

1 **Timing specific parental effects of ocean warming in a coral reef fish**

2 Bonzi, L.C.^{1*}, Spinks, R.K.^{2,3}, Donelson, J.M.^{2,4}, Munday, P.L.², Ravasi, T.^{2,5}, Schunter, C.^{1*}

3

4 ¹ The Swire Institute of Marine Science, School of Biological Sciences, The University of Hong Kong, Hong
5 Kong SAR

6 ² ARC Centre of Excellence for Coral Reef Studies, James Cook University, Australia

7 ³ Blue Carbon Section, Australian Government Department of Climate Change, Energy, the Environment and
8 Water, Australia

9 ⁴ College of Science and Engineering, James Cook University, Australia

10 ⁵ Marine Climate Change Unit, Okinawa Institute of Science and Technology Graduate University, Japan

11

12 * co-corresponding authors: lucrezia.bonzi@gmail.com and celiaschunter@gmail.com

13 **Abstract**

14 Population and species persistence in a rapidly warming world will be determined by an organisms' ability
15 to acclimate to warmer conditions, especially across generations. There is potential for transgenerational
16 acclimation, but the importance of ontogenetic timing in the transmission of environmentally induced parental
17 effects remains mostly unknown. We aimed to disentangle the contributions of two critical ontogenetic stages
18 (juvenile development and adult reproduction) to transgenerational plasticity, by exposing the coral reef
19 fish *Acanthochromis polyacanthus* to simulated ocean warming with natural diel thermal fluctuations across
20 two generations. By using hepatic transcriptomics, we discovered that the developmental environment of the
21 offspring themselves had little effect on their acclimation potential at 2.5 months of life. Instead, the
22 developmental experience of parents increased regulatory RNA production and protein synthesis, which
23 could improve the offspring's response to warming. Conversely, reproduction in warmer water elicited stress
24 response mechanisms, with suppression of translation and mitochondrial respiration. Mismatches between
25 temperatures in the parental ontogenetic thermal experience deeply affected offspring gene expression
26 profiles, and detrimental effects were also evident when warming occurred both during parents'
27 development and reproduction. This study reveals that the previous generation's developmental temperature
28 contributes substantially to thermal acclimation potential during early life, however prolonged heat stress
29 will likely have adverse effects on the species' persistence.

30

31 **Keywords**

32 Climate change, transgenerational plasticity, non-genetic inheritance, gene expression, transcriptomics

33

34 **Introduction**

35 As a result of anthropogenic climate change, a rise in mean ocean temperatures is happening at an
36 unprecedented rate, and extreme thermal events, such as marine heatwaves, are occurring with increasing
37 frequency and intensity (IPCC, 2023; Oliver et al., 2018). Ocean warming is predicted to impact the
38 distribution and abundance of marine ectothermic organisms (Doney et al., 2012; Hoegh-Guldberg & Bruno,
39 2010; Scheffers et al., 2016), and tropical species such as coral reef fish might be especially vulnerable to
40 prolonged thermal stress, having evolved in relatively thermal stable environments (Deutsch et al., 2008), as
41 well as living close to their thermal optimum (Rummer et al., 2014). Accordingly, increases in water
42 temperature have shown to cause a rise in oxygen demand (Pörtner, Bock, & Mark, 2017; Schulte, 2015),
43 which, if not met, adversely impacts several traits of coral reef fishes, such as respiratory scope (Nilsson,
44 Crawley, Lunde, & Munday, 2009), swimming ability (Johansen & Jones, 2011), and reproductive output
45 (Donelson, Munday, McCormick, Pankhurst, & Pankhurst, 2010; Spinks, Bonzi, Ravasi, Munday, & Donelson,
46 2021). However, several fish species have shown the potential to compensate some detrimental effects of
47 ocean warming through acclimation via phenotypic plasticity (Bernal et al., 2018; Bernal, Ravasi, Rodgers,
48 Munday, & Donelson, 2021; Donelson, Munday, McCormick, & Nilsson, 2011; Donelson, Munday, McCormick,
49 & Pitcher, 2012; Grenchik, Donelson, & Munday, 2013; Lee et al., 2020; Salinas & Munch, 2012; Shama,
50 Strobel, Mark, & Wegner, 2014). Switches in energy production mechanisms and substrates, modifications
51 in the protein synthesis machinery, as well as changes in immune and stress responsive gene expression were
52 identified among the major molecular processes underlying such plastic accommodations allowing acclimation
53 to increases in water temperature (Bernal et al., 2018; Bernal et al., 2021; Taewoo Ryu, Veilleux, Donelson,
54 Munday, & Ravasi, 2018; T. Ryu et al., 2020; Shama et al., 2016; Veilleux et al., 2015). Ultimately, thermal
55 plasticity may enable populations and species to persist in a rapidly warming world and offer a lifeline for
56 genetic adaptation to catch up over the longer term.

57 Acclimation to environmental changes via phenotypic plasticity, however, can be restricted to specific
58 ontogenetic windows of increased sensitivity to external conditions (Burggren & Mueller, 2015). Coral reef
59 fish, as well as other stenothermal species, for example can lack the plasticity to acclimate to increases in
60 temperature during adulthood (Donelson et al., 2010; Nilsson, Östlund-Nilsson, & Munday, 2010), while
61 showing acclimation potential when warming is experienced at development (Donelson et al., 2011; Grenchik
62 et al., 2013). Early life stages are indeed the most sensitive periods to environmental cues and show the
63 highest potential for within-generation plasticity (WGP) (Burton & Metcalfe, 2014; Fawcett & Frankenhuys,
64 2015; West-Eberhard, 2003), occurring when the organism phenotype is affected by its own experience of
65 the environment. Interestingly, the environmental stimuli perceived during development have been found to
66 not only shape the individual's phenotype, but also affect subsequent generations via transgenerational
67 plasticity (TGP) (Burton & Metcalfe, 2014). Here, we consider TGP in the inclusive sense of when the
68 experience of previous generations (e.g. parents) influences the offspring phenotype (TGP *sensu* Bell &

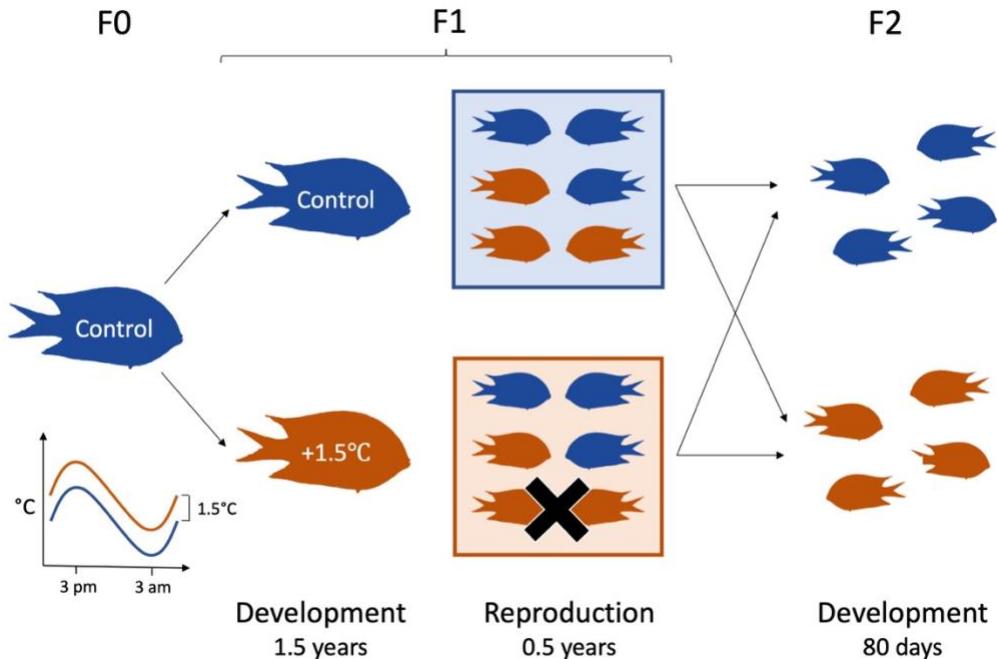
69 Hellmann, 2019), and not just when the parental environment interacts with the offspring's one (anticipatory
70 TGP or TGP *sensu* Salinas, Brown, Mangel, & Munch, 2013). The parental exposure window that is generally
71 thought to have the strongest effect on transgenerational plasticity is during reproduction, because of the
72 temporal proximity and therefore higher cue reliability between the environmental conditions experienced
73 by parents and the future offspring environment (Bell & Hellmann, 2019; Donelan et al., 2020). However,
74 spawning and embryogenesis are also the most vulnerable life stages to high temperatures in fish (Alix,
75 Kjesbu, & Anderson, 2020; Dahlke, Wohlrab, Butzin, & Portner, 2020). Therefore, heat stress during
76 reproduction, for example because of a heatwave, might adversely affect both parents and their offspring,
77 instead of providing the opportunity for beneficial parental effects.

78 While adaptive parental effects are at the basis of TGP, parental effects that are detrimental to the
79 offspring can also occur. Maladaptive anticipatory TGP, for example, might arise when the environments of
80 parents and offspring do not match, while negative parental carry-over effects can either result from trade-
81 offs between the costs for survival and growth of the parents and the energy invested in reproduction and
82 offspring fitness, or from simple transmission of poor parental condition (Bonduriansky & Crean, 2018;
83 Marshall & Uller, 2007). Californian mussels (*Mytilus californianus*) offspring of thermally exposed parents
84 show reduced tolerance to warming (Waite & Sorte, 2022), and coral reef sea urchin (*Echinometra* sp. A)
85 parental exposure to future climate condition negatively affects offspring survival (Karelitz, Lamare, Patel,
86 Gemmell, & Uthicke, 2019). Therefore, the exposure to environmental change across generations does not
87 necessarily lead to acclimation, and the possibility of decreased offspring fitness and detrimental carry-over
88 effects also exist.

