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s Abstract

1« Metagenome-assembled genomes (MAGs) offer valuable insights into the exploration of microbial dark
15 matter using metagenomic sequencing data. However, there is a growing concern that contamination
16 in MAGs may significantly impact the downstream analysis results. Existing MAG decontamination
v methods heavily rely on marker genes but do not fully leverage genomic sequences. To address the
18 limitations, we have introduced a novel decontamination approach named Deepurify, which utilizes
19 a multi-modal deep language model employing contrastive learning to learn taxonomic similarities of
2 genomic sequences. Deepurify utilizes inferred taxonomic lineages to guide the allocation of contigs
2 into a MAG-separated tree and employs a tree traversal strategy for maximizing the total number of
» medium- and high-quality MAGs. Extensive experiments were conducted on two simulated datasets,
23 CAMI I, and human gut metagenomic sequencing data. These results demonstrate that Deepurify

2 significantly outperforms other decontamination methods.

» Introduction

s Short-read metagenomic sequencing has gained popularity in investigating unculturable microbial
o genomes [1, 2, 3, 4], but single contigs assembled by short-reads often lead to fragmented and in-
s complete microbial genomes [5, 6, 7]. Several contig binning tools [8, 9, 10, 11] have been developed
2 to group contigs into metagenome-assembled genomes (MAGs) based on their abundances and se-
» quence contexts to represent microbial genomes. Several studies [12, 13, 14] claimed the qualities of
a those MAGs were comparable to the genomes from microbial isolates, but there has been a growing
» concern that contamination may seriously impact the qualities of MAGs [15]. MAG contamination
1 refers to a mixture of contigs from different microbes in the same MAG and those chimeric MAGs
s would substantially reduce the reliability of downstream ecological and evolutionary analyses. Bowers
55 et al. [16] suggested eliminating the MAGs with more than 10% contamination, but many microbes
s from MAGs with marginal contamination would be missed. In our preliminary study, we observed a
s considerable number of MAGs would be removed due to their marginal contamination values, even for
3¢ some high-abundance MAGs (Supplementary Note 1). This may result in the loss of a significant
s number of MAGs for subsequent downstream analysis.

40 Several tools [17, 18, 19, 20] have been developed to identify and remove the potentially contami-
a1 nated contigs from chimeric MAGs based on marker genes and the sequence characteristics from known
» species. Two pipelines [17, 18] published several years ago are no longer actively supported and have
s not been widely accepted by the community. More recent and actively supported tools are MAGpu-

w rify [19] and MDMcleaner [20]. MAGpurify was recently developed for MAG decontamination using
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s three sources of information: the phylogenetic or clade-specific marker genes, the GC contents, and
s tetranucleotide frequencies of contigs. MDMecleaner utilizes marker genes (coding, 16S, and 23S rRNA
« genes) to predict the taxonomic classification of contigs. The contig taxonomies are determined by the
s taxonomic Least Common Ancestor (LCA) of the involved marker genes and any contigs that have
w0 different annotations with the dominating taxon of the MAG would be removed.

50 Although MAGpurify and MDMcleaner show promising results, they suffer from several issues that
si1  hinder their widespread applications in various scenarios. First, both of them need to align marker
2 genes/contigs to the reference databases and this approach is inapplicable to novel microorganisms.
53 As previously observed, it has been noted that the reference genomes available in RefSeq (117,030 as
s« of March 11, 2022) only account for less than 5.319% of all species [21]. In addition, the alignment
s is time-consuming even if the built-in databases are optimized (Supplementary Note 2). Second,
ss  previous study [22] has pointed out that many factors have the potential to reduce the performance of
sz alignment-based tools on phylogenetic analysis, such as sequence misalignment, false-orthologous as-
ss  signment, gene duplication or loss events, horizontal gene transfer, and the presence of homoplasy, etc.
so  Third, various genomic alterations, including genomic variations, alterations in gene order, and genome
o rearrangements, among others, have been identified as factors enhancing the resolution and reliability
s of differentiating the genomic sequences from different species [23]. These forms of evidence can offer
& invaluable insights that are uniquely attainable through whole genome sequences. Fourth, we found a
3 majority of contamination in MAGs occurred at the genus and species levels (Supplementary Note
s 3) and both MAGpurify and MDMcleaner demonstrated poor performance at these low taxonomic
s ranks (Supplementary Note 4).

66 In this study, we developed Deepurify for MAG decontamination with high resolution and general-
o7 ization using a multi-modality deep language model. In the training procedure, Deepurify developed
¢ two distinct encoders, a genomic sequence encoder (GseqFormer, Methods) and a taxonomic encoder
oo (Long short-term memory, LSTM) to encode genomic sequences and their source genomes’ taxonomic
o lineages, respectively. Next, Deepurify learned their relationships in different taxonomic ranks using
7 contrastive training (Figure 1). In the decontamination process, Deepurify initially quantified the
72 taxonomic similarities of contigs by assigning taxonomic lineages to them (Figure 2 a). It then used
7z these lineages to construct a MAG-separated tree, partitioning the MAG into distinct sections, each
7+ containing contigs with the same lineage (Figure 2 ¢). This approach optimized contig utilization
7 within the MAG, avoiding immediate removal of contaminated contigs. It was especially effective for
7 MAGs with high contamination rates. Lastly, a tree traversal algorithm was devised to maximize the
77 count of medium- and high-quality MAGs within the MAG-separated tree (Figure 2 d).

