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amyloid-beta (AS) and tau. We study their effect on neuronal
activity, with the aim of assessing their individual and combined
impact.

Methods: We use a whole-brain dynamic model to find the
optimal parameters that best describe the effects of A5 and tau on
the excitation-inhibition balance of the local nodes.

Results: We found a clear dominance of AS over tau in the early
disease stages (MCI), while tau dominates over Aj in the latest
stages (AD). We identify crucial roles for A and tau in complex
neuronal dynamics and demonstrate the viability of using regional
distributions to define models of large-scale brain function in AD.

Conclusions: Our study provides further insight into the
dynamics and complex interplay between these two proteins,
opening the path for further investigations on biomarkers and
candidate therapeutic targets in-silico.

Keywords: Alzheimer’s disease; Amyloid-Beta; Tau; Whole-Brain model;
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1 Background

Alzheimer’s Disease (AD) is a neurodegenerative disease that leads to progressive
impairment of memory and other cognitive domains, neuropsychiatric symptoms,
and, ultimately, severe impairment in all body functions. This results in both a
huge loss of quality of life for affected people and caregivers and high costs for
society at large. AD pathogenesis is associated with several interlinked pathomech-
anistic processes, from genomics to connectomics, including the Notch-1 pathway,
neurotransmitters, polygenetic factors, neuroinflammation, and neuroplasticity [1].
However, the accumulation of misfolded proteins is considered the pathological hall-
mark of AD: namely extracellular accumulation of Amyloid-beta (A/3), forming se-
nile plaques; and intraneuronal aggregation of the microtubule protein tau, called
neurofibrillary tangles [2]. Treatments for removal of AS (e.g., with Adacanumab
and Lecanemab) are currently discussed in light of inconclusive effects on reducing

cognitive decline [3]. In spite of the large body of research on AD, many aspects
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regarding pathophysiology and the roles of A5 and tau are still incompletely un-
derstood [4, 5].

Regarding brain dysfunction, several human autopsy and animal studies have
seen a disruption in excitation/inhibition (E/I) balance, especially in early stages
where neuronal hyperexcitability impairs cortical activity and thus contributes to
cognitive decline [6, 7]. Chang et al. [8] showed tau affects excitatory and inhibitory
neurons differently, and its removal decreases the baseline activity of excitatory
neurons and, simultaneously, affects the axon initial segments and the intrinsic ex-
citability of inhibitory neurons, resulting in network inhibition. In this line, Bi and
co-workers [9] hypothesized that AS impairs GABAergic function and thus pro-
duces synaptic hyperexcitation. Petrache et al. [10] found synaptic hyperexcitation
and severely disrupted E/I inputs onto principal cells, and a reduction in the so-
matic inhibitory axon terminals. Recently, Lauterborn and coauthors [11] revealed
significantly elevated E/I ratios in post-mortem cortex samples. While interesting
results regarding E/I imbalance with marked hyperexcitability were derived in an-
imals and post-mortem human cortex samples, in-vivo human studies are lacking,
as the activity of E/I populations cannot be directly measured using neuroimaging.
Most works on whole-brain dynamics studied activation patterns but were not in-
formative regarding the role of E/I populations [12, 13, 14, 15, 16]. To understand
the complex interplay between pathophysiological processes and brain activity (i.e.,
fMRI), models might improve when incorporating heterogeneity of brain dynamics
based on empirical data [17, 18, 19].

Earlier work using whole-brain simulations focused on linking global and local
brain dynamics to individual differences in cognitive performance scores from dif-
ferent conditions [12]. Demirtag [14] et al. studied the effect of heterogeneity of local
synaptic strengths on a dynamical model of human cortex in healthy subjects, show-
ing that heterogeneity significantly improved the fitting of resting-state functional
connectivity. Stefanovski and co-authors [15] focused on the connection of A with
neural function in The Virtual Brain [20] to examine how AfS modulates regional
E/I balance, producing local hyperexcitation in regions with high Aj loads. This
led to further improvements on classifications between AD and controls [16]. How-
ever, all these works study the effect of a single burden, namely A(, on the neuronal
dynamics, while our work focuses mostly on the interplay of both burdens, i.e., A3
and tau, assessing their relative impacts on brain dynamics.

