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2 

 

Abstract 30 

The complex biological mechanisms underlying human brain aging remain incompletely 31 

understood, involving multiple body organs and chronic diseases. In this study, we used 32 

multimodal magnetic resonance imaging and artificial intelligence to examine the genetic 33 

architecture of the brain age gap (BAG) derived from gray matter volume (GM-BAG, N=31,557 34 

European ancestry), white matter microstructure (WM-BAG, N=31,674), and functional 35 

connectivity (FC-BAG, N=32,017). We identified sixteen genomic loci that reached genome-36 

wide significance (P-value<5x10-8). A gene-drug-disease network highlighted genes linked to 37 

GM-BAG for treating neurodegenerative and neuropsychiatric disorders and WM-BAG genes 38 

for cancer therapy. GM-BAG showed the highest heritability enrichment for genetic variants in 39 

conserved regions, whereas WM-BAG exhibited the highest heritability enrichment in the 5' 40 

untranslated regions; oligodendrocytes and astrocytes, but not neurons, showed significant 41 

heritability enrichment in WM and FC-BAG, respectively. Mendelian randomization identified 42 

potential causal effects of several exposure variables on brain aging, such as type 2 diabetes on 43 

GM-BAG (odds ratio=1.05 [1.01, 1.09], P-value=1.96x10-2) and AD on WM-BAG (odds 44 

ratio=1.04 [1.02, 1.05], P-value=7.18x10-5). Overall, our results provide valuable insights into 45 

the genetics of human brain aging, with clinical implications for potential lifestyle and 46 

therapeutic interventions. All results are publicly available at the MEDICINE knowledge portal: 47 

https://labs.loni.usc.edu/medicine.  48 
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Main 49 

The advent of artificial intelligence (AI) has provided novel approaches to investigate various 50 

aspects of human brain health1,2, such as normal brain aging3, neurodegenerative disorders such 51 

as Alzheimer's disease (AD)4, and brain cancer5. Based on magnetic resonance imaging (MRI), 52 

AI-derived measures of the human brain age638 have emerged as a valuable biomarker for 53 

evaluating brain health. More precisely, the difference between an individual's AI-predicted 54 

brain age and chronological age 3 brain age gap (BAG) 3 provides a means of quantifying an 55 

individual's brain health by measuring deviation from the normative aging trajectory. BAG has 56 

demonstrated sensitivity to several common brain diseases, clinical variables, and cognitive 57 

functions9, presenting the promising potential for its use in the general population to capture 58 

relevant pathological processes. 59 

 Brain imaging genomics10, an emerging scientific field advanced by both computational 60 

statistics and AI, uses imaging-derived phenotypes (IDP11) from MRI and genetics to offer 61 

mechanistic insights into healthy and pathological aging of the human brain. Recent large-scale 62 

genome-wide association studies (GWAS)11318 have identified a diverse set of genomic loci 63 

linked to gray matter (GM)-IDP from T1-weighted MRI, white matter (WM)-IDP from diffusion 64 

MRI [fractional anisotropy (FA), mean diffusivity (MD), neurite density index (NDI), and 65 

orientation dispersion index (ODI)], and functional connectivity (FC)-IDP from functional MRI. 66 

While previous GWAS19 have associated BAG with common genetic variants [e.g., single 67 

nucleotide polymorphism (SNP)], they primarily focused on GM-BAG9,20322 or did not 68 

comprehensively capture the genetic architecture of the multimodal BAG19 via post-GWAS 69 

analyses in order to biologically validate the GWAS signals. It is crucial to holistically identify 70 

the genetic factors associated with multimodal BAGs (GM, WM, and FC-BAG), where each 71 
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BAG reflects distinct and/or similar neurobiological facets of human brain aging. Furthermore, 72 

dissecting the genetic architecture of human brain aging may determine the causal implications, 73 

which is essential for developing gene-inspired therapeutic interventions. Finally, numerous risk 74 

or protective lifestyle factors and neurobiological processes may also exert independent, 75 

synergistic, antagonistic, sequential, or differential influences on human brain health. Therefore, 76 

a holistic investigation of multimodal BAGs is urgent to fully capture the genetics of human 77 

brain aging, including the genetic correlation, gene-drug disease network, and potential causality. 78 

In this study, we postulate that AI-derived GM, WM, and FC-BAG can serve as robust, 79 

complementary endophenotypes23 3 close to the underlying etiology 3 for precise quantification 80 

of human brain health.  81 

 The present study sought to uncover the genetic architecture of multimodal BAG and 82 

explore the causal relationships between protective/risk factors and decelerated/accelerated brain 83 

age. To accomplish this, we analyzed multimodal brain MRI scans from 42,089 participants from 84 

the UK Biobank (UKBB) study24 and used 119 GM-IDP, 48 FA WM-IDP, and 210 FC-IDP to 85 

derive GM, WM, and FC-BAG, respectively. Refer to Method 1 for selecting the final feature 86 

sets for each BAG. We first compared the age prediction performance of different machine 87 

learning models using these IDPs. We then performed GWAS to identify genomic loci 88 

associated with GM, WM, and FC-BAG in the European ancestry population. In post-GWAS 89 

analyses, we constructed a gene-drug-disease network, estimated the genetic correlation with 90 

several brain disorders, assessed their heritability enrichment in various functional categories or 91 

specific cell types, and calculated the polygenic risk scores (PRS) of the three BAGs. Finally, we 92 

performed Mendelian Randomization (MR)25 to infer the causal effects of several clinical traits 93 

and diseases on the three BAGs.  94 
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Results 95 

In the first section, we objectively compared the age prediction performance of four machine 96 

learning methods using these GM, WM, and FC-IDPs (Fig. 1A). To this end, we employed a 97 

nested cross-validation (CV) procedure in the training/validation/test dataset (N=4000); an 98 

independent test dataset (N=38,089)26,27 was held out 3 unseen until we finalized the models 99 

using only the training/validation/test dataset (Method 1). The four machine learning models 100 

included support vector regression (SVR), LASSO regression, multilayer perceptron (MLP), and 101 

a five-layer neural network (i.e., three linear layers and one rectified linear unit layer; hereafter, 102 

NN)28 (Method 3). The second section focused on the main GWASs using the European 103 

ancestry population (31,557<N<32,017) and their sensitivity checks in six scenarios (Method 104 

4A). In the last section, we validated the GWAS findings in several post-GWAS analyses, 105 

including genetic correlation, gene-drug-disease network, partitioned heritability, PRS 106 

calculation, and Mendelian randomization (Method 4).  107 

 108 

GM, WM, and FC-BAG derived from three MRI modalities 109 

Several findings were observed based on the results from the independent test dataset (N=38,089, 110 

Method 1). First, GM-IDP (4.39<mean absolute error (MAE)<5.35; 0.64<r<0.66), WM-IDP 111 

(4.92<MAE<7.95; 0.42<r<0.65), and FC-IDP (5.48<MAE<6.05; 0.43 <r<0.46) achieved 112 

gradually a higher MAE and smaller Pearson's correlation (r) (Fig. 1B, C, and D). Second, 113 

LASSO regression obtained the lowest MAE for GM, WM, and FC-IDP; linear models obtained 114 

a lower MAE than non-linear networks (Fig. 1B). Third, all models generalized well from the 115 

training/validation/test dataset (N=4000, Method 1) to the independent test dataset. However, 116 

simultaneously incorporating WM-IDP from FA, MD, NDI, and ODI resulted in severely 117 
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overfitting models (Supplementary eTable 1A). The observed overfitting may be attributed to 118 

many parameters (N=38,364) in the network or strong correlations among the diffusion metrics 119 

(i.e., FA, MD, ODI, and NDI). Fourth, the experiments stratified by sex did not exhibit 120 

substantial differences, except for a stronger overfitting tendency observed in females compared 121 

to males using WM-IDP incorporating the four diffusion metrics (Supplementary eTable 1B). 122 

Detailed results of the CV procedure, including the training, validation, test performance, and 123 

sex-stratified experiments, are presented in Supplementary eTable 1. In all subsequent genetic 124 

analyses, we reported the results using BAG derived from the three LASSO models with the 125 

lowest MAE in each modality (Fig. 1A), with the "age bias" corrected as in De Lange et al.29.  126 

