional risk factors that promote 7P proliferation, the most
likely of which is AB. AQS has its own spatial topography within AD patients, being particularly
present throughout the fronto-partietal-temporal default mode network and stimulating neuronal
hyperactivation [11, 38, 39]. The presence of AS will have a two-fold effect on 7P dynamics, first
through a catalysing effect on the production of 7P [40, 41, 42| and second by promoting the
activity dependent spread and production through the functional networks [43, 44]. In Thompson
et al 2020, we formulated a model describing the dynamic interaction between AS and 7P, that
predicts an increase in carrying capacities based on Af concentration [45], however, further work

toward simplifying the model will be necessary before it can be used for inference with patient data.
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Another key set of factors contributing to regional vulnerability are genetic markers. It has
already been shown in mice models of AD that gene expression patterns can inform spreading
of 7P [31] and human modelling of Parkinson’s disease has shown how gene expression patterns
can inform regional vulnerability to create a model of toxic protein spread in Parkinson’s disease
[46]. There are several candidate genes for modelling regional vulnerability in AD, most notably
microtubule association protein tau (MAPT), as a proxy for relative baseline 7P vulnerability [47]
and apolipoprotein-E (APOE) for those patients with the APOEe4 mutation [29, 48, 49]. While
there are many other candidate genes that may influence regional vulnerability, care should be taken
to avoid creating overdetermined models. In sum, while the work here provides compelling evidence
for the necessity of regional vulnerabilty, further work should seek to explain the mechanisms through
which regional carrying capacities emerge from a culmination of regional risk factors, such as AS
deposition and gene expression patterns.

There is extensive evidence of 7P transport and production throughout the brain, however, it
has not yet been determined whether one of these processes dominate the other and whether their
relative contributions to disease progression changes over time. To this end, we sought to determine
whether inferred parameters of our model change in groups across the disease timeline. We find
that during early stages of disease, when there is a low 7P concentration in the medial temporal
lobe, 7P dynamics are transport dominated but become production dominated later in disease.
This supports previous work by Meisl et al. [27] who show through an analysis of multiple datasets
and methods of 7P quantification that 7P dynamics are production dominated from Braak stage 3
onwards. This is consistent with our work, considering individuals who are positive on tau-PET in
early Braak stage regions may already show fairly advanced Braak stages at autopsy [50] analogous
to individuals at middle Braak stages used by Meisl et al. 2021. These results suggest that, in early
AD, 7P seeds invade connected regions from the medial temporal lobe, but the overall concentration
does not grow substantially. Only in later stages of AD is the spread production-dominated and
driven by fast increases in concentration gradients, leading to progressive Braak-like staging. These
results also support the utility of the logistic production model in being able to describe longitudinal
ABT/7PT data (Fig. 2 & Fig. S1), since seeds would already be densely present around the cortex
and progression is driven by 7P production. The results are also consistent with experimental
evidence showing that 7P seeds are present before 7P pathology [20, 36].

Together the results are indicative of an intrinsically spatiotemporal process, with a primary,
transport dominated tauopathy resulting in 7P seeds spreading from the medial temporal lobe
to axonally connected regions, followed by a secondary, production dominated tauopathy, likely

resulting from A interaction, resulting in fast regional accumulation and sequential, Braak-like
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staging. This is in slight contrast to the largely temporal process of AS, described by [51], where
A begins as being diffusely present throughout the brain, but increases in concentration at different
rates due to regional vulnerabilities. . These results suggest that the early period of AD during
which tau is more readily transported between brain regions may be a critical time for intervention.
Many immunotherapies currently being developed act on extracellular tau [52] and should therefore
interrupt tau transmission through the extracellular space of the synaptic junction. If AD is a
consequence of first tau spread and then production, it will be crucial for these immunotherapies
to be administered early in the AD process to halt the widespread transmission of tau before
accelerated local production can occur. In contrast, therapies that act to reduce intracellular tau
concentration should be effective in slowing AD progression across the AD continuum, regardless
of whether widespread tau transmission has occurred [53].

