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Abstract

The complex biological mechanisms underlying human brain aging remain incompletely
understood, involving multiple body organs and chronic diseases. In this study, we used
multimodal magnetic resonance imaging and artificial intelligence to examine the genetic
architecture of the brain age gap (BAG) derived from gray matter volume (GM-BAG, N=31,557
European ancestry), white matter microstructure (WM-BAG, N=31,674), and functional
connectivity (FC-BAG, N=32,017). We identified sixteen genomic loci that reached genome-
wide significance (P-value<5x10®). A gene-drug-disease network highlighted genes linked to
GM-BAG for treating neurodegenerative and neuropsychiatric disorders and WM-BAG genes
for cancer therapy. GM-BAG showed the highest heritability enrichment for genetic variants in
conserved regions, whereas WM-BAG exhibited the highest heritability enrichment in the 5'
untranslated regions; oligodendrocytes and astrocytes, but not neurons, showed significant
heritability enrichment in WM and FC-BAG, respectively. Mendelian randomization identified
potential causal effects of several exposure variables on brain aging, such as type 2 diabetes on
GM-BAG (odds ratio=1.05 [1.01, 1.09], P-value=1.96x10-?) and AD on WM-BAG (odds
ratio=1.04 [1.02, 1.05], P-value=7.18x10). Overall, our results provide valuable insights into
the genetics of human brain aging, with clinical implications for potential lifestyle and
therapeutic interventions. All results are publicly available at the MEDICINE knowledge portal:

https://labs.loni.usc.edu/medicine.
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Main

The advent of artificial intelligence (AI) has provided novel approaches to investigate various
aspects of human brain health!-2, such as normal brain aging?, neurodegenerative disorders such
as Alzheimer's disease (AD)*, and brain cancer®. Based on magnetic resonance imaging (MRI),
Al-derived measures of the human brain age®® have emerged as a valuable biomarker for
evaluating brain health. More precisely, the difference between an individual's Al-predicted
brain age and chronological age — brain age gap (BAG) — provides a means of quantifying an
individual's brain health by measuring deviation from the normative aging trajectory. BAG has
demonstrated sensitivity to several common brain diseases, clinical variables, and cognitive
functions’, presenting the promising potential for its use in the general population to capture
relevant pathological processes.

Brain imaging genomics'?, an emerging scientific field advanced by both computational
statistics and Al, uses imaging-derived phenotypes (IDP!!) from MRI and genetics to offer
mechanistic insights into healthy and pathological aging of the human brain. Recent large-scale
genome-wide association studies (GWAS)!!"!® have identified a diverse set of genomic loci
linked to gray matter (GM)-IDP from T1-weighted MRI, white matter (WM)-IDP from diffusion
MRI [fractional anisotropy (FA), mean diffusivity (MD), neurite density index (NDI), and
orientation dispersion index (ODI)], and functional connectivity (FC)-IDP from functional MRI.
While previous GWAS! have associated BAG with common genetic variants [e.g., single
nucleotide polymorphism (SNP)], they primarily focused on GM-BAG®?*-22 or did not
comprehensively capture the genetic architecture of the multimodal BAG! via post-GWAS
analyses in order to biologically validate the GWAS signals. It is crucial to holistically identify

the genetic factors associated with multimodal BAGs (GM, WM, and FC-BAG), where each
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BAG reflects distinct and/or similar neurobiological facets of human brain aging. Furthermore,
dissecting the genetic architecture of human brain aging may determine the causal implications,
which is essential for developing gene-inspired therapeutic interventions. Finally, numerous risk
or protective lifestyle factors and neurobiological processes may also exert independent,
synergistic, antagonistic, sequential, or differential influences on human brain health. Therefore,
a holistic investigation of multimodal BAGs is urgent to fully capture the genetics of human
brain aging, including the genetic correlation, gene-drug disease network, and potential causality.
In this study, we postulate that Al-derived GM, WM, and FC-BAG can serve as robust,
complementary endophenotypes® — close to the underlying etiology — for precise quantification
of human brain health.

The present study sought to uncover the genetic architecture of multimodal BAG and
explore the causal relationships between protective/risk factors and decelerated/accelerated brain
age. To accomplish this, we analyzed multimodal brain MRI scans from 42,089 participants from
the UK Biobank (UKBB) study?* and used 119 GM-IDP, 48 FA WM-IDP, and 210 FC-IDP to
derive GM, WM, and FC-BAG, respectively. Refer to Method 1 for selecting the final feature
sets for each BAG. We first compared the age prediction performance of different machine
learning models using these IDPs. We then performed GWAS to identify genomic loci
associated with GM, WM, and FC-BAG in the European ancestry population. In post-GWAS
analyses, we constructed a gene-drug-disease network, estimated the genetic correlation with
several brain disorders, assessed their heritability enrichment in various functional categories or
specific cell types, and calculated the polygenic risk scores (PRS) of the three BAGs. Finally, we
performed Mendelian Randomization (MR)? to infer the causal effects of several clinical traits

and diseases on the three BAGs.
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Results

In the first section, we objectively compared the age prediction performance of four machine
learning methods using these GM, WM, and FC-IDPs (Fig. 1A). To this end, we employed a
nested cross-validation (CV) procedure in the training/validation/test dataset (N=4000); an
independent test dataset (N=38,089)?%27 was held out — unseen until we finalized the models
using only the training/validation/test dataset (Method 1). The four machine learning models
included support vector regression (SVR), LASSO regression, multilayer perceptron (MLP), and
a five-layer neural network (i.e., three linear layers and one rectified linear unit layer; hereafter,
NN)?8 (Method 3). The second section focused on the main GWASs using the European
ancestry population (31,557<N<32,017) and their sensitivity checks in six scenarios (Method
4A). In the last section, we validated the GWAS findings in several post-GWAS analyses,
including genetic correlation, gene-drug-disease network, partitioned heritability, PRS

calculation, and Mendelian randomization (Method 4).

GM, WM, and FC-BAG derived from three MRI modalities

Several findings were observed based on the results from the independent test dataset (N=38,089,
Method 1). First, GM-IDP (4.39<mean absolute error (MAE)<5.35; 0.64<r<0.66), WM-IDP
(4.92<MAE<7.95; 0.42<r<0.65), and FC-IDP (5.48<MAE<6.05; 0.43 <r<0.46) achieved
gradually a higher MAE and smaller Pearson's correlation (r) (Fig. 1B, C, and D). Second,
LASSO regression obtained the lowest MAE for GM, WM, and FC-IDP; linear models obtained
a lower MAE than non-linear networks (Fig. 1B). Third, all models generalized well from the
training/validation/test dataset (N=4000, Method 1) to the independent test dataset. However,

simultaneously incorporating WM-IDP from FA, MD, NDI, and ODI resulted in severely
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overfitting models (Supplementary eTable 1A). The observed overfitting may be attributed to
many parameters (N=38,364) in the network or strong correlations among the diffusion metrics
(i.e., FA, MD, ODI, and NDI). Fourth, the experiments stratified by sex did not exhibit
substantial differences, except for a stronger overfitting tendency observed in females compared
to males using WM-IDP incorporating the four diffusion metrics (Supplementary eTable 1B).
Detailed results of the CV procedure, including the training, validation, test performance, and
sex-stratified experiments, are presented in Supplementary eTable 1. In all subsequent genetic
analyses, we reported the results using BAG derived from the three LASSO models with the
lowest MAE in each modality (Fig. 1A), with the "age bias" corrected as in De Lange et al.?’.