In the literature, other studies30333 have thoroughly evaluated age prediction performance 127 

using different machine learning models and input features. More et al.34 systematically 128 

compared the performance of age prediction of 128 workflows (MAE between 5.2338.98 years) 129 

and showed that voxel-wise feature representation (MAE approximates 5-6 years) outperformed 130 

parcel-based features (MAE approximates 6-9 years) using conventional machine learning 131 

algorithms (e.g., LASSO regression). Using deep neural networks, Peng et al.30 and Leonardsen 132 

et al.31 reported a lower MAE (nearly 2.5 years) with voxel-wise imaging scans. However, we 133 

previously showed that a moderately fitting convolutional neural network (CNN) obtained 134 

significantly higher differentiation (a larger effect size) than a tightly fitting CNN (a lower MAE) 135 

between the disease and health groups35. To summarize, our study's brain age prediction 136 

performance aligns with those reported in the existing literature, considering the utilization of 137 

low-dimensional hand-crafted IDPs and conventional machine learning algorithms34.  138 

Finally, we calculated the phenotypic correlation (pc) between GM, WM, and FC-BAG 139 

using Pearson's correlation coefficient. GM-BAG and WM-BAG showed the highest positive 140 
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correlation (pc=0.38; P-value<1x10-10; N=30,733); GM-BAG (pc=0.09; P-value<1x10-10; 141 

N=30,660) and WM-BAG (pc=0.10; P-value<1x10-10; N=31,574) showed weak correlations with 142 

FC-BAG (Fig. 1E). 143 

  144 
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Figure 1: Brain age prediction using three MRI modalities and four machine learning 145 

models 146 

 147 
A) Multimodal brain MRI data were used to derive imaging-derived phenotypes (IDP) for T1-148 

weighted MRI (119 GM-IDP), diffusion MRI (48 WM-IDP), and resting-state functional MRI 149 

(210 FC-IDP). IDPs for each modality are shown here using different colors based on predefined 150 

brain atlases or ICA for FC-IDP. B) Linear models achieved lower mean absolute errors (MAE) 151 

than non-linear models using support vector regression (SVR), LASSO regression, multilayer 152 

perceptron (MLP), and a five-layer neural network (NN). The MAE for the independent test 153 

dataset is presented, and the # symbol indicates the model with the lowest MAE for each 154 

modality. Error bars represent standard deviation (SD). C) Pearson's correlation (r) between the 155 

predicted brain age and chronological age is computed, and statistical significance (P-156 

value<0.05) - after adjustment for multiple comparisons using the FDR method - is denoted by 157 

the * symbol. Error bars represent the 95% confidence interval (CI). D) Scatter plot for the 158 

predicted brain age and chronological age. E) Phenotypic correlation (pc) between the GM, WM, 159 

and FC-BAG using Pearson's correlation coefficient (r). 160 

 161 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 30, 2023. ; https://doi.org/10.1101/2023.04.13.536818doi: bioRxiv preprint 

https://doi.org/10.1101/2023.04.13.536818
http://creativecommons.org/licenses/by-nd/4.0/


9 

 

GM, WM, and FC-BAG are associated with sixteen genomic loci  162 

In the European ancestry populations, GWAS (Method 4A) revealed 6, 9, and 1 genomic loci 163 

linked to GM (N=31,557), WM (N=31,674), and FC-BAG (N=32,017), respectively (Fig. 2A). 164 

The top lead SNP and mapped genes of each locus are presented in Supplementary eTable 2. 165 

We also calculated the genomic inflation factor (l) and the linkage disequilibrium score 166 

regression (LDSC) intercept (b)36 to scrutinize the robustness of the GWAS of GM-BAG 167 

(l=1.118; b=1.0016±0.0078), WM-BAG (l=1.124; b=1.0187±0.0073), and FC-BAG (l=1.046; 168 

b=1.0039±0.006). All LDSC intercepts were close to 1, indicating no substantial genomic 169 

inflation. The individual Manhattan and QQ plots of the three GWASs are presented in 170 

Supplementary eFigure 3 and are also publicly available at the MEDICINE knowledge portal: 171 

https://labs.loni.usc.edu/medicine. The three BAGs were significantly heritable (P-value<1x10-172 

10) after adjusting for multiple comparisons using the Bonferroni method using the genome-wide 173 

complex trait analysis (GCTA) software37. GM-BAG showed the highest SNP-based heritability 174 

(h2=0.47±0.02), followed by WM-BAG (h2=0.46±0.02) and FC-BAG (h2=0.11±0.02). 175 

We performed a query in the GWAS Catalog38 for these genetic variants within each 176 

locus to understand the phenome-wide association of these identified loci in previous literature 177 

(Method 4C). Notably, the SNPs within each locus were linked to other traits previously 178 

reported in the literature (Supplementary eFile 1). Specifically, the GM-BAG loci were 179 

uniquely associated with neuropsychiatric disorders such as major depressive disorder (MDD), 180 

heart disease, and cardiovascular disease. We also observed associations between these loci and 181 

other diseases (including anemia), as well as biomarkers from various human organs (e.g., liver) 182 

(Fig. 2B). We then performed positional and functional annotations to map SNPs to genes 183 

associated with GM, WM, and FC-BAG loci (Method 4B). Fig. 2C-E showcased the regional 184 
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Manhattan plot of one genomic locus linked to GM, WM, and FC-BAG. A detailed discussion of 185 

these exemplary loci, SNPs, and genes is presented in Supplementary eText 1.  186 

Finally, we calculated the genetic correlation (gc) between the GM, WM, and FC-BAG 187 

using the LDSC software. GM-BAG and WM-BAG showed the highest positive correlation 188 

(gc=0.49; P-value<1x10-10); GM-BAG (gc=0.20; P-value=0.025) and WM-BAG (gc=0.29; P-189 

value=0.005) showed weak correlations with FC-BAG (Fig. 2F). The genetic correlations largely 190 

mirror the phenotypic correlations, supporting the long-standing Cheverud's Conjecture39. We 191 

also verified that these genetic correlations exhibited consistency between the two random splits 192 

(split1 and spit2: 15,778<N<16,008), sharing a similar age and sex distribution (Supplementary 193 

eFigure 2). 194 

 195 

Sensitivity analyses for the genome-wide associations 196 

We aimed to check the robustness of the main GWASs using the full sample sizes of the 197 

European populations (Fig. 2A). To this end, we performed six sensitivity analyses (Method 198 

4A).  199 

Applying the Bonferroni method to correct for multiple comparisons, we noted high 200 

concordance rates between the split1 (as discovery, 15,778<N<16,008) and split2 (as replication, 201 

15,778<N<16,008) GWASs. Specifically, for GM-BAG, we observed a concordance rate of 99% 202 

[P-value<0.05/3092; 3092 significant SNPs passing the genome-wide P-value threshold (<5x10-203 

8) in the discovery data], and for WM-BAG, the concordance rate reached 100% (P-204 

value<0.05/116). FC-BAG did not achieve significant genome-wide results in the spit-sample 205 

GWASs (Supplementary eFigure 3 and Supplementary eFile 2).  206 
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In sex-stratified GWASs, the concordance rates were 100% (P-value<0.05/3072) for GM-207 

BAG and 88.6% (P-value<0.05/116) for WM-BAG when comparing the male-GWAS (as 208 

replication, 14,969<N<15,127) to female-GWAS (as discovery, 16,588<N<16,890). FC-BAG 209 

did not achieve significant genome-wide results (Supplementary eFigure 4 and 210 

Supplementary eFile 3). 211 

The concordance rates of the GWASs using non-European ancestry populations (as 212 

replication, 4646<N<5091) were low compared to the main GWASs using the European 213 

population: only 13.78% for GM-BAG and 41.94% for WM-BAG (P-value<0.05) 214 

(Supplementary eFigure 5 and Supplementary eFile 4). 215 

A mixed linear model employed via fastGWA40 (as replication, 31,557<N<32,017) 216 

obtained 100% concordance rates for GM, WM, and FC-BAG compared to GWAS using PLINK 217 

linear regression (Supplementary eFile 5). The genetic loci, genomic inflation factor (l), and 218 

the LDSC intercepts for GM, WM, and FC-BAG were similar between the PLINK and fastGWA 219 

analyses (Supplementary eFigure 6).  220 

We found a 100% concordance rate of the SNPs identified for the GM-BAG GWAS 221 

using LASSO regression (as discovery, BAG MAE=4.39 years) and SVR (P-value < 0.05/3382, 222 

as replication, BAG MAE=4.43 years) (Supplementary eFigure 7 and Supplementary eFile 223 