This work presents a step forward in whole brain 7P modelling, however, there are still many
obstacles that are not addressed here. First, there are limitations that pertain to the sparsity of
longitudinal data. In this work, we fix a number of parameters to ensure the practical identifiability
of the models given the available data. In particular, we fix baseline values and carrying carrying in
the dynamical system, and subject initial conditions in the probabilistic model. By fixing baseline
values and carrying capacities, we are unable to determine whether these also undergo dynamical
changes. This also limits the direct application of the model to other tauopathies that exhibit
different tau PET profiles. This will, in part, be addressed by including dynamical regional risk
factors, however, the time over which changes in these factors can be observed will remain limited
until more longitudinal data is available. Second, there are limitations related to the scale at which
we are modelling. While the model we present here is derived from a physics-based model, the model
reduction comes at the cost of a loss in mechanistic insight into precise transport and production
mechanisms. This will remain a hard limitation while we work with macroscale brain data. In
addition, tau PET data is intrinsically limited by resolution, inability to detect early changes, and
non-specific and off-target binding sources, collectively providing a source of uncertainty that affects
parameter identifiability of intricate processes such as transport. Therefore, while the modelling
results suggest changes to transport and production across the AD continuum, our conclusions
are limited by the nature of PET measurements and require experimental validation. A potential
avenue to address this limitation will be the development of multiscale models that rely on in-vitro
or animal studies for calibration and permit macro-scale reduced order models.

The primary contribution of this work has been to supply a parsimonious account of regional
7P dynamics in AD. Future work should seek to build upon this, adding more information and data

to probe the unexplained dynamics in AD. Most pressingly, these include dynamical interactions
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between AS and 7P in a sufficiently simple way to accommodate the ability to perform inference with
patient data. Furthermore, the study sheds light on potential avenues of clinical investigation into
anti-tau therapies by showing how targeting different tau processes (transport or local production)

at different times during the AD continuum may be essential for effective intervention.

4 Methods
4.1 Data Processing

We use PET from the Alzheimer’s Disease Neuroimaging Initiative (adni.loni.usc.edu). ADNI is
a public-private partnership with the aim of using serial biomarkers for measuring the progression
of AD. For up-to-date information, see www.adni-info.org. We download the fully processed 7P
PET and magnetic resonance image (MRI) data, summarised as standardized uptake value ratios
(SUVR) and volumes for each of the regions in the Desikan-Killiany-Tourville (DKT) atlas. We
re-normalise individual SUVR using an inferior cerebellum SUVR reference region. Amyloid status
for ADNI subjects was also downloaded from ADNI and used to classify subjects.

We also use data from BioFINDER2 study, which uses the RO948 7P PET radiotracer. The
7P data are analysed using a the analysis pipeline detailed in [54|. Four subjects from the BF2
ABY /TP~ group are removed due to high off-target binding in the skull/meninges or MRI registra-
tion issues. Amyloid status was determined by Gaussian mixture modelling as detailed in [55, 56].
In both cohorts we select only subjects who have at least three 7P PET scans to allow for inference
on the time-series model. ADNI and BF2 7P PET data are summarised in table 3.

We also use data from the Swedish BioFINDER-2 study (NCT03174938), which uses the RO948
7P PET radiotracer. All participants were recruited at Skane University Hospital and the Hospital
of Angelholm, Sweden and the cohort covers the full spectrum of AD, ranging from cognitively
normal individuals, patients with mild cognitive impairment (MCI) and with dementia. All details
about the cohort have been described previously [54]. Amyloid status was determined by amyloid-
PET (flutemetamol) based on a previously established cutoff from Gaussian mixture modelling as
detailed in [55]. Patients with dementia do not undergo amyloid-PET and thus amyloid status was
based on the CSF A3 42/40 ratio [56]. The 7P data are analysed using the analysis pipeline detailed
in [54]. Briefly, SUVR images were generated using the inferior cerebellum as reference region and
average SUVR were extracted from the DKT atlas. Four subjects from the BF2 AS™ /7P~ group
are removed due to high off-target binding in the skull/meninges or MRI registration issues. In
both cohorts we select only subjects who have at least three 7P PET scans to allow for inference

on the time-series model. ADNI and BF2 7P PET data are summarised in table 3.
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Group N. Subjects Age Female Education CN MCI AD

