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ABSTRACT: Discovery of small-molecule antibiotics with novel chemotypes serves as one of
the essential strategies to address antibiotic resistance. Although a considerable number of
computational tools committed to molecular design have been reported, there is a deficit in the
holistic and efficient tool specifically developed for small-molecule antibiotic discovery. To
address this issue, we report AutoMolDesigner, a computational modeling software dedicated to
small-molecule antibiotic design. It is a generalized framework comprising two functional
modules, i.e., generative deep learning-enabled molecular generation and automated machine
learning based-antibacterial activity/property prediction, wherein individually trained models and
curated datasets are out-of-the-box for whole cell-based antibiotic screening and design. It is open-
source thus allows for the incorporation of new features for flexible use. Unlike most software
programs based on Linux and command lines, this application equipped with Qt-based graphical
user interface can be run on personal computers with multiple operating systems, making it much
easier to use for experimental scientists. The software and related materials are freely available at
GitHub (https://github.com/taoshen99/AutoMolDesigner) and Zenodo

(https://zenodo.org/record/8366085).

KEYWORDS: antibiotic discovery; de novo drug design; automated machine learning; graphical
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INTRODUCTION

The evolutionary multidrug-resistant (MDR) bacteria have become an emerging threat to
public health!. Among these bacteria, the ESKAPE (Enterococcus faecium, Staphylococcus
aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and
Enterobacter) pathogens? account for many fatal infections. Known chemotypes of antibiotics
rapidly lose efficacy to these pathogens due to the developed resistance mechanisms through
natural selection®. Accordingly, novel chemotypes of antibiotics that are widely acknowledged as
effective to overcome antibiotic resistance are at an urgent need. In history, novel-chemotype
antibiotics are mainly discovered by three strategies. The first strategy dates back to half a century
ago, the exploitation of natural products (secondary metabolites) isolated from environmental
microbes contributed to most of the small-molecule antibiotics in clinic*. However, this strategy
is becoming insufficient now since the same chemotype (skeleton) is repetitively discovered and
structural modification does not lead to better antibiotics than the natural product itself’. With the
emerging of combinatorial chemistry at the beginning of the 21st century, the second strategy was
target assay-based high-throughput screening (HTS)! of large-scale chemical library. The target-
based approach achieved notable success in drug research and development for other diseases.
Unfortunately, this strategy seems not fruitful in antibiotic discovery, as only three new
chemotypes of antibiotics received approval®?® in the last 20 years and two of them are still derived
from natural products. The third strategy is phenotype-based antibiotic screening, in particular the
whole cell-based antibiotic screening, i.e. directly screening chemical libraries for bioactive
compounds against the whole bacteria instead of a protein target, which holds the promise to

circumvent the pitfall of target assay-based screenings that do not consider antibiotic-likeness’.


https://doi.org/10.1101/2023.09.27.559854
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.09.27.559854; this version posted September 29, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Machine learning (ML), as the core of Al, is comprised of three basic subfields including
supervised learning, unsupervised learning and reinforcement learning (RL). Correspondingly, the
application of ML to whole cell-based antibiotic discovery can be divided into two aspects
according to the applied algorithms'®. Quantitative structure—activity relationships (QSAR)
modeling (also called molecular bioactivity prediction) is the most important supervised learning
task in this field'!. It utilizes whole-cell activity prediction models to prioritize compounds from
chemical libraries. A few cases in antibacterial hit identification have been reported. For example,
Wang et al. utilized molecular descriptors and fingerprints to characterize known 2,066
compounds with activity against methicillin-resistant S. aureus, and they built models with four
classical ML algorithms including naive Bayesian, support vector machine, recursive partitioning,
and k-nearest neighbors'2. The best models were eventually applied to virtual screening of a
chemical library comprised of about 7,500 compounds, which contributed to several antibacterial
hits. Recently, molecular property prediction based on deep learning-enabled automated
featurization was reported'?. Chemprop is developed to extract bond-level topological information
from graph representation based on the algorithm of directed-message passing neural network (D-
MPNN)!4. With two kinds of cell-based antibiotic datasets compiled for model training, Chemprop
was respectively applied to virtual screening campaigns for new antibiotics. As a result, the
research teams have discovered two novel hits which are either broad-spectrum antibiotics!® or
narrow-spectrum antibiotics against 4. baumannii with a new mode of action'®. With the
renaissance of artificial intelligence (Al), de novo design of antibacterial molecules becomes an
emerging field, wherein self-supervised learning, a kind of unsupervised learning, has been
leveraged for molecular generation. Currently, most research is focused on de novo design of

antimicrobial peptides and those applied strategies are pretty effective!’. As few cases of success
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were reported, deep learning-based design of small-molecule antibiotics seems quite challenging.
Segler et al. pioneered the framework of recurrent neural network (RNN)-based chemical language
models (CLMs) for small-molecule generation'®. In their study, the in silico design of novel small-
molecules antibiotics against S. aureus. was used to illustrate the “Design-Synthesis-Test Cycle”.
The ML-based prediction model and the transfer learning strategy were coupled to generate a
focused chemical library including 60,988 virtual molecules with potential antibacterial activity.
This important work provided an early insight into the small-molecule antibiotic design through
generative deep learning. However, their ML-based prediction model covered antibacterial activity
only and neglected antibiotic-likeness, thus the designed molecules may not be ideal. In terms of
public availability, no source code or application was provided. Recently, Sowmya et al. developed
a semi-supervised deep molecular generation model to explore structure-based molecular design
for Mycobacterium tuberculosis. A key ML model for drug-target affinity prediction was used to
reward the generative process through RL!°. They have shown that more than 75% generated
molecules are highly analogous to known inhibitors and contained the essential pharmacophore
features that would interact with the binding site residues of chorismate mutase. Unfortunately,
they did not take the whole-cell antibacterial activity into consideration but only emphasized target
binding of the designed molecules. Therefore, it is not convincing that the designed molecules by
the model are active for the bacteria. Similar to the work of Segler et al., their model was not made

publicly available as well.