6). The BAGs derived from the two machine larning models were highly correlated (r=0.99; P-224 

value<1x10-10).   225 

We finally found a 92.43% concordance rate of the SNPs identified in the GM-BAG 226 

GWAS using the 119 MUSE ROIs41 (as discovery, BAG MAE=4.39 years) and voxel-wide 227 

RAVENS42 maps (as replication, P-value < 0.05/3382, BAG MAE=5.12 years) (Supplementary 228 

eFigure 8 and Supplementary eFile 7). The BAGs derived from the two types of features were 229 
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significantly correlated (r=0.74; P-value<1x10-10). The brain age prediction performance using 230 

RAVENS showed marginal overfitting, with an MAE of 4.31 years in the training/validation/test 231 

dataset and an MAE of 5.12 years in the independent test dataset. 232 

 These findings suggest that our GWASs were robust across sex, random splits, imaging 233 

features, GWAS methods, and machine learning methods within European populations; 234 

however, their generalizability to non-European populations is limited. All subsequent post-235 

GWAS analyses were conducted using the main GWAS results of European ancestry.  236 
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Figure 2: Genome-wide associations of multimodal brain age gaps  237 

 238 
A) Genome-wide associations identified sixteen genomic loci associated with GM (6), WM (9), 239 

and FC-BAG (1) using a genome-wide P-value threshold [3log10(P-value) > 7.30]. The top lead 240 
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SNP and the cytogenetic region number represent each locus. B) Phenome-wide association 241 

query from GWAS Catalog38. Independent significant SNPs inside each locus were largely 242 

associated with many traits. We further classified these traits into several trait categories, 243 

including biomarkers from multiple body organs (e.g., heart and liver), neurological disorders 244 

(e.g., Alzheimer's disease and Parkinson's disease), and lifestyle risk factors (e.g., alcohol 245 

consumption). C) Regional plot for a genomic locus associated with GM-BAG. Color-coded 246 

SNPs are decided based on their highest r2 to one of the nearby independent significant SNPs. 247 

Gray-colored SNPs are below the r2 threshold. The top lead SNP, lead SNPs, and independent 248 

significant SNPs are denoted as dark purple, purple, and red, respectively. Mapped, orange-249 

colored genes of the genomic locus are annotated by positional, eQTL, and chromatin interaction 250 

mapping (Method 4B). D) Regional plot for a genomic locus associated with WM-BAG. E) The 251 

novel genomic locus associated with FC-BAG did not map to any genes. We used the Genome 252 

Reference Consortium Human Build 37 (GRCh37) in all genetic analyses. F) Genetic correlation 253 

(gc) between the GM, WM, and FC-BAG using the LDSC software. Abbreviation: AD: 254 

Alzheimer's disease; ASD: autism spectrum disorder; PD: Parkinson's disease; ADHD: attention-255 

deficit/hyperactivity disorder.  256 

 257 

The gene-drug-disease network highlights disease-specific drugs that bind to genes 258 

associated with GM and WM-BAG  259 

We investigated the potential "druggable genes43" from the mapped genes by constructing a 260 

gene-drug-disease network (Method 4F). The network connects genes with drugs (or drug-like 261 

molecules) targeting specific diseases currently active at any stage of clinical trials.  262 

We revealed clinically relevant associations for 4 and 6 mapped genes associated with 263 

GM-BAG and WM-BAG, respectively. The GM-BAG genes were linked to clinical trials for 264 

treating heart, neurodegenerative, neuropsychiatric, and respiratory diseases. On the other hand, 265 

the WM-BAG genes were primarily targeted for various cancer treatments and cardiovascular 266 

diseases (Fig. 3). To illustrate, for the GM-BAG MAPT gene, several drugs or drug-like 267 

molecules are currently being evaluated for treating AD. Semorinemab (RG6100), an anti-tau 268 

IgG4 antibody, was being investigated in a phase-2 clinical trial (trial number: NCT03828747), 269 

which targets extracellular tau in AD, to reduce microglial activation and inflammatory 270 

responses44. Another drug is the LMTM (TRx0237) - a second-generation tau protein 271 
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aggregation inhibitor currently being tested in a phase-3 clinical trial (trial number: 272 

NCT03446001) for treating AD and frontotemporal dementia45. Regarding WM-BAG genes, 273 

they primarily bind with drugs for treating cancer and cardiovascular diseases. For instance, the 274 

PDIA3 gene, associated with the folding and oxidation of proteins, has been targeted for 275 

developing several zinc-related FDA-approved drugs for treating cardiovascular diseases. 276 

Another example is the MAP1A gene, which encodes microtubule-associated protein 1A. This 277 

gene is linked to the development of estramustine, an FDA-approved drug for prostate cancer 278 

(Fig. 3). Detailed results are presented in Supplementary eFile 8.  279 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 30, 2023. ; https://doi.org/10.1101/2023.04.13.536818doi: bioRxiv preprint 

https://doi.org/10.1101/2023.04.13.536818
http://creativecommons.org/licenses/by-nd/4.0/


16 

 

Figure 3: Gene-drug-disease network of multimodal brain age gaps  280 

 281 
The gene-drug-disease network derived from the mapped genes revealed a broad spectrum of 282 

targeted diseases and cancer, including brain cancer, cardiovascular system diseases, Alzheimer's 283 

disease, and obstructive airway disease, among others. The thickness of the lines represented the 284 

P-values (-log10) from the brain tissue-specific gene set enrichment analyses using the GTEx v8 285 

dataset. We highlight several drugs under the blue-colored and bold text. Abbreviation: ATC: 286 

Anatomical Therapeutic Chemical; ICD: International Classification of Diseases. 287 

 288 

Multimodal BAG is genetically correlated with AI-derived subtypes of brain diseases 289 

We calculated the genetic correlation using the GWAS summary statistics from 16 clinical traits 290 

to examine genetic covariance between multimodal BAG and other clinical traits. The selection 291 

procedure and quality check of the GWAS summary statistics are detailed in Method 4D. These 292 

traits encompassed common brain diseases and their AI-derived disease subtypes, as well as 293 

education and intelligence (Fig. 4A and Supplementary eTable 3). The AI-generated disease 294 
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subtypes were established in our previous studies utilizing semi-supervised clustering methods46 295 

and IDP from brain MRI scans. 296 

Our analysis revealed significant genetic correlations between GM-BAG and AI-derived 297 

subtypes of AD (AD14), autism spectrum disorder (ASD) (ASD1 and ASD347), schizophrenia 298 

(SCZ148), and obsessive-compulsive disorder (OCD)49; WM-BAG and AD1, ASD1, SCZ1, and 299 

SCZ2; and FC-BAG and education50 and SCZ1. Detailed results for rg estimates are presented in 300 

Supplementary eTable 4. These subtypes, in essence, capture more homogeneous disease 301 

effects than the conventional "unitary" disease diagnosis, hence serving as robust 302 

endophenotypes23. 303 

 304 

Multimodal BAG shows specific enrichment of heritability in different functional 305 

categories and cell types 306 

We conducted a partitioned heritability analysis51 to investigate the heritability enrichment of 307 

genetic variants related to multimodal BAG in the 53 functional categories (Method 4E). Our 308 

results revealed that GM and WM-BAG exhibited significant heritability enrichment across 309 

numerous annotated functional categories. Specifically, some categories displayed greater 310 

enrichment than others, and we have outlined some in further detail.  311 

For GM-BAG, the regions conserved across mammals, as indicated by the label 312 

"conserved" in Fig. 4B, displayed the most notable enrichment of heritability: approximately 313 

