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ABSTRACT: Discovery of small-molecule antibiotics with novel chemotypes serves as one of 

the essential strategies to address antibiotic resistance. Although a considerable number of 

computational tools committed to molecular design have been reported, there is a deficit in the 

holistic and efficient tool specifically developed for small-molecule antibiotic discovery. To 

address this issue, we report AutoMolDesigner, a computational modeling software dedicated to 

small-molecule antibiotic design. It is a generalized framework comprising two functional 

modules, i.e., generative deep learning-enabled molecular generation and automated machine 

learning based-antibacterial activity/property prediction, wherein individually trained models and 

curated datasets are out-of-the-box for whole cell-based antibiotic screening and design. It is open-

source thus allows for the incorporation of new features for flexible use. Unlike most software 

programs based on Linux and command lines, this application equipped with Qt-based graphical 

user interface can be run on personal computers with multiple operating systems, making it much 

easier to use for experimental scientists. The software and related materials are freely available at 

GitHub (https://github.com/taoshen99/AutoMolDesigner) and Zenodo 

(https://zenodo.org/record/8366085). 

KEYWORDS: antibiotic discovery; de novo drug design; automated machine learning; graphical 

user interface 
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INTRODUCTION 

The evolutionary multidrug-resistant (MDR) bacteria have become an emerging threat to 

public health1. Among these bacteria, the ESKAPE (Enterococcus faecium, Staphylococcus 

aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and 

Enterobacter) pathogens2 account for many fatal infections. Known chemotypes of antibiotics 

rapidly lose efficacy to these pathogens due to the developed resistance mechanisms through 

natural selection3. Accordingly, novel chemotypes of antibiotics that are widely acknowledged as 

effective to overcome antibiotic resistance are at an urgent need. In history, novel-chemotype 

antibiotics are mainly discovered by three strategies. The first strategy dates back to half a century 

ago, the exploitation of natural products (secondary metabolites) isolated from environmental 

microbes contributed to most of the small-molecule antibiotics in clinic4. However, this strategy 

is becoming insufficient now since the same chemotype (skeleton) is repetitively discovered and 

structural modification does not lead to better antibiotics than the natural product itself5. With the 

emerging of combinatorial chemistry at the beginning of the 21st century, the second strategy was 

target assay-based high-throughput screening (HTS)1 of large-scale chemical library. The target-

based approach achieved notable success in drug research and development for other diseases. 

Unfortunately, this strategy seems not fruitful in antibiotic discovery, as only three new 

chemotypes of antibiotics received approval6-8 in the last 20 years and two of them are still derived 

from natural products. The third strategy is phenotype-based antibiotic screening, in particular the 

whole cell-based antibiotic screening, i.e. directly screening chemical libraries for bioactive 

compounds against the whole bacteria instead of a protein target, which holds the promise to 

circumvent the pitfall of target assay-based screenings that do not consider antibiotic-likeness9.  
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Machine learning (ML), as the core of AI, is comprised of three basic subfields including 

supervised learning, unsupervised learning and reinforcement learning (RL). Correspondingly, the 

application of ML to whole cell-based antibiotic discovery can be divided into two aspects 

according to the applied algorithms10. Quantitative structure–activity relationships (QSAR) 

modeling (also called molecular bioactivity prediction) is the most important supervised learning 

task in this field11. It utilizes whole-cell activity prediction models to prioritize compounds from 

chemical libraries. A few cases in antibacterial hit identification have been reported. For example, 

Wang et al. utilized molecular descriptors and fingerprints to characterize known 2,066 

compounds with activity against methicillin-resistant S. aureus, and they built models with four 

classical ML algorithms including naive Bayesian, support vector machine, recursive partitioning, 

and k-nearest neighbors12. The best models were eventually applied to virtual screening of a 

chemical library comprised of about 7,500 compounds, which contributed to several antibacterial 

hits. Recently, molecular property prediction based on deep learning-enabled automated 

featurization was reported13. Chemprop is developed to extract bond-level topological information 

from graph representation based on the algorithm of directed-message passing neural network (D-

MPNN)14. With two kinds of cell-based antibiotic datasets compiled for model training, Chemprop 

was respectively applied to virtual screening campaigns for new antibiotics. As a result, the 

research teams have discovered two novel hits which are either broad-spectrum antibiotics15 or 

narrow-spectrum antibiotics against A. baumannii with a new mode of action16. With the 

renaissance of artificial intelligence (AI), de novo design of antibacterial molecules becomes an 

emerging field, wherein self-supervised learning, a kind of unsupervised learning, has been 

leveraged for molecular generation. Currently, most research is focused on de novo design of 

antimicrobial peptides and those applied strategies are pretty effective17. As few cases of success 
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were reported, deep learning-based design of small-molecule antibiotics seems quite challenging. 

Segler et al. pioneered the framework of recurrent neural network (RNN)-based chemical language 

models (CLMs) for small-molecule generation18. In their study, the in silico design of novel small-

molecules antibiotics against S. aureus. was used to illustrate the <Design-Synthesis-Test Cycle=. 

The ML-based prediction model and the transfer learning strategy were coupled to generate a 

focused chemical library including 60,988 virtual molecules with potential antibacterial activity. 

This important work provided an early insight into the small-molecule antibiotic design through 

generative deep learning. However, their ML-based prediction model covered antibacterial activity 

only and neglected antibiotic-likeness, thus the designed molecules may not be ideal. In terms of 

public availability, no source code or application was provided. Recently, Sowmya et al. developed 

a semi-supervised deep molecular generation model to explore structure-based molecular design 

for Mycobacterium tuberculosis. A key ML model for drug-target affinity prediction was used to 

reward the generative process through RL19. They have shown that more than 75% generated 

molecules are highly analogous to known inhibitors and contained the essential pharmacophore 

features that would interact with the binding site residues of chorismate mutase. Unfortunately, 

they did not take the whole-cell antibacterial activity into consideration but only emphasized target 

binding of the designed molecules. Therefore, it is not convincing that the designed molecules by 

the model are active for the bacteria. Similar to the work of Segler et al., their model was not made 

publicly available as well. 