89 The exposure to environmental changes, such as warming, at different ontogenetic timings, and/or in
90 different generations, for example because of heatwaves, could have neutral, additive or interactive effects
91 (Auge, Leverett, Edwards, & Donohue, 2017; Dury & Wade, 2020; Kuijper & Hoyle, 2015; Leimar &
92 McNamara, 2015). In the simplest scenario, a cue elicits the same response regardless of when and how
93 many times it is perceived. In the three-spined stickleback *Gasterosteus aculeatus*, predator-induced WGP
94 and TGP elicit similar phenotypical and molecular responses, with the same set of genes differentially
95 expressed no matter which generation is exposed to the predator cue (Stein, Bukhari, & Bell, 2018).
96 Alternatively, the same cue experienced multiple times could reinforce the information and ensure detection
97 and therefore response (overcoming environmental noise and/or reaching a discrimination threshold) (Bell &
98 Hellmann, 2019), or elicit a stronger, additive response compared to the single experience. In the snail
99 *Nucella lapillus*, when both parents and embryos are exposed to predation risk, offspring size is larger at
100 emergence (Donelan & Trussell, 2018), while additive WGP and TGP effects on growth rate are found in
101 differentially thermally exposed sheepshead minnows (Chang, Lee, & Munch, 2021). Contrasting cues could
102 also be experienced at different times, raising questions on how different experiences interact and are
103 integrated by the organism. For example, the relative importance of the two most sensitive ontogenetic

104 windows in transgenerational plasticity is still debated, and while reproduction at elevated temperatures is
105 sometimes enough to elicit multigenerational thermal TGP (e.g. Lee et al., 2020), in other cases early-life
106 exposure is needed to induce positive parental effects (Radersma, Hegg, Noble, & Uller, 2018). Finally, not
107 all traits have the same plasticity potential, and individual traits might respond differently to the same
108 environmental cue perceived at the same or at different exposure timings (Donelson, Salinas, Munday, &
109 Shama, 2018; Le Roy, Loughland, & Seebacher, 2017; Uller, Nakagawa, & English, 2013). In
110 *Strongylocentrotus purpuratus* sea urchin, DNA methylation shows TGP in response to simulated upwelling
111 conditions, while spicule length only responds to WGP (Strader et al., 2020). Ultimately, the resulting
112 phenotype and acclimation potential of organisms and populations to environmental perturbations will
113 depend on how different traits will be affected and how the environmental cues experienced by parents
114 during the most sensitive windows, development and reproduction, will interact and be integrated with the
115 offspring's own environmental perception.

116 Although highly sensitive to warming, the coral reef fish *Acanthochromis polyacanthus* (Bleeker 1855), or spiny
117 chromis damselfish, is able to partially acclimate to warmer temperatures when exposed early in life
118 (developmentally), and to fully restore deficits in aerobic scope caused by higher temperatures when both
119 parents and offspring are exposed to the same warmer conditions (transgenerationally) (Bernal et al., 2018;
120 Bernal et al., 2021; Donelson et al., 2012). A shared suite of differentially expressed genes in the liver,
121 mainly related to lipid, protein and carbohydrate metabolism, immune system and transcriptional regulation,
122 has been found to be related to WGP and TGP mechanisms in this species (Veilleux et al., 2015). Previous
123 studies, however, have always used constant thermal treatments, with no daily fluctuations in temperature
124 mimicking natural variations. Since diurnal variability of environmental stimuli can affect physiological and
125 molecular organism responses (Brakefield & Mazzotta, 1995; Enders & Boisclair, 2016; Kroeker et al., 2020;
126 Schaefer & Ryan, 2006; Schunter, Jarrold, Munday, & Ravasi, 2021), a more accurate imitation of natural
127 conditions could improve predictions of how these fish will respond to global warming. Moreover, until now,
128 experiments on *A. polyacanthus* have continuously exposed parents to warming from hatching to breeding,
129 therefore preventing insights to critical thermal windows for parental exposure to higher temperature that
130 induce TGP. For example, in order to convey beneficial effects on the offspring, parents may only need to
131 experience warming as adults during gametogenesis and reproduction, or alternatively, they may need to
132 be exposed to warmer conditions during development in early life. While exposure timing within the F2
133 generation was explored in Bernal et al. (2021), there are some limitations as one of the orthogonal F3
134 crosses is missing and both the F1-F2 generation were exposed continuously before testing the impacts of
135 reproductive thermal exposure. Therefore, further investigation into the role of warming during parental
136 developmental and reproductive stages is needed to improve our understanding of the interplay between
137 the timing of environmental variation and plasticity. Finally, since reproductive exposure in this species also
138 coincides with embryogenesis because of nest care, the independent exposure of parents to elevated
139 temperature during development or during reproduction only is necessary to determine if the


140 transgenerational acclimation effects reported so far are indeed parental effects or rather offspring
141 developmental plasticity due to embryo exposure to warming.

142 In this study, we exposed F1 *A. polyacanthus* to daily and seasonally fluctuating present-day control or
143 +1.5°C average increased temperature during development and at reproduction (Fig. 1). F2 offspring
144 clutches from these parents were split post-hatching into control or +1.5°C, where they developed for 80
145 days. Elevated temperature exposure at reproduction caused low reproductive output and poor hatchling
146 quality (Spinks et al., 2021). At 80 days post-hatching, offspring from parents that reproduced at elevated
147 temperature were still in poorer body condition compared to offspring from control parents, regardless of
148 the parental and of the offspring's own developmental thermal environment (Spinks, Donelson, Bonzi, Ravasi,
149 & Munday, 2022). Additionally, parental exposure to elevated temperature at development also resulted
150 in lower 80-day old offspring condition. Parental exposure to elevated temperature, irrespective of
151 ontogenetic timing, seems therefore to be causing maladaptive effects in the offspring. Alternatively,
152 reduced weight might represent a trade-off with the adaptive parental effects on metabolism previously
153 recorded for this species (Bernal et al., 2021; Donelson et al., 2012; Munday, Donelson, & Domingos, 2017).
154 Here, we assessed the genome-wide liver gene expression of the F2 offspring raised for 80 days at elevated
155 or control temperature from all the parental combinations. The 184 analysed transcriptomes allowed us to
156 explore the molecular responses of *A. polyacanthus* to warming at different ontogenetic timings over two
157 generations and disentangle the effects of the parental experience during development from the
158 reproductive and the offspring developmental exposures. Because of the concurrent increase in mean ocean
159 temperatures as well as more frequent and intense heatwaves, this study aimed to answer unresolved
160 questions related to transgenerational acclimation potential to ocean warming, especially taking into account
161 the possibility for temperature mismatches between generations and also during an individual's lifespan.

162 **Methods**

163 *Experimental design*

164 In order to investigate the importance of exposure timing in the response to warming, we analysed liver
165 gene expression of *A. polyacanthus* exposed to elevated temperature over two generations. Detailed
166 descriptions of the experimental set-up are provided in Spinks et al. (2021; 2022). Briefly, adult spiny
167 chromis damselfish (F0 generation) were collected from the wild in the Palm Islands region (18°37' S,
168 146°30' E) and nearby Bramble Reef (18°22'S, 146°40'E) of the central Great Barrier Reef in Australia,
169 paired and housed with seasonally cycling water temperature resembling the collection site conditions. During
170 the Austral summer of 2016, F0 pairs bred, and egg clutches were kept with parents until hatching, in order
171 for them to provide nest care as in the wild. To account for genotypic variation, newly hatched F1 siblings
172 from six breeding pairs were split between a present-day control and an elevated temperature treatment.
173 Water temperature of the two thermal treatments was finely controlled to match simulated seasonal (winter
174 minimum 23.2°C, summer maximum 28.5°C) and diurnal (3:00 am -0.6°C, 3:00 pm +0.6°C) cycles of the
175 Palm Islands for the control treatment, with the elevated thermal treatment matching this, but with an increase
176 of 1.5°C. This temperature regime was chosen to match the projections for average ocean temperature
177 increase by 2100 (Fox-Kemper et al., 2021), and already occurring heatwaves (Frölicher, Fischer, & Gruber,
178 2018). F1 fish were kept in the two thermal treatments until maturity (~1.5 years of age). In the late Austral
179 winter of 2017, fish from different families were paired for reciprocal sex crosses of the developmental
180 temperatures, and the formed pairs were further placed into present-day control or +1.5°C reproductive
181 temperatures (Fig. 1). The F2 generation was produced between December 2017 and April 2018, although
182 no reproduction occurred for the elevated reproductive thermal environment when both parents developed
183 at +1.5°C. Since eggs were kept with their parent until hatching, embryogenesis occurred at reproductive
184 temperature. Newly hatched F2 generation siblings were split into present-day control or +1.5°C thermal
185 treatments (Fig. 1), which followed the above-mentioned seasonal and diurnal cycles of water temperature.
186 During rearing, approximately 9% natural mortality occurred (Spinks et al., 2022). At 80 days post-hatching
187 (dph), F2 fish were sexed by external examination of their urogenital papilla, and two males and two
188 females per clutch per treatment (twelve to twenty individual fish per treatment; Suppl. Table S1) were
189 euthanized by cervical dislocation, measured for standard length, weighed and dissected. Livers were
190 immediately snap-frozen in liquid nitrogen and stored at -80°C for subsequent RNA extraction. Liver was
191 chosen as the target tissue of this study because of its major role in metabolism and to allow comparisons
192 with previous works (Bernal et al., 2018; Bernal et al., 2021; Taewoo Ryu et al., 2018; T. Ryu et al., 2020;
193 Veilleux et al., 2015). All samples were collected between 9 am and 12 pm. All procedures were performed
194 in accordance with relevant guidelines and were conducted under James Cook University's animal ethics
195 approval A1990, A2210 and A2315.

196

197 **Figure 1. Experimental design.** F1 *A. polyacanthus* from wild-caught F0 developed either at present-day control temperature
198 (control - blue) or elevated temperature (+1.5°C - orange) with seasonal and daily fluctuations. At 1.5 years of age, F1 were
199 paired in reciprocal sex crosses of the two thermal treatments and further exposed to control (blue rectangle) or elevated (orange
200 rectangle) reproductive temperatures. The black "X" indicates the F1 treatment that did not reproduce. F2 siblings were split after
201 hatching into control or elevated temperatures, where they developed for 80 days.