2.61% of SNPs were found to explain 0.43±0.07 of SNP heritability (P-value=5.80x10-8). 314 

Additionally, transcription start site (TSS)52 regions employed 1.82% of SNPs to explain 315 

0.16±0.05 of SNP heritability (P-value=8.05x10-3). TSS initiates the transcription at the 5' end of 316 

a gene and is typically embedded within a core promoter crucial to the transcription machinery53. 317 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 30, 2023. ; https://doi.org/10.1101/2023.04.13.536818doi: bioRxiv preprint 

https://doi.org/10.1101/2023.04.13.536818
http://creativecommons.org/licenses/by-nd/4.0/


18 

 

The heritability enrichment of Histone H3 at lysine 4, as denoted for "H3K4me3_peaks" in Fig. 318 

4B, and histone H3 at lysine 9 (H3K9ac)54 were also found to be large and were known to 319 

highlight active gene promoters55. For WM-BAG, 5' untranslated regions (UTR) used 0.54% of 320 

SNPs to explain 0.09±0.03 of SNP heritability (P-value=4.24x10-3). The 5' UTR is a crucial 321 

region of a messenger RNA located upstream of the initiation codon. It is pivotal in regulating 322 

transcript translation, with varying mechanisms in viruses, prokaryotes, and eukaryotes. 323 

 Additionally, we examined the heritability enrichment of multimodal BAG in three 324 

different cell types (Fig. 4C). WM-BAG (P-value=1.69x10-3) exhibited significant heritability 325 

enrichment in oligodendrocytes, one type of neuroglial cells. FC-BAG (P-value=1.12x10-2) 326 

showed such enrichment in astrocytes, the most prevalent glial cells in the brain. GM-BAG 327 

showed no enrichment in any of these cells. Our findings are consistent with understanding the 328 

molecular and biological characteristics of GM and WM. Oligodendrocytes are primarily 329 

responsible for forming the lipid-rich myelin structure, whereas astrocytes play a crucial role in 330 

various cerebral functions, such as brain development and homeostasis. Convincingly, a prior 331 

GWAS14 on WM-IDP also identified considerable heritability enrichment in glial cells, 332 

especially oligodendrocytes. Detailed results for the 53 functional categories and cell-specific 333 

analyses are presented in Supplementary eTable 5. 334 

 335 

Prediction ability of the polygenic risk score of the multimodal BAG 336 

We derived the PRS for GM, WM, and FC-BAG using the conventional C+T (clumping plus P-337 

value threshold) approach56 via PLINK and a Bayesian method via PRS-CS57 (Method 4H).   338 

 We found that the GM, WM, and FC-BAG-PRS derived from PRS-CS significantly 339 

predicted the phenotypic BAGs in the test data (split2 GWAS, 15,697<N<15,940), with an 340 
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incremental R2 of 2.17%, 1.85%, and 0.19%, respectively (Fig. 4D). Compared to the PRS 341 

derived from PRS-CS, the PLINK approach achieved a lower incremental R2 of 0.81%, 0.45%, 342 

and 0.14% for GM, WM, and FC-BAG, respectively (Supplementary eFigure 9). Overall, the 343 

predictive capacity of PRS is moderate, in line with earlier discoveries involving raw imaging-344 

derived phenotypes, as demonstrated in Zhao et al.13, where PRSs developed for seven selective 345 

brain regions were able to explain roughly 1.18% to 3.93% of the phenotypic variance associated 346 

with these traits.   347 
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Figure 4: Genetic correlation, partitioned heritability enrichment, and PRS prediction 348 

accuracy on multimodal brain age gaps  349 

 350 
A) Genetic correlation (gc) between GM, WM, and FC-BAG and 16 clinical traits. These traits 351 

include neurodegenerative diseases (e.g., AD) and their AI-derived subtypes (e.g., AD1 and 352 

AD24), neuropsychiatric disorders (e.g., ASD) and their subtypes (ASD1, 2, and 347), 353 

intelligence, and education. B) The proportion of heritability enrichment for the 53 functional 354 

categories51. We only show the functional categories that survived the correction for multiple 355 

comparisons using the FDR method. C) Cell type-specific partitioned heritability estimates. We 356 

included gene sets from Cahoy et al.58 for three main cell types (i.e., astrocyte, neuron, and 357 

oligodendrocyte). After adjusting for multiple comparisons using the FDR method, the * symbol 358 

denotes statistical significance (P-value<0.05). Error bars represent the standard error of the 359 

estimated parameters. D) The incremental R2 of the PRS derived by PRC-CS to predict the GM, 360 

WM, and FC-BAG in the target/test data (i.e., the split2 GWAS). The y-axis indicates the 361 

proportions of phenotypic variation (GM, WM, and FC-BAG) that the PRS can significantly and 362 

additionally explain. The x-axis lists the seven P-value thresholds considered. Abbreviation: AD: 363 

Alzheimer's disease; ADHD: attention-deficit/hyperactivity disorder; ASD: autism spectrum 364 

disorder; BIP: bipolar disorder; MDD: major depressive disorder; OCD: obsessive-compulsive 365 

disorder; SCZ: schizophrenia; CAD: coronary artery disease; CD: Crohn's disease; BMD: bone 366 
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mineral density; PD: Parkinson's disease; SLE: systemic lupus erythematosus; BMI: body mass 367 

index; CVD: cardiovascular disease; LDL: low-density lipoprotein cholesterol; MS: multiple 368 

sclerosis; AF: Atrial fibrillation.  369 

 370 

The potential causal relationships between GM and WM-BAG and other clinical traits 371 

We investigated the potential causal effects of several risk factors (i.e., exposure variable) on 372 

multimodal BAG (i.e., outcome variable) using a bidirectional two-sample MR approach59 373 

(Method 4G). We hypothesized that several diseases and lifestyle risk factors might contribute 374 

to accelerating or decelerating human brain aging.  375 

 We found putative causal effects of triglyceride-to-lipid ratio in very large very-low-376 

density lipoprotein (VLDL)60 [P-value=5.09x10-3, OR (95% CI) = 1.08 (1.02, 1.13), number of 377 

SNPs=52], type 2 diabetes61 [P-value=1.96x10-2, OR (95% CI) = 1.05 (1.01, 1.09), number of 378 

SNPs=10], and breast cancer62 [P-value=1.81x10-2, OR (95% CI) = 0.96 (0.93, 0.99), number of 379 

SNPs=118] on GM-BAG (i.e., accelerated brain age). We also identified causal effects of AD63 380 

[P-value=7.18x10-5, OR (95% CI) = 1.04 (1.02, 1.05), number of SNPs=13] on WM-BAG (Fig. 381 

5A). We subsequently examined the potential inverse causal effects of multimodal BAG (i.e., 382 

exposure) on these risk factors (i.e., outcome). However, owing to the restricted power [number 383 

of instrumental variables (IV) < 6], we did not observe any significant signals (Supplementary 384 

eFigure 10 and Supplementary eFile 9). 385 

 386 

Sensitivity analyses for Mendelian randomization 387 

We performed sensitivity analyses to investigate potential violations of the three IV assumptions 388 

(Method 4G). To illustrate this, we showcased the sensitivity analysis results for the causal 389 

effect of the triglyceride-to-lipid in VLDL ratio on GM-BAG (Fig. 5B-E). In a leave-one-out 390 

analysis, we found that no single SNP overwhelmingly drove the overall effect (Fig. 5B). There 391 
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was evidence for the presence of minor heterogeneity64 of the causal effect amongst SNPs 392 

(Cochran's Q value=76.06, P-value=5.09x10-3). Some SNPs exerted opposite causal effects 393 

compared to the model using all SNPs (Fig. 5C). The scatter plot (Fig. 5D) indicated one 394 

obvious SNP outlier (rs11591147), and the funnel plot showed little asymmetry with only an 395 

outlier denoted in Fig. 5E (rs4507142). Finally, the MR Egger estimator allows for pleiotropic 396 

effects independent of the effect on the exposure of interest (i.e., the InSIDE assumption65). Our 397 

results from the Egger estimator showed a small positive intercept (5.21x10-3±2.87x10-3, P-398 

value=0.07) and a lower OR [inverse-variance weighted (IVW): 1.08 (1.02, 1.13) vs. Egger: 1.01 399 

