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Abstract: Predicting the outcomes of adaptation isamajor goal of evolutionary biology. When
temporal changesin the environment mirror spatial gradients, it opens up the potential for
predicting the course of adaptive evolution over time based on patterns of spatial genetic and
phenotypic variation. We assessed this approach in a 30-year transplant experiment in the marine
snail Littorina saxatilis. In 1992, snails were transplanted from a predation-dominated
environment to one dominated by wave action. Based on spatial patterns, we predicted
trangtionsin shell size and morphology, allele frequencies at positions throughout the genome,
and chromosomal rearrangement frequencies. Observed changes closely agreed with predictions.
Hence, transformation can be both dramatic and rapid, and predicted from knowledge of the

phenotypic and genetic variation among populations.

Main text: Populations can sometimes adapt rapidly to sudden environmental shifts, even within
afew dozen generations (1, 2). For many populations, rapid adaptation would be necessary to
persist in the face of anthropogenic environmental change (e.g. climate change, habitat
fragmentation, pollution, etc.). However, we are far from being able to predict whether and how
fast a population will adapt, and which phenotypic and genetic changes will occur (3). We
urgently need to understand whether adaptation is possible and how rapid it can be (4).
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Adaptation relies on genetic variation, including both variation at individual base positions (5)
and larger structural variants. The later include chromosomal inversionsthat generate large gene
blocks that are inherited together and can simultaneously affect multiple traits (6, 7). Rapid
adaptation particularly depends on variation already present within a species, because time is not
sufficient to accumulate new beneficial mutations, unless population sizes are very large (8, 9) or
generation times are very short (10).

The reliance of rapid adaptation on pre-existing variation suggests that it might be possible to
predict future evolutionary change from knowledge about current variation (11). In particular,
many temporal environmental changes, such as temperature increase, resemble a current pattern
in space (e.g. aspatial temperature gradient). In this case, for afocal population experiencing an
environmental change, adaptive evolution islikely to rely on genetic variation that has entered
the population via past or on-going gene flow from a population that has already adapted to a
similar environment. Thisinformation is often available from studies on phenotype-environment
and genotype-environment associations. Can this knowledge on adaptive variation in space be
used to predict how a population will respond over time after an environmental change? This
principleisimplicit in much conservation genetics work (12-14), but has rarely been explicitly
tested. From a practical viewpoint, predictability would mean that population responses to
environmental change can be anticipated and management efforts adjusted accordingly (15). In
basic research, predictability provides atest of the current understanding of a system: for
example, if loci contributing to divergence between environments in space have been identified

correctly, they should respond in a predictable way to changing selection pressuresin time.

The marine snail Littorina saxatilisisamodel system in which divergent adaptation in spaceis
exceptionally well-documented (16-18). Spatial variation and local adaptation to rocky shore
environments are particularly obviousin the “Wave” and “Crab” ecotypes that have been
intensively studied in Sweden, UK and Spain. The ecotypes originated repeatedly in different
locations (17), in response to the selective pressures of wave action (19) and crab predation (20)
on wave-exposed rocks and crab-rich parts of shores, respectively (16, 21) (Figure 1A). Adaptive
variation in space in this system has been studied on three levels. At the phenotypic level, the
ecotypes differ in traits like size, shell shape, shell colour, and behaviour (16, 21, 22). For
example, the Wave ecotype is small, has athin shell that often shows Wave-specific colours and
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patterns, alarge and rounded aperture, and bold behaviour, while the Crab ecotypeislarge, hasa
thick shell without patterns, arelatively smaller and more elongated aperture, and wary
behaviour (Figure 1B, Figure S1D). At the level of individual SNPs (single-nucleotide
polymorphisms), highly differentiated loci likely contributing to adaptation or linked to adaptive
loci are scattered across the whole genome (18, 23). At the leve of large chromosomal
rearrangements, several inversions differ in frequency between ecotypes (24—26) and explain
variation in divergent traits between ecotypes (23, 26). These features all change over local
contact zones between ecotypes and most differences are paralleled over large geographic areas
(27). These repeated phenotype-environment and genotype-environment associations strongly
suggest arole of divergent selection. Hence, we tested whether the observed spatial associations
allow usto predict changes in time by studying evolution after an immediate environmental

