

1 **The murine meninges acquire lymphoid tissue properties and harbour
2 autoreactive B cells during chronic *Trypanosoma brucei* infection**

3 Juan F. Quintana^{1-3*}, Matthew C. Sinton^{1,4}, Praveena Chandrasegaran³, Lalit Kumar
4 Dubey⁵, John Ogunsola³, Moumen Al Samman³, Michael Haley^{1,2}, Gail McConnell⁶,
5 Nono-Raymond Kuispond Swar⁷, Dieudonne Mumba Ngoyi⁷, David Bending⁸, Luis de
6 Lecea⁹, Annette MacLeod³, Neil A. Mabbott¹⁰

7

8 ¹Lydia Becker Institute of Immunology and Inflammation, University of Manchester, UK.

9 ³Division of Immunology, Immunity to Infection and Health, Manchester Academic
10 Health Science Centre, University of Manchester, UK. ³School of Biodiversity, One
11 Health, Veterinary Medicine (SBOHVM), College of Medical, Veterinary and Life
12 Sciences, University of Glasgow, Glasgow UK. ⁴Division of Cardiovascular Sciences,
13 University of Manchester, UK. ⁵Queen Mary University of London, London, UK.

14 ⁶Strathclyde Institute of Pharmacy and Biomedical Sciences (SIPBS), University of
15 Strathclyde, Glasgow, UK. ⁷Department of Parasitology, National Institute of Biomedical
16 Research, Kinshasa, Democratic Republic of the Congo. ⁸Institute of Immunology and
17 Immunotherapy, College of Medical and Dental Sciences, University of Birmingham.
18 ⁹Stanford University School of Medicine, Stanford, CA, United States. ¹⁰The Roslin
19 Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh,
20 Edinburgh, UK.

21

22 *Corresponding author: juan.quintana@glasgow.ac.uk

23

24 **Keywords:** sleeping sickness, African trypanosomes, neuroinflammation, meninges,
25 fibroblasts.

26

27 **Running title:** Functional characterisation of the murine meninges during chronic
28 *Trypanosoma brucei* infections

29

30

31

32

33

34

35

36

37

38

39

40 **Abstract**

41 The meningeal space is a critical brain structure providing immunosurveillance for the
42 central nervous system, but the impact of infections on the meningeal immune
43 landscape is far from being fully understood. The extracellular protozoan parasite
44 *Trypanosoma brucei*, which causes Human African Trypanosomiasis (HAT) or sleeping
45 sickness, accumulates in the meningeal spaces, ultimately inducing severe meningitis
46 and resulting in death if left untreated. Thus, sleeping sickness represents an attractive
47 model to study immunological dynamics in the meninges during infection. Here, by
48 combining single cell transcriptomics and mass cytometry by time of flight (CyTOF) with
49 *in vivo* interventions, we found that chronic *T. brucei* infection triggers the development
50 of ectopic lymphoid aggregates (ELAs) in the murine meninges. These infection-
51 induced ELAs were defined by the presence of ER-TR7⁺ fibroblastic reticular cells,
52 CD21/35⁺ follicular dendritic cells, CXCR5⁺ PD1⁺ T follicular helper-like phenotype,
53 GL7⁺ CD95⁺ GC-like B cells, and plasmablasts/plasma cells. Furthermore, the B cells
54 found in the infected meninges produced high-affinity autoantibodies able to recognise
55 mouse brain antigens, in a process dependent on LT β signalling. A mid-throughput
56 screening identified several host factors recognised by these autoantibodies, including
57 myelin basic protein (MBP), coinciding with cortical demyelination and brain pathology.
58 In humans, we identified the presence of autoreactive IgG antibodies in the
59 cerebrospinal fluid of second stage HAT patients that recognised human brain lysates
60 and MBP, consistent with our findings in experimental infections. Lastly, we found that
61 the pathological B cell responses we observed in the meninges required the presence
62 of *T. brucei* in the CNS, as suramin treatment before the onset of the CNS stage
63 prevented the accumulation of GL7⁺ CD95⁺ GC-like B cells and brain-specific
64 autoantibody deposition. Taken together, our data provide evidence that the meningeal
65 immune response during chronic *T. brucei* infection results in the acquisition of
66 lymphoid tissue-like properties, broadening our understanding of meningeal immunity in
67 the context of chronic infections. These findings have wider implications for
68 understanding the mechanisms underlying the formation ELAs during chronic
69 inflammation resulting in autoimmunity in mice and humans, as observed in other
70 autoimmune neurodegenerative disorders, including neuropsychiatric lupus and
71 multiple sclerosis.

72

73

74 **Introduction**

75 The meningeal space is rapidly being recognised as a critical site for immunological
76 responses in the central nervous system (CNS) under homeostasis^{1–3}, aging⁴, and as a
77 consequence of insults such as traumatic brain injury⁵ and infection^{6–8}. The extracellular
78 protozoan parasite *Trypanosoma brucei*, which causes human African trypanosomiasis
79 (HAT; sleeping sickness in humans) and animal African trypanosomiasis (Nagana in
80 domestic animals) accumulates in the CNS and meningeal spaces triggering severe
81 meningitis^{9,10}. This culminates in the development of a wide range of debilitating
82 neurological disorders^{9,11–13}. These symptoms are diverse and include fatigue, altered
83 sleep and circadian patterns, tremors, motor weakness, epilepsy, paralysis of one or
84 more extremities, and Parkinson-like abnormal body movements^{14–16}. Consistent with
85 clinical data from humans, experimental trypanosomiasis in mice also results in chronic
86 infection, leading to altered behaviour^{17–20}. Thus, murine infection with *T. brucei* is a
87 useful model to investigate meningeal responses to infection.

88 Chronic inflammatory processes are known to result in the formation of ectopic
89 lymphoid aggregates (ELAs)^{21–24}. Indeed, ELAs have been reported in a wide range of
90 autoimmune disorders, including those affecting the CNS such as neuropsychiatric
91 lupus²⁵ and multiple sclerosis²⁶. The diverse cytokine and chemokine repertoire found
92 in chronically inflamed tissues, including lymphotxin- α - β (LT α and LT β) and CXCL13,
93 help to the create interactive niches needed to generate such structures^{21–24}. Stromal
94 LT β receptor (LT β R) signalling is important in generating the microarchitecture required
95 for efficient antigen presentation and follicle organisation, which typically includes
96 collagen-rich reticular cords that serve as channels for cellular trafficking,
97 immunological synapses, and B cell affinity maturation²⁷. Similarly, CXCL13 is an
98 important chemokine for defining local gradients controlling B cell domains, typically in
99 proximity to follicular dendritic cells (FDCs) and CD4 $^+$ T follicular helper cells (T $_{FH}$)
100 inducing the formation of germinal centres (GC), in which B cells undergo affinity
101 maturation and somatic hypermutation to generate high affinity antibodies^{21,23,25}. These
102 reactions are typically restricted to secondary lymphoid organs such as the spleen and
103 lymph nodes, but can occur ectopically in response to chronic inflammation, and may
104 result in pathological consequences such as the formation of autoreactive antibodies,
105 as recently described for multiple sclerosis and neuropsychiatric lupus^{23,25,26,28}.

106 In secondary lymphoid organs, including the spleen and lymph nodes, lymphatic
107 vessels act as conduits for the transport of tissue-derived antigens and dendritic cells to
108 lymph nodes, where naïve and memory T cells are optimally positioned for the
109 detection of their cognate antigen^{29–31}. Similarly, immune complexes can be acquired
110 by macrophages in the subcapular space in lymph nodes and transferred directly to
111 FDCs and B cells³². However, several key findings in recent years have led to a better
112 understanding of the role of lymphatic vessels in the dura mater layer of the meninges.
113 For instance, the meningeal lymphatic vessels can convey macromolecular complexes
114 and immune cells from the meninges and cerebrospinal fluid (CSF) to the deep cervical
115 lymph nodes^{4,33,34}. However, it is also plausible that extramedullary reactions may take
116 place locally in the meningeal spaces and brain borders, as reported recently in
117 neuropsychiatric lupus²⁵ and multiple sclerosis²⁸. Whether the same extramedullary
118 immunological reactions in the brain and/or meninges, reminiscent of those taking place
119 in secondary lymphoid tissues, can be triggered by chronic, unresolved infections is
120 uncertain.

121 Here, we investigated how the meningeal transcriptional environment is altered during
122 *T. brucei* infection, using a combination of single cell transcriptomics and mass
123 cytometry by time-of-flight (CyTOF). We found that chronic *T. brucei* infection in the
124 meningeal space results in a broad rearrangement of the immune landscape in the
125 murine meninges, with a significant increase in the frequency of innate (mononuclear
126 phagocytes and granulocytes) and adaptive (T, NKT, and B cells) immune cells.
127 Furthermore, we identified a population of autoreactive B cells in the meningeal spaces,
128 including the leptomeninges. These autoreactive B cells were able to recognise mouse
129 brain antigens and deposit high-affinity IgG antibodies in several brain areas including
130 the hippocampus and cortex, and this deposition was associated with cortical and white
131 matter demyelination. We also detected significant levels of autoreactive IgM and IgG
132 antibodies in the cerebrospinal fluid of HAT patients with inflammatory encephalopathy.
133 Furthermore, using a targeted screening approach we identified myelin basic protein as
134 one of the host antigens detected by autoreactive IgG antibodies in mouse serum and
135 human CSF collected during the chronic stage of the infection. Taken together, this
136 study demonstrates that the meningeal landscape acquires lymphoid tissue-like
137 properties resulting in the formation of autoreactive B cells. These results imply that the
138 chronic brain inflammation induced by African trypanosomes results in an autoimmune
139 disorder affecting the brain as observed in other neurological disorders of unknown

140 aetiology such as neuropsychiatric lupus and multiple sclerosis. We anticipate that the
141 data presented here will pave the way to understanding how chronic meningitis results
142 in impaired peripheral tolerance and the development of autoimmunity in the context of
143 chronic infections.

144 **Materials and methods**

145 **Ethical statement.** All animal experiments were approved by the University of Glasgow
146 Ethical Review Committee and performed in accordance with the Home Office
147 guidelines, UK Animals (Scientific Procedures) Act, 1986 and EU directive 2010/63/EU.
148 All experiments were conducted under SAPO regulations and UK Home Office project
149 licence number PP4863348 to Annette Macleod. The *in vivo* work presented in this
150 study was conducted at 30-days post-infection (dpi) and correlated with increased
151 clinical scores and procedural severity. The archived human CSF samples from
152 gambiense HAT patients from North Uganda used in this study were collected by
153 Professor Wendy Bailey (Liverpool School of Tropical Medicine, UK). Ethical approval
154 was given to Prof. Bailey by the Liverpool School of Tropical Medicine, UK, for sample
155 collection and patients were provided with a written consent. We received ethical
156 approval by the University of Glasgow MVLS Ethics Committee for Non-Clinical
157 Research Involving Human Subjects (Reference no. 200120043) for the use of human
158 archived samples. The CSF from healthy donors was obtained from the University of
159 Edinburgh Brain and Tissue Bank and received ethical approval from the University of
160 Edinburgh (REC 21/ES/0087).

161 **Murine infections with *Trypanosoma brucei*.** Six- to eight-week-old female C57BL/6J
162 mice (JAX, stock 000664) and C57BL/6-Tg(Nr4a1-EGFP/Cre)820Khog/J strain, also
163 known as *Nur77*^{GFP} reporter mice (JAX, stock 016617), or the *Nur77*^{Tempo} reporter
164 mouse line (kindly provided by Dr. David Bending), were inoculated by intra-peritoneal
165 injection with $\sim 2 \times 10^3$ parasites of strain *T. brucei brucei* Antat 1.1E³⁵. Parasitaemia
166 was monitored by regular sampling from tail venesection and examined using phase
167 microscopy and the rapid “matching” method³⁶. Uninfected mice of the same strain, sex
168 and age served as uninfected controls. Mice were fed *ad libitum* and kept on a 12 h
169 light–dark cycle. All the experiments were conducted between 8h and 12h. When using
170 the *Nur77*^{GFP} or the *Nur77*^{Tempo} reporter mice, sample acquisition and analysis was
171 conducted without *ex vivo* stimulation to preserve the TCR-dependent fluorescent
172 reporter signal found in the tissue. For sample collection, we focussed on 30 days post-
173 infection, as this has previously been shown to correlate with parasite infiltration in the

174 epidural space^{10,11}. Culture-adapted *T. brucei* Antat 1.1E whole cell lysates were
175 prepared as followed. Parasites were cultured in HMI-9 supplemented with 10% FBS
176 and 1% Penicillin/Streptomycin were grown at 37°C and 5% CO₂ and harvested during
177 the log phase. The parasites were harvested by centrifugation (800 g for 10 min at 4°C),
178 washed three times in 1X PBS (Gibco) supplemented with cOmplete protease Inhibitor
179 cocktail (Roche), and sonicated with 5 pulses of 10 seconds each. The resulting lysate
180 was cleared by centrifugation (3,000g for 10 min at 4°C to remove cell debris), and the
181 protein concentration of the cleared supernatant was measured using the Qubit protein
182 kit (Thermo) and kept at -80°C until usage for ELISPOT and ELISA. For LTBR-Ig
183 treatment, mice were inoculated with 1µg/µL of either LTBR-Ig or IgG2a i.p. (100
184 µl/mouse) for four consecutive days prior to infection, and then every seven days post-
185 infection until culling. Preparation of single cell suspension from skull meninges for
186 single-cell RNA sequencing

187 **Tissue processing and preparation of single cell suspension.** Single-cell
188 dissociations for scRNAseq experiments were performed as follow. Animals were
189 infected for 30 days (*n* = 2 mice/pool, 2 independent pools per experimental condition),
190 after which skullcap meninges were harvested for preparation of single cell
191 suspensions. Uninfected animals were also included as naive controls (*n* = 3 mice/pool,
192 2 pools analysed). Briefly, all mice were killed by rapid decapitation following isoflurane
193 anaesthesia, within the same time (between 7:00 and 9:00 AM). To discriminate
194 circulating versus brain-resident immune cells, we performed intravascular staining of
195 peripheral CD45⁺ immune cells, as previously reported³⁷. Briefly, a total of 2 µg of anti-
196 CD45-PE antibody (in 100 µl of 1X PBS) was injected intravenously 3 minutes prior
197 culling. Mice were euthanised as described above and transcardially perfused with ice-
198 cold 0.025% (wt/vol) EDTA in 1X PBS. The excised meninges were enzymatically
199 digested with Collagenase P (1 mg/ml) and DNase I (1 mg/ml; Sigma) in 1X PBS
200 (HSBB) (Invitrogen) for ~30 min at 37 °C. Single-cell suspensions were passed through
201 70 µm nylon mesh filters to remove any cell aggregates, and the circulating CD45-PE⁺
202 cells were removed from the single cell suspension using magnetic sorting with anti-PE
203 microbeads (Miltenyi Biotec) according to manufacturer's recommendations (**S1A**
204 **Figure**).

205 **Mass cytometry sample processing**

206 Single cell suspension from meninges were prepared as described above and
207 resuspended in Dubecco's Modified Eagle Medium (DMEM) to a concentration of 1 x
208 10^6 cells/mL. Cells were activated for 6 h in a round-bottom 96-well plate using Cell
209 Activation Cocktail (containing with Brefeldin A) (BioLegend, San Diego, USA) as per
210 the manufacturer's recommendations. Plates were then centrifuged at 300 x g for 5 min
211 and the pellets resuspended in 50 μ L of Cell-ID™ Cisplatin-195Pt viability reagent
212 (Standard BioTools, San Francisco, USA), and incubated at room temperature for 2
213 min. Cells were washed twice in Maxpar® Cell Staining Buffer (Standard BioTools, San
214 Francisco, USA), and centrifuged at 300 x g at room temperature for 5 min. The
215 CD16/CD32 receptors were then blocked by incubating with a 1/50 dilution of TruStain
216 FcX™ (BioLegend, San Diego, USA) in PBS at room temperature for 15 min. An
217 antibody cocktail was prepared from the Maxpar® Mouse Sp/LN Phenotyping Panel Kit
218 (Standard BioTools, San Francisco, USA), with and additional antibody against IgM.
219 Cells were incubated with antibodies for 60 min, on ice before washing 3 times in
220 Maxpar® Cell Staining Buffer (Standard BioTools, San Francisco, USA) as previously.
221 Following staining, cells were fixed in 2% paraformaldehyde (PFA) overnight at 4°C.
222 Cells were then washed twice with 1X eBioscience™ Permeabilization Buffer
223 (Invitrogen, Waltham, USA) at 800 x g at room temperature for 5 min. The pellets were
224 resuspended in intracellular antibody cocktail and incubated at room temperature for 45
225 min. Cells were washed 3 times in Maxpar® Cell Staining Buffer (Standard BioTools,
226 San Francisco, USA) at 800 x g. The cells were then resuspended in 4% PFA at room
227 temperature for 15 min, before collecting the cells at 800 x g and resuspending in Cell-
228 ID™ Intercalator-Ir (Standard BioTools, San Francisco, USA). Finally, the cells were
229 barcoded by transferring the stained cells to a fresh tube containing 2 μ L of palladium
230 barcode from the Cell-ID™ 20-Plex Pd Barcoding Kit (Standard BioTools, San
231 Francisco, USA). Cells were then frozen in a freezing solution (90% FBS and 10%
232 DMSO), before shipping to the Flow Cytometry Core Facility at the University of
233 Manchester for data acquisition. Sample analysis was conducted using Cytobank and
234 custom-built, python-based analysis scripts developed in house (**S1B and 1C Figure**
235 **for QC results**). The antibodies used for labelling were as follow (Standard Biotoools,
236 cat No. 201306): Ly6G/C [Gr1] (141^{Pr}, clone RB6-8C5, 1/100), CD11c (142Nd, clone N418,
237 1/100), CD69 (145Nd, clone H1.2F3, 1/100), CD45 (147Sm, clone 30-F11, 1/200), CD11b (148Nd,
238 clone M1/70, 1/100), CD19 (149Sm, clone 6D5, 1/100), CD3e (152Sm, clone 145-2C11, 1/100),

239 TCR β (169Tm, clone H57-597, 1/100), CD44 (171^{Yb}, clone IM7, 1/100), CD4 (172^{Yb}, clone RM4-
240 5, 1/100), IgM (151^{Eu}, clone RMM-1, 1/100), IFN γ (165^{Ho}, clone XMG1.2, 1/100).

241 **Single cell transcriptomics analysis of murine meninges**

242 The single cell suspension obtained from murine meninges after the CD45-PE depletion
243 step was diluted to ~1,000 cells/ μ l (in 1X phosphate buffered saline supplemented with
244 0.04% BSA) and kept on ice until single-cell capture using the 10X Chromium platform.
245 The single cell suspensions were loaded onto independent single channels of a
246 Chromium Controller (10X Genomics) single-cell platform. Briefly, ~25,000 single cells
247 were loaded for capture using 10X Chromium NextGEM Single cell 3 Reagent kit v3.1
248 (10X Genomics). Following capture and lysis, complementary DNA was synthesized
249 and amplified (12 cycles) as per the manufacturer's protocol (10X Genomics). The final
250 library preparation was carried out as recommended by the manufacturer with a total of
251 14 cycles of amplification. The amplified cDNA was used as input to construct an
252 Illumina sequencing library and sequenced on a Novaseq 6000 sequencers by Glasgow
253 polyomics.

254 **Read mapping, data processing, and integration.** For FASTQ generation and
255 alignments, Illumina basecall files (*.bcl) were converted to FASTQs using bcl2fastq.
256 Gene counts were generated using Cell Ranger v.6.0.0 pipeline against a combined
257 *Mus musculus* (mm10) and *Trypanosoma brucei* (TREU927) transcriptome reference.
258 After alignment, reads were grouped based on barcode sequences and demultiplexed
259 using the Unique Molecular Identifiers (UMIs). The mouse-specific digital expression
260 matrices (DEMs) from all six samples were processed using the R (v4.1.0) package
261 Seurat v4.1.0³⁸. Additional packages used for scRNAseq analysis included dplyr v1.0.7,
262 RColorBrewer v1.1.2 (<http://colorbrewer.org>), ggplot v3.3.5, and sctransform v0.3.3³⁹.
263 We initially captured 20,621 cells mapping specifically against the *M. musculus* genome
264 across all conditions and biological replicates, with an average of 30,407 reads/cell and
265 a median of ~841 genes/cell (**S1 Table and S1D Figure**). The number of UMIs was
266 then counted for each gene in each cell to generate the digital expression matrix
267 (DEM). Low quality cells were identified according to the following criteria and filtered
268 out: *i*) nFeature <200 or >4,000 genes, *ii*) nCounts <200 or >4,000 reads, *iii*) >20%
269 reads mapping to mitochondrial genes, and *iv*) >40% reads mapping to ribosomal
270 genes, *v*) genes detected < 3 cells. After applying this cut-off, we obtained a total of
271 19,690 high quality mouse-specific cells with an average of 950 genes/cell (**S1 Table**
272 and **S1D Figure**). High-quality cells were then normalised using the *SCTransform*

273 function, regressing out for total UMI and genes counts, cell cycle genes, and highly
274 variable genes identified by both Seurat and Scater packages, followed by data
275 integration using *IntegrateData* and *FindIntegrationAnchors*. For this, the number of
276 principal components were chosen using the elbow point in a plot ranking principal
277 components and the percentage of variance explained (30 dimensions) using a total of
278 5,000 genes, and SCT as normalisation method.

279 **Cluster analysis, marker gene identification, sub-clustering, and cell-cell**
280 **interaction analyses.** The integrated dataset was then analysed using *RunUMAP* (10
281 dimensions), followed by *FindNeighbors* (10 dimensions, reduction = “pca”) and
282 *FindClusters* (resolution = 0.7). The resolution was chosen based on in silico analysis
283 using *Clustree*⁴⁰ (**S1E Figure**). With this approach, we identified a total of 19 cell
284 clusters. The cluster markers were then found using the *FindAllMarkers* function
285 (logfc.threshold = 0.25, assay = “RNA”). To identify cell identity confidently, we
286 employed a supervised approach. This required the manual inspection of the marker
287 gene list followed by and assignment of cell identity based on the expression of putative
288 marker genes expressed in the unidentified clusters. This was particularly relevant for
289 immune cells detected in our dataset that were not found in the reference atlases used
290 for mapping. A cluster name denoted by a single marker gene indicates that the chosen
291 candidate gene is selectively and robustly expressed by a single cell cluster and is
292 sufficient to define that cluster (e.g., *Cd79a*, *Cd4*, *C1qa*, *Cldn5*, among others). When
293 manually inspecting the gene markers for the final cell types identified in our dataset,
294 we noted the co-occurrence of genes that could discriminate two or more cell types
295 (e.g., DCs, mononuclear phagocytes, fibroblasts). To increase the resolution of our
296 clusters to help resolve potential mixed cell populations embedded within a single
297 cluster and, we subset fibroblasts, DCs, and mononuclear phagocytes and analysed
298 them individually using the same functions described above. In all cases, upon
299 subsetting, the resulting objects were reprocessed using the functions
300 *FindVariableFeatures*, *RunUMAP*, *FindNeighbors*, and *FindClusters* with default
301 parameters. The number of dimensions used in each cased varied depending on the
302 cell type being analysed but ranged between 5 and 10 dimensions. Cell type-level
303 differential expression analysis between experimental conditions was conducted using
304 the *FindMarkers* function (*min.pct* = 0.25, *test.use* = Wilcox) and (*DefaultAssay* =
305 “SCT”). For cell-cell interaction analyses, we used CellPhoneDB⁴¹ and NicheNet⁴² with
306 default parameters using “mouse” as a reference organism, comparing differentially

307 expressed genes between experimental conditions (*condition_oi* = “Infected”,
308 *condition_reference* = “Uninfected”). Pathways analysis for mouse genes were
309 conducted using STRING²⁶ with default parameters. Module scoring were calculated
310 using the *AddModuleScore* function to assign scores to groups of genes of interest (*Ctrl*
311 = 100, *seed* = NULL, *pool* =NULL), and the scores were then represented in feature
312 plots. This tool measures the average expression levels of a set of genes, subtracted by
313 the average expression of randomly selected control genes. The complete gene list
314 used for module scoring derived from previous publications²⁵ or from the
315 MatrisomeDB⁴³. Once defined, the collated gene list was used to build the module
316 scoring. Raw data and scripts used for data analysis will be made publicly available
317 after peer review.

318 **Whole mount meningeal preparation and immunofluorescence.** After euthanasia,
319 the skull caps were carefully removed using fine tweezers and scissors and placed
320 immediately in 10% neutral buffered Formalin (NFB) for 10 minutes at room
321 temperature. Coronal brain sections were also fixed as above, embedded in paraffin,
322 and processed for Luxol Fast blue used as a proxy to measure the levels of myelin.
323 Following fixation of the skull caps, for immunofluorescence staining, the meninges
324 were detached from the skull caps using a stereotactic microscope and kept at 4°C in
325 1X PBS containing 0.025% sodium azide until imaging (no longer than one week). For
326 histological analysis, the dura meninges were left attached to the skull and the samples
327 were decalcified prior to embedding in paraffin using neutral EDTA. 2-3 µm skull
328 sections were then prepared for *in situ* hybridisation experiments or for Masson’s
329 trichrome staining. For immunofluorescence staining, sections were blocked with
330 blocking buffer (1X PBS supplemented with 5% foetal calf serum and 0.2% Tween 20)
331 and incubated with the following primary antibodies at 4°C overnight: REAfinity anti-
332 mouse FITC CD21/35 (Miltenyi, 1:50), rat anti-mouse ER-TR7 (Novus Biologicals,
333 1:100), REAfinity anti-mouse PE CD3 (Miltenyi, 1:100), REAfinity anti-mouse APC B220
334 (Miltenyi, 1:100), anti-mouse CD138 PE (BD Bioscience, 1:100). For the detection of
335 ER-TR7, we used an anti-rat antibody coupled with PE (Thermo, 1:500) for 1 hour at
336 room temperature. All the antibodies were diluted in blocking buffer. Slides were
337 mounted with Vectashield mounting medium containing DAPI for nuclear labelling
338 (Vector Laboratories) and were visualized using an Axio Imager 2 (Zeiss). Single
339 molecule fluorescent *in situ* hybridisation (smFISH) experiments were conducted as

340 follow. Briefly, to prepare tissue sections for smFISH, infected animals and naïve
341 controls were anesthetized with isoflurane, decapitated and the skull caps containing
342 the dura mater layer of the meninges were dissected and place on ice-cold 1X HBSS.
343 The skulls were then fixed with 4% paraformaldehyde (PFA) at 4 °C for 15 min, and
344 then dehydrated in 50, 70 and 100% ethanol. After fixation, the skulls caps were
345 decalcified, cut coronally and embedded in paraffin. 5 µm skull cap sections were
346 RNAscope 2.5 Assay (Advanced Cell Diagnostics) was used for all smFISH
347 experiments according to the manufacturer's protocols. We used RNAscope probes
348 against mouse *Rarres2* on channel 1 (Cat No. 572581), *Cxcl13* on channel 2 (Cat. No.
349 406311-C2), and *Ly6a* on channel 3 (Cat. No 427571-C3). All RNAscope smFISH
350 probes were designed and validated by Advanced Cell Diagnostics. For image
351 acquisition, 16-bit laser scanning confocal images were acquired with a 63x/1.4 plan-
352 apochromat objective using an LSM 710 confocal microscope fitted with a 32-channel
353 spectral detector (Carl Zeiss). Lasers of 405nm, 488nm and 633 nm excited all
354 fluorophores simultaneously with corresponding beam splitters of 405nm and
355 488/561/633nm in the light path. 9.7nm binned images with a pixel size of 0.07um x
356 0.07um were captured using the 32-channel spectral array in Lambda mode. Single
357 fluorophore reference images were acquired for each fluorophore and the reference
358 spectra were employed to unmix the multiplex images using the Zeiss online
359 fingerprinting mode. All fluorescent images were acquired with minor contrast
360 adjustments where needed, and converted to grayscale, to maintain image consistency.
361 **Flow cytometry analysis and ex vivo stimulation of meningeal-dwelling T cells.** To
362 discriminate circulating versus brain-resident immune cells, we performed intravascular
363 staining of peripheral CD45⁺ immune cells, as previously reported³⁷. Briefly, a total of 2
364 µg of anti-CD45-APC-Cy7 antibody (clone 30-F11, in 100 µl of 1X PBS) was injected
365 intravenously ~3 minutes prior culling. Mice were euthanised as described above and
366 transcardially perfused with ice-cold 0.025% (wt/vol) EDTA in 1X PBS. Whole meninges
367 were enzymatically digested with Collagenase P (1 mg/ml) and DNase I (1 mg/ml;
368 Sigma) in 1X PBS (HSBB) (Invitrogen) for ~30 min at 37 °C, according to previously
369 published protocols⁴⁴. Single-cell suspensions were passed through 70 µm nylon mesh
370 filters to remove any cell aggregates. The cell suspension was cleaned up and
371 separated from myelin debris using a Percoll gradient. The resulting fraction was then
372 gently harvested and used as input for ex vivo T cell stimulation or used as input for

373 downstream flow cytometry analysis. Briefly, the resulting cell fraction was diluted to a
374 final density of ~1x10⁶ cells/ml and seeded on a 96 well plate and stimulated with 1X
375 cell Stimulation cocktail containing phorbol 12-myristate 13-acetate (PMA), Ionomycin,
376 and Brefeldin A (eBioSciencesTM) for 5 hours at 37°C and 5% CO₂. Upon stimulation,
377 the cells were analysed for the expression of IL-21 and PD-1.