(0.93, 1.10)], which may indicate the presence of directional horizontal pleiotropy for some 400 

SNPs. We present sensitivity analyses for other significant exposure variables in Supplementary 401 

eFigure 11. 402 

To investigate the potential directional pleiotropic effects, we re-analyzed the MR Egger 403 

regression by excluding the two outliers identified in Fig. 5D (rs11591147) and E (rs4507142), 404 

which led to a slightly increased OR [1.04 (0.96, 1.12)] and a smaller positive intercept (4.41x10-405 

3±2.65x10-3, P-value=0.09). Our findings support that these two outlier SNPs may have a 406 

directional pleiotropic effect on GM-BAG. Nevertheless, given the complex nature of brain 407 

aging, many other biological pathways may also contribute to human brain aging. For instance, 408 

the SNP (rs11591147) was largely associated with other blood lipids, such as LDL cholesterol66, 409 

and heart diseases, such as coronary artery disease67. Detailed results obtained from all five MR 410 

methods are presented in Supplementary eFile 9. 411 

  412 
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Figure 5: Causal inference of multimodal brain age gaps  413 

 414 
A) Causal inference was performed using a two-sample Mendelian Randomization (MR, 415 

Method 4G) approach for seven selected exposure variables on three outcome variables (i.e., 416 

GM, WM, and FC-BAG). The symbol * denotes statistical significance after correcting for 417 

multiple comparisons using the FDR method (N=7); the symbol # denotes the tests passing the 418 

nominal significance threshold (P-value=0.05) but did not survive the multiple comparisons. The 419 

odds ratio (OR) and the 95% confidence interval (CI) are presented. B) Leave-one-out analysis 420 

of the triglyceride-to-lipid ratio on GM-BAG. Each row represents the MR effect (log OR) and 421 

the 95% CI by excluding that SNP from the analysis. The red line depicts the IVW estimator 422 

using all SNPs. C) Forest plot for the single-SNP MR results. Each line represents the MR effect 423 

(log OR) for the triglyceride-to-lipid ratio on GM-BAG using only one SNP; the red line shows 424 

the MR effect using all SNPs together. D) Scatter plot for the MR effect sizes of the SNP-425 

triglyceride-to-lipid ratio association (x-axis, SD units) and the SNP-GM-BAG associations (y-426 

axis, log OR) with standard error bars. The slopes of the purple and green lines correspond to the 427 

causal effect sizes estimated by the IVW and the MR Egger estimator, respectively. We 428 

annotated a potential outlier. E) Funnel plot for the relationship between the causal effect of the 429 

triglyceride-to-lipid ratio on GM-BAG. Each dot represents MR effect sizes estimated using each 430 

SNP as a separate instrument against the inverse of the standard error of the causal estimate. The 431 

vertical red line shows the MR estimates using all SNPs. We annotated a potential outlier. 432 

Abbreviation: AD: Alzheimer's disease; AST: aspartate aminotransferase; BMI: body mass 433 
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index; VLDL: very low-density lipoprotein; CI: confidence interval; OR: odds ratio; SD: 434 

standard deviation; SE: standard error. 435 

  436 
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Discussion 437 

The present study harnessed brain imaging genetics from a cohort of 42,089 participants in 438 

UKBB to investigate the underlying genetics of multimodal BAG. Our approach commenced 439 

with objectively assessing brain age prediction performance, encompassing various imaging 440 

modalities (T1-weighted, diffusion, and resting-state MRI), feature types (ROI vs. voxel), and 441 

machine learning algorithms. Subsequently, we conducted genome-wide associations, 442 

demonstrating the robustness of identified genetic signals in individuals of European ancestry 443 

across diverse factors. Lastly, our study encompassed several post-GWAS analyses, validating 444 

the GWAS results, shedding light on the intricate biological processes involved, and uncovering 445 

the multifaceted interplay between human brain aging and various health conditions and clinical 446 

traits. Our findings unveiled shared genetic factors and unique characteristics 3 varying degrees 447 

of phenotypic and genetic correlation 3 within BAG across three distinct imaging modalities. 448 

Genetic architecture of GM-BAG 449 

Our genetic results from GM-BAG substantiate that many diseases, conditions, and 450 

clinical phenotypes share genetic underpinnings with brain age, perhaps driven by 451 

macrostructural changes in GM (e.g., brain atrophy). The locus with the most significant signal 452 

(the top lead SNP rs534114641 at 17q21.31) showed substantial association with the traits 453 

mentioned above and was mapped to numerous genes associated with various diseases (Fig. 2C). 454 

Several previous GM-BAG GWAS20,22 also identified this locus. Among these genes, the MAPT 455 

gene, known to encode a protein called tau, is a prominent AD hallmark and implicated in 456 

approximately 30 tauopathies, including progressive supranuclear palsy and frontotemporal lobar 457 

degeneration68. Our gene-drug-disease network also showed several drugs, such as 458 

Semorinemab44, in active clinical trials currently targeting treatment for AD (Fig. 3). The 459 
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heritability enrichment of GM-BAG was high in several functional categories, with conserved 460 

regions being the most prominent. The observed higher heritability enrichment in conserved 461 

regions compared to coding regions69 supports the long-standing hypothesis regarding the 462 

functional significance of conserved sequences. However, the precise role of many highly 463 

conserved non-coding DNA sequences remains unclear70. The genetic correlation results of GM-464 

BAG with subtypes of common brain diseases highlight the promise for the AI-derived subtypes, 465 

rather than the "one-for-all" unitary disease diagnosis, as robust endophenotypes23. These 466 

findings strongly support the clinical implications of re-evaluating pertinent hypotheses using the 467 

AI-derived subtypes in patient stratification and personalized medicine. 468 

 The elevated triglyceride-to-lipid ratio in VLDL, an established biomarker for 469 

cardiovascular diseases71, is causally associated with higher GM-BAG (accelerated brain age). 470 

Therefore, lifestyle interventions that target this biomarker might hold promise as an effective 471 

strategy to enhance overall brain health. In addition, we revealed that one unit-increased 472 

likelihood of type 2 diabetes has a causal effect on GM-BAG increase. Research has shown that 473 

normal brain aging is accelerated by approximately 26% in patients with progressive type 2 474 

diabetes compared with healthy controls72. The protective causal effect of breast cancer on GM-475 

BAG is intriguing in light of existing literature adversely linking breast cancer to brain 476 

metastasis73 and chemotherapy-induced cognitive impairments, commonly known as "chemo 477 

brain". In addition, it's important to exercise caution when considering the potential causal link 478 

between breast cancer and GM-BAG, as MR analyses are susceptible to population selection 479 

bias74 due to the high breast cancer mortality rate. 480 

Genetic architecture of WM-BAG 481 
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The genetic architecture of WM-BAG exhibits strong correlations with cancer-related 482 

traits, AD, and physical measures such as BMI, among others. Our phenome-wide association 483 

query largely confirms the enrichment of these traits in previous literature. In particular, the 484 

DNAJC1 gene, annotated from the most polygenic locus on chromosome 10 (top lead SNP: 485 

rs564819152), encodes a protein called heat shock protein 40 (Hsp40) and plays a role in protein 486 

folding and the response to cellular stress. This gene is implicated in various cancer types, such 487 

as breast, renal, and melanoma (Supplementary eFigure 12). In addition, several FDA-488 

approved drugs have been developed based on these WM-BAG genes for different types of 489 

cancer in our gene-drug-disease network (Fig. 3). Our findings provide novel insights into the 490 

genetic underpinnings of WM-BAG and their potential relevance to cancer. 491 

Remarkably, one unit-increased likelihood of AD was causally associated with increased 492 

WM-BAG. Our Mendelian randomization analysis confirmed the abundant association 493 

evidenced by the phenome-wide association query (Fig. 2B). Dementia, such as AD, is 494 

undeniably a significant factor contributing to the decline of the aging brain. Evidence suggests 495 

that AD is not solely a GM disease; significant microstructural changes can be observed in WM 496 

before the onset of cognitive decline75. We also identified a nominal causal significance of BMI 497 

