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Abstract13

Metagenome-assembled genomes (MAGs) offer valuable insights into the exploration of microbial dark14

matter using metagenomic sequencing data. However, there is a growing concern that contamination15

in MAGs may significantly impact the downstream analysis results. Existing MAG decontamination16

methods heavily rely on marker genes but do not fully leverage genomic sequences. To address the17

limitations, we have introduced a novel decontamination approach named Deepurify, which utilizes18

a multi-modal deep language model employing contrastive learning to learn taxonomic similarities of19

genomic sequences. Deepurify utilizes inferred taxonomic lineages to guide the allocation of contigs20

into a MAG-separated tree and employs a tree traversal strategy for maximizing the total number of21

medium- and high-quality MAGs. Extensive experiments were conducted on two simulated datasets,22

CAMI I, and human gut metagenomic sequencing data. These results demonstrate that Deepurify23

significantly outperforms other decontamination methods.24

Introduction25

Short-read metagenomic sequencing has gained popularity in investigating unculturable microbial26

genomes [1, 2, 3, 4], but single contigs assembled by short-reads often lead to fragmented and in-27

complete microbial genomes [5, 6, 7]. Several contig binning tools [8, 9, 10, 11] have been developed28

to group contigs into metagenome-assembled genomes (MAGs) based on their abundances and se-29

quence contexts to represent microbial genomes. Several studies [12, 13, 14] claimed the qualities of30

those MAGs were comparable to the genomes from microbial isolates, but there has been a growing31

concern that contamination may seriously impact the qualities of MAGs [15]. MAG contamination32

refers to a mixture of contigs from different microbes in the same MAG and those chimeric MAGs33

would substantially reduce the reliability of downstream ecological and evolutionary analyses. Bowers34

et al. [16] suggested eliminating the MAGs with more than 10% contamination, but many microbes35

from MAGs with marginal contamination would be missed. In our preliminary study, we observed a36

considerable number of MAGs would be removed due to their marginal contamination values, even for37

some high-abundance MAGs (Supplementary Note 1). This may result in the loss of a significant38

number of MAGs for subsequent downstream analysis.39

Several tools [17, 18, 19, 20] have been developed to identify and remove the potentially contami-40

nated contigs from chimeric MAGs based on marker genes and the sequence characteristics from known41

species. Two pipelines [17, 18] published several years ago are no longer actively supported and have42

not been widely accepted by the community. More recent and actively supported tools are MAGpu-43

rify [19] and MDMcleaner [20]. MAGpurify was recently developed for MAG decontamination using44
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three sources of information: the phylogenetic or clade-specific marker genes, the GC contents, and45

tetranucleotide frequencies of contigs. MDMcleaner utilizes marker genes (coding, 16S, and 23S rRNA46

genes) to predict the taxonomic classification of contigs. The contig taxonomies are determined by the47

taxonomic Least Common Ancestor (LCA) of the involved marker genes and any contigs that have48

different annotations with the dominating taxon of the MAG would be removed.49

Although MAGpurify and MDMcleaner show promising results, they suffer from several issues that50

hinder their widespread applications in various scenarios. First, both of them need to align marker51

genes/contigs to the reference databases and this approach is inapplicable to novel microorganisms.52

As previously observed, it has been noted that the reference genomes available in RefSeq (117,030 as53

of March 11, 2022) only account for less than 5.319% of all species [21]. In addition, the alignment54

is time-consuming even if the built-in databases are optimized (Supplementary Note 2). Second,55

previous study [22] has pointed out that many factors have the potential to reduce the performance of56

alignment-based tools on phylogenetic analysis, such as sequence misalignment, false-orthologous as-57

signment, gene duplication or loss events, horizontal gene transfer, and the presence of homoplasy, etc.58

Third, various genomic alterations, including genomic variations, alterations in gene order, and genome59

rearrangements, among others, have been identified as factors enhancing the resolution and reliability60

of differentiating the genomic sequences from different species [23]. These forms of evidence can offer61

invaluable insights that are uniquely attainable through whole genome sequences. Fourth, we found a62

majority of contamination in MAGs occurred at the genus and species levels (Supplementary Note63

3) and both MAGpurify and MDMcleaner demonstrated poor performance at these low taxonomic64

ranks (Supplementary Note 4).65

In this study, we developed Deepurify for MAG decontamination with high resolution and general-66

ization using a multi-modality deep language model. In the training procedure, Deepurify developed67

two distinct encoders, a genomic sequence encoder (GseqFormer, Methods) and a taxonomic encoder68

(Long short-term memory, LSTM) to encode genomic sequences and their source genomes’ taxonomic69

lineages, respectively. Next, Deepurify learned their relationships in different taxonomic ranks using70

contrastive training (Figure 1). In the decontamination process, Deepurify initially quantified the71

taxonomic similarities of contigs by assigning taxonomic lineages to them (Figure 2 a). It then used72

these lineages to construct a MAG-separated tree, partitioning the MAG into distinct sections, each73

containing contigs with the same lineage (Figure 2 c). This approach optimized contig utilization74

within the MAG, avoiding immediate removal of contaminated contigs. It was especially effective for75

MAGs with high contamination rates. Lastly, a tree traversal algorithm was devised to maximize the76

count of medium- and high-quality MAGs within the MAG-separated tree (Figure 2 d).77