ABY/TPT 31 746  0.61 16.45 0.39 045 0.16

ADNI AB* /7P~ 29 78.6  0.41 16.59 0.51 045 0.03
AB~ 59 73.1  0.54 16.71 0.63 0.36 0.01

ABY /TP 54 73.9  0.65 11.6 02 043 037

BF2 ABT/rP~ 18 72.1 0.5 13.2 0.61 0.31 0.08
AB~ 53 66.9 0.5 12.8 081 0.19 0.0

Table 3: Demographics for ADNI and BF2 cohorts.

We perform inference over three groups: AS~, At /7P~, AT /7PT We distinguish between
7P~ and 7P using a 7P PET SUVR cut-off for two composite regions, as detailed in [33]. There
are two cut-offs, one for determining 7P positivity in the medial temporal lobe (MTL, defined as
the mean of the bilateral entorhinal and amygdala), and another for neocortical positivity (defined
as the middle temporal and inferior temporal gyri). The thresholds for the composite regions are
based on regional Gaussian mixture models, as previously described [24]. For each composite, we
average the SUVR values from the constituent regions and fit a two component Gaussian mixture
model. The threshold for the region is then set to the SUVR at which there is a 50% chance of
being 7P*. For ADNI, the thresholds are 1.375 and 1.395 and for BF2 they are 1.248 and 1.451
for the MTL and cortical composites, respectively. We define a subject as being 7PT if their last
scan is suprathreshold in either the MTL or cortical 7P PET SUVR and 7P~ if the SUVR value is
below both SUVR thresholds.

4.2 Mathematical Models of proteopathy
4.3 Structural Connectome Modelling

We use the structural connectome to model the transport of 7P between brain regions. To generate
structural connectomes, we use diffusion weighted MRI images of 150 healthy individuals from
the Human Connectome Project (HCP) [57, 58|. From these data, connectomes are derived using
the probabilistic tractography algorithm probtrackx [59], available in FSL, using 10000 samples per
voxel, randomly sampled from a sphere around the voxel centre. The number of streamlines between
each of R regions in the DKT atlas are summarised as an adjacency matrix, A, that defines our
connectome graph, G. To model transport of 7P between regions, we use the graph Laplacian of
G, given by:

L=D-A, (2)
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where D is the degree matrix, D = diag(A - 1). To ensure a transport process respects mass

conservation across regions of varying volumes, we weight the graph Laplacian by regional volumes,
L=VIL (3)

where V = diag (v/v,), and v = (v1,vg,...vR) is a vector of regional volumes and v, is a reference
region. In Section 2, we model three groups of subjects, A3~, A+ /7P~ and A" /7P™, to reflect
changes in volume across the disease timeline and variation in individual brain volumes, we define
v and v, on a group and individual level, respectively. For a given group with N subjects, we define

the normalised volume of a region v; as

N
1 vl-”
vi Nzn v’ (4)

taking v as the initial volume of the ith region and nth subject and v;' is as the maximum initial
regional volume for the nth subject. Then v is the average normalised volume per subject in a
cohort.

Using the graph Laplacian, we define the diffusion model,

dp;
de

R
j=1
where p; is the protein concentration at node ¢ and p is a transport coefficient.