[risk effect; P-value=4.73x10-2, OR (95% CI) = 1.03 (1.00, 1.07)] on WM-BAG. These findings 498 

underscore the potential of lifestyle interventions and medications currently being tested in 499 

clinical trials for AD to improve overall brain health. 500 

Genetic architecture of FC-BAG 501 

The genetic signals for FC-BAG were weaker than those observed for GM and WM-502 

BAG, which is consistent with the age prediction performance and partially corroborates 503 

Cheverud's conjecture: using genetic correlations (Fig. 2F) as proxies for phenotypic correlations 504 
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(Fig. 1E) when collecting individual phenotypes is expensive and unavailable. A novel genomic 505 

locus on chromosome 6 (6q.13) harbors an independent variant (rs1204329) previously linked to 506 

insomnia76. The top lead SNP, rs5877290, associated with this locus is a novel deletion-insertion 507 

mutation type: no known association with any human disease or gene mapping has been 508 

established for this SNP. The genetic basis of FC-BAG covaries with educational performance 509 

and schizophrenia subtypes. Specifically, parental education has been linked to cognitive ability, 510 

and researchers have identified a functional connectivity biomarker between the right rostral 511 

prefrontal cortex and occipital cortex that mediates the transmission of maternal education to 512 

offspring's performance IQ77. On the other hand, schizophrenia is a highly heritable mental 513 

disorder that exhibits functional dysconnectivity throughout the brain78. AD was causally 514 

associated with FC-BAG with nominal significance [risk effect for per unit increase; P-515 

value=4.43x10-2, OR (95% CI) = 1.02 (1.00, 1.03), number of SNPs=13] (Fig. 5A). The 516 

relationship between functional brain networks and the characteristic distribution of amyloid-³ 517 

and tau in AD79 provides evidence that AD is a significant factor in the aging brain, underscoring 518 

its role as a primary causative agent.  519 

The comparative trend of genetic heritability among GM, WM, and FC-BAG is also 520 

consistent with previous large-scale GWAS of multimodal brain IDP. Zhao et al. performed 521 

GWAS on GM13, WM14, and FC-IDP18, showing that FC-IDP is less genetically heritable than 522 

others. Similar observations were also demonstrated by Elliot et al.11 in the first large-scale 523 

GWAS using multimodal IDP from UKBB. The weaker genetic signal observed in FC-BAG can 524 

be attributed to many factors. One of the main reasons is the higher signal-to-noise ratio in FC 525 

measurements due to the dynamic and complex nature of brain activity, which can make it 526 

difficult to accurately measure and distinguish between the true signal and noise. Social-527 
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environmental and lifestyle factors can also contribute to the "missing heritability" observed in 528 

FC-BAG. For example, stress, sleep patterns, physical activity, and other environmental factors 529 

can impact brain function and connectivity80. In contrast, GM and WM measurements are more 530 

stable and less influenced by environmental factors, which may explain why they exhibit 531 

stronger genetic signals and higher heritability estimates.  532 

 533 

Limitations 534 

This study has several limitations. We can employ deep learning on voxel-wise imaging scans to 535 

enhance brain age prediction performance. Nevertheless, it warrants additional exploration to 536 

determine whether the resulting reduction in MAE translates into more robust genome-wide 537 

associations, as our previous work has demonstrated that BAGs derived from a CNN with a 538 

lower MAE did not exhibit heightened sensitivity to disease effects such as AD35. Second, the 539 

generalization ability of the GWAS findings to non-European ancestry is limited, potentially due 540 

to small sample sizes and cryptic population stratification. Future investigations can be expanded 541 

to encompass a broader spectrum of underrepresented ethnic groups, diverse disease populations, 542 

and various age ranges spanning the entire lifespan. This expansion can be facilitated by 543 

leveraging the resources of large-scale brain imaging genetic consortia like ADNI81, focused on 544 

Alzheimer's disease, and ABCD82, which centers on brain development during adolescence. 545 

Third, it's important to exercise caution when interpreting the results of this study due to the 546 

various assumptions associated with the statistical methods employed, including LDSC and MR. 547 

Lastly, it's worth noting that brain age represents a residual score encompassing measurement 548 

error. A recent study83 has underscored the significance of incorporating longitudinal data when 549 
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calculating brain age. Future research should be conducted once the longitudinal scans from the 550 

UK Biobank become accessible to explore this impact on GWASs. 551 

 552 

Outlook 553 

In summary, our multimodal BAG GWASs provide evidence that the aging process of the 554 

human brain is a complex biological phenomenon intertwined with several organ systems and 555 

chronic diseases. We digitized the human brain from multimodal imaging and captured a 556 

complete genetic landscape of human brain aging. This opens new avenues for drug 557 

repurposing/repositioning and aids in identifying modifiable protective and risk factors that can 558 

ameliorate human brain health. 559 

  560 
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Methods 561 

Method 1: Study populations 562 

UKBB is a population-based study of more than 50,000 people recruited between 2006 and 2010 563 

from Great Britain. The current study focused on participants from the imaging-genomics 564 

population who underwent both an MRI scan and genome sequencing (genotype array data and 565 

the imputed genotype data) under application number 35148. The UKBB study has ethical 566 

approval, and the ethics committee is detailed here: https://www.ukbiobank.ac.uk/learn-more-567 

about-uk-biobank/governance/ethics-advisory-committee. The study design, phenotype and 568 

genetic data availability, and quality check have been published and detailed elsewhere24. Table 569 

1 shows the study characteristics of the present work. 570 

 To train the machine learning model and compare the performance of the multimodal 571 

BAG, we defined the following two datasets: 572 

• Training/validation/test dataset: To objectively compare the age prediction 573 

performance of different MRI modalities and machine learning models, we randomly 574 

sub-sampled 500 (250 females) participants within each decade's range from 44 to 84 575 

years old, resulting in the same 4000 participants for GM, WM, and FC-IDP. This 576 

dataset was used to train machine learning models. In addition, we ensured that the 577 

training/validation/test splits were the same in the CV procedure. As UKBB is a 578 

general population, we explicitly excluded participants with common brain diseases, 579 

including mental and behavioral disorders (ICD-10 code: F; N=2678) and diseases 580 

linked to the central nervous system (ICD-10 code: G group; N=3336). 581 
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• Independent test dataset: The rest of the population for each MRI modality 582 

(N=38089) was set as independent test datasets 3 unseen until we finalized the 583 

training procedure84.  584 

The GM-IDP includes 119 GM regional volumes from the MUSE atlas, consolidated by 585 

the iSTAGING consortium. We studied the influence of different WM-IDP features: i) 48 FA 586 

values; ii) 109 TBSS-based85 values from FA, MD, ODI, and NDI; iii) 192 skeleton-based mean 587 

values from FA, MD, ODI, and NDI. For FC-IDP, 210 ICA-derived functional connectivity 588 

components were included. The WM and FC-IDP were downloaded from UKBB (Method 3B). 589 

Table 1. Study characteristics. 590 

The current table presents participants of all ancestries for the age prediction task. We 591 

constrained participants with only European ancestry for downstream genetic analyses. * For age 592 

and sex, we reported statistics for the overlapping population of the three modalities: 35,261 593 

participants for the entire population, 4000 participants for the training/validation/test dataset, 594 

and 31,261 participants for the independent test dataset. We also showed the number of 595 

participants for the GM, WM, and FC-BAG GWAS. In total, our analyses included 42,089 596 

unique participants who had at least one image scan. Abbreviation: dMRI: diffusion MRI; 597 

rsfMRI: resting-state functional MRI; T1w MRI: T1-weighted MRI. 598 

 599 

Population (overlap) T1w MRI dMRI rsfMRI 
Age 

(year)* 
Sex /female* 

Total (35,261) 36,304 39,661 36,858 

63.64 

(45.00, 

81.00) 

18,700/53% 

Training/validation/test 

(4000) 
4000 4000 4000 

63.47 

(46.00, 

81.00) 