We observed that Deepurify outperformed two state-of-the-art tools MAGpurify and MDMcleaner78
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in simulated, CAMI I challenge (high, medium1, medium2, and low) [24] and human gut metagenomic79

sequencing data [25, 26]. For simulated data, chimeric MAGs were created by mixing the sequences80

from two microbial genomes at various taxonomic ranks, with contamination rates from 5% to 20%.81

Deepurify achieved balanced macro F1-scores almost twice as high as that of MAGpurify across all tax-82

onomic ranks and 1.5 times higher than that of MDMcleaner at the genus and species ranks (Figure 3,83

Supplementary Table 3) on average. Additionally, Deepurify demonstrated outstanding generaliza-84

tion capabilities, where it achieved excellent accuracy in identifying contaminated contigs even if their85

source genomes were absent from the training set (Figure 4, Supplementary Table 4). For CAMI I86

and a human gut metagenomic sequencing dataset, S1 [25], we applied Deepurify to the results of four87

mainstream contig binning tools (VAMB [8], CONCOCT [9], MetaBAT2 [11], and MaxBin [10]), and88

the results showed that it could substantially improve MAG quality, surpassing both the MAGpurify89

and MDMcleaner for all binning tools. Next, we applied Deepurify to a large metagenomic sequencing90

dataset derived from a diarrhea-predominant Irritable Bowel Syndrome (IBS-D) cohort, including 29091

patients and 89 healthy controls [26]. We found Deepurify could rescue 70.12% highly contaminated92

MAGs (completeness ≥ 50% and contamination ≥ 25%) to medium- (completeness ≥ 50% and con-93

tamination ≤ 10%) and high-quality (completeness ≥ 90% and contamination ≤ 5%) MAGs. The94

corresponding percentages of MAGpurify and MDMcleaner were only 1.4% and 0.7%, respectively.95

Moreover, we compared the annotation of these MAGs before and after MAG decontamination and96

identified five new species (Supplementary Table 5) and one new genus (Supplementary Table97

6). Among them, one of the species demonstrated a suggestive association with IBS-D.98

Results99

Deepurify architecture and decontamination workflow100

Deepurify was a multi-modal deep language model developed specifically to remove contaminated101

contigs from a MAG. Figure 1 b and Figure 2 depict the fundamental architecture and decontamination102

workflow of Deepurify. Its architecture resembles that of CLIP [27], a well-established multi-modal103

model incorporating two encoders designed to process data from two modalities: 1). GseqFormer, for104

encoding genomic sequences, and 2). LSTM, for encoding taxonomic lineages (Methods). During105

training, we utilized contrastive learning to empower Deepurify to distinguish between real (positive)106

and fake (negative) taxonomic lineages of a sequence (Figure 1). This distinction is based on the107

cosine similarity between normalized encoded sequences and both positive and negative normalized108

encoded lineage vectors. Positive encoded lineages should exhibit higher cosine similarity with encoded109

sequences compared to negative ones. During the decontamination process (Figure 2), Deepurify first110
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assessed the taxonomic similarities of contigs by computing cosine similarity scores between the contigs111

and lineages in the taxonomic tree. Subsequently, it assigned the lineages to the contigs based on the112

highest similarity (Figure 2 a). Deepurify devised a scheme involving the construction of a MAG-113

separated tree to maximize the effective utilization of contigs, without directly discarding contaminated114

ones within a MAG (Figure 2 c). This scheme was especially valuable in MAGs with high contamination115

rates. The MAG-separated tree partitioned contigs within the MAG into distinct branches according116

to their predicted taxonomic lineages across multiple taxonomic ranks. Each node in the tree contains117

contigs sharing the same taxon at that rank. Deepurify identified and applied single-copy genes (SCGs)118

to each node to prevent duplication of SCGs within it. Finally, Deepurify applied CheckM [28] to each119

node of the tree and employed a depth-first search (DFS) algorithm to traverse the MAG-separated120

tree to maximize the count of high- and medium-quality MAGs (Methods; Figure 2 d).121

Development of simulated testing sets122

We generated two simulated testing sets, SIM1 and SIM2, to evaluate Deepurify’s capability in distin-123

guishing between core and contaminated contigs within a chimeric MAG. The SIM1 testing set assessed124

Deepurify’s decontamination performance when the source genomes of both core and contaminated125

contigs were part of the training set. Conversely, the SIM2 testing set evaluated its performance when126

the source genomes of the contigs were either included or excluded from the training set. A simulated127

chimeric MAG primarily consisted of core contigs, with a minority being contaminated. We referred to128

the source genomes of core contigs as “core” genomes and the source genomes of contaminated contigs129

as “contaminated” genomes.130

In our chimeric MAG simulation, we simulated contamination occurring at different taxonomic131

ranks by randomly selecting core and contaminated genomes from two species at varying taxonomic132

distances on the taxonomic tree. The LCAs of these two species’ lineages ranged from kingdom to133

genus (lineages differ starting from phylum to species). Each simulated MAG consisted of 200 contigs,134

with lengths distributed uniformly between 1,000 bps and 8,192 bps. We generated 50 simulated MAGs135

for different contamination proportions (5%, 10%, 15%, and 20%) at each taxonomic rank of LCA.136

The test set of SIM1 was generated using the genomes that were all included in its training set GSc137

(Methods). For SIM2, its training set GSp (Methods) lacked either core or contaminated genomes,138

resulting in four scenarios for simulation: 1. both core and contaminated genomes included in the GSp139