78 We observed that Deepurify outperformed two state-of-the-art tools MAGpurify and MDMcleaner
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79 in simulated, CAMI I challenge (high, mediuml, medium?2, and low) [24] and human gut metagenomic
s sequencing data [25, 26]. For simulated data, chimeric MAGs were created by mixing the sequences
s from two microbial genomes at various taxonomic ranks, with contamination rates from 5% to 20%.
22 Deepurify achieved balanced macro F1-scores almost twice as high as that of MAGpurify across all tax-
&z onomic ranks and 1.5 times higher than that of MDMecleaner at the genus and species ranks (Figure 3,
s« Supplementary Table 3) on average. Additionally, Deepurify demonstrated outstanding generaliza-
s tion capabilities, where it achieved excellent accuracy in identifying contaminated contigs even if their
g source genomes were absent from the training set (Figure 4, Supplementary Table 4). For CAMI I
& and a human gut metagenomic sequencing dataset, S1 [25], we applied Deepurify to the results of four
s mainstream contig binning tools (VAMB [8], CONCOCT [9], MetaBAT?2 [11], and MaxBin [10]), and
g0 the results showed that it could substantially improve MAG quality, surpassing both the MAGpurify
o and MDMcleaner for all binning tools. Next, we applied Deepurify to a large metagenomic sequencing
o dataset derived from a diarrhea-predominant Irritable Bowel Syndrome (IBS-D) cohort, including 290
» patients and 89 healthy controls [26]. We found Deepurify could rescue 70.12% highly contaminated
i3 MAGs (completeness > 50% and contamination > 25%) to medium- (completeness > 50% and con-
o tamination < 10%) and high-quality (completeness > 90% and contamination < 5%) MAGs. The
s corresponding percentages of MAGpurify and MDMecleaner were only 1.4% and 0.7%, respectively.
o6 Moreover, we compared the annotation of these MAGs before and after MAG decontamination and
o identified five new species (Supplementary Table 5) and one new genus (Supplementary Table

e 6). Among them, one of the species demonstrated a suggestive association with IBS-D.

«» Results

w Deepurify architecture and decontamination workflow

1w Deepurify was a multi-modal deep language model developed specifically to remove contaminated
102 contigs from a MAG. Figure 1 b and Figure 2 depict the fundamental architecture and decontamination
s workflow of Deepurify. Its architecture resembles that of CLIP [27], a well-established multi-modal
1« model incorporating two encoders designed to process data from two modalities: 1). GseqFormer, for
s encoding genomic sequences, and 2). LSTM, for encoding taxonomic lineages (Methods). During
s training, we utilized contrastive learning to empower Deepurify to distinguish between real (positive)
wr  and fake (negative) taxonomic lineages of a sequence (Figure 1). This distinction is based on the
108 cosine similarity between normalized encoded sequences and both positive and negative normalized
109 encoded lineage vectors. Positive encoded lineages should exhibit higher cosine similarity with encoded

o sequences compared to negative ones. During the decontamination process (Figure 2), Deepurify first
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m  assessed the taxonomic similarities of contigs by computing cosine similarity scores between the contigs
2 and lineages in the taxonomic tree. Subsequently, it assigned the lineages to the contigs based on the
us  highest similarity (Figure 2 a). Deepurify devised a scheme involving the construction of a MAG-
s separated tree to maximize the effective utilization of contigs, without directly discarding contaminated
us ones within a MAG (Figure 2 ¢). This scheme was especially valuable in MAGs with high contamination
us rates. The MAG-separated tree partitioned contigs within the MAG into distinct branches according
w7 to their predicted taxonomic lineages across multiple taxonomic ranks. Each node in the tree contains
us contigs sharing the same taxon at that rank. Deepurify identified and applied single-copy genes (SCGs)
1o to each node to prevent duplication of SCGs within it. Finally, Deepurify applied CheckM [28] to each
0 node of the tree and employed a depth-first search (DFS) algorithm to traverse the MAG-separated

21 tree to maximize the count of high- and medium-quality MAGs (Methods; Figure 2 d).

2 Development of simulated testing sets

123 We generated two simulated testing sets, SIM; and SIM,, to evaluate Deepurify’s capability in distin-
¢ guishing between core and contaminated contigs within a chimeric MAG. The SIM; testing set assessed
125 Deepurify’s decontamination performance when the source genomes of both core and contaminated
126 contigs were part of the training set. Conversely, the STM; testing set evaluated its performance when
7 the source genomes of the contigs were either included or excluded from the training set. A simulated
s chimeric MAG primarily consisted of core contigs, with a minority being contaminated. We referred to
120 the source genomes of core contigs as “core” genomes and the source genomes of contaminated contigs
130 as “contaminated” genomes.

131 In our chimeric MAG simulation, we simulated contamination occurring at different taxonomic
12 ranks by randomly selecting core and contaminated genomes from two species at varying taxonomic
133 distances on the taxonomic tree. The LCAs of these two species’ lineages ranged from kingdom to
1 genus (lineages differ starting from phylum to species). Each simulated MAG consisted of 200 contigs,
135 with lengths distributed uniformly between 1,000 bps and 8,192 bps. We generated 50 simulated MAGs
s for different contamination proportions (5%, 10%, 15%, and 20%) at each taxonomic rank of LCA.
137 The test set of STM; was generated using the genomes that were all included in its training set G S,
s (Methods). For STMy, its training set G.S, (Methods) lacked either core or contaminated genomes,
1o resulting in four scenarios for simulation: 1. both core and contaminated genomes included in the G'S,
uw (SIM3); 2. only core genomes included in the GS, (SIM3); 3. only contaminated genomes included
w  in the GS, (SIM3); 4. both core and contaminated genomes were not included the GS, (SIM3).
12 To address the imbalance issue between the number of core and contaminated contigs in a simulated