In this paper, we use whole-brain modeling techniques to study the impact of both
A and tau on the dynamics of regional behaviors in AD, discerning the impact of
each protein in isolation and in combination, and being able to assess their relative
weights on contributing to abnormal brain activity. We use the Balanced Excitation-
Inhibition (BEI) model [18], which can reproduce the fMRI activity based on in-
teractions of excitatory and inhibitory neural populations interconnected by white
matter tracts. We show in this work a clear dominance of the effects of AS over
tau on brain dynamics in the earlier stages of the disease (Mild Cognitive Impair-
ment, MCI), and a dominance of protein tau over AS in advanced stages (manifest

dementia).
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2 Methods

2.1 Methods Overview

Model Creation: Figure la presents an overview of our overall analysis strategy,
and the details could be found in the Methods Section. We make use of MRI and
positron emission tomography (PET) from the Alzheimer’s Disease Neuroimag-
ing Initiative (ADNI). In summary, we use diffusion MRI to generate the struc-
tural connectomes of healthy controls (HC), mild cognitive impairment (MCI) and
Alzheimer’s Disease (AD) subjects. We use task-free resting-state functional MRI
to fit a whole-brain model in which the local neuronal dynamics of each brain re-
gion evolves according to the dynamic mean field model by Deco et al. [18], which
is then connected to a spontaneous blood-oxygenation-level-dependent (BOLD) dy-
namics. We refer to this model as the Balanced Fxcitation-Inhibition (BEI) model,
which can be thought of as a homogeneous reference against which we evaluate the
performance of our heterogeneous AD model. A and tau distributions are derived
from AV-45 and AV-1451 PET from ADNI. For the heterogeneous model, we incor-
porate regional heterogeneous distributions of the main proteins involved in AD,
namely AS and tau, as first order multiplicative polynomials for each burden and
for each type of population (excitatory/inhibitory) into the local gain parameter
Mg,y Fitting the model to empirical fMRI data allows us to evaluate which effect
of AB and tau to the different populations can mechanistically explain the observed
behaviors.

Model Fitting: For both of our models, homogeneous and heterogeneous, we as-
sume that all diffusion MRI-reconstructed streamline fibers have the same con-
ductivity and thus the coupling between different brain areas is scaled by a single
global parameter, G. We first tune the GG parameter of the BEI model to adjust
the strength of effective coupling in the model and identify the brain’s dynamic
working-point by fitting the model to three empirical properties that are estimated
from the empirical fMRI data:

e the Pearson correlation between model and empirical estimates of static (i.e.,
time-averaged) functional connectivity estimated across all pairs of brain re-
gions (FC);

e similarity in sliding-window functional connectivity dynamics (swFCD);

e the KS distance between a set of dynamic functional connectivity matrices
(also called coherence connectivity matrix [21]) built from the average BOLD
time series of each ROI, which were Hilbert-transformed to yield the phase
evolution of the regional signals (phFCD).

We then fit the coefficients for the two burdens, for excitatory and inhibitory pop-
ulations, with a global optimization algorithm, within directional bounds obtained
from previous clinical observations (see below, in Section 2.8).

Result Evaluation: To demonstrate that E/I imbalance is dependent on the pre-
cise distribution of the A and tau burdens, at the optimal values obtained with
the fitting procedure described above, we randomly shuffled the empirical protein
burdens; i.e., the original 378 values for each of the misfolded protein maps were
randomly re-assigned to different regions, and the model was run 10 times with each
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different randomly re-assigned receptor map, and the simulation was repeated 10
more times for each re-assigned receptor map, for a total of 100 simulations each
time. Figure 1b shows the results of randomly shuffling the empirical burden densi-
ties across the regions at the optimum point. This randomly reshuffled manipulation
yields a significantly worse fit compared to the actual empirical burden densities
(as shown by the Wilcoxon statistics in the boxplot). We additionally evaluate the
quality of the simulation results with the optimized parameters with original (i.e.,
not shuffled) burdens and with the homogeneous BEI model. Finally, we examine
the relevance of each type of burden by optimizing them in isolation from each
other (i.e., zeroing the other one out), and comparing the results. The whole com-
parisons include both burdens in isolation, both burdens simultaneously, and with
the homogeneous (i.e., BEI) model.