changeinreal time.
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Figure 1. Divergence trgjectory of the skerry population at the levels of phenotypes and loci in
collinear genomic regions. Y ears correspond to sampling pointsin time. (A) Illustration of the
transplant experiment showing the donor Crab ecotype on the |eft side, the recipient skerry in the
middle, and the neighbouring Wave ecotype on the right side. Figure created using some
graphics from Vecteezy.com under Free License. (B) Shell length and shape divergence. The
shell length decreased after transplantation to less than half of the original value and approached
the length of the reference Wave ecotype population. (C) Divergence of shell colour, patterning,
roughness and thickness in the Skerry population that over time reached values in the range of
the reference Wave ecotype. Thickness represent the average thickness in the Skerry population
and Wave population relative to the average thickness of the transplanted population in 1992.

(D) Scatter plots of two uncorrelated quantitative traits (shell length & height growth) on alog
scale, and one qualitative trait (colour) reveal no bi-modalitiesin the skerry population. (E)
Genetic differentiation of the skerry versus the reference populations based on control and spatial
outlier SNP (single-nucleotide polymorphism) loci.

We assessed local adaptation in a 30-year transplant experiment on the Swedish west coast. In
1992, we collected ~700 Crab ecotype snails and relocated them to a nearby wave-exposed
environment earlier occupied by a population of the Wave ecotype. This wave environment isa
“skerry” (alx 3 mrocky islet), exposed to strong waves and with no evidence of crabs (Figure
1A; Figure S1). The skerry had remained uninhabited by snails since atoxic algal bloom in 1988
killed all Wave snails (28). The skerry (current census size: ~1000 individuals) islocated ~320
m away, across open sea, from the donor Crab ecotype population and ~160 m from the nearest
Wave ecotype population (Figure S1; supplementary materials and methods). Therefore, there
are two potential sources of adaptive variation: Standing genetic variation in the donor
population (resulting, in part, from past gene flow from adjacent Wave popul ations on the same
island), and post-transplant gene flow due to occasional migrants (e.g. rafted snails, see (28); the
species lacks pelagic dispersal) from the neighbouring Wave population (or, less likely,
elsewhere).

Three predicted levels of adaptive evolution
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We predicted three levels of change in the skerry population. At the phenotypic level, we
anticipated atransition from Crab ecotype to Wave ecotype morphology: the averages of
guantitative traits (e.g., shell length, and shell thickness) and the proportions of qualitative traits
(e.g., shel colour, patterning, and roughness) were expected to approach the values typically
observed in the Wave ecotype present in the area. We formulated our prediction on the basis of
the polygenicity of phenotypes (23, 29) that can reach Wave optima through different pathways
(both genetic and plastic) and are often under strong selection in space (30). For SNPs, we
predicted an allele frequency shift over time beyond the effect of drift and neutral gene flow in at
least a subset of “spatial outliers’ (candidate SNPs associated with ecotype divergence in space
in previous studies; see supplementary materials and methods) towards the frequencies observed
in undisturbed Wave ecotype population. For inversions, we predicted an increase in frequency
of arrangements that are common in Wave ecotype populations. We predicted a tendency to fix
arrangements that appear favoured in the Wave ecotype (18, 23). We predicted non-fixation for
inversions that are maintained polymorphic in the Wave ecotype, likely by balancing selection
(24). Finally, for both spatial outlier SNPs and inversions, we predicted a correlation between
temporal (start vs end of experiment) and spatial (Crab ecotype vs Wave ecotype) genetic
differentiation. Overall, we expected predictability to be higher for inversions than for SNPs
because many inversions are likely to be under strong direct selection, while spatial outlier SNPs
may often only beindirectly affected by selection.