To the best of our knowledge, the current development of AI-based computational tools for 

antibiotic design and screening is far from satisfaction. Two main issues are as follows: (1) All the 

whole cell-based models in previous study are mainly focused on antibacterial activity profiling 

while lack the consideration of antibiotic-likeness20, a significantly important aspect of antibiotics. 
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This aspect is also overlooked in molecular generation-based small-molecule antibiotic design 

from a target structure-centered perspective. (2) The computational tools and models for antibiotic 

design and screening are not easy to access by users. Most of them required programming skills 

and high-performance server to deploy for application. Recently, some web servers such as 

AIScaffold21 and Chemistry4222 were developed for molecular design. Basically, they are 

applicable to the building of antibiotic-focused AI models, but they all require commercial licenses. 

To address these issues, we developed AutoMolDesigner for small-molecule antibiotic design 

and screening, which consisted of two functional modules, i.e., a remastered RNN aiming at 

focused library generation for small-molecule antibiotics and an automated machine learning 

(AutoML) framework named AutoGluon23 for molecular property prediction. Both classification 

and regression models are out-of-the-box for accurate prediction of antibacterial activity and 

antibiotic-likeness, with cytotoxicity and plasma protein binding (PPB) as representatives. To 

make the models easy to use, we incorporated the modules including data curation, model 

evaluation and molecular visualization into AutoMolDesigner. In addition, we designed an 

intuitive graphical user interface (GUI) for both Windows and MacOS platform, along with the 

corresponding command-line interface (CLI). This software was also tested on personal computers 

with various device configurations. It can be run on a laptop without independent graphics 

processing unit (GPU) and achieve close performance to that on high-performance servers. 

RESULTS AND DISCUSSION 

Three main features of AutoMolDesigner are summarized below: 

(1) A generalized framework was implemented to realize automated molecular design 

through focused library generation and molecular property prediction; 
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(2) Specific datasets and models for antibiotic discovery were established for the out-of-box 

use. 

(3) Software operating logics were simplified, intuitive GUI was provided and fluent user 

experience on personal computer was guaranteed. 

Figure 1 depicts the workflow of this software, and corresponding interfaces of two main sub-

tools are displayed in Figure S1. Herein, we take the automated design of antibiotic-like small 

molecules with activity against Escherichia coli (E. coli.) as a case to demonstrate the usage of the 

two tools. 

Tool I: Generating Focused Library for Small-molecule Antibiotics 

Data Curation. Before model training, data curation implemented in the first tab named <Data 

Preparation= should be conducted first to provide accurate and uniform data for ML model. Apart 

Figure 1. Workflow of automated molecular design implemented in AutoMolDesigner. 
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from the default curation such as de-duplication, salt removal, and molecular standardization, the 

other two custom functionalities are provided as well. First, neutralization can be operated on 

molecules that are used for molecular generation. Ionization states at a certain pH range can be 

enumerated by Dimorphite-DL24, an open-source Python package for drug-like molecular 

ionization. This functionality is indispensable for molecular property prediction. Second, 

molecular data augmentation is available, which performs the simplified molecular input line entry 

system (SMILES) enumeration. It has been proved effective to enhance model performance for 

both supervised and unsupervised tasks, especially for molecular property prediction25 and transfer 

learning in low data regimes26. 

We retrieved a large amount of bioactive data from ChEMBL database27 (version 32, 

https://www.ebi.ac.uk/chembl/, accessed March 2023) for model pretraining. The default data 

curations, molecular neutralization and augmentation by ten folds were conducted to give 

7,230,290 data points (<Dataset for Pretraining=). In terms of data used for model finetuning (also 

named transfer learning), we retrieved active molecules whose measured minimum inhibitory 

concentration (MIC) values against E. coli. were no greater than 32 μg/mL from ChEMBL 

database (version 32, accessed March 2023). Apart from the same curation as that for the 

pretraining data, we additionally removed the molecules whose molecular weight is greater than 

600 and number of rotatable bonds is more than 20 by referring to the compilation of MUBD-

HDACs28. A total of 13,243 data points were obtained and their distribution can be visualized from 

Figure S2. The MIC value of 1 μg/mL (-log2
MIC value of 0) was used as the cutoff to discriminate 

between the compounds with <moderate activity= and those with <high activity=. The molecules 

labeled as <high activity= were later used to train the molecular property prediction model. The 

molecules labeled as <moderate activity= accounted for about two thirds of all compounds. The 
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structural clustering of all the 13,243 molecules based on Morgan2 (Extended-Connectivity 

Fingerprints with radius 2, ECFP_4) fingerprints29 was carried out, resulting in a total of 570 

clusters. Table S2 lists the cluster attribute of each molecule. Moreover, a set of molecules 

constituted by the compounds with the lowest MIC values from 6 largest clusters along with the 

compounds from 6 smallest clusters (size = 1) are displayed in Figure S3. As expected, 6 

compounds from those large clusters all belong to well-studied chemotypes of small-molecule 

antibiotics including quinolone, β-lactam, thiazolidinone, propargyl alcohol and diacetylene. In 

comparison, the other 6 compounds from the smaller clusters have novel scaffolds but show less 

potency. The above data indicate the dataset is diverse. It not only covers the well-known 

chemotypes, but also includes rare but structurally novel antibiotics. It should be noted that only 

the active molecule with the lowest MIC value from each cluster was used for transfer learning. 