In the literature, other studies**-* have thoroughly evaluated age prediction performance

using different machine learning models and input features. More et al.3

systematically
compared the performance of age prediction of 128 workflows (MAE between 5.23—8.98 years)
and showed that voxel-wise feature representation (MAE approximates 5-6 years) outperformed
parcel-based features (MAE approximates 6-9 years) using conventional machine learning

1.3% and Leonardsen

algorithms (e.g., LASSO regression). Using deep neural networks, Peng et a
et al.*! reported a lower MAE (nearly 2.5 years) with voxel-wise imaging scans. However, we
previously showed that a moderately fitting convolutional neural network (CNN) obtained
significantly higher differentiation (a larger effect size) than a tightly fitting CNN (a lower MAE)
between the disease and health groups®®. To summarize, our study's brain age prediction
performance aligns with those reported in the existing literature, considering the utilization of
low-dimensional hand-crafted IDPs and conventional machine learning algorithms34.

Finally, we calculated the phenotypic correlation (p.) between GM, WM, and FC-BAG

using Pearson's correlation coefficient. GM-BAG and WM-BAG showed the highest positive
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correlation (p=0.38; P-value<1x10-'%; N=30,733); GM-BAG (p.=0.09; P-value<I1x10-';
N=30,660) and WM-BAG (p~=0.10; P-value<1x10-'%; N=31,574) showed weak correlations with

FC-BAG (Fig. 1E).
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Figure 1: Brain age prediction using three MRI modalities and four machine learning

models
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A) Multimodal brain MRI data were used to derive imaging-derived phenotypes (IDP) for T1-
weighted MRI (119 GM-IDP), diffusion MRI (48 WM-IDP), and resting-state functional MRI
(210 FC-IDP). IDPs for each modality are shown here using different colors based on predefined
brain atlases or ICA for FC-IDP. B) Linear models achieved lower mean absolute errors (MAE)
than non-linear models using support vector regression (SVR), LASSO regression, multilayer
perceptron (MLP), and a five-layer neural network (NN). The MAE for the independent test
dataset is presented, and the # symbol indicates the model with the lowest MAE for each
modality. Error bars represent standard deviation (SD). C) Pearson's correlation () between the
predicted brain age and chronological age is computed, and statistical significance (P-
value<0.05) - after adjustment for multiple comparisons using the FDR method - is denoted by
the * symbol. Error bars represent the 95% confidence interval (CI). D) Scatter plot for the
predicted brain age and chronological age. E) Phenotypic correlation (p.) between the GM, WM,
and FC-BAG using Pearson's correlation coefficient (7).
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162  GM, WM, and FC-BAG are associated with sixteen genomic loci

163 In the European ancestry populations, GWAS (Method 4A) revealed 6, 9, and 1 genomic loci
164 linked to GM (N=31,557), WM (N=31,674), and FC-BAG (N=32,017), respectively (Fig. 2A).
165  The top lead SNP and mapped genes of each locus are presented in Supplementary eTable 2.
166  We also calculated the genomic inflation factor (1) and the linkage disequilibrium score

167  regression (LDSC) intercept (b)*° to scrutinize the robustness of the GWAS of GM-BAG

168  (A=1.118; b=1.0016%0.0078), WM-BAG (41=1.124; b=1.0187%0.0073), and FC-BAG (1=1.046;
169  5=1.0039+0.006). All LDSC intercepts were close to 1, indicating no substantial genomic

170  inflation. The individual Manhattan and QQ plots of the three GWASs are presented in

171  Supplementary eFigure 3 and are also publicly available at the MEDICINE knowledge portal:

172 https://labs.loni.usc.edu/medicine. The three BAGs were significantly heritable (P-value<1x10

173 1'9) after adjusting for multiple comparisons using the Bonferroni method using the genome-wide
174  complex trait analysis (GCTA) software’’. GM-BAG showed the highest SNP-based heritability
175 (h?=0.47+0.02), followed by WM-BAG (h°=0.46+0.02) and FC-BAG (#*=0.11£0.02).

176 We performed a query in the GWAS Catalog?® for these genetic variants within each

177  locus to understand the phenome-wide association of these identified loci in previous literature
178  (Method 4C). Notably, the SNPs within each locus were linked to other traits previously

179  reported in the literature (Supplementary eFile 1). Specifically, the GM-BAG loci were

180  uniquely associated with neuropsychiatric disorders such as major depressive disorder (MDD),
181  heart disease, and cardiovascular disease. We also observed associations between these loci and
182  other diseases (including anemia), as well as biomarkers from various human organs (e.g., liver)
183  (Fig. 2B). We then performed positional and functional annotations to map SNPs to genes

184  associated with GM, WM, and FC-BAG loci (Method 4B). Fig. 2C-E showcased the regional
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185  Manhattan plot of one genomic locus linked to GM, WM, and FC-BAG. A detailed discussion of
186  these exemplary loci, SNPs, and genes is presented in Supplementary eText 1.

187 Finally, we calculated the genetic correlation (g.) between the GM, WM, and FC-BAG
188  wusing the LDSC software. GM-BAG and WM-BAG showed the highest positive correlation

189  (g~0.49; P-value<1x107'%); GM-BAG (g.=0.20; P-value=0.025) and WM-BAG (g.=0.29; P-

190  value=0.005) showed weak correlations with FC-BAG (Fig. 2F). The genetic correlations largely
191  mirror the phenotypic correlations, supporting the long-standing Cheverud's Conjecture®®. We
192 also verified that these genetic correlations exhibited consistency between the two random splits
193 (splitl and spit2: 15,778<N<16,008), sharing a similar age and sex distribution (Supplementary
194  eFigure 2).

195

196  Sensitivity analyses for the genome-wide associations

197  We aimed to check the robustness of the main GWASs using the full sample sizes of the

198  European populations (Fig. 2A). To this end, we performed six sensitivity analyses (Method

199  4A).

200 Applying the Bonferroni method to correct for multiple comparisons, we noted high

201  concordance rates between the splitl (as discovery, 15,778<N<16,008) and split2 (as replication,
202 15,778<N<16,008) GWAS:s. Specifically, for GM-BAG, we observed a concordance rate of 99%
203  [P-value<0.05/3092; 3092 significant SNPs passing the genome-wide P-value threshold (<5x10
204  ®)in the discovery data], and for WM-BAG, the concordance rate reached 100% (P-

205  value<0.05/116). FC-BAG did not achieve significant genome-wide results in the spit-sample

206 GWASSs (Supplementary eFigure 3 and Supplementary eFile 2).

10
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In sex-stratified GWASSs, the concordance rates were 100% (P-value<0.05/3072) for GM-
BAG and 88.6% (P-value<0.05/116) for WM-BAG when comparing the male-GWAS (as
replication, 14,969<N<15,127) to female-GWAS (as discovery, 16,588<N<16,890). FC-BAG
did not achieve significant genome-wide results (Supplementary eFigure 4 and
Supplementary eFile 3).

The concordance rates of the GWASs using non-European ancestry populations (as
replication, 4646<N<5091) were low compared to the main GWASs using the European
population: only 13.78% for GM-BAG and 41.94% for WM-BAG (P-value<0.05)
(Supplementary eFigure 5 and Supplementary eFile 4).

A mixed linear model employed via fastGWA* (as replication, 31,557<N<32,017)
obtained 100% concordance rates for GM, WM, and FC-BAG compared to GWAS using PLINK
linear regression (Supplementary eFile 5). The genetic loci, genomic inflation factor (A), and
the LDSC intercepts for GM, WM, and FC-BAG were similar between the PLINK and fastGWA
analyses (Supplementary eFigure 6).