378 For flow cytometry analysis, meningeal single cell suspensions were resuspended in
379 ice-cold FACS buffer (2 mM EDTA, 5 U/ml DNase I, 25 mM HEPES and 2.5%
380 Foetal calf serum (FCS) in 1X PBS) and stained for extracellular markers. The list of
381 flow cytometry antibodies used in this study were obtained from Biolegend and are
382 presented in the table below. Samples were run on a flow cytometer LSRFortessa (BD
383 Biosciences) and analysed using FlowJo software version 10 (Treestar). For
384 intracellular staining, single-cell isolates from brain were stimulated as above in Iscove's
385 modified Dulbecco's media (supplemented with 1X non-essential amino acids,
386 50 U/ml penicillin, 50 µg/ml streptomycin, 50 µM β-mercaptoethanol, 1 mM sodium
387 pyruvate and 10% FBS. Gibco). Cells were then permeabilized with a
388 Foxp3/Transcription Factor Staining Buffer Set (eBioscience) and stained for 30 min at
389 4°C. The anti-mouse GP38 (1:100) and the LTβ (monoclonal antibody BBF6⁴⁵; 10
390 µg/ml) antibodies were kindly provided by Dr. Lalit Kumar Dubey (QMUL). For the
391 detection of LTβ in CD4⁺ T cells, we used a goat anti-hamster (Armenian) IgG coupled
392 to FITC as secondary antibody (Biolegend; 1:200). For the detection of GP38 we used
393 a Syrian hamster-anti mouse GP38 followed by anti-Syrian hamster secondary antibody
394 coupled to APC/alexa647 (Jackson ImmunoResearch; 1:100). We used the following
395 commercially available antibodies from Biolegend: CD45-APC-Cy7 (clone 30-F11, 2
396 µg/100 µl 1X PBS i.v.), TER-119-APC-Cy7 (clone TER-119; 1/400), CD19-APC-Cy7
397 (clone 1D3/CD19; 1/400), F4/80-APC-Cy7 (clone BM8; 1/400), F4/80-PE Dazzle 594
398 (clone BM8; 1/400), CD3-APC (clone 17A2; 1/400), CD4-FITC (clone GK1.5; 1/400),
399 PD1-BV711 (clone 29F.1A12; 1/400), CXCR5-BV421 (clone L138D7; 1/200), IL-21-PE
400 (clone 3A3-N2; 1/200), CD45-BV711 (clone 30-F11; 1/400), CD31-BV421 (clone 8.1.1;
401 1/100), CD21/35-PE Dazzle 594 (clone 7E9; 1/100), MAdCAM-1-Alexa Fluor 488 (clone
402 MECA-367; 1/100), CD19- Alexa Fluor 488 (clone 6D5; 1/400), CD138-PE (clone 281-
403 2; 1/200), IgG-BV421 (clone Poly4053; 1/200), IgM-BV711 (clone RMM-1; 1/200),
404 CD8a-BV421 (clone QA17A07; 1/400), I-A/I-E-PerCP-Cy5.5 (clone M5/114.15.2; 1/400)

405 **ELISPOT assays**

406 ELISPOT tests to measure *ex vivo* the frequency of meningeal antibody secreting cells
407 (ASCs) was performed using the ELISpot Flex IgM- and IgG-HRP (Mabtech) as
408 followed. After generating single cell suspensions from meningeal preparations, a total
409 of 50,000 cells per well were seeded on 96-wells multiscreen-HA filter plates (Millipore)
410 coated with 50 µg/ml of either whole *T. brucei*, prepared in house, or mouse brain
411 lysate (Novus Biologicals) to determine the presence of *T. brucei* and mouse brain-
412 reactive antibody secreting cells, respectively. Wells coated with 50 µg/ml BSA (Sigma)
413 were also included as negative controls. After seeding the cells, the plates were
414 incubated for 16 hours at 37°C, and 5%CO₂ covered in foil to avoid evaporation. In
415 parallel, plates coated with 15 µg/ml affinity-purified goat anti-mouse IgM and IgG were
416 also analysed in parallel to measure the frequency of total IgM and IgG ASCs. For this,
417 we used a total of 25,000 cells per well and incubated as before. Spots were
418 enumerated with an Immunospot analyser (CTL, Germany).

419 **Detection of autoreactive IgM and IgG by ELISA**

420 Serum samples from naïve and infected animals at 30 days post-infection were used to
421 examine the presence of mouse brain lysate-specific IgM and IgG using a colorimetric
422 approach. For this purpose, polysorb ELISA plates (Biolegend) were coated overnight
423 with 50 µg/ml either *T. brucei* Antat 1.1E whole cell lysate prepared in house, or mouse
424 brain lysate (Novus Biologicals) in 1X coating buffer (Biolegend). After extensive
425 washes with 1X ELISA washing buffer (Biolegend), total mouse IgM or IgG were
426 detected in mouse serum (1:50 to 1:10,000 dilution in 1X PBS) or human CSF (1:400 in
427 1X PBS) by using Horseradish peroxidase-conjugated antibodies specific for mouse
428 IgM (Thermo) or IgG (all isotypes; Sigma) using the recommended concentrations, and
429 the resulting absorbance was detected at 450 nm using an ELISA Multiskan plate
430 reader (Thermo).

431 **Detection of host antigens detected by autoantigens**

432 Blood samples were collected by cardiac puncture from naïve mice (*n* = 3 mice) or at
433 30dpi (*n* = 3 mice) were and place on EDTA tubes, from which serum was obtained. In
434 parallel, we screened CSF samples collected from 1st stage sleeping sickness patients
435 (*n* = 3 patients) and 2nd stage patients (*n* = 4 patients). Due to ethical constraints, we
436 did not have access to CSF samples from African healthy donors. Therefore, we
437 obtained CSF samples from healthy Caucasian donors (*n* = 2 donors) from the
438 University of Edinburgh Brain and Tissue Bank. Autoantibodies were assessed using a

439 commercial microarray-based platform (GeneCopoeia). Briefly, mouse serum or human
440 CSF samples were hybridised to distinct microarray spots containing 120 native host
441 and viral antigens spotted onto nitrocellulose fibers (adhered to glass slides). Next, the
442 slides were incubated with fluorescently-coupled anti-IgG or anti-IgM secondary
443 antibodies, and microarrays were scanned using a GenePix 4400A microarray scanner.
444 Raw fluorescence data was normalized to PBS controls on each slide. The data
445 presented in the heatmaps are normalised signal-to-noise ratios.

446 **Data availability**

447 The transcriptome data generated in this study have been deposited in the Gene
448 Expression Omnibus (GSE229436; Reviewer's token: mztckmgbtmtxqz). The
449 processed transcript count data and cell metadata generated in this study, as well as
450 the code for analysis, are available at Zenodo
451 (<https://doi.org/10.5281/zenodo.7814657>). Additional data and files can also be sourced
452 via Supplementary Tables.

453 **Code availability**

454 The processed transcript count data and cell metadata generated in this study, as well
455 as the code for analysis, are available at Zenodo (DOI: 10.5281/zenodo.7814657).

456 **Statistical analysis**

457 All statistical analyses were performed using Graph Prism Version 8.0 for Windows or
458 macOS, GraphPad Software (La Jolla California USA). The data distribution was
459 determined by normality testing using the Shapiro-Wilks test. Where indicated, data
460 were analysed by unpaired Student's t-test, Mann-Whitney test, or one-way analysis of
461 variance (ANOVA). Data were considered to be significant where $p < 0.05$. For the *in*
462 *vivo* experiments, we matched sex and age of the mice in experimental batches using a
463 block design including randomisation of experimental units. Data collection and analysis
464 were not performed blindly to the conditions of the experiment due to the specific
465 requirements of the UK Home Office project licence.

466

467

468

469

470

471

472

473

474

475

476

477

478 **Results**

479 **The murine meninges are colonised by a diversity of immune cells during chronic**
480 ***T. brucei* infection**

481 We and others have shown an increase in meningeal infiltration and meningitis during
482 the chronic stage (25dpi onwards) in experimental infections with *T. brucei*^{10,13}.
483 Previous studies have shown that mouse meninges are colonised by CD2⁺ T cells and
484 CD11c⁺ dendritic cells (DCs) during chronic *T. brucei* infection⁹, although a catalogue of
485 the immune interactions spanning beyond these compartments is lacking. To fill this
486 gap in knowledge, we used an integrative multi-omics approach that combined CyTOF
487 and 10X Chromium single cell transcriptomics (**Figure 1A**) to understand the
488 complexity of the immune interactions taking place in the meningeal space during
489 chronic *T. brucei* infection. In addition to unbiasedly cataloguing the cells involved in
490 this process, this approach also allowed us to identify transcriptional pathways involved
491 in the anti-parasitic responses in the meninges with as much resolution as possible. We
492 focussed on characterising the dura mater as this has been previously shown to contain
493 the vast majority of the meningeal CD45⁺ immune cells⁴², as well as parasites during
494 the chronic stages of the infection⁹. To ensure we captured the diversity of resident
495 immune cells and meningeal stroma with as much confidence as possible, we
496 selectively removed all circulating CD45⁺ immune cells using a magnetic sorting
497 approach (**Figure 1A and S1A Figure**). In brief, we labelled circulating CD45⁺ cells by
498 intravenous injection with an anti-CD45⁺ antibody coupled to phycoerythrin (PE). All the
499 circulating CD45⁺ were then isolated using an anti-PE antibody coupled to magnetic
500 beads. After extensive perfusion, the remaining circulating (PE⁺ cells) cells were
501 removed leaving behind resident CD45⁺ cells (PE⁻ cells), as well as stromal cells,
502 including fibroblasts and cells associated with the vasculature and the lymphatic
503 system.

504 Firstly, we decided to explore the broad immunological landscape in the meninges of
505 mice at 30dpi, when infection in the CNS is well established⁹⁻¹³. For this reason and
506 given the scarcity of cells typically obtained from the meninges, CyTOF was used as

507 this approach enables detection of a wide range of cell types. Our CyTOF data was
508 composed of T cells (CD4⁺ and CD8⁺ T cells, including IFN γ ⁺ subsets, NK and $\gamma\delta$ T
509 cells), B cells (including IgM^{High} B cells and CD11c⁺ B cells), and myeloid cells including
510 neutrophils and macrophages (**Figure 1B-D, S1B and S1C Figure**), consistent with
511 previous work². Overall, we detected a significant increase in the number of CD45⁺ cells
512 (**Figure 1E**), and an increased in number of the various immune subsets in the murine
513 meninges at 30dpi compared to naïve controls (**Figure 1F**), without noticeable changes
514 in cell frequency (**Figure 1G**). Together, these data suggested the expansion and/or
515 recruitment of resident immune cells into the meninges in response to infection.
516 To gain an understanding of the transcriptional responses triggered in the meninges in
517 response to infection, and to identify potential interactions between various meningeal
518 cells during infection, we performed single cell RNA sequencing of meningeal
519 preparations from mice at 30 dpi ($n = 2$ pools; 2 mice/pool) and naive controls ($n = 2$
520 pools; 2 mice/pool). Using this approach and after removing cells catalogued as low
521 quality (**Materials and Methods**), we obtained a total of 19,690 high quality cells, from
522 which 1,834 cells derived from naïve meninges and 17,856 cells from infected
523 meninges, with an average of 605 genes per cell from naïve samples and 1,297 genes
524 per cell from infected samples (**Figure 2A, Figure S1D and S1E, and Materials and**
525 **Methods**). As expected, our single cell meningeal atlas encompasses stromal and
526 immune cells, most of which have previously been reported in the murine meninges^{2,46}.
527 Within the stromal compartment, we identified two populations of *Col1a1*⁺ fibroblasts,
528 *Ccl19*⁺ *Rarres2*⁺ mural cells, and *Wvf*⁺ *Pecam1*⁺ endothelial cells (**Figure 2A and 2B**).
529 Within the immune compartment, we identified five populations of mononuclear
530 phagocytes (MNP 1 to 5), characterised by the expression of putative myeloid cell
531 markers genes such as *Ccl8*, *C1qa*, *Aif1*, *Adgre1* and *Cd14*, amongst others, as well as
532 conventional DCs (cDCs; *Xcr1*, *Zbtb46*, *Clec9a*, *Flt3* and *Itgae*) (**Figure 2A and 2B**).
533 Additionally, we also detected T cells (*Trac*, *Cd3g*, *Cd3e*, *Cd4*, *Icos*, *Cd8a*, *Gzmb*,
534 *Gzmk*), granulocytes, including *S100a8*⁺ *Ngp*⁺ *Cd177*⁺ neutrophils, and two populations
535 of B cells (*Cd79a*, *Cd79b*) that expressed markers of canonical plasma cell markers
536 (e.g., *Sdc1*) (**Figure 2A and 2B**). Lastly, we detected a small proportion of cells
537 (<0.5%) with high expression levels of haemoglobin (*Hba-a1*, *Hbb-bf*) and genes
538 typically related to neurons (*Neurod1*, *Neurod4*) (**Figure 2A, 2B, and S2 Table**).
539 Notably, we observed a robust increase in the frequency of most of the cells within the

540 immune compartment (**Figure 2C**) consistent with the CyTOF dataset. Together, these
541 analyses are consistent with profound alterations in the cellular makeup of the murine
542 meninges during chronic *T. brucei* infection.

543 **Meningeal *Ly6a*⁺ fibroblasts acquire lymphoid tissue stroma-like properties**
544 **during chronic *T. brucei* infection.**

545 Next, we focussed on the meningeal fibroblasts. The meningeal fibroblasts are a
546 heterogeneous cell population encompassing transcriptionally, spatially, and potentially
547 functionally distinct units critical for meningeal immunity^{47–50}, but their responses to
548 chronic protozoan infections remains to be elucidated. Therefore, we first asked
549 whether the three fibroblast clusters (Fibroblast 1, Fibroblast 2, and mural cells)
550 identified in figure 2 contained discreet clusters of cell populations that were not
551 resolved by the top-level clustering. After sub-clustering, we identified 2,088 cells (547
552 and 1,541 cells from naïve and infected meningeal preparations, respectively),
553 distributed across eight discrete subsets (**Figure 3A**). These clusters expressed marker
554 genes putatively associated with fibroblasts from the dura mater, including *Mgp*, *Gja1*,
555 *Fxyd5* and *Col18a1* (**Figure 3B**)⁴⁸, but low or undetectable levels of markers proposed
556 to be associated with arachnoid mater fibroblasts (e.g., *Clnnd11*, *Tbx18*, *Tagln*) or pia
557 mater (e.g., *Lama2*, *S100a6*, *Ngfr*) (**Figure 3B**)⁴⁸. These observations suggested that
558 the majority of the fibroblasts within our dataset were likely to be derived from the dura
559 mater layer of the meninges⁵¹. These fibroblast clusters also contained the
560 mesenchymal markers *Col1a1*, *Col1a2*, *Pdgfra* and *Pdgfrb*, but lacked *Pecam1*
561 (encoding for CD31) suggesting that these cells are of mesenchymal origin rather than
562 endothelial^{50,51} (**Figure 3C**). Furthermore, cells within clusters 0 to 5 expressed high
563 levels of *Rarres2*, suggesting that these are meningeal pericyte-like cells⁵⁰. Similarly,
564 these clusters expressed *Ly6a* (which encodes for the Stem Cell antigen-1, *Sca1*)
565 (**Figure 3C**), suggesting they are likely to retain progenitor properties⁵⁰. Clusters 0 to 3
566 also expressed *Pdpn*, which encodes for GP38, and *Col6a2*, which is recognised by the
567 antibody ER-TR7⁵², and were thus defined as FRC-like pericytes (**Figure 3C**). Cells
568 within cluster 4 expressed high levels of the antioxidant protein *Fth1* in addition to
569 *Rarres2* and *Ly6a* and were labelled as *Fth1*⁺ pericytes (**Figure 3C**). Cells within cluster
570 5 also expressed *Ccl19* and *Aldh1a2*, recently shown to be associated with lymphoid
571 stroma in the milky spots⁵³, in addition to *Ly6a*, and were thus classified as *Aldh1a2*⁺
572 *Ccl19*⁺ pericytes (**Figure 3C**). Cells within cluster 6 expressed high levels of *Acta2*
573 (which encodes for α-smooth muscle actin), as well as *Tnn*, *Postn*, and *Mmp13*, and

574 were thus classified as myofibroblasts⁵⁰. Lastly, cells within cluster 7 expressed
575 *Slc38a2* and *Slc47a1*, consistent with the phenotype of dura and leptomeningeal
576 fibroblasts^{54,55,56} recently reported to be enriched in several transporters, and were thus
577 assigned as dura fibroblasts (**Figure 3C**).

578 We also found heterogeneous responses to infection within the meningeal fibroblast
579 subset, including cells that display features of fibroblast reticular cells (FRCs) and B cell
580 zone reticular cells (BCRs) in response to infection. Cells within cluster 0, 1, 2, 3, and to
581 a lesser extent cells within cluster 5 upregulated genes associated with FRCs⁵⁷ in
582 response to infection, including *Pdpn*, *Pdgfra*, *Pdgrfb*, *Vim*, and *Col6a3*, as well as
583 secreted factors such as *Vefga* and *Tnfsf13b* (encoding for BAFF) (**S3A Figure**). Cells
584 within clusters 3, 5, and 6 upregulated genes associated with BRCs⁵⁸ during infection,
585 including *Cxcl13* (Cluster 5), *Itga7*, *Ltbr* (cluster 5 and 6), *Madcam1* (cluster 5), *Cr2*
586 (cluster 3 and 6), and *Tnfsf11* (encoding for RANKL) in cluster 3 (**Figure 3C and S3B**
587 **Figure**). Based on the expression pattern observed across the fibroblast subset in
588 response to infection, we catalogued clusters 0, 1, 2, and 3 as FRC-like cells, and cells
589 within clusters 5 and 6 as BRC-like cells (**S3C Figure**). Lastly, cells within cluster 2,
590 described as a mature population of pericytes, were exclusively detected in the infected
591 meninges and were characterised by the expression of genes associated with blood
592 vessel development (*Fgfr*, *Thbs1*, *Fgf2*), as well as leukocyte chemotaxis and myeloid
593 differentiation (*Cxcl19*) (**Figure 3C and S3 Table**), suggesting *de novo* expansion in
594 response to infection. Additionally, all of the FRC-like pericytes are predicted to be
595 involved in extracellular matrix (ECM) remodelling in the meninges, including collagen
596 and proteoglycan deposition, as well as secretion of factors involved in ECM
597 production, as demonstrated by module scoring analysis using the MatrisomeDB
598 database⁴³ (**Figure S3D Figure**), which encompasses a curated proteomic dataset of
599 ECM derived from a wide range of murine tissues. Consistent with these *in silico*
600 predictions, we observed a consistent pattern of fibroblastic reactions and collage
601 deposition in the dura meninges from infected mice compared to naïve controls (**S3E**
602 **Figure**), further indicating an extensive meningeal ECM remodelling triggered in
603 response to infection.

604 Our results so far indicate that the dura mater layer of the meninges contains a diverse
605 population of stromal cells, including GP38⁺ and GP38⁻ stromal cells that resemble the
606 stroma of other lymphoid tissues and ECM remodelling. Consistent with our scRNAseq
607 data, using flow cytometry, we observed a significant expansion of GP38⁺ FRCs, and a

608 distinctive population of MAdCAM1⁺ CD21/CD35⁺ cells indicative of the presence of
609 FDC-like cells in the infected murine meninges compared to naïve controls (**Figure 3E-**
610 **F; Gating strategy in 2A Figure**), without significant changes in the lymphatic
611 endothelial cells (LECs) or blood endothelial cells (BECs) (**Figure 3E-F**). Furthermore,
612 using module scoring analysis, which allows us to assess global gene signatures
613 associated with a gene set or pathway (in this case, ectopic lymphoid tissue
614 signatures), we were able to identify that cells within cluster 5 were enriched for genes
615 associated with FDC-like function and stromal lymphoid tissues, including *Ccl19* and
616 *Cxcl13*, compared to the other fibroblast clusters (**Figure 3H**), and may be derived from
617 *Ly6a*⁺ pericytes with a precursor capacity as previously reported^{59,60}. Indeed, using *in*
618 *situ* hybridisation on independent tissue sections, we were able to confirm the presence
619 of *Ly6a*⁺ *Rarres2*⁺ cells that expressed *Cxcl13*⁺ during infection (**Figure 3I**). Together,
620 our data demonstrate the presence of a rich diverse fibroblast population,
621 encompassing *Ly6a*⁺ *Rarres2*⁺ FRC-like pericytes, including *Aldh1a2*⁺ *Ccl19*⁺ FRC-like
622 pericytes, myofibroblasts, *Fth1*⁺ fibroblasts, and perivascular dura fibroblasts. Our data
623 also suggests that chronic *T. brucei* infection induces an extensive remodelling of the
624 meningeal stroma compartment, resulting in the expansion of FRCs and FDC-like cells
625 without significant changes in the vasculature (LECs and BECs).

626 **Meningeal mononuclear phagocytes are predicted to be involved in antigenic
627 presentation and chemotaxis during chronic *T. brucei* infection**

628 The cells within the myeloid compartment in the murine meninges act as a critical first
629 line of defence against insults and were clearly expanded during the chronic stage of
630 the infection (**Figure 1 and 2**). To resolve the mononuclear phagocyte (MNP) compartment
631 in more detail, we analysed these populations individually. In total, we
632 obtained 10,760 cells organised into five major clusters: cluster 0 (33.8%), cluster 1
633 (25.04%), cluster 2 (19.7%), cluster 3 (13.4%), and cluster 4 (8.10%) (**Figure 4A**).
634 Since clusters 0 and 2 expressed high levels of *Mrc1* (encoding for CD206) and the
635 anti-inflammatory molecule *Il18bp*, and *Siglec1* (encoding for CD169), we labelled these
636 clusters as *Cd206*⁺ border-associated macrophages (BAMs) (**Figure 4B and S4
637 Table**). Clusters 1 and 3 contained the immune sensors *Cd14* and *Tlr2*, in addition to
638 *Mertk*, *Adgre1*, and *Ly6c2*. We therefore labelled these clusters as monocyte-derived
639 macrophages (MDMs). Lastly, cells within cluster 4 expressed high levels of
640 mitochondrial-associated transcripts (e.g., *mt-Co1*, *mt-Co2*, *mt-Atp6*), in addition *Itgal*,
641 *Sirpa*, *Cd274*, *Nfkbia*, *Sell*, and *Cd44* (**Figure 4B and S4 Table**), and were labelled as

642 metabolically active mononuclear phagocytes (maMNPs) (**Figure 4A and B**). We also
643 observed that *Cd206*⁺ BAMs and cells within the MDMs 1 cluster expressed high levels
644 of *H2-Aa*, *Sirpa*, *Csf1r*, *Cxcl16*, and *Adgre1*, which encodes for F4/80⁶¹ (**Figure 4B and**
645 **S4 Table**). Under homeostatic conditions, the murine meninges were dominated by
646 *Cd206*⁺ BAMs, in agreement with previous reports⁶² (**Figure 4C**). However, during
647 infection, there was a significant expansion of MDMs (**Figure 4C**), suggesting that the
648 murine meninges were populated by circulating monocytes during chronic *T. brucei*
649 infection, consistent with previous reports¹⁰. Cell-cell interaction analyses predicted that
650 meningeal MNPs establish significant interactions with other cell types, including T
651 cells, *via* antigenic presentation (**Figure 4D to 4F**), likely driving T cell activation locally,
652 as previously proposed^{2,10}. Consistent with our *in silico* predictions, based on the
653 expression level of F4/80, we identified two populations of CD11b⁺ myeloid cells, that
654 we defined as CD11b⁺ F4/80^{high} (resembling *Cd206*⁺ BAMs and MDMs 1) and CD11b⁺
655 F4/80^{low} (resembling MDMs 2 and maMNPs) (**Figure 4B, 4G, and 4H**). During infection,
656 there was a significant increase in the frequency of CD11b⁺ F4/80^{low} MNPs, whereas
657 the CD11b⁺ F4/80^{high} MNPs population decreased in frequency (**Figure 4G and 4H**;
658 **Gating strategy in S2B Figure**). However, in both cases, we noted a significant
659 increase in the expression of MHC-II in both CD11b⁺ F4/80^{high} and CD11b⁺ F4/80^{low}
660 MNPs (**Figure 4G and 4H**). Together, our results indicate that the resident population
661 of meningeal myeloid cells expand upon infection (e.g., either as a result of local
662 myeloid proliferation or *via* the recruitment of monocytes to the meningeal space) likely
663 driving both cell recruitment *via* chemotaxis and antigen presentation to CD4⁺ T cells.
664 Our data are consistent with and complementary to independent reports focusing on the
665 ontogeny and dynamics of BAMs and MNPs under homeostasis² and during the onset
666 and resolution of *T. brucei* infection¹⁰.