4.4 Local model of Tau Proliferation

We start with a coupled model of healthy and toxic protein, the heterodimer model, from which we
aim to derive a simplified model of toxic protein dynamics that includes regional information. The

heterodimer model on a network is:

R
dp; _ .
a —P;ﬁijpj + ko — k1pi — k12piDs, 1=1,..., R, (6a)
dpi & .
P —P;Eijpj — k1pi + k12pips, i=1,..., R, (6b)

where p; , p are, respectively, the healthy and toxic protein concentration at node i, kg is the natural
production rate of healthy protein, k1 and kq are the clearance rates of healthy and toxic proteins,
respectively, and kjo is the rate of conversion from healthy proteins into toxic proteins [35]. To

simplify the heterodimer model, we can follow a similar procedure to that presented in [35], by
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linearising around a healthy state. Assuming an homogenous state with p; < p;, implies (ilpti =0

and — Zf Lijpj = 0for ¢ =1... R. Then, linearising around p = 0, we have

ko k12
. ~. % 1 p— ~. .
pz(pz) ket < ket bi
Substituting this expression for p; into equation (6b) we obtain,

dp;

% p;[,mp]—i—apz sz , i=1,...,R, (7)
where )
o = Eklz — kjl and ﬁ = k‘% . (8)

To derive the canonical FKPP model, we perform a change of variables into p = ca/3, rescaling by
the carrying capacity giving:

de;

e pZEZ]c]—#—ozcl(l i), i=1,...,R. (9)

In practice, we introduce a new variable ps, = /[, to obtain the global FKPP model:

- R ~
dp; Z - - bi ;

and set poo to be the maximum regional carrying capacity inferred from mixture modelling. This
ensure the data used for fitting are the same across models.

Next, we derive a model for SUVR concentration s; with regional carrying capacities and baseline
values to model with the requirement that at node i, the healthy state corresponds to a baseline
value of s; = s0; and the fully toxic state has asymptotic value s; = o0 ; as t — £o0o. This model
is a small generalisation of Eq. (7) that amounts to take a and 3 as regionally dependent. It takes

the form of the local FKPP model:

dsl .
- = —PZ»CU — S0 ]) +a (Si - SO,i) [(Soo,i - SO,i) - (Si - SOJ)] ) 1=1,...,R. (11>

The logistic model is then simply obtained by taking p = 0:

= = (Si — 50,@') [(SOO,i — SO,i) — (Si - 50,1’)] 5 1= 1, cey R, (12)

where at each node the variable s; connects asymptotically, for ¢ — o0, the healthy state sg; to

the toxic state Soo; (Which implies there is no mechanism for propagation from node to node in this
model).

18


https://doi.org/10.1101/2023.09.28.559911
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.09.28.559911; this version posted September 29, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

4.5 Estimating fixed model parameters

To estimate the fixed parameters for sg and s, we fit a two component Gaussian mixture model to
population level data of regional SUVR. For regions in which a reliable measure of 7P SUVR can be
obtained, we expect to see two separate distributions, a 7P~ distribution capturing the expected 7P
load in a given region, and a 7P distribution describing the pathological 7P load [24]. Using the
fitted Gaussian mixture models, we approximate sy as the mean of the 7P~ distributions and s
as the 99-th percentile of the 7P™ distributions. For subcortical regions it is not possible to obtain
reliable 7P PET signal due to off-target binding [60, 61] and we therefore exclude these regions from
our model, leaving a total of 72 regions. For ADNI, we use the multi-tau cohort of AV1451 PET
data, detailed in [24]. For BF2 data, we use all available RO948 PET scans.

4.6 Probabilistic model

For each of the three groups, A3~, AT /7P~, ABT/7P", we use a hierarchical model, factoring
over patients and scans. In each group there are N subjects, each of whom have T, scans, for
n =1... N subjects, summarised over R regions, (R = 72). The observations times, i.e. scan dates,
are denoted by t = ty forj=1...7T,, n=1...N. We denote the full data set for a group as Y
and individual subject data as Y7, corresponding to the nth subject, at scan j and region i. For a

single subject, we have the following data generating function:
Y" =f(yg,0",t") + e (13)

where Y™ is the individual data for R regions and 7T;, time points, with initial conditions y(, model
parameters 6, and observations times t. The data are generated by a dynamical systems, f, with
observation error e. To derive a likelihood function from Eq. (13), we assume the observations
errors are independently and identically distributed and sampled from a Gaussian distribution with
standard deviation . The data generating distribution for a single observation from a subject is

then:

e ~N(0,0?) (14)
Y" ~ N(f<y87 0, tn)a 021) (15)