202 RNA sequencing

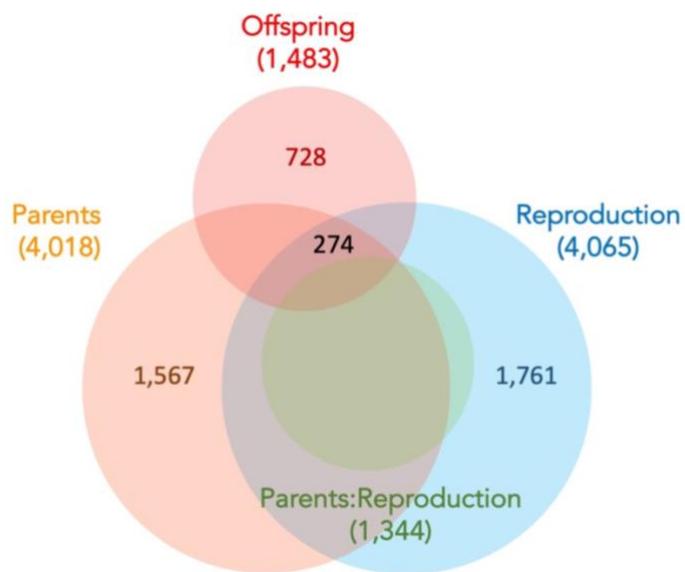
203 Frozen livers were homogenized in Qiagen RLT Plus buffer for 30s with single use silicone beads in an MP
204 Biomedicals FastPrep-24 homogenizer. Total RNA was isolated from whole homogenized livers using a
205 mirVana miRNA Isolation kit, following the manufacturer's protocol for total RNA isolation procedure. A
206 Nanodrop (Thermo Scientific) and a 2100 Bioanalyzer (Agilent) were used to determine quantity and quality
207 of the isolated RNA. RNA-Seq libraries were prepared using the Illumina TruSeq stranded mRNA Library
208 Preparation Kit, with each sample uniquely barcoded. Library quality check and quantification were
209 performed with a Bioanalyzer High Sensitivity DNA assay (Agilent). Paired-end fragments of 150 base pairs
210 were sequenced with an Illumina HiSeq 4000 at the King Abdullah University of Science and Technology
211 Bioscience Core Lab. Samples from different thermal treatments were randomly assigned to each lane to
212 avoid batch effects during sequencing, for a total of 184 sequenced samples (Suppl. Table S1).

213 Gene expression analyses

214 Read quality check was performed with FastQC (Andrews, 2010) before and after quality trimming and
215 adapter removal by Trimmomatic v0.39 (Bolger, Lohse, & Usadel, 2014) with parameters: "TRAILING:3
216 SLIDINGWINDOW:4:15 MINLEN:40". Trimmed reads were mapped against the *Acanthochromis*
217 *polyacanthus* genome (ENSEMBL ASM210954v1) using HisAT2 v2.2.1 (Kim, Paggi, Park, Bennett, &

218 Salzberg, 2019) with default settings, providing a list of known splice sites and specifying strand-specific
219 information (--rna-strandness = RF). The featureCounts function from the Subread v2.0.2 package (Liao,
220 Smyth, & Shi, 2014) was used to calculate gene counts, in read pair counting mode, allowing for multi-
221 mapping fractional computation.

222 The DESeq2 package v1.26.0 (Love, Huber, & Anders, 2014) was used to statistically analyse differential
223 gene expression in R v3.6.3 (R Core Team, 2020). The presence of outliers and batch effects in the data
224 was evaluated through clustering and visualization using variance stabilized transformed (VST) counts. Based
225 on principal component analyses (PCAs) and heatmaps of the sample-to-sample distances, six outlier samples
226 were identified and excluded from further analyses (Suppl. Table S1). Likelihood ratio tests (LRTs) were used
227 to determine the best models. The chosen design formula included the variable “family” to control for
228 differences due to the parental lineage, and the main effects of developmental, reproductive and offspring
229 developmental thermal environments, as well as the interaction between parental developmental and
230 reproductive temperature: ~Family + Parental pair development * Reproduction + Offspring development,
231 since no significant interaction was found with offspring developmental temperature. Offspring gender was
232 not found to be influential and was therefore excluded from the model. Differentially expressed genes
233 (DEGs) were statistically determined for the main effects and their interactions, using false discovery rate
234 (FDR) adjusted p-value < 0.01 (Benjamini & Hochberg, 1995) and a mean expression of > 10 reads
235 (baseMean) as threshold. LRT identified DEGs due to the interaction found between parental development
236 and reproduction were analysed using the degPatterns function from the DEGreport R package v1.22.0
237 (Pantano, 2021) to identify clusters of differentially expressed genes with similar expression profiles. The
238 function was run on the VST processed count matrix of such genes with default settings, except for cluster
239 outlier removal (reduce = TRUE) and minimum number of genes per cluster set to 50 (minc = 50). Wald tests
240 were used to run pairwise comparisons between treatments, and DEGs identified by the following cut-offs:
241 adjusted p-value < 0.01, apeglm shrunken |Log2 Fold Change (log2FC)| ≥ 0.3 to reduce false positives
242 (Zhu, Ibrahim, & Love, 2019), and baseMean > 10.


243 Additionally, R package WGCNA v1.70-3 (Langfelder & Horvath, 2008) was used to run weighted gene
244 correlation network analyses in order to identify clusters (modules) of highly correlated genes and relate
245 them to the experimental treatments and offspring traits. The analysis was run using VST counts of genes with
246 average counts >1 in more than eleven samples, which is the smallest sample set per treatment after outlier
247 removal. A soft-thresholding power β of 7 was chosen based on network topology analysis, and gene
248 network clusters were identified using the automatic one-step network construction and module detection
249 blockwiseModules function, using a signed topological overlap matrix (TOM), a minimum module size of 30
250 and a threshold of 0.3 for merging modules. Gene modules were then correlated with the parental,
251 reproductive and offspring thermal treatments, sex, standard length and weight, to identify which gene
252 clusters were significantly associated with the different thermal exposure timings (p-value < 0.001). A

253 module-trait relationships heatmap was produced and modules with significant correlations further
254 investigated.

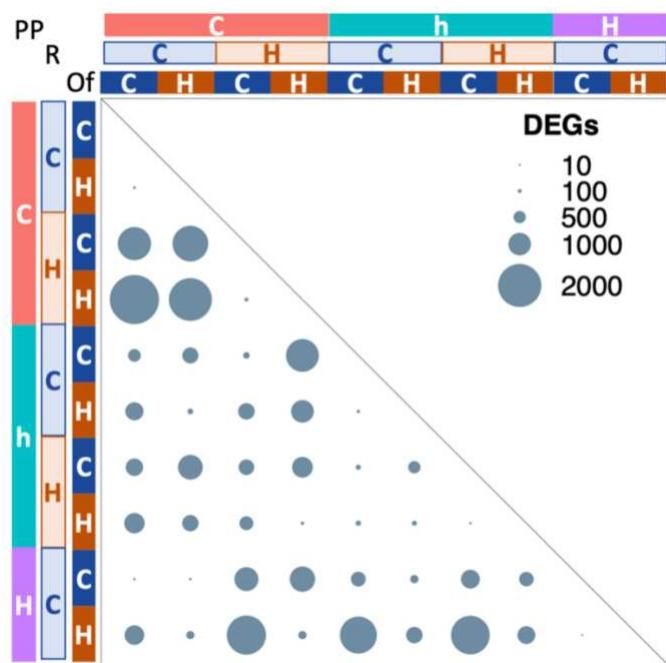
255 Functional enrichment analyses of differentially expressed genes identified by DESeq2, as well as gene sets
256 belonging to degPatterns clusters and to significant modules detected by WGCNA were performed in
257 OmicsBox v2.0.36 (BioBam Bioinformatics, 2019) with Fisher's Exact Test (FDR < 0.05).

258 **Results**

259 Exposure of *A. polyacanthus* to elevated water temperature at different ontogenetic times greatly affected
260 the 80-day old juvenile hepatic gene expression profiles. The strongest driver of gene expression variation
261 in the offspring livers was the thermal environment in which their parents either developed (4,018
262 differentially expressed genes, DEGs; Fig. 2; Suppl. Table S2) or reproduced (4,065 DEGs; Fig. 2; Suppl.
263 Table S3). Conversely, the offspring post-hatching developmental temperature had the smallest influence on
264 their own expression profile (1,483 DEGs; Fig. 2; Suppl. Table S4). Only a relatively small number of genes
265 (274; Fig. 2; Suppl. Table S5) was influenced by elevated temperature irrespective of the exposure timing
266 (parental development, reproduction and offspring development) and they were mostly involved in
267 metabolism and oxidoreductase activity, including cytochrome P450 (CYP) superfamily of enzymes.

268

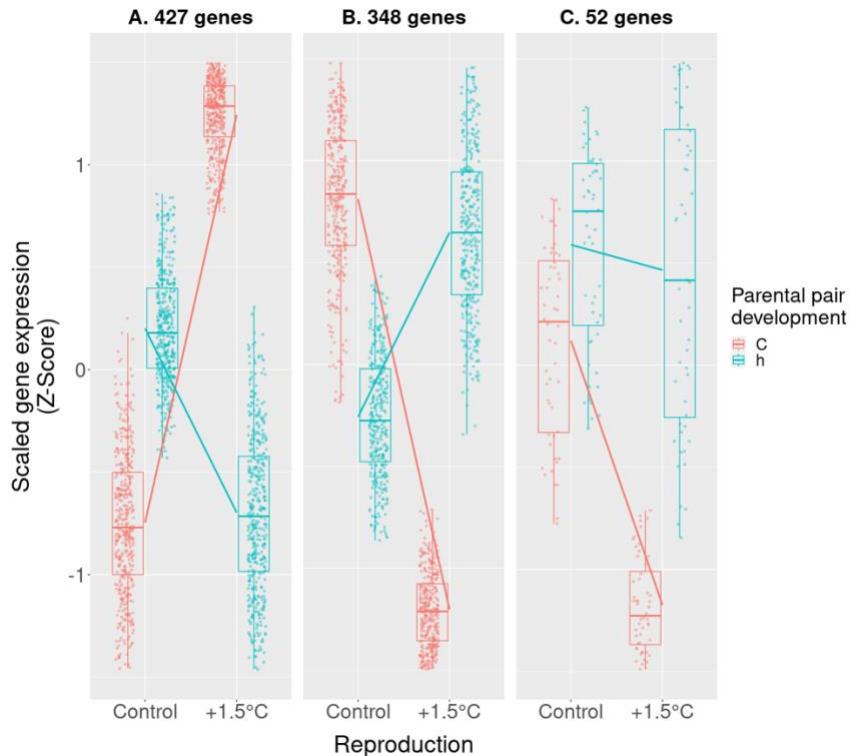
269 **Figure 2. Offspring genes significantly affected by warming at different timing.** Venn diagram of hepatic F2 offspring genes
270 whose expression is influenced by the three main effects, parental developmental (Parents), reproductive (Reproduction), and
271 offspring developmental (Offspring) thermal experiences, and by the interaction between the parental developmental and
272 reproductive temperatures (Parents:Reproduction), as identified by likelihood ratio tests.