(SIM1

2
); 2. only core genomes included in the GSp (SIM2

2
); 3. only contaminated genomes included140

in the GSp (SIM3

2
); 4. both core and contaminated genomes were not included the GSp (SIM4

2
).141

To address the imbalance issue between the number of core and contaminated contigs in a simulated142

MAG, we utilized a balanced macro F1-score to evaluate the performance of MAGpurify, MDMcleaner,143
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and Deepurify.144

Deepurify has superior purification performance on SIM1145

We applied MAGpurify, MDMcleaner, and Deepurify to SIM1 testing set and we observed that Deep-146

urify outperformed MAGpurify significantly across all taxonomic ranks and contamination proportions147

(Figure 3, Supplementary Table 3). Compared to MAGpurify, Deepurify increased the overall aver-148

aged F1-score by 45.18% (phylum), 76.75% (class), 80.53% (order), 89.75% (family), 90.51% (genus),149

and 78.02% (species) across different contamination proportions. We observed that Deepurify and150

MDMcleaner performed comparably when the lineages of core and contaminated genomes differed at151

higher taxonomic ranks such as phylum, class, and order. However, Deepurify exhibited significant152

improvements when the differences in lineages began at the family, genus, and species ranks, with153

an overall average F1-score increase of 8.45% (family), 40.54% (genus), and 63.72% (species) com-154

pared to MDMcleaner. This fact suggested Deepurify could be more efficient to be applied in real155

metagenomic sequencing data, as most of the MAG contamination was found to exist at the genus156

and species (Supplementary Note 3). We noticed that the F1-scores of MAGpurify, Deepurify,157

and MDMcleaner decreased as the taxonomic ranks became lower. This could be due to the higher158

proportion of homologous sequences between the core and contaminated genomes at the genus and159

species taxonomic ranks.160

We also observed the standard deviations (SD) of the F1-scores of Deepurify were considerably161

lower than those of MAGpurify and MDMcleaner suggesting Deepurify was more robust regardless of162

the sources of contamination. On the one hand, the SD of F1-scores of MAGpurify were consistently163

reduced at taxonomic ranks from high to low, revealing it is more conservative to remove contigs164

at low taxonomic ranks. Consequently, it may not effectively remove contaminated contigs when165

contamination occurs at these lower taxonomic ranks. On the other hand, the SD of F1-scores of166

MDMcleaner were the highest at genus and species ranks, indicating that it was not stable in accurately167

distinguishing between genomes with homologous sequences. Furthermore, we observed an opposite168

trend between the contamination rates and the average F1-score of MAGpurify. This indicates that169

MAGpurify was not able to eliminate contaminated contigs at high rates of contamination efficiently.170

Although MDMcleaner’s performance remained relatively stable across different contamination rates,171

it experienced a significant decline as taxonomic ranks decreased. Deepurify emerged as the most172

efficient and robust model across all tested conditions.173
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Deepurify has strong generalization ability for novel microbes174

As MAGpurify and MDMcleaner did not provide any interface to allow users to rebuild their databases,175

we could not evaluate them on the SIM2 testing set. We applied Deepurify on SIM2 and we found176

that the F1-scores of Deepurify were only marginally reduced regardless of core or contamination177

genomes absent from the training sets (Figure 4, Supplementary Table 4). We used the performance178

of Deepurify on SIM1

2
(all genomes were included in the training set) as the baseline. In SIM2

2
179

(contaminated genomes excluded in the training set), the F1-score reduction from phylum to species180

rank was the smallest, with only a 1.07% decrease at the phylum rank and a 17.4% decrease at181

the species rank. Conversely, SIM4

2
(both core and contaminated genomes were excluded in the182

training set) exhibited the greatest reduction, with a 19.65% decrease in F1-score at the phylum rank183

and a 24.48% decrease at the species rank. The observations aligned with our expectations since184

understanding the sequences’ pattern of the core genomes was essential for the purification of MAGs.185

Furthermore, we noted a slight decrease of merely 1.07% and 6.81% in the F1-scores for SIM2

2
when186

the lineages were different from phylum to family. Nonetheless, a substantial disparity of 11.84% for187

genus and 17.14% for species was observed. This finding indicates that Deepurify exhibited greater188

efficacy in removing contamination when it occurs at higher ranks, irrespective of their inclusion in189

the training set. In contrast, addressing contamination at lower taxonomic ranks proved to be more190

challenging due to the increased presence of homologous sequences.191

The impact of homologous sequences and contig length on MAG decontam-192

ination193

For a simulated MAG, we defined the contigs as derived from homologous sequences if they could be194

aligned to both core and contaminated genomes (Methods). In the test set of SIM1, we identified195

contigs from homologous sequences at various taxonomic ranks: 142 at phylum, 832 at class, 3,015 at196

order, 4,429 at family, 8,048 at genus, and 17,169 at species. The number of contigs from homologous197

sequences increased from phylum to species, which could explain the reason for the performance198

declination of MAGpurify, MDMcleaner, and Deepurify if contamination derived from the LCAs of199

genomes at low taxonomic ranks.200

Furthermore, we categorized the contigs based on their lengths (intervals of 1,000 bps) to assess the201

influence of contigs’ length on the performance of Deepurify. Deepurify showed better performance on202

long contigs compared to short ones (Supplementary Figure 8, Supplementary Table 7) probably203

because long contigs could provide more information on the genomic context of their source genomes.204
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Deepurify improves the qualities of MAGs from different contig binning205

tools206

We applied MAGpurify, MDMcleaner, and Deepurify to the MAGs generated by MaxBin, MetaBAT2,207