13 MAG, we utilized a balanced macro F1-score to evaluate the performance of MAGpurify, MDMcleaner,
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us  and Deepurify.

ws  Deepurify has superior purification performance on SI1M;

us  We applied MAGpurify, MDMcleaner, and Deepurify to SITM; testing set and we observed that Deep-
wr  urify outperformed MAGpurify significantly across all taxonomic ranks and contamination proportions
s (Figure 3, Supplementary Table 3). Compared to MAGpurify, Deepurify increased the overall aver-
us aged Fl-score by 45.18% (phylum), 76.75% (class), 80.53% (order), 89.75% (family), 90.51% (genus),
s and 78.02% (species) across different contamination proportions. We observed that Deepurify and
11 MDMcleaner performed comparably when the lineages of core and contaminated genomes differed at
12 higher taxonomic ranks such as phylum, class, and order. However, Deepurify exhibited significant
153 improvements when the differences in lineages began at the family, genus, and species ranks, with
1sa an overall average Fl-score increase of 8.45% (family), 40.54% (genus), and 63.72% (species) com-
155 pared to MDMcleaner. This fact suggested Deepurify could be more efficient to be applied in real
155 metagenomic sequencing data, as most of the MAG contamination was found to exist at the genus
57 and species (Supplementary Note 3). We noticed that the Fl-scores of MAGpurify, Deepurify,
155, and MDMcleaner decreased as the taxonomic ranks became lower. This could be due to the higher
159 proportion of homologous sequences between the core and contaminated genomes at the genus and
160 sSpecies taxonomic ranks.

161 We also observed the standard deviations (SD) of the Fl-scores of Deepurify were considerably
12 lower than those of MAGpurify and MDMcleaner suggesting Deepurify was more robust regardless of
163 the sources of contamination. On the one hand, the SD of Fl-scores of MAGpurify were consistently
s reduced at taxonomic ranks from high to low, revealing it is more conservative to remove contigs
s at low taxonomic ranks. Consequently, it may not effectively remove contaminated contigs when
16 contamination occurs at these lower taxonomic ranks. On the other hand, the SD of Fl-scores of
17 MDMcleaner were the highest at genus and species ranks, indicating that it was not stable in accurately
168 distinguishing between genomes with homologous sequences. Furthermore, we observed an opposite
160 trend between the contamination rates and the average Fl-score of MAGpurify. This indicates that
1w MAGpurify was not able to eliminate contaminated contigs at high rates of contamination efficiently.
i Although MDMcleaner’s performance remained relatively stable across different contamination rates,
2 it experienced a significant decline as taxonomic ranks decreased. Deepurify emerged as the most

173 efficient and robust model across all tested conditions.
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w  Deepurify has strong generalization ability for novel microbes

s As MAGpurify and MDMcleaner did not provide any interface to allow users to rebuild their databases,
ws we could not evaluate them on the STMs testing set. We applied Deepurify on SIM; and we found
w7 that the Fl-scores of Deepurify were only marginally reduced regardless of core or contamination
s genomes absent from the training sets (Figure 4, Supplementary Table 4). We used the performance
1w of Deepurify on SIMJ} (all genomes were included in the training set) as the baseline. In SIM3
10 (contaminated genomes excluded in the training set), the Fl-score reduction from phylum to species
w1 rank was the smallest, with only a 1.07% decrease at the phylum rank and a 17.4% decrease at
w2 the species rank. Conversely, SIMj (both core and contaminated genomes were excluded in the
183 training set) exhibited the greatest reduction, with a 19.65% decrease in Fl-score at the phylum rank
w  and a 24.48% decrease at the species rank. The observations aligned with our expectations since
15 understanding the sequences’ pattern of the core genomes was essential for the purification of MAGs.
1ws Furthermore, we noted a slight decrease of merely 1.07% and 6.81% in the Fl-scores for STMZ2 when
w7 the lineages were different from phylum to family. Nonetheless, a substantial disparity of 11.84% for
s genus and 17.14% for species was observed. This finding indicates that Deepurify exhibited greater
180 efficacy in removing contamination when it occurs at higher ranks, irrespective of their inclusion in
1o the training set. In contrast, addressing contamination at lower taxonomic ranks proved to be more

w1 challenging due to the increased presence of homologous sequences.

1 The impact of homologous sequences and contig length on MAG decontam-

193 ination

e For a simulated MAG, we defined the contigs as derived from homologous sequences if they could be
s aligned to both core and contaminated genomes (Methods). In the test set of SIM;, we identified
s contigs from homologous sequences at various taxonomic ranks: 142 at phylum, 832 at class, 3,015 at
w7 order, 4,429 at family, 8,048 at genus, and 17,169 at species. The number of contigs from homologous
18 sequences increased from phylum to species, which could explain the reason for the performance
1o declination of MAGpurify, MDMcleaner, and Deepurify if contamination derived from the LCAs of
20 genomes at low taxonomic ranks.