273 *Effects of warming during offspring development*

274 The temperature experienced by offspring at development explained changes in expression levels of 728
275 genes, which were not altered due to any parental exposure timing (Fig. 2; Suppl. Table S4) and were
276 mainly involved in DNA replication and repair and tRNA aminoacylation for protein translation (Suppl. Table
277 S6). When offspring were exposed to elevated temperature, regardless of their parental developmental
278 and reproductive temperatures, genes encoding for components of the MCM complex (MCM2, MCM3,
279 MCM4, MCM5, ZMCM6B) involved in DNA replication initiation were downregulated, as well as CYP coding
280 genes involved in oxidoreductase activity (Suppl. Table S7). Accordingly, genes involved in DNA replication

281 initiation and DNA repair belonged to a gene network cluster significantly negatively correlated with
282 offspring developmental temperature (64 genes; p-value 6e-06; Suppl. Fig. S1 & S2; Suppl. Table S8). No
283 interaction between the offspring's developmental thermal environment and any of the parental thermal
284 exposures was found, therefore offspring response to elevated temperature did not vary significantly if
285 matched or mismatched in temperature with any of the parental thermal environments.

286 *Transgenerational warming effects*


287 The parental thermal exposure, either during development or reproduction, affected almost four-times the
288 number of genes compared to the offspring's own developmental thermal environment (Fig. 2). Accordingly,
289 the largest differences in gene expression were found between offspring with different parental
290 developmental and/or reproductive thermal experiences, while comparing between offspring raised at
291 different temperatures usually returned the smallest DEG numbers (Fig. 3; Suppl. Fig. S3).

292
293 **Figure 3. Offspring differentially expressed genes (DEGs) due to different thermal treatments.** DEGs from pairwise comparisons
294 between offspring with contrasting thermal histories. "PP" stands for Parental Pair developmental, where "C" = both parents
295 developed at control temperature, "h" = one parent developed at control and one parent developed at +1.5°C, "H" = both parents
296 developed at +1.5°C. "R" stands for Reproductive and "Of" for Offspring developmental thermal conditions, where "C" = control
297 temperature, "H" = +1.5°C. The size of the circles is proportional to the number of DEGs between comparisons (FDR < 0.01).

298 We found a strong interactive effect between parental developmental and reproductive thermal
299 experiences, with 1,344 genes (Fig. 2; Suppl. Table S9) differing in expression if there was a mismatch
300 between the temperature at which parents developed and the temperature at which they reproduced.
301 Proteolysis, especially proteasome-mediated ubiquitin-dependent protein catabolic process, as well as

302 protein folding, cell redox homeostasis and peptide biosynthesis were among the processes differentially
303 regulated whenever a mismatch of the two parental exposure temperatures occurred (Supp. Table S9).
304 These functions were mostly associated with a cluster of 427 genes that showed increased expression in
305 offspring from parents that experienced temperature mismatch during development and reproduction,
306 regardless of the offspring developmental temperature (Fig. 4A; Suppl. Table S10). Within this cluster,
307 differential expression was also related to DNA double-strand break repair and protein folding quality
308 control in the endoplasmic reticulum. For example, components of the unfolded protein response (UPR)
309 pathway, such as heat shock protein family A member 5 (HSPA5), DNAJ heat shock protein family B11
310 (DNAJB11) and zinc finger and BTB domain containing 17 (ZBTB17), as well as members of the
311 calnexin/calreticulin cycle, like calnexin (CANX), calreticulin (CALR), protein disulphide isomerase family A
312 members 3 and 4 (PDIA3, PDIA4), UDP-glucose glycoprotein glucosyltransferase 1 and 2 (UGGT1, UGGT2),
313 and protein kinase C substrate 80K-H (PRKCSH), were all found in this cluster of genes. Further processes
314 such as ATPase-coupled transmembrane transporter and phosphopyruvate hydratase activities were
315 conversely downregulated only if parents were exposed to elevated temperature either at development or
316 at reproduction alone (348 genes; Fig. 4B; Suppl. Table S11), while genes involved in circadian rhythm were
317 strongly downregulated in offspring from parents exposed to warming at reproduction alone, but slightly
318 upregulated if elevated temperature was experienced during parental development only (52 genes; Fig.
319 4C; Supp. Table S12).

320

321 **Figure 4. Expression profiles of differentially expressed genes (DEGs) due to the interaction between the two parental exposure**
322 **timings.** DEGs were clustered based on their scaled expression profiles (Z-score). The number of genes per cluster is provided above
323 each plot. In the parental pair development, "C" = both parents developed at control, "h" = one parent developed at control and
324 one at +1.5°C.

325 *Effects of warming during parental development*

326 The temperature experienced by parents during development, and not at any other exposure timings, caused
327 expression changes in 1,567 offspring genes (Fig. 2; Suppl. Table S2), mostly involved in functions such as
328 DNA-directed 5'-3' RNA polymerase activity, gene expression, tRNA processing, ribonucleoprotein complex
329 biogenesis and RNA splicing (Suppl. Table S13). Several RNA polymerase I and III subunits (POLR1A,
330 POLR1B, POLR1D, POLR1E, POLR3A, POLR3C, POLR3D) and genes with rRNA and tRNA processing functions
331 in particular were upregulated in offspring of parents that developed at elevated temperature and
332 reproduced at control, regardless of the offspring own developmental temperature (Suppl. Tables S14 &
333 S15). The downregulated genes showed functions related to vitamin B6 binding, including genes involved in
334 glucose/energy metabolism such as glutamic--pyruvic transaminase (GPT), glutamic-oxaloacetic
335 transaminase 1 (GOT1), serine hydroxymethyltransferase 2 (SHMT2), cystathionine gamma-lyase (CTH) and
336 glycogen phosphorylase L (PYGL), as well as steroid hormone mediated signalling, due to several nuclear
337 receptors (NR0B2, NR1D2, NR1I2, NR2F6, NR3C1, RORA, RXRG) (Suppl. Table S14 & S15). If only one of
338 the parents developed at elevated temperature, however, their offspring downregulated genes encoding
339 for structural constituents of ribosomes and involved in translation and peptide biosynthesis, while among the

340 upregulated genes we found genes encoding for endoplasmic reticulum proteins such as CALR and torsin
341 family 1 member A (TOR1A), involved in quality control of protein folding, as well as genes with lipid
342 metabolic functions (Suppl. Tables S16 & S17).

343 *Effects of warming at reproduction*

344 Translation and cellular respiration were the main processes altered in the 1,761 offspring genes exclusively
345 differentially expressed because of warming at reproduction (Fig. 2; Suppl. Tables S3 & S18).
346 Downregulation due to elevated temperature at reproduction was found for structural constituents of
347 ribosome and genes with peptide synthesis function, as well as oxidoreductase activity, ATP synthesis and
348 electron transfer (e.g. cytochrome-c oxidase and NADH:ubiquinone oxidoreductase subunits), regardless of
349 either parental or offspring developmental temperature (Suppl. Tables S19-22). Accordingly, genes coding
350 for structural constituents of ribosomes involved in translation were found in a gene network cluster
351 significantly negatively correlated with reproductive temperature (p-value 2e-12; 812 genes; Suppl. Fig.
352 S4A; Suppl. Table S23), while genes related to electron transfer activity, cellular respiration, translation,
353 proteasome complex, and mRNA splicing were part of a larger cluster of 2,432 genes also negatively
354 correlated with reproductive temperature (p-value 9e-04), as well as with offspring length (p-value 4e-05)
355 and weight (p-value 2e-07) (Suppl. Fig. S4B; Suppl. Table S24). Differences were instead found in the
356 upregulated functions depending on if any of the parents was also exposed to elevated temperature during
357 development. If both parents were exposed to warming at reproduction only, their offspring upregulated
358 genes related to translation initiation and regulation (e.g. translation initiation factor 2 alpha kinases 2 and
359 3 - EIF2AK2, EIF2AK3 - and 4E binding protein 2 - EIF4EBP2), protein folding (e.g. TOR1A), and negative
360 regulation of gene expression. Moreover, many of these genes encoded for proteins localized in the
361 endoplasmic reticulum, for example genes in the calnexin/calreticulin cycle (CALR, CALX, PDIA3, PDIA4) and
362 in the ubiquitin-dependent ERAD pathway (ER lipid raft associated 2 - ERLIN2), as well as UPR pathway
363 components (signal sequence receptor subunit 1 - SSR1, endoplasmic reticulum oxidoreductase 1 alpha -
364 ERO1A, DNAJB11, PDIA5, PDIA6, ZBTB17) (Suppl. Table S19 & S20). Genes located in the ER and involved
365 in protein folding were also found in a small module positively correlated with reproductive thermal
366 treatment (164 genes; p-value 3e-07; Suppl. Fig. S4C; Suppl. Table S25). On the other hand, if one of the
367 parents not only reproduced but also developed at elevated temperature, their offspring overexpressed
368 genes involved in protein transport, regulation of systemic arterial blood pressure by circulatory renin-
369 angiotensin (angiotensin converting enzyme 2 - ACE2, glutamyl aminopeptidase - ENPEP), protein
370 ubiquitination and apoptosis (Suppl. Table S21 & 22).

371

372 **Discussion**

373 In this study, we show the conserved and timing-specific molecular signatures of exposure to near-future
374 predicted water temperatures across two generations and reveal that the parental thermal experience has
375 a much greater effect on the offspring transcriptional response at 80 days old than does their own post-
376 hatching developmental experience. This builds our understanding on the influence of environmental
377 conditions across generations and supports the expectation that parental influence is likely to be strongest
378 in early life (Yin, Zhou, Lin, Li, & Zhang, 2019), while current environmental conditions become the main driver
379 later in development (e.g. at one year in Bernal et al., 2021). Accordingly, we observed in this experiment
380 that offspring developmental temperature had a significant effect on their own body condition only when
381 their parents developed and reproduced at ambient temperature, with the parental thermal exposure
382 otherwise controlling offspring length and weight ratio (Spinks et al., 2022). The consistency between
383 parental and offspring thermal exposures did not affect offspring condition (Spinks et al., 2022) or molecular
384 responses, suggesting carry-over rather than anticipatory parental effects (Bonduriansky & Crean, 2018;
385 Uller et al., 2013). On the contrary, mismatches between the temperatures experienced by the two parents
386 at development or across parental lifespan played an important role in shaping offspring thermal
387 acclimation.