Swift transformation of shell morphology and patterning validates phenotypic predictions

To evaluate our predictions at the phenotypic level, we sampled adult snails from the skerry in
1996, 2002, 2005, 2018 and 2021. As anticipated, the morphology of the transplanted snails
experienced multiple changes from its original Crab ecotype to a morphology more similar to the
Wave ecotype. In addition to adecrease in length, a shell reconstruction using six shape
parameters (Figure 1B; supplementary materials and methods) revealed that, after 30 years,
snails of the skerry population exhibited a relatively broader aperture and less pointed tips
compared to their ancestral form and similar to the Wave ecotype. Moreover, the beige colour
common in the Crab ecotype became rare over time, with the skerry population becoming
colour-polymorphic, similar to Wave ecotype populations (Figure 1C). Simultaneously, the

distinctively thick, ridged, and unpatterned shells of the Crab ecotype were largely replaced by
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136  thinner, smoother, and tessellated shells. Scatter plots depicting diagnostic traits (Figure 1D)
137  show that this transition took place across all sampled individuals. Therefore, the changein
138  population average on the skerry did not reflect the presence of migrants or early-generation

139 hybrids but was due to gradual allele frequency changes across the whole population.

140 Previous estimates of additive genetic variance and plastic effects of the environment for size
141  and shell-shape traits allowed us to estimate the strength of selection required to explain the

142  observed phenotypic (23) changes in these quantitative traits. Assuming an initial plastic

143  responsein the transplanted population, followed by Gaussian stabilizing selection towards an
144 optimum defined by the phenotype of the Wave reference population (supplementary materials
145 and methods), the strength of stabilizing selection (V¢/Vp, the variance of the fitness function
146  relative to the phenotypic variance) ranged from 1.65 to 7.84, depending on the trait, assuming
147  one generation per year (supplementary text). These values are in the typical range for estimates
148  from natural populations (31, 32) and correspond to a fitness reduction for the Crab ecotype

149  population, when first introduced to the skerry between 30 and 96% (8 to 90% after the plastic
150 changein phenotype). For the aperture position trait (r0) all of the change on the skerry could be
151 accounted for by plasticity; for other traits, estimated plastic effects accounted for 23-40% of the
152  changein phenotype on the skerry (Table S2).

153  Multi-year genetic data confirm adaptive frequency shifts in candidate mutations

154  To evaluate our predictions at the genetic level, we genotyped samples from different years

155 (2005, 2018, and 2021) from the skerry population as well as from the donor Crab population
156 (1992, 2018, and 2021) and the neighbouring Wave ecotype population (2018 and 2021)

157  (supplementary materials and methods). We included both spatial outliers (292 SNPs) that

158 showed high Crab-Wave differentiation in previous studies on ecotype differentiation in the area
159 (18, 27), SNPsdiagnostic for chromosomal rearrangements (225 SNPs) (25), and control SNPs
160 (565 SNPs) that lacked strong association with ecotype divergence in Sweden (18, 27). All

161  gspatia outliers and control loci are SNPs outside chromosomal inversions.

162 Atthelevel of individua loci, the allele frequencies at many control loci in the skerry population
163 changed towards the frequencies observed in the Wave ecotype: 59% of the control loci had
164  shifted towards Wave in 2005, 63% in 2018, and 61% in 2021. For spatial outlier loci, the shift
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toward Wave was stronger, as predicted: 82%, 87%, and 89%, respectively (Figure S13, S14).
The trgectory of genetic differentiation (Fsr) also reflected the more pronounced shift of spatial
outliers compared to the control loci (Figure 1E): The trajectory of spatial outliers indicate that
from 2005 onwards, the skerry population was highly divergent from the Crab ecotype but close
to the Wave ecotype. Control loci, on the other hand, showed no trend in direction in Fsr. The
results are also confirmed by a PCA (Figure S15).