To extend this to a hierarchical population model, we define random variables, © = {(p;, ;) } Y |,
encoding subject specific model parameters and hierarchical population parameters, Q = {p,,, po, oy, s },

upon which each ©; depends. In Sections 2.2 and 2.3, we assume fixed initial conditions, y, and
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observations times, t”, taken as the first 7P PET scan and scan dates respectively. Then the

likelihood function for a single subject under the hierarchical model is:
Tn R
p(Y", 0, | Qo,y5.t") = [[[[p(¥} | On. 0¥, ) p(On | Q) (16)
VK

where the first term inside the product on the right hand side is the contribution of the subject
level model and the second term is the hierarchical model. Then the posterior for all subjects,

hierarchical parameters, subject specific parameters and observation noise is:

N
p(©,2,0 [ Y, t,y0) x [[p(Y", 04 | 20,5, ") p(2,0). (17)

4.7 Inference Algorithm

We run inference for each patient group separately using a Hamiltonian Monte Carlo No-U-Turn
Sampler (NUTS) to sample from the group posterior distribution. We use the same priors across
patient groups, provided in table 4. We use weakly informative priors based on scales at which
we expect to observe parameter values and ensure the transport parameter is positive. The NUTS
sampler is initialised with a unit diagonal Euclidean metric and a target acceptance ratio of 0.8.
For each patient group, we collected four chains each with 2000 samples. All chains showed good
convergence (measured by 0.99 < 7 < 1.01) with no post warm-up numerical errors associated with

the NUTS sampler.

Parameter Prior Support
P Lognormal(0,1) [0, o]

Po Lognormal(0,1) [0, o]

a, N(0,1) [00, 00]
oy Lognormal(0,1) [0, 0]

Pi N(pltv pcf) [07 OO]

o N (o, ag) [—00, 0]
o Lognormal(0,1) [0, o]

Table 4: Prior distributions for hierarchical model parameters.

4.8 Model Assessment

In Section 2.2 we use two metrics to compare a family of models, the maximum log-likelihood and
the expected log predictive density (ELPD). The maximum log-likelihood is used to compare the

in-sample accuracy of each of the model’s fit to the data using a NUTS sampler. The maximum
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log-likelihood estimate is taken as the maximum log-likelihood from the posterior samples, from
inference on all available patient data.

The ELPD is used for estimating the out-of-sample predictive accuracy and is adapted from
[62]. To do this, we use AS+ /7Pt subjects who have more than three 7P PET scans (N = 10),
using only the first three scans for training and remaining scans to measure predictive accuracy.

For our model, the ELPD is then calculated as:

N S
ELPD = Z llog (; > p(Y"| @g,y(;,t“)” (18)

where Y™ are the unobserved data, ©7 = {(p,a)}5_, are posterior samples of model parameters,
yo are subjects initial condition and t" are scan dates, each for n = 1... N subjects.

The final method we use for model assessment is the comparison to shuffled data to examine
whether the posterior distributions generated inferred from the true data are due to meaningful 7P
signal or statistical properties of the data. We perform this test on the AT /7Pt and AB* /7P~
groups by random spatial shuffling of the data. The same random permutation are applied to
the regional baseline values and carrying capacities. The inference algorithm in Section 4.7 was
then applied to the shuffled dataset and 1000 posterior samples were collected. This process was
repeated 10 times for each group. In the ABT/7PT positive group, one chain failed to converge and

was discarded.
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Figure S1: Out-of-sample fits for four models of proteopathy Top row: predicted vs observed out-
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Mean error

Mean error

Figure S3: Regional error for in-sample fit against last scan for the A3+ /7P" group. Local FKPP
model Fig. S3a and Logistic model Fig. S3b .
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