388 The exposure of parents and offspring to higher temperature caused the activation of some common
389 molecular responses. In particular, we found modifications in metabolism and energy production, a common
390 response to warming in ectotherms such as fishes, also found in other ocean warming experiments, both within
391 (Bernal et al., 2020; Smith, Bernatchez, & Beheregaray, 2013) and across generations (Bernal et al., 2018;
392 Bernal et al., 2021; Veilleux et al., 2015). Members of the cytochrome P450 superfamily of enzymes,
393 characterized by oxidoreductase activity, were downregulated whenever offspring or their parents were
394 exposed to elevated water temperature. Downregulation of hepatic CYP mRNAs, proteins and activity is
395 usually linked to inflammation states in animal models (Aitken, Richardson, & Morgan, 2006; Stavropoulou,
396 Pircalabioru, & Bezirtzoglou, 2018), and hence our results suggest liver inflammation in offspring directly or
397 transgenerationally exposed to warming. While in previous studies inflammatory states have been found in
398 acutely exposed fish only (Bernal et al., 2018; Veilleux et al., 2015), our experimental setup introduced for
399 the first time a diel temperature fluctuation which might aggravate the negative effects of warming. These
400 results are also supported by our measurements of reproductive output (Spinks et al., 2021) and the lack of
401 reproductive success in pairs where both individuals were exposed to warming throughout their life. Similarly,
402 diurnal fluctuations exacerbated the effects of temperature in reducing fathead minnows *Pimephales*
403 *promelas* size, compared to constant warming, despite having beneficial effects on their upper thermal
404 tolerance limits (Salinas, Irvine, Schertzing, Golden, & Munch, 2019). Notably, in the fruit fly *Drosophila*
405 *melanogaster*, the same increased thermal tolerance provided by temperature fluctuations was however

406 accompanied by fitness and reproductive costs, such as lower fecundity and reproductive output (Cavieres
407 et al., 2020). Yet, since we lack a non-fluctuating treatment within our experiment, we cannot rule out the
408 possibility that the differences between this and previous studies are due to other factors, and not the diel
409 fluctuation in temperature. Nevertheless, to better evaluate the effects of transgenerational plasticity, and
410 more generally to accurately predict organism responses to climate change, it is crucial to incorporate
411 temporal fluctuations that resemble the natural environment in the best way possible.

412 The exposure of the two generations to elevated temperature mostly caused the activation of distinct gene
413 sets in the offspring, similarly to the discordant within- and across-generation transcriptional responses of
414 *Daphnia ambigua* in a predator-induced phenotypic plasticity experiment (Hales et al., 2017). Exclusive to
415 the offspring developmental warming experience was the inhibition of DNA replication and the activation
416 of DNA repair mechanisms. Suppression of DNA replication because of developmental warming might be a
417 sign of the activation of the DNA-replication stress-response pathway (Osborn, Elledge, & Zou, 2002) to
418 allow time to repair damaged DNA following temperature stress. Alternatively, DNA replication
419 downregulation could indicate energy investment shifts, in agreement with findings from Bernal et al. (2018),
420 where *A. polyacanthus* offspring downregulated genes involved in DNA replication concurrently with
421 heightened routine oxygen consumptions when developmentally exposed to an increase in water
422 temperature compared to the previous generation. By contrast, parental thermal exposure affected
423 processes related to RNA processing and protein synthesis, modifications and catabolism, indicators of
424 changes in protein turnover, possibly a conserved transgenerational response to warming found in *A. polyacanthus*
425 as well as in sticklebacks (Shama et al., 2016; Veilleux et al., 2015). Hence, a combination of
426 shared and distinct mechanisms underlying inter-generational and post-hatching thermal plasticity are likely
427 in place, revealing a core response to warming but also a decoupling in the two exposure timing effects
428 which could potentially be independently subject to evolutionary pressure (Bell & Stein, 2017).

429 The two different parental exposure timings, either throughout juvenile development until maturity or during
430 reproduction only, also elicited distinct molecular responses in the offspring. Likewise, in sticklebacks,
431 grandparental reproductive and parental developmental exposures elicit different physiological responses
432 in subsequent generations (Shama et al., 2016; Shama et al., 2014; Shama & Wegner, 2014). Here, the
433 parental developmental exposure to elevated temperature caused changes in energy utilization in offspring
434 through downregulation of genes involved in glucose metabolism and nuclear hormone receptors like NR1D2
435 and RORA, which are key regulators of the circadian clock and many metabolic functions (Cho et al., 2012;
436 Yang, Lamia, & Evans, 2007). Parental developmental warming also increased transcription and modification
437 potential of non-coding RNAs, in particular rRNAs and tRNAs, which may indicate heightened protein
438 synthesis as well as cell growth (Goodfellow & Zomerdijk, 2013; Turowski & Tollervey, 2016). Interestingly,
439 sticklebacks born from mothers developmentally exposed to warming revealed enhanced protein synthesis

440 resulting in higher respiration rates, and, consequently, in the ability to meet the increased oxygen demand
441 in warmer water and maintain aerobic scope (Shama et al., 2016). Because *A. polyacanthus* has been
442 similarly found to retain aerobic capacity when transgenerationally exposed to warming (Donelson et al.,
443 2012), our results suggest that increased protein synthesis is a conserved molecular mechanism underlying
444 the acclimation ability in this and other species. Moreover, our findings reveal that such beneficial traits are
445 due to the developmental exposure of parents to increased water temperatures, therefore being
446 transgenerational responses rather than WGP due to embryo exposure to warming. The beneficial effects
447 of developmental parental exposure to elevated temperature were also evident in the ability of 80-day
448 old offspring to maintain swimming performance (Spinks, 2021), despite being lighter and in lower body
449 condition compared to offspring from control parents (Spinks et al., 2022). Trade-offs seem therefore to be
450 in place between benefits and costs of the metabolic adjustments need to acclimate to elevated temperature.
451 Nevertheless, parental exposure of *A. polyacanthus* to warming during development appears to be overall
452 beneficial for the offspring and might lead to improved acclimation to increased water temperature.

453 The benefits of parental development on offspring acclimation potential seemed however to be reduced
454 when only one parent was exposed to elevated temperature during development, while the other developed
455 at control temperature. Indeed, offspring from developmentally mismatched parents exhibited signs of
456 metabolic stress, impairment of the translational machinery, and maladaptive swimming speed (Spinks,
457 2021). Our findings therefore suggest that the adaptive nature of the transgenerational effects due to the
458 developmental exposure timing might depend on the consistency between parental thermal experiences
459 during early life. Moreover, while here we cannot disentangle the individual effects of each parent, paternal
460 and maternal contributions to the offspring acclimation potential might also differ, and future research
461 focused on the individual parental contributions is needed to fully disentangle each parent's influence on the
462 new generation's persistence at elevated temperature.

463 While parental developmental thermal exposure caused trade-offs between costs and benefits of thermal
464 acclimation in the offspring, the exposure to elevated temperature during reproduction, which in our
465 experiment coincided with both gametogenesis and embryo development, was always detrimental for the
466 offspring, and caused a marked reduction in expression of genes involved in protein synthesis and
467 mitochondrial ATP production. Similar effects were recently found in populations of lake sturgeon, *Acipenser*
468 *fulvescens*, exposed to increased water temperature during early development, a critical life stage in this
469 species (Bugg, Thorstensen, Marshall, Anderson, & Jeffries, 2023). In our study, translation and cellular
470 respiration suppression were accompanied by upregulation of several genes indicating heat-induced
471 endoplasmic reticulum (ER) stress due to accumulation of unfolded or misfolded proteins in the ER. Genes
472 involved in the calnexin/calreticulin (Cnx/Crt) cycle for protein folding quality control, together with key
473 components of the ER-associated degradation pathway, were upregulated in offspring when reproduction

474 occurred at elevated temperature. This indicates increased amounts of misfolded proteins in the ER, similar
475 to findings in rainbow trout *Oncorhynchus mykiss* kidney following heat stress (Huang, Li, Liu, Kang, & Wang,
476 2018). Additionally, components of the unfolded protein response (UPR) pathway, activated to re-establish
477 homeostasis when the ER folding capacity is overwhelmed, were upregulated in offspring because of
478 reproduction at elevated temperature. One of these genes, for example, is the eukaryotic translation
479 initiation factor 2 α kinase 3 (EIF2AK3), a key stress sensor able to activate UPR and inhibit ribosome
480 assembly and protein synthesis, leading to translation inhibition (Wek, Jiang, & Anthony, 2006). Upregulation
481 of UPR markers and liver tissue damage was also found in largemouth bass *Micropterus salmoides* acutely
482 exposed to elevated temperature (Zhao et al., 2022), while in mice livers ER stress markers and Cnx/Crt
483 genes upregulation persisted for 21 days after a thermal injury, indicating long-term functional alterations
484 of hepatic functions (Song, Finnerty, Herndon, Boehning, & Jeschke, 2009). Such prolonged suppression of
485 protein synthesis and ATP production will likely result in energy limitations, fitness decrease and suboptimal
486 growth (Sokolova, Frederich, Bagwe, Lannig, & Sukhotin, 2012). Indeed, offspring from parents that
487 reproduced at elevated temperature were smaller at hatching and in worse body condition at 80 dph
488 compared to offspring from control parents (Spinks et al., 2022). Therefore, reduced body weight of
489 offspring from parents exposed to elevated temperature during reproduction could be linked to metabolic
490 dysfunctions, suggesting either negative parental carry-over condition effects or detrimental effects of
491 warming on embryogenesis. Exposure to elevated temperature during gametogenesis and embryo
492 development, for example during a heatwave, seems therefore to cause long-term hepatic ER stress in the
493 spiny damselfish, regardless of the offspring's own post-hatching thermal environment, with lasting
494 impairment of the translational and respiratory machineries.