VAMB, and CONCOCT to examine if they could increase the number of medium- and high-quality208

MAGs. The contigs of CAMI I and human gut metagenomic sequencing (S1) were downloaded from209

our previous study [25] (Methods). We used two criteria to evaluate the performance of MAG210

decontamination: 1. the increased number of medium- (INMmq) and high-quality MAGs (INMhq); 2.211

the improved quality score (IQS ), which measures the overall MAG quality improvement (Methods).212

Deepurify consistently outperformed the other two tools in nearly all datasets and contig binning213

methods (Figure 5, Supplementary Table 8). On average, across all datasets and binning methods,214

Deepurify exhibited 2.87-fold (1.33-fold) and 5.15-fold (4.16-fold) higher mean value for the INMhq215

and INMmq compared to MAGpurify (MDMcleaner). Interestingly, the INMhq and INMmq values216

of Deepurify for all binning tools were commonly positive except for VAMB on the high-complexity217

community in CAMI I (VAMB does not work well on a single sample) and the values for MAGpurify218

and MDMclean were more frequently to be observed negatively. In Figure 6, we depict the completeness219

and contamination rates of MAGs, before and after purification with MAGpurify, MDMcleaner, and220

Deepurify, using data from CAMI I and S1. We also employ a generalized additive model to create221

a smooth curve, effectively capturing the contamination trends within these MAG datasets. It was222

observed that Deepurify consistently outperformed the others by having the smallest areas under the223

curve.224

Deepurify demonstrated remarkable performance superiority over MAGpurify (IQS: 29.21-fold on225

average for all cases) and MDMcleaner (IQS: 1.82-fold on average for all cases), especially on the226

binning results of CONCOCT, VAMB, and MetaBAT2 (Figure 7, Supplementary Table 9). These227

observations suggested that Deepurify was more effective in improving contig binning performance228

than other tools as many low-quality MAGs were able to be upgraded to medium- or high-quality229

MAGs.230

Deepurify outperforms other purification tools on real-world data231

We further applied Deepurify to the human gut metagenomic sequencing data from 290 IBS-D patients232

and 89 healthy controls [26]. The sequencing data were assembled by metaSPAdes [5] followed by contig233

binning using MetaBAT2 (Methods), which generated 4,887 high-quality and 5,943 medium-quality234

MAGs. We selected 713 MAGs with high contamination (completeness ≥ 50% and contamination235

≥ 25%) to evaluate the efficacy of Deepurify on MAG decontamination. Our examination revealed236
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that MAGpurify and MDMcleaner could enhance the quality of only a small fraction of these highly237

contaminated MAGs. Specifically, MAGpurify improved 1.4% of them to high- and medium-quality238

MAGs (INMhq = 1, INMmq = 9), while MDMcleaner improved 0.7% of them to high- and medium-239

quality MAGs (INMhq = 1, INMmq = 4). Deepurify demonstrated a remarkable ability for MAG240

decontamination, as it was able to rescue a significant proportion of these MAGs, 70.12% of them241

(INMhq = 3, INMmq = 497). Deepurify demonstrated a significantly elevated IQS at 248994.46,242

surpassing both MAGpurify, which has an IQS of 17772.28, and MDMcleaner, with an IQS of 14466.47.243

The contamination rates of these MAGs were mostly reduced to below 10% after undergoing MAG244

decontamination using Deepurify whereas the values obtained from the other tools were considerably245

higher (Figure 8 a).246

Deepurify identified novel IBS-D association signals247

We examined all high-quality (4,931) and medium-quality (6,539) MAGs obtained from the IBS-D248

cohort after Deepurify decontamination to identify novel association signals. We utilized GTDB-TK249

[29] (Methods) to annotate these MAGs both before and after Deepurify’s purification process. Upon250

comparing the MAG annotation results, we identified five new species (Supplementary Table 5) and251

one new genus (Supplementary Table 6). We performed an association analysis of IBS-D on the252

678 MAGs, which were initially categorized as low-quality but were reclassified as medium- or high-253

quality after decontamination (Methods). This analysis identified several suggestive signals (P-value254

< 0.05) including one novel species (s Collinsella sp900541055), and two confirmed species (Alistipes255

[30] and Ruminococcus gnavus [31, 32]) that were known to be associated with IBS-D. Lastly, we256

showed the completeness and contamination rates for all MAGs in the IBS-D cohort before and after257

purification by Deepurify in Figure 8 b. This plot demonstrated Deepurify’s remarkable ability to258

purify contaminated contigs in MAGs.259

Discussion260

Utilizing genome assembly with short-read metagenomic sequencing data has become a prevalent261

method to decipher microbial compositions in complex environments. However, each assembled262

metagenomic contig only partially represents a microbial genome. It is therefore crucial to perform263

contig binning to obtain contig sets with similar genomic characteristics and abundances, which then264

represent MAGs that originate from the same microbe. As was highlighted in a recent paper [15],265