201 Furthermore, we categorized the contigs based on their lengths (intervals of 1,000 bps) to assess the
22 influence of contigs’ length on the performance of Deepurify. Deepurify showed better performance on
203 long contigs compared to short ones (Supplementary Figure 8, Supplementary Table 7) probably

24 because long contigs could provide more information on the genomic context of their source genomes.
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»s Deepurify improves the qualities of MAGs from different contig binning

w6 tools

27 We applied MAGpurify, MDMcleaner, and Deepurify to the MAGs generated by MaxBin, MetaBAT?2,
28 VAMB, and CONCOCT to examine if they could increase the number of medium- and high-quality
20 MAGs. The contigs of CAMI I and human gut metagenomic sequencing (S1) were downloaded from
20 our previous study [25] (Methods). We used two criteria to evaluate the performance of MAG
an  decontamination: 1. the increased number of medium- (/N M,,,) and high-quality MAGs (IN My,); 2.
22 the improved quality score (IQS), which measures the overall MAG quality improvement (Methods).
213 Deepurify consistently outperformed the other two tools in nearly all datasets and contig binning
2e - methods (Figure 5, Supplementary Table 8). On average, across all datasets and binning methods,
as  Deepurify exhibited 2.87-fold (1.33-fold) and 5.15-fold (4.16-fold) higher mean value for the INMj,
us  and INM,,, compared to MAGpurify (MDMcleaner). Interestingly, the IN My, and INM,,, values
a7 of Deepurify for all binning tools were commonly positive except for VAMB on the high-complexity
28 community in CAMI I (VAMB does not work well on a single sample) and the values for MAGpurify
219 and MDMclean were more frequently to be observed negatively. In Figure 6, we depict the completeness
20 and contamination rates of MAGs, before and after purification with MAGpurify, MDMcleaner, and
21 Deepurify, using data from CAMI I and S1. We also employ a generalized additive model to create
22 a smooth curve, effectively capturing the contamination trends within these MAG datasets. It was
223 observed that Deepurify consistently outperformed the others by having the smallest areas under the
24 Curve.

25 Deepurify demonstrated remarkable performance superiority over MAGpurify (IQS: 29.21-fold on
26 average for all cases) and MDMcleaner (IQS: 1.82-fold on average for all cases), especially on the
27 binning results of CONCOCT, VAMB, and MetaBAT2 (Figure 7, Supplementary Table 9). These
»s oObservations suggested that Deepurify was more effective in improving contig binning performance
29 than other tools as many low-quality MAGs were able to be upgraded to medium- or high-quality
220 MAGs.

»  Deepurify outperforms other purification tools on real-world data

2 We further applied Deepurify to the human gut metagenomic sequencing data from 290 IBS-D patients
2 and 89 healthy controls [26]. The sequencing data were assembled by metaSPAdes [5] followed by contig
2% binning using MetaBAT2 (Methods), which generated 4,887 high-quality and 5,943 medium-quality
25 MAGs. We selected 713 MAGs with high contamination (completeness > 50% and contamination

26 > 25%) to evaluate the efficacy of Deepurify on MAG decontamination. Our examination revealed
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27 that MAGpurify and MDMcleaner could enhance the quality of only a small fraction of these highly
28 contaminated MAGs. Specifically, MAGpurify improved 1.4% of them to high- and medium-quality
o MAGs (INMp, =1, INM,,, =9), while MDMcleaner improved 0.7% of them to high- and medium-
2o quality MAGs (INMpg = 1, INM,,q = 4). Deepurify demonstrated a remarkable ability for MAG
21 decontamination, as it was able to rescue a significant proportion of these MAGs, 70.12% of them
22 (INMpg = 3, INMy,q = 497). Deepurify demonstrated a significantly elevated IQS at 248994.46,
23 surpassing both MAGpurify, which has an IQS of 17772.28, and MDMcleaner, with an IQS of 14466.47.
24 The contamination rates of these MAGs were mostly reduced to below 10% after undergoing MAG
25 decontamination using Deepurify whereas the values obtained from the other tools were considerably

25 higher (Figure 8 a).

«» Deepurify identified novel IBS-D association signals

28 We examined all high-quality (4,931) and medium-quality (6,539) MAGs obtained from the IBS-D
29 cohort after Deepurify decontamination to identify novel association signals. We utilized GTDB-TK
0 [29] (Methods) to annotate these MAGs both before and after Deepurify’s purification process. Upon
51 comparing the MAG annotation results, we identified five new species (Supplementary Table 5) and
2 one new genus (Supplementary Table 6). We performed an association analysis of IBS-D on the
3 678 MAGs, which were initially categorized as low-quality but were reclassified as medium- or high-
¢ quality after decontamination (Methods). This analysis identified several suggestive signals (P-value
255 < 0.05) including one novel species (s__Collinsella sp900541055), and two confirmed species (Alistipes
26 [30] and Ruminococcus gnavus [31, 32]) that were known to be associated with IBS-D. Lastly, we
7 showed the completeness and contamination rates for all MAGs in the IBS-D cohort before and after
»s  purification by Deepurify in Figure 8 b. This plot demonstrated Deepurify’s remarkable ability to

0 purify contaminated contigs in MAGs.

x 1Jiscussion

s Utilizing genome assembly with short-read metagenomic sequencing data has become a prevalent
%2  method to decipher microbial compositions in complex environments. However, each assembled
%3 metagenomic contig only partially represents a microbial genome. It is therefore crucial to perform
s contig binning to obtain contig sets with similar genomic characteristics and abundances, which then
265 represent MAGs that originate from the same microbe. As was highlighted in a recent paper [15],
%6  MAG contamination is a significant stumbling block during contig binning on single sample assem-

s7  bly. Decontamination tools, such as MAGpurify and MDMcleaner, have been developed to address


https://doi.org/10.1101/2023.09.27.559668
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.09.27.559668; this version posted September 29, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

»%s the challenge of eliminating contaminated contigs from MAGs. Nonetheless, these tools demonstrate
xe several limitations. Most notably, they are ineffective in distinguishing contigs from each other if their
o core and contaminated genomes belong to the same family or genus. Furthermore, these tools are
on unable to process contigs whose source genomes are absent from their built-in databases. And thirdly,
o2 they mainly focus on genes, with genomic variations such as gene order and genome rearrangements
213 being left out of consideration.