495 We found that a mismatch between the thermal experience ontogenetic timings of parents deeply affected
496 offspring gene expression profiles. Similarly, mismatches between parental developmental and reproductive
497 temperatures differently affected routine oxygen consumption and body condition in third generation sub-
498 adult *A. polyacanthus*, with detrimental effects (Bernal et al., 2021). Here, mismatching thermal environments
499 across the parental lifetime, between development and reproduction, caused differential expression of many
500 genes including the upregulation of genes involved in ER stress, Cnx/Crt cycle and UPR pathway. However,
501 as such signals were absent when elevated temperature occurred during both parental development and
502 reproduction, some of the detrimental effects of exposure to elevated temperature seem to be lessened.
503 This is in line with the hypothesis that temporal autocorrelation between perceived environmental stimuli
504 during successive sensitive ontogenetic windows might work as a positive feedback to reinforce the level of
505 predictability of the future environment, ultimately affecting the reliability of the transmitted information and
506 the adaptive nature of TGP (Bell & Hellmann, 2019; Burgess & Marshall, 2014; Leimar & McNamara, 2015).
507 Despite some traits showing thermal acclimation when parental development and reproduction matched,
508 exposure to elevated temperature throughout the parent lifespan seemed nevertheless to overall have

509 detrimental effects on the subsequent generation. These offspring still showed suppression of translation and
510 mitochondrial respiration, while also overexpressing genes involved in protein ubiquitination, indicating
511 increased protein degradation, and apoptosis. Accordingly, reproduction did not occur when both parents
512 experienced warming throughout their lives. Our results therefore indicate that *A. polyacanthus*, and perhaps
513 other coral reef fishes, will struggle with the predicted increase in water temperature, with potentially serious
514 adverse effects on population viability and persistence.

515 Persistence of organisms in a warming world will depend on their ability to acclimate, within and across
516 generations, to the changing environment. In this study, we tackled the fundamental question of the
517 importance of ontogenetic timing in the transmission of parental effects. We demonstrated that while a
518 parental developmental experience of warming in *A. polyacanthus* might contribute to adaptive, although
519 not anticipatory, transgenerational plasticity in their juvenile offspring, reproduction in warmer water will
520 not have the same beneficial effects on the subsequent generation. Rather, if a heatwave should occur during
521 the reproductive season, offspring may suffer from detrimental metabolic effects. Moreover, our results also
522 suggest that parental pre-exposure to warming during development alters and potentially worsens the
523 reproductive thermal signature. Finally, for the first time we show molecular evidence of physiological stress
524 in offspring of parents with mismatching thermal experiences, suggesting that similar parental thermal
525 histories are important for acclimation potential of their offspring. Overall, our results unveil new molecular
526 mechanisms involved in transgenerational response to warming and demonstrate the importance of exposure
527 timing of the previous generation's environmental experiences to the capacity of individuals to cope with
528 warmer ocean temperatures.

529

530 **Data accessibility**

531 RNA-seq data for all individuals can be found under the BioProject PRJNA998209. All other data are
532 provided in the electronic supplementary material.

533 **Authors' contributions**

534 L.C.B., R.K.S. and J.M.D. designed the experiment and collected the samples. L.C.B. and R.K.S. managed the
535 fish rearing. L.C.B. prepared the samples for sequencing, analysed the sequencing data and wrote the first
536 draft of the manuscript, with input from C.S.. J.M.D., P.L.M. and T.R. secured the funding. All authors read,
537 provided comments and gave final approval for publication.

538 **Competing interests**

539 We declare we have no competing interests.

540 **Funding**

541 The authors acknowledge the support of the King Abdullah University of Science and Technology Competitive
542 Research Grant (CRG3 2278), the ARC Centre of Excellence for Coral Reef Studies, a Sea World Research
543 and Rescue Foundation Marine Vertebrate Grant (SWR/9/2018; R.K.S., P.L.M. & J.M.D.), Okinawa Institute
544 of Science and Technology (OIST) (T.R.) as well as the University of Hong Kong (HKU) start-up fund to C.S..

545 **Acknowledgements**

546 We would like to thank the KAUST Bioscience Core Lab and the Marine and Aquaculture Research Facilities
547 Unit at JCU for their help and support.

548 **References**

- 549 Aitken, A. E., Richardson, T. A., & Morgan, E. T. (2006). Regulation of drug-metabolizing enzymes and transporters in
550 inflammation. *Annual Review of Pharmacology and Toxicology*, 46(1), 123-149.
551 doi:10.1146/annurev.pharmtox.46.120604.141059
- 552 Alix, M., Kjesbu, O. S., & Anderson, K. C. (2020). From gametogenesis to spawning: How climate-driven warming
553 affects teleost reproductive biology. *Journal of Fish Biology*, 97(3), 607-632. doi:10.1111/jfb.14439
- 554 Andrews, S. (2010). FastQC: a quality control tool for high throughput sequence data. Retrieved from
555 <https://www.bioinformatics.babraham.ac.uk/projects/fastqc/>
- 556 Auge, G. A., Leverett, L. D., Edwards, B. R., & Donohue, K. (2017). Adjusting phenotypes via within- and across-
557 generational plasticity. *New Phytologist*, 216(2), 343-349. doi:10.1111/nph.14495
- 558 Bell, A. M., & Hellmann, J. K. (2019). An integrative framework for understanding the mechanisms and
559 multigenerational consequences of transgenerational plasticity. *Annual Review of Ecology, Evolution, and
560 Systematics*, 50(1), 97-118. doi:10.1146/annurev-ecolsys-110218-024613
- 561 Bell, A. M., & Stein, L. R. (2017). Transgenerational and developmental plasticity at the molecular level: lessons from
562 *Daphnia*. *Molecular Ecology*, 26(19), 4859-4861. doi:10.1111/mec.14327
- 563 Benjamini, Y., & Hochberg, Y. (1995). Controlling the false discovery rate - a practical and powerful approach to
564 multiple testing. *Journal of the Royal Statistical Society: Series B (Methodological)*, 57(1), 289-300.
565 doi:10.1111/j.2517-6161.1995.tb02031.x
- 566 Bernal, M. A., Donelson, J. M., Veilleux, H. D., Ryu, T., Munday, P. L., & Ravasi, T. (2018). Phenotypic and molecular
567 consequences of stepwise temperature increase across generations in a coral reef fish. *Molecular Ecology*,
568 27(22), 4516-4528. doi:10.1111/mec.14884
- 569 Bernal, M. A., Ravasi, T., Rodgers, G. G., Munday, P. L., & Donelson, J. M. (2021). Plasticity to ocean warming is
570 influenced by transgenerational, reproductive and developmental exposure in a coral reef fish. *Evolutionary
571 Applications*. doi:10.1111/eva.13337
- 572 Bernal, M. A., Schunter, C., Lehmann, R., Lightfoot, D. J., Allan, B. J. M., Veilleux, H. D., . . . Ravasi, T. (2020). Species-
573 specific molecular responses of wild coral reef fishes during a marine heatwave. *Science Advances*, 6(12).
574 doi:10.1126/sciadv.aay3423
- 575 BioBam Bioinformatics. (2019). OmicsBox – Bioinformatics Made Easy. Retrieved from
576 <https://www.biobam.com/omicsbox>
- 577 Bolger, A. M., Lohse, M., & Usadel, B. (2014). Trimmomatic: a flexible trimmer for Illumina sequence data.
578 *Bioinformatics*, 30(15), 2114-2120. doi:10.1093/bioinformatics/btu170
- 579 Bonduriansky, R., & Crean, A. J. (2018). What are parental condition-transfer effects and how can they be detected?
580 *Methods in Ecology and Evolution*, 9(3), 450-456. doi:10.1111/2041-210X.12848
- 581 Brakefield, P. M., & Mazzotta, V. (1995). Matching field and laboratory environments: effects of neglecting daily
582 temperature variation on insect reaction norms. *Journal of Evolutionary Biology*, 8(5), 559-573.
583 doi:10.1046/j.1420-9101.1995.8050559.x
- 584 Bugg, W. S., Thorstensen, M. J., Marshall, K. E., Anderson, W. G., & Jeffries, K. M. (2023). Elevated temperatures
585 reduce population-specific transcriptional plasticity in developing lake sturgeon (*Acipenser fulvescens*).
586 *Molecular Ecology*, 32(14), 4044-4062. doi:10.1111/mec.16967
- 587 Burgess, S. C., & Marshall, D. J. (2014). Adaptive parental effects: the importance of estimating environmental
588 predictability and offspring fitness appropriately. *Oikos*, 123(7), 769-776. doi:10.1111/oik.01235
- 589 Burggren, W. W., & Mueller, C. A. (2015). Developmental critical windows and sensitive periods as three-dimensional
590 constructs in time and space. *Physiological and Biochemical Zoology*, 88(2), 91-102. doi:10.1086/679906
- 591 Burton, T., & Metcalfe, N. B. (2014). Can environmental conditions experienced in early life influence future
592 generations? *Proceedings of the Royal Society B: Biological Sciences*, 281(1785), 20140311.
593 doi:10.1098/rspb.2014.0311
- 594 Cavieres, G., Rezende, E. L., Clavijo-Baquet, S., Alruiz, J. M., Rivera-Rebella, C., Boher, F., & Bozinovic, F. (2020).
595 Rapid within- and transgenerational changes in thermal tolerance and fitness in variable thermal
596 landscapes. *Ecology and Evolution*, 10(15), 8105-8113. doi:10.1002/ece3.6496
- 597 Chang, S. L., Lee, W.-S., & Munch, S. B. (2021). Separating paternal and maternal contributions to thermal
598 transgenerational plasticity. *Frontiers in Marine Science*, 8. doi:10.3389/fmars.2021.734318
- 599 Cho, H., Zhao, X., Hatori, M., Yu, R. T., Barish, G. D., Lam, M. T., . . . Evans, R. M. (2012). Regulation of circadian
600 behaviour and metabolism by REV-ERB- α and REV-ERB- β . *Nature*, 485(7396), 123-127.
601 doi:10.1038/nature11048
- 602 Dahlke, F. T., Wohlrab, S., Butzin, M., & Portner, H. O. (2020). Thermal bottlenecks in the life cycle define climate
603 vulnerability of fish. *Science*, 369(6499), 65-70. doi:10.1126/science.aaaz3658