To the best of our knowledge, the current development of Al-based computational tools for
antibiotic design and screening is far from satisfaction. Two main issues are as follows: (1) All the
whole cell-based models in previous study are mainly focused on antibacterial activity profiling

while lack the consideration of antibiotic-likeness?’, a significantly important aspect of antibiotics.
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This aspect is also overlooked in molecular generation-based small-molecule antibiotic design
from a target structure-centered perspective. (2) The computational tools and models for antibiotic
design and screening are not easy to access by users. Most of them required programming skills
and high-performance server to deploy for application. Recently, some web servers such as
AlScaffold?! and Chemistry42?> were developed for molecular design. Basically, they are

applicable to the building of antibiotic-focused Al models, but they all require commercial licenses.

To address these issues, we developed AutoMolDesigner for small-molecule antibiotic design
and screening, which consisted of two functional modules, i.e., a remastered RNN aiming at
focused library generation for small-molecule antibiotics and an automated machine learning
(AutoML) framework named AutoGluon?® for molecular property prediction. Both classification
and regression models are out-of-the-box for accurate prediction of antibacterial activity and
antibiotic-likeness, with cytotoxicity and plasma protein binding (PPB) as representatives. To
make the models easy to use, we incorporated the modules including data curation, model
evaluation and molecular visualization into AutoMolDesigner. In addition, we designed an
intuitive graphical user interface (GUI) for both Windows and MacOS platform, along with the
corresponding command-line interface (CLI). This software was also tested on personal computers
with various device configurations. It can be run on a laptop without independent graphics

processing unit (GPU) and achieve close performance to that on high-performance servers.

RESULTS AND DISCUSSION

Three main features of AutoMolDesigner are summarized below:

(1) A generalized framework was implemented to realize automated molecular design

through focused library generation and molecular property prediction;
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(2) Specific datasets and models for antibiotic discovery were established for the out-of-box

use.

(3) Software operating logics were simplified, intuitive GUI was provided and fluent user

experience on personal computer was guaranteed.

Figure 1 depicts the workflow of this software, and corresponding interfaces of two main sub-
tools are displayed in Figure S1. Herein, we take the automated design of antibiotic-like small
molecules with activity against Escherichia coli (E. coli.) as a case to demonstrate the usage of the

two tools.

Deep Molecular Generation

R
lk CLE:ZLE;” )I‘ Pretraining H Finetuning H Sampling
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T N

AutoML-based Molecular Property Prediction

Figure 1. Workflow of automated molecular design implemented in AutoMolDesigner.

Tool I: Generating Focused Library for Small-molecule Antibiotics

Data Curation. Before model training, data curation implemented in the first tab named “Data

Preparation” should be conducted first to provide accurate and uniform data for ML model. Apart
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from the default curation such as de-duplication, salt removal, and molecular standardization, the
other two custom functionalities are provided as well. First, neutralization can be operated on
molecules that are used for molecular generation. Ionization states at a certain pH range can be
enumerated by Dimorphite-DL?**, an open-source Python package for drug-like molecular
ionization. This functionality is indispensable for molecular property prediction. Second,
molecular data augmentation is available, which performs the simplified molecular input line entry
system (SMILES) enumeration. It has been proved effective to enhance model performance for
both supervised and unsupervised tasks, especially for molecular property prediction? and transfer

learning in low data regimes?®.

We retrieved a large amount of bioactive data from ChEMBL database®’ (version 32,
https://www.ebi.ac.uk/chembl/, accessed March 2023) for model pretraining. The default data
curations, molecular neutralization and augmentation by ten folds were conducted to give
7,230,290 data points (“Dataset for Pretraining”). In terms of data used for model finetuning (also
named transfer learning), we retrieved active molecules whose measured minimum inhibitory
concentration (MIC) values against E. coli. were no greater than 32 pg/mL from ChEMBL
database (version 32, accessed March 2023). Apart from the same curation as that for the
pretraining data, we additionally removed the molecules whose molecular weight is greater than
600 and number of rotatable bonds is more than 20 by referring to the compilation of MUBD-
HDACs?. A total of 13,243 data points were obtained and their distribution can be visualized from
Figure S2. The MIC value of 1 ug/mL (-logxM!€ value of 0) was used as the cutoff to discriminate
between the compounds with “moderate activity” and those with “high activity”. The molecules
labeled as “high activity” were later used to train the molecular property prediction model. The

molecules labeled as “moderate activity” accounted for about two thirds of all compounds. The
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structural clustering of all the 13,243 molecules based on Morgan2 (Extended-Connectivity
Fingerprints with radius 2, ECFP_4) fingerprints®® was carried out, resulting in a total of 570
clusters. Table S2 lists the cluster attribute of each molecule. Moreover, a set of molecules
constituted by the compounds with the lowest MIC values from 6 largest clusters along with the
compounds from 6 smallest clusters (size = 1) are displayed in Figure S3. As expected, 6
compounds from those large clusters all belong to well-studied chemotypes of small-molecule
antibiotics including quinolone, B-lactam, thiazolidinone, propargyl alcohol and diacetylene. In
comparison, the other 6 compounds from the smaller clusters have novel scaffolds but show less
potency. The above data indicate the dataset is diverse. It not only covers the well-known
chemotypes, but also includes rare but structurally novel antibiotics. It should be noted that only
the active molecule with the lowest MIC value from each cluster was used for transfer learning.

Thus, the diverse subset (“Dataset for Finetuning”) was composed of 570 compounds.

Molecular Generation. By referring to several recently reported prospective campaigns that

made full use of deep molecular generation®%!

, we designed the main interface named molecular
generation (MG) based on an autoregressive model that took a remastered RNN as its core network.
Three sub-modules that executed model pretraining, model finetuning and molecular sampling

constituted the whole workflow of molecular generation, and they were implemented in three

independent tabs, i.e., “MG Pretrain”, “MG Finetune” and “MG Sample”.