274 To address these limitations, we developed Deepurify, a novel tool that uses deep language models
s to learn the relationship between microbial genomes and their taxonomic lineages. Deepurify models
s all nucleotides in sequences and can learn local genomic alternations between adjacent species in the
o7 training set. This approach allows Deepurify to handle contigs without known genes. Deepurify has a
;s superior decontamination capacity, particularly if the contigs share a high proportion of homologous
a0 sequences (Supplementary Note 4). It also outperformed the existing tools if the source genomes
280 of contigs were not included in the training dataset. Deepurify could significantly speed up the MAG
21 decontamination procedure with GPU acceleration (Supplementary Note 2), which allows scaling
22 of decontamination to large numbers of MAGs. The primary runtime bottleneck for Deepify lies in
23 the duration required for running CheckM, which is nearly twice as long as inferring lineages for the
28 contigs within MAGs. The efficiency of Deepurify’s execution could be significantly improved with a
25 method to expedite the CheckM runtime.

286 Deepurify adopts a unique approach to optimize the utilization of contigs within a MAG. Instead
27 of adopting the common practice of directly discarding contaminated contigs, Deepurify constructs a
s MAG-separated tree for filtering. This innovative strategy proves especially advantageous in scenarios
20 where MAGs exhibit a substantial degree of contamination, typically exceeding a contamination rate
200 of 100%. Deepurify has the ability to resolve a highly contaminated MAG into two separate MAGs,
20 typically falling within the high- or medium-quality range. On occasion, it may yield three or more
22 MAGs that hold potential for further utilization.

203 Our experiments demonstrated the remarkable efficacy of Deepurify in decontaminating MAGs
24 from short-read assembly. We hold a strong belief that its applicability extends to contigs derived
25 from long-read assemblies, accompanied by two distinct advantages: Firstly, contigs derived from long-
26 read assemblies are significantly longer than those from short-read assemblies. It offers Deepurify a
27 substantially enriched sequence context, thereby enhancing its capacity for decontamination. Secondly,
28 single-base substitutions and indel errors are frequently observed in long-read assemblies [33], which
200 we placed emphasis on during the development of Deepurify’s training procedure (Supplementary
w0 Note 6). It is worth mentioning that contemporary decontamination tools do not typically consider

31 sequence noise.

10
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302 On the other hand, it is important to note that Deepurify cannot deal with overly large misas-
33 semblies in contigs (such as chimeric contigs, translocations, etc.). We observed that for some MAGs
s Deepurify failed to achieve its specified decontamination standard because a designated single-copy
s gene was detected multiple times. Chimeric contigs may therefore remain a challenge to Deepurify
36 since they could substantially influence the local context of sequences, which may adversely impact
sr the quantification of taxonomic similarity between contigs in a MAG. To mitigate the influence of such
28 misassemblies, we recommend that users apply assembly error correction tools such as metaMIC [34]

39 prior to using Deepurify.

w» Methods

.1 Preparing and processing microbial reference genomes

sz We downloaded microbial representative genomes and their taxonomic lineages from proGenomes v2.1
as  database [35] to generate two training sets GS., GS), for model training and two simulated testing sets
su STM; and STM, for evaluating. We excluded the microbial genomes without phylum annotations or
as  if the phyla they belonged to had less than 15 species. For microbes with only phylum and species

315 annotations, all other taxonomic ranks inbetween were annotated as “Unclassified”.

s+ Training sets construction

s After data preprocessing, we generated two training sets for STM; and STMs: 1. a complete reference
a0 genome training set (GS.) consisting of the genomic sequences from 10,332 species belonging to 37
20 phyla (Supplementary Table 10); 2. a partial reference genome training set (G'S,) by randomly
s selecting 112 species, which come from 12 phyla (Supplementary Table 11) in GS.. GS, was used
22 to evaluate the performance of Deepurify when either core or contaminated genomes were not included
23 in the training set.

324 During the training stage, we sampled the contig-sized sequences from the genomes in G'S. and GS,.
w25 The sequence lengths ranged from 1,000 bps to 8,192 bps, following a pre-defined contig length distribu-
26 tion learned from a real metagenomic assembly exercise (Supplementary Note 5). We randomly in-
w7 corporated into these sequences insertions, deletions, and single nucleotide variants (Supplementary
»s  INote 6) in order to reduce the impact of sequencing errors and enhance model generalization capabil-

30 ities.
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w MAG generation for SIM; and SIM,

s We simulated chimeric MAGs for use in STM; and SIM; sets for evaluation: 1. For SITMj, all source
s genomes of contigs were included in GS.; 2. For SIMs;, some source genomes of contigs might be
3 absent from GS,. For SIM;, we randomly selected the genomes of two distinct lineages (SP; and
m  SP) in GS. and simulated 200 contigs from them with lengths between 1,000 bps and 8,192 bps and
15 with varying proportions of contigs from SP» (5%, 10%, 15%, and 20%) for each MAG. The lineage
16 LCAs of SP; and SP, were traversed from kingdom to genus (lineages differ starting from phylum to
s species). We generated 50 MAGs for each mixture proportion and on each taxonomic rank of LCA.
us  For SIMs, we followed a similar chimeric MAG simulation procedure as we did for STM;, the only
s difference being that SP; and SP, may be extracted from either GS, or from GS. — GS,. There
s are four permuted scenarios for SIMs: 1. both core and contaminated genomes are included in the
w  GS, (SIM3}); 2. only core genomes are included in the GS, (SIM3); 3. only contaminated genomes
% are included in the GS, (STM3); 4. neither core nor contaminated genomes are included in the GS),