We found a 100% concordance rate of the SNPs identified for the GM-BAG GWAS
using LASSO regression (as discovery, BAG MAE=4.39 years) and SVR (P-value < 0.05/3382,
as replication, BAG MAE=4.43 years) (Supplementary eFigure 7 and Supplementary eFile
6). The BAGs derived from the two machine larning models were highly correlated (=0.99; P-
value<1x10719),

We finally found a 92.43% concordance rate of the SNPs identified in the GM-BAG
GWAS using the 119 MUSE ROIs*! (as discovery, BAG MAE=4.39 years) and voxel-wide
RAVENS* maps (as replication, P-value < 0.05/3382, BAG MAE=5.12 years) (Supplementary

eFigure 8 and Supplementary eFile 7). The BAGs derived from the two types of features were

11
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230  significantly correlated (+=0.74; P-value<1x10-'%). The brain age prediction performance using
231  RAVENS showed marginal overfitting, with an MAE of 4.31 years in the training/validation/test
232 dataset and an MAE of 5.12 years in the independent test dataset.

233 These findings suggest that our GWASs were robust across sex, random splits, imaging
234 features, GWAS methods, and machine learning methods within European populations;

235  however, their generalizability to non-European populations is limited. All subsequent post-

236  GWAS analyses were conducted using the main GWAS results of European ancestry.

12
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237  Figure 2: Genome-wide associations of multimodal brain age gaps
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SNP and the cytogenetic region number represent each locus. B) Phenome-wide association
query from GWAS Catalog?®. Independent significant SNPs inside each locus were largely
associated with many traits. We further classified these traits into several trait categories,
including biomarkers from multiple body organs (e.g., heart and liver), neurological disorders
(e.g., Alzheimer's disease and Parkinson's disease), and lifestyle risk factors (e.g., alcohol
consumption). C) Regional plot for a genomic locus associated with GM-BAG. Color-coded
SNPs are decided based on their highest 72 to one of the nearby independent significant SNPs.
Gray-colored SNPs are below the 7 threshold. The top lead SNP, lead SNPs, and independent
significant SNPs are denoted as dark purple, purple, and red, respectively. Mapped, orange-
colored genes of the genomic locus are annotated by positional, eQTL, and chromatin interaction
mapping (Method 4B). D) Regional plot for a genomic locus associated with WM-BAG. E) The
novel genomic locus associated with FC-BAG did not map to any genes. We used the Genome
Reference Consortium Human Build 37 (GRCh37) in all genetic analyses. F) Genetic correlation
(gc) between the GM, WM, and FC-BAG using the LDSC software. Abbreviation: AD:
Alzheimer's disease; ASD: autism spectrum disorder; PD: Parkinson's disease; ADHD: attention-
deficit/hyperactivity disorder.

The gene-drug-disease network highlights disease-specific drugs that bind to genes
associated with GM and WM-BAG

We investigated the potential "druggable genes**"

from the mapped genes by constructing a
gene-drug-disease network (Method 4F). The network connects genes with drugs (or drug-like
molecules) targeting specific diseases currently active at any stage of clinical trials.

We revealed clinically relevant associations for 4 and 6 mapped genes associated with
GM-BAG and WM-BAG, respectively. The GM-BAG genes were linked to clinical trials for
treating heart, neurodegenerative, neuropsychiatric, and respiratory diseases. On the other hand,
the WM-BAG genes were primarily targeted for various cancer treatments and cardiovascular
diseases (Fig. 3). To illustrate, for the GM-BAG MAPT gene, several drugs or drug-like
molecules are currently being evaluated for treating AD. Semorinemab (RG6100), an anti-tau
IgG4 antibody, was being investigated in a phase-2 clinical trial (trial number: NCT03828747),

which targets extracellular tau in AD, to reduce microglial activation and inflammatory

responses*. Another drug is the LMTM (TRx0237) - a second-generation tau protein
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272  aggregation inhibitor currently being tested in a phase-3 clinical trial (trial number:

273  NCT03446001) for treating AD and frontotemporal dementia*®. Regarding WM-BAG genes,
274  they primarily bind with drugs for treating cancer and cardiovascular diseases. For instance, the
275  PDIA3 gene, associated with the folding and oxidation of proteins, has been targeted for

276  developing several zinc-related FDA-approved drugs for treating cardiovascular diseases.

277  Another example is the MAPIA gene, which encodes microtubule-associated protein 1A. This
278  gene is linked to the development of estramustine, an FDA-approved drug for prostate cancer

279  (Fig. 3). Detailed results are presented in Supplementary eFile 8.
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Figure 3: Gene-drug-disease network of multimodal brain age gaps
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The gene-drug-disease network derived from the mapped genes revealed a broad spectrum of
targeted diseases and cancer, including brain cancer, cardiovascular system diseases, Alzheimer's
disease, and obstructive airway disease, among others. The thickness of the lines represented the
P-values (-logio) from the brain tissue-specific gene set enrichment analyses using the GTEx v8
dataset. We highlight several drugs under the blue-colored and bold text. Abbreviation: ATC:
Anatomical Therapeutic Chemical; ICD: International Classification of Diseases.

Multimodal BAG is genetically correlated with Al-derived subtypes of brain diseases

We calculated the genetic correlation using the GWAS summary statistics from 16 clinical traits

to examine genetic covariance between multimodal BAG and other clinical traits. The selection

procedure and quality check of the GWAS summary statistics are detailed in Method 4D. These

traits encompassed common brain diseases and their Al-derived disease subtypes, as well as
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education and intelligence (Fig. 4A and Supplementary eTable 3). The Al-generated disease
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295  subtypes were established in our previous studies utilizing semi-supervised clustering methods*¢
296  and IDP from brain MRI scans.

297 Our analysis revealed significant genetic correlations between GM-BAG and Al-derived
298  subtypes of AD (AD1%), autism spectrum disorder (ASD) (ASD1 and ASD3%"), schizophrenia
299  (SCZ1%®), and obsessive-compulsive disorder (OCD)*; WM-BAG and AD1, ASD1, SCZ1, and
300 SCZ2; and FC-BAG and education®® and SCZ1. Detailed results for r, estimates are presented in
301  Supplementary eTable 4. These subtypes, in essence, capture more homogeneous disease

302  effects than the conventional "unitary" disease diagnosis, hence serving as robust

303  endophenotypes?.

304

305 Multimodal BAG shows specific enrichment of heritability in different functional

306  categories and cell types

307  We conducted a partitioned heritability analysis®! to investigate the heritability enrichment of
308  genetic variants related to multimodal BAG in the 53 functional categories (Method 4E). Our
309  results revealed that GM and WM-BAG exhibited significant heritability enrichment across

310  numerous annotated functional categories. Specifically, some categories displayed greater

311  enrichment than others, and we have outlined some in further detail.

312 For GM-BAG, the regions conserved across mammals, as indicated by the label

313 "conserved" in Fig. 4B, displayed the most notable enrichment of heritability: approximately
314 2.61% of SNPs were found to explain 0.43+0.07 of SNP heritability (P-value=5.80x10%).