The subtle change in allele frequency observed at control loci towards the Wave ecotype
suggests either gene flow from a nearby Wave population or hitch-hiking effects by spatial
outliers under selection. The fact that the allele frequency shift is more pronounced at spatial
outlier loci than control loci is consistent with selection, although it alone does not provide
sufficient evidence. Thisis because spatial outlier loci are on average more differentiated than
control loci between the skerry starting population and the nearby Wave population. Therefore,
neutral gene flow from a Wave population alone would already lead to a more pronounced shift
for spatial outlier loci over time on the skerry population. To distinguish between these
possibilities, we inferred the demographic history of the skerry population and compared the
observed allele frequency changes to those expected under neutrality (neglecting linkage
disequilibrium). Based on the allele frequencies of the control SNPs in the starting population
(1992) and in the neighboring Wave population (2018+2021) as a potential source of gene flow,
we found the growth rate, carrying capacity, migration rate, and number of generations per year
that best predicted the allele frequency distribution observed in the skerry samples from 2005,
2018, and 2021 (supplementary materials and methods). The most likely estimate for migration
was M=2 diploid individuals per generation (see Table S7 for other parameters). This relatively
low number of migrants is reasonable considering that the speciesis brooding and without
pelagic larvae and that the skerry remained unoccupied by snails for four years after the toxic
algal bloom (28). Furthermore, it is of the same order of magnitude as direct estimates of
colonisation of empty skerriesin the area following the bloom (28). Starting with the allele
frequencies observed in 1992, and randomly drawing parameter combinations from the
likelihood surface, we simulated neutral evolution for each control and spatial outlier locus until
2021 (approximately 58 generations). Running 1,000 replicates for each SNP, we estimated the
expected range of allele frequency changes from 1992 to 2021 without selection, but including
genetic drift, gene flow, sampling, and model uncertainty (range spanning 95% of the simulated
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replicates) (Figure S12). While for both control loci and candidate outliers the probability of
being outside the expected range isreatively small (4 vs 8.5%), the candidate outliers overall
clearly show stronger allele frequency changes than expected under the neutral model
(supplementary text). In alignment with our predictions, spatial outliers shifted towards Wave
more than expected without selection (71% showed a stronger shift than the median shift without
selection, compared to 53% in the control loci) (Figure 2A). This supports our prediction that
selection influences at least a subset of the spatial outliers. Given that selection is not expected to
directly impact control loci, drift, gene flow, and hitch-hiking effects are plausible reasons for

the towards-wave shift in allele frequencies experienced by about half of the control loci.
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identified in a previous study, and the spatial Fsr reflects the average across (Morales et al.
(2019) outliers; light blue) or 7 (Westram et al. (2018) outliers; orange) nearby Crab-Wave
contacts (supplementary materials and methods). The line reflects a linear model describing the
relationship (R*=0.22). (C) Genomic distribution of Fs in the skerry population versus the
average Crab ecotype for individual SNPs in the collinear genome (circles and triangles) and for
inversions (rectangular blue-grey fields with dark blue bars at top indicating Fsr value). Loci
with evidence for selection (triangles) are SNPs that experienced allele frequency change in the

Skerry population towards Wave and beyond the neutral range.

As predicted, the more differentiated a spatial outlier was between Crab and Wave in other
locations in Sweden, the more its allele frequency also changed in time; however the relationship
was noisy (Spearman’s rho = 0.46, p<0.0001; Figure 2B). Loci potentially affected by selection
are distributed widely along the genome rather than concentrated in afew linkage groups (LG;
Figure 2C; Figure S16). We observed relatively few spatial outliers with evidence for selection
(red triangles) in LG 2 compared to the expectation from its density of spatial outliers (Figure
S17).

Natural selection favours specific chromosomal rearrangements as predicted

Consistent with our predictions, the “Wave arrangements’ (inversion arrangements that are more
common in the Wave ecotype than in the Crab ecotype) increased in frequency in the skerry over
time to near fixation or to afrequency similar to that in the Wave population (Figure 3A). This
pattern was found in “simple” inversions (where two alternative arrangements exist) and
complex inversions (where three different arrangements exist; Figure 3B). The two complex
inversions are known to be particularly strongly associated with Crab and Wave ecotype
divergence and to influence adaptive traits (18, 23). Simulations of neutral expectations (Figure
S11) show that arrangement frequency shifts required selection in five cases (ssmple inversions,
LGC1.1, LGC10.2 & LGC17.1, and both complex inversions, LGC6.1/2 & LGC14.1/2).
Moreover, the inversions showed growing genetic differentiation Fsr over timein the skerry
population with respect to Crab, comparable to the differentiation observed in spatial outliers
(Figure 2C, Figure S16).