667 **The murine meninges contain T_{FH}-like cells during chronic *T. brucei* infection**

668 The accumulation of inflammatory T cell subsets in the meninges has been reported in
669 CNS infections with *T. brucei*⁹, but their features and effector functions remain
670 unresolved. Our top level single cell analysis identified three discreet T cell clusters
671 based on the expression of *Trac*, *Cd3e*, *Cd3g*, *Cd4*, and *Cd8a* (**Figure 2A**). To resolve
672 the meningeal T cell compartment in more detail, we re-clustered the T cells and
673 repeated the dimensionality reduction analysis. Within the resident meningeal T cell
674 compartment, we identified four main transcriptional clusters, characterised by the
675 expression of *Trbc1*, *Cd4* (cluster 0, 1, and 2), and *Cd8a* (cluster 3) (**Figure 5A and 5B**,

676 **and and S5 Table**). Several of the genes observed in the CD4⁺ T cells were putatively
677 associated with a T_{FH} like phenotype, including *Icos*, *Pdcd1* (encoding for PD-1), *Cxcr4*,
678 *Ctla4*, *Maf*, *Nr4a1*, *Csf1*, *Tox2*, *Cxcr5*, *Bcl6*, as well as the cytokines *Ifng* and *Il21*
679 (**Figure 5B and 5C**). To confirm this, we first examined the presence of T_{FH}-like T cells
680 in the meninges *in vivo* using flow cytometry. Consistent with our *in silico* predictions,
681 we detected a significant increase in the frequency of resident CXCR5⁺ PD1⁺ CD4⁺ T
682 cells in the murine meninges in response to chronic *T. brucei* infection compared to
683 naïve controls (**Figure 5D and 5E; Gating strategy in S2C Figure**). Furthermore, ex
684 vivo stimulation assays demonstrated that chronic *T. brucei* infection results in a
685 significant expansion of meningeal PD1⁺ CD4⁺ T that express IL-21 compared to naïve
686 controls (**Figure 5F and 5G**), further indicating their T_{FH}-like phenotype.
687 Our data so far also indicate that meningeal ecosystems promote T cell activation *via*
688 antigen presentation (**Figure 4D**). Indeed, both our *in silico* prediction and flow
689 cytometry experiments demonstrated an expansion of CD69⁺ CD4⁺ T cells in the
690 infected meninges compared to naïve controls (**Figure 5B, 5H, and 5I**), strongly
691 suggesting local activation. To examine whether meningeal T cells were activated *in*
692 *situ* during infection, we initially utilised *Nur77*^{GFP} reporter mice⁶³. In this model, GFP
693 expression is used as a proxy for MHC-dependent TCR engagement resulting in T cell
694 activation⁶³. We observed a significant increase in the frequency of *Nur77*-GFP⁺ CD4⁺
695 and CD8⁺ T cells (**Figure 5J, 5K; Gating strategy in S2C Figure**), indicating local T
696 cell activation within the murine meninges. To further resolve whether T cell activation
697 occurs *in situ*, we used the newly reported *Nur77*^{Tempo} mice, a novel murine reporter line
698 in which the expression of a fluorescent timer (FT) protein is driven by *Nur77*
699 expression^{64,65}. This model enabled the discrimination of newly activated (FT blue⁺),
700 persistent (FT blue⁺ red⁺), and arrested (FT red⁺) T cells based on MHC-dependent
701 TCR engagement^{64,65}. We observed a significant increase in the frequency of newly
702 activated and persistent CD4⁺ T cells, and a concomitant reduction in the frequency of
703 arrested CD4⁺ T cells in the meninges in response to infection compared to naïve
704 controls (**Figure 5L and 5M**), indicating that most CD4⁺ T cells are actively partaking in
705 the local immune response, likely via antigenic presentation. We also observed a
706 significant increase in the frequency of newly activated meningeal CD8⁺ T cells, but a
707 reduction in both persistent and arrested CD8⁺ T cells, perhaps indicating that the CD8⁺
708 T cell responses are transitory (**S4A and S4B Figure**). This pattern of local T cell
709 activation was also detected in the CD69⁺ CD4⁺ T cells, in which we detected a higher

710 frequency of newly activated CD69⁺ CD4⁺ T cells and less of arrested CD69⁺ CD4⁺ T
711 cells (**S4C and S4D Figure**), altogether indicating the meningeal T cells are newly
712 activated in the meninges *in situ*. These observations are consistent with previous
713 studies showing that CD4⁺ T cells actively patrol the meningeal landscape². Taken
714 together, these results demonstrate that the meningeal CD4⁺ T cell population
715 undergoes newly and persistent MHC-dependent TCR engagement in the meninges,
716 promoting local responses *in situ*, but the CD8⁺ T cell responses seem more transitory.
717 These responses are likely to provide all the necessary signals for activation, likely
718 resulting in T cell differentiation towards the observed a T_{FH}-like phenotype during
719 chronic *T. brucei* infection.

720 **The murine meninges contain plasmablasts/plasma cells and GL7⁺ CD95⁺ GC-like
721 B cells during chronic infection**

722 Previous studies have demonstrated that B cells represent a major immune population
723 in the meninges^{42,46}, although their dynamics during chronic infection are not yet
724 understood. We previously observed the expression of *Cxcl12* in dura and arachnoid
725 meningeal fibroblasts, which is critical for the differentiation and survival of early B cells
726 in the bone marrow^{66,67}. Thus, we next explored the diversity of B cells in our dataset.
727 The majority of meningeal B cells detected in our dataset derived from the infected
728 meninges (1,688 cells out of 1,742 total B cells) (**Figure 2**). These cells expressed high
729 levels of genes associated with plasmablasts and plasma cells such as *Jchain*,
730 *Prdm1* (which encodes for BLIMP-1), *Sdc1* (encoding CD138), *Ighm*, and *Irf4* (**Figure
731 6A**). Flow cytometry experiments further confirmed that the vast majority of the
732 meningeal B cells correspond to plasmablasts and plasma cells, and to a lesser extent
733 CD19⁺ B cells (**Figure 6B; Gating strategy in S2D Figure**). Some of the marker genes
734 identified within the B cell clusters, such as *Pcna*, *Mki67*, *Ub2c* and *Ighg2* and *Ighg3*,
735 are typically associated with cell replication and class-switched B cells (**S2 Table**).
736 These genes are critical for affinity maturation and class switching during GC
737 reactions⁶⁸. Because the transcriptional signatures observed within the B cell clusters
738 were consistent with the presence of extrafollicular GC-like reactions, we next
739 examined this at the protein level. We first exploited the *Nur77*^{GFP} reporter mouse line
740 to measure BCR engagement within the meninges. Given that *Nur77*^{GFP} expression in
741 GC B cells is proposed to be markedly reduced compared to activated B cells *in vivo*⁶⁹,
742 and that *Nur77* restrains B cell clonal dominance during GC reactions⁷⁰, this reporter
743 line can be used to examine extrafollicular GC-like reactions. In line with these studies,

744 we detected significantly fewer GFP⁺ CD19⁺ B cells during infection compared to naïve
745 controls (**Figure 6C and 6D, and S2D Figure**), implying that upon infection, the
746 meningeal B cells undergo GC-like reactions. Intriguingly, the meningeal B cells also
747 expressed *Cd38* and *Fas* (**Figure 6A**), similar to dark zone (GFP^{low}) GC B cells⁶⁹.
748 Consistent with these observations, we detected a significant accumulation of GL7⁺
749 CD95/Fas⁺ cells within the CD19⁺ B cell compartment (**Figure 6E and 6F**), further
750 corroborating the presence of GC-like B cells in the murine meninges. Consistent with
751 the GC-like and the transcriptional profile, we observed an increase in the frequency of
752 IgG⁺ CD19⁺ B cells in the murine meninges at 30dpi compared to naïve controls
753 (**Figure 6G and 6H**). In the spatial context, we observed clusters of CD3⁺ T cells, B220⁺
754 B cells and CD21/35⁺ FDCs in the murine meninges that were not readily detectable in
755 naïve animals (**Figure 6I and S5 Figure**), suggesting the presence of immunological
756 aggregates similar to those observed in tertiary lymphoid tissues^{26,27}. Together, our
757 data indicates the presence of class-switched plasma cells/plasmablasts as well as GC-
758 like CD19⁺ B cells in close proximity to CD3⁺ T cells and CD21⁺/CD35⁺ FDC-like cells in
759 the murine meninges in response to *T. brucei* infection.

760 ***T. brucei* infection results in the accumulation of meningeal autoreactive B cells**

761 The accumulation of meningeal B cells has been reported in several autoimmune
762 disorders such as neuropsychiatric lupus²⁵ and multiple sclerosis²⁸ where they are
763 responsible for the generation of autoantibodies that are linked to the pathology
764 associated with these disorders. However, it is unclear whether chronic *T. brucei*
765 infection also results in the accumulation of autoreactive B cells in the meningeal
766 spaces. We reasoned that in addition to generating B cell clones able to generate
767 antibodies specific to *T. brucei*, these local GC-like reactions taking place within the
768 meningeal space might also result in the development of autoreactive B cells. To
769 directly test this hypothesis, we examined the presence of meningeal resident IgG⁺
770 antibody secreting cells (ASCs) able to recognise *T. brucei* and mouse brain lysates
771 using ELISpot. We observed a significant accumulation of total IgG⁺ ASCs in the murine
772 meninges (**Figure 7A and 7B**), consistent with our flow cytometry data (**Figure 6G-H**).
773 We also detected a significant accumulation of IgG⁺ ASCs able to recognise *T. brucei*
774 and mouse brain but not BSA (**Figure 7A and 7B**), indicative of the presence of
775 autoreactive ASCs in the murine meninges during infection. Interestingly, splenocytes
776 from animals at 30dpi or naïve controls did not contain autoreactive IgG⁺ ASCs (**S6A**
777 **Figure**), suggesting that the mouse brain-specific autoreactive ASCs may arise locally

778 within the meninges or within the CNS environment. Histological analysis of the
779 corresponding murine brain sections revealed extensive IgG deposition in the infected
780 brain compared to naïve controls, in particular in the leptomeninges and the cortex
781 (**Figure 7C**). The IgG antibody deposition observed in the cerebral cortex in response
782 to chronic infection was accompanied by a significant demyelination, particularly in the
783 cerebral cortex, internal capsule, and thalamic tracts (**Figure 7D, and S6B and S6C**
784 **Figure**). Additionally, we detected the presence of high IgM and IgG titres in the serum
785 of infected animals able to react to mouse brain antigens compared to naïve controls
786 (**Figure 7E**), further corroborating our histological and ELISpot findings. It is important
787 to note that the binding of circulating IgG antibodies to the murine brain does not seem
788 to be restricted to areas with high parasite accumulation (e.g., lateral ventricles) (**Figure**
789 **7F**). In humans, in the cerebrospinal fluid of 2nd stage *gambiense* HAT patients from
790 North Uganda we observed significant levels of autoreactive IgM and IgG antibodies
791 able to recognise human brain lysates, but not BSA (**Figure 7G, and S6 Table**),
792 consistent with our findings in experimental infections. Taken together, our data suggest
793 that meningeal B cells undergo affinity maturation locally within the meninges or the
794 CNS space to generate IgG⁺ ASCs directed against both *T. brucei* and the mouse brain
795 (and in *gambiense* HAT patients), is associated with cortical and white matter
796 demyelination, and results in autoimmunity.

797 **LT β receptor signalling controls the accumulation of meningeal FDCs and
798 autoreactive B cells during chronic *T. brucei* infection.**

799 LT β receptor (LT β R) signalling is critical for the formation, induction, and maintenance
800 of lymphoid tissues under homeostasis and disease⁷¹⁻⁷³. This process requires
801 interactions between the LT $\alpha_1\beta_2$ heterodimer and its cognate receptor LT β R to induce
802 broad effects on FDC maintenance, promoting a favourable microenvironment
803 promoting GC reactions on B cells⁷¹⁻⁷³. Furthermore, expression of LT α in the
804 meninges causes *de novo* ectopic lymphoid tissue formation and neurodegeneration in
805 a model of myelin oligodendrocyte glycoprotein-induced experimental autoimmune
806 encephalitis⁷⁴. Our data so far indicate that the murine meninges develop ectopic
807 lymphoid aggregates that display many features of LT β -driven lymphoid tissue
808 formation, including the presence of FDCs like structures, T_{FH} T cells, and GC-like B
809 cells with evidence of somatic hypermutation. Thus, we hypothesised that LT β R-
810 signalling plays a similar role in the formation of meningeal lymphoid aggregates and

811 coordinating the meningeal responses to chronic *T. brucei* infection. The gene which
812 encodes the LT β R, *Ltbr*, was expressed myeloid cells, endothelial cells, granulocytes,
813 and fibroblasts in the meninges (**Figure 8A**), indicating that LT β R signalling may occur
814 at multiple levels within the murine meninges. Similarly, LT β (encoded by *Ltb*) is
815 primarily expressed by the CD4 $^+$ T cell clusters and to a lesser extent by cDCs,
816 neutrophils, CD8 $^+$ T cells, and B cells (**Figure 8A**). Using flow cytometry, we detected a
817 significant increase in the frequency of CD4 $^+$ T cells expressing LT β (**Figure 8B and**
818 **8C**), consistent with their T_{FH} phenotype²⁷. Next, we investigated the role of LT β R-
819 signalling in the maintenance of local immunological responses within the meningeal
820 stroma. For this, mice were treated prior and during *T. brucei* infection with a LT β R-Ig
821 fusion protein to prevent the interaction of the ligands LT $\alpha_1\beta_2$ and LIGHT (encoded by
822 *Tnfsf14*) with LT β R (**Figure 8D**)⁷⁵. LT β R-Ig treatment resulted in mice unable to control
823 systemic parasitaemia as efficiently as mice treated with an irrelevant antibody or
824 untreated mice (**S7A Figure**), and in a worsening in the clinical scoring (**S7B Figure**),
825 mirroring previous work using *Ltb*^{-/-} mice infected with *T. brucei* in the context of
826 intradermal infections⁷⁶. Furthermore, LT β R-Ig treatment significantly impaired the
827 expansion of meningeal FDCs (**Figure 8E and 8F**), and a significant accumulation of
828 meningeal LECs compared to naïve controls, which can be attributed to changes in
829 frequencies within other stromal compartments (**Figure 8E and 8F**). Using ELISpot, we
830 observed that LT β R-Ig treatment significantly impaired the expansion of both IgM $^+$
831 (**Figure 8G and S7C-E Figure**) and IgG $^+$ ASCs, including *T. brucei*- and mouse brain-
832 specific ASCs (**Figure 8G**), consistent with a central role for LT β R-signalling in the
833 formation of B cell follicles and GCs within secondary lymphoid organs and ectopic
834 lymphoid tissues^{59,60,71,76}. Lastly, LT β R-Ig treatment significantly impaired the formation
835 of perivascular FDC-B cell clusters (**Figure 8H**), consistent with previous reports^{59,60},
836 and prevented the cortical demyelination typically observed in response to chronic
837 infection (**Figure 8I and S7E Figure**). Together, these data demonstrate that LT β R
838 signalling is required for stromal responses and B cell accumulation and maturation in
839 the meninges during infection with *T. brucei*, further highlighting that the meninges
840 depend on classical lymphoid tissue-associated signalling pathways to coordinate local
841 immune responses to infections. Furthermore, the fact that LT β R-Ig treatment rescued
842 the cortical demyelination observed in response to infection suggests that the
843 meningeal ectopic lymphoid aggregates are indeed pathogenic.

844 **Infection-induced autoantibodies recognise a broad range of host antigens,**
845 **including myelin basic protein**

846 Given that our data so far indicate that chronic *T. brucei* infection results in the
847 generation of autoantibodies, we next decided to examine the nature of antigens
848 recognised by these autoantibodies. To achieve this, we employed a targeted array of
849 120 antigens known to be identified in autoimmune disorders, from systemic lupus
850 erythematosus to multiple sclerosis. Our data indicates that circulating IgG
851 autoantibodies found in infected samples significantly recognised a total of 18 antigens
852 (15% of the antigen array), including structural proteins (e.g., collagen VI, vitronectin,
853 nucleolin, Histone H3), cytokines (e.g., GM-CSF), components of the complement
854 system (e.g., C3, C1q), intracellular antigens (e.g., ssDNA, ssRNA, mitochondrial
855 antigen), and most importantly myelin basic protein (MBP) (**Figure 9A, S7 Table, and**
856 **S8A Figure**). To further understand whether the same pattern of autoreactive
857 antibodies is observed in sleeping sickness patients, we screened CSF samples
858 collected from patients during the 1st (haemolymphatic) stage and 2nd
859 (meningoencephalitic) stage. As observed in mice, our results highlighted a broad
860 range of host antigens recognised by IgG autoantibodies in the CSF exclusively
861 detected during the 2nd stage of the disease (**Figure 9B, S7 Table, and S8B Figure**).
862 More specifically, we detected reactivity against 51 antigens (42.5% of the antigen
863 array), including several structural proteins, cytokines (e.g., TGFβ1, TNFα, IL-12, TPO),
864 intracellular antigens (e.g., histones, nucleosome-related proteins, mitochondrial
865 antigen), structural proteins (e.g., collagens, vitronectin), amongst others (**Figure 9B**).
866 Interestingly, as observed in mice, we also detected the presence of autoantigens able
867 to bind host proteins associated with either parasite control or pathology, such as
868 proteins of the complement system (e.g., C1q, C3a) and nervous system-associated
869 proteins (e.g., MBP and muscarinic receptor) (**Figure 9B**). Indeed, a total of 8 antigens
870 (13.1% of the antigen array) were commonly identified by autoreactive antibodies in
871 infected mouse serum and human CSF from 2nd stage sleeping sickness patients,
872 which are known to be diagnostic markers of autoimmune disorders such as systemic
873 lupus erythematosus, Sjogren's syndrome, scleroderma, rheumatoid arthritis, and
874 multiple sclerosis⁷⁷⁻⁷⁹ (**Figure 9C**). To further validate our findings, we examined the
875 presence of circulating antibodies against MBP in an independent cohort of sleeping
876 sickness patients from DRC that included both patients with an active infection ("cases")

877 and samples obtained from patients post-treatment (“treated) (**Figure 9D**). Consistent
878 with the data obtained from CSF biopsies, we observed that sleeping sickness patients
879 with an active infection have significantly higher titres of serum IgG against MBP
880 compared to healthy African controls (**Figure 9D**). Interestingly, most of the samples
881 obtained from patients post-treatment display basal levels of anti-MBP antibody titres
882 and show no significant differences with healthy African controls, suggesting that
883 treatment with anti-parasitic chemotherapy prevents the accumulation of anti-MBP
884 autoantibodies in humans. However, we noted that 30% of the treated patients
885 maintained higher titres of anti-MBP antibodies in circulation, which might be due to: a)
886 failure to effectively clear parasites post-treatment and thus considered to be relapsing
887 cases; b) the presence of memory B cells that sustain anti-MBP autoantibody secretion;
888 c) or a combination of both. Taken together, our mid-throughput targeted screening
889 identified a myriad of host antigens recognised by infection-induced autoantibodies in
890 both chronically infected mice and 2nd stage sleeping sickness patients, potentially
891 indicative of a complex autoimmune disorder affecting several organs including the
892 CNS.

893 **The accumulation of meningeal GL7⁺ CD95⁺ GC-like B cells and autoreactive
894 antibodies depends upon parasite accumulation in the CNS**

895 Our data so far demonstrate that chronic *T. brucei* infection results in the accumulation
896 of autoreactive B cells that display a GL7⁺ CD95⁺ GC-like phenotype, likely resulting in
897 the generation of autoreactive antibodies and subsequent local IgG deposition in the
898 brain. We also identified MBP, a highly abundant CNS protein, to be one of the host
899 antigens recognised by these infection-induced IgG autoantibodies in both mice and
900 humans during chronic infections, potentially explaining the local antibody deposition
901 observed in the brain in our histological analyses. Given that at least 30% of 2nd stage
902 sleeping sickness patients displayed elevated levels of anti-MBP autoantibodies in
903 circulation post-treatment, likely as a result of treatment failure, we next decided to
904 explore whether suramin treatment, used in experimental infections to clear *T. brucei*
905 infections^{18,80}, prevented the accumulation of GL7⁺ CD95⁺ GC-like phenotype and IgG
906 deposition in the brain. In other words, whether an active CNS colonisation is necessary
907 to trigger local B cell responses. We tried several treatment strategies based on recent
908 studies^{18,80}, the majority of which resulted in mice relapsing to the infection. This was
909 particularly evident when treatment was started after 14dpi. In our hands, the most
910 effective treatment regime consisted of three consecutive doses of suramin (20 mg/kg)

911 i.p. at 5, 6, and 7dpi, consistent with previous studies⁸⁰ (**Figure 10A**). Using this model,
912 we observed ~50% of mice relapsing and ~50% of the animals completely clearing the
913 disease, as determined by qPCR against the *T. brucei*-specific gene *Pfr2* used here as
914 a proxy to quantify parasite tissue burden, alongside immunohistochemistry staining
915 against the *T. brucei*-specific antigen BiP (**Figure 10B and 10C**). Interestingly, in the
916 relapsing animals, we noted a significantly higher parasite burden in the brain
917 compared to infected but untreated controls. Using flow cytometry, we detected a
918 significant expansion of GL7⁺ CD95⁺ GC-like B cells in the meninges of infected
919 animals that remained high in the relapsing animals (**Figure 10D and 10E**). However, in
920 cured mice, the frequency of GL7⁺ CD95⁺ GC-like B cells in the meninges returned to
921 basal levels (**Figure 10D and 10E**). Furthermore, we observed a reduction in the IgG
922 deposition in the brain of cured mice (**Figure 10F**), reduced serum antibody titres of
923 anti-brain IgG autoantibodies in cured mice compared to infected or relapsing animals
924 (**Figure 10G**), and less cortical demyelination in cured mice compared to infected and
925 relapsing animals (**Figure 10H and 10I**), indicating that an active CNS infection is
926 required to induce the pathological antibody responses and cortical demyelination
927 observed in response to chronic infection. However, it is worth noting that cured mice
928 still showed signs of antibody deposition and serum levels of anti-brain IgG
929 autoantibodies, albeit to a lesser extent to infected or relapsing animals. Taken
930 together, our results suggest that the presence of parasites in the CNS either directly or
931 indirectly promotes the expansion of meningeal GL7⁺ CD95⁺ GC-like B cells and
932 antibody deposition in the brain during chronic infection.

933 **Discussion**

934 Here, we set out to characterise the local immune responses taking place within the
935 murine meninges in response to chronic infection with *T. brucei*. Our results
936 demonstrate that the murine meninges are dynamic structures able to support a wide
937 range of immune responses that are triggered upon infection with *T. brucei*, resulting in
938 the acquisition of ectopic lymphoid tissue-like signatures including the development of
939 FDC-like cells, T_{FH} cells, and GC-like B cells undergoing class switching. We also
940 showed that during *T. brucei* infection, the murine meninges also harbour a distinctive
941 population of autoreactive B cells that generate IgG⁺ antibodies able to bind parasite
942 and murine brain antigens, including MBP. Furthermore, we demonstrated that the
943 rearrangement of the meningeal stroma, as well as the accumulation of autoreactive B
944 cells, depend upon LT β R signalling, consistent with its lymphoid tissue properties.

945 Lastly, we demonstrated the presence of IgG⁺ antibodies in the CSF of 2nd stage
946 gambiense HAT patients (when the parasites accumulate in the meninges and CNS)
947 able to recognise human brain lysates and MBP, indicating that the observations using
948 experimental infections are likely to be conserved in humans.

949 Focussing on the stroma, we identified several populations of meningeal fibroblasts,
950 mostly derived from the dura mater layer of the meninges that express *bona fide*
951 markers of mesenchymal precursor cells (*Ly6a*⁺). Interestingly, this population of
952 meningeal fibroblasts shares many transcriptional features with omental *Aldh1a2*⁺
953 FRCs that are known to play a critical role in modulating lymphocyte recruitment and
954 local immune responses in the peritoneum⁵³. It is tempting to speculate that there exists
955 a pre-defined populations of fibroblasts with precursor capacity (e.g., *Ly6a/Sca1*⁺) in
956 several body cavities, including the meninges, that are able to quickly sense and adapt
957 to inflammatory responses to efficiently coordinate local immune responses⁸¹⁻⁸³. In this
958 context, it is plausible that the population of lymphoid stromal cells residing in the dura
959 layer of the meninges sense the presence of *T. brucei* (e.g., via TLR or cytokine
960 signalling) to promote local immunological responses, as recently proposed⁸⁴. We
961 propose that these populations meningeal *Ly6a*⁺ fibroblast precursors could adapt to
962 chronic inflammatory conditions, resulting in the development of stromal structures
963 required to sustain long-lasting immunological responses *in situ*, including FRC- and
964 FDC-like cells, as well as *de novo* angiogenesis. These observations are consistent
965 with the idea that chronic neuroinflammation results in lymphangionesis in the CNS⁸⁵.
966 All of these populations participate in changes in the ECM during infection, including
967 collagen and proteoglycan deposition and regulation of the ECM, highlighting the
968 extensive ECM remodelling taking place in the meninges during chronic infection. The
969 ontogeny of the meningeal FDC-like cells that we detected under chronic infection with
970 *T. brucei*, and whether they play an active role in the neuroinflammatory process in this
971 infection setting⁸⁶, requires further investigation. Nevertheless, to our knowledge, this is
972 the first report characterising the response of meningeal fibroblasts to chronic infections
973 with a protozoan parasite, which has important implications for understanding how
974 dynamic and adaptable the meningeal stroma is under chronic inflammatory processes.
975 Additionally, we predicted that meningeal MNPs are involved in chemotaxis and antigen
976 presentation to CD4⁺ T cells. Consistent with recent studies characterising the
977 dynamics of myeloid cells within the brain borders in response to *T. brucei* infection^{9,10},
978 we identified several subsets of MNPs and conventional DCs that play a wide range of

979 roles, from inflammatory responses to chemotaxis and antigenic presentation. Overall,
980 all these myeloid subsets might offer a first line of defence against incoming parasites,
981 and together with the meningeal stroma, might promote the recruitment and activation
982 of adaptive immune cells required to support an efficient local immune response. It also
983 remains to be determined whether the lymphatic structures present within the meninges
984 play an active role in the induction of ectopic lymphoid tissues during chronic *T. brucei*
985 infection.

986 We also detected an accumulation of autoreactive B cells able to produce high affinity
987 antibodies against both *T. brucei* and the mouse brain, resembling the pathology
988 observed under autoimmune neurological disorders including MS⁸⁷. Previous work has
989 demonstrated the presence of autoreactive antibodies in HAT patients and during
990 experimental infections^{88–92}, some of which are able to recognise a wide variety of heat
991 shock proteins and ribosomal proteins^{88,90} that might be evolutionarily conserved
992 between parasites and host. However, the local generation of autoreactive B cells in the
993 murine meninges able to recognise murine brain lysates in response to chronic infection
994 with *T. brucei* has not been reported before. These observations indicate that the local
995 immunological responses in the meninges could result in the (uncontrolled) production
996 of autoreactive antibodies, explaining their presence in the CSF of 2nd stage *gambiense*
997 HAT patients as shown in this study. Nevertheless, the mechanisms resulting in the
998 development of local autoantibodies remains to be determined.