315  Additionally, transcription start site (TSS)>? regions employed 1.82% of SNPs to explain

316  0.16+0.05 of SNP heritability (P-value=8.05x10). TSS initiates the transcription at the 5' end of

317  agene and is typically embedded within a core promoter crucial to the transcription machinery?>.
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The heritability enrichment of Histone H3 at lysine 4, as denoted for "H3K4me3 peaks" in Fig.
4B, and histone H3 at lysine 9 (H3K9ac)>* were also found to be large and were known to
highlight active gene promoters®. For WM-BAG, 5' untranslated regions (UTR) used 0.54% of
SNPs to explain 0.09+0.03 of SNP heritability (P-value=4.24x10-). The 5' UTR is a crucial
region of a messenger RNA located upstream of the initiation codon. It is pivotal in regulating
transcript translation, with varying mechanisms in viruses, prokaryotes, and eukaryotes.
Additionally, we examined the heritability enrichment of multimodal BAG in three
different cell types (Fig. 4C). WM-BAG (P-value=1.69x10") exhibited significant heritability
enrichment in oligodendrocytes, one type of neuroglial cells. FC-BAG (P-value=1.12x102)
showed such enrichment in astrocytes, the most prevalent glial cells in the brain. GM-BAG
showed no enrichment in any of these cells. Our findings are consistent with understanding the
molecular and biological characteristics of GM and WM. Oligodendrocytes are primarily
responsible for forming the lipid-rich myelin structure, whereas astrocytes play a crucial role in
various cerebral functions, such as brain development and homeostasis. Convincingly, a prior
GWAS!"* on WM-IDP also identified considerable heritability enrichment in glial cells,
especially oligodendrocytes. Detailed results for the 53 functional categories and cell-specific

analyses are presented in Supplementary eTable 5.

Prediction ability of the polygenic risk score of the multimodal BAG

We derived the PRS for GM, WM, and FC-BAG using the conventional C+T (clumping plus P-

value threshold) approach® via PLINK and a Bayesian method via PRS-CS*’ (Method 4H).
We found that the GM, WM, and FC-BAG-PRS derived from PRS-CS significantly

predicted the phenotypic BAGs in the test data (split2 GWAS, 15,697<N<15,940), with an
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341  incremental R? of 2.17%, 1.85%, and 0.19%, respectively (Fig. 4D). Compared to the PRS

342 derived from PRS-CS, the PLINK approach achieved a lower incremental R? of 0.81%, 0.45%,
343  and 0.14% for GM, WM, and FC-BAG, respectively (Supplementary eFigure 9). Overall, the
344  predictive capacity of PRS is moderate, in line with earlier discoveries involving raw imaging-
345  derived phenotypes, as demonstrated in Zhao et al.!3, where PRSs developed for seven selective
346  brain regions were able to explain roughly 1.18% to 3.93% of the phenotypic variance associated

347  with these traits.
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348  Figure 4: Genetic correlation, partitioned heritability enrichment, and PRS prediction
349  accuracy on multimodal brain age gaps
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350 s
351  A) Genetic correlation (g.) between GM, WM, and FC-BAG and 16 clinical traits. These traits

352  include neurodegenerative diseases (e.g., AD) and their Al-derived subtypes (e.g., AD1 and

353  AD2%), neuropsychiatric disorders (e.g., ASD) and their subtypes (ASD1, 2, and 3%7),

354 intelligence, and education. B) The proportion of heritability enrichment for the 53 functional
355  categories®!. We only show the functional categories that survived the correction for multiple
356  comparisons using the FDR method. C) Cell type-specific partitioned heritability estimates. We
357  included gene sets from Cahoy et al.>® for three main cell types (i.e., astrocyte, neuron, and

358  oligodendrocyte). After adjusting for multiple comparisons using the FDR method, the * symbol
359  denotes statistical significance (P-value<0.05). Error bars represent the standard error of the

360  estimated parameters. D) The incremental R? of the PRS derived by PRC-CS to predict the GM,
361 WM, and FC-BAG in the target/test data (i.e., the split2 GWAS). The y-axis indicates the

362  proportions of phenotypic variation (GM, WM, and FC-BAG) that the PRS can significantly and
363  additionally explain. The x-axis lists the seven P-value thresholds considered. Abbreviation: AD:
364  Alzheimer's disease; ADHD: attention-deficit/hyperactivity disorder; ASD: autism spectrum

365  disorder; BIP: bipolar disorder; MDD: major depressive disorder; OCD: obsessive-compulsive
366  disorder; SCZ: schizophrenia; CAD: coronary artery disease; CD: Crohn's disease; BMD: bone
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367  mineral density; PD: Parkinson's disease; SLE: systemic lupus erythematosus; BMI: body mass
368 index; CVD: cardiovascular disease; LDL: low-density lipoprotein cholesterol; MS: multiple
369  sclerosis; AF: Atrial fibrillation.

370

371  The potential causal relationships between GM and WM-BAG and other clinical traits
372  We investigated the potential causal effects of several risk factors (i.e., exposure variable) on
373  multimodal BAG (i.e., outcome variable) using a bidirectional two-sample MR approach™

374  (Method 4G). We hypothesized that several diseases and lifestyle risk factors might contribute
375  to accelerating or decelerating human brain aging.

376 We found putative causal effects of triglyceride-to-lipid ratio in very large very-low-
377  density lipoprotein (VLDL)® [P-value=5.09x10, OR (95% CI) = 1.08 (1.02, 1.13), number of
378  SNPs=52], type 2 diabetes®! [P-value=1.96x102, OR (95% CI) = 1.05 (1.01, 1.09), number of
379  SNPs=10], and breast cancer®® [P-value=1.81x102, OR (95% CI) = 0.96 (0.93, 0.99), number of
380 SNPs=118] on GM-BAG (i.e., accelerated brain age). We also identified causal effects of AD®
381  [P-value=7.18x107, OR (95% CI) = 1.04 (1.02, 1.05), number of SNPs=13] on WM-BAG (Fig.
382  5A). We subsequently examined the potential inverse causal effects of multimodal BAG (i.e.,
383  exposure) on these risk factors (i.e., outcome). However, owing to the restricted power [number
384  of instrumental variables (IV) < 6], we did not observe any significant signals (Supplementary
385  eFigure 10 and Supplementary eFile 9).

386

387  Sensitivity analyses for Mendelian randomization

388  We performed sensitivity analyses to investigate potential violations of the three IV assumptions
389  (Method 4G). To illustrate this, we showcased the sensitivity analysis results for the causal

390 effect of the triglyceride-to-lipid in VLDL ratio on GM-BAG (Fig. SB-E). In a leave-one-out

391  analysis, we found that no single SNP overwhelmingly drove the overall effect (Fig. 5SB). There
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was evidence for the presence of minor heterogeneity®* of the causal effect amongst SNPs
(Cochran's Q value=76.06, P-value=5.09x10"). Some SNPs exerted opposite causal effects
compared to the model using all SNPs (Fig. 5C). The scatter plot (Fig. 5D) indicated one
obvious SNP outlier (rs11591147), and the funnel plot showed little asymmetry with only an
outlier denoted in Fig. SE (rs4507142). Finally, the MR Egger estimator allows for pleiotropic
effects independent of the effect on the exposure of interest (i.e., the InSIDE assumption®). Our
results from the Egger estimator showed a small positive intercept (5.21x10-3+2.87x103, P-
value=0.07) and a lower OR [inverse-variance weighted (IVW): 1.08 (1.02, 1.13) vs. Egger: 1.01
(0.93, 1.10)], which may indicate the presence of directional horizontal pleiotropy for some
SNPs. We present sensitivity analyses for other significant exposure variables in Supplementary
eFigure 11.