- 604 Deutsch, C. A., Tewksbury, J. J., Huey, R. B., Sheldon, K. S., Ghalambor, C. K., Haak, D. C., & Martin, P. R. (2008).
605 Impacts of climate warming on terrestrial ectotherms across latitude. *Proceedings of the National Academy of
606 Sciences*, 105(18), 6668-6672. doi:10.1073/pnas.0709472105
- 607 Donelan, S. C., Hellmann, J. K., Bell, A. M., Luttbeg, B., Orrick, J. L., Sheriff, M. J., & Sih, A. (2020). Transgenerational
608 plasticity in human-altered environments. *Trends in Ecology & Evolution*, 35(2), 115-124.
609 doi:10.1016/j.tree.2019.09.003
- 610 Donelan, S. C., & Trussell, G. C. (2018). Synergistic effects of parental and embryonic exposure to predation risk on
611 prey offspring size at emergence. *Ecology*, 99(1), 68-78. doi:10.1002/ecy.2067
- 612 Donelson, J. M., Munday, P. L., McCormick, M. I., & Nilsson, G. (2011). Acclimation to predicted ocean warming
613 through developmental plasticity in a tropical reef fish. *Global Change Biology*, 17(4), 1712-1719.
614 doi:10.1111/j.1365-2486.2010.02339.x
- 615 Donelson, J. M., Munday, P. L., McCormick, M. I., Pankhurst, N. W., & Pankhurst, P. M. (2010). Effects of elevated
616 water temperature and food availability on the reproductive performance of a coral reef fish. *Marine
617 Ecology Progress Series*, 401, 233-243. doi:10.3354/meps08366
- 618 Donelson, J. M., Munday, P. L., McCormick, M. I., & Pitcher, C. R. (2012). Rapid transgenerational acclimation of a
619 tropical reef fish to climate change. *Nature Climate Change*, 2(1), 30-32. doi:10.1038/nclimate1323
- 620 Donelson, J. M., Salinas, S., Munday, P. L., & Shama, L. N. S. (2018). Transgenerational plasticity and climate change
621 experiments: where do we go from here? *Global Change Biology*, 24(1), 13-34. doi:10.1111/gcb.13903
- 622 Doney, S. C., Ruckelshaus, M., Duffy, J. E., Barry, J. P., Chan, F., English, C. A., . . . Talley, L. D. (2012). Climate change
623 impacts on marine ecosystems. *Annual Review of Marine Science*, 4(1), 11-37. doi:10.1146/annurev-marine-
624 041911-111611
- 625 Dury, G. J., & Wade, M. J. (2020). When mother knows best: a population genetic model of transgenerational versus
626 intragenerational plasticity. *Journal of Evolutionary Biology*, 33(1), 127-137. doi:10.1111/jeb.13545
- 627 Enders, E. C., & Boisclair, D. (2016). Effects of environmental fluctuations on fish metabolism: Atlantic salmon *Salmo
628 salar* as a case study. *Journal of Fish Biology*, 88(1), 344-358. doi:10.1111/jfb.12786
- 629 Fawcett, T. W., & Frankenhuys, W. E. (2015). Adaptive explanations for sensitive windows in development. *Frontiers in
630 Zoology*, 12(1), S3. doi:10.1186/1742-9994-12-S1-S3
- 631 Fox-Kemper, B., Hewitt, H. T., Xiao, C., Aðalgeirsdóttir, G., Drijfhout, S. S., Edwards, T. L., . . . Krinner, G. (2021).
632 Ocean, cryosphere and sea level change. In V. Masson-Delmotte, P. Zhai, A. Pirani, S. L. Connors, C. Péan, S.
633 Berger, N. Caud, Y. Chen, L. Goldfarb, M. I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J. B. R. Matthews, T. K.
634 Maycock, T. Waterfield, O. Yelekçi, R. Yu, & B. Zhou (Eds.), *Climate Change 2021: The Physical Science Basis.
635 Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate
636 Change*. Cambridge University Press.
- 637 Frölicher, T. L., Fischer, E. M., & Gruber, N. (2018). Marine heatwaves under global warming. *Nature*, 560(7718),
638 360-364. doi:10.1038/s41586-018-0383-9
- 639 Goodfellow, S. J., & Zomerdijk, J. C. B. M. (2013). Basic mechanisms in RNA polymerase I transcription of the
640 ribosomal RNA genes. In T. K. Kundu (Ed.), *Epigenetics: Development and Disease* (pp. 211-236). Dordrecht:
641 Springer Netherlands.
- 642 Grenchik, M. K., Donelson, J. M., & Munday, P. L. (2013). Evidence for developmental thermal acclimation in the
643 damselfish, *Pomacentrus moluccensis*. *Coral Reefs*, 32(1), 85-90. doi:10.1007/s00338-012-0949-1
- 644 Hales, N. R., Schield, D. R., Andrew, A. L., Card, D. C., Walsh, M. R., & Castoe, T. A. (2017). Contrasting gene
645 expression programs correspond with predator-induced phenotypic plasticity within and across generations
646 in *Daphnia*. *Molecular Ecology*, 26(19), 5003-5015. doi:10.1111/mec.14213
- 647 Hoegh-Guldberg, O., & Bruno, J. F. (2010). The impact of climate change on the world's marine ecosystems. *Science*,
648 328(5985), 1523-1528. doi:10.1126/science.1189930
- 649 Huang, J., Li, Y., Liu, Z., Kang, Y., & Wang, J. (2018). Transcriptomic responses to heat stress in rainbow trout
650 *Oncorhynchus mykiss* head kidney. *Fish & Shellfish Immunology*, 82, 32-40. doi:10.1016/j.fsi.2018.08.002
- 651 IPCC. (2023). *Climate Change 2021 – The Physical Science Basis: Working Group I Contribution to the Sixth Assessment
652 Report of the Intergovernmental Panel on Climate Change*. Cambridge: Cambridge University Press.
- 653 Johansen, J. L., & Jones, G. P. (2011). Increasing ocean temperature reduces the metabolic performance and
654 swimming ability of coral reef damselfishes. *Global Change Biology*, 17(9), 2971-2979.
655 doi:10.1111/j.1365-2486.2011.02436.x
- 656 Karelitz, S., Lamare, M., Patel, F., Gemmell, N., & Uthicke, S. (2019). Parental acclimation to future ocean conditions
657 increases development rates but decreases survival in sea urchin larvae. *Marine Biology*, 167(1), 2.
658 doi:10.1007/s00227-019-3610-5
- 659 Kim, D., Paggi, J. M., Park, C., Bennett, C., & Salzberg, S. L. (2019). Graph-based genome alignment and genotyping
660 with HISAT2 and HISAT-genotype. *Nature Biotechnology*, 37(8), 907-915. doi:10.1038/s41587-019-0201-
661 4

- 662 Kroeker, K. J., Bell, L. E., Donham, E. M., Hoshijima, U., Lummis, S., Toy, J. A., & Willis-Norton, E. (2020). Ecological
663 change in dynamic environments: accounting for temporal environmental variability in studies of ocean
664 change biology. *Global Change Biology*, 26(1), 54-67. doi:10.1111/gcb.14868
- 665 Kuijper, B., & Hoyle, R. B. (2015). When to rely on maternal effects and when on phenotypic plasticity? *Evolution*,
666 69(4), 950-968. doi:10.1111/evo.12635
- 667 Langfelder, P., & Horvath, S. (2008). WGCNA: an R package for weighted correlation network analysis. *BMC
668 Bioinformatics*, 9(1), 559. doi:10.1186/1471-2105-9-559
- 669 Le Roy, A., Loughland, I., & Seebacher, F. (2017). Differential effects of developmental thermal plasticity across three
670 generations of guppies (*Poecilia reticulata*): canalization and anticipatory matching. *Scientific Reports*, 7(1),
671 4313. doi:10.1038/s41598-017-03300-z
- 672 Lee, W.-S., Salinas, S., Lee, Y.-R., Siskidis, J. A., Mangel, M., & Munch, S. B. (2020). Thermal transgenerational effects
673 remain after two generations. *Ecology and Evolution*, 10(20), 11296-11303. doi:10.1002/ece3.6767
- 674 Leimar, O., & McNamara, J. M. (2015). The evolution of transgenerational integration of information in
675 heterogeneous environments. *The American Naturalist*, 185(3), E55-E69. doi:10.1086/679575
- 676 Liao, Y., Smyth, G. K., & Shi, W. (2014). featureCounts: an efficient general purpose program for assigning sequence
677 reads to genomic features. *Bioinformatics*, 30(7), 923-930. doi:10.1093/bioinformatics/btt656
- 678 Love, M. I., Huber, W., & Anders, S. (2014). Moderated estimation of fold change and dispersion for RNA-seq data
679 with DESeq2. *Genome Biology*, 15(12), 550. doi:10.1186/s13059-014-0550-8
- 680 Marshall, D. J., & Uller, T. (2007). When is a maternal effect adaptive? *Oikos*, 116(12), 1957-1963.
681 doi:10.1111/j.2007.0030-1299.16203.x
- 682 Munday, P. L., Donelson, J. M., & Domingos, J. A. (2017). Potential for adaptation to climate change in a coral reef
683 fish. *Global Change Biology*, 23(1), 307-317. doi:10.1111/gcb.13419
- 684 Nilsson, G. E., Crawley, N., Lunde, I. G., & Munday, P. L. (2009). Elevated temperature reduces the respiratory scope
685 of coral reef fishes. *Global Change Biology*, 15(6), 1405-1412. doi:10.1111/j.1365-2486.2008.01767.x
- 686 Nilsson, G. E., Östlund-Nilsson, S., & Munday, P. L. (2010). Effects of elevated temperature on coral reef fishes: loss of
687 hypoxia tolerance and inability to acclimate. *Comparative Biochemistry and Physiology Part A: Molecular &
688 Integrative Physiology*, 156(4), 389-393. doi:10.1016/j.cbpa.2010.03.009
- 689 Oliver, E. C. J., Donat, M. G., Burrows, M. T., Moore, P. J., Smale, D. A., Alexander, L. V., . . . Wernberg, T. (2018).
690 Longer and more frequent marine heatwaves over the past century. *Nature Communications*, 9(1), 1324.
691 doi:10.1038/s41467-018-03732-9
- 692 Osborn, A. J., Elledge, S. J., & Zou, L. (2002). Checking on the fork: the DNA-replication stress-response pathway.
693 *Trends in Cell Biology*, 12(11), 509-516. doi:10.1016/S0962-8924(02)02380-2
- 694 Pantano, L. (2021). DEGreport: Report of DEG analysis (Version R package version 1.30.0). Retrieved from
695 <http://lpantano.github.io/DEGreport/>
- 696 Pörtner, H.-O., Bock, C., & Mark, F. C. (2017). Oxygen- and capacity-limited thermal tolerance: bridging ecology
697 and physiology. *Journal of Experimental Biology*, 220(15), 2685-2696. doi:10.1242/jeb.134585
- 698 R Core Team. (2020). R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for
699 Statistical Computing. Retrieved from <https://www.R-project.org>
- 700 Radersma, R., Hegg, A., Noble, D. W. A., & Uller, T. (2018). Timing of maternal exposure to toxic cyanobacteria and
701 offspring fitness in *Daphnia magna*: Implications for the evolution of anticipatory maternal effects. *Ecology
702 and Evolution*, 8(24), 12727-12736. doi:10.1002/ece3.4700
- 703 Rummer, J. L., Couturier, C. S., Stecyk, J. A., Gardiner, N. M., Kinch, J. P., Nilsson, G. E., & Munday, P. L. (2014). Life
704 on the edge: thermal optima for aerobic scope of equatorial reef fishes are close to current day
705 temperatures. *Global Change Biology*, 20(4), 1055-1066. doi:10.1111/gcb.12455
- 706 Ryu, T., Veilleux, H. D., Donelson, J. M., Munday, P. L., & Ravasi, T. (2018). The epigenetic landscape of
707 transgenerational acclimation to ocean warming. *Nature Climate Change*, 8(6), 504-509.
708 doi:10.1038/s41558-018-0159-0
- 709 Ryu, T., Veilleux, H. D., Munday, P. L., Jung, I., Donelson, J. M., & Ravasi, T. (2020). An epigenetic signature for within-
710 generational plasticity of a reef fish to ocean warming. *Frontiers in Marine Science*, 7.
711 doi:10.3389/fmars.2020.00284
- 712 Salinas, S., Brown, S. C., Mangel, M., & Munch, S. B. (2013). Non-genetic inheritance and changing environments. *Non-
713 Genetic Inheritance*, 1. doi:10.2478/ngi-2013-0005
- 714 Salinas, S., Irvine, S. E., Schertzing, C. L., Golden, S. Q., & Munch, S. B. (2019). Trait variation in extreme thermal
715 environments under constant and fluctuating temperatures. *Philosophical Transactions of the Royal Society B*,
716 374(1768), 20180177. doi:10.1098/rstb.2018.0177
- 717 Salinas, S., & Munch, S. B. (2012). Thermal legacies: transgenerational effects of temperature on growth in a
718 vertebrate. *Ecology Letters*, 15(2), 159-163. doi:10.1111/j.1461-0248.2011.01721.x
- 719 Schaefer, J., & Ryan, A. (2006). Developmental plasticity in the thermal tolerance of zebrafish *Danio rerio*. *Journal of
720 Fish Biology*, 69(3), 722-734. doi:10.1111/j.1095-8649.2006.01145.x