Here, we demonstrate the molecular generation beginning with “MG Pretrain”. This
submodule aims at learning generalized features of drug-like molecules to enable the unbiased
production of stochastic molecules with possible bioactivity. Despite multiple hyperparameter
options are available at this tab, only advanced users are recommended to adjust the architecture.

Users who focus on practice are suggested to use the generalized model parameters that we have
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provided at GitHub. The model was pretrained with the “Dataset for Pretraining”, and its
architecture is described in the section of “Materials and Methods, Deep Molecular Generation”
in Supporting Information. To follow the routine of the scientific community, we performed
benchmarking of our MG model with MOSES?>2. Table S1 shows that our remastered RNN was
superior to CharRNN but fell behind MolGPT* in molecular validity. It generated more novel
molecules and achieved lower Frechet ChemNet Distance (FCD) score compared with MolGPT.
Lower value of FCD score indicates the better capability of model in learning dataset statistics.
Notably, MolGPT contained far more network parameters than RNN as its basic architecture was
generative-pretraining Transformers, which is computationally expensive and basically trained on
high-performance servers. Our model performance was close with these two models in terms of

other metrics, indicating the robustness of our remastered MG model implementation.

Following the model pretraining, it came to the transfer learning that plays a key role in
practice of molecular generation. Deep learning model attempts to learn from the user-customized
data that has shared features (for example, with bioactivity against a specific target, protein family
or even phenotype). Ideally, the direction of molecular generation will be steered towards the
desired chemical space. It is worth noting that number of iteration (epoch) could be customized in
this tab but early stopping technique was also provided to prevent overfitting, thus model training
may stop before the preset epoch is met. Considering that model finetuning is the most demanding
task on computing capacity in practice, we compared runtime performance on various device
configurations using exactly the same parameters and finetuning dataset (“Dataset for Finetuning”).
Table S3 shows that it took only 222 seconds to complete this task on a Windows laptop with a
common central processing unit (CPU), and 35 seconds more time on an Apple computer,

indicating the acceptable running speed of our software. The high-performance server only ran for

10
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7 seconds to complete the task, indicating the introduction of GPU could lead to obvious

improvement. The parameters of the finetuned model are also available at GitHub.

At last, “MG Sample” submodule was developed to sample new molecules from the
pretrained or finetuned model. The “Temperature Sampling” function is borrowed from other
CLMs to improve the sampling process®!. More molecules with unusual atom types and novel
scaffolds will be generated at lower temperature while invalid molecules may also be generated
more frequently. Since not every SMILES sampled from the trained models can be converted to
valid molecules, the “MG Post-process” module is provided here to measure quality of the
generated molecules and perform data curation. The metrics®? including “Validity” (fraction of
valid molecules in all generated molecules) and “Uniqueness” (fraction of non-duplicated
molecules in all valid molecules) will be shown in a message box after the removal of invalid
SMILES and the duplicates. The metric of “Novelty” will also be shown by calculating the number
of unique SMILES after de-duplication from the “Dateset for Finetuning” (Figure S4). By default,

the “MG Sample” submodule sampled 30,000 molecules by using the trained model.

Library Analysis. To analyze the focused library generated for antibiotics against E. coli., we
used the “MG Sample” submodule to sample 1,000 molecules and then used uniform manifold
approximation and projection®* (UMAP) to visualize the chemical space characterized by
Functional-Class Fingerprints with radius 3 (FCFP_6). The chemical space covered 967 valid
molecules sampled from the pretrained model, 910 valid and de-duplicated molecules sampled
from the finetuned model and 570 molecules from “Dataset for Finetuning”. Figure S5 shows that
most molecules sampled from the finetuned model were adjacent to those known antibiotics in
chemical space, proving that the model was able to capture the antibiotic-specific features through

transfer learning. Notably, a few molecules generated by finetuning occupied the space of the

11
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molecules generated by pretraining but were not that far from the space of known antibiotics, thus
promising small-molecule antibiotics with novel chemotypes may be discovered from these

molecules.
Tool II: AutoML-based Molecular Property Prediction for Small-molecule Antibiotics

Although Tool I could generate antibiotic-like molecules as a focused library, it is still
necessary to narrow down the chemical space with ML-based molecular property prediction.
Herein, we applied AutoML for our purpose®. Such a discipline aims at building task-oriented
ML models and further maximizing overall performance with ensemble learning methods
including bagging, boosting and stacking. Its main advantages include minimal human
intervention, highly parallel model training and optimization as well as universal applicability.
Among the AutoML frameworks, AutoGluon is an open-source application developed and
distributed by Amazon Co. Ltd., which has achieved state-of-the-art performance on the tabular
data benchmarks®>. More importantly, this tool was recently proved applicable to predict
pharmacokinetics-related molecular properties®®. Accordingly, AutoGluon combined with
molecular descriptors/fingerprints was used here to build antibiotic-related molecular property
prediction models. As shown in Figure S1B and S6, the “AutoGluon” sub-interface contains two

modules, i.e., “Model Training” and “Model Prediction”.

Model Training. The “Model Training” module provides five kinds of molecular
descriptors/fingerprints, i.e., RDKit 2D'4, normalized RDKit 2D, ECFP 4, FCFP_6 and MACCS
structural keys. The other adjustable arguments are derived from AutoGluon. The “Model Quality
Preset” argument determines model performance controlling number of trained models and

hyperparameter configurations. This “Model Quality Preset” has four levels ranging from low

12
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level to high level, i.e., “medium_quality”, “good quality”, “high quality” and “best quality”.
More computational resources are required if the level is higher. “Evaluation Metric” argument
defines the metrics for model training, i.e., F1 score and area under receiver operation
characteristic curve (AUROC) for classification and mean absolute error (MAE) and root mean
squared error (RMSE) for regression. The “Time Limit” argument sets the maximum amount of
time for model training. The training will be forced to stop if the elapsed time is beyond the limit.
The “Deployment optimization” argument is used to reduce computational cost by the removal of

redundant models but may slightly reduce model performance.