999 Based on our dataset and *in vivo* experimental approaches, we conclude that the
1000 formation of meningeal ELAs during chronic *T. brucei* infections relies on LT β R
1001 signalling. This in turn is likely to supports the expansion of meningeal FDC-like
1002 fibroblasts and the accumulation of GC-like autoreactive B cell clones and brain
1003 deposition of high-affinity antibodies, potentially aided by the local activation and
1004 development of CXCR5⁺ PD1⁺ T_{FH}-like CD4⁺ T cells expressing high levels of *Ii21*. In
1005 this context, our data demonstrate that chronic meningeal inflammation leads to the
1006 formation of plasma cells/FDC-like cell/CD3⁺ T cell aggregates, resembling those within
1007 the B cell follicle in lymph nodes and spleen but lacking their typical microarchitecture,
1008 to sustain the production of high affinity antibodies locally. It is important to note that the
1009 majority of the cells within the B cell compartment were assigned as IgM⁺ and IgG⁺
1010 plasma cells as shown before^{2,42,46,93,94}, although their composition (IgA⁺ vs IgM⁺ and/or
1011 IgG⁺) differs slightly from previous elegant work describing the diversity of meningeal B

1012 cells compartment during fungal infection⁴⁶. Interestingly, in an experimental
1013 autoimmune encephalomyelitis (EAE) model, the frequency of *Igha*⁺ B cells found in the
1014 homeostatic dura mater decreased significantly followed by a significant expansion of
1015 *Ighm* and *Ighg* expression in B cells during inflammation⁹³, in a process similar to the
1016 results presented in this study. These differences might be attributed to technical
1017 differences between studies (e.g., depth of coverage) or biological differences due to
1018 intrinsic differences between disease conditions. It is important to note that, in addition
1019 to the autoreactive IgG⁺ ASCs residing in the meninges and identified by ELISpot,
1020 vascular leakage (allowing the passage of IgG through the blood-brain barrier) reported
1021 in this model^{95–97} may also contribute to the IgG deposition detected within the brain.
1022 However, at present we cannot directly assess the relative contribution of each process
1023 separately. Irrespective of the routes by which autoreactive antibodies reach the
1024 meningeal barrier and/or brain parenchyma, further work is required to identify whether
1025 they arise as a result of molecular mimicry (e.g., shared epitopes between *T. brucei* and
1026 mice) or via bystander activation (e.g., continues TLR stimulation on B cells^{98,99}). It
1027 remains unclear, however, whether the emergence of autoreactive B cells depends
1028 upon T cell-mediated responses (antigen-specific) or whether it results from T cell-
1029 independent processes (e.g., polyclonal activation, antigen-independent). In the context
1030 of T cell-dependent responses, future work is required to determine the nature of the
1031 antigens driving such specific responses, as well as the precise ontogeny of T_{FH} T cells
1032 (e.g., derived from T_H17 T cells as recently proposed¹⁰⁰) to the generation of high
1033 affinity autoreactive antibodies in the context of chronic infections remains to be
1034 delineated in more detail. It is likely that brain antigens such as MBP might be one (of
1035 several) antigen driving T cell-specific responses, in a similar process to experimental
1036 autoimmune encephalitis^{101,102}.

1037 The histological features related to antibody deposition in the meningeal and cortical
1038 spaces during chronic *T. brucei* infection are associated with cortical and white matter
1039 demyelination, which are reminiscent of the histopathological features observed in MS
1040 and other neurological autoimmune disorders^{103–105}. However, it is unclear whether the
1041 cortical pathology observed in our infection model results in primary (B cells generating
1042 antibodies against myelin) or secondary demyelination, as a result of neuronal death.
1043 Importantly, *Aid*^{−/−} mice, in which B cells are unable to undergo affinity maturation, are
1044 better at controlling *T. brucei* infections due to an increase in circulating (low affinity)
1045 IgM, suggesting that class-switching might indeed be an unfavourable process for the

1046 host¹⁰⁶, both in terms of parasite control and tissue immunopathology. Based on our
1047 data, local B cell affinity maturation and class-switching results in autoimmunity. In this
1048 scenario, it is tempting to speculate that most of the neuropathological features
1049 associated with chronic *T. brucei* infection derive from a disruption in peripheral
1050 tolerance resulting in maladaptive antibody responses, as recently demonstrated in
1051 variable immune deficiency patients with autoimmune manifestations¹⁰⁷. Further studies
1052 are required to determine the type of antigens detected by the autoreactive antibodies
1053 generated specifically in the meninges, and to determine whether they share epitopes
1054 with *T. brucei* antigens due to molecular mimicry, as reported for EBV-induced MS⁸⁷.
1055 Similarly, it is important to determine if B cell depletion strategies (e.g., B cell depletion
1056 approaches^{108,109}, including treatment with anti-CD20 treatment¹¹⁰) or chemotherapy
1057 interventions to treat the infection ameliorate disease progression, meningeal
1058 inflammation, and cortical pathology during chronic *T. brucei* infection, similar to MS¹⁰⁹.
1059 Lastly, our observations in both experimental infections and human studies indicate that
1060 sleeping sickness results in an autoimmune disorder affecting the CNS (and likely other
1061 organs), but it remains unclear whether these autoimmune disorders have an impact of
1062 sleep, contributing to the known sleep disruptions caused by this parasitic infection. In
1063 this regard, sleep disturbances are commonly reported in patients with autoimmune
1064 encephalitis^{111–113}, and in narcoleptic patients^{114,115}, potentially supporting a link
1065 between these pathologies. However, this remains to be further tested and the
1066 mechanisms elucidated.
1067 Together, our data provide a novel perspective for understanding the cellular and
1068 molecular mediators that lead to the development of autoimmunity during chronic *T.*
1069 *brucei* infection. Furthermore, our results support the notion that the meningeal spaces
1070 are dynamic structures able to support a wide range of immunological responses,
1071 including those resulting in pathological outcomes such as autoreactive antibody
1072 deposition at the brain borders. In this context, we propose that experimental infections
1073 with African trypanosomes can be exploited to address basic questions regarding
1074 infection-induced autoimmunity and brain pathology, which could be leveraged for the
1075 treatment of complex neurological disorders of unknown aetiology such as MS in
1076 addition to the meningoencephalitic stage of sleeping sickness. Our results also
1077 highlight that chronic sleeping sickness in patients also results in the accumulation of
1078 autoreactive antibodies in the CNS, potentially driving pathology even after anti-
1079 parasitic chemotherapy. In this context, it becomes clear that a better understanding of

1080 the sequelae of the infection in human and animal health is critical but remains
1081 unsolved.

1082 **Funding and acknowledgments.**

1083 We gratefully acknowledge the contributions given by the tissue donors and their
1084 families from the Edinburgh Brain and Tissue Bank (REC 21/ES/0087). We thank Julie
1085 Galbraith and Pawel Herzyk (Glasgow Polyomics, University of Glasgow) for their
1086 technical support with library preparation and sequencing, and the technical staff at the
1087 University of Glasgow Biological Services for their assistance in maintaining optimal
1088 husbandry conditions and comfort for the animals used in this study. Similarly, we
1089 would like to thank the histopathology unit at the University of Glasgow veterinary
1090 school (In particular Frazer Bell and Lynn Stevenson) for their technical assistance with
1091 sample processing and preparation. We also thanks Professor Wendy Bailey (Liverpool
1092 School of Tropical Medicine, UK) for providing CSF samples from gambiense HAT
1093 patients from North Uganda, and Dr. Barry Bradford (Roslin Institute, UK) for his
1094 technical assistance with LFB image quantification. The authors would also like to thank
1095 the III Flow cytometry facility for their support with flow cytometry analysis, Dr. Gareth
1096 Howell (university of Manchester) for technical support with the mass cytometry
1097 experiments, and Dr. Chiara Pirillo (Beatson Institute) for technical assistance with the
1098 ELISpot assay. This work was funded by a Sir Henry Wellcome postdoctoral fellowship
1099 (221640/Z/20/Z to JFQ). AML is a Wellcome Trust Senior Research fellow
1100 (209511/Z/17/Z). PC and MCS are supported by a Wellcome Trust Senior Research
1101 fellowship (209511/Z/17/Z) awarded to AML. DB is funded by an MRC fellowship
1102 MR/V009052/1 and a Lister Institute Fellowship. NAM is supported by project Institute
1103 Strategic Programme Grant funding from the BBSRC (BBS/E/D/20002174 and
1104 BB/X010937/1). The authors declare that the research was conducted in the absence of
1105 any commercial or financial relationships that could be construed as a potential conflict
1106 of interest.

1107 **Author contributions**

1108 **Conceptualisation:** JFQ, NAM. **Methodology:** JFQ, MCS, LKD, PC, DB, JO, GM,
1109 MAS. **Sample collection in the field:** NRKS, DMN. **Formal analysis:** JFQ, MCS, PC,
1110 MH. **Writing – original draft:** JFQ. **Writing – reviewing and editing:** JFQ, MCS, LKD,
1111 GM, DB, AM, LDL, NAM. **Funding acquisition:** JFQ. All authors approved the current
1112 version of this manuscript. The authors declare that they have no competing interests,

1113 commercial or otherwise. Correspondence and requests for materials should be
1114 addressed to Juan F. Quintana (juan.quintana@glasgow.ac.uk).

1115 **Figures**

1116 **Figure 1. CyTOF confirms the expansion of innate and adaptive immune cells in**
1117 **the murine meninges during chronic *T. brucei* infection.**

1118 **A)** Overview of the experimental approach applied in this work. An anti-CD45-PE
1119 antibody was injected *i.v.* prior to cull, followed by magnetic sorting using anti-PE
1120 antibodies to obtain a fraction of resident meningeal cells that were used as input for
1121 single cell transcriptomics using the 10X Chromium platform. **B)** Uniform manifold
1122 approximation and projection (UMAP) visualisation of the CyTOF immunophenotyping
1123 in murine meninges from naïve and animals at 30dpi. The UMAP plot represents pooled
1124 data from $n = 5-6$ mice/group. **C)** Normalised protein expression level of markers used
1125 to define T cells and NK cells (TCR β , TCR $\gamma\delta$, NK1.1), B cells (CD19, B220, IgM), and
1126 myeloid cells (CD11b, Ly6G/C, and CD11c). **E)** Quantification of CD45 $^{+}$ cells in the
1127 murine meninges by CyTOF at 30dpi ($n = 5$ mice/group). Parametric two-sided *T*
1128 student test: a *p* value < 0.05 was considered significant. **D)** Unsupervised cell
1129 annotation from CyTOF data using a combination of several marker genes. The
1130 expression level is normalised to the average of the expression within the group. **F)**
1131 Quantification of the different populations of immune cells in the naïve and infected
1132 murine meninges ($n = 5-6$ mice/group). A parametric ANOVA test with multiple
1133 comparison was used to estimate statistically significant pairwise comparisons. A *p*
1134 value < 0.05 is considered significant. Data in all panels are expressed as mean \pm SD.
1135 Data points indicate biological replicates for each panel. **G)** Bar chart depicting the
1136 frequency of the different immune populations identified in the murine meninges by
1137 CyTOF.

1138 **Figure 2. Single cell atlas of the murine meninges during chronic *T. brucei***
1139 **infection.**

1140 **A)** A total of 19,690 high-quality cells were used for dimensionality reduction, resulting
1141 in uniform manifold approximation and projection (UMAP) for the single cell
1142 transcriptome profiling from naïve ($n = 2$ pools; 1,834 high quality cells in total) and
1143 infected meninges ($n = 2$ pools; 17,856 high quality cells in total). **B)** Dotplot
1144 representing the expression levels of top marker genes used to catalogue the diversity

1145 of cell types in our single cell dataset. **C)** Frequency of the different cell types detected
1146 in the murine meninges analysed in this study.

1147 **Figure 3. The meningeal stromal compartment acquires lymphoid-like properties**
1148 **and provide cues for immune cell recruitment during chronic *T. brucei* infection**

1149 **A)** Uniform manifold approximation and projection (UMAP) of 2,088 high-quality cells
1150 within the fibroblast clusters were re-analysed to identify a total eight subclusters. **B)**
1151 Dot plot representing the expression levels of marker genes previously reported to be
1152 enriched in fibroblasts from different meningeal layers, including dura mater, pia mater,
1153 and arachnoid mater. **C)** Dot Plot representing the expression levels of top marker
1154 genes used to catalogue the diversity of cell types in our single cell dataset. **D)**
1155 Frequency plot the different fibroblast clusters detected in the murine meninges in naïve
1156 and infected samples ($n = 2$ pools per experimental condition). **E)** Representative flow
1157 cytometry analysis of meningeal stromal cells from naïve and infected meningeal
1158 preparations (left panel), and the corresponding quantification **(F)**. The data in all
1159 panels is expressed as mean \pm SD. Data points indicate biological replicates for each
1160 panel. A parametric T test was employed to assess significance between experimental
1161 groups. A p value < 0.05 is considered significant. FRC, fibroblast reticular cells; LECs,
1162 lymphatic endothelial cells; BECs, blood endothelial cells; FDCs, follicular dendritic
1163 cells. **G)** Module scoring for genes typically associated with lymphoid tissues. **H)** Violin
1164 plot depicting the expression of two chemokines associated with lymphoid tissues such
1165 as *Ccl19* and *Cxcl13*. **I)** Single molecule fluorescent *in situ* hybridisation (smFISH)
1166 demonstrating the presence of *Ly6a⁺ Rarres2⁺* cells that express *Cxcl13* in the dura
1167 mater of the meninges of infected mice. DAPI is included as a nuclear marker. The skull
1168 bone, the bone marrow (BM), and the meninges are indicated. Scale bar, 50 μ m.

1169 **Figure 4. Heterogeneity of meningeal mononuclear phagocytes during chronic *T.***
1170 ***brucei* infection.**

1171 **A)** Uniform manifold approximation and projection (UMAP) of 10,760 high-quality
1172 mononuclear phagocytes (MNPs) from naïve ($n = 54$ cells) and infected meninges ($n =$
1173 10,706 cells). **B)** Expression level of top genes defining different populations of
1174 meningeal MNPs. **C)** Frequency plot depicting the relative abundance of the five MNPs
1175 subclusters identified in the murine meninges during *T. brucei* infection. **D)** Cell-cell
1176 interaction network via MCH-II signalling axis. **E)** Violin plot depicting the expression
1177 level of *H2-D1* and *H2-Ab1*, two of the most upregulated MHC-II associated genes

1178 within the myeloid compartment. **F)** Cell-cell interaction network *via Cxcl* signalling axis.
1179 **G)** Representative flow cytometry analysis and quantification (**H**) of CD11b⁺ F4/80^{High}
1180 and F4/80^{Low} myeloid cell populations, as well as MHC-II⁺ myeloid cells, in the murine
1181 meninges in response to *T. brucei* infection. Data in all panels are representative from
1182 two independent experiments and is expressed as mean \pm SD ($n = 5$ mice/experimental
1183 group). Data points indicate biological replicates for each panel. A parametric T test
1184 was employed to assess significance between experimental groups. A p value < 0.05
1185 was considered significant.

1186 **Figure 5. Accumulation of PD1⁺ CXCR5⁺ T_{FH}-like CD4⁺ T cells in the meninges**

1187 during chronic *T. brucei* infection

1188 **A)** Uniform manifold approximation and projection (UMAP) of 1,742 high-quality T cells
1189 from naïve ($n = 147$ cells) and infected meninges ($n = 2,691$ cells). **B)** Dot plot depicting
1190 the expression level of marker genes for all the T cell subsets identified in (A). The dot
1191 size corresponds to the proportion of cells expressing the marker genes, whereas the
1192 colour indicates the level of expression. **C)** as in (B) but depicting marker genes
1193 associated with T_{FH} cells. The dot size corresponds to the proportion of cells expressing
1194 the marker genes, whereas the colour indicates the level of expression. **D)**
1195 Representative flow cytometry analysis and quantification (**E**) the presence of CXCR5⁺
1196 PD1⁺ CD4⁺ T cells in the murine meninges from naïve and 30dpi ($n = 5$ mice/group).
1197 Data points indicate biological replicates for each panel. A parametric T test was
1198 employed to assess significance between experimental groups. A p value < 0.05 is
1199 considered significant. **F)** *Ex vivo* T cell activation from naïve and infected murine
1200 meninges to measure the expression of PD-1 and IL-21. Unstimulated controls are also
1201 included. **G)** Quantification of the flow cytometry data from the *ex vivo* stimulation assay
1202 in (F). Data points indicate biological replicates for each panel and are representative
1203 from two independent experiments. A parametric T test was employed to assess
1204 significance between experimental groups. A p value < 0.05 was considered significant.
1205 **H)** Representative flow cytometry analysis and quantification (**I**) of the frequency of
1206 CD69⁺ CD4⁺ T cells in the murine meninges in response to infection. Data points
1207 indicate biological replicates for each panel and is representative from two independent
1208 experiments. A parametric T test was employed to assess significance between
1209 experimental groups. A p value < 0.05 was considered significant. **J)** Representative
1210 flow cytometry analysis to determine TCR engagement in CD4⁺ (top panel) and CD8⁺
1211 (bottom panel) T cells *in situ* in the meninges during chronic infection with *T. brucei*

1212 using the *Nur77*^{GFP} reporter mouse line. **K)** Quantification of the flow cytometry data
1213 from **(J)**. A *p* value < 0.05 is considered significant. Data points indicate biological
1214 replicates for each panel and are representative from two independent experiments. A
1215 parametric T test was employed to assess significance between experimental groups. A
1216 *p* value < 0.05 is considered significant. **L)** Representative flow cytometry analysis to
1217 determine TCR engagement in CD4⁺ (top panel) in the *Nur77*^{Tempo} reporter mouse line.
1218 In this model, T cell activation dynamics can be discriminated between *de novo* (FT
1219 blue⁺) versus historical (FT red⁺) MHC-dependent TCR engagement. **M)** Quantification
1220 of the flow cytometry data from **(L)**. Data points indicate biological replicates for each
1221 panel and are representative from two independent experiments. A parametric T test
1222 was employed to assess significance between experimental groups. A *p* value < 0.05
1223 was considered significant.

1224 **Figure 6. The murine meninges contain class-switched B cells in proximity to**
1225 **FDC-like cells.**

1226 **A)** Dotplot representing the expression level of top marker genes for the meningeal B
1227 cells, including *bona fide* markers of plasma cells (*Jchain*, *Prdm1*, *Sdc1*, *Xbp1*, *Ighm*) as
1228 well as activation and GC-like phenotype (*Cd24a*, *Cd38*, *Tnfrsf13c*, *Fas*). The dot size
1229 corresponds to the proportion of cells expressing the marker genes, whereas the colour
1230 indicates the level of expression. **B) Left panel;** Representative flow cytometry analysis
1231 (left panel) and quantification (right panel) to measure meningeal B cells (CD19⁺
1232 CD138⁻ cells), plasmablasts (CD19⁺ CD138⁺), and plasma cells (CD19⁻ CD138⁺). **Right**
1233 **panel;** quantification of flow cytometry data showing the expansion of meningeal
1234 CD138⁺ plasma cells in response to infection (*n* = 5 mice/group). Data points indicate
1235 biological replicates for each panel and are representative from two independent
1236 experiments. A parametric T test was employed to assess significance between
1237 experimental groups. A *p* value < 0.05 was considered significant. **C)** Representative
1238 flow cytometry analysis to determine BCR engagement on meningeal B cells *in situ*
1239 during chronic infection with *T. brucei* using the *Nur77*^{GFP} reporter mouse line. **D)**
1240 Quantification of flow cytometry data showing the reduction in the frequency of
1241 *Nur77*^{GFP+} CD19⁺ B cells in the meninges in response to infection (*n* = 5 mice/group).
1242 Data points indicate biological replicates for each panel and are representative from two
1243 independent experiments. A parametric T test was employed to assess significance
1244 between experimental groups. A *p* value < 0.05 was considered significant. **E)**
1245 Representative flow cytometry analysis to determine the presence of GC-like B cells in

1246 the murine meninges based on the co-expression of GL7 and CD95. **D)** Quantification
1247 of GL7⁺ CD95⁺ GC-like CD19⁺ B cells in the meninges in response to infection ($n = 5$
1248 mice/group). Data points indicate biological replicates for each panel and are
1249 representative from two independent experiments. A parametric T test was employed to
1250 assess significance between experimental groups. A p value < 0.05 was considered
1251 significant. **G)** Representative flow cytometry analysis to determine the presence of
1252 IgG⁺ CD19⁺ B cells in the murine meninges in response to infection. **H)** Quantification of
1253 GL7⁺ CD95⁺ GC-like CD19⁺ B cells in the meninges in response to infection ($n = 4$
1254 mice/group). Data points indicate biological replicates for each panel and are
1255 representative from two independent experiments. A parametric T test was employed to
1256 assess significance between experimental groups. A p value < 0.05 was considered
1257 significant. **I)** Representative imaging analysis of whole-mount meninges from naïve
1258 (left) and infected (right) of CD21/CD35⁺ follicular dendritic cells (green), as well as
1259 CD3d⁺ T cells (red) and B220⁺ B cells (purple). DAPI was included as nuclear staining.
1260 Scale = 50 μ m.

1261 **Figure 7. The murine meninges contain autoreactive IgG⁺ antibody secreting cells
1262 (ASCs) during chronic *T. brucei* infection.**

1263 **A)** Representative ELISpot images depicting mouse brain-specific IgG⁺ ASCs from
1264 naïve and infected murine meninges after 30dpi with *T. brucei*. **B)** Quantification of
1265 ELISpot results including total IgG⁺, *T. brucei*-specific IgG⁺, and mouse brain-specific
1266 IgG⁺ antibody secreting cells. Wells coated with BSA were included as negative
1267 controls. A p value < 0.05 was considered significant. **C)** Immunohistochemistry
1268 analysis to determine IgG⁺ deposition in the mouse brain from naïve (left) and infected
1269 (right) mouse brain sagittal sections. The sections were stained with an anti-mouse IgG
1270 antibody coupled to HRP to measure the overall distribution of IgG in the brain. The
1271 asterisks denote areas of intense IgG deposition in the leptomeningeal space, as well
1272 as in the upper layers of the cerebral cortex, exclusively detected in the infected brain.
1273 Lm, leptomeninges; Ctx, cerebral cortex. **D) Left panel:** Representative Luxol fast blue
1274 (LFB) staining from naïve (left) and infected (right) animals at 30dpi as a proxy to
1275 measure myelin. Lower panels show the tissue heatmap of the mean pixel intensity.
1276 **Right panel:** Percentage of demyelination, calculated here as a reduction in the
1277 average of the relative LFB intensity, was calculated from three independent
1278 experiments ($n = 3-4$ mice/repeat). A parametric T test was employed to assess

1279 significance between experimental groups. A *p* value < 0.05 was considered significant.
1280 **E)** Serum titers of mouse brain-specific IgM and IgG antibodies in naïve and infected
1281 samples as measured by ELISA. The dotted line represents the average of the optical
1282 density detected in naïve controls. A *p* value < 0.05 was considered significant. **F)**
1283 Immunohistochemistry analysis to determine the presence of circulating brain
1284 autoreactive IgG antibodies in serum from naïve (top panels) and infected animals
1285 (middle panels) in the mouse brain from naïve (left) and infected (right) mouse coronal
1286 brain sections. Staining with the *T. brucei*-specific protein BiP (bottom panels) is also
1287 included to highlight accumulation of parasites in the lateral ventricles (arrowheads). **G)**
1288 ELISA analysis of human brain-autoreactive IgM and IgG antibodies in cerebrospinal
1289 fluid (CSF) from sleeping sickness patients from 1st stage and 2nd stage HAT (CSF
1290 dilution 1:400). Wells coated with BSA (5µg/ml) were included as controls. A *p* value <
1291 0.05 was considered significant.

1292 **Figure 8. LT β receptor signalling is critical to sustain FDC-like networks and**
1293 **autoreactive B cells in the murine meninges in response to *T. brucei* infection.**

1294 **A)** Dot plot depicting the expression level of *Ltb*, and its cognate receptors *Traf2* and
1295 *Ltbr*. The dot size corresponds to the proportion of cells expressing the marker genes,
1296 whereas the colour indicates the level of expression. **B)** Representative flow cytometry
1297 analysis depicting the expression of LT β in CD4 $^+$ T cells in naïve and mice chronically
1298 infected with *T. brucei* (30dpi). **C)** Quantification of flow cytometry analysis (n = 4
1299 mice/group). A *p* value < 0.05 is considered significant. **D)** Overview of the experimental
1300 approach applied to block LT β R signalling *in vivo* during chronic *T. brucei* infection. **E)**
1301 Representative flow cytometry analysis of the murine meningeal stroma in naïve and
1302 mice chronically infected with *T. brucei* (30dpi). FDC-like cells were gated from the
1303 double CD45 $^-$ mesenchymal cells. **F)** Quantification of the different components of the
1304 stroma in naïve and infected meningeal preparations (n = 4 mice/group). A *p* value <
1305 0.05 was considered significant. FRC, fibroblast reticular cell; LEC, lymphatic
1306 endothelial cell; BEC, blood endothelial cell; DN, double negative. **G)** Quantification of
1307 ELISpot results including total IgG $^+$ (left panel), *T. brucei*-specific IgG $^+$ (middle panel),
1308 and mouse brain-specific IgG $^+$ antibody secreting cells (right panel) in naïve mice, mice
1309 treated with an irrelevant IgG2a antibody, and mice treated with LTBR-Ig (n = 4 - 9
1310 mice/group). A *p* value < 0.05 was considered significant. **H)** Representative
1311 immunofluorescence analysis of whole mount meningeal preparation labelling CD138 $^+$

1312 plasma cells (red) and CD21/CD35⁺ FDC-like cells (green) in naïve or at 30 days post-
1313 infection. Each of the fluorescent channels are shown individually, and DAPI was
1314 included to detect cell nuclei. Scale bar = 50 μ m. **I) Left panel:** Representative Luxol
1315 fast blue (LFB) staining from naïve (left) and infected (right) animals at 30dpi as a proxy
1316 to measure myelin. **Middle panel:** The tissue heatmap of the mean pixel intensity is
1317 also shown. **Right panel:** Percentage of demyelination, calculated here as a reduction
1318 in the mean grey intensity of the LFB staining, was calculated from two independent
1319 experiments ($n = 4-5$ mice/experiment). A parametric ANOVA with multiple
1320 comparisons was employed to assess significance between experimental groups. A p
1321 value < 0.05 was considered significant.