343 (SIM;)

s Generate MAGs from contig binning tools

15 We downloaded the metagenomic sequencing datasets from CAMI I with low, medium (two datasets),
us and high complexity and from a human stool sample (S7) [25]. The contigs of these datasets were
s assembled by metaSPAdes with default parameters. Contigs were grouped as MAG using VAMB
s (contig length > 1kbps), CONCOCT (contig length > 1kbps), MaxBin (contig length > 1kbps), and
a0 MetaBAT?2 (contig length > 1.5kbps). We only kept MAGs from VAMB with a completeness of at

30 least 50% to exclude the MAGs with few contigs (e.g. < 3 contigs).

s MAG quality definitions

2 MAGs are typically classified into distinct quality categories based on their degrees of completeness
3 and contamination. High-quality MAGs are defined by completeness levels equal to or exceeding 90%
s« and contamination levels at or below 5%. Medium-quality MAGs are characterized by completeness
5 levels of 50% or higher, with contamination levels below or equal to 10%. MAGs failing to meet the

6 high or medium-quality criteria are categorized as low-quality.

s 1BS-D real-world validation study

s We applied metaSPAdes with default parameters to assemble short-read metagenomic sequencing data

9 from 290 IBS-D patients and 89 healthy controls. The contigs longer than 1.5kb were grouped into

12
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w0 MAGs by MetaBAT2. We evaluated MAGpurify, MDMcleaner, and Deepurify on the MAGs with

s completeness > 50% and contamination > 25%.

2 Microbial taxonomic annotation

s We used GTDB-Tk [29] to annotate and allocate MAGs to the taxonomic tree. A MAG would be
;e annotated as a particular species (grey represents its genome) if 1. its average nucleotide identity with

365 gref is 0O less than 95% and 2. its alignment fraction against g,.s is no less than 65%.

w ldentification of homologous sequences

7 We conducted BLASTN alignments between the core contigs and the contaminated genomes, as well
s as between the contaminated contigs and the core genomes. Contigs with an E-value less than 1e™6

w0 were considered aligned and would be categorized as sequences derived from homologous sequences.

= Metrics for performance evaluation

sn For simulated chimeric MAGs, we applied a balanced macro Fl-score to evaluate the performance of
sz MAG decontamination to mitigate the influence of unbalanced numbers of contigs from SP; and SPs.
sz For the binned MAGs that were generated from CAMI I, S; and the IBS-D cohort, we adopted two
s criteria to evaluate the improvement of MAG qualities: 1. total increased number of high- (complete-
w5 ness > 90% and contamination < 5%) and medium-quality (completeness > 50% and contamination

s < 10%) MAGs; 2. increased quality score (IQS)

1QS=Y"QS,i— Y QS
. : W
= Z(CNPJ —5H X CTp,i) — Z(CNq’j —5Hx CTqﬁj)
% J

sn where n, and ng denote the total number of high- and medium-quality MAGs after and before MAG
s decontamination, respectively. CN,; (CN, ;) and CT,; (CT, ;) are the completeness and contamina-

s tion values of the MAGs after (before) MAG decontamination.

w Architecture of Deepurify
1 Genomic sequence and taxonomic lineage encoders

2 Deepurify utilizes GseqFormer and LSTM to encode genomic sequences and taxonomic lineages into

3 1024-dimensional space. The fundamental architecture of Deepurify is illustrated in Figure 1 b.

13
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s GseqFormer: Genomic sequence encoder. The genomic sequences were represented as a uni-
;s fied embedded matrix by concatenating the sequence representations with one-hot, 3-mers, and 4-mers
1 (Supplementary Note 7). We developed GseqFormer to encode the sequence-embedded matrix in
37 high dimensional space. It was built on the structure of UniFormer [36], which takes advantage of trans-
s former and convolutional neural networks (CNNs). We substituted the attention module of UniFormer
10 with a new gated self-attention module, which was modified from Evoformer [37] (Supplementary
30 Note 8). Because UniFormer has a limitation in modeling long sequences (;1,000 bps), we adopted
s EfficientNet [38] to compress the input sequences into 512 tokens. This strategy enables the maximum
32 lengths of input sequences up to 8,192 bps. Additionally, we incorporated a variety of tricks [39, 40, 41]

303 into EfficientNet for efficient training and improved model robustness (Supplementary Note 9).

s LSTM: Taxonomic lineage encoder. The taxonomic lineage (T; = [tp,,te;, o515 tg;»ts;]) Of &
ws  sequence (s;) at species rank was considered as a sentence that concatenates taxon (t,) at different
ws taxonomic ranks (k;), spanning from phylum to species. The taxonomic sentence would be encoded

sr by a b-layer LSTM model.

ws Deepurify training procedure
s Contrastive training

w0 For a sequence s;, we represented its normalized encoded vector as 5, and the normalized encoded
s vector of its taxonomic lineage at the species rank as 0r,.The prefix of T; before k; rank denotes as
we Ty, = [< tg,]. We leveraged contrastive training to enable Deepurify to discriminate true (positive
ws label, Ty,) and multiple fake (negative labels, Tj;) taxonomic lineages for a given sequence s;. During
w0+ training, we randomly selected k; and created fake taxonomic lineages (7%;) from the taxonomic tree
ws for contrastive, making sure they were distinct from T, (Supplementary Note 10).