2.2 Participants

Empirical data were obtained from the Alzheimer’s Disease Neuroimaging Initiative
(ADNI) database (adni.loni.usc.edu), which is a longitudinal multi-site study
designed to develop biomarkers for Alzheimer’s disease (AD) across all stages. The
inclusion criteria for AD patients was the NINCDS-ADRDA criteria, which contains
only clinical features [22], and an MMSE score below 24. For both HC and MCI, the
inclusion criteria were a MMSE (Mini Mental State Examination) score between
24-30, as well as age between 55-90 years. Also, for MCI, participants had to have a
subjective memory complaint and abnormal results in another neuropsychological
memory test. Imaging and biomarkers were not used for the diagnosis.

2.3 Data Acquisition and Processing

All the data in this study were previously used in Stefanovski et al. [15] work, so
we will present here an abridged version of the processing performed on the original
data and refer to the original work for the details. All images used in this study
were taken from ADNI-3, using data from Siemens scanners with a magnetic field
strength of 3T.

2.3.1 Structural MRI

For each included participant, we created a brain parcellation for our structural
data using FLAIR, following the minimal preprocessing pipeline [23] of the Human
Connectome Project (HCP) using Freesurfer!] [24], FSL [25, 26, 27] and connec-
tome workbench[?. Therefore, we used T1 MPRAGE, FLAIR and fieldmaps for
the anatomical parcellation. We then registered the subject cortical surfaces to the
parcellation of Glasser et al. [28] using the multimodal surface matching (MSM)
tool [29]. In this parcellation, there were 379 regions: 180 left and 180 right cortical
regions, 9 left and 9 right subcortical regions, and 1 brainstem region.

2.3.2 PET Images
For Ap, we used the version of AV-45 PET already preprocessed by ADNI, using
a standard image with a resolution of 1.5mm cubic voxels and matrix size of 160 x

(Uhttps://surfer.nmr.mgh.harvard.edu/fswiki/FreeSurferMethodsCitation

p]https://www.humanconnectome.org/software/connectome—workbench
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160 x 96, normalized so that the average voxel intensity was 1 and smoothed out
using a scanner-specific filter function. Then, a brainmask was generated from the
structural preprocessing pipeline (HCP) and used to mask the PET image. On the
other hand, to obtain the local burden of A3, we computed the relative intensity to
the cerebellum. We received in each voxel a relative A5 burden which is aggregated
according to the parcellation used for our modeling approach. Subcortical region
PET loads were defined as the average SUVR in subcortical gray matter (GM).
With the help of the connectome workbench tool, using the pial and white matter
surfaces as ribbon constraints, we mapped the Cortical GM PET intensities onto
individual cortical surfaces. Finally, using the multimodal Glasser parcellation we
derived average regional PET loads.

For tau, we also used ADNI’s preprocessed version of AV-1451 (Flortaucipir)
following the same acquisition and processing, resulting in a single relative tau value
for each voxel. Then, these values were also aggregated to the selected parcellation,
also following the already mentioned steps. The final average regional tau loads
were obtained in the Glasser parcellation.

2.3.3 DWI

Individual tractographies were computed only for included HC participants, and
they were averaged to a standard brain template (see below). Preprocessing was
mainly done with the MRtrix3 software packagel?!.

In particular, the following steps were performed: First, we denoised the DWI
data [30], followed by motion and eddy current correction®. Then, B1 field inho-
mogeneity correction (ANTS N4), followed by a brainmask estimation from the
DWI images. Next, we normalized the DWI intensity for the group of participants,
which was used to generate a WM response function [31], and created an average
response function from all participants. Next, we estimated the fiber orientation dis-
tribution and the average response function [32] using the subject normalized DWI
image, to finally generate a five tissue type image. Finally, we used the iFOD2 algo-
rithm [33] and the SIFT?2 algorithm [34] to get the weighted anatomical constrained
tractography [35], to end up merging all information into the Glasser connectome,
resulting in a structural connectome (SC).