Thus, the diverse subset (<Dataset for Finetuning=) was composed of 570 compounds. 

Molecular Generation. By referring to several recently reported prospective campaigns that 

made full use of deep molecular generation30,31, we designed the main interface named molecular 

generation (MG) based on an autoregressive model that took a remastered RNN as its core network. 

Three sub-modules that executed model pretraining, model finetuning and molecular sampling 

constituted the whole workflow of molecular generation, and they were implemented in three 

independent tabs, i.e., <MG Pretrain=, <MG Finetune= and <MG Sample=. 

Here, we demonstrate the molecular generation beginning with <MG Pretrain=. This 

submodule aims at learning generalized features of drug-like molecules to enable the unbiased 

production of stochastic molecules with possible bioactivity. Despite multiple hyperparameter 

options are available at this tab, only advanced users are recommended to adjust the architecture. 

Users who focus on practice are suggested to use the generalized model parameters that we have 
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provided at GitHub. The model was pretrained with the <Dataset for Pretraining=, and its 

architecture is described in the section of <Materials and Methods, Deep Molecular Generation= 

in Supporting Information. To follow the routine of the scientific community, we performed 

benchmarking of our MG model with MOSES32. Table S1 shows that our remastered RNN was 

superior to CharRNN but fell behind MolGPT33 in molecular validity. It generated more novel 

molecules and achieved lower Frechet ChemNet Distance (FCD) score compared with MolGPT. 

Lower value of FCD score indicates the better capability of model in learning dataset statistics. 

Notably, MolGPT contained far more network parameters than RNN as its basic architecture was 

generative-pretraining Transformers, which is computationally expensive and basically trained on 

high-performance servers. Our model performance was close with these two models in terms of 

other metrics, indicating the robustness of our remastered MG model implementation.  

Following the model pretraining, it came to the transfer learning that plays a key role in 

practice of molecular generation. Deep learning model attempts to learn from the user-customized 

data that has shared features (for example, with bioactivity against a specific target, protein family 

or even phenotype). Ideally, the direction of molecular generation will be steered towards the 

desired chemical space. It is worth noting that number of iteration (epoch) could be customized in 

this tab but early stopping technique was also provided to prevent overfitting, thus model training 

may stop before the preset epoch is met. Considering that model finetuning is the most demanding 

task on computing capacity in practice, we compared runtime performance on various device 

configurations using exactly the same parameters and finetuning dataset (<Dataset for Finetuning=). 

Table S3 shows that it took only 222 seconds to complete this task on a Windows laptop with a 

common central processing unit (CPU), and 35 seconds more time on an Apple computer, 

indicating the acceptable running speed of our software. The high-performance server only ran for 
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7 seconds to complete the task, indicating the introduction of GPU could lead to obvious 

improvement. The parameters of the finetuned model are also available at GitHub. 

At last, <MG Sample= submodule was developed to sample new molecules from the 

pretrained or finetuned model. The <Temperature Sampling= function is borrowed from other 

CLMs to improve the sampling process31. More molecules with unusual atom types and novel 

scaffolds will be generated at lower temperature while invalid molecules may also be generated 

more frequently. Since not every SMILES sampled from the trained models can be converted to 

valid molecules, the <MG Post-process= module is provided here to measure quality of the 

generated molecules and perform data curation. The metrics32 including <Validity= (fraction of 

valid molecules in all generated molecules) and <Uniqueness= (fraction of non-duplicated 

molecules in all valid molecules) will be shown in a message box after the removal of invalid 

SMILES and the duplicates. The metric of <Novelty= will also be shown by calculating the number 

of unique SMILES after de-duplication from the <Dateset for Finetuning= (Figure S4). By default, 

the <MG Sample= submodule sampled 30,000 molecules by using the trained model. 

Library Analysis. To analyze the focused library generated for antibiotics against E. coli., we 

used the <MG Sample= submodule to sample 1,000 molecules and then used uniform manifold 

approximation and projection34 (UMAP) to visualize the chemical space characterized by 

Functional-Class Fingerprints with radius 3 (FCFP_6). The chemical space covered 967 valid 

molecules sampled from the pretrained model, 910 valid and de-duplicated molecules sampled 

from the finetuned model and 570 molecules from <Dataset for Finetuning=. Figure S5 shows that 

most molecules sampled from the finetuned model were adjacent to those known antibiotics in 

chemical space, proving that the model was able to capture the antibiotic-specific features through 

transfer learning. Notably, a few molecules generated by finetuning occupied the space of the 
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molecules generated by pretraining but were not that far from the space of known antibiotics, thus 

promising small-molecule antibiotics with novel chemotypes may be discovered from these 

molecules. 

Tool II: AutoML-based Molecular Property Prediction for Small-molecule Antibiotics  

Although Tool I could generate antibiotic-like molecules as a focused library, it is still 

necessary to narrow down the chemical space with ML-based molecular property prediction. 

Herein, we applied AutoML for our purpose35. Such a discipline aims at building task-oriented 

ML models and further maximizing overall performance with ensemble learning methods 

including bagging, boosting and stacking. Its main advantages include minimal human 

intervention, highly parallel model training and optimization as well as universal applicability. 

Among the AutoML frameworks, AutoGluon is an open-source application developed and 

distributed by Amazon Co. Ltd., which has achieved state-of-the-art performance on the tabular 

data benchmarks23. More importantly, this tool was recently proved applicable to predict 

pharmacokinetics-related molecular properties36. Accordingly, AutoGluon combined with 

molecular descriptors/fingerprints was used here to build antibiotic-related molecular property 

prediction models. As shown in Figure S1B and S6, the <AutoGluon= sub-interface contains two 

modules, i.e., <Model Training= and <Model Prediction=. 