406 We applied four loss functions in contrastive training, including 1. sequence-taxonomy (ST) loss,
wr 2. lineage-phyla (LP) loss, 3. indel loss, and 4. phyla-rank (PR) loss. Deepurify’s primary objective
ws is to optimize ST loss, which aims to make 05, have higher cosine similarity with OTki than with HTkj .

w0 The ST loss (Lgr) is defined as:

LST = _[(1 — P(asw aTki )log(P(esﬂaTki ))] (2)

410

emp(d(esi ) eTki )/T)
>y eap(d(9s,,0r,,)/7) + exp(d(8s,, 1, )/7)

P(esl ’ 9Tki) - (3)

an where d(0s,, 07, ) = HZ: 0r, , T is a learnable parameter, J is the number of negative labels used

a2 in contrastive training. The numbers of species are different across phyla, which leads to unbalanced

14
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a3 sequences in the training set. We applied an oversampling strategy (Supplementary Note 11) and
as  the focal loss [42] to mitigate this problem.
415 The goal of LP loss (Lyp) is to establish a taxonomic encoder to minimize the distance between

416 QTk‘

and the phylum that s; belongs to (6;, ).

Lyp = ReLU(a —d(0r,,,0y,,)) + ReLU(d(0r,, 01, ) — B) (4)

ar where o and B are between 0 and 1, which control the cosine similarities between d(fr, ,0;, ) and
418 d(GTkl s Qtpj )
419 The aim of indel loss was to enable GseqFormer to accept the sequences with insertions and infer

20 masked sequences.

M|V
1 m m
Linper = —[Yinslog(Pins(0s,)) + (1 = Yins)log(1 — Pins(0s,)) + W Z ZYdel)qZOQ(Pdeiq)] (5)
m=1qg=1

2 where Py,5(0s,) is the predicted probability of s; including insertions, and Y;,s = 1 indicates s; includ-
a2 ing insertions. M is the number of masked positions in s; and each position has six candidate values
o (V={AT,C, G, N,padding}). P;;? is the predicted probability of m-th masked position equals to

w2 Vg (Ve V). Y% =1 if the m-th masked position is V.

25 PR loss was used to examine the taxonomic inference of Deepurify on phylum rank.
C
Lpr = —[)_ Yelog(P(6,,))] (6)
c=1

26 where C' is the number of phyla in the taxonomic tree, Y, = 1 if s; belongs to the phylum ¢, P(f,) is
27 the predicted probability of s; belongs to the phylum c.

28 Therefore, the final training loss function of Deepurify is defined as follows:

L=~Lsr+ Lrp+ LinpeL +LpPr (7)

2 We set v = 2 in our experiments to emphasize the importance of Lgpr in Deepurify training. The

w0 settings of other hyper-parameters were similar to UniFormer [36] (Supplementary Note 12).
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= Deepurify MAG decontamination procedure
a2 Quantifying sequence taxonomic similarity

a3 Deepurify utilized GseqFormer to encode genomic sequences and then to quantify their taxonomic
s similarities. This is achieved by identifying the taxonomic lineage from the taxonomic tree that exhib-
5 ited the highest similarity with the genomic sequences (Figure 2 a). The degree of similarity between
a6 the sequences is positively correlated with the similarity of their predicted taxonomic lineages. For
a7 sequence s;, GseqFormer would calculate the P(0s,,07;,),j = 1..n for every taxon j at taxonomic
s rank k, where T} = [< tg,j], n is the total number of taxa in rank k. We then selected the three
s candidate taxa with the highest values. The calculation of P(0s,, 07, ) is similar to Eq.(3). For rank
w k+ 1, Deepurify would only search for the nodes, whose parents have been selected in rank k. This
a1 top-k searching strategy would result in a number of paths, w, from the root to the species rank

w2 (T}, j = 1..w). We then calculate P(0s,,0r,),j = 1...w to select the best path.

w3 Detecting contaminated contigs in simulated MAGs

ws On simulated data, a contig with low taxonomic similarity to others in a MAG is more likely to be
ws  contaminated. Consequently, contigs were classified as contaminants if their predicted lineages differed
ws  from the predominant ones (Figure 2 b). We collected the predicted taxonomic lineages of contigs in a
w7 MAG and implemented an approach to determine the predominant one. The Score; j was calculated
wg  for taxon j at rank k,

1 )
Scorej = )\EE?’P(GSHHTM) +uVir+vLjk (8)

us  where n; is the number of contigs that have predicted annotation j at rank k. Vj ; and L, denote the
a0 proportions of contigs and their total length in a MAG with the taxonomic lineage of T} 1, respectively.
1 We would select T} j, with the highest value as the predominant lineage in the MAG at rank k. The
w2 selection would be performed for each rank, where the selected predominant lineage at rank k + 1
ss3 should be the offspring of the one at rank k. At rank k, the contigs were identified as contaminants if

ssa their predicted lineages were different from the predominant ones.