Tabular data is accepted for model training. Its first column is headed with “SMILES”
containing molecules represented by SMILES. The second column is headed with “label”
containing either 0/1 for binary classification or continuous values for regression. Raw data should
be firstly prepared by “Data preparation” module, where Comma-Separated Values (*.csv) and
Microsoft Excel (*.xIsx) are two supported formats for input. By default, the whole data are used
for training while random splitting of the datasets into a training set and a test set is also available.

All the trained ML models are saved under the directory named “ag_models”.

Model Prediction. There are two modes in “Model Prediction” module. For retrospective
prediction, users can provide tabular data in the same format as the training data. The model
performance is measured by confusion matrix, accuracy, AUROC, Matthews correlation
coefficient (MCC) and F1 score for classification and MAE, RMSE, R square (R’) and median
absolute error (MedianAE). For prospective prediction, a plain text file containing molecules
represented by SMILES (*.smi, one sequence per row) is required. Both a csv file and a Structure

Data File (*.sdf) are used to save the predicted values. To demonstrate the functionality of the

13
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AutoGluon-based ML tools, three cases for predicting antibacterial activity, cytotoxicity and PPB

are discusses below.

Antibacterial Activity. The aforementioned studies have proven the feasibility of discovering
new antibiotics using bacterial phenotype-based ML models. In this case, 4,774 known antibiotics
with “high activity” (MIC: less than 1 pg/mL) against E. coli. were used for modeling. They were
firstly used to make benchmarking sets by MUBD-DecoyMaker2.0*”, a publicly accessible GUI
application focused on making trustworthy datasets for virtual screening. The benchmark for
model training was comprised of 501 positive data points (unbiased ligands) and 19,539 negative
data points (unbiased decoys), which simulated the virtual screening scenario in real world (i.e., a
low hit rate in HTS, Table S4). Since Chemprop is an established ML tool for antibacterial activity
prediction'*, we carried out comparative studies between this tool and AutoGluon. Table S5 shows
that the best performance was achieved by Morgan2-based AutoGluon model, with the AUC of
0.937 and MCC of 0.687, which significantly outperformed the best Chemprop model, with the
AUC 0f 0.877 and MCC of 0.552. Notably, the best Chemprop model was enhanced by ensemble
learning and molecular-level feature'* (normalized RDKit 2D). In comparison, we set the “Time
limit” argument of the best AutoGluon model to 3,600 seconds, indicating that the model
performance could be further improved if extra time is allocated. In terms of runtime, it took 27
seconds to train RDKit 2D-based AutoGluon model with “medium quality” but the model’s
performance had already been comparable to the best Chemprop model that cost 3,201 seconds
for training. The best AutoGluon model that required the most computational resources only took
17 seconds to perform prediction. In comparison, the best Chemprop model cost 121 seconds for

prediction.

14
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Cytotoxicity. It is an unwanted property for antibiotic discovery, and it has become a key
factor leading to the failed clinical trials of antibiotics*®. Considering that some toxicity-related
benchmarking sets are not only obsolescent for practical use but also has limited correlation to
pharmacological toxicology’, we chose to retrieve training data from a recently published
platform named DeepCancerMap*. It contains a subset comprised of 10,861 binary inhibitory
labels on 32 normal cell lines from 9,668 compounds. With the same dataset, it become natural to
compare model performance between AutoGluon and FP-GNN used in DeepCancerMap. Table
S6 shows that for AutoGluon model training, RDKit 2D descriptor was slightly superior to
Morgan2 fingerprint, with the MCC value of 0.754 versus 0.752. The best AutoGluon model
significantly outperformed non-ensembled FP-GNN for which the MCC was only 0.536. However,
we noticed that the AUC value of FP-GNN was greater than the highest AUC value achieved by

AutoGluon, with the value of 0.914 versus 0.866.

Plasma Protein Binding. It is widely acknowledged that for small-molecule antibiotics, only
free fraction of molecules can exert antibacterial effect, thus PPB can affect in vivo efficacy of
antibiotics*!. Therefore, accurate prediction of PPB can improve efficiency of screening candidates
with appropriate binding affinity for plasma protein. In this case, a curated PPB dataset with 3,921

data points was retrieved from a recent study that reported IDL-PPBopt**, a deep learning model

with graph attention mechanism for regressive prediction on PPB fraction value of compounds.
AutoGluon was trained on this dataset and compared with IDL-PPBopt. Table S7 shows that
RDKit 2D-based AutoGluon model achieved the best performance, with the MAE value of 0.062,
RMSE value of 0.105 and R’ value of 0.861, which was superior to IDL-PPBopt model for which

MAE was 0.075, RMSE was 0.112 and R’ was 0.841. However, it should be noted that ensemble
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learning was basically included for model training in AutoGluon while IDL-PPBopt was not

ensembled.

Practical Application of Automated Molecular Design to Small-molecule Antibiotics. This
section aims at simulating the application scenario of two tools in real-world drug discovery.
10,000 molecules sampled from the finetuned model were protonated between pH 7.3 and pH 7.5
to give 36,364 data points, which constituted the virtual library. The best configuration for each
molecular property prediction model was adopted to train a prospective model with the whole
dataset. Table S8 shows the performance of each model on the validation set. Then the models
were applied to screening the virtual library. Figure S7 displays 9 potential antibacterial
compounds for E. coli. with high probability of being active, and their cytotoxicity probability and
PPB fraction are also annotated. All these compounds are not indexed in CAS SciFinder®
(accessed September 2023). 9,598 molecules with their predicted values are listed in Table S9,
among which 42 molecules were predicted active (activity probability > 0.5), non-toxic
(cytotoxicity probability < 0.5) and having appropriate PPB (predicted PPB fraction < 0.9), thus
represented promising small-molecule antibiotics. Additionally, all the above predictions were
performed on various device configurations to compare the runtime. Table S10 shows that even
the most time-consuming task, i.e., PPB prediction, only cost about half an hour on an Apple
computer, indicating that it is feasible to leverage these models for large-scale libraries on personal
computer. Notably, the exploitation of GPU may not significantly accelerate the prediction. We
found that most of the models trained with AutoGluon were CPU-intensive. To facilitate
visualization of molecules, we designed a pop-up interface named “Molecular Visualization” (cf.