Model Training. The <Model Training= module provides five kinds of molecular 

descriptors/fingerprints, i.e., RDKit 2D14, normalized RDKit 2D, ECFP_4, FCFP_6 and MACCS 

structural keys. The other adjustable arguments are derived from AutoGluon. The <Model Quality 

Preset= argument determines model performance controlling number of trained models and 

hyperparameter configurations. This <Model Quality Preset= has four levels ranging from low 
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level to high level, i.e., <medium_quality=, <good_quality=, <high_quality= and <best_quality=. 

More computational resources are required if the level is higher. <Evaluation Metric= argument 

defines the metrics for model training, i.e., F1 score and area under receiver operation 

characteristic curve (AUROC) for classification and mean absolute error (MAE) and root mean 

squared error (RMSE) for regression. The <Time Limit= argument sets the maximum amount of 

time for model training. The training will be forced to stop if the elapsed time is beyond the limit. 

The <Deployment optimization= argument is used to reduce computational cost by the removal of 

redundant models but may slightly reduce model performance.  

Tabular data is accepted for model training. Its first column is headed with <SMILES= 

containing molecules represented by SMILES. The second column is headed with <label= 

containing either 0/1 for binary classification or continuous values for regression. Raw data should 

be firstly prepared by <Data preparation= module, where Comma-Separated Values (*.csv) and 

Microsoft Excel (*.xlsx) are two supported formats for input. By default, the whole data are used 

for training while random splitting of the datasets into a training set and a test set is also available. 

All the trained ML models are saved under the directory named <ag_models=. 

Model Prediction. There are two modes in <Model Prediction= module. For retrospective 

prediction, users can provide tabular data in the same format as the training data. The model 

performance is measured by confusion matrix, accuracy, AUROC, Matthews correlation 

coefficient (MCC) and F1 score for classification and MAE, RMSE, R square (R2) and median 

absolute error (MedianAE). For prospective prediction, a plain text file containing molecules 

represented by SMILES (*.smi, one sequence per row) is required. Both a csv file and a Structure 

Data File (*.sdf) are used to save the predicted values. To demonstrate the functionality of the 
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AutoGluon-based ML tools, three cases for predicting antibacterial activity, cytotoxicity and PPB 

are discusses below. 

Antibacterial Activity. The aforementioned studies have proven the feasibility of discovering 

new antibiotics using bacterial phenotype-based ML models. In this case, 4,774 known antibiotics 

with <high activity= (MIC: less than 1 μg/mL) against E. coli. were used for modeling. They were 

firstly used to make benchmarking sets by MUBD-DecoyMaker2.037, a publicly accessible GUI 

application focused on making trustworthy datasets for virtual screening. The benchmark for 

model training was comprised of 501 positive data points (unbiased ligands) and 19,539 negative 

data points (unbiased decoys), which simulated the virtual screening scenario in real world (i.e., a 

low hit rate in HTS, Table S4). Since Chemprop is an established ML tool for antibacterial activity 

prediction14, we carried out comparative studies between this tool and AutoGluon. Table S5 shows 

that the best performance was achieved by Morgan2-based AutoGluon model, with the AUC of 

0.937 and MCC of 0.687, which significantly outperformed the best Chemprop model, with the 

AUC of 0.877 and MCC of 0.552. Notably, the best Chemprop model was enhanced by ensemble 

learning and molecular-level feature14 (normalized RDKit 2D). In comparison, we set the <Time 

limit= argument of the best AutoGluon model to 3,600 seconds, indicating that the model 

performance could be further improved if extra time is allocated. In terms of runtime, it took 27 

seconds to train RDKit 2D-based AutoGluon model with <medium quality= but the model’s 

performance had already been comparable to the best Chemprop model that cost 3,201 seconds 

for training. The best AutoGluon model that required the most computational resources only took 

17 seconds to perform prediction. In comparison, the best Chemprop model cost 121 seconds for 

prediction. 
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Cytotoxicity. It is an unwanted property for antibiotic discovery, and it has become a key 

factor leading to the failed clinical trials of antibiotics38. Considering that some toxicity-related 

benchmarking sets are not only obsolescent for practical use but also has limited correlation to 

pharmacological toxicology39, we chose to retrieve training data from a recently published 

platform named DeepCancerMap40. It contains a subset comprised of 10,861 binary inhibitory 

labels on 32 normal cell lines from 9,668 compounds. With the same dataset, it become natural to 

compare model performance between AutoGluon and FP-GNN used in DeepCancerMap. Table 

S6 shows that for AutoGluon model training, RDKit 2D descriptor was slightly superior to 

Morgan2 fingerprint, with the MCC value of 0.754 versus 0.752. The best AutoGluon model 

significantly outperformed non-ensembled FP-GNN for which the MCC was only 0.536. However, 

we noticed that the AUC value of FP-GNN was greater than the highest AUC value achieved by 

AutoGluon, with the value of 0.914 versus 0.866.  

Plasma Protein Binding. It is widely acknowledged that for small-molecule antibiotics, only 

free fraction of molecules can exert antibacterial effect, thus PPB can affect in vivo efficacy of 

antibiotics41. Therefore, accurate prediction of PPB can improve efficiency of screening candidates 

with appropriate binding affinity for plasma protein. In this case, a curated PPB dataset with 3,921 

data points was retrieved from a recent study that reported IDL-PPBopt42，a deep learning model 

with graph attention mechanism for regressive prediction on PPB fraction value of compounds. 