MAG contamination is a significant stumbling block during contig binning on single sample assem-266

bly. Decontamination tools, such as MAGpurify and MDMcleaner, have been developed to address267
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the challenge of eliminating contaminated contigs from MAGs. Nonetheless, these tools demonstrate268

several limitations. Most notably, they are ineffective in distinguishing contigs from each other if their269

core and contaminated genomes belong to the same family or genus. Furthermore, these tools are270

unable to process contigs whose source genomes are absent from their built-in databases. And thirdly,271

they mainly focus on genes, with genomic variations such as gene order and genome rearrangements272

being left out of consideration.273

To address these limitations, we developed Deepurify, a novel tool that uses deep language models274

to learn the relationship between microbial genomes and their taxonomic lineages. Deepurify models275

all nucleotides in sequences and can learn local genomic alternations between adjacent species in the276

training set. This approach allows Deepurify to handle contigs without known genes. Deepurify has a277

superior decontamination capacity, particularly if the contigs share a high proportion of homologous278

sequences (Supplementary Note 4). It also outperformed the existing tools if the source genomes279

of contigs were not included in the training dataset. Deepurify could significantly speed up the MAG280

decontamination procedure with GPU acceleration (Supplementary Note 2), which allows scaling281

of decontamination to large numbers of MAGs. The primary runtime bottleneck for Deepify lies in282

the duration required for running CheckM, which is nearly twice as long as inferring lineages for the283

contigs within MAGs. The efficiency of Deepurify’s execution could be significantly improved with a284

method to expedite the CheckM runtime.285

Deepurify adopts a unique approach to optimize the utilization of contigs within a MAG. Instead286

of adopting the common practice of directly discarding contaminated contigs, Deepurify constructs a287

MAG-separated tree for filtering. This innovative strategy proves especially advantageous in scenarios288

where MAGs exhibit a substantial degree of contamination, typically exceeding a contamination rate289

of 100%. Deepurify has the ability to resolve a highly contaminated MAG into two separate MAGs,290

typically falling within the high- or medium-quality range. On occasion, it may yield three or more291

MAGs that hold potential for further utilization.292

Our experiments demonstrated the remarkable efficacy of Deepurify in decontaminating MAGs293

from short-read assembly. We hold a strong belief that its applicability extends to contigs derived294

from long-read assemblies, accompanied by two distinct advantages: Firstly, contigs derived from long-295

read assemblies are significantly longer than those from short-read assemblies. It offers Deepurify a296

substantially enriched sequence context, thereby enhancing its capacity for decontamination. Secondly,297

single-base substitutions and indel errors are frequently observed in long-read assemblies [33], which298

we placed emphasis on during the development of Deepurify’s training procedure (Supplementary299

Note 6). It is worth mentioning that contemporary decontamination tools do not typically consider300

sequence noise.301
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On the other hand, it is important to note that Deepurify cannot deal with overly large misas-302

semblies in contigs (such as chimeric contigs, translocations, etc.). We observed that for some MAGs303

Deepurify failed to achieve its specified decontamination standard because a designated single-copy304

gene was detected multiple times. Chimeric contigs may therefore remain a challenge to Deepurify305

since they could substantially influence the local context of sequences, which may adversely impact306

the quantification of taxonomic similarity between contigs in a MAG. To mitigate the influence of such307

misassemblies, we recommend that users apply assembly error correction tools such as metaMIC [34]308

prior to using Deepurify.309

Methods310

Preparing and processing microbial reference genomes311

We downloaded microbial representative genomes and their taxonomic lineages from proGenomes v2.1312

database [35] to generate two training sets GSc, GSp for model training and two simulated testing sets313

SIM1 and SIM2 for evaluating. We excluded the microbial genomes without phylum annotations or314

if the phyla they belonged to had less than 15 species. For microbes with only phylum and species315

annotations, all other taxonomic ranks inbetween were annotated as “Unclassified”.316

Training sets construction317

After data preprocessing, we generated two training sets for SIM1 and SIM2: 1. a complete reference318

genome training set (GSc) consisting of the genomic sequences from 10,332 species belonging to 37319

phyla (Supplementary Table 10); 2. a partial reference genome training set (GSp) by randomly320

selecting 112 species, which come from 12 phyla (Supplementary Table 11) in GSc. GSp was used321

to evaluate the performance of Deepurify when either core or contaminated genomes were not included322

in the training set.323

During the training stage, we sampled the contig-sized sequences from the genomes in GSc and GSp.324

The sequence lengths ranged from 1,000 bps to 8,192 bps, following a pre-defined contig length distribu-325

tion learned from a real metagenomic assembly exercise (Supplementary Note 5). We randomly in-326

corporated into these sequences insertions, deletions, and single nucleotide variants (Supplementary327

Note 6) in order to reduce the impact of sequencing errors and enhance model generalization capabil-328

ities.329
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MAG generation for SIM1 and SIM2330

We simulated chimeric MAGs for use in SIM1 and SIM2 sets for evaluation: 1. For SIM1, all source331

genomes of contigs were included in GSc; 2. For SIM2, some source genomes of contigs might be332

absent from GSp. For SIM1, we randomly selected the genomes of two distinct lineages (SP1 and333

SP2) in GSc and simulated 200 contigs from them with lengths between 1,000 bps and 8,192 bps and334

with varying proportions of contigs from SP2 (5%, 10%, 15%, and 20%) for each MAG. The lineage335

LCAs of SP1 and SP2 were traversed from kingdom to genus (lineages differ starting from phylum to336

species). We generated 50 MAGs for each mixture proportion and on each taxonomic rank of LCA.337