Figure S8), where users can save either high-resolution bitmap or structure file of molecules.

IMPLEMENTATION
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AutoMolDesigner is an open-source software written in Python3. Freely accessible Qt
Designer software was used to develop its GUI. The functionalities were realized by invoking
application programming interfaces of PySide6. Another Python library named Pylnstaller
(version 5.12.0) was used to pack executable versions for both MacOS and Windows platform.
The RNN based on PyTorch (version 1.13.1) was used for language modeling to implement deep
molecular generation. The AutoML framework named AutoGluon (version 0.8.2) was adopted for
molecular property prediction. Scikit-learn Python package (version 1.2.2) was used to calculate
metrics for classification and regression*. A Python package named Descriptastorus (version 2.6.1)
was used to compute all the molecular descriptors. RDKit** Python package (version 2023.3.3)
was used to perform basic molecular operations and visualization while MolVS (version 0.1.1)
and Dimorphite-DL (version 1.3.2) was used for salt removal, molecular standardization, charge

neutralization or protonation at a certain pH range.
CONCLUSIONS

Combating antibiotic resistance somewhat relies on the discovery of small-molecule drugs
with novel chemotypes. However, few user-friendly tools are publicly available for molecular
design of small-molecule antibiotics. In this study, we presented an easy-to-use software dedicated
to the Al-driven automated design of novel small-molecule antibiotics. We proposed an automated
workflow that combined deep molecular generation with AutoML-based molecular property
prediction. The benchmarking studies have proved that our tool is either superior or comparable
to the other established models. The practical application has further shown that this software can
produce novel molecules with high probability of being active, low probability of being toxic and
appropriate PPB fraction. Notably, our software not only focuses on designing small molecules

with whole cell-based antibacterial activity but also takes high antibiotic-likeness into
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consideration. In contrast, target-based computational methods, which leverage -either
experimentally-determined or computationally-modeled structures, have limited applicability in
antibiotic discovery*®. Ease of use is the other main feature of our software. It is equipped with an
intuitive GUI that has been tested on mainstream operating systems. We have shown that users
can have acceptable experience by using personal computers with limited computational capacity.
Moreover, the curated datasets, the parameters of those trained models and user manual are made

publicly available. We expect its wide application in novel small-molecule antibiotic discovery.

Currently, we have established the workflow for designing and screening small-molecule
antibiotics. According to the aforementioned demonstration, this workflow could also be applied
to other ESKAPE pathogens and other antibiotic-like properties. Our future work will be
expanding the curated datasets and trained models for small-molecule antibiotics discovery and

developing more useful modules of the software.
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The CLI version along with its source code is available at the open-source GitHub repository
(https://github.com/taoshen99/AutoMolDesigner). The packaged GUI versions with user manual
is free of charge at Zenodo (https://zenodo.org/record/8366085), where all the parameters of the

trained models and the curated datasets that can be used for prospective study are also provided.
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Figure S1. Two functional windows of AutoMolDesigner. (A) Main window: deep molecular
generation for de novo drug design; (B) Pop-up window: automated machine learning for

molecular property prediction.
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Figure S2. Distribution of antibacterial activity (minimum inhibitory concentration, MIC, pg/mL).
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Figure S3. Compounds annotated with MIC, cluster index and cluster size from 12 selected

clusters. The cluster index can be referred to Table S2.
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Figure S4. “Validity”, “Uniqueness” and “Novelty” of 1,000 molecules sampled from the

finetuned model at “MG Post-process” tab.
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Figure SS5. UMAP visualization of molecules embedded in chemical space characterized by
FCFP_6. 967 molecules sampled from the pretrained model are colored blue, 910 molecules
sampled from the finetuned model are colored orange and 570 molecules from “Datasets for

Finetuning” are colored dark red.

S6


https://doi.org/10.1101/2023.09.27.559854
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.09.27.559854; this version posted September 29, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

A
Envi (&) autoGluon = x P
Dat]
parl  Model Training Model Prediction
Parameters
Project Name Trained Model
~ ~
\ g o] [open ]
Cu
Data for Prediction (.smi)/Benchmark (.csv, .xlsx)
In ‘ 2 | | Open |
9 Molecular Features used in Model Training
RDKit_2D_N .
P e o = Prediction
Reset Start
Au ;e

Figure S6. “Model Prediction” interface of the AutoGluon module.
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Table S1. Performance comparison between our remastered RNN from AutoMolDesigner and
other deep molecular generation models, i.e., CharRNN and MolGPT, with MOSES as the

benchmark. The best value for each metric is highlighted in bold.

unique FCD
Models validity novelty IntDiv; IntDiv;
@10k /Test
CharRNN“ 0.975 0.999 0.842 0.856 0.85 0.0732
MolGPT“ 0.994 1.0 0.797 0.857 0.851 0.067

AutoMolDesigner  0.988 0.999 0.820 0.856 0.85 0.0628

“The model performance was retrieved from the work that reported MolGPT'.

Table S3. Runtime of model finetuning with various device configurations. Configuration (A)
Ubuntu server: CPU [Intel(R) Core(TM) 19-12900K @ 3.20GHz] with GPU [NVIDIA GA102
(GeForce RTX 3090 24GB)]; (B) Ubuntu server: CPU [Intel(R) Core(TM) 19-12900K @
3.20GHz]; (C) Windows laptop: CPU [AMD Ryzen(TM) 7 5800H @ 3.20GHz] with GPU
[NVIDIA GA106 (GeForce RTX 3050Ti Mobile 4GB)]; (D) Windows laptop: CPU [AMD

Ryzen(TM) 7 5800H @ 3.20GHz]; (E) Apple Mac mini: CPU (Apple M2 @ 3.49GHz).