AutoGluon was trained on this dataset and compared with IDL-PPBopt. Table S7 shows that 

RDKit 2D-based AutoGluon model achieved the best performance, with the MAE value of 0.062, 

RMSE value of 0.105 and R2 value of 0.861, which was superior to IDL-PPBopt model for which 

MAE was 0.075, RMSE was 0.112 and R2 was 0.841. However, it should be noted that ensemble 
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learning was basically included for model training in AutoGluon while IDL-PPBopt was not 

ensembled.  

Practical Application of Automated Molecular Design to Small-molecule Antibiotics. This 

section aims at simulating the application scenario of two tools in real-world drug discovery. 

10,000 molecules sampled from the finetuned model were protonated between pH 7.3 and pH 7.5 

to give 36,364 data points, which constituted the virtual library. The best configuration for each 

molecular property prediction model was adopted to train a prospective model with the whole 

dataset. Table S8 shows the performance of each model on the validation set. Then the models 

were applied to screening the virtual library. Figure S7 displays 9 potential antibacterial 

compounds for E. coli. with high probability of being active, and their cytotoxicity probability and 

PPB fraction are also annotated. All these compounds are not indexed in CAS SciFinder43 

(accessed September 2023). 9,598 molecules with their predicted values are listed in Table S9, 

among which 42 molecules were predicted active (activity probability > 0.5), non-toxic 

(cytotoxicity probability < 0.5) and having appropriate PPB (predicted PPB fraction < 0.9), thus 

represented promising small-molecule antibiotics. Additionally, all the above predictions were 

performed on various device configurations to compare the runtime. Table S10 shows that even 

the most time-consuming task, i.e., PPB prediction, only cost about half an hour on an Apple 

computer, indicating that it is feasible to leverage these models for large-scale libraries on personal 

computer. Notably, the exploitation of GPU may not significantly accelerate the prediction. We 

found that most of the models trained with AutoGluon were CPU-intensive. To facilitate 

visualization of molecules, we designed a pop-up interface named <Molecular Visualization= (cf. 

Figure S8), where users can save either high-resolution bitmap or structure file of molecules. 

IMPLEMENTATION 
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AutoMolDesigner is an open-source software written in Python3. Freely accessible Qt 

Designer software was used to develop its GUI. The functionalities were realized by invoking 

application programming interfaces of PySide6. Another Python library named PyInstaller 

(version 5.12.0) was used to pack executable versions for both MacOS and Windows platform. 

The RNN based on PyTorch (version 1.13.1) was used for language modeling to implement deep 

molecular generation. The AutoML framework named AutoGluon (version 0.8.2) was adopted for 

molecular property prediction. Scikit-learn Python package (version 1.2.2) was used to calculate 

metrics for classification and regression44. A Python package named Descriptastorus (version 2.6.1) 

was used to compute all the molecular descriptors. RDKit45 Python package (version 2023.3.3) 

was used to perform basic molecular operations and visualization while MolVS (version 0.1.1) 

and Dimorphite-DL (version 1.3.2) was used for salt removal, molecular standardization, charge 

neutralization or protonation at a certain pH range. 

CONCLUSIONS 

Combating antibiotic resistance somewhat relies on the discovery of small-molecule drugs 

with novel chemotypes. However, few user-friendly tools are publicly available for molecular 

design of small-molecule antibiotics. In this study, we presented an easy-to-use software dedicated 

to the AI-driven automated design of novel small-molecule antibiotics. We proposed an automated 

workflow that combined deep molecular generation with AutoML-based molecular property 

prediction. The benchmarking studies have proved that our tool is either superior or comparable 

to the other established models. The practical application has further shown that this software can 

produce novel molecules with high probability of being active, low probability of being toxic and 

appropriate PPB fraction. Notably, our software not only focuses on designing small molecules 

with whole cell-based antibacterial activity but also takes high antibiotic-likeness into 
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consideration. In contrast, target-based computational methods, which leverage either 

experimentally-determined or computationally-modeled structures, have limited applicability in 

antibiotic discovery46. Ease of use is the other main feature of our software. It is equipped with an 

intuitive GUI that has been tested on mainstream operating systems. We have shown that users 

can have acceptable experience by using personal computers with limited computational capacity. 

Moreover, the curated datasets, the parameters of those trained models and user manual are made 

publicly available. We expect its wide application in novel small-molecule antibiotic discovery. 

Currently, we have established the workflow for designing and screening small-molecule 

antibiotics. According to the aforementioned demonstration, this workflow could also be applied 

to other ESKAPE pathogens and other antibiotic-like properties. Our future work will be 

expanding the curated datasets and trained models for small-molecule antibiotics discovery and 

developing more useful modules of the software.  
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ASSOCIATED CONTENT 

Data and Software Availability  

The CLI version along with its source code is available at the open-source GitHub repository 

(https://github.com/taoshen99/AutoMolDesigner). The packaged GUI versions with user manual 

is free of charge at Zenodo (https://zenodo.org/record/8366085), where all the parameters of the 

trained models and the curated datasets that can be used for prospective study are also provided. 