2000/50% 

Independent test 
(31,261) 

32,304 35,661 32,858 
63.66 

(45.00, 

81.00) 

16,700/53% 

GWAS 31,557 31,749 32,017 NA NA 

 600 

Method 2: Image processing 601 

(A): T1-weighted MRI processing: The imaging quality check is detailed in Supplementary 602 

eMethod 2. All images were first corrected for magnetic field intensity inhomogeneity.86 A deep 603 
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learning-based skull stripping algorithm was applied to remove extra-cranial material. In total, 604 

145 IDPs were generated in gray matter (GM, 119 ROIs), white matter (WM, 20 ROIs), and 605 

ventricles (6 ROIs) using a multi0atlas label fusion method41. The 119 GM ROIs were fit to the 606 

four machine learning models to derive the GM-BAG.  607 

 608 

(B): Diffusion MRI processing: UKBB has processed diffusion MRI (dMRI) data and released 609 

several WM tract-based metrics for the Diffusion Tensor Imaging (DTI) model (single-shell 610 

dMRI) and Neurite Orientation Dispersion and Density Imaging (NODDI87) model (multi-shell 611 

dMRI). The Eddy88 tool corrected raw images for eddy currents, head motion, and outlier slices. 612 

The mean values of FA, MD, ODI, and NDI were extracted from the 48 WM tracts of the 613 

"ICBM-DTI-81 white-matter labels" atlas89, resulting in 192 WM-IDP (category code:134). In 614 

addition, a tract-skeleton (TBSS)85 and probabilistic tractography analysis90 were employed to 615 

derive weighted-mean measures within the 27 major WM tracts, referred to as the 108 TBSS 616 

WM-IDP (category code: 135). Finally, since we observed overfitting 3 an increase of MAEs 617 

from the cross-validated test results to the independent test results 3 when incorporating features 618 

from FA, MD, ODI, and NDI (as detailed in Supplementary eTable 1A), we chose to use only 619 

the 48 FA WM-IDPs to train the models for generating GM-BAG. 620 

 621 

(C): Resting-state functional MRI processing: For FC-IDP, we used the 21 × 21 resting-state 622 

functional connectivity (full correlation) matrices (data-field code: 25750) from UKBB91,92. 623 

UKBB processed rsfMRI data and released 25 whole-brain spatial independent component 624 

analysis (ICA)-derived components93; four components were removed due to artifactual 625 

components. This resulted in 210 FC-IDP quantifying pairwise correlations of the ICA-derived 626 
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components. Details of dMRI and rsfMRI processing are documented here: 627 

https://biobank.ctsu.ox.ac.uk/crystal/crystal/docs/brain_mri.pdf. 628 

 629 

Method 3: Multimodal brain age prediction using machine learning models 630 

GM, WM, and FC-IDP (details of image processing are presented in Method 2) were fit into 631 

four machine learning models (linear and non-linear) to predict brain age as the outcome. 632 

Specifically, we used SVR, LASSO regression, MLP, and a five-layer neural network (NN: three 633 

linear layers and one rectified linear unit layer). 634 

 To objectively and reproducibly compare the age prediction performance using different 635 

machine learning models and MRI modalities, we adopted a nested CV procedure and included 636 

an independent test dataset27. Specifically, the outer loop CV was performed for 100 repeated 637 

random splits: 80% of the data were used for training. The remaining 20% was used for 638 

validation/testing in the inner loop with a 10-fold CV. In addition, we concealed an independent 639 

test dataset 3 unseen for testing until we finished fine-tuning the machine learning models84 (e.g., 640 

hyperparameters for SVR and neural networks). To compare the results of different models and 641 

modalities, we showed MAE's mean and empirical standard deviation instead of performing any 642 

statistical test (e.g., a two-sample t-test). This is because no unbiased variance estimate exists for 643 

complex CV procedures (refer to notes from Nadeau and Benjio94).  644 

 645 

Method 4: Genetic analyses 646 

Imputed genotype data were quality-checked for downstream analyses. Our quality check 647 

pipeline (see below) resulted in 33,541 European ancestry participants and 8,469,833 SNPs. 648 

After merging with the multimodal MRI populations, we included 31,557 European participants 649 
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for GM-BAG, 31,749 participants for WM-BAG, and 32,017 participants for FC-BAG GWAS. 650 

Details of the protocol are described elsewhere15,95. We summarize our genetic QC pipeline as 651 

below. First, we excluded related individuals (up to 2nd-degree) from the complete UKBB 652 

sample using the KING software for family relationship inference96. We then removed 653 

duplicated variants from all 22 autosomal chromosomes. Individuals whose genetically identified 654 

sex did not match their self-acknowledged sex were removed. Other excluding criteria were: i) 655 

individuals with more than 3% of missing genotypes; ii) variants with minor allele frequency 656 

(MAF) of less than 1%; iii) variants with larger than 3% missing genotyping rate; iv) variants 657 

that failed the Hardy-Weinberg test at 1x10-10. To adjust for population stratification97, we 658 

derived the first 40 genetic principle components (PC) using the FlashPCA software98. Details of 659 

the genetic quality check protocol are described elsewhere95,99. 660 

 661 

(A): Genome-wide association analysis: For GWAS, we ran a linear regression using Plink100 662 

for GM, WM, and FC-BAG, controlling for confounders of age, dataset status 663 

(training/validation/test or independent test dataset), age x squared, sex, age x sex interaction, 664 

age-squared x sex interaction, total intracranial volume, the brain position in the scanner (lateral, 665 

transverse, and longitudinal), and the first 40 genetic principal components. The inclusion of 666 

these covariates is guided by pioneer neuroimaging GWAS conducted by Zhao et al13. and Elliot 667 

et al.11 We adopted the genome-wide P-value threshold (5 x 10-8) and annotated independent 668 

genetic signals considering linkage disequilibrium (see below). We then estimated the SNP-669 

based heritability using GCTA37 using the individual-level genotype data with the same 670 

covariates in GWAS.  671 
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To check the robustness of our GWAS results using European ancestry, we performed six 672 

sensitivity checks, including i) split-sample GWAS by randomly dividing the entire population 673 

into two sex and age-matched splits, ii) sex-stratified GWAS for males and females, iii) non-674 

European GWAS, iv) fastGWA40 for a mixed linear model that accounts for cryptic population 675 

stratification, v) machine learning-specific GWAS, and vi) feature type-specific GWAS. 676 

 677 

(B): Annotation of genomic loci and genes: The annotation of genomic loci and mapped genes 678 

was performed via FUMA101 (https://fuma.ctglab.nl/, version: v1.5.0). For the annotation of 679 

genomic loci, we first defined lead SNPs (correlation r2 f 0.1, distance < 250 kilobases) and 680 

assigned them to a genomic locus (non-overlapping); the lead SNP with the lowest P-value (i.e., 681 

the top lead SNP) was used to represent the genomic locus. For gene mappings, three different 682 

strategies were considered. First, positional mapping assigns the SNP to its physically nearby 683 

genes (a 10)kb window by default). Second, eQTL mapping annotates SNPs to genes based on 684 

eQTL associations. Finally, chromatin interaction mapping annotates SNPs to genes when there is 685 

a significant chromatin interaction between the disease-associated regions and nearby or distant 686 

genes.101 The definition of top lead SNP, lead SNP, independent significant SNP, and candidate 687 

SNP can be found in Supplementary eMethod 1. 688 

 689 

(C): Phenome-wide association query for genomic loci associated with other traits in the 690 

literature: We queried the significant independent SNPs within each locus in the GWAS 691 

Catalog (query date: January 10th, 2023 via FUMA version: v1.5.0) to determine their 692 

previously identified associations with other traits. For these associated traits, we further mapped 693 

them into several high-level categories for visualization purposes (Fig. 2B).      694 
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 695 