Runtime (s) A B C D E
One iteration 1 4 22 26 31
Full task 7 34 167 222 257
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Table S5. Antibacterial activity prediction — comparative study between Chemprop and

AutoGluon. The best value for each metric is highlighted in bold.

Models ACC*  AUCP  Mcce FI o Training - Predicting
score time®(s)  time (s)
Chemprop
baseline 0974  0.852 0.443  0.456 155 4
baseline ensemble’ 0979  0.873 0.524  0.533 2782 48
RDKit 2D feature® 0.980  0.864 0.520  0.521 457 79
RDKit 2D feature ensemble  0.981  0.877 0.552  0.557 3201 121
Morgan? feature 0.978  0.903 0.506  0.511 161 5
Morgan?2 feature ensemble 0.979 0914 0.532  0.540 2925 52
AutoGluon
. baseline 0.983  0.879 0.572  0.555 27 0.08
RDKit 2Dyt 0981 0930 0567 0573 1687 10
Morgan 2 baseline 0.982  0.870 0.544  0.520 67 0.9
best 0.987  0.937 0.687  0.671 3365 17

“ACC: Accuracy. "AUC: Area under receiver operating characteristic. “MICC: Matthews
correlation coefficient. “The ensemble consisted of 20 independently trained models.
“Chemprop was enhanced by molecular-level features that are additional molecular
descriptors. /This molecular descriptor named normalized RDKit 2D was the same as that
used for Chemprop enhancement. éFor Chemprop, the training time did not include the time

for hyperparameters optimization.
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Table S6. Cytotoxicity prediction — comparative study between FP-GNN and AutoGluon. This

benchmark contained 32 tasks, and their results were averaged for comparison. The best value for

each metric is highlighted in bold.

Models Sensitivity Specificity ACC* AUC’ MCC*
FP-GNN

Reported model 0.813 0.423 0.722 0.914 0.536

AutoGluon
. d baseline 0.952 0.643 0.853 0.818 0.754
RDKIt 2D% ot 0.953 0.662  0.877 0866  0.750
Morgan? baseline 0.948 0.593 0.837 0.819 0.723
best 0.962 0.632 0.872 0.864 0.752

“ACC: Accuracy. >AUC: Area under receiver operating characteristic. ‘MCC:
Matthews correlation coefficient. “Normalized version.

Table S7. Plasma protein binding prediction — comparative study between IDL-PPBopt and

AutoGluon. The best value for each metric is highlighted in bold.

Models MAE® RMSE”  R’¢  Training time (s)  Predicting time (s)

IDL-PPBopt
Reported model 0.075 0.112 0.841 -¢ 2
AutoGluon
RDKit 2D  baseline 0.068 0.110  0.846 25 0.7

best 0.062 0.105  0.861 3511 8
Morgan?2 baseline 0.084 0.134  0.772 146 1.0

best 0.074 0.124  0.806 3542 15

“MAE: Mean absolute error. ’RMSE: root mean squared error. °R’: R square. “Normalized version.
“The official script for training is not available in the published work.
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Table S8. Validation set performance of three molecular property prediction models applied to

screening the virtual library.

Metric? Antibacterial activity ~ Cytotoxicity Plasma protein binding
F1 score 0.645 0.894 -
MAE - - 0.062

“The “Evaluation Metric” argument for AutoGluon model training. “Not applied.

Table S10. Runtime of predicting 36,364 data points on three tasks with various device

configurations (see definitions in Table S3).

Runtime (s) A B C D E
Antibacterial activity 77 80 252 254 106
Cytotoxicity 167 170 300 313 211
Plasma protein binding 666 660 1006 1029 1744
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MATERIALS AND METHODS
Data Collection and Curation.

In the section of “Tool I: Generating Focused Library for Small-molecule Antibiotics”, all
the training data were retrieved from ChEMBL? (version 32, https://www.ebi.ac.uk/chembl/,
accessed March 2023). For pretraining, 764,373 small molecules (SMILES) whose annotated
bioactivities (“Kq”, “Ki”, “Kp”, “IC50”, “EC50”) were no higher than 10 uM were obtained®. After
the standard curation including de-duplication, salts removal and molecular standardization, they
were further augmented by 10 folds to give 7,230,290 data points (‘“Dataset for Pretraining”). For
finetuning, 15,795 small molecules whose annotated minimum inhibitory concentration (MIC)
values were no higher than 32 pg/mL for Escherichia coli (E. coli) were obtained after “NaN”
dropping and de-duplication. Apart from the standard curation, molecules whose molecular weight
were greater than 600 or number of rotatable bonds were more than 20*° were also removed to
give 13,243 data points. Structural clustering based on Morgan2 fingerprints using Butina
algorithm with 0.75 (Tanimoto similarity) as the threshold was carried out to give 570 clusters®.
The most active molecule from each cluster was collected to constitute the final finetuning datasets

(“Dataset for Finetuning”).

In the section of “Tool II: AutoML-based Molecular Property Prediction for Small-molecule
Antibiotics”, MUBD-DecoyMaker2.0” was used to make the dataset used for training and
predicting antibacterial activity against E. coli.. Briefly, molecules labeled with “high activity”
(MIC <1 pg/mL) from 13,243 data points were protonated at pH ranging from 7.3 to7.5 by
Discovery Studio® (version 2016) to give 5,021 data points, which served as the input for MUBD-
DecoyMaker2.0. The final MUBD dataset was comprised of 501 unbiased ligands and 19,539

unbiased decoys. The dataset used for cytotoxicity prediction was retrieved from a subset in
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DeepCancerMap’. This server contains 32 subsets comprised of compounds with annotated binary
toxicity labels against normal cell lines. We followed its train-test splitting way to train 32
individual models. The dataset used for plasma protein binding (PPB) prediction was basically
retrieved from IDL-PPBopt!®, which contains 3,921 records. Its published splits of training,

validating and testing sets were strictly followed.