Supporting Information 

Materials and Methods, Software interface figures, data visualization figures, benchmarking 

results tables (Supporting_Information.docx); datasets made in model training and prediction 

results (Supplementary_Table.xlsx). 
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Ubuntu server: CPU [Intel(R) Core(TM) i9-12900K @ 3.20GHz] with GPU [NVIDIA GA102 

(GeForce RTX 3090 24GB)]; (B) Ubuntu server: CPU [Intel(R) Core(TM) i9-12900K @ 

3.20GHz]; (C) Windows laptop: CPU [AMD Ryzen(TM) 7 5800H @ 3.20GHz] with GPU 

[NVIDIA GA106 (GeForce RTX 3050Ti Mobile 4GB)]; (D) Windows laptop: CPU [AMD 

Ryzen(TM) 7 5800H @ 3.20GHz]; (E) Apple Mac mini: CPU (Apple M2 @ 3.49GHz). S10 

Table S4. MUBD2.0 dataset for antibiotics against E. coli. Supplementary_Table.xlsx 

Table S5. Antibacterial activity prediction – comparative study between Chemprop and 

AutoGluon. The best value for each metric is highlighted in bold. S11 

Table S6. Cytotoxicity prediction – comparative study between FP-GNN and AutoGluon. This 

benchmark contained 32 tasks, and their results were averaged for comparison. The best value for 

each metric is highlighted in bold. S12 

Table S7. Plasma protein binding prediction – comparative study between IDL-PPBopt and 

AutoGluon. The best value for each metric is highlighted in bold. S12 

Table S8. Validation set performance of three molecular property prediction models applied to 

screening the virtual library. S13 

Table S9. 9,598 compounds with activity probability (E. coli.), cytotoxicity probability and 

predicted PPB fraction. Among all ionization states of a molecule, the one with the highest activity 

probability (E. coli.) was kept. Supplementary_Table.xlsx 

Table S10. Runtime of predicting 36,364 data points on three tasks with various device 

configurations (see definitions in Table S3). S13 

Materials and Methods S14 

References S20 
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Figure S1. Two functional windows of AutoMolDesigner. (A) Main window: deep molecular 

generation for de novo drug design; (B) Pop-up window: automated machine learning for 

molecular property prediction. 

Figure S2. Distribution of antibacterial activity (minimum inhibitory concentration, MIC, μg/mL). 

The value was transformed as -log2
MIC. 
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Figure S3. Compounds annotated with MIC, cluster index and cluster size from 12 selected 

clusters. The cluster index can be referred to Table S2. 
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Figure S4. <Validity=, <Uniqueness= and <Novelty= of 1,000 molecules sampled from the 

finetuned model at <MG Post-process= tab. 

Figure S5. UMAP visualization of molecules embedded in chemical space characterized by 

FCFP_6. 967 molecules sampled from the pretrained model are colored blue, 910 molecules 

sampled from the finetuned model are colored orange and 570 molecules from <Datasets for 

Finetuning= are colored dark red. 
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Figure S6. <Model Prediction= interface of the AutoGluon module. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 29, 2023. ; https://doi.org/10.1101/2023.09.27.559854doi: bioRxiv preprint 

https://doi.org/10.1101/2023.09.27.559854
http://creativecommons.org/licenses/by-nc-nd/4.0/


 S8 

 

Figure S7. 9 designed antibacterial compounds with high active probability, alongside the 

cytotoxicity probability and PPB fraction. 
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Figure S8. <Molecular Visualization= interface popping up from the main interface. 
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Table S1. Performance comparison between our remastered RNN from AutoMolDesigner and 

other deep molecular generation models, i.e., CharRNN and MolGPT, with MOSES as the 

benchmark. The best value for each metric is highlighted in bold. 

Models validity 
unique 

@10k 
novelty IntDiv1 IntDiv2 

FCD 

/Test 

CharRNNa 0.975 0.999 0.842 0.856 0.85 0.0732 

MolGPTa 0.994 1.0 0.797 0.857 0.851 0.067 

AutoMolDesigner 0.988 0.999 0.820 0.856 0.85 0.0628 

aThe model performance was retrieved from the work that reported MolGPT1. 

 

 

Table S3. Runtime of model finetuning with various device configurations. Configuration (A) 

Ubuntu server: CPU [Intel(R) Core(TM) i9-12900K @ 3.20GHz] with GPU [NVIDIA GA102 

(GeForce RTX 3090 24GB)]; (B) Ubuntu server: CPU [Intel(R) Core(TM) i9-12900K @ 

3.20GHz]; (C) Windows laptop: CPU [AMD Ryzen(TM) 7 5800H @ 3.20GHz] with GPU 

[NVIDIA GA106 (GeForce RTX 3050Ti Mobile 4GB)]; (D) Windows laptop: CPU [AMD 

Ryzen(TM) 7 5800H @ 3.20GHz]; (E) Apple Mac mini: CPU (Apple M2 @ 3.49GHz). 

Runtime (s) A B C D E 

One iteration 1 4 22 26 31 

Full task 7 34 167 222 257 
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Table S5. Antibacterial activity prediction – comparative study between Chemprop and 

AutoGluon. The best value for each metric is highlighted in bold. 

Models ACCa AUCb MCCc 
F1 

score 

Training 
timeg (s) 

Predicting 
time (s) 

Chemprop 

baseline 0.974 0.852 0.443 0.456 155 4 

baseline ensembled 0.979 0.873 0.524 0.533 2782 48 

RDKit 2D featuree 0.980 0.864 0.520 0.521 457 79 

RDKit 2D feature ensemble 0.981 0.877 0.552 0.557 3201 121 

Morgan2 feature 0.978 0.903 0.506 0.511 161 5 

Morgan2 feature ensemble 0.979 0.914 0.532 0.540 2925 52 

AutoGluon 

RDKit_2Df 
baseline 0.983 0.879 0.572 0.555 27 0.08 

best 0.981 0.930 0.567 0.573 1687 10 

Morgan 2 
baseline 0.982 0.870 0.544 0.520 67 0.9 

best 0.987 0.937 0.687 0.671 3365 17 
aACC: Accuracy. bAUC: Area under receiver operating characteristic. cMCC: Matthews 
correlation coefficient. dThe ensemble consisted of 20 independently trained models. 
eChemprop was enhanced by molecular-level features that are additional molecular 
descriptors. fThis molecular descriptor named normalized RDKit_2D was the same as that 
used for Chemprop enhancement. gFor Chemprop, the training time did not include the time 
for hyperparameters optimization. 
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Table S6. Cytotoxicity prediction – comparative study between FP-GNN and AutoGluon. This 

benchmark contained 32 tasks, and their results were averaged for comparison. The best value for 

each metric is highlighted in bold. 