It is important to note that the multi-center nature of ADNI data can be prob-
lematic, with inter-site differences in acquisition, scanner and protocol, being DWI
is particularly susceptible to multi-center related issues and problematic harmo-
nization. To prevent these problems, we actually restricted the data set to just
one scanner type, from Siemens. The details of the scanner metadata including
the acquisition centers and used scanners are also provided in the supplementary
material.

2.8.4 fMRI
With respect to the processing of the fMRI data, the images were initially pre-

processed in FSL FEAT and independent component analysis—based denoising

[SJhttp://www.mrtrix.org

H]https://mrtrix‘readthedocs.io/en/latest/dwi_preprocessing/dwipreproc.html
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(FSLFIX) following a basic pipeline [15]. Time courses for noise-labeled compo-
nents, along with 24 head motion parameters, were then removed from the voxel-
wise fMRI time series using ordinary least squares regression.

The resulting denoised functional data were spatially normalized to the MNI space
using Advanced Normalization Tools (version 2.2.0). Mean time series for each par-
cellated region were then extracted, and interregional FC matrices were estimated
using Pearson correlations between each pair of regional time series. Dynamic FC

matrices were also calculated for the empirical data, as outlined below.

2.4 Generation of a Standard Brain Template
As previously done [15], we average the SCs of all HC participants, using an arith-
metic mean

n

Cu=(>_Ci)/n=(Cr+Ca+ ..+ Cp)/n
i=1
wherein C,, is the averaged SC matrix, n is the number of HC participants and C;
is the individual SC matrix.

However, as matrices in this context are large (i.e., 379 regions), the average input
to any given node can be too large for the DMF, making fitting and processing in
general more difficult. Thus, we discarded the traditional normalization of dividing
the matrix elements by its maximum, and used a slightly different approach, instead.
First, we added one and applied the logarithm to every entry, as I[C' = log(C,, + 1).
Then, we computed the maximum input any node could receive for a unitary unit
input current, mazNodeInput = maz;(}_,(IC; ;)), and finally we normalized by
0.7 % IC/maxNodelInput, where 0.7 was chosen to be a convenient normalization
value. Observe that this constant is actually multiplying another constant G in the
model which we fit to empirical data, so its actual value can safely be changed.

In Figure 3 we can find the SC matrix and organization graph, where we can
observe that the general characteristics of physiological SCs such as symmetry,
laterality, homology, and subcortical hubs are maintained in the averaged connec-
tome. The election of the averaged SC allowed us to control all factors (e.g., at-
rophy), which matched our objective of simulating the activity from both healthy
and “pathogenic” modifications by A5 and tau.

2.5 Balanced Excitation-Inhibition (BEI) model

In this work we used the Dynamic Mean Field (DMF) model proposed by Deco et
al. [18], which consists of a network model to simulate spontaneous brain activity
at the whole-brain level. Following the original formulation, each node represents
a region of interest (i.e., a brain area) and the links represent the white matter
connections between them. In turn, each node is a reduced representation of large
ensembles of interconnected excitatory and inhibitory integrate-and-fire spiking neu-
rons (as in the original, respectively 80% and 20% neurons), to a set of dynamical
equations describing the activity of coupled excitatory (F) and inhibitory (I) pools
of neurons, based on the original reduction of Wong and Wang [36]. In the DMF
model, excitatory synaptic currents, I(E), are mediated by NMDA receptors, while
inhibitory currents, I(I), are mediated by GABA 4 receptors. Both neuronal pools
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are reciprocally connected, and the inter-area interactions occur at the excitatory
level only, scaled by the structural connectivity Cy; (see Section 2.3.1).