- 721 Scheffers, B. R., De Meester, L., Bridge, T. C., Hoffmann, A. A., Pandolfi, J. M., Corlett, R. T., . . . Watson, J. E. (2016).
722 The broad footprint of climate change from genes to biomes to people. *Science*, 354(6313), aaf7671.
723 doi:10.1126/science.aaf7671
- 724 Schulte, P. M. (2015). The effects of temperature on aerobic metabolism: towards a mechanistic understanding of the
725 responses of ectotherms to a changing environment. *Journal of Experimental Biology*, 218(12), 1856-1866.
726 doi:10.1242/jeb.118851
- 727 Schunter, C., Jarrold, M. D., Munday, P. L., & Ravasi, T. (2021). Diel pCO₂ fluctuations alter the molecular response of
728 coral reef fishes to ocean acidification conditions. *Molecular Ecology*. doi:10.1111/mec.16124
- 729 Shama, L. N., Mark, F. C., Strobel, A., Lokmer, A., John, U., & Mathias Wegner, K. (2016). Transgenerational effects
730 persist down the maternal line in marine sticklebacks: gene expression matches physiology in a warming
731 ocean. *Evolutionary Applications*, 9(9), 1096-1111. doi:10.1111/eva.12370
- 732 Shama, L. N., Strobel, A., Mark, F. C., & Wegner, K. M. (2014). Transgenerational plasticity in marine sticklebacks:
733 maternal effects mediate impacts of a warming ocean. *Functional Ecology*, 28(6), 1482-1493.
734 doi:10.1111/1365-2435.12280
- 735 Shama, L. N., & Wegner, K. M. (2014). Grandparental effects in marine sticklebacks: transgenerational plasticity
736 across multiple generations. *Journal of Evolutionary Biology*, 27(11), 2297-2307. doi:10.1111/jeb.12490
- 737 Smith, S., Bernatchez, L., & Beheregaray, L. B. (2013). RNA-seq analysis reveals extensive transcriptional plasticity to
738 temperature stress in a freshwater fish species. *BMC Genomics*, 14(1), 375. doi:10.1186/1471-2164-14-
739 375
- 740 Sokolova, I. M., Frederich, M., Bagwe, R., Lannig, G., & Sukhotin, A. A. (2012). Energy homeostasis as an integrative
741 tool for assessing limits of environmental stress tolerance in aquatic invertebrates. *Marine Environmental
742 Research*, 79, 1-15. doi:10.1016/j.marenvres.2012.04.003
- 743 Song, J., Finnerty, C. C., Herndon, D. N., Boehning, D., & Jeschke, M. G. (2009). Severe burn-induced endoplasmic
744 reticulum stress and hepatic damage in mice. *Molecular Medicine*, 15(9), 316-320.
745 doi:10.2119/molmed.2009.00048
- 746 Spinks, R. K. (2021). *Phenotypic plasticity to warming in coral reef fishes: the importance of sex and exposure timing
747 within and between generations*. (Doctoral dissertation), James Cook University, ResearchOnline@JCU
748 database.
- 749 Spinks, R. K., Bonzi, L. C., Ravasi, T., Munday, P. L., & Donelson, J. M. (2021). Sex- and time-specific parental effects
750 of warming on reproduction and offspring quality in a coral reef fish. *Evolutionary Applications*, 14(4),
751 1145-1158. doi:10.1111/eva.13187
- 752 Spinks, R. K., Donelson, J. M., Bonzi, L. C., Ravasi, T., & Munday, P. L. (2022). Parents exposed to warming produce
753 offspring lower in weight and condition. *Ecology and Evolution*, 12(7), e9044. doi:10.1002/ece3.9044
- 754 Stavropoulou, E., Pircalabioru, G. G., & Bezirtzoglou, E. (2018). The role of cytochromes P450 in infection. *Frontiers in
755 Immunology*, 9.
- 756 Stein, L. R., Bukhari, S. A., & Bell, A. M. (2018). Personal and transgenerational cues are nonadditive at the
757 phenotypic and molecular level. *Nature Ecology & Evolution*, 2(8), 1306-1311. doi:10.1038/s41559-018-
758 0605-4
- 759 Strader, M. E., Kozal, L. C., Leach, T. S., Wong, J. M., Chamorro, J. D., Housh, M. J., & Hofmann, G. E. (2020).
760 Examining the role of DNA methylation in transcriptomic plasticity of early stage sea urchins: developmental
761 and maternal effects in a kelp forest herbivore. *Frontiers in Marine Science*, 7.
762 doi:10.3389/fmars.2020.00205
- 763 Turowski, T. W., & Tollervey, D. (2016). Transcription by RNA polymerase III: insights into mechanism and regulation.
764 *Biochemical Society Transactions*, 44(5), 1367-1375. doi:10.1042/bst20160062
- 765 Uller, T., Nakagawa, S., & English, S. (2013). Weak evidence for anticipatory parental effects in plants and animals.
766 *Journal of Evolutionary Biology*, 26(10), 2161-2170. doi:10.1111/jeb.12212
- 767 Veilleux, H. D., Ryu, T., Donelson, J. M., van Herwerden, L., Seridi, L., Ghosheh, Y., . . . Munday, P. L. (2015). Molecular
768 processes of transgenerational acclimation to a warming ocean. *Nature Climate Change*, 5(12), 1074-1078.
769 doi:10.1038/Nclimate2724
- 770 Waite, H. R., & Sorte, C. J. B. (2022). Negative carry-over effects on larval thermal tolerances across a natural
771 thermal gradient. *Ecology*, 103(1), e03565. doi:10.1002/ecy.3565
- 772 Wek, R. C., Jiang, H. Y., & Anthony, T. G. (2006). Coping with stress: eIF2 kinases and translational control.
773 *Biochemical Society Transactions*, 34(1), 7-11. doi:10.1042/BST0340007
- 774 West-Eberhard, M. J. (2003). *Developmental plasticity and evolution*: Oxford University Press.
- 775 Yang, X., Lamia, K. A., & Evans, R. M. (2007). Nuclear receptors, metabolism, and the circadian clock. *Cold Spring
776 Harbor Symposia on Quantitative Biology*, 72, 387-394.
- 777 Yin, J., Zhou, M., Lin, Z., Li, Q. Q., & Zhang, Y.-Y. (2019). Transgenerational effects benefit offspring across diverse
778 environments: a meta-analysis in plants and animals. *Ecology Letters*, 22(11), 1976-1986.
779 doi:10.1111/ele.13373

- 780 Zhao, X., Li, L., Li, C., Liu, E., Zhu, H., & Ling, Q. (2022). Heat stress-induced endoplasmic reticulum stress promotes liver
781 apoptosis in largemouth bass (*Micropterus salmoides*). *Aquaculture*, 546, 737401.
782 doi:10.1016/j.aquaculture.2021.737401
- 783 Zhu, A., Ibrahim, J. G., & Love, M. I. (2019). Heavy-tailed prior distributions for sequence count data: removing the
784 noise and preserving large differences. *Bioinformatics*, 35(12), 2084-2092.
785 doi:10.1093/bioinformatics/bty895
- 786