1322 **Figure 9. Targeted antigen screening identified shared host antigens detected by**
1323 **autoreactive antibodies in mouse serum and human CSF in response to *T. brucei***
1324 **infection.**

1325 **A)** Heatmap depicting the normalised fluorescent signal-to-noise ratio for 18 antigens
1326 significantly detected by mouse serum from infected animals at 30dpi ($n = 3$ mice)
1327 compared to naïve controls ($n = 3$ mice). The selected genes were chosen based on
1328 significant level in pairwise comparisons between naïve and infected samples using a
1329 parametric two-sided T test. Pairwise comparisons resulting in a p value < 0.05 were
1330 considered to be significant. **B)** As in (A) but depicting a total of 51 antigens significantly
1331 and exclusively detected in the cerebrospinal fluid (CSF) from 2nd stage sleeping
1332 sickness patients ($n = 4$ patients) compared to both 1st stage sleeping sickness patients
1333 ($n = 3$ patients) and healthy donors ($n = 2$ donors). **C)** Ven diagram depicting host
1334 antigens identified in this screening that were commonly detected by autoreactive IgG
1335 antibodies in both mouse serum and human CSF, as well as those antigens that
1336 showed specie-specific responses. A table summarising the common host antigens and
1337 the disease they are often associated with is also included. **D)** ELISA analysis to
1338 examine the presence of anti-MBP IgG autoantibodies in human serum from patients
1339 with an active *T. brucei* gambiense infection (“cases”) or post-treatment (“treated”), as
1340 well as healthy African controls (“controls”). A parametric ANOVA test with multiple
1341 comparison was used to estimate statistically significant pairwise comparisons. A p
1342 value < 0.05 was considered significant.

1343 **Figure 10. Suramin treatment prevents the expansion of GL7⁺ CD95⁺ GC-like B**
1344 **cells and the IgG deposition in the mouse brain.**

1345 **A)** Overview of the experimental approach applied to prevent the CNS stage of the
1346 disease using suramin. **B)** Estimation of *T. brucei* burden in the murine brain using RT-
1347 PCR analysis to detect the parasite-specific *Pf*2 gene in naïve brain specimens and
1348 infected but untreated animals ($n = 5$ mice/group), as well as cured ($n = 4$ mice) and
1349 relapsing animals ($n = 4$ mice). These data are representative of two independent
1350 experiments. A parametric ANOVA test with multiple comparison was used to estimate
1351 statistically significant pairwise comparisons. A p value < 0.05 was considered
1352 significant. **C)** Immunohistochemistry staining of the *T. brucei*-specific protein BiP in
1353 brain sections from the same experimental groups as in (B). **D)** Representative flow
1354 cytometry analysis of GL7 $^+$ CD95 $^+$ GC-like CD19 $^+$ B cells in the murine meninges from
1355 the same experimental groups as in (B). The gating strategy to identify meningeal B
1356 cells is shown in S2C figure. **E)** Quantification of GL7 $^+$ CD95 $^+$ GC-like CD19 $^+$ B cells in
1357 the murine meninges from the same groups as in (B). A parametric ANOVA test with
1358 multiple comparison was used to estimate statistically significant pairwise comparisons.
1359 A p value < 0.05 was considered significant. **F)** Representative immunohistochemistry
1360 micrographs comparing IgG $^+$ deposition in brains from naïve mice and infected but
1361 untreated mice, as well as cured and relapsed mice post suramin-treatment. Images
1362 are representative from two independent experiments. Scale bar = 1 mm. **G)** ELISA test
1363 to determine serum IgG titers of mouse brain-specific autoantibodies in the
1364 experimental groups in (B). Data are representative from two independent experiments.
1365 A parametric ANOVA test with multiple comparison was used to estimate statistically
1366 significant pairwise comparisons. A p value < 0.05 was considered significant. **H)**
1367 **Upper panel:** representative Luxol fast blue (LFB) staining as a proxy to measure
1368 myelin in brain specimens from naïve and infected mice, as well as infected mice
1369 treated with suramin, including relapsed and cured animals. Lower panel: Tissue
1370 heatmap representing the mean grey value (MGV) for the LFB staining. The calibration
1371 bar was set up so that the lowest level is 0 and the maximum MGV is 255. Scale bar =
1372 1 mm. **I)** Percentage of demyelination, calculated here as a reduction in the mean grey
1373 intensity of the LFB staining, was calculated from two independent experiments ($n = 4$ -
1374 10 mice/experiment). Parametric pairwise comparisons using one-sided *T* test was
1375 employed to assess significance between experimental groups. A p value < 0.05 was
1376 considered significant.

1377

1378 **Supplementary figures**

1379 **Supplementary figure 1. Quality control measurements of the murine single cell**
1380 **CyTOF and transcriptomics dataset. A)** Representative flow cytometry analysis of the
1381 input and flowthrough for the removal of circulating CD45⁺ immune cells using magnetic
1382 sorting. **B)** Identification of CD45⁺ cells in the CyTOF murine meninges dataset. **C)**
1383 Uniform manifold approximation and projection (UMAP) of the CyTOF dataset from
1384 samples (left panel; BC10-BC15: naïve; BC11-BC20: 30dpi) experimental groups (right
1385 panel) after CD45⁺ cell clustering. **D)** Number of Unique molecular identifies (UMIs),
1386 genes, mitochondrial reads, and library complexity (Log10 UMIs/gene) after applying
1387 filtering parameters. **E)** Clustree output representing the relationship between different
1388 cell clusters at various levels of resolution using the function *FindClusters*.

1389 **Supplementary figure 2. Gating strategies for flow cytometry analysis.** Gating
1390 strategies to identification stromal cells (**A**), resident myeloid cells (**B**), resident CD4⁺
1391 and CD8⁺ $\alpha\beta$ T cells (**C**), and B cells/plasma cells (**D**).

1392 **Supplementary figure 3. Expression of lymphoid stromal cells marker genes**
1393 **within the dura fibroblasts. A) Left:** Expression level of Marker genes typically
1394 associated with fibroblast reticular cells (FRCs). **Right:** Expression level of genes
1395 encoding for secreted factors resealed by FRCs. **B)** Marker genes moderately (left) or
1396 lowly (right) expressed typically associated with B zone reticular cells (BRC). **C)** Broad
1397 classification of the various fibroblasts clusters as FRC- or BRC-like clusters based on
1398 the marker genes shown in (A) and (B). In all cases, the size of the dot represents the
1399 proportion of cells expressing the markers indicated in each plot. **D)** Feature plots
1400 depicting the results from module scoring of the different categories within the
1401 MatrisomeDB including collagen and proteoglycan production and deposition, and
1402 secreted factors. **E)** Masson's trichrome staining depicting collagen deposition (blue),
1403 and keratin (pink) in sagittal skull sections containing dura meninges from naïve and
1404 infected animals. Scale bar = 50 μm .

1405 **Supplementary figure 5. Local T cell activation in the meninges in response to T.**
1406 **brucei infection using the *Nur77*^{tempo} reporter mice. A)** Representative flow
1407 cytometry analysis to determine TCR engagement in CD8⁺ T cells in the *Nur77*^{tempo}
1408 reporter mouse line. In this model, T cell activation dynamics can be discriminated
1409 between *de novo* (FT blue⁺) versus historical (FT red⁺) MHC-dependent TCR
1410 engagement. **B)** Quantification of the flow cytometry data from **(A)** focusing exclusively
1411 on FT blue⁺ or FT red⁺ CD8⁺ T cells. Data points indicate biological replicates for each

1412 panel and are representative from two independent experiments. A two-sided,
1413 parametric T test was employed to assess significance between experimental groups. A
1414 p value < 0.05 was considered significant. **C)** Representative flow cytometry analysis to
1415 determine TCR engagement in CD69 $^+$ CD4 $^+$ T cells in the *Nur77*^{Tempo} reporter mouse
1416 line. **D)** Quantification of the flow cytometry data from **(A)** focusing exclusively on FT
1417 blue $^+$ or FT red $^+$ CD69 $^+$ CD4 $^+$ T cells. Data points indicate biological replicates for each
1418 panel and are representative from two independent experiments. A two-sided,
1419 parametric T test was employed to assess significance between experimental groups. A
1420 p value < 0.05 was considered significant.

1421 **Supplementary figure 5. Meningeal lymphoid-like aggregates in response to *T.***
1422 ***brucei* infection.** Additional imaging analysis of whole-mount meninges from naïve
1423 (left) and infected (right) of CD21/CD35 $^+$ follicular dendritic cells (green), as well as
1424 CD3d $^+$ T cells (red) and B220 $^+$ B cells (purple). The data correspond to data obtained
1425 from two independent meningeal preparations; Replicate 1 and 2 shown in top and
1426 bottom panels, respectively. DAPI was included as nuclear staining. Scale = 100 μ m.

1427 **Supplementary figure 6. Chronic *T. brucei* infection induces demyelination in the**
1428 **CNS.** **A) Left:** Representative ELISpot images depicting mouse brain-specific IgG $^+$
1429 ASCs from naïve and infected murine meninges and splenocytes after 30dpi with *T.*
1430 *brucei*. **Right:** Quantification of ELISpot results from mouse brain-specific IgG $^+$ ASCs in
1431 meningeal preps and splenocytes ($n = 4$ mice/group). A p value < 0.05 is considered
1432 significant. Luxol Fast blue staining to determine myelination in naïve (**B**) and infected
1433 (**C**) coronal brain sections. Insets show areas of the cortex (Ctx), internal capsule (IC),
1434 and thalamus (Th).

1435 **Supplementary figure 7. LT β R signalling blockade results in uncontrolled**
1436 **parasitaemia and IgM $^+$ B cell accumulation in the meninges.** Parasitaemia (**A**) and
1437 clinical scoring (**B**) of *T. brucei*-infected mice treated with the LT β R-Ig fusion protein
1438 (blue line). *T. brucei*-infected mice alone (green line) or infected mice treated with an
1439 irrelevant IgG2a antibody (orange line) were used as controls. For parasitaemia, an
1440 ANOVA test with multiple comparisons was conducted. For clinical scoring, pairwise
1441 comparisons were conducted using a non-parametric T test. In all cases, a p value $<$
1442 0.05 was considered significant. Representative ELISpot results for meningeal IgM $^+$ (**C**)
1443 and IgG $^+$ (**D**) antibody secreting cells (ASCs), including total ASCs (top panel), *T.*
1444 *brucei*-specific ASCs (middle panel), and mouse brain-specific ASCs (bottom panel).

1445 The number of spots detected by the automated analysis software is also included. **E**)
1446 Quantification of ELISpot results including total IgM⁺ (left panel), *T. brucei*-specific IgM⁺
1447 (middle panel), and mouse brain-specific IgM⁺ antibody secreting cells (right panel) in
1448 naïve mice, mice treated with an irrelevant IgG2a antibody, and mice treated with
1449 LT β R-Ig ($n = 4 - 9$ mice/group). A p value < 0.05 was considered significant. F) Luxol
1450 Fast blue (LFB) staining to determine myelination in sagittal brain sections from infected
1451 mice treated with LTBR-Ig or with an irrelevant IgG2a antibody control naïve (2
1452 replicates per condition). Insets show selected cortical areas. Ctx, Cortex. Scale bar:
1453 1mm (whole image) or 50 μ m (insets).

1454 **Supplementary figure 8. Targeted antigen screening identified shared host**
1455 **antigens detected by autoreactive antibodies in mouse serum and human CSF in**
1456 **response to *T. brucei* infection.** Heatmap depicting the normalised signal-to-noise
1457 ratio for IgG binding against a panel of 120 host antigens. The data was acquired from
1458 naïve and infected murine serum (**A**) at 30dpi ($n = 3$ mice/group), and human CSF (**B**)
1459 from healthy donors ($n = 2$ donors), 1st stage sleeping sickness patients ($n = 3$
1460 samples), and 2nd stage sleeping sickness patients ($n = 4$ samples). The asterisks
1461 denote samples that were statistically significant in a pairwise comparison analysis
1462 using parametric T test. A p value < 0.05 is considered significant.

1463 **Supplementary Tables**

1464 **Table S1.** Quality control including mean reads per cell and median genes per cell
1465 before and after filtering out low quality cell types.

1466 **Table S2.** Overview of the major cell types detected in the single cell dataset (resolution
1467 of 0.7). The total number of cells per cluster, percentages, and marker genes are also
1468 included.

1469 **Table S3.** Marker genes identified for the cells within the fibroblast clusters obtained
1470 after subsetting (resolution = 0.6). The total number of cells per cluster, percentages,
1471 and marker genes are also included.

1472 **Table S4.** Marker genes identified for the cells within the mononuclear phagocytes
1473 (MNP) cluster obtained after subsetting (resolution = 0.3). The total number of cells per
1474 cluster, percentages, and marker genes are also included.

1475 **Table S5.** Marker genes identified for the cells within the T cell cluster obtained after
1476 subsetting (resolution = 0.7). The total number of cells per cluster, percentages, and
1477 marker genes are also included.

1478 **Table S6.** Metadata associated with the human cerebrospinal fluid samples included for
1479 autoantibodies against human brain lysates by ELISA.

1480 **Table S7.** Normalised signal-to-noise ratio (SNR) of targeted host antigen screening
1481 conducted using mouse serum and human CSF. The SNR values for each of the 120
1482 antigens are included, as well as a parametric T test conducted to determine the level
1483 of significant in pairwise comparisons between infected mice and naïve controls, or
1484 between 2nd stage sleeping sickness CSF samples and 1st stage sleeping sickness or
1485 healthy donors.

1486

1487 **Bibliography**

- 1488 1. Jacob, L. *et al.* Conserved meningeal lymphatic drainage circuits in mice and
1489 humans. *J. Exp. Med.* **219**, e20220035 (2022).
- 1490 2. Rustenhoven, J. *et al.* Functional characterization of the dural sinuses as a
1491 neuroimmune interface. *Cell* **184**, 1000-1016.e27 (2021).
- 1492 3. Antila, S. *et al.* Development and plasticity of meningeal lymphatic vessels. *J. Exp.*
1493 *Med.* **214**, 3645–3667 (2017).
- 1494 4. Rustenhoven, J. *et al.* Age-related alterations in meningeal immunity drive impaired
1495 CNS lymphatic drainage. *J. Exp. Med.* **220**, e20221929 (2023).
- 1496 5. Bolte, A. C. *et al.* The meningeal transcriptional response to traumatic brain injury
1497 and aging. *eLife* **12**, e81154 (2023).
- 1498 6. Ma, T., Wang, F., Xu, S. & Huang, J. H. Meningeal immunity: Structure, function
1499 and a potential therapeutic target of neurodegenerative diseases. *Brain. Behav.*
1500 *Immun.* **93**, 264–276 (2021).
- 1501 7. Merlini, A. *et al.* Distinct roles of the meningeal layers in CNS autoimmunity. *Nat.*
1502 *Neurosci.* **25**, 887–899 (2022).
- 1503 8. Ampie, L. & McGavern, D. B. Immunological defense of CNS barriers against
1504 infections. *Immunity* **55**, 781–799 (2022).

1505 9. Coles, J. A. *et al.* Intravital Imaging of a Massive Lymphocyte Response in the
1506 Cortical Dura of Mice after Peripheral Infection by Trypanosomes. *PLoS Negl. Trop.*
1507 *Dis.* **9**, e0003714 (2015).

1508 10. Vlaminck, K. D. *et al.* Differential plasticity and fate of brain-resident and recruited
1509 macrophages during the onset and resolution of neuroinflammation. *Immunity* **55**,
1510 2085-2102.e9 (2022).

1511 11. Coles, J. A., Stewart-Hutchinson, P. J., Myburgh, E. & Brewer, J. M. The mouse
1512 cortical meninges are the site of immune responses to many different pathogens,
1513 and are accessible to intravital imaging. *Methods San Diego Calif* **127**, 53–61
1514 (2017).

1515 12. Rodgers, J., Bradley, B. & Kennedy, P. G. E. Delineating neuroinflammation,
1516 parasite CNS invasion, and blood-brain barrier dysfunction in an experimental
1517 murine model of human African trypanosomiasis. *Methods San Diego Calif* **127**, 79–
1518 87 (2017).

1519 13. Quintana, J. F. *et al.* Single cell and spatial transcriptomic analyses reveal
1520 microglia-plasma cell crosstalk in the brain during *Trypanosoma brucei* infection.
1521 *Nat. Commun.* **13**, 5752 (2022).

1522 14. Blum, J., Schmid, C. & Burri, C. Clinical aspects of 2541 patients with second stage
1523 human African trypanosomiasis. *Acta Trop.* **97**, 55–64 (2006).

1524 15. Kazumba, L. M., Kaka, J.-C. T., Ngoyi, D. M. & Tshala-Katumbay, D. Mortality
1525 trends and risk factors in advanced stage-2 Human African Trypanosomiasis: A
1526 critical appraisal of 23 years of experience in the Democratic Republic of Congo.
1527 *PLoS Negl. Trop. Dis.* **12**, e0006504 (2018).

1528 16. Mudji, J. *et al.* Gambiense Human African Trypanosomiasis Sequelae after
1529 Treatment: A Follow-Up Study 12 Years after Treatment. *Trop. Med. Infect. Dis.* **5**,
1530 10 (2020).

1531 17. Rijo-Ferreira, F. *et al.* Sleeping Sickness Disrupts the Sleep-Regulating Adenosine
1532 System. *J. Neurosci. Off. J. Soc. Neurosci.* **40**, 9306–9316 (2020).

1533 18. Rijo-Ferreira, F. *et al.* Sleeping sickness is a circadian disorder. *Nat. Commun.* **9**, 62
1534 (2018).

1535 19. Lundkvist, G. B., Hill, R. H. & Kristensson, K. Disruption of Circadian Rhythms in
1536 Synaptic Activity of the Suprachiasmatic Nuclei by African Trypanosomes and
1537 Cytokines. *Neurobiol. Dis.* **11**, 20–27 (2002).

1538 20. Cornford, E. M., Freeman, B. J. & MacInnis, A. J. Physiological Relationships and
1539 Circadian Periodicities in Rodent Trypanosomes. *Trans. R. Soc. Trop. Med. Hyg.*
1540 **70**, 238–243 (1976).

1541 21. Manzo, A. *et al.* Systematic microanatomical analysis of CXCL13 and CCL21 in situ
1542 production and progressive lymphoid organization in rheumatoid synovitis. *Eur. J.*
1543 *Immunol.* **35**, 1347–1359 (2005).

1544 22. Chang, A. *et al.* In situ B cell-mediated immune responses and tubulointerstitial
1545 inflammation in human lupus nephritis. *J. Immunol. Baltim. Md 1950* **186**, 1849–
1546 1860 (2011).

1547 23. Fridman, W. H. *et al.* B cells and tertiary lymphoid structures as determinants of
1548 tumour immune contexture and clinical outcome. *Nat. Rev. Clin. Oncol.* **19**, 441–457
1549 (2022).

1550 24. Pitzalis, C., Jones, G. W., Bombardieri, M. & Jones, S. A. Ectopic lymphoid-like
1551 structures in infection, cancer and autoimmunity. *Nat. Rev. Immunol.* **14**, 447–462
1552 (2014).

1553 25. Stock, A. D. *et al.* Tertiary lymphoid structures in the choroid plexus in
1554 neuropsychiatric lupus. *JCI Insight* **4**, e124203.

1555 26. Pikor, N. B., Prat, A., Bar-Or, A. & Gommerman, J. L. Meningeal Tertiary Lymphoid
1556 Tissues and Multiple Sclerosis: A Gathering Place for Diverse Types of Immune
1557 Cells during CNS Autoimmunity. *Front. Immunol.* **6**, (2016).

1558 27. Rodriguez, A. B. *et al.* Immune mechanisms orchestrate tertiary lymphoid structures
1559 in tumors via cancer-associated fibroblasts. *Cell Rep.* **36**, 109422 (2021).

1560 28. Ransohoff, R. M. Multiple sclerosis: role of meningeal lymphoid aggregates in
1561 progression independent of relapse activity. *Trends Immunol.* **44**, 266–275 (2023).

1562 29. Jalkanen, S. & Salmi, M. Lymphatic endothelial cells of the lymph node. *Nat. Rev.*
1563 *Immunol.* **20**, 566–578 (2020).

1564 30. Krishnamurty, A. T. & Turley, S. J. Lymph node stromal cells: cartographers of the
1565 immune system. *Nat. Immunol.* **21**, 369–380 (2020).

1566 31. von Andrian, U. H. & Mempel, T. R. Homing and cellular traffic in lymph nodes. *Nat.*
1567 *Rev. Immunol.* **3**, 867–878 (2003).

1568 32. Phan, T. G., Grigorova, I., Okada, T. & Cyster, J. G. Subcapsular encounter and
1569 complement-dependent transport of immune complexes by lymph node B cells. *Nat.*
1570 *Immunol.* **8**, 992–1000 (2007).

1571 33. Da Mesquita, S., Fu, Z. & Kipnis, J. The Meningeal Lymphatic System: A New
1572 Player in Neurophysiology. *Neuron* **100**, 375–388 (2018).

1573 34. Louveau, A. *et al.* CNS lymphatic drainage and neuroinflammation are regulated by
1574 meningeal lymphatic vasculature. *Nat. Neurosci.* **21**, 1380–1391 (2018).

1575 35. Le Ray, D., Barry, J. D., Easton, C. & Vickerman, K. First tsetse fly transmission of
1576 the 'AnTat' serodeme of *Trypanosoma brucei*. *Ann. Soc. Belg. Med. Trop.* **57**, 369–
1577 381 (1977).

1578 36. Herbert, W. J. & Lumsden, W. H. *Trypanosoma brucei*: a rapid 'matching' method
1579 for estimating the host's parasitemia. *Exp. Parasitol.* **40**, 427–431 (1976).

1580 37. Intravascular staining for discrimination of vascular and tissue leukocytes | Springer
1581 Nature Experiments.
1582 <https://experiments.springernature.com/articles/10.1038/nprot.2014.005>.

1583 38. Hao, Y. *et al.* Integrated analysis of multimodal single-cell data. *Cell* **184**, 3573–
1584 3587.e29 (2021).

1585 39. Hafemeister, C. & Satija, R. Normalization and variance stabilization of single-cell
1586 RNA-seq data using regularized negative binomial regression. *Genome Biol.* **20**,
1587 296 (2019).

1588 40. Clustering trees: a visualization for evaluating clusterings at multiple resolutions |
1589 GigaScience | Oxford Academic.
1590 <https://academic.oup.com/gigascience/article/7/7/giy083/5052205>.

1591 41. Efremova, M., Vento-Tormo, M., Teichmann, S. A. & Vento-Tormo, R.
1592 CellPhoneDB: inferring cell-cell communication from combined expression of multi-
1593 subunit ligand-receptor complexes. *Nat. Protoc.* **15**, 1484–1506 (2020).

1594 42. Brioschi, S. *et al.* Heterogeneity of meningeal B cells reveals a lymphopoietic niche
1595 at the CNS borders. *Science* **373**, eabf9277 (2021).

1596 43. Shao, X., Taha, I. N., Clauser, K. R., Gao, Y. (Tom) & Naba, A. MatrisomeDB: the
1597 ECM-protein knowledge database. *Nucleic Acids Res.* **48**, D1136–D1144 (2020).

1598 44. Manglani, M., Gossa, S. & McGavern, D. B. Leukocyte Isolation from Brain, Spinal
1599 Cord, and Meninges for Flow Cytometric Analysis. *Curr. Protoc. Immunol.* **121**, e44
1600 (2018).

1601 45. Browning, J. L. *et al.* Characterization of lymphotoxin-alpha beta complexes on the
1602 surface of mouse lymphocytes. *J. Immunol. Baltim. Md 1950* **159**, 3288–3298
1603 (1997).

1604 46. Fitzpatrick, Z. *et al.* Gut-educated IgA plasma cells defend the meningeal venous
1605 sinuses. *Nature* **587**, 472–476 (2020).

1606 47. Dorrier, C. E., Jones, H. E., Pintarić, L., Siegenthaler, J. A. & Daneman, R.
1607 Emerging roles for CNS fibroblasts in health, injury and disease. *Nat. Rev. Neurosci.* **23**, 23–34 (2022).

1609 48. DeSisto, J. *et al.* Single-Cell Transcriptomic Analyses of the Developing Meninges
1610 Reveal Meningeal Fibroblast Diversity and Function. *Dev. Cell* **54**, 43-59.e4 (2020).

1611 49. Jones, H. E. *et al.* Meningeal origins and dynamics of perivascular fibroblast
1612 development on the mouse cerebral vasculature. 2023.03.23.533982 Preprint at
1613 <https://doi.org/10.1101/2023.03.23.533982> (2023).

1614 50. Di Carlo, S. E. & Peduto, L. The perivascular origin of pathological fibroblasts. *J. Clin. Invest.* **128**, 54–63.

1616 51. The origin of subdural neomembranes. I. Fine structure of the dura-arachnoid
1617 interface in man. - PMC. <https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2018597/>.

1618 52. Schiavinato, A., Przyklenk, M., Kobbe, B., Paulsson, M. & Wagener, R. Collagen
1619 type VI is the antigen recognized by the ER-TR7 antibody. *Eur. J. Immunol.* **51**,
1620 2345–2347 (2021).

1621 53. Aldh1a2+ fibroblastic reticular cells regulate lymphocyte recruitment in omental
1622 milky spots | Journal of Experimental Medicine | Rockefeller University Press.
1623 [https://rupress.org/jem/article/220/5/e20221813/213908/Aldh1a2-fibroblastic-](https://rupress.org/jem/article/220/5/e20221813/213908/Aldh1a2-fibroblastic-reticular-cells-regulate)
1624 [reticular-cells-regulate](https://rupress.org/jem/article/220/5/e20221813/213908/Aldh1a2-fibroblastic-reticular-cells-regulate).

1625 54. DeSisto, J. *et al.* A cellular atlas of the developing meninges reveals meningeal
1626 fibroblast diversity and function. 648642 Preprint at <https://doi.org/10.1101/648642>
1627 (2019).

1628 55. Remsik, J. *et al.* Characterization, isolation, and in vitro culture of leptomeningeal
1629 fibroblasts. *J. Neuroimmunol.* **361**, (2021).

1630 56. Pietilä, R. *et al.* Molecular anatomy of adult mouse leptomeninges. *Neuron* (2023)
1631 doi:10.1016/j.neuron.2023.09.002.

1632 57. Cinti, I. & Denton, A. E. Lymphoid stromal cells—more than just a highway to
1633 humoral immunity. *Oxf. Open Immunol.* **2**, iqab011 (2021).

1634 58. Conserved stromal–immune cell circuits secure B cell homeostasis and function |
1635 *Nature Immunology*. <https://www.nature.com/articles/s41590-023-01503-3>.

1636 59. Krautler, N. J. *et al.* Follicular Dendritic Cells Emerge from Ubiquitous Perivascular
1637 Precursors. *Cell* **150**, 194–206 (2012).

1638 60. McCulloch, L. *et al.* Follicular Dendritic Cell-Specific Prion Protein (PrPc) Expression
1639 Alone Is Sufficient to Sustain Prion Infection in the Spleen. *PLOS Pathog.* **7**,
1640 e1002402 (2011).

1641 61. Waddell, L. A. *et al.* ADGRE1 (EMR1, F4/80) Is a Rapidly-Evolving Gene Expressed
1642 in Mammalian Monocyte-Macrophages. *Front. Immunol.* **9**, 2246 (2018).

1643 62. Van Hove, H. *et al.* A single-cell atlas of mouse brain macrophages reveals unique
1644 transcriptional identities shaped by ontogeny and tissue environment. *Nat. Neurosci.*
1645 **22**, 1021–1035 (2019).