(D): Genetic correlation: We used LDSC36 to estimate the pairwise genetic correlation (rg) 696 

between GM, WM, and FC-BAG and several pre-selected traits (Supplementary eTable 3) by 697 

using the precomputed LD scores from the 1000 Genomes of European ancestry. The following 698 

pre-selected traits were included: Alzheimer's disease (AD), autism spectrum disorder (ASD), 699 

attention-deficit/hyperactivity disorder (ADHD), obsessive-compulsive disorder (OCD), major 700 

depressive disorder (MDD), bipolar disorder (BIP), schizophrenia (SCZ), education and 701 

intelligence, as well as the AI-derived subtypes for AD (AD1 and AD2102), ASD (ASD1, ASD2, 702 

and ASD347), and SCZ (SCZ1 and SCZ2103) 3 serving as more robust endophenotypes than the 703 

disease diagnoses themselves. To ensure the suitability of the GWAS summary statistics, we first 704 

checked that the selected study's population was European ancestry; we then guaranteed a 705 

moderate SNP-based heritability h2 estimate and excluded the studies with spurious low h2 706 

(<0.05). Notably, LDSC corrects for sample overlap and provides an unbiased estimate of 707 

genetic correlation104. The h2 estimate from LDSC is, in general, lower than that of GCTA 708 

because LDSC uses GWAS summary statistics and pre-computed LD information and has 709 

slightly different model assumptions across different software105.  710 

 711 

(E): Partitioned heritability estimate: Partitioned heritability analysis estimates the percentage 712 

of heritability enrichment explained by annotated genome regions51. First, the partitioned 713 

heritability was calculated for 53 main functional categories. The 53 functional categories are not 714 

specific to any cell type, including coding, UTR, promoter, and intronic regions. Details of the 715 

53 categories are described elsewhere51 and are also presented in Supplementary eTable 5A. 716 

Subsequently, cell type-specific partitioned heritability was estimated using gene sets from 717 
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Cahoy et al.58 for three main cell types (i.e., astrocyte, neuron, and oligodendrocyte) 718 

(Supplementary eTable 5B).  719 

 720 

(F): Gene-drug-disease network construction: We curated data from the Drug Bank database 721 

(v.5.1.9)106 and the Therapeutic Target Database (updated by September 29th, 2021) to construct 722 

a gene-drug-disease network. Specifically, we constrained the target to human organisms and 723 

included all drugs with active statuses (e.g., patented and approved) but excluded inactive ones 724 

(e.g., terminated or discontinued at any phase). To represent the disease, we mapped the 725 

identified drugs to the Anatomical Therapeutic Chemical (ATC) classification system for the 726 

Drugbank database and the International Classification of Diseases (ICD-11) for the Therapeutic 727 

Target Database.  728 

 729 

(G): Two-sample Mendelian Randomization: We investigated whether the clinical traits 730 

previously associated with our genomic loci (Fig. 2B) were a cause or a consequence of GM, 731 

WM, and FC-BAG using a bidirectional, two-sample MR approach. GM, WM, and FC-BAG are 732 

the outcome/exposure variables in the forward/inverse MR, respectively. We applied five 733 

different MR methods using the TwoSampleMR R package59, including the inverse variance 734 

weighted (IVW), MR Egger107, weighted median108, simple mode, and weighted mode methods. 735 

We reported the results of IVW in the main text and the four others in the Supplementary eFile 736 

9. MR relies on a set of crucial assumptions to ensure the validity of its results. These 737 

assumptions include the requirement that the chosen genetic instrument exhibits a strong 738 

association with the exposure of interest while remaining free from direct associations with 739 

confounding factors that could influence the outcome. Additionally, the genetic variant used in 740 
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MR should be independently allocated during conception and inheritance, guaranteeing its 741 

autonomy from potential confounders. Furthermore, this genetic instrument must affect the 742 

outcome solely through the exposure of interest without directly impacting alternative pathways 743 

that could influence the outcome (no horizontal pleiotropy). The five MR methods handle 744 

pleiotropy and instrument validity assumptions differently, offering various degrees of 745 

robustness to violations. For example, MR Egger provides a method to estimate and correct for 746 

pleiotropy, making it robust in the presence of horizontal pleiotropy. However, it assumes that 747 

directional pleiotropy is the only form of pleiotropy present. 748 

To ensure an unbiased selection of exposure variables, we followed a systematic 749 

procedure guided by the STROBE-MR Statement109. We pre-selected exposure variables across 750 

various categories based on our phenome-wide association query. These variables encompassed 751 

neurodegenerative diseases (e.g., AD), liver biomarkers (e.g., AST), cardiovascular diseases 752 

(e.g., the triglyceride-to-lipid ratio in VLDL), and lifestyle-related risk factors (e.g., BMI). 753 

Subsequently, we conducted an automated query for these traits in the IEU GWAS database110, 754 

which provides curated GWAS summary statistics suitable for MR, using the 755 

available_outcomes() function. We ensured the selected studies used European ancestry 756 

populations and shared the same genome build as our GWAS (HG19/GRCh37). Additionally, we 757 

manually examined the selected studies to exclude any GWAS summary statistics overlapping 758 

with UK Biobank populations to prevent bias stemming from sample overlap111. This process 759 

yielded a set of seven exposure variables, comprising AD, breast cancer, type 2 diabetes, renin 760 

level, triglyceride-to-lipid ratio, aspartate aminotransferase (AST), and BMI. The details of the 761 

selected studies for the instrumental variables (IVs) are provided in Supplementary eTable 6.  762 
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 We performed several sensitivity analyses. First, a heterogeneity test was performed to 763 

check for violating the IV assumptions. Horizontal pleiotropy was estimated to navigate the 764 

violation of the IV's exclusivity assumption64 using a funnel plot, single-SNP MR approaches, 765 

and MR Egger estimator107. Moreover, the leave-one-out analysis excluded one instrument 766 

(SNP) at a time and assessed the sensitivity of the results to individual SNP. 767 

 768 

(H): PRS prediction: We calculated the PRS using the GWAS results from the split-sample 769 

analyses. The weights of the PRS were defined based on split1 data (training/base data), and the 770 

split2 GWAS summary statistics were used as the test/target data. The QC steps for the base data 771 

are as follows: i) removal of duplicated and ambiguous SNPs for the base data; ii) clumping the 772 

base GWAS data; iii) pruning to remove highly correlated SNPs in the target data; iv) removal of 773 

high heterozygosity samples in the target data; v) removal of duplicated, mismatching and 774 

ambiguous SNPs in the target data. After rigorous QC, we employed two methods to derive the 775 

three BAG-PRS in the split2 population: i) PLINK with the classic C+T method (clumping + 776 

thresholding) and ii) PRS-CS57 with a Bayesian approach.  777 

To determine the "best-fit" PRS P-value threshold, we performed a linear regression 778 

using the PRS calculated at different P-value thresholds (0.001, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5), 779 

controlling for age, sex, total intracellular volume, brain position during scanning (lateral, 780 

transverse, and longitudinal), and the first forty genetic PCs. A null model was established by 781 

including only the abovementioned covariates. The alternative model was then constructed by 782 

introducing each BAG-PRS as an extra independent variable.  783 
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Data Availability 784 

The GWAS summary statistics corresponding to this study are publicly available on the 785 

MEDICINE knowledge portal (https://labs.loni.usc.edu/medicine).  786 
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Code Availability 787 

The software and resources used in this study are all publicly available:  788 

• MLNI: https://anbai106.github.io/mlni/, brain age prediction (V0.1.2) 789 

• MEDICINE: https://labs.loni.usc.edu/medicine, knowledge portal for dissemination and 790 

GWAS summary statistics sharing 791 

• MUSE: https://www.med.upenn.edu/sbia/muse.html, image preprocessing for GM-IDP 792 

• PLINK: https://www.cog-genomics.org/plink/, GWAS and PRS 793 

• FUMA: https://fuma.ctglab.nl/, gene mapping, genomic locus annotation 794 

• GCTA: https://yanglab.westlake.edu.cn/software/gcta/#Overview, heritability estimates, 795 

and fastGWA  796 

• LDSC: https://github.com/bulik/ldsc, genetic correlation, partitioned heritability 797 

• TwoSampleMR: https://mrcieu.github.io/TwoSampleMR/index.html, MR 798 

• PRS-CS: https://github.com/getian107/PRScs, PRS  799 
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