For SIM2, we followed a similar chimeric MAG simulation procedure as we did for SIM1, the only338

difference being that SP1 and SP2 may be extracted from either GSp or from GSc − GSp. There339

are four permuted scenarios for SIM2: 1. both core and contaminated genomes are included in the340

GSp (SIM1

2
); 2. only core genomes are included in the GSp (SIM2

2
); 3. only contaminated genomes341

are included in the GSp (SIM3

2
); 4. neither core nor contaminated genomes are included in the GSp342

(SIM4

2
).343

Generate MAGs from contig binning tools344

We downloaded the metagenomic sequencing datasets from CAMI I with low, medium (two datasets),345

and high complexity and from a human stool sample (S1) [25]. The contigs of these datasets were346

assembled by metaSPAdes with default parameters. Contigs were grouped as MAG using VAMB347

(contig length > 1kbps), CONCOCT (contig length > 1kbps), MaxBin (contig length > 1kbps), and348

MetaBAT2 (contig length > 1.5kbps). We only kept MAGs from VAMB with a completeness of at349

least 50% to exclude the MAGs with few contigs (e.g. < 3 contigs).350

MAG quality definitions351

MAGs are typically classified into distinct quality categories based on their degrees of completeness352

and contamination. High-quality MAGs are defined by completeness levels equal to or exceeding 90%353

and contamination levels at or below 5%. Medium-quality MAGs are characterized by completeness354

levels of 50% or higher, with contamination levels below or equal to 10%. MAGs failing to meet the355

high or medium-quality criteria are categorized as low-quality.356

IBS-D real-world validation study357

We applied metaSPAdes with default parameters to assemble short-read metagenomic sequencing data358

from 290 IBS-D patients and 89 healthy controls. The contigs longer than 1.5kb were grouped into359
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MAGs by MetaBAT2. We evaluated MAGpurify, MDMcleaner, and Deepurify on the MAGs with360

completeness ≥ 50% and contamination ≥ 25%.361

Microbial taxonomic annotation362

We used GTDB-Tk [29] to annotate and allocate MAGs to the taxonomic tree. A MAG would be363

annotated as a particular species (gref represents its genome) if 1. its average nucleotide identity with364

gref is no less than 95% and 2. its alignment fraction against gref is no less than 65%.365

Identification of homologous sequences366

We conducted BLASTN alignments between the core contigs and the contaminated genomes, as well367

as between the contaminated contigs and the core genomes. Contigs with an E-value less than 1e−6
368

were considered aligned and would be categorized as sequences derived from homologous sequences.369

Metrics for performance evaluation370

For simulated chimeric MAGs, we applied a balanced macro F1-score to evaluate the performance of371

MAG decontamination to mitigate the influence of unbalanced numbers of contigs from SP1 and SP2.372

For the binned MAGs that were generated from CAMI I, S1 and the IBS-D cohort, we adopted two373

criteria to evaluate the improvement of MAG qualities: 1. total increased number of high- (complete-374

ness ≥ 90% and contamination ≤ 5%) and medium-quality (completeness ≥ 50% and contamination375

≤ 10%) MAGs; 2. increased quality score (IQS)376

IQS =

np∑

i

QSp,i −

nq∑

j

QSq,i

=

np∑

i

(CNp,i − 5× CTp,i)−

nq∑

j

(CNq,j − 5× CTq,j)

(1)

where np and nq denote the total number of high- and medium-quality MAGs after and before MAG377

decontamination, respectively. CNp,i (CNq,j) and CTp,i (CTq,j) are the completeness and contamina-378

tion values of the MAGs after (before) MAG decontamination.379

Architecture of Deepurify380

Genomic sequence and taxonomic lineage encoders381

Deepurify utilizes GseqFormer and LSTM to encode genomic sequences and taxonomic lineages into382

1024-dimensional space. The fundamental architecture of Deepurify is illustrated in Figure 1 b.383
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GseqFormer: Genomic sequence encoder. The genomic sequences were represented as a uni-384

fied embedded matrix by concatenating the sequence representations with one-hot, 3-mers, and 4-mers385

(Supplementary Note 7). We developed GseqFormer to encode the sequence-embedded matrix in386

high dimensional space. It was built on the structure of UniFormer [36], which takes advantage of trans-387

former and convolutional neural networks (CNNs). We substituted the attention module of UniFormer388

with a new gated self-attention module, which was modified from Evoformer [37] (Supplementary389

Note 8). Because UniFormer has a limitation in modeling long sequences (¿1,000 bps), we adopted390

EfficientNet [38] to compress the input sequences into 512 tokens. This strategy enables the maximum391

lengths of input sequences up to 8,192 bps. Additionally, we incorporated a variety of tricks [39, 40, 41]392

into EfficientNet for efficient training and improved model robustness (Supplementary Note 9).393

LSTM: Taxonomic lineage encoder. The taxonomic lineage (Ti = [tpi
, tci , toi , tfi , tgi , tsi ]) of a394

sequence (si) at species rank was considered as a sentence that concatenates taxon (tki
) at different395

taxonomic ranks (ki), spanning from phylum to species. The taxonomic sentence would be encoded396

by a 5-layer LSTM model.397

Deepurify training procedure398

Contrastive training399

For a sequence si, we represented its normalized encoded vector as θsi and the normalized encoded400

vector of its taxonomic lineage at the species rank as θTi
.The prefix of Ti before ki rank denotes as401