1646 63. Moran, A. E. *et al.* T cell receptor signal strength in Treg and iNKT cell development
1647 demonstrated by a novel fluorescent reporter mouse. *J. Exp. Med.* **208**, 1279–1289
1648 (2011).

1649 64. Elliot, T. A. E. *et al.* Nur77-Tempo mice reveal T cell steady state antigen
1650 recognition. *Discov. Immunol.* **1**, kyac009 (2022).

1651 65. Jennings, E. *et al.* Nr4a1 and Nr4a3 Reporter Mice Are Differentially Sensitive to T
1652 Cell Receptor Signal Strength and Duration. *Cell Rep.* **33**, 108328 (2020).

1653 66. Barinov, A. *et al.* Essential role of immobilized chemokine CXCL12 in the regulation
1654 of the humoral immune response. *Proc. Natl. Acad. Sci. U. S. A.* **114**, 2319–2324
1655 (2017).

1656 67. Cheng, Q. *et al.* CXCR4–CXCL12 interaction is important for plasma cell homing
1657 and survival in NZB/W mice. *Eur. J. Immunol.* **48**, 1020–1029 (2018).

1658 68. Pilzecker, B. & Jacobs, H. Mutating for Good: DNA Damage Responses During
1659 Somatic Hypermutation. *Front. Immunol.* **10**, (2019).

1660 69. Mueller, J., Matloubian, M. & Zikherman, J. An in vivo reporter reveals active B cell
1661 receptor signaling in the germinal center. *J. Immunol. Baltim. Md 1950* **194**, 2993–
1662 2997 (2015).

1663 70. Brooks, J. F. *et al.* Negative feedback by NUR77/Nr4a1 restrains B cell clonal
1664 dominance during early T-dependent immune responses. *Cell Rep.* **36**, 109645
1665 (2021).

1666 71. Lymphotoxin-Dependent B Cell-FRC Crosstalk Promotes De Novo Follicle
1667 Formation and Antibody Production following Intestinal Helminth Infection -
1668 PubMed. <https://pubmed.ncbi.nlm.nih.gov/27160906/>.

1669 72. Tang, H., Zhu, M., Qiao, J. & Fu, Y.-X. Lymphotoxin signalling in tertiary lymphoid
1670 structures and immunotherapy. *Cell. Mol. Immunol.* **14**, 809–818 (2017).

1671 73. Koroleva, E. P., Fu, Y.-X. & Tumanov, A. V. Lymphotoxin in physiology of lymphoid
1672 tissues - implication for antiviral defense. *Cytokine* **101**, 39–47 (2018).

1673 74. James Bates, R. E. *et al.* Lymphotoxin-alpha expression in the meninges causes
1674 lymphoid tissue formation and neurodegeneration. *Brain* **145**, 4287–4307 (2022).

1675 75. Browning, J. L. *et al.* Lymphotoxin- β Receptor Signaling Is Required for the
1676 Homeostatic Control of HEV Differentiation and Function. *Immunity* **23**, 539–550
1677 (2005).

1678 76. Alfituri, O. A., Bradford, B. M., Paxton, E., Morrison, L. J. & Mabbott, N. A. Influence
1679 of the Draining Lymph Nodes and Organized Lymphoid Tissue Microarchitecture on
1680 Susceptibility to Intradermal Trypanosoma brucei Infection. *Front. Immunol.* **11**,
1681 1118 (2020).

1682 77. Pisetsky, D. S. Pathogenesis of autoimmune disease. *Nat. Rev. Nephrol.* **19**, 509–
1683 524 (2023).

1684 78. Zhang, F., Gao, X., Liu, J. & Zhang, C. Biomarkers in autoimmune diseases of the
1685 central nervous system. *Front. Immunol.* **14**, (2023).

1686 79. Theofilopoulos, A. N., Kono, D. H. & Baccala, R. The multiple pathways to
1687 autoimmunity. *Nat. Immunol.* **18**, 716–724 (2017).

1688 80. Amin, D. N., Masocha, W., Ngan'dwe, K., Rottenberg, M. & Kristensson, K. Suramin
1689 and minocycline treatment of experimental African trypanosomiasis at an early
1690 stage of parasite brain invasion. *Acta Trop.* **106**, 72–74 (2008).

1691 81. Buechler, M. B. *et al.* Cross-tissue organization of the fibroblast lineage. *Nature* **593**,
1692 575–579 (2021).

1693 82. Lendahl, U., Muhl, L. & Betsholtz, C. Identification, discrimination and heterogeneity
1694 of fibroblasts. *Nat. Commun.* **13**, 3409 (2022).

1695 83. Plikus, M. V. *et al.* Fibroblasts: Origins, definitions, and functions in health and
1696 disease. *Cell* **184**, 3852–3872 (2021).

1697 84. Targeting TLR4 during vaccination boosts MAdCAM-1+ lymphoid stromal cell
1698 activation and promotes the aged germinal center response | *Science Immunology*.
1699 <https://www.science.org/doi/10.1126/sciimmunol.abk0018>.

1700 85. Hsu, M. *et al.* Neuroinflammation-induced lymphangiogenesis near the cribriform
1701 plate contributes to drainage of CNS-derived antigens and immune cells. *Nat.*
1702 *Commun.* **10**, 229 (2019).

1703 86. Blockade of VEGFR3 signaling leads to functional impairment of dural lymphatic
1704 vessels without affecting autoimmune neuroinflammation | *Science Immunology*.
1705 <https://www.science.org/doi/10.1126/sciimmunol.abq0375>.

1706 87. Longitudinal analysis reveals high prevalence of Epstein-Barr virus associated with
1707 multiple sclerosis | *Science*. <https://www.science.org/doi/10.1126/science.abj8222>.

1708 88. Guillaume, M.-P., Hermanus, N., Demulder, A., Servais, G. & Karmali, R. Specific
1709 autoantibodies of SLE, such as anti-Ku, anti-ribosome Po and anti-membrane DNA
1710 autoantibodies, in a case of human African trypanosomiasis. *Rheumatology* **42**,
1711 1568–1569 (2003).

1712 89. Radwanska, M. *et al.* Antibodies raised against the flagellar pocket fraction of
1713 *Trypanosoma brucei* preferentially recognize HSP60 in cDNA expression library.
1714 *Parasite Immunol.* **22**, 639–650 (2000).

1715 90. Radwanska, M. *et al.* Comparative Analysis of Antibody Responses against HSP60,
1716 Invariant Surface Glycoprotein 70, and Variant Surface Glycoprotein Reveals a
1717 Complex Antigen-Specific Pattern of Immunoglobulin Isotype Switching during
1718 Infection by *Trypanosoma brucei*. *Infect. Immun.* **68**, 848–860 (2000).

1719 91. Ayed, Z. *et al.* Detection and Characterization of Autoantibodies Directed against
1720 Neurofilament Proteins in Human African Trypanosomiasis. *Am. J. Trop. Med. Hyg.*
1721 **57**, 1–6 (1997).

1722 92. Kazyumba, G., Berney, M., Brighouse, G., Cruchaud, A. & Lambert, P. H.
1723 Expression of the B cell repertoire and autoantibodies in human African
1724 trypanosomiasis. *Clin. Exp. Immunol.* **65**, 10–18 (1986).

1725 93. Schafflick, D. *et al.* Single-cell profiling of CNS border compartment leukocytes
1726 reveals that B cells and their progenitors reside in non-diseased meninges. *Nat.*
1727 *Neurosci.* **24**, 1225–1234 (2021).

1728 94. Kovacs, M. A. *et al.* Meningeal lymphatic drainage promotes T cell responses
1729 against *Toxoplasma gondii* but is dispensable for parasite control in the brain. *eLife*
1730 **11**, e80775 (2022).

1731 95. De Niz, M. *et al.* Organotypic endothelial adhesion molecules are key for
1732 *Trypanosoma brucei* tropism and virulence. *Cell Rep.* **36**, 109741 (2021).

1733 96. Philip, K. A., Dascombe, M. J., Fraser, P. A. & Pentreath, V. W. Blood-brain barrier
1734 damage in experimental African trypanosomiasis. *Ann. Trop. Med. Parasitol.* **88**,
1735 607–616 (1994).

1736 97. Rodgers, J. *et al.* Magnetic resonance imaging to assess blood-brain barrier
1737 damage in murine trypanosomiasis. *Am. J. Trop. Med. Hyg.* **84**, 344–350 (2011).

1738 98. Fillatreau, S., Manfroi, B. & Dörner, T. Toll-like receptor signalling in B cells during
1739 systemic lupus erythematosus. *Nat. Rev. Rheumatol.* **17**, 98–108 (2021).

1740 99. Hua, Z. & Hou, B. TLR signaling in B-cell development and activation. *Cell. Mol.*
1741 *Immunol.* **10**, 103–106 (2013).

1742 100. Hartlehner, M. *et al.* Bcl6 controls meningeal Th17–B cell interaction in murine
1743 neuroinflammation. *Proc. Natl. Acad. Sci.* **118**, e2023174118 (2021).

1744 101. Baxter, A. G. The origin and application of experimental autoimmune
1745 encephalomyelitis. *Nat. Rev. Immunol.* **7**, 904–912 (2007).

1746 102. Fletcher, J. M., Lalor, S. J., Sweeney, C. M., Tubridy, N. & Mills, K. H. G. T cells
1747 in multiple sclerosis and experimental autoimmune encephalomyelitis. *Clin. Exp.*
1748 *Immunol.* **162**, 1–11 (2010).

1749 103. Lopez, J. A., Denkova, M., Ramanathan, S., Dale, R. C. & Brilot, F.
1750 Pathogenesis of autoimmune demyelination: from multiple sclerosis to neuromyelitis
1751 optica spectrum disorders and myelin oligodendrocyte glycoprotein antibody-
1752 associated disease. *Clin. Transl. Immunol.* **10**, e1316 (2021).

1753 104. Lucchinetti, C. F. *et al.* Inflammatory Cortical Demyelination in Early Multiple
1754 Sclerosis. *N. Engl. J. Med.* **365**, 2188–2197 (2011).

1755 105. Cikes, N., Bosnic, D. & Sentic, M. Non-MS autoimmune demyelination. *Clin.*
1756 *Neurol. Neurosurg.* **110**, 905–912 (2008).

1757 106. Nguyen, H. T. T., Guevarra, R. B., Magez, S. & Radwanska, M. Single-cell
1758 transcriptome profiling and the use of AID deficient mice reveal that B cell activation
1759 combined with antibody class switch recombination and somatic hypermutation do
1760 not benefit the control of experimental trypanosomosis. *PLoS Pathog.* **17**, e1010026
1761 (2021).

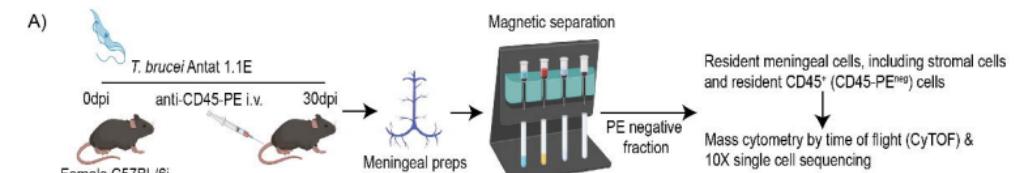
1762 107. Friman, V. *et al.* Defective peripheral B cell selection in common variable
1763 immune deficiency patients with autoimmune manifestations. *Cell Rep.* **42**, (2023).

1764 108. Magliozzi, R., Marastoni, D. & Calabrese, M. The BAFF / APRIL system as
1765 therapeutic target in multiple sclerosis. *Expert Opin. Ther. Targets* **24**, 1135–1145
1766 (2020).

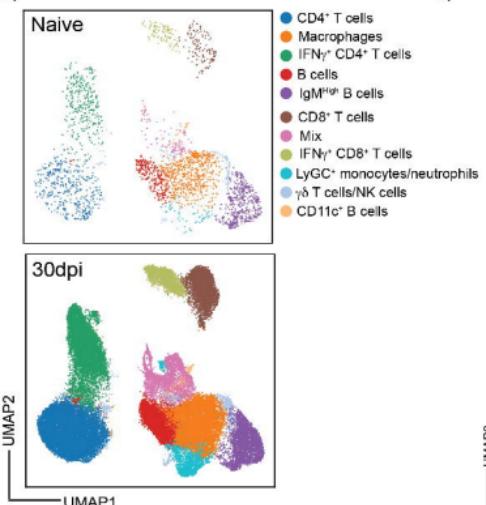
1767 109. Lee, D. S. W., Rojas, O. L. & Gommerman, J. L. B cell depletion therapies in
1768 autoimmune disease: advances and mechanistic insights. *Nat. Rev. Drug Discov.*
1769 **20**, 179–199 (2021).

1770 110. Florou, D., Katsara, M., Feehan, J., Dardiotis, E. & Apostolopoulos, V. Anti-CD20
1771 Agents for Multiple Sclerosis: Spotlight on Ocrelizumab and Ofatumumab. *Brain Sci.*
1772 **10**, 758 (2020).

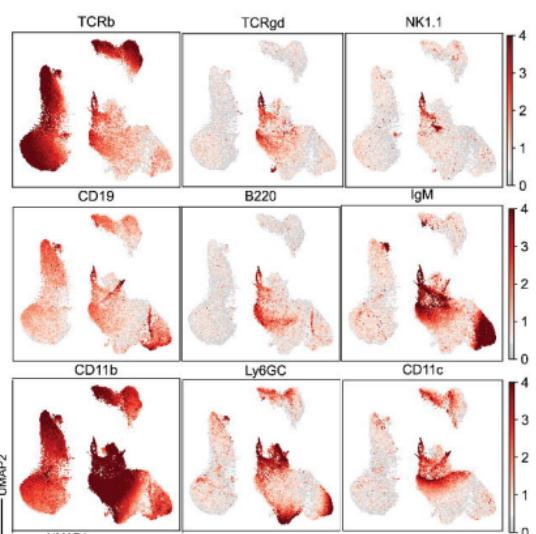
1773 111. Blattner, M. S., de Bruin, G. S., Bucelli, R. C. & Day, G. S. Sleep disturbances
1774 are common in patients with autoimmune encephalitis. *J. Neurol.* **266**, 1007–1015
1775 (2019).

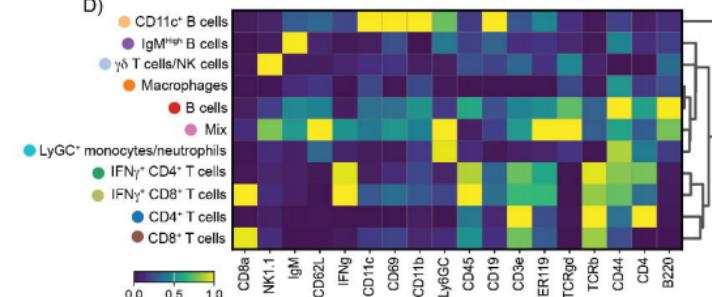

1776 112. Blattner, M. S. & Day, G. S. Sleep Disturbances in Patients with Autoimmune
1777 Encephalitis. *Curr. Neurol. Neurosci. Rep.* **20**, 28 (2020).

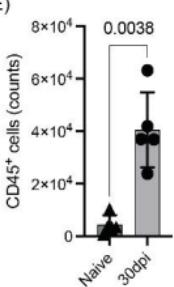
1778 113. Yin, D., Chen, S. & Liu, J. Sleep Disturbances in Autoimmune Neurologic
1779 Diseases: Manifestation and Pathophysiology. *Front. Neurosci.* **15**, 687536 (2021).

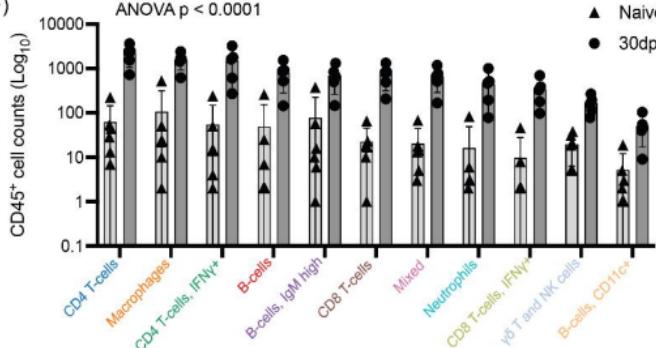

1780 114. Bonvalet, M., Ollila, H. M., Ambati, A. & Mignot, E. Autoimmunity in narcolepsy.
1781 *Curr. Opin. Pulm. Med.* **23**, 522–529 (2017).

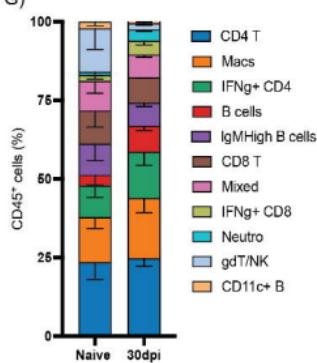
1782 115. Mignot, E. *et al.* Complex HLA-DR and -DQ Interactions Confer Risk of
1783 Narcolepsy-Cataplexy in Three Ethnic Groups. *Am. J. Hum. Genet.* **68**, 686–699
1784 (2001).

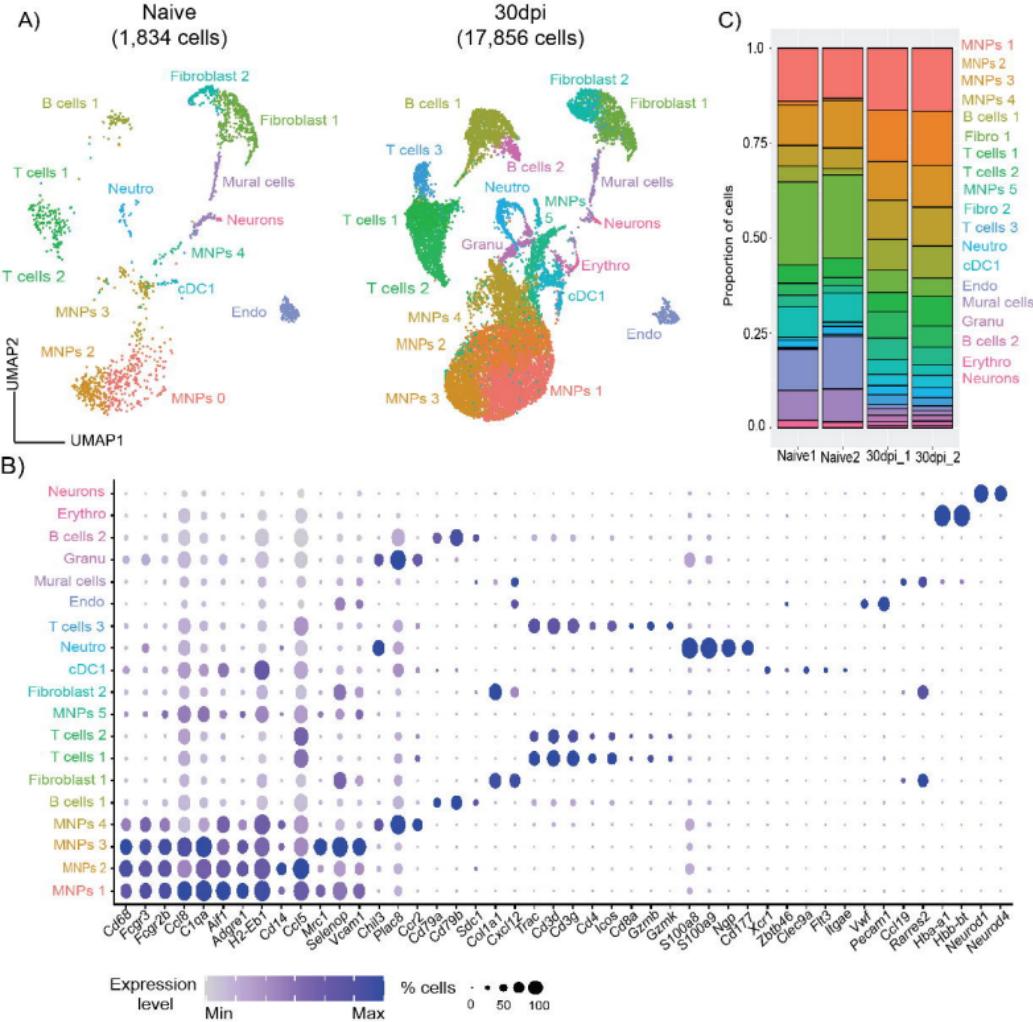

1785

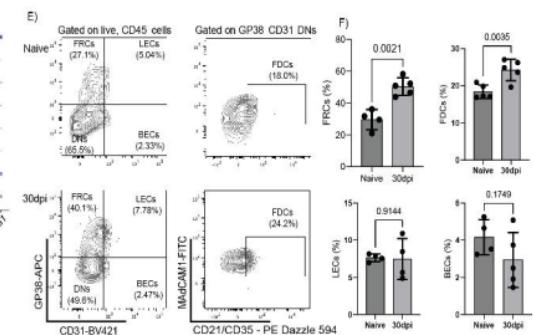
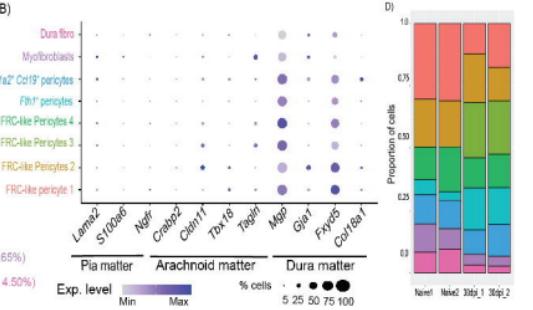
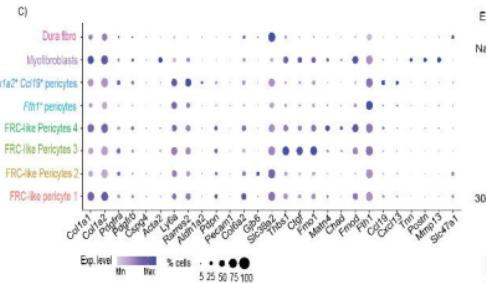
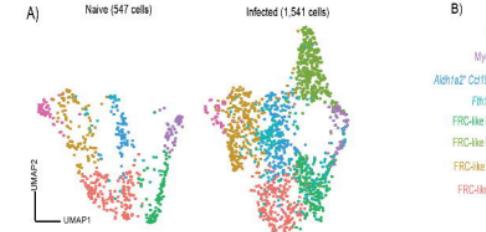

B)

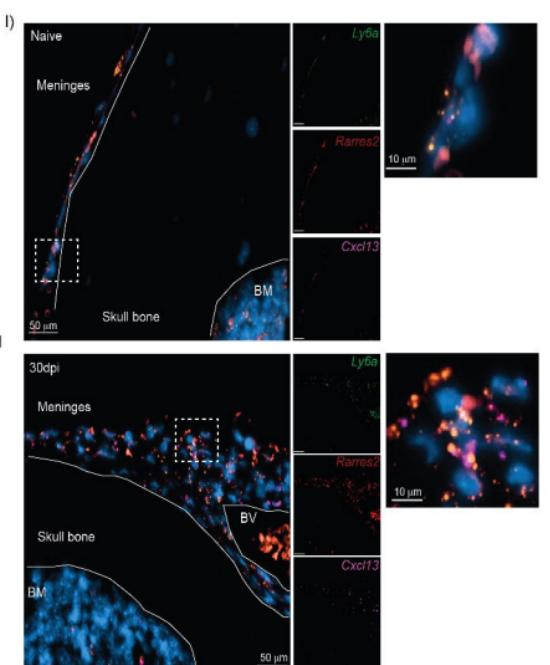
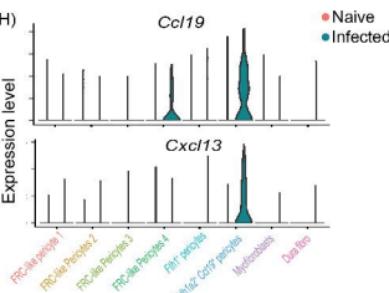
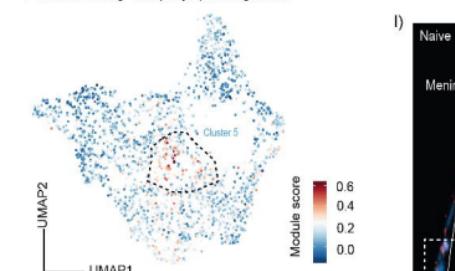

C)

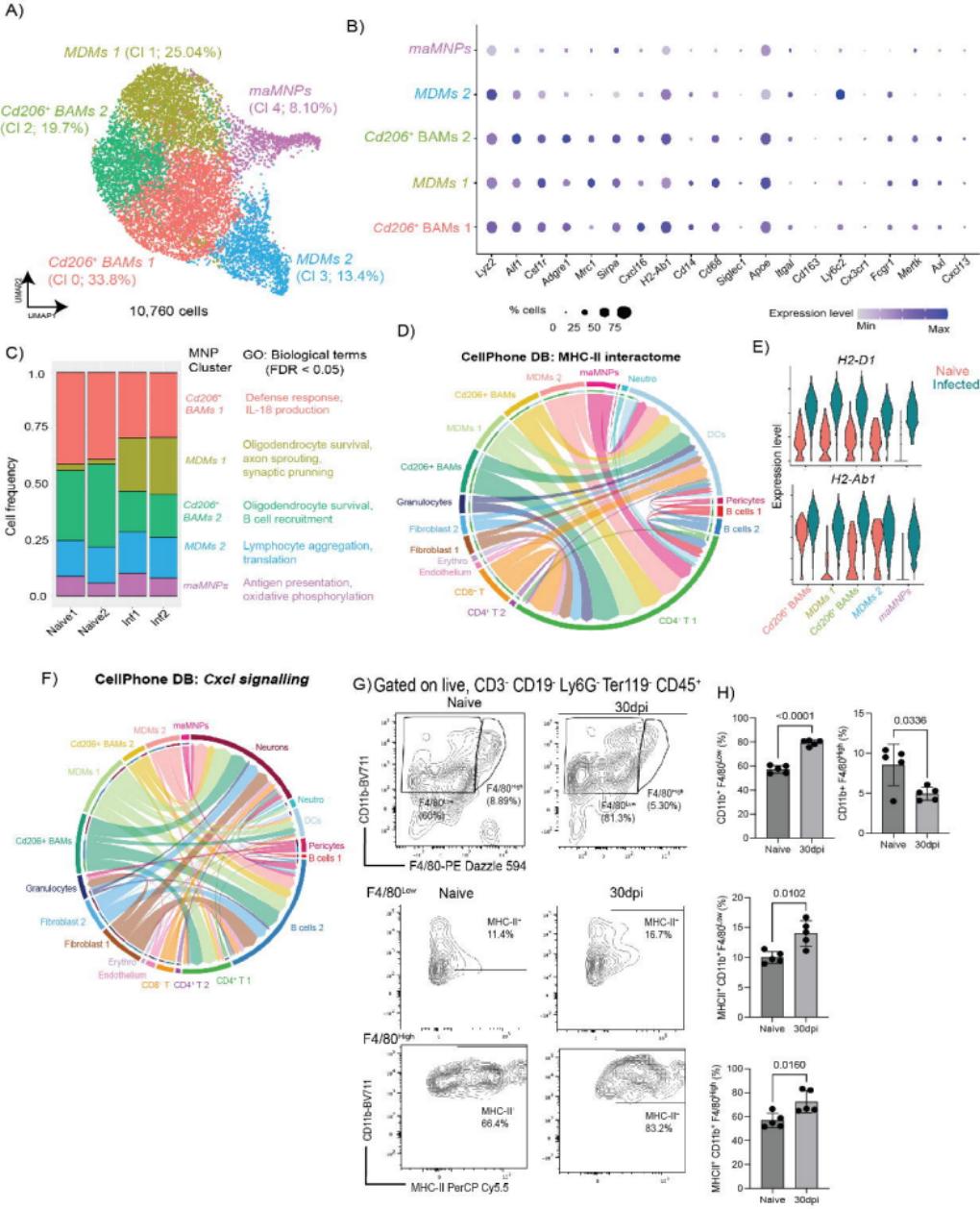

D)