5 Optimizing contig utilization in MAGs

s On real data, Deepurify divides the contigs from a MAG to maximize the number of medium- and
ss7  high-quality MAGs using the MAG-separated tree. The MAG-separated tree is constructed based
s on the predicted taxonomic lineage for the contigs in a MAG (Figure 2 c¢). Each node includes the
w9 contigs with the same annotation at rank k. We collected single-copy genes (SCGs) from the databases

w0 of SolidBin [43] and bacteria and archaea domains in CheckM [28]. We used Prodigal [44] to predict
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w1 genes on contigs and aligned them with SCGs by HMMER (http://hmmer.org). We removed contigs to
w2 eliminate duplicated SCGs within each node (Supplementary Note 13). This procedure may result
w3 in multiple candidate contig divisions for a node. To enhance computational efficiency, Deepurify
ws  discarded the divisions if 1. more than 45% of the original SCGs were removed and 2. the total
w5 lengths of involved contigs were less than 550kb (Supplementary Note 14). We applied CheckM to
ws each division and selected the best one to represent a node based on quality score (QS). Its quality
w7 (high-, medium- or low-quality) was also annotated by CheckM. Deepurify utilized post-order traversal
ws  to traverse the MAG-separated tree to maximize the total number of medium- and high-quality MAGs

wo (Figure 2 d, Supplementary Note 15).

= Data availability

an The microbial representative genomes and their associated taxonomic lineages were downloaded from
a2 the proGenomes v2.1 database. The SIM; was uploaded to https://zenodo.org/record/8343498. The
w3 STMs was uploaded to https://zenodo.org/record/8343506. The CAMI I short-reads were downloaded
s from ‘1st CAMI Challenge Dataset 1 CAMI low’, ‘1st CAMI Challenge Dataset 2 CAMI_medium’ and
a5 ‘1st CAMI Challenge Dataset 3 CAMI_high’ with the following link: https://data.cami-challenge.org
ws  /participate/. The Illumina short-reads, 10x linked-reads, and long-reads of S1 data were downloaded
a7 from NCBI SRA accessions SRR19505636. The fecal metagenomic sequencing reads of the IBS-D co-
ws  hort were downloaded from China National GeneBank (CNGB) with accession number CNP0O000334.

m Code availability

w0 The source code used in the manuscript is freely available under an MIT license at https://github.com/
s zoubohao/Deepurify Project. The versions of the software used in the study were provided in the

2 Supplementary Note 16.
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Figure 1: The Deepurify training procedure consisted of two phases: data preparation and the training

process. (a). In data preparation, Deepurify used the positive lineage label of each genome, generated
multiple negative lineage labels for each genome, and sampled an appropriate-length sequence from the
corresponding genome. (b). During training, the taxonomic encoder encoded positive and negative
lineage labels. Sequences were encoded using GseqFormer. A sequence-taxonomy contrastive matrix
was built based on calculating the cosine similarity between encoded sequences and lineages. The
cosine similarity between the positive label and the sequence is anticipated to surpass that between
negative labels and the sequence. Therefore, the ST loss accounted for the majority of the training
losses, whereas the other losses facilitated the training process and improved the model’s robustness.
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The workflow of Deepurify for purification a MAG
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Figure 2: The purification workflow of Deepurify. (a). Deepurify assesses taxonomic similarities among
sequences through the assignment of taxonomic lineages. It employs a top-k search approach within
the taxonomic tree to identify candidate lineages, subsequently selecting the lineage with the highest
similarity to the sequences. (b). Deepurify applies a scoring function to the lineage of contigs to
determine the predominant lineage of contigs in the MAG. The taxon with the highest score is chosen
as the predominant lineage at different ranks. This process crosses ranks from phylum to species,
ensuring the predominant lineage is consistent and coherent. (c¢). For optimal contig utilization within
a MAG without dropping contaminated contigs directly, Deepurify constructs a MAG-separated tree.
This tree partitions the MAG based on predicted lineage. Each node contains contigs sharing the same
taxon at that rank. To prevent duplicate single-copy genes (SCGs), Deepurify applies SCGs to each
node. (d). Deepurify employs a depth-first search (DFS) algorithm on the MAG-separated tree to
maximize the total number of high- and medium-quality MAGs.
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Figure 5: The increased number of MAGs (INM) for CAMI I and S1 datasets with different binning
methods (CONCOCT, MaxBin, VAMB, MetaBAT2) for MAGpurify, MDMcleaner, and Deepurify.
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Figure 6: The correlation between the completeness and contamination levels of MAGs both before

and after purification using MAGpurify (grey), MDMcleaner (orange), and Deepurify (blue) in the
CAMI I and S1 datasets. These datasets were initially binned using CONCOCT, MetaBAT2, VAMB,
and MaxBin. A Generalized Additive Model (GAM) was applied to construct a smooth curve that
represents the contamination trends exhibited by MAGs in these instances. These plots serve to illus-
trate the superior purification performance of Deepurify when used on MAGs with high contamination
levels.
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Figure 7: The increased quality scores (IQS) for the CAMI I and S1 datasets binned with MaxBin,
CONCOCT, VAMB, and MetaBAT?2 reveal that Deepurify’s IQS is substantially higher than that of
MAGpurify and MDMcleaner in almost all cases.
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Figure 8: The correlation between completeness and contamination of MAGs before and after purifi-
cation. In (a), we employed MAGpurify (grey), MDMcleaner (orange), and Deepurify (blue) to filter
the contamination of MAGs with completeness greater than 50% and contamination exceeding 25%. A
Generalized Additive Model (GAM) was applied to construct a smooth curve that effectively captured
the contamination trends exhibited by MAGs in these instances. In (b), Deepurify (blue) was utilized
for all MAGs within the IBS-D cohort. Notably, Deepurify exhibits the capacity to rescue a significant
proportion of MAGs with high contamination rates (> 10%).
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