To investigate the potential directional pleiotropic effects, we re-analyzed the MR Egger
regression by excluding the two outliers identified in Fig. SD (rs11591147) and E (rs4507142),
which led to a slightly increased OR [1.04 (0.96, 1.12)] and a smaller positive intercept (4.41x10°
3+2.65x1073, P-value=0.09). Our findings support that these two outlier SNPs may have a
directional pleiotropic effect on GM-BAG. Nevertheless, given the complex nature of brain
aging, many other biological pathways may also contribute to human brain aging. For instance,
the SNP (rs11591147) was largely associated with other blood lipids, such as LDL cholesterol®®,
and heart diseases, such as coronary artery disease®’. Detailed results obtained from all five MR

methods are presented in Supplementary eFile 9.
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Figure 5: Causal inference of multimodal brain age gaps

wM .
BMI Egg EFC 3 #
—
AST @r ol
|
Renin levels €@ _—
e
Triglyceride-ipid-ratio g —— o
) in VLDL ) 1 &
— : k5
> j o
8 Breast cancer ? .H. ?;
o 4 : -
= :
L o
T2 diabetes E =
#

no & =k
0.6 0'8 1‘0

OR (95% Cl)

0.05 0.0
MR effect (log odds) on Triglycerides/lipids

/" inverse variance weighted *
% / MREgger E
] R ST
[G) == - >
c w
3 %]
5 . =10 .
= . sl ™
a L *
5 T 5{rsa507142 " )
1511591147 rs o P delm g
0.10 * . T e ol % % Te® 7, .
0.1 0.2 0.3 -0.4 0.0 0.4
SNP effect on Triglycerides/lipids Biv

A) Causal inference was performed using a two-sample Mendelian Randomization (MR,
Method 4G) approach for seven selected exposure variables on three outcome variables (i.e.,
GM, WM, and FC-BAG). The symbol * denotes statistical significance after correcting for
multiple comparisons using the FDR method (N=7); the symbol # denotes the tests passing the
nominal significance threshold (P-value=0.05) but did not survive the multiple comparisons. The
odds ratio (OR) and the 95% confidence interval (CI) are presented. B) Leave-one-out analysis
of the triglyceride-to-lipid ratio on GM-BAG. Each row represents the MR effect (log OR) and
the 95% CI by excluding that SNP from the analysis. The red line depicts the IVW estimator
using all SNPs. C) Forest plot for the single-SNP MR results. Each line represents the MR effect
(log OR) for the triglyceride-to-lipid ratio on GM-BAG using only one SNP; the red line shows
the MR effect using all SNPs together. D) Scatter plot for the MR effect sizes of the SNP-
triglyceride-to-lipid ratio association (x-axis, SD units) and the SNP-GM-BAG associations (-
axis, log OR) with standard error bars. The slopes of the purple and green lines correspond to the
causal effect sizes estimated by the IVW and the MR Egger estimator, respectively. We
annotated a potential outlier. E) Funnel plot for the relationship between the causal effect of the
triglyceride-to-lipid ratio on GM-BAG. Each dot represents MR effect sizes estimated using each
SNP as a separate instrument against the inverse of the standard error of the causal estimate. The
vertical red line shows the MR estimates using all SNPs. We annotated a potential outlier.
Abbreviation: AD: Alzheimer's disease; AST: aspartate aminotransferase; BMI: body mass
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434  index; VLDL: very low-density lipoprotein; CI: confidence interval; OR: odds ratio; SD:
435  standard deviation; SE: standard error.
436
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Discussion

The present study harnessed brain imaging genetics from a cohort of 42,089 participants in
UKBB to investigate the underlying genetics of multimodal BAG. Our approach commenced
with objectively assessing brain age prediction performance, encompassing various imaging
modalities (T1-weighted, diffusion, and resting-state MRI), feature types (ROI vs. voxel), and
machine learning algorithms. Subsequently, we conducted genome-wide associations,
demonstrating the robustness of identified genetic signals in individuals of European ancestry
across diverse factors. Lastly, our study encompassed several post-GWAS analyses, validating
the GWAS results, shedding light on the intricate biological processes involved, and uncovering
the multifaceted interplay between human brain aging and various health conditions and clinical
traits. Our findings unveiled shared genetic factors and unique characteristics — varying degrees
of phenotypic and genetic correlation — within BAG across three distinct imaging modalities.
Genetic architecture of GM-BAG

Our genetic results from GM-BAG substantiate that many diseases, conditions, and
clinical phenotypes share genetic underpinnings with brain age, perhaps driven by
macrostructural changes in GM (e.g., brain atrophy). The locus with the most significant signal
(the top lead SNP rs534114641 at 17q21.31) showed substantial association with the traits
mentioned above and was mapped to numerous genes associated with various diseases (Fig. 2C).
Several previous GM-BAG GWAS?%22 also identified this locus. Among these genes, the MAPT
gene, known to encode a protein called tau, is a prominent AD hallmark and implicated in
approximately 30 tauopathies, including progressive supranuclear palsy and frontotemporal lobar
degeneration®®. Our gene-drug-disease network also showed several drugs, such as

Semorinemab**, in active clinical trials currently targeting treatment for AD (Fig. 3). The
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460  heritability enrichment of GM-BAG was high in several functional categories, with conserved
461  regions being the most prominent. The observed higher heritability enrichment in conserved

462  regions compared to coding regions® supports the long-standing hypothesis regarding the

463  functional significance of conserved sequences. However, the precise role of many highly

464  conserved non-coding DNA sequences remains unclear’’. The genetic correlation results of GM-
465  BAG with subtypes of common brain diseases highlight the promise for the Al-derived subtypes,
466  rather than the "one-for-all" unitary disease diagnosis, as robust endophenotypes?’. These

467  findings strongly support the clinical implications of re-evaluating pertinent hypotheses using the
468  Al-derived subtypes in patient stratification and personalized medicine.

469 The elevated triglyceride-to-lipid ratio in VLDL, an established biomarker for

470  cardiovascular diseases’!, is causally associated with higher GM-BAG (accelerated brain age).
471  Therefore, lifestyle interventions that target this biomarker might hold promise as an effective
472  strategy to enhance overall brain health. In addition, we revealed that one unit-increased

473  likelihood of type 2 diabetes has a causal effect on GM-BAG increase. Research has shown that
474  normal brain aging is accelerated by approximately 26% in patients with progressive type 2

475  diabetes compared with healthy controls’. The protective causal effect of breast cancer on GM-
476  BAG is intriguing in light of existing literature adversely linking breast cancer to brain

477  metastasis’® and chemotherapy-induced cognitive impairments, commonly known as "chemo
478  brain". In addition, it's important to exercise caution when considering the potential causal link
479  between breast cancer and GM-BAG, as MR analyses are susceptible to population selection
480  bias’ due to the high breast cancer mortality rate.

481 Genetic architecture of WM-BAG
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The genetic architecture of WM-BAG exhibits strong correlations with cancer-related
traits, AD, and physical measures such as BMI, among others. Our phenome-wide association
query largely confirms the enrichment of these traits in previous literature. In particular, the
DNAJCI gene, annotated from the most polygenic locus on chromosome 10 (top lead SNP:
1s564819152), encodes a protein called heat shock protein 40 (Hsp40) and plays a role in protein
folding and the response to cellular stress. This gene is implicated in various cancer types, such
as breast, renal, and melanoma (Supplementary eFigure 12). In addition, several FDA-
approved drugs have been developed based on these WM-BAG genes for different types of
cancer in our gene-drug-disease network (Fig. 3). Our findings provide novel insights into the
genetic underpinnings of WM-BAG and their potential relevance to cancer.

Remarkably, one unit-increased likelihood of AD was causally associated with increased
WM-BAG. Our Mendelian randomization analysis confirmed the abundant association
evidenced by the phenome-wide association query (Fig. 2B). Dementia, such as AD, is
undeniably a significant factor contributing to the decline of the aging brain. Evidence suggests
that AD is not solely a GM disease; significant microstructural changes can be observed in WM
before the onset of cognitive decline”. We also identified a nominal causal significance of BMI
[risk effect; P-value=4.73x1072, OR (95% CI) = 1.03 (1.00, 1.07)] on WM-BAG. These findings
underscore the potential of lifestyle interventions and medications currently being tested in
clinical trials for AD to improve overall brain health.