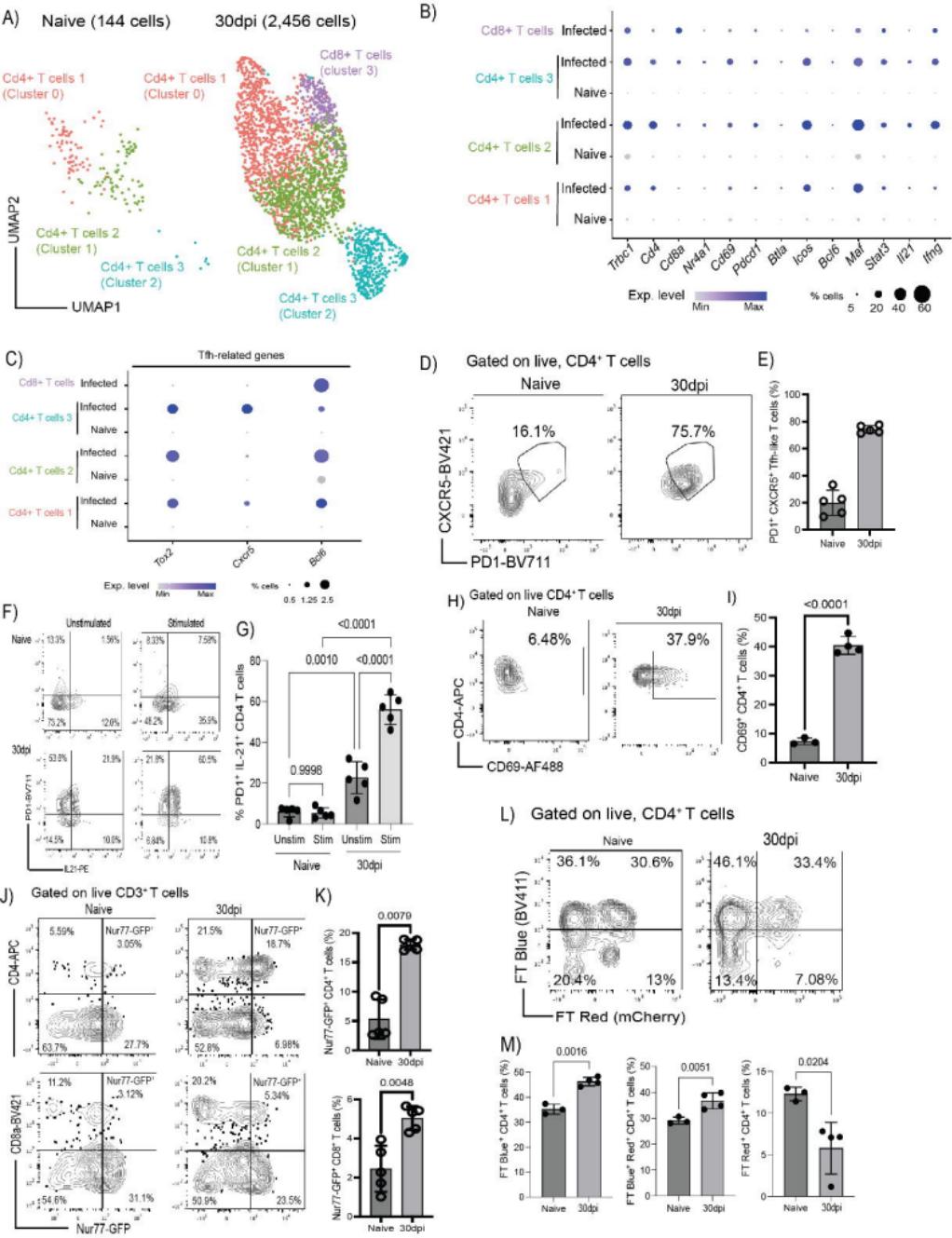

E)

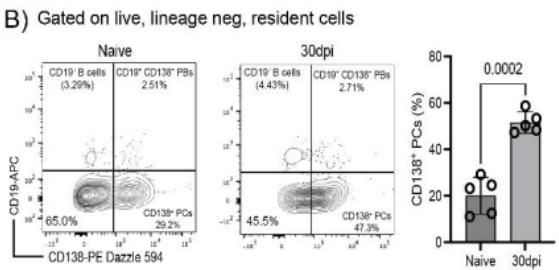
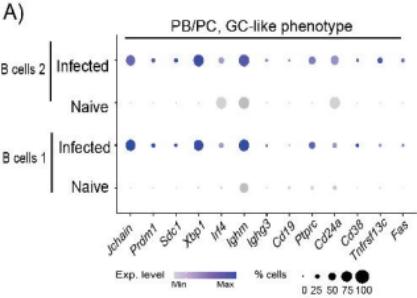






F)

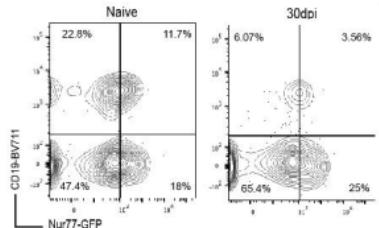



G)

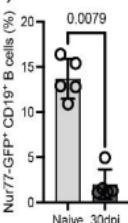


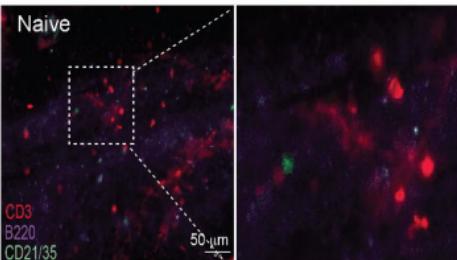


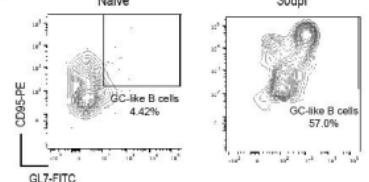



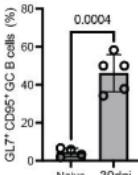
G) Module scoring - ectopic lymphoid signatures

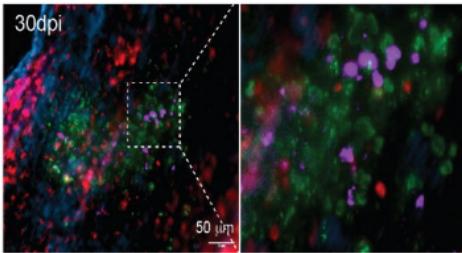


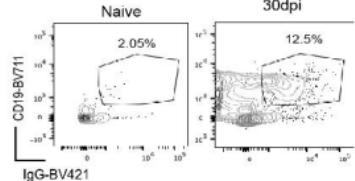


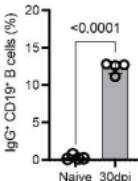

C) Gated on live, resident CD19+ B cells

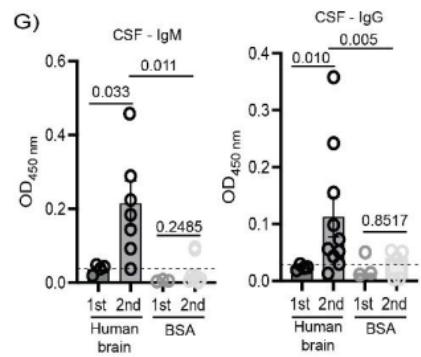
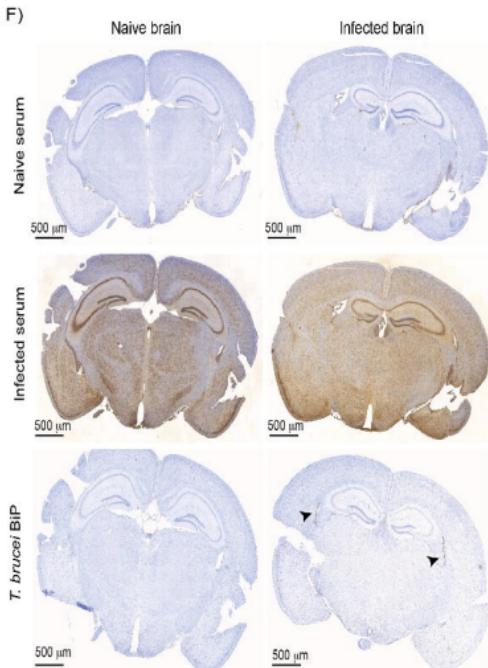
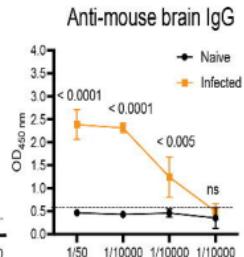
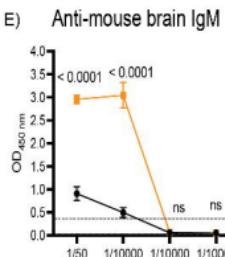
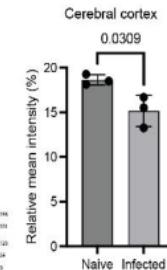
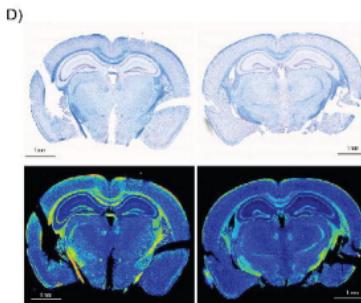
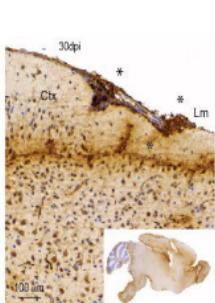
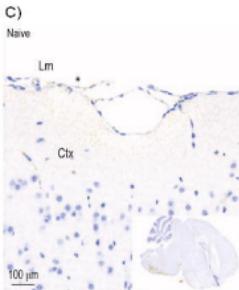
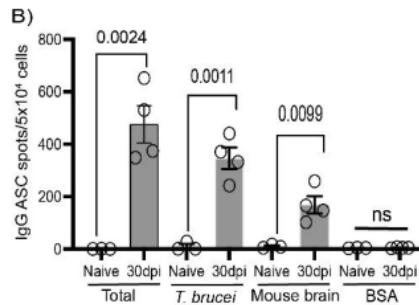
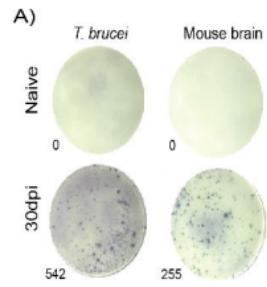

D)

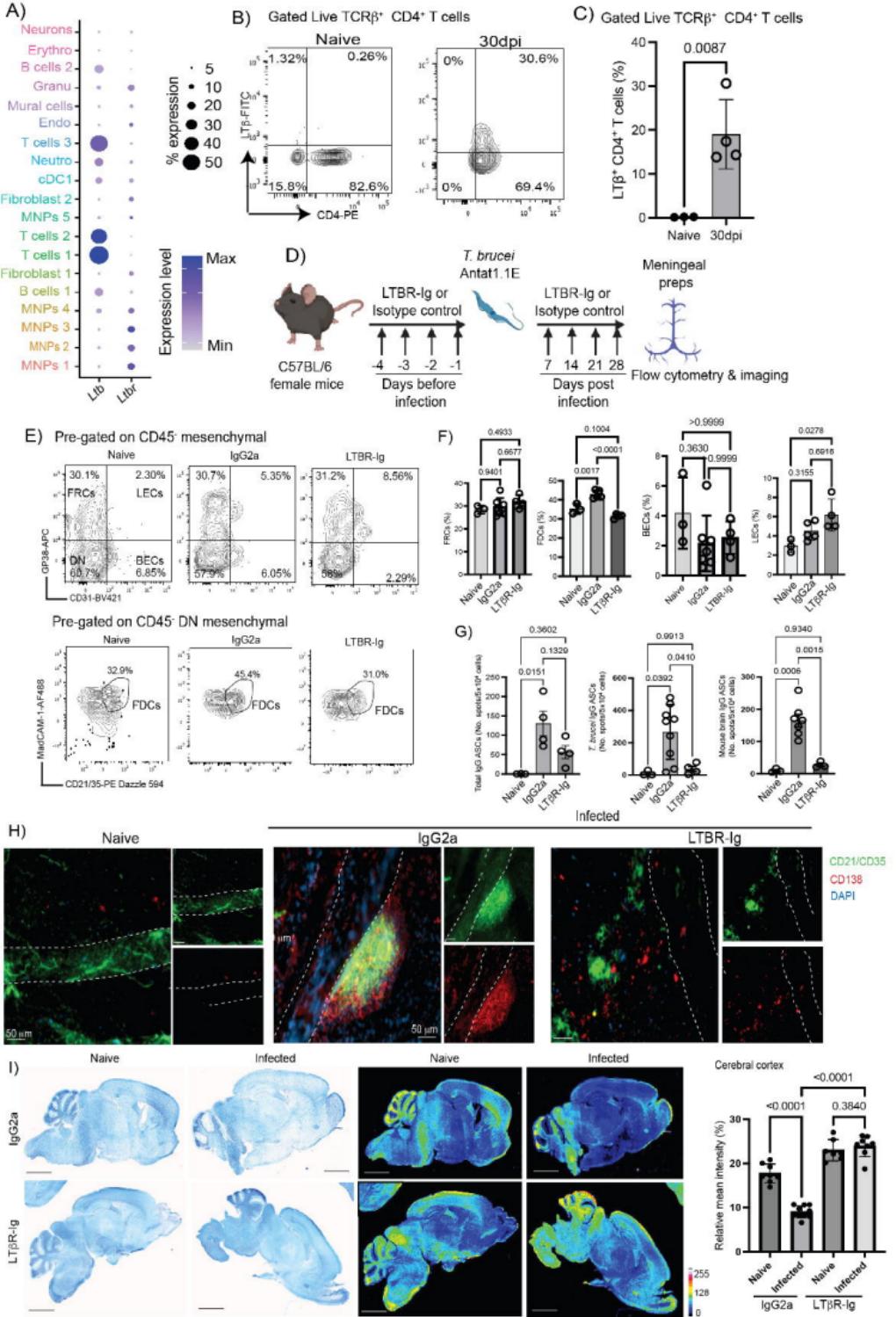

I)

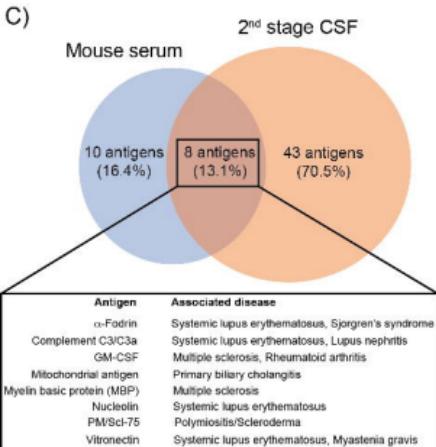
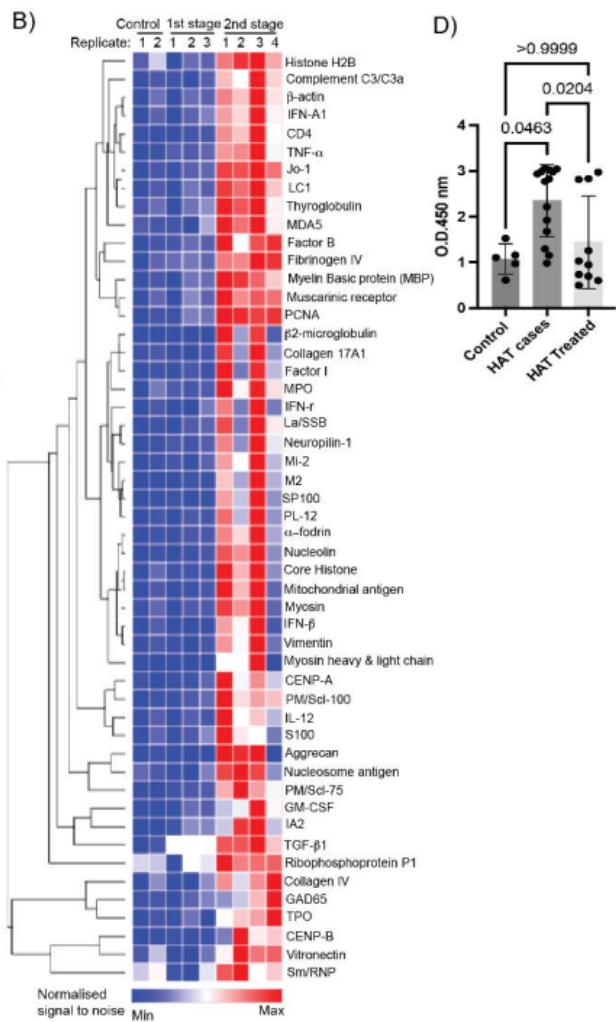
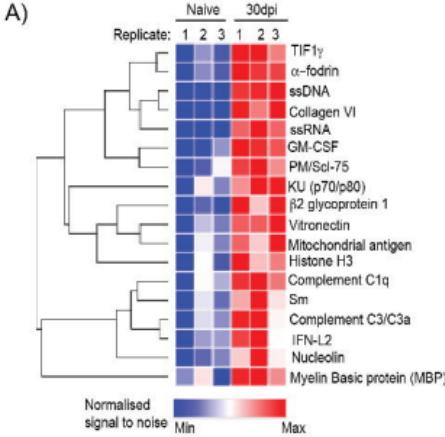

E) Gated on live, resident CD19+ B cells

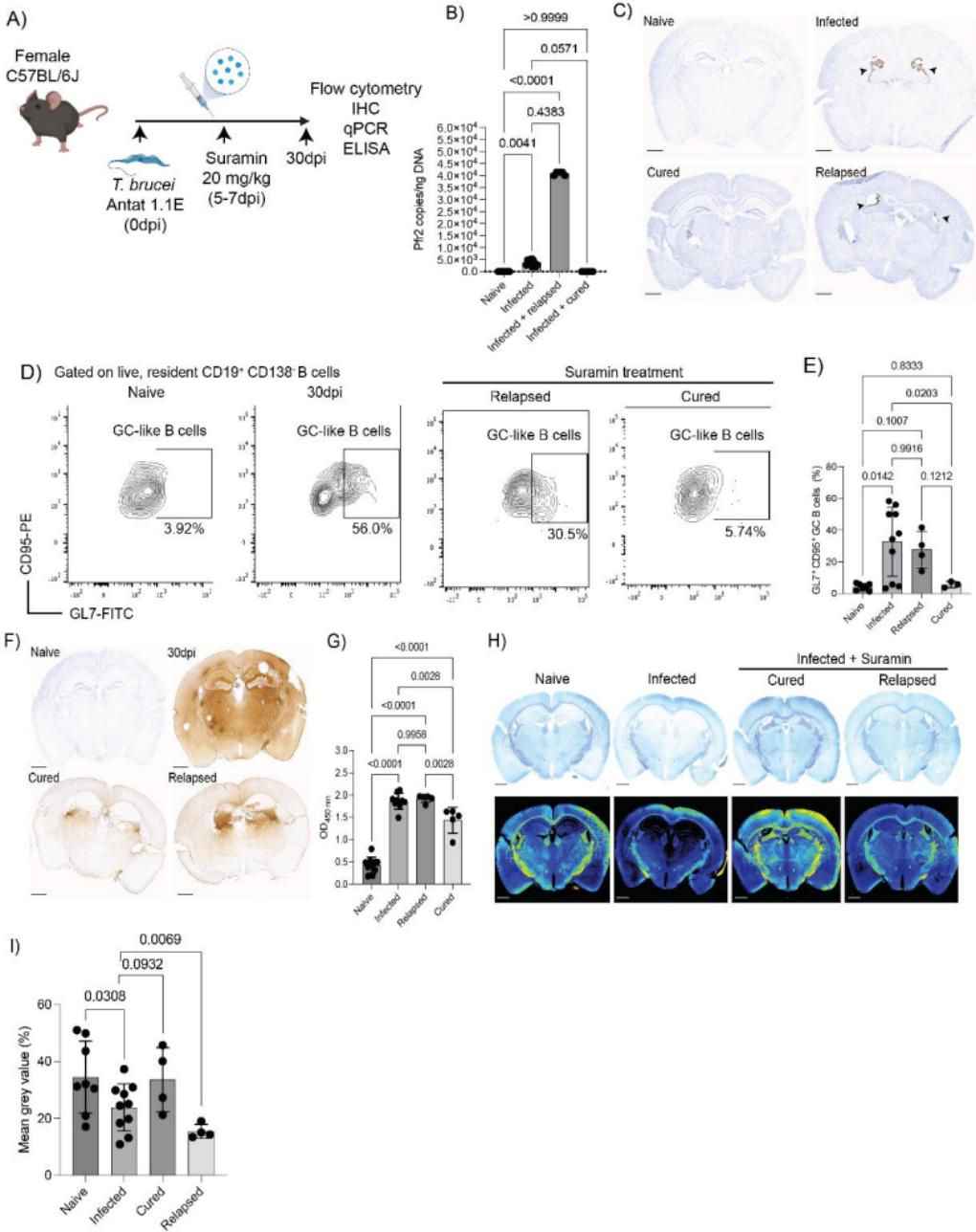

F)

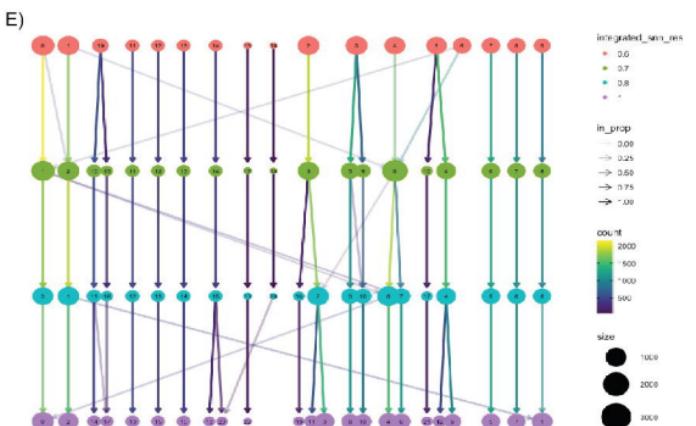
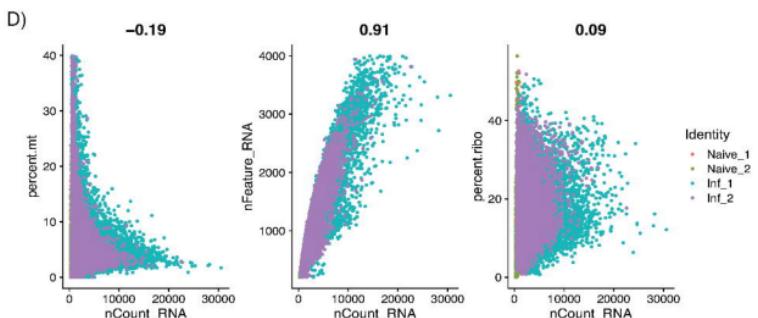
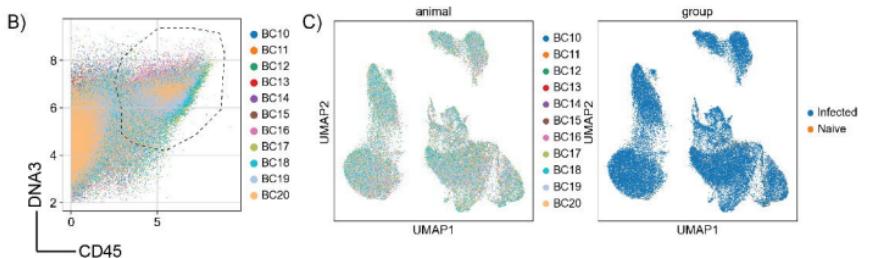
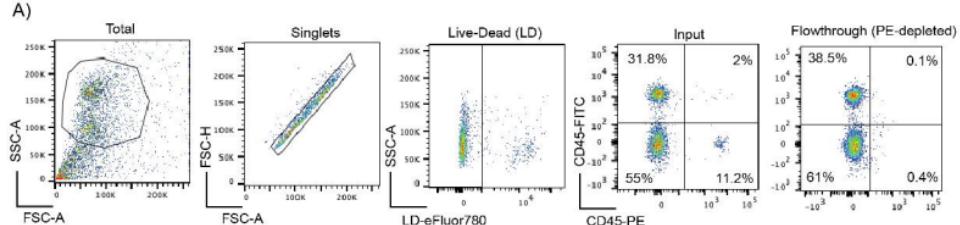

H)