Tki
= [⩽ tki

]. We leveraged contrastive training to enable Deepurify to discriminate true (positive402

label, Tki
) and multiple fake (negative labels, Tkj

) taxonomic lineages for a given sequence si. During403

training, we randomly selected ki and created fake taxonomic lineages (Tkj
) from the taxonomic tree404

for contrastive, making sure they were distinct from Tki
(Supplementary Note 10).405

We applied four loss functions in contrastive training, including 1. sequence-taxonomy (ST) loss,406

2. lineage-phyla (LP) loss, 3. indel loss, and 4. phyla-rank (PR) loss. Deepurify’s primary objective407

is to optimize ST loss, which aims to make θsi have higher cosine similarity with θTki
than with θTkj

.408

The ST loss (LST ) is defined as:409

LST = −[(1− P (θsi , θTki
)log(P (θsi , θTki

))] (2)

410

P (θsi , θTki
) =

exp(d(θsi , θTki
)/τ)

∑J

j=1
exp(d(θsi , θTkj

)/τ) + exp(d(θsi , θTki
)/τ)

(3)

where d(θsi , θTki
) = θTsiθTki

, τ is a learnable parameter, J is the number of negative labels used411

in contrastive training. The numbers of species are different across phyla, which leads to unbalanced412
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sequences in the training set. We applied an oversampling strategy (Supplementary Note 11) and413

the focal loss [42] to mitigate this problem.414

The goal of LP loss (LLP ) is to establish a taxonomic encoder to minimize the distance between415

θTki
and the phylum that si belongs to (θtpi ).416

LLP = ReLU(α− d(θTki
, θtpi )) +ReLU(d(θTki

, θtpj )− β) (4)

where α and β are between 0 and 1, which control the cosine similarities between d(θTki
, θtpi ) and417

d(θTki
, θtpj ).418

The aim of indel loss was to enable GseqFormer to accept the sequences with insertions and infer419

masked sequences.420

LINDEL = −[Yinslog(Pins(θsi)) + (1− Yins)log(1− Pins(θsi)) +
1

M |V |

M∑

m=1

|V |∑

q=1

Y m,q
del log(Pm,q

del )] (5)

where Pins(θsi) is the predicted probability of si including insertions, and Yins = 1 indicates si includ-421

ing insertions. M is the number of masked positions in si and each position has six candidate values422

(V = {A, T,C,G,N, padding}). Pm,q
del is the predicted probability of m-th masked position equals to423

Vq (Vq ∈ V ). Y m,q
del = 1 if the m-th masked position is Vq.424

PR loss was used to examine the taxonomic inference of Deepurify on phylum rank.425

LPR = −[
C∑

c=1

Yclog(P (θsi))] (6)

where C is the number of phyla in the taxonomic tree, Yc = 1 if si belongs to the phylum c, P (θsi) is426

the predicted probability of si belongs to the phylum c.427

Therefore, the final training loss function of Deepurify is defined as follows:428

L = γLST + LLP + LINDEL + LPR (7)

We set γ = 2 in our experiments to emphasize the importance of LST in Deepurify training. The429

settings of other hyper-parameters were similar to UniFormer [36] (Supplementary Note 12).430
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Deepurify MAG decontamination procedure431

Quantifying sequence taxonomic similarity432

Deepurify utilized GseqFormer to encode genomic sequences and then to quantify their taxonomic433

similarities. This is achieved by identifying the taxonomic lineage from the taxonomic tree that exhib-434

ited the highest similarity with the genomic sequences (Figure 2 a). The degree of similarity between435

the sequences is positively correlated with the similarity of their predicted taxonomic lineages. For436

sequence si, GseqFormer would calculate the P (θsi , θTj,k
), j = 1...n for every taxon j at taxonomic437

rank k, where Tj,k = [< tk, j], n is the total number of taxa in rank k. We then selected the three438

candidate taxa with the highest values. The calculation of P (θsi , θTj,k
) is similar to Eq.(3). For rank439

k + 1, Deepurify would only search for the nodes, whose parents have been selected in rank k. This440

top-k searching strategy would result in a number of paths, ω, from the root to the species rank441

(Tj , j = 1...ω). We then calculate P (θsi , θTj
), j = 1...ω to select the best path.442

Detecting contaminated contigs in simulated MAGs443

On simulated data, a contig with low taxonomic similarity to others in a MAG is more likely to be444

contaminated. Consequently, contigs were classified as contaminants if their predicted lineages differed445

from the predominant ones (Figure 2 b). We collected the predicted taxonomic lineages of contigs in a446

MAG and implemented an approach to determine the predominant one. The Scorej,k was calculated447

for taxon j at rank k,448

Scorej,k = λ
1

ni

Σni

i P (θsi , θTj,k
) + µVj,k + νLj,k (8)

where ni is the number of contigs that have predicted annotation j at rank k. Vj,k and Lj,k denote the449

proportions of contigs and their total length in a MAG with the taxonomic lineage of Tj,k, respectively.450