11
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Figure 3. Traectories of the “Wave” arrangement for polymorphic inversions. Grey lines
indicate trgjectories of arrangements in the skerry with frequency changes between 1992 and
2021 within the range expected without selection. The trajectories of arrangements that
experienced frequency changes beyond the expected range are shown in colour. (A) The
trajectories of smple inversions show arrangements of three inversions (LGC1.1, LGC10.2, &
LGC17.1) that changed in frequency more than expected by drift and gene flow alone. (B) The
“Wave’ arrangement in complex inversions (dashed line) on two linkage groups (LG 6 AND LG

14) increased from rare to near fixation while the “Crab” arrangement (solid line) became rare.
Discussion

This study shows that rapid phenotypic and genetic changes in a new environment can to alarge
extent be predicted based on spatial patterns. In barely a decade after the introduction, a
transplanted population of Crab ecotype adapted rapidly to its new environment which closely
resembles that of the Wave ecotype. Adaptive capacity following a sudden environmental

12
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change has been studied in other systems, such as guppy (33), stickleback (2), and salmonids
(34). Asin those studies, we demonstrated that adaptive evolution can take place relatively
quickly, and we show that thisisthe case at three different levels. — phenotype, SNP genotype,
and chromosomal inversion. Additionally, a morphological change immediately following the
transplantation suggests that plasticity was crucial to avoid immediate extinction, asthe allele

frequencies adjusted to a new optimum (35).

Our results suggest that it is possible to predict how a population may change over time, using
prior information on the genetic and phenotypic variation along spatial environmental gradients.
However, predictability isonly high at the phenotypic level and for strongly-selected inversions.
Phenotypically, the skerry reached a Wave ecotype endpoint through the contribution of both
adapted alleles (regardless of their source) and plastic changes. At the inversion level, the Wave
arrangement in all cases reached frequencies similar to that in a Wave ecotype population, with
statistical evidence for selection in five cases. Thisisin line with their widely accepted rolein
suppressing recombination between beneficial alleles in a specific genetic background or
environment. Predictability islower for collinear loci, for which only a small fraction showed
clear evidence of selection and this specific subset could not be predicted. There are multiple, not
mutually exclusive explanations. First, some loci might be less favoured on the skerry than in the
wave-lashed environment that we used as areference. Thus, these loci might be under selection
only in some wave habitats because the environmental conditions differ among locations (e.g.,
the Wave samplesin previous studies are likely to be associated with higher shore levelsthan is
the skerry). Second, many of our spatial outliers may be linked to targets of selection, rather than
being under selection themselves; in this case, responses to selection depend on the linkage
disequilibrium in the studied population, which in turn depends on the history of gene flow.
Third, because some of the adaptive traits are likely to be highly polygenic (e.g. shell shape), the
same phenotypic optimum can potentially be reached via different genetic routes (29). Therefore,
it is plausible that the evolution of the Wave phenotype was possible via changes at a subset of
theloci studied here, together with changes at loci not included in this study.

A recurring challenge for genomic studies of this nature consists of disentangling the effects of
demographic history and natural selection (36). For example, if alleles introduced by migration
experience positive selection and large blocks of migrant (Wave) background hitchhike along,
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282  we might overestimate the migration parameter. However, this does not affect our result that
283  gpatia outliers and inversions shift more towards Wave than expected without selection. In
284  addition, we did not find evidence that hitch-hiking extends over alarger region of the

285  chromosomes (Figure S18).

286  Inthe Anthropocene, studies such as the present one can be abasis for developing predictive
287  modelsfor the response of populations to environmental changes as a result of human activities,
288 e.g. climate change, industrial fishing, habitat fragmentation, invasions, etc. (37). Future

289  experiments could integrate variables (e.g. temperature, precipitation, pollution, etc.) that

290 fluctuate as aresult of human activities. In our study, we observed rapid adaptation, and

291 predicted the genetic and phenotypic changes successfully because the population experiencing
292  an environmental change contained or received a great amount of genetic variation, the raw

293 material for natural selection. Nonetheless, this scenario will not universally apply to numerous
294  other populations undergoing (anthropogenic) environmental shifts. Our results highlight the
295 importance of ensuring that species remain in avariety of different environmentsin order to

296 maintain genetic variation needed to fuel future adaptation.
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