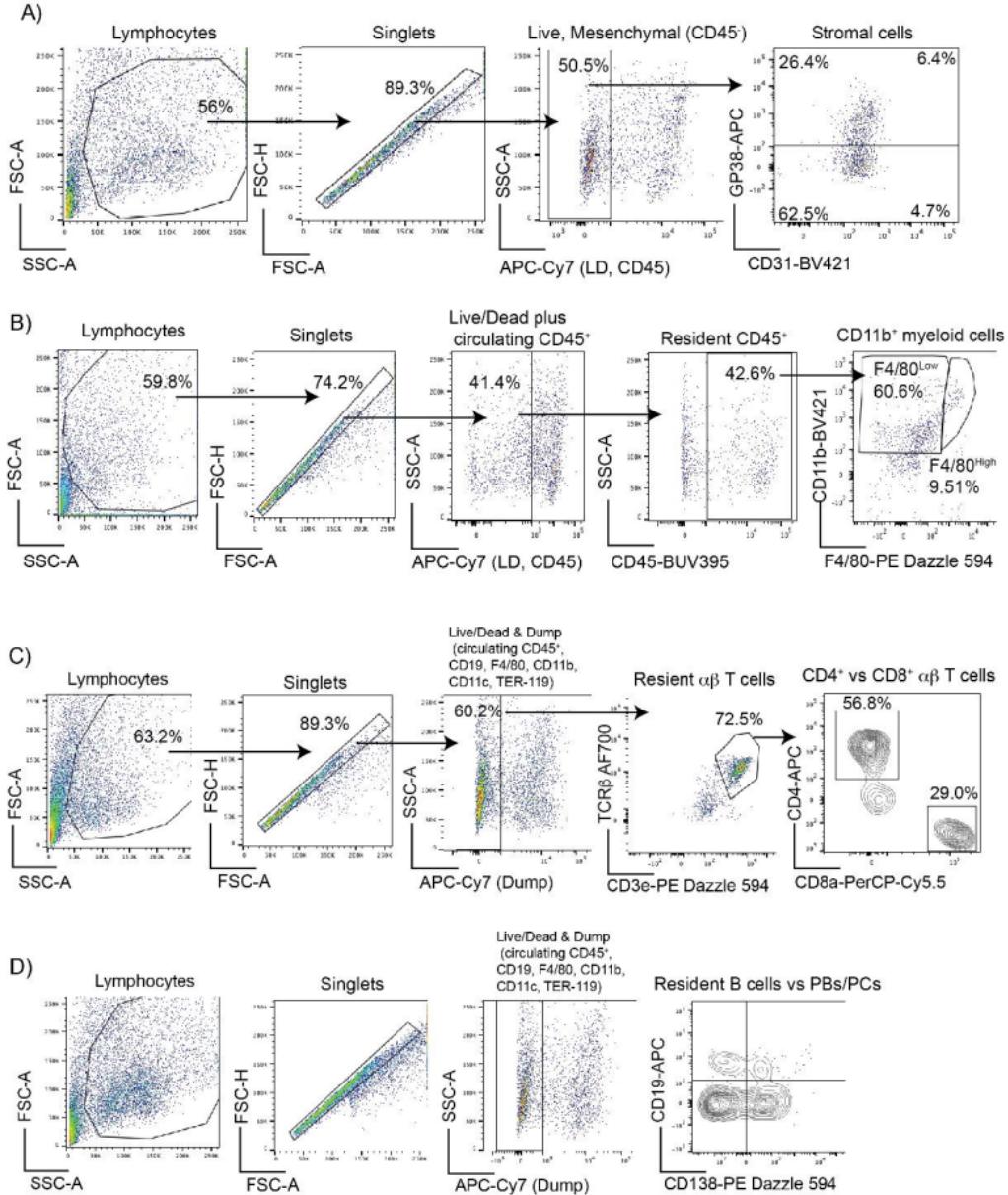











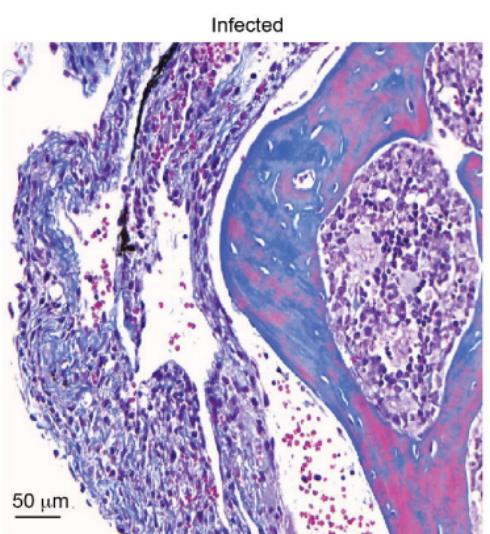
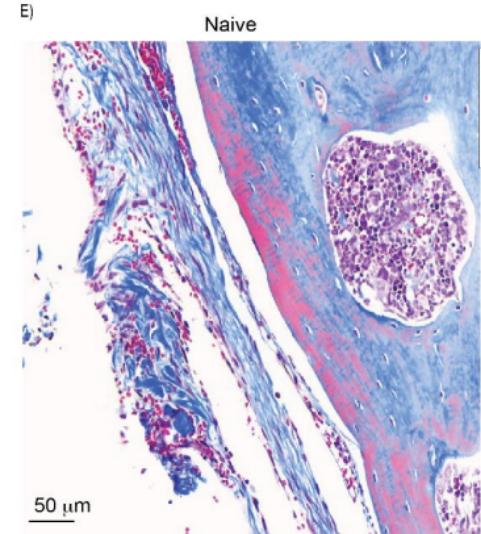
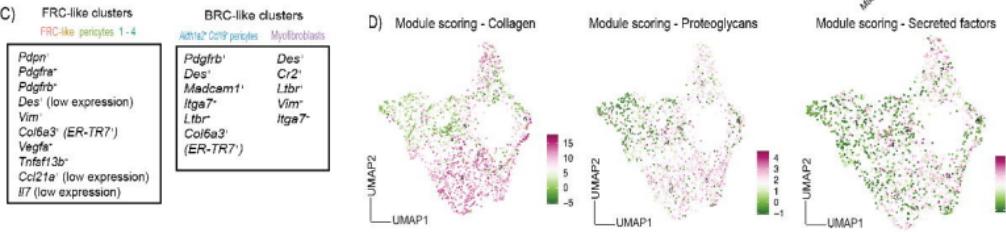
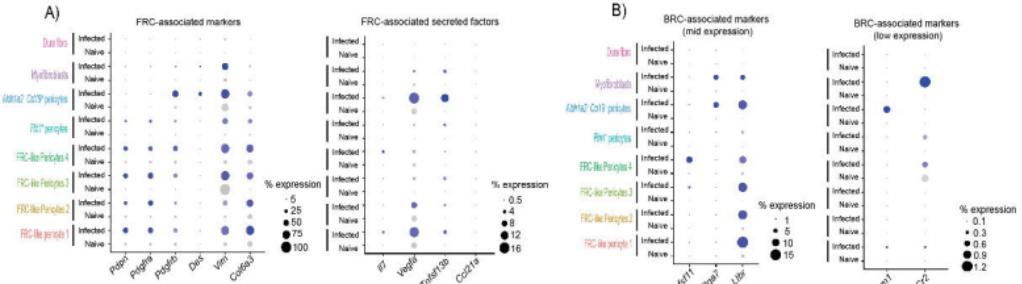

G) Gated on live, resident CD19+ B cells

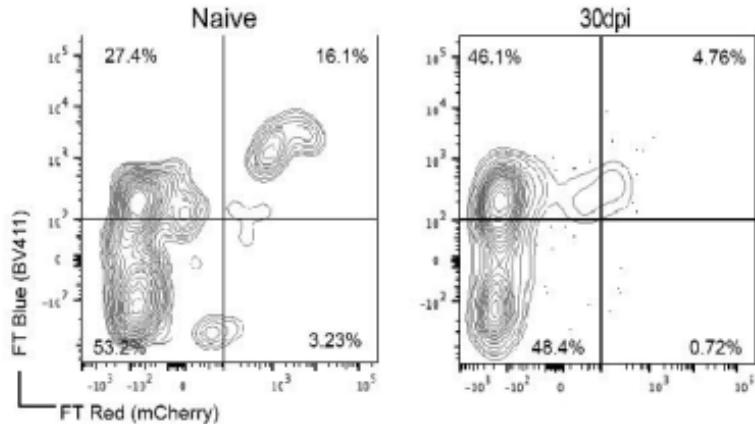




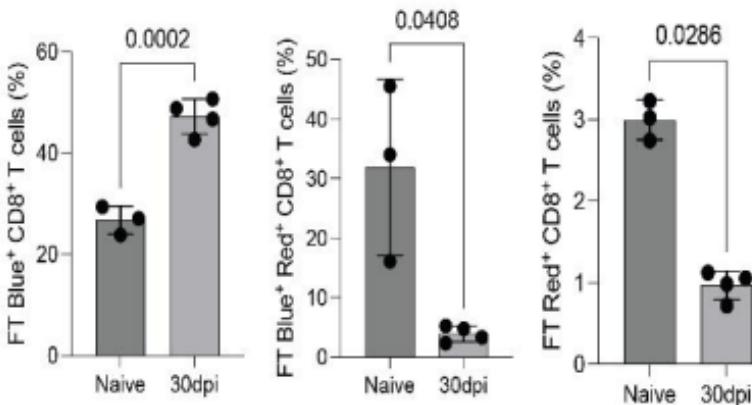

I)

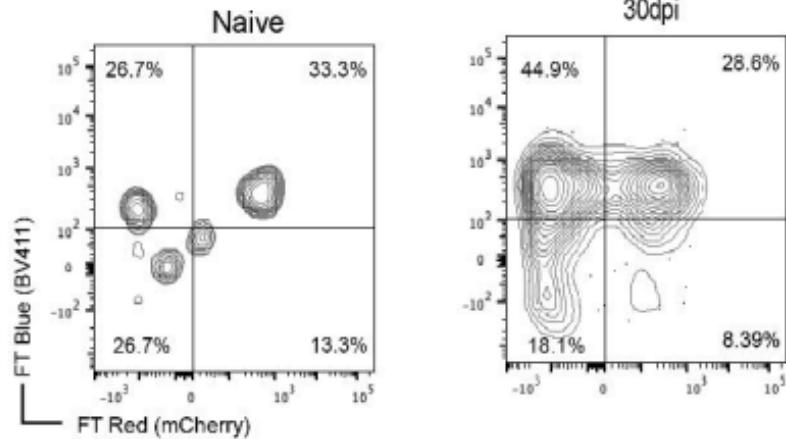





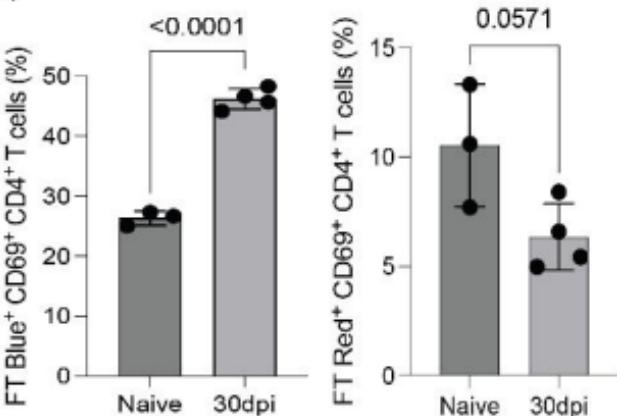


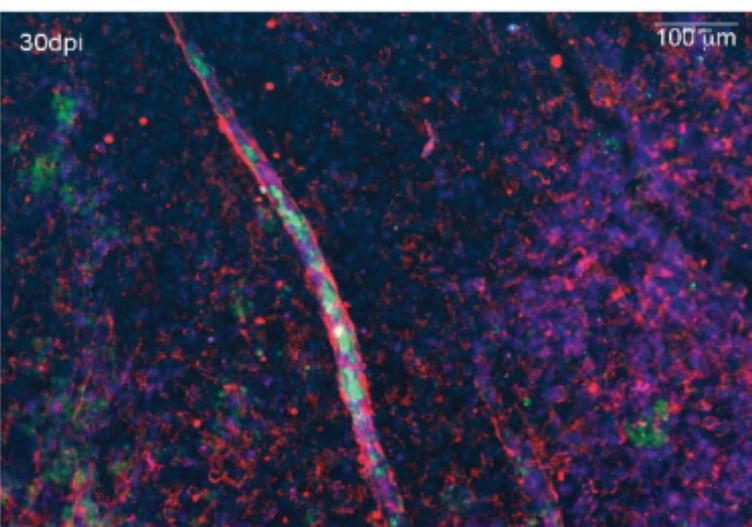
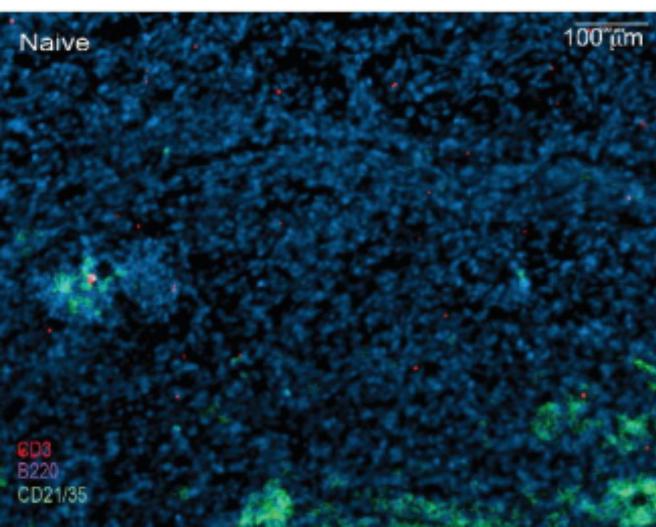
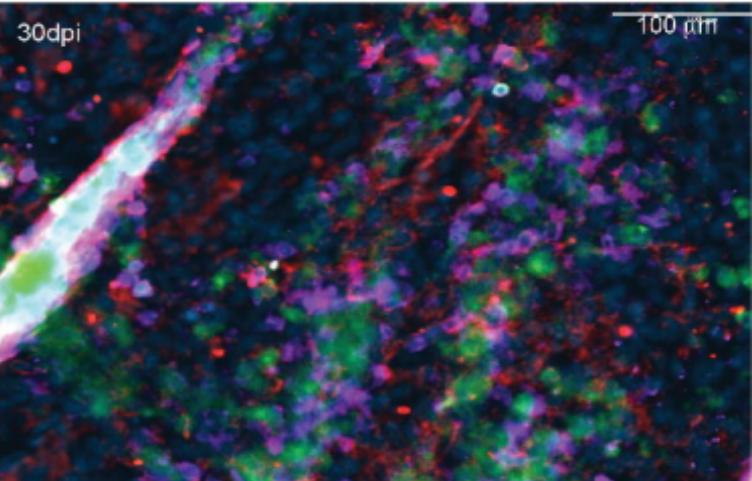
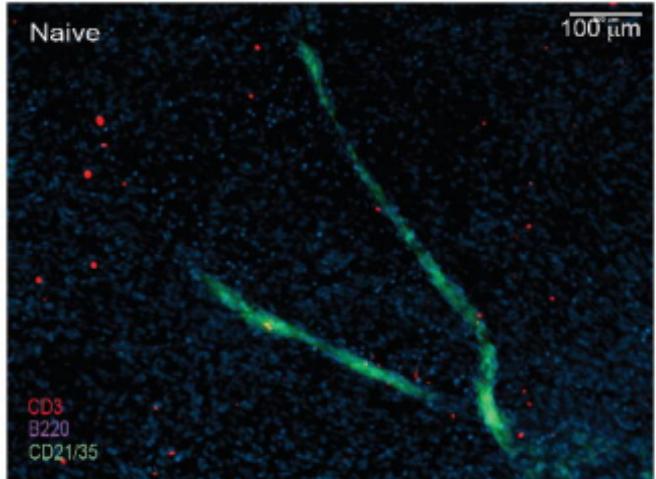





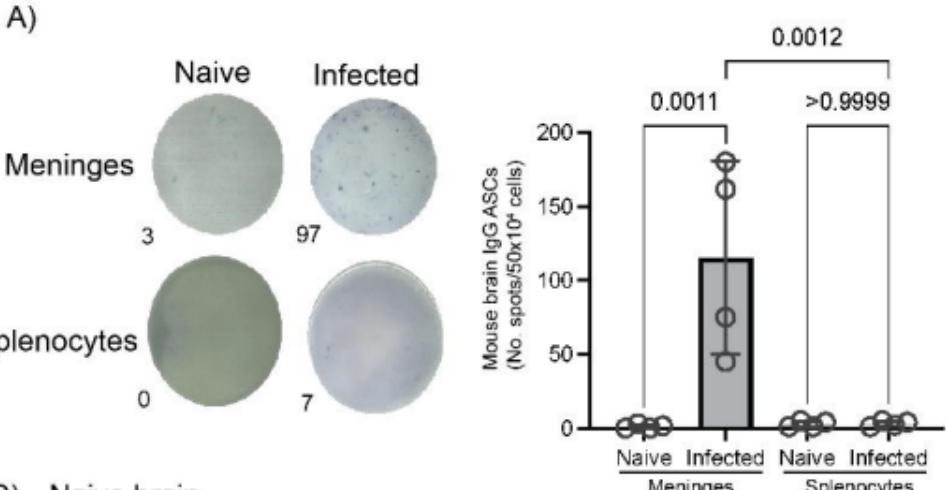


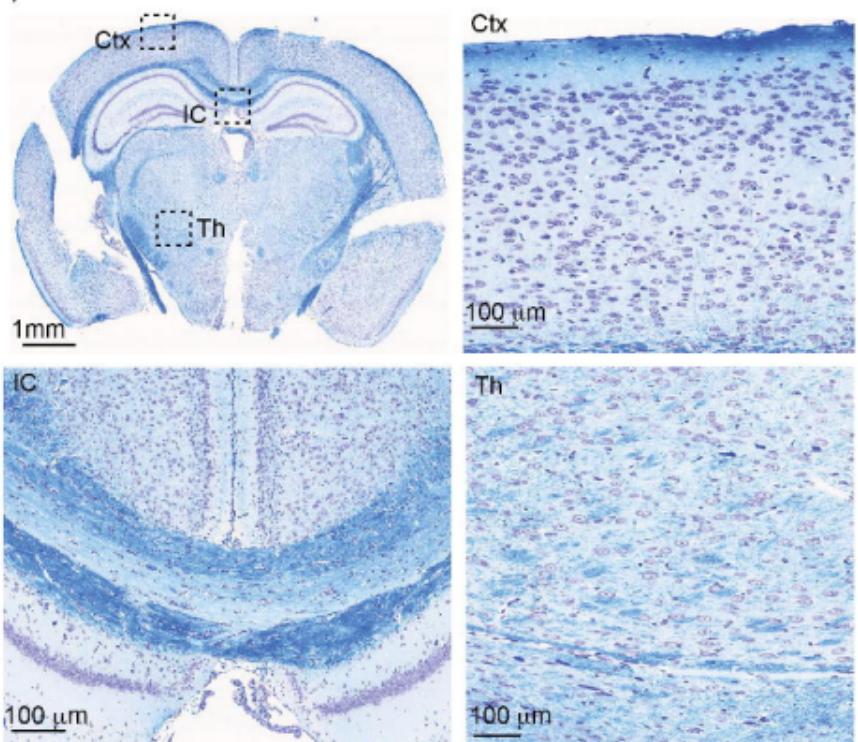


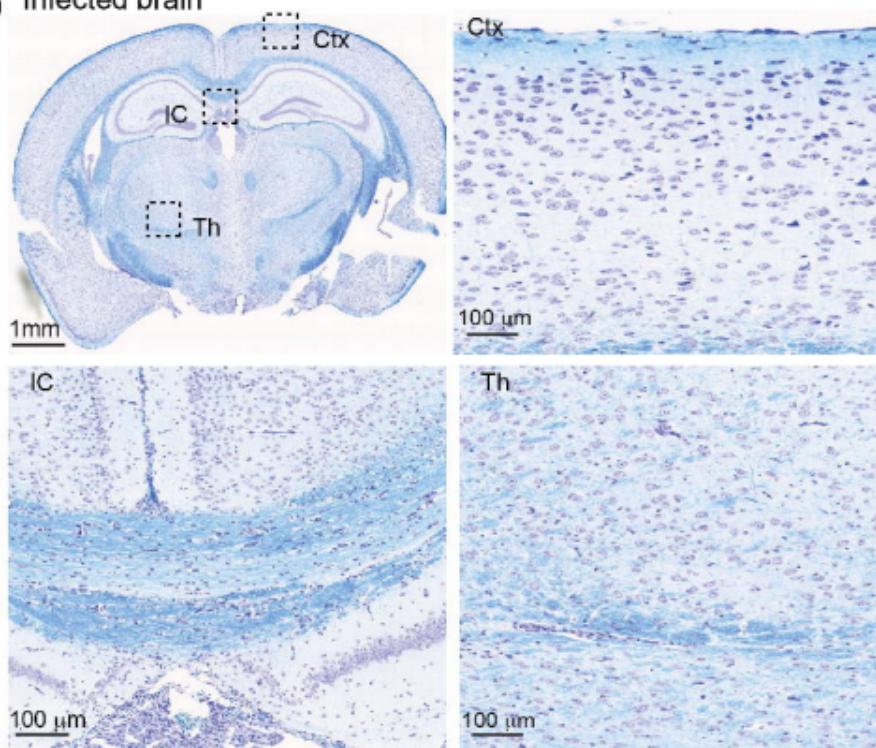

A) Gated on live, CD8⁺ T cells

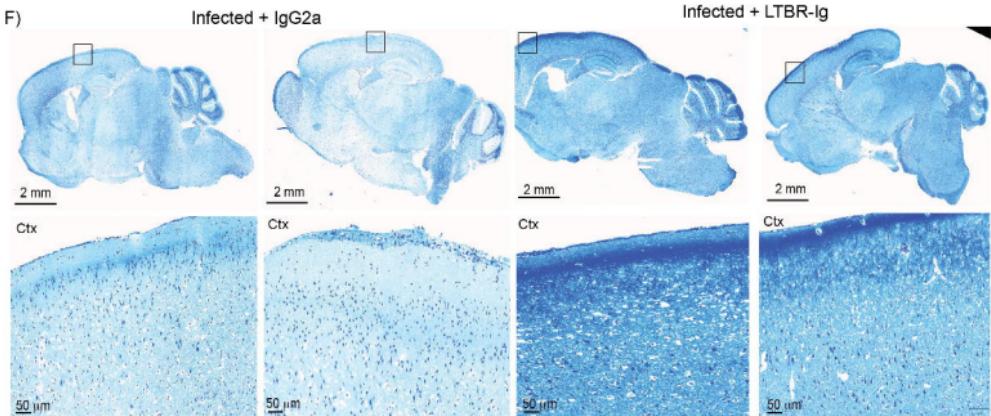
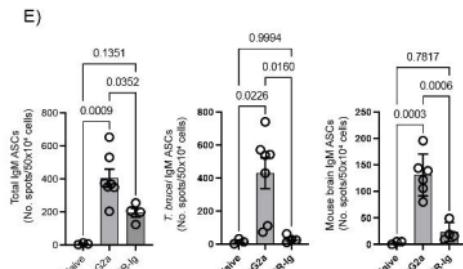
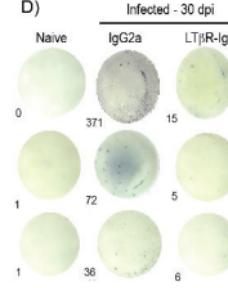
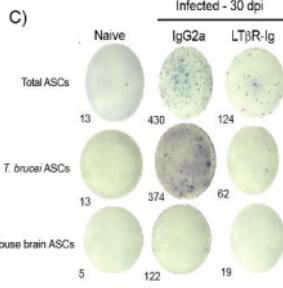
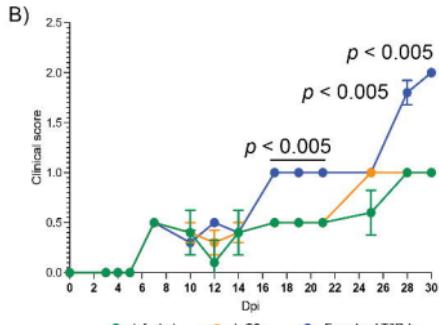
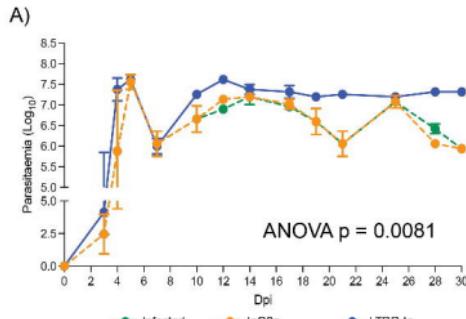

B)

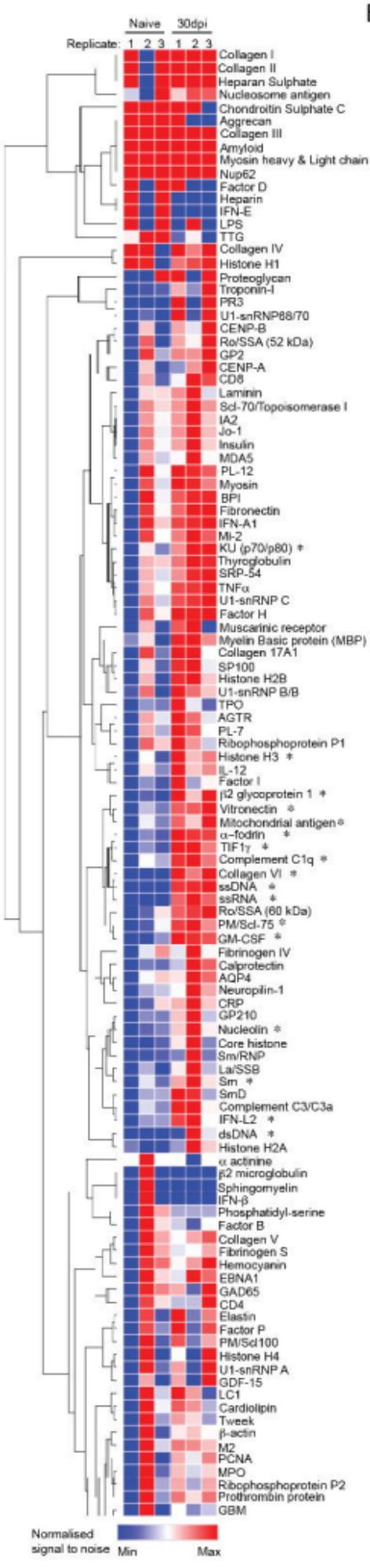

C) Gated on live, CD69⁺ CD4⁺ T cells


D)

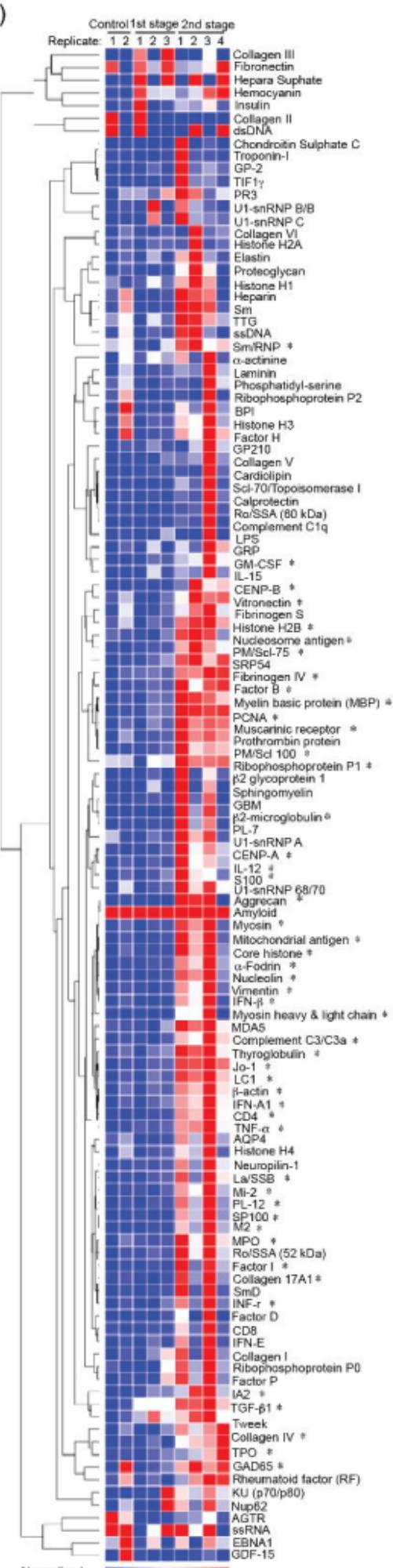


B) Naive brain



C) Infected brain



A)

B)