We would select Tj,k with the highest value as the predominant lineage in the MAG at rank k. The451

selection would be performed for each rank, where the selected predominant lineage at rank k + 1452

should be the offspring of the one at rank k. At rank k, the contigs were identified as contaminants if453

their predicted lineages were different from the predominant ones.454

Optimizing contig utilization in MAGs455

On real data, Deepurify divides the contigs from a MAG to maximize the number of medium- and456

high-quality MAGs using the MAG-separated tree. The MAG-separated tree is constructed based457

on the predicted taxonomic lineage for the contigs in a MAG (Figure 2 c). Each node includes the458

contigs with the same annotation at rank k. We collected single-copy genes (SCGs) from the databases459

of SolidBin [43] and bacteria and archaea domains in CheckM [28]. We used Prodigal [44] to predict460
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genes on contigs and aligned them with SCGs by HMMER (http://hmmer.org). We removed contigs to461

eliminate duplicated SCGs within each node (Supplementary Note 13). This procedure may result462

in multiple candidate contig divisions for a node. To enhance computational efficiency, Deepurify463

discarded the divisions if 1. more than 45% of the original SCGs were removed and 2. the total464

lengths of involved contigs were less than 550kb (Supplementary Note 14). We applied CheckM to465

each division and selected the best one to represent a node based on quality score (QS). Its quality466

(high-, medium- or low-quality) was also annotated by CheckM. Deepurify utilized post-order traversal467

to traverse the MAG-separated tree to maximize the total number of medium- and high-quality MAGs468

(Figure 2 d, Supplementary Note 15).469

Data availability470

The microbial representative genomes and their associated taxonomic lineages were downloaded from471

the proGenomes v2.1 database. The SIM1 was uploaded to https://zenodo.org/record/8343498. The472

SIM2 was uploaded to https://zenodo.org/record/8343506. The CAMI I short-reads were downloaded473

from ‘1st CAMI Challenge Dataset 1 CAMI low’, ‘1st CAMI Challenge Dataset 2 CAMI medium’ and474

‘1st CAMI Challenge Dataset 3 CAMI high’ with the following link: https://data.cami-challenge.org475

/participate/. The Illumina short-reads, 10x linked-reads, and long-reads of S1 data were downloaded476

from NCBI SRA accessions SRR19505636. The fecal metagenomic sequencing reads of the IBS-D co-477

hort were downloaded from China National GeneBank (CNGB) with accession number CNPO000334.478
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Figure 1: The Deepurify training procedure consisted of two phases: data preparation and the training
process. (a). In data preparation, Deepurify used the positive lineage label of each genome, generated
multiple negative lineage labels for each genome, and sampled an appropriate-length sequence from the
corresponding genome. (b). During training, the taxonomic encoder encoded positive and negative
lineage labels. Sequences were encoded using GseqFormer. A sequence-taxonomy contrastive matrix
was built based on calculating the cosine similarity between encoded sequences and lineages. The
cosine similarity between the positive label and the sequence is anticipated to surpass that between
negative labels and the sequence. Therefore, the ST loss accounted for the majority of the training
losses, whereas the other losses facilitated the training process and improved the model’s robustness.
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Figure 2: The purification workflow of Deepurify. (a). Deepurify assesses taxonomic similarities among
sequences through the assignment of taxonomic lineages. It employs a top-k search approach within
the taxonomic tree to identify candidate lineages, subsequently selecting the lineage with the highest
similarity to the sequences. (b). Deepurify applies a scoring function to the lineage of contigs to
determine the predominant lineage of contigs in the MAG. The taxon with the highest score is chosen
as the predominant lineage at different ranks. This process crosses ranks from phylum to species,
ensuring the predominant lineage is consistent and coherent. (c). For optimal contig utilization within
a MAG without dropping contaminated contigs directly, Deepurify constructs a MAG-separated tree.
This tree partitions the MAG based on predicted lineage. Each node contains contigs sharing the same
taxon at that rank. To prevent duplicate single-copy genes (SCGs), Deepurify applies SCGs to each
node. (d). Deepurify employs a depth-first search (DFS) algorithm on the MAG-separated tree to
maximize the total number of high- and medium-quality MAGs.
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Figure 5: The increased number of MAGs (INM) for CAMI I and S1 datasets with different binning
methods (CONCOCT, MaxBin, VAMB, MetaBAT2) for MAGpurify, MDMcleaner, and Deepurify.
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Figure 6: The correlation between the completeness and contamination levels of MAGs both before
and after purification using MAGpurify (grey), MDMcleaner (orange), and Deepurify (blue) in the
CAMI I and S1 datasets. These datasets were initially binned using CONCOCT, MetaBAT2, VAMB,
and MaxBin. A Generalized Additive Model (GAM) was applied to construct a smooth curve that
represents the contamination trends exhibited by MAGs in these instances. These plots serve to illus-
trate the superior purification performance of Deepurify when used on MAGs with high contamination
levels.
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Figure 7: The increased quality scores (IQS) for the CAMI I and S1 datasets binned with MaxBin,
CONCOCT, VAMB, and MetaBAT2 reveal that Deepurify’s IQS is substantially higher than that of
MAGpurify and MDMcleaner in almost all cases.
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Figure 8: The correlation between completeness and contamination of MAGs before and after purifi-
cation. In (a), we employed MAGpurify (grey), MDMcleaner (orange), and Deepurify (blue) to filter
the contamination of MAGs with completeness greater than 50% and contamination exceeding 25%. A
Generalized Additive Model (GAM) was applied to construct a smooth curve that effectively captured
the contamination trends exhibited by MAGs in these instances. In (b), Deepurify (blue) was utilized
for all MAGs within the IBS-D cohort. Notably, Deepurify exhibits the capacity to rescue a significant
proportion of MAGs with high contamination rates (> 10%).
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