Genetic architecture of FC-BAG

The genetic signals for FC-BAG were weaker than those observed for GM and WM-

BAG, which is consistent with the age prediction performance and partially corroborates

Cheverud's conjecture: using genetic correlations (Fig. 2F) as proxies for phenotypic correlations
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(Fig. 1E) when collecting individual phenotypes is expensive and unavailable. A novel genomic
locus on chromosome 6 (6q.13) harbors an independent variant (rs1204329) previously linked to
insomnia’®. The top lead SNP, rs5877290, associated with this locus is a novel deletion-insertion
mutation type: no known association with any human disease or gene mapping has been
established for this SNP. The genetic basis of FC-BAG covaries with educational performance
and schizophrenia subtypes. Specifically, parental education has been linked to cognitive ability,
and researchers have identified a functional connectivity biomarker between the right rostral
prefrontal cortex and occipital cortex that mediates the transmission of maternal education to
offspring's performance IQ’’. On the other hand, schizophrenia is a highly heritable mental
disorder that exhibits functional dysconnectivity throughout the brain’8. AD was causally
associated with FC-BAG with nominal significance [risk effect for per unit increase; P-
value=4.43x102, OR (95% CI) = 1.02 (1.00, 1.03), number of SNPs=13] (Fig. 5A). The
relationship between functional brain networks and the characteristic distribution of amyloid-3
and tau in AD” provides evidence that AD is a significant factor in the aging brain, underscoring
its role as a primary causative agent.

The comparative trend of genetic heritability among GM, WM, and FC-BAG is also
consistent with previous large-scale GWAS of multimodal brain IDP. Zhao et al. performed
GWAS on GM!3, WM!4, and FC-IDP!8, showing that FC-IDP is less genetically heritable than
others. Similar observations were also demonstrated by Elliot et al.!! in the first large-scale
GWAS using multimodal IDP from UKBB. The weaker genetic signal observed in FC-BAG can
be attributed to many factors. One of the main reasons is the higher signal-to-noise ratio in FC
measurements due to the dynamic and complex nature of brain activity, which can make it

difficult to accurately measure and distinguish between the true signal and noise. Social-
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528 environmental and lifestyle factors can also contribute to the "missing heritability" observed in
529  FC-BAG. For example, stress, sleep patterns, physical activity, and other environmental factors
530  can impact brain function and connectivity®’. In contrast, GM and WM measurements are more
531  stable and less influenced by environmental factors, which may explain why they exhibit

532 stronger genetic signals and higher heritability estimates.

533

534  Limitations

535  This study has several limitations. We can employ deep learning on voxel-wise imaging scans to
536  enhance brain age prediction performance. Nevertheless, it warrants additional exploration to
537  determine whether the resulting reduction in MAE translates into more robust genome-wide

538  associations, as our previous work has demonstrated that BAGs derived from a CNN with a

539  lower MAE did not exhibit heightened sensitivity to disease effects such as AD*. Second, the
540  generalization ability of the GWAS findings to non-European ancestry is limited, potentially due
541  to small sample sizes and cryptic population stratification. Future investigations can be expanded
542  to encompass a broader spectrum of underrepresented ethnic groups, diverse disease populations,
543  and various age ranges spanning the entire lifespan. This expansion can be facilitated by

544  leveraging the resources of large-scale brain imaging genetic consortia like ADNI®!, focused on
545  Alzheimer's disease, and ABCD?®?, which centers on brain development during adolescence.

546  Third, it's important to exercise caution when interpreting the results of this study due to the

547  various assumptions associated with the statistical methods employed, including LDSC and MR.
548  Lastly, it's worth noting that brain age represents a residual score encompassing measurement

549  error. A recent study®® has underscored the significance of incorporating longitudinal data when
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550  calculating brain age. Future research should be conducted once the longitudinal scans from the
551 UK Biobank become accessible to explore this impact on GWAS:s.

552

553  Outlook

554 In summary, our multimodal BAG GWASs provide evidence that the aging process of the

555  human brain is a complex biological phenomenon intertwined with several organ systems and
556  chronic diseases. We digitized the human brain from multimodal imaging and captured a

557  complete genetic landscape of human brain aging. This opens new avenues for drug

558  repurposing/repositioning and aids in identifying modifiable protective and risk factors that can
559  ameliorate human brain health.

560
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561 Methods

562  Method 1: Study populations

563  UKBB is a population-based study of more than 50,000 people recruited between 2006 and 2010
564  from Great Britain. The current study focused on participants from the imaging-genomics

565  population who underwent both an MRI scan and genome sequencing (genotype array data and
566  the imputed genotype data) under application number 35148. The UKBB study has ethical

567  approval, and the ethics committee is detailed here: https://www.ukbiobank.ac.uk/learn-more-

568  about-uk-biobank/governance/ethics-advisory-committee. The study design, phenotype and

569  genetic data availability, and quality check have been published and detailed elsewhere?*. Table
570 1 shows the study characteristics of the present work.
571 To train the machine learning model and compare the performance of the multimodal

572  BAG, we defined the following two datasets:

573 o Training/validation/test dataset. To objectively compare the age prediction

574 performance of different MRI modalities and machine learning models, we randomly
575 sub-sampled 500 (250 females) participants within each decade's range from 44 to 84
576 years old, resulting in the same 4000 participants for GM, WM, and FC-IDP. This
577 dataset was used to train machine learning models. In addition, we ensured that the
578 training/validation/test splits were the same in the CV procedure. As UKBB is a

579 general population, we explicitly excluded participants with common brain diseases,
580 including mental and behavioral disorders (ICD-10 code: F; N=2678) and diseases
581 linked to the central nervous system (ICD-10 code: G group; N=3336).

31


https://www.ukbiobank.ac.uk/learn-more-about-uk-biobank/governance/ethics-advisory-committee
https://www.ukbiobank.ac.uk/learn-more-about-uk-biobank/governance/ethics-advisory-committee
https://doi.org/10.1101/2023.04.13.536818
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.04.13.536818; this version posted September 30, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

582 o Independent test dataset: The rest of the population for each MRI modality

583 (N=38089) was set as independent test datasets — unseen until we finalized the

584 training procedure®?.

585 The GM-IDP includes 119 GM regional volumes from the MUSE atlas, consolidated by

586  the iISTAGING consortium. We studied the influence of different WM-IDP features: 1) 48 FA
587  wvalues; ii) 109 TBSS-based® values from FA, MD, ODI, and NDI; iii) 192 skeleton-based mean
588  wvalues from FA, MD, ODI, and NDI. For FC-IDP, 210 ICA-derived functional connectivity

589  components were included. The WM and FC-IDP were downloaded from UKBB (Method 3B).

590  Table 1. Study characteristics.

591  The current table presents participants of all ancestries for the age prediction task. We

592  constrained participants with only European ancestry for downstream genetic analyses. * For age
593  and sex, we reported statistics for the overlapping population of the three modalities: 35,261

594  participants for the entire population, 4000 participants for the training/validation/test dataset,
595  and 31,261 participants for the independent test dataset. We also showed the number of

596  participants for the GM, WM, and FC-BAG GWAS. In total, our analyses included 42,089

597  unique participants who had at least one image scan. Abbreviation: dMRI: diffusion MRI;

598  rsfMRI: resting-state functional MRI; T1w MRI: T1-weighted MRI.