Models Sensitivity Specificity ACCa AUCb MCCc 
FP-GNN 
Reported model 0.813 0.423 0.722 0.914 0.536 

AutoGluon 

RDKit_2Dd 
baseline 0.952 0.643 0.853 0.818 0.754 
best 0.953 0.662 0.877 0.866 0.750 

Morgan2 
baseline 0.948 0.593 0.837 0.819 0.723 

best 0.962 0.632 0.872 0.864 0.752 
aACC: Accuracy. bAUC: Area under receiver operating characteristic. cMCC: 
Matthews correlation coefficient. dNormalized version. 

 

 

 

 

Table S7. Plasma protein binding prediction – comparative study between IDL-PPBopt and 

AutoGluon. The best value for each metric is highlighted in bold. 

Models MAEa RMSEb R2 c Training time (s) Predicting time (s) 
IDL-PPBopt 
Reported model 0.075 0.112 0.841 -e 2 

AutoGluon 

RDKit_2Dd baseline 0.068 0.110 0.846 25 0.7 

best 0.062 0.105 0.861 3511 8 

Morgan2 baseline 0.084 0.134 0.772 146 1.0 

best 0.074 0.124 0.806 3542 15 
aMAE: Mean absolute error. bRMSE: root mean squared error. cR2: R square. dNormalized version. 
eThe official script for training is not available in the published work.  
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Table S8. Validation set performance of three molecular property prediction models applied to 

screening the virtual library.  

Metrica Antibacterial activity Cytotoxicity Plasma protein binding 

F1 score 0.645 0.894 -b 

MAE -b -b 0.062 

aThe <Evaluation Metric= argument for AutoGluon model training. bNot applied. 

 

 

 

 

 

 

 

Table S10. Runtime of predicting 36,364 data points on three tasks with various device 

configurations (see definitions in Table S3). 

Runtime (s) A B C D E 

Antibacterial activity 77 80 252 254 106 

Cytotoxicity 167 170 300 313 211 

Plasma protein binding  666 660 1006 1029 1744 
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MATERIALS AND METHODS 

Data Collection and Curation. 

In the section of <Tool I: Generating Focused Library for Small-molecule Antibiotics=, all 

the training data were retrieved from ChEMBL2 (version 32, https://www.ebi.ac.uk/chembl/, 

accessed March 2023). For pretraining, 764,373 small molecules (SMILES) whose annotated 

bioactivities (<Kd=, <Ki=, <Kb=, <IC50=, <EC50=) were no higher than 10 μM were obtained3. After 

the standard curation including de-duplication, salts removal and molecular standardization, they 

were further augmented by 10 folds to give 7,230,290 data points (<Dataset for Pretraining=). For 

finetuning, 15,795 small molecules whose annotated minimum inhibitory concentration (MIC) 

values were no higher than 32 μg/mL for Escherichia coli (E. coli) were obtained after <NaN= 

dropping and de-duplication. Apart from the standard curation, molecules whose molecular weight 

were greater than 600 or number of rotatable bonds were more than 204,5 were also removed to 

give 13,243 data points. Structural clustering based on Morgan2 fingerprints using Butina 

algorithm with 0.75 (Tanimoto similarity) as the threshold was carried out to give 570 clusters6. 

The most active molecule from each cluster was collected to constitute the final finetuning datasets 

(<Dataset for Finetuning=). 

In the section of <Tool II: AutoML-based Molecular Property Prediction for Small-molecule 

Antibiotics=, MUBD-DecoyMaker2.07 was used to make the dataset used for training and 

predicting antibacterial activity against E. coli.. Briefly, molecules labeled with <high activity= 

(MIC ≤ 1 μg/mL) from 13,243 data points were protonated at pH ranging from 7.3 to7.5 by 

Discovery Studio8 (version 2016) to give 5,021 data points, which served as the input for MUBD-

DecoyMaker2.0. The final MUBD dataset was comprised of 501 unbiased ligands and 19,539 

unbiased decoys. The dataset used for cytotoxicity prediction was retrieved from a subset in 
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DeepCancerMap9. This server contains 32 subsets comprised of compounds with annotated binary 

toxicity labels against normal cell lines. We followed its train-test splitting way to train 32 

individual models. The dataset used for plasma protein binding (PPB) prediction was basically 

retrieved from IDL-PPBopt10, which contains 3,921 records. Its published splits of training, 

validating and testing sets were strictly followed. 

There were two sets of molecules generated by the pretrained and finetuned model, 

respectively. One set contained 1,000 data points that were used for chemical space visualization. 

The other set of molecules including 10,000 data points was generated by the finetuned model for 

the simulated experiment of virtual screening. All the post-processing procedures implemented in 

<MG Post-process= tab were performed on these sets of molecules to remove invalid and duplicate 

molecules. Moreover, the recalled molecules in <Dataset for Finetuning= were also removed to 

ensure novelty. The data points for the simulated experiment of virtual screening were also 

protonated at pH ranging between 7.3 and 7.5. Eventually, 36,364 data points were generated. 

Deep Molecular Generation 

The deep molecular generation implemented in our software program belonged to the well-

established chemical language model11,12. Briefly, SMILES sequences were firstly tokenized to 

atomic symbols that constituted a vocabulary together with tokens for starting, ending and padding. 

Next, an embedding layer of 128 dimensions followed by three-layer long-short term memory 

(LSTM) with 512 units were used to process these tensors, and a final dense layer with the same 

dimension as the length of the vocabulary was used to put out un-softmaxed value for each token. 