There were two sets of molecules generated by the pretrained and finetuned model,
respectively. One set contained 1,000 data points that were used for chemical space visualization.
The other set of molecules including 10,000 data points was generated by the finetuned model for
the simulated experiment of virtual screening. All the post-processing procedures implemented in
“MG Post-process” tab were performed on these sets of molecules to remove invalid and duplicate
molecules. Moreover, the recalled molecules in “Dataset for Finetuning” were also removed to
ensure novelty. The data points for the simulated experiment of virtual screening were also

protonated at pH ranging between 7.3 and 7.5. Eventually, 36,364 data points were generated.
Deep Molecular Generation

The deep molecular generation implemented in our software program belonged to the well-
established chemical language model'"!?. Briefly, SMILES sequences were firstly tokenized to
atomic symbols that constituted a vocabulary together with tokens for starting, ending and padding.
Next, an embedding layer of 128 dimensions followed by three-layer long-short term memory
(LSTM) with 512 units were used to process these tensors, and a final dense layer with the same
dimension as the length of the vocabulary was used to put out un-softmaxed value for each token.
Dropout and layer normalization and gradient clipping were used to prevent overfitting. The model

was trained in an auto-regressive manner with cross entropy loss, default Adam optimizer in
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PyToch and learning rate schedule of cosine annealing (T max = 64 for pretraining and T max =
32 for finetuning). For pretraining, the dataset was randomly split into a training set and a
validation set with the ratio of 99:1 while for finetuning, the ratio was 4:1. The batch size for
pretraining (512) was also larger than that for finetuning (128). Moreover, the parameters of the
embedding layer learned from model pretraining were frozen during backward propagation in
model finetuning. For model sampling, the SMILES sequence was generated token by token until
the ending token occurred or the maximum token length of 128 was reached. A widely used

211

technique named “Temperature sampling”’ " was also included to control molecular novelty by

stretching the probability distribution of candidate tokens.
Molecular Property Prediction

The molecular descriptors and other optional arguments for AutoGluon'® model training and
prediction are illustrated in the main text. Herein, we describe the detailed settings of retrospective
studies for three molecular property prediction models. In all these studies, AutoGluon models
adopted normalized RDKit 2D descriptors and Morgan2 fingerprints. Two training modes were
applied, i.e., “baseline” mode denoting that model was trained in the default configuration
provided by AutoGluon, and “best” mode denoting that model was trained in the configuration of
“Time limit (s)” = 3600 and “Model Quality Presets” = “best model quality”. All evaluation
metrics were calculated by Scikit-learn!* Python package (version 1.2.2). For antibacterial activity
prediction, hyperparameter optimization was firstly performed for Chemprop'® with 80%
molecules from the MUBD dataset as the training set and through five-fold cross-validation with
10 iterations. Afterwards, the test set (20% remaining molecules) was used to compare the
performances of optimized Chemprop and AutoGluon models. For cytotoxicity prediction, the

average performance of FP-GNN on 32 tasks were used for comparison, and the AutoGluon
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Figure S9. Detect running environment. (A) Model runs on CUDA-enabled GPU. (B) Model runs

on CPU.

models were benchmarked in the same manner. For PPB fraction prediction, the performance of
IDL-PPBopt!® was retrieved from the published results while AutoGluon was benchmarked with
the training and test sets from IDL-PPBopt. All the benchmarking experiments were conducted in
triplicate. It is worth noting that the last three prospective models trained with the full datasets

were optimized by “Deployment Optimization”.
Other Useful Modules

The usage and implementation of other useful modules including data curation, model
benchmarking and molecular visualization are described below. To begin with, there is a button
located at the upper left corner of the “Environment” interface. It can be clicked to check whether
the application is central processing unit (CPU) version or graphical processing unit (GPU) version.
This functionality was realized by the PyTorch function in checking availability of compute
unified device architecture (CUDA). The model will be run on CPU if CUDA-enabled GPU is not
available (Figure S9). The second button called “Working Directory” can be used to set the current
working directory. As a result, all the data generated will be saved under the directory of “your

working directory/projects/your project name”. It should be noted that the “Reset” button is
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available in each tab for resetting. In terms of “Data preparation” tab, several class methods of
MolVS (version 0.1.1) and Dimorphite-DL! (version 1.3.2) including
“LargestFragmentChooser().choose()”, “Uncharger().uncharge()”, “Standardizer().standardize()”,
and “DimorphiteDL().protonate()” were used to implement salts removal, charge neutralization,
standard molecular standardization and protonation at a certain pH range. Moreover,
“SmilesEnumerator().randomize smiles()” that is a class method implemented in a standalone
Python script called “SmilesEnumerator.py” was used to obtain the single randomized SMILES
of a molecule. For “MG Post-process” tab, all the curation is based on Python built-in functions
for data manipulation. “Molecular Visualization” tab is another supplementary module that
provides a convenient way to show the designed molecules, and it was implemented by the
“rdkit.Chem.Draw.MolsToGridImage()” function. Additionally, all the other molecular
manipulations such as basic sanitization and molecular format conversion between SMILES and
Structural Data were all made by RDKit!” (version 2023.3.3). With its built-in dataframe, Pandas
(version 1.5.3) was used to process tabular data in the form of Comma-Separated Values (*.csv)

or Microsoft Excel (*.xIsx).
Graphical User Interface Implementation

As mentioned in the section of “Implementation”, the graphical user interface (GUI) of
AutoMolDesigner was designed based on Qt platform wrapped by PySide6 (version 6.5.1.1). The
GUI code, the functional source code, and the related packages were packed into an executable
and distributable standalone software by Pylnstaller (version 5.12.0) for both MacOS and
Windows operating systems (for Linux users, GUI version is currently not available, as command-
line interface version that basically has the same operating logics can serve as an alternative). In

detail, each long-term task will run on an independent thread through “QThread” and
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Figure S10. The message box pops up from the “AutoGluon” interface when users try to manually

terminate the task.