599
Population (overlap) Tlw MRI dMRI rsfMRI (y[sz)* Sex /female*
63.64
Total (35,261) 36,304 39,661 36,858 (45.00, 18,700/53%
81.00)
L 63.47
Training/validation/test 4000 4000 4000 (46.00, 2000/50%
(4000) 81.00)
63.66
Independent test 32,304 35,661 32,858 (45.00, 16,700/53%
(31,261) $1.00)
GWAS 31,557 31,749 32,017 NA NA
600

601  Method 2: Image processing
602  (A): T1-weighted MRI processing: The imaging quality check is detailed in Supplementary

603  eMethod 2. All images were first corrected for magnetic field intensity inhomogeneity.®® A deep
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learning-based skull stripping algorithm was applied to remove extra-cranial material. In total,
145 IDPs were generated in gray matter (GM, 119 ROIs), white matter (WM, 20 ROIs), and
ventricles (6 ROIs) using a multi-atlas label fusion method*'. The 119 GM ROIs were fit to the

four machine learning models to derive the GM-BAG.

(B): Diffusion MRI processing: UKBB has processed diffusion MRI (dMRI) data and released
several WM tract-based metrics for the Diffusion Tensor Imaging (DTI) model (single-shell
dMRI) and Neurite Orientation Dispersion and Density Imaging (NODDI?’) model (multi-shell
dMRI). The Eddy®® tool corrected raw images for eddy currents, head motion, and outlier slices.
The mean values of FA, MD, ODI, and NDI were extracted from the 48 WM tracts of the
"ICBM-DTI-81 white-matter labels" atlas®®, resulting in 192 WM-IDP (category code:134). In
addition, a tract-skeleton (TBSS)®® and probabilistic tractography analysis®® were employed to
derive weighted-mean measures within the 27 major WM tracts, referred to as the 108 TBSS
WM-IDP (category code: 135). Finally, since we observed overfitting — an increase of MAEs
from the cross-validated test results to the independent test results — when incorporating features
from FA, MD, ODI, and NDI (as detailed in Supplementary eTable 1A), we chose to use only

the 48 FA WM-IDPs to train the models for generating GM-BAG.

(O): Resting-state functional MRI processing: For FC-IDP, we used the 21 x 21 resting-state
functional connectivity (full correlation) matrices (data-field code: 25750) from UKBB!¥2,
UKBB processed rsfMRI data and released 25 whole-brain spatial independent component
analysis (ICA)-derived components®; four components were removed due to artifactual

components. This resulted in 210 FC-IDP quantifying pairwise correlations of the ICA-derived
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627  components. Details of dMRI and rsfMRI processing are documented here:

628  https://biobank.ctsu.ox.ac.uk/crystal/crystal/docs/brain_mri.pdf.

629

630  Method 3: Multimodal brain age prediction using machine learning models

631 GM, WM, and FC-IDP (details of image processing are presented in Method 2) were fit into
632  four machine learning models (linear and non-linear) to predict brain age as the outcome.

633  Specifically, we used SVR, LASSO regression, MLP, and a five-layer neural network (NN: three
634 linear layers and one rectified linear unit layer).

635 To objectively and reproducibly compare the age prediction performance using different
636  machine learning models and MRI modalities, we adopted a nested CV procedure and included
637  an independent test dataset?’. Specifically, the outer loop CV was performed for 100 repeated
638  random splits: 80% of the data were used for training. The remaining 20% was used for

639  validation/testing in the inner loop with a 10-fold CV. In addition, we concealed an independent
640 test dataset — unseen for testing until we finished fine-tuning the machine learning models®* (e.g.,
641  hyperparameters for SVR and neural networks). To compare the results of different models and
642  modalities, we showed MAE's mean and empirical standard deviation instead of performing any
643  statistical test (e.g., a two-sample t-test). This is because no unbiased variance estimate exists for
644  complex CV procedures (refer to notes from Nadeau and Benjio®).

645

646  Method 4: Genetic analyses

647  Imputed genotype data were quality-checked for downstream analyses. Our quality check

648  pipeline (see below) resulted in 33,541 European ancestry participants and 8,469,833 SNPs.

649  After merging with the multimodal MRI populations, we included 31,557 European participants
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for GM-BAG, 31,749 participants for WM-BAG, and 32,017 participants for FC-BAG GWAS.
Details of the protocol are described elsewhere!>?. We summarize our genetic QC pipeline as
below. First, we excluded related individuals (up to 2"-degree) from the complete UKBB
sample using the KING software for family relationship inference’®. We then removed
duplicated variants from all 22 autosomal chromosomes. Individuals whose genetically identified
sex did not match their self-acknowledged sex were removed. Other excluding criteria were: 1)
individuals with more than 3% of missing genotypes; ii) variants with minor allele frequency
(MAF) of less than 1%; iii) variants with larger than 3% missing genotyping rate; iv) variants
that failed the Hardy-Weinberg test at 1x107!°, To adjust for population stratification’’, we
derived the first 40 genetic principle components (PC) using the FlashPCA software”®. Details of

the genetic quality check protocol are described elsewhere?>*°,

(A): Genome-wide association analysis: For GWAS, we ran a linear regression using Plink!%
for GM, WM, and FC-BAG, controlling for confounders of age, dataset status
(training/validation/test or independent test dataset), age x squared, sex, age x sex interaction,
age-squared x sex interaction, total intracranial volume, the brain position in the scanner (lateral,
transverse, and longitudinal), and the first 40 genetic principal components. The inclusion of
these covariates is guided by pioneer neuroimaging GWAS conducted by Zhao et al'®. and Elliot
et al.!! We adopted the genome-wide P-value threshold (5 x 10-*) and annotated independent
genetic signals considering linkage disequilibrium (see below). We then estimated the SNP-
based heritability using GCTA? using the individual-level genotype data with the same

covariates in GWAS.
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672 To check the robustness of our GWAS results using European ancestry, we performed six
673  sensitivity checks, including i) split-sample GWAS by randomly dividing the entire population
674  into two sex and age-matched splits, ii) sex-stratified GWAS for males and females, iii) non-

675  European GWAS, iv) fastGWA?* for a mixed linear model that accounts for cryptic population
676  stratification, v) machine learning-specific GWAS, and vi) feature type-specific GWAS.

677

678  (B): Annotation of genomic loci and genes: The annotation of genomic loci and mapped genes

679  was performed via FUMA!'"! (https://fuma.ctglab.nl/, version: v1.5.0). For the annotation of

680  genomic loci, we first defined lead SNPs (correlation 7 < 0.1, distance < 250 kilobases) and
681  assigned them to a genomic locus (non-overlapping); the lead SNP with the lowest P-value (i.e.,
682  the top lead SNP) was used to represent the genomic locus. For gene mappings, three different
683  strategies were considered. First, positional mapping assigns the SNP to its physically nearby
684  genes (a 10 kb window by default). Second, eQTL mapping annotates SNPs to genes based on
685  eQTL associations. Finally, chromatin interaction mapping annotates SNPs to genes when there is
686  a significant chromatin interaction between the disease-associated regions and nearby or distant
687  genes.!’! The definition of top lead SNP, lead SNP, independent significant SNP, and candidate
688  SNP can be found in Supplementary eMethod 1.