Dropout and layer normalization and gradient clipping were used to prevent overfitting. The model 

was trained in an auto-regressive manner with cross entropy loss, default Adam optimizer in 
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PyToch and learning rate schedule of cosine annealing (T_max = 64 for pretraining and T_max = 

32 for finetuning). For pretraining, the dataset was randomly split into a training set and a 

validation set with the ratio of 99:1 while for finetuning, the ratio was 4:1. The batch size for 

pretraining (512) was also larger than that for finetuning (128). Moreover, the parameters of the 

embedding layer learned from model pretraining were frozen during backward propagation in 

model finetuning. For model sampling, the SMILES sequence was generated token by token until 

the ending token occurred or the maximum token length of 128 was reached. A widely used 

technique named <Temperature sampling=11 was also included to control molecular novelty by 

stretching the probability distribution of candidate tokens.  

Molecular Property Prediction 

The molecular descriptors and other optional arguments for AutoGluon13 model training and 

prediction are illustrated in the main text. Herein, we describe the detailed settings of retrospective 

studies for three molecular property prediction models. In all these studies, AutoGluon models 

adopted normalized RDKit 2D descriptors and Morgan2 fingerprints. Two training modes were 

applied, i.e., <baseline= mode denoting that model was trained in the default configuration 

provided by AutoGluon, and <best= mode denoting that model was trained in the configuration of 

<Time limit (s)= = 3600 and <Model Quality Presets= = <best model quality=. All evaluation 

metrics were calculated by Scikit-learn14 Python package (version 1.2.2). For antibacterial activity 

prediction, hyperparameter optimization was firstly performed for Chemprop15 with 80% 

molecules from the MUBD dataset as the training set and through five-fold cross-validation with 

10 iterations. Afterwards, the test set (20% remaining molecules) was used to compare the 

performances of optimized Chemprop and AutoGluon models. For cytotoxicity prediction, the 

average performance of FP-GNN on 32 tasks were used for comparison, and the AutoGluon 
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models were benchmarked in the same manner. For PPB fraction prediction, the performance of 

IDL-PPBopt10 was retrieved from the published results while AutoGluon was benchmarked with 

the training and test sets from IDL-PPBopt. All the benchmarking experiments were conducted in 

triplicate. It is worth noting that the last three prospective models trained with the full datasets 

were optimized by <Deployment Optimization=. 

Other Useful Modules 

The usage and implementation of other useful modules including data curation, model 

benchmarking and molecular visualization are described below. To begin with, there is a button 

located at the upper left corner of the <Environment= interface. It can be clicked to check whether 

the application is central processing unit (CPU) version or graphical processing unit (GPU) version. 

This functionality was realized by the PyTorch function in checking availability of compute 

unified device architecture (CUDA). The model will be run on CPU if CUDA-enabled GPU is not 

available (Figure S9). The second button called <Working Directory= can be used to set the current 

working directory. As a result, all the data generated will be saved under the directory of <your 

working directory/projects/your project name=. It should be noted that the <Reset= button is 

Figure S9. Detect running environment. (A) Model runs on CUDA-enabled GPU. (B) Model runs 

on CPU. 
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available in each tab for resetting. In terms of <Data preparation= tab, several class methods of 

MolVS (version 0.1.1) and Dimorphite-DL16 (version 1.3.2) including 

<LargestFragmentChooser().choose()=, <Uncharger().uncharge()=, <Standardizer().standardize()=, 

and <DimorphiteDL().protonate()= were used to implement salts removal, charge neutralization, 

standard molecular standardization and protonation at a certain pH range. Moreover, 

<SmilesEnumerator().randomize_smiles()= that is a class method implemented in a standalone 

Python script called <SmilesEnumerator.py= was used to obtain the single randomized SMILES 

of a molecule. For <MG Post-process= tab, all the curation is based on Python built-in functions 

for data manipulation. <Molecular Visualization= tab is another supplementary module that 

provides a convenient way to show the designed molecules, and it was implemented by the 

<rdkit.Chem.Draw.MolsToGridImage()= function. Additionally, all the other molecular 

manipulations such as basic sanitization and molecular format conversion between SMILES and 

Structural Data were all made by RDKit17 (version 2023.3.3). With its built-in dataframe, Pandas 

(version 1.5.3) was used to process tabular data in the form of Comma-Separated Values (*.csv) 

or Microsoft Excel (*.xlsx).  

Graphical User Interface Implementation 

As mentioned in the section of <Implementation=, the graphical user interface (GUI) of 

AutoMolDesigner was designed based on Qt platform wrapped by PySide6 (version 6.5.1.1). The 

GUI code, the functional source code, and the related packages were packed into an executable 

and distributable standalone software by PyInstaller (version 5.12.0) for both MacOS and 

Windows operating systems (for Linux users, GUI version is currently not available, as command-

line interface version that basically has the same operating logics can serve as an alternative). In 

detail, each long-term task will run on an independent thread through <QThread= and 
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<QThreadPool= classes of PySide6 to maintain responsiveness of the application. For molecular 

generation in the main interface, the progress bar is provided for each tab to indicate the progress 

of current task, while the adjacent <Stop= button can be used for manual termination. But it should 

be noted that pretraining and finetuning tasks will not stop immediately after the click of this button 

and will stop only when the current iteration is completed. For molecular property prediction in 

the <AutoGluon= interface, a logging dialogue will pop up during model training or prediction. If 

users try to close this dialogue before the task is completed, a message box will pop up as a 

reminder. Only if further confirmation is made according to the message box, the task can be 

manually terminated (Figure S10). 

  

Figure S10. The message box pops up from the <AutoGluon= interface when users try to manually 

terminate the task.  
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