“QThreadPool” classes of PySide6 to maintain responsiveness of the application. For molecular
generation in the main interface, the progress bar is provided for each tab to indicate the progress
of current task, while the adjacent “Stop” button can be used for manual termination. But it should
be noted that pretraining and finetuning tasks will not stop immediately after the click of this button
and will stop only when the current iteration is completed. For molecular property prediction in
the “AutoGluon” interface, a logging dialogue will pop up during model training or prediction. If
users try to close this dialogue before the task is completed, a message box will pop up as a
reminder. Only if further confirmation is made according to the message box, the task can be

manually terminated (Figure S10).

S19


https://doi.org/10.1101/2023.09.27.559854
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.09.27.559854; this version posted September 29, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

REFERENCES

(1) Bagal, V.; Aggarwal, R.; Vinod, P. K.; Priyakumar, U. D., MolGPT: Molecular Generation
Using a Transformer-Decoder Model. J. Chem. Inf- Model. 2022, 62 (9), 2064-76.

(2) Mendez, D.; Gaulton, A.; Bento, A. P.; Chambers, J.; De Veij, M.; Felix, E.; Magarinos, M. P.;
Mosquera, J. F.; Mutowo, P.; Nowotka, M.; et al., ChREMBL.: towards direct deposition of bioassay
data. Nucleic Acids Res. 2019, 47 (D1), D930-D40.

(3) Wong, F.; Krishnan, A.; Zheng, E. J.; Stirk, H.; Manson, A. L.; Earl, A. M.; Jaakkola, T.;
Collins, J. J., Benchmarking AlphaFold-enabled molecular docking predictions for antibiotic
discovery. Mol. Syst. Biol. 2022, 18 (9), e11081.

(4) Mysinger, M. M.; Carchia, M.; Irwin, J. J.; Shoichet, B. K., Directory of useful decoys,
enhanced (DUD-E): better ligands and decoys for better benchmarking. J. Med. Chem. 2012, 55
(14), 6582-94.

(5) Xia, J.; Tilahun, E. L.; Kebede, E. H.; Reid, T. E.; Zhang, L.; Wang, X. S., Comparative
modeling and benchmarking data sets for human histone deacetylases and sirtuin families. J. Chem.
Inf. Model. 2015, 55 (2), 374-88.

(6) Butina, D., Unsupervised Data Base Clustering Based on Daylight's Fingerprint and Tanimoto
Similarity: A Fast and Automated Way To Cluster Small and Large Data Sets. J. Chem. Inf.
Comput. Sci. 1999, 39 (4), 747-50.

(7) Xia, J.; Li, S.; Ding, Y.; Wu, S.; Wang, X. S., MUBD-DecoyMaker 2.0: A Python GUI
Application to Generate Maximal Unbiased Benchmarking Data Sets for Virtual Drug Screening.
Mol. Inform. 2020, 39 (4), €1900151.

(8) Discovery Studio: BIOVIA, 2016, https://www.3ds.com/products-
services/biovia/products/molecular-modeling-simulation/biovia-discovery-studio (accessed on 5
April 2023).

(9) Wu, J.; Xiao, Y.; Lin, M.; Cai, H.; Zhao, D.; Li, Y.; Luo, H.; Tang, C.; Wang, L.,
DeepCancerMap: A versatile deep learning platform for target- and cell-based anticancer drug
discovery. Eur. J. Med. Chem. 2023, 255, 115401.

(10) Lou, C.; Yang, H.; Wang, J.; Huang, M.; Li, W.; Liu, G.; Lee, P. W.; Tang, Y., IDL-PPBopt:
A Strategy for Prediction and Optimization of Human Plasma Protein Binding of Compounds via
an Interpretable Deep Learning Method. J. Chem. Inf. Model. 2022, 62 (11), 2788-99.

(11) Gupta, A.; Miiller, A. T.; Huisman, B. J. H.; Fuchs, J. A.; Schneider, P.; Schneider, G.,
Generative Recurrent Networks for De Novo Drug Design. Mol. Inform. 2018, 37 (1-2), 1700111.
(12) Moret, M.; Friedrich, L.; Grisoni, F.; Merk, D.; Schneider, G., Generative molecular design
in low data regimes. Nat. Mach. Intell. 2020, 2 (3), 171-80.

(13) Erickson, N.; Mueller, J.; Shirkov, A.; Zhang, H.; Larroy, P.; Li, M.; Smola, A., Autogluon-
tabular: Robust and accurate automl for structured data. arXiv preprint arXiv:2003.06505 2020.
(14) Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.;
Prettenhofer, P.; Weiss, R.; Dubourg, V., Scikit-learn: Machine learning in Python. J. Mach. Learn.
Res. 2011, 12, 2825-30.

(15) Yang, K.; Swanson, K.; Jin, W.; Coley, C.; Eiden, P.; Gao, H.; Guzman-Perez, A.; Hopper,
T.; Kelley, B.; Mathea, M.; et al., Analyzing Learned Molecular Representations for Property
Prediction. J. Chem. Inf. Model. 2019, 59 (8), 3370-88.

(16) Ropp, P. J.; Kaminsky, J. C.; Yablonski, S.; Durrant, J. D., Dimorphite-DL: an open-source
program for enumerating the ionization states of drug-like small molecules. J. Cheminform. 2019,
11 (1), 14.

S20


https://doi.org/10.1101/2023.09.27.559854
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.09.27.559854; this version posted September 29, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

(17) Landrum, G. RDKit: Open-Source Cheminformatics Software. RDKit, 2023.
https://www.rdkit.org/ (accessed on 29 March 2023).

S21


https://doi.org/10.1101/2023.09.27.559854
http://creativecommons.org/licenses/by-nc-nd/4.0/

	Manuscript
	Supporting_Information