689

690 (C): Phenome-wide association query for genomic loci associated with other traits in the
691 literature: We queried the significant independent SNPs within each locus in the GWAS

692  Catalog (query date: January 10th, 2023 via FUMA version: v1.5.0) to determine their

693  previously identified associations with other traits. For these associated traits, we further mapped

694  them into several high-level categories for visualization purposes (Fig. 2B).
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695

696  (D): Genetic correlation: We used LDSC?¢ to estimate the pairwise genetic correlation (rg)

697  between GM, WM, and FC-BAG and several pre-selected traits (Supplementary eTable 3) by
698  using the precomputed LD scores from the 1000 Genomes of European ancestry. The following
699  pre-selected traits were included: Alzheimer's disease (AD), autism spectrum disorder (ASD),
700  attention-deficit/hyperactivity disorder (ADHD), obsessive-compulsive disorder (OCD), major
701  depressive disorder (MDD), bipolar disorder (BIP), schizophrenia (SCZ), education and

702  intelligence, as well as the Al-derived subtypes for AD (AD1 and AD2!%%), ASD (ASD1, ASD2,
703  and ASD3%), and SCZ (SCZ1 and SCZ2!%%) — serving as more robust endophenotypes than the
704  disease diagnoses themselves. To ensure the suitability of the GWAS summary statistics, we first
705  checked that the selected study's population was European ancestry; we then guaranteed a

706  moderate SNP-based heritability A4 estimate and excluded the studies with spurious low 4’

707  (<0.05). Notably, LDSC corrects for sample overlap and provides an unbiased estimate of

708  genetic correlation!®. The A estimate from LDSC is, in general, lower than that of GCTA

709  because LDSC uses GWAS summary statistics and pre-computed LD information and has

710  slightly different model assumptions across different software!?>.

711

712 (E): Partitioned heritability estimate: Partitioned heritability analysis estimates the percentage
713 of heritability enrichment explained by annotated genome regions®!. First, the partitioned

714 heritability was calculated for 53 main functional categories. The 53 functional categories are not
715  specific to any cell type, including coding, UTR, promoter, and intronic regions. Details of the
716 53 categories are described elsewhere®! and are also presented in Supplementary eTable SA.

717  Subsequently, cell type-specific partitioned heritability was estimated using gene sets from
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Cahoy et al.>® for three main cell types (i.e., astrocyte, neuron, and oligodendrocyte)

(Supplementary eTable 5B).

(F): Gene-drug-disease network construction: We curated data from the Drug Bank database
(v.5.1.9)'% and the Therapeutic Target Database (updated by September 29", 2021) to construct
a gene-drug-disease network. Specifically, we constrained the target to human organisms and
included all drugs with active statuses (e.g., patented and approved) but excluded inactive ones
(e.g., terminated or discontinued at any phase). To represent the disease, we mapped the
identified drugs to the Anatomical Therapeutic Chemical (ATC) classification system for the
Drugbank database and the International Classification of Diseases (ICD-11) for the Therapeutic

Target Database.

(G): Two-sample Mendelian Randomization: We investigated whether the clinical traits
previously associated with our genomic loci (Fig. 2B) were a cause or a consequence of GM,
WM, and FC-BAG using a bidirectional, two-sample MR approach. GM, WM, and FC-BAG are
the outcome/exposure variables in the forward/inverse MR, respectively. We applied five
different MR methods using the TwoSampleMR R package®®, including the inverse variance
weighted (IVW), MR Egger!??, weighted median!®®, simple mode, and weighted mode methods.
We reported the results of [IVW in the main text and the four others in the Supplementary eFile
9. MR relies on a set of crucial assumptions to ensure the validity of its results. These
assumptions include the requirement that the chosen genetic instrument exhibits a strong
association with the exposure of interest while remaining free from direct associations with

confounding factors that could influence the outcome. Additionally, the genetic variant used in
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741 MR should be independently allocated during conception and inheritance, guaranteeing its

742  autonomy from potential confounders. Furthermore, this genetic instrument must affect the

743  outcome solely through the exposure of interest without directly impacting alternative pathways
744  that could influence the outcome (no horizontal pleiotropy). The five MR methods handle

745  pleiotropy and instrument validity assumptions differently, offering various degrees of

746  robustness to violations. For example, MR Egger provides a method to estimate and correct for
747  pleiotropy, making it robust in the presence of horizontal pleiotropy. However, it assumes that
748  directional pleiotropy is the only form of pleiotropy present.

749 To ensure an unbiased selection of exposure variables, we followed a systematic

750  procedure guided by the STROBE-MR Statement!?”. We pre-selected exposure variables across
751  various categories based on our phenome-wide association query. These variables encompassed
752  neurodegenerative diseases (e.g., AD), liver biomarkers (e.g., AST), cardiovascular diseases
753 (e.g., the triglyceride-to-lipid ratio in VLDL), and lifestyle-related risk factors (e.g., BMI).

754 Subsequently, we conducted an automated query for these traits in the IEU GWAS database!!°,
755  which provides curated GWAS summary statistics suitable for MR, using the

756  available outcomes() function. We ensured the selected studies used European ancestry

757  populations and shared the same genome build as our GWAS (HG19/GRCh37). Additionally, we
758  manually examined the selected studies to exclude any GWAS summary statistics overlapping

759  with UK Biobank populations to prevent bias stemming from sample overlap!!!

. This process
760  yielded a set of seven exposure variables, comprising AD, breast cancer, type 2 diabetes, renin

761  level, triglyceride-to-lipid ratio, aspartate aminotransferase (AST), and BMI. The details of the

762  selected studies for the instrumental variables (IVs) are provided in Supplementary eTable 6.
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We performed several sensitivity analyses. First, a heterogeneity test was performed to
check for violating the IV assumptions. Horizontal pleiotropy was estimated to navigate the
violation of the IV's exclusivity assumption® using a funnel plot, single-SNP MR approaches,

107

and MR Egger estimator'”’. Moreover, the leave-one-out analysis excluded one instrument

(SNP) at a time and assessed the sensitivity of the results to individual SNP.

(H): PRS prediction: We calculated the PRS using the GWAS results from the split-sample
analyses. The weights of the PRS were defined based on splitl data (training/base data), and the
split2 GWAS summary statistics were used as the test/target data. The QC steps for the base data
are as follows: 7) removal of duplicated and ambiguous SNPs for the base data; i7) clumping the
base GWAS data; iii) pruning to remove highly correlated SNPs in the target data; iv) removal of
high heterozygosity samples in the target data; v) removal of duplicated, mismatching and
ambiguous SNPs in the target data. After rigorous QC, we employed two methods to derive the
three BAG-PRS in the split2 population: i) PLINK with the classic C+T method (clumping +
thresholding) and ii) PRS-CS>7 with a Bayesian approach.

To determine the "best-fit" PRS P-value threshold, we performed a linear regression
using the PRS calculated at different P-value thresholds (0.001, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5),
controlling for age, sex, total intracellular volume, brain position during scanning (lateral,
transverse, and longitudinal), and the first forty genetic PCs. A null model was established by
including only the abovementioned covariates. The alternative model was then constructed by

introducing each BAG-PRS as an extra independent variable.
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784  Data Availability

785  The GWAS summary statistics corresponding to this study are publicly available on the

786  MEDICINE knowledge portal (https://labs.loni.usc.edu/medicine).
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787  Code Availability

788  The software and resources used in this study are all publicly available:

789 e MLNI: https://anbail06.github.io/mlni/, brain age prediction (V0.1.2)

790 e MEDICINE: https://labs.loni.usc.edu/medicine, knowledge portal for dissemination and
791 GWAS summary statistics sharing

792 e MUSE: https://www.med.upenn.edu/sbia/muse.html, image preprocessing for GM-IDP
793 e PLINK: https://www.cog-genomics.org/plink/, GWAS and PRS

794 e FUMA: https://fuma.ctglab.nl/, gene mapping, genomic locus annotation

795 e GCTA: https://yanglab.westlake.edu.cn/software/gcta/#Overview, heritability estimates,
796 and fastGWA

797 e LDSC: https://github.com/bulik/ldsc, genetic correlation, partitioned heritability

798 e TwoSampleMR: https://mrcieu.github.io/TwoSampleMR/index.html, MR

799 e PRS-CS: https://github.com/getian107/PRScs, PRS
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