To be more specific, the DMF model is expressed by the following system of
coupled differential equations:

P =Wg I, +wyp Iy S+ ING S Oy — IS + Leas (1)
J

I = Wil + xS = 80 + AING Y CrystP (2)
J

MkE(aEI]gE) — bE)
1 exp(~dpMF (apli® - bp))

B = B =

I
PO — (D) = ME(arIP —by)
1 —exp(—d; M (a1 —by))

- (E) g (E) B)( (E)

Sy =— Té + (1 -5, )’YH( )(Ik ) (5)
. gD

S ==+ O (©)

Here, the last two equations should add, when integrating, an uncorrelated standard
Gaussian noise term with an amplitude of 0 = 0.0lnA (using Euler-Maruyama
integration). In these equations, A is a parameter that can be equal to 1 or 0,
indicating whether long-range feedforward inhibition is considered (A = 1) or not
(A = 0). In the above equation, the kinetic parameters are v = 0.641/1000 (the
factor 1000 is for expressing everything in ms), and 75 = Ty pa and 71 = TgaBA-
The excitatory synaptic coupling Jyarpa = 0.15 (nA). The overall effective external
input is Iy = 0.382 (nA) scaled by Wg and W7y, for the excitatory pools and the
inhibitory pools, respectively. The effective time constant of NMDA is 7y 3 pa = 100
ms [36]. The values of Wy, Iy, and Jyppa were chosen to obtain a low level of
spontaneous activity for the isolated local area model. The values of the gating
variables can be found in Table 1.

Excitatory gating variables | Inhibitory gating variables

ag =310 (nC1) ar =615 (nC~1)
bgp = 125 (Hz) by = 177 (Hz)
dp = 0.16 (s) d; = 0.087 (s)
TE = TNMDA = 100 (ms) 71 = TgABA = 10 (ms)
Wg=1 W; =0.7

Table 1 Gating variables in the BEI model

As mentioned, the DMF model is derived from the original Wong and Wang
model [36] to emulate resting-state conditions, such that each isolated node displays
the typical noisy spontaneous activity with low firing rate (H") ~ 3Hz) observed in
electrophysiology experiments, reusing most of the parameter values defined there.
We also implemented the Feedback Inhibition Control (FIC) mechanism described
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by Deco et al. [18], where the inhibition weight, J,,, was adjusted separately for
each node n such that the firing rate of the excitatory pools H¥) remains clamped
at 3Hz even when receiving excitatory input from connected areas. Deco et al. [18]
demonstrated that this mechanism leads to a better prediction of the resting-state
FC and to a more realistic evoked activity. We refer to this model as the balanced
excitation-inhibition (BEI) model. Although the local adjustments in this model
introduce some degree of regional heterogeneity, the firing rates are constrained
to be uniform across regions so we consider this BEI model as a homogeneous
benchmark against which we evaluate more sophisticated models that allow AS
and tau to affect intrinsic dynamical properties across regions.

Following the Glasser parcellation [23], we considered N = 379 brain areas in
our whole-brain network model. Each area n receives excitatory input from all
structurally connected areas into its excitatory pool, weighted by the connectivity
matrix, obtained from dMRI (see Section 2.3.3). Furthermore, all inter-area E-to-E
connections are equally scaled by a global coupling factor G. This global scaling
factor is the only control parameter that is adjusted to move the system to its
optimal working point, where the simulated activity maximally fits the empirical
resting-state activity of healthy control participants. Simulations were run for a
range of G between 0 and 5.5 with an increment of 0.05 and with a time step of
1 ms. For each G, we ran 200 simulations of 435 s each, in order to emulate the
empirical resting-state scans from 17 participants. The optimum value found, for
the phFCD observable, is for G = 3.1. See Figure 2A.

2.6 Simulated BOLD signal

Once we have obtained the simulated mean field activity, we need to transform it
into a BOLD signal we used the generalized hemodynamic model of Stephan et
al. [37]. We compute the BOLD signal in the k-th brain area from the firing rate of
the excitatory pools H¥)_ such that an increase in the firing rate causes an increase
in a vasodilatory signal, s, that is subject to auto-regulatory feedback. Blood inflow
fr responds in proportion to this signal inducing changes in blood volume v, and

deoxyhemoglobin content gi. The equations relating these biophysical variables are:

d

% = 0.57“,(€E) +3—ks —v(fr — 1)

& _,

at "

dvk —f ot (7)
Tat R

1 _ 1 _ f71 a—l

T%ka ( P —kak

dt p Vg

with finally

B = v k1<1—qk)+k2<1—j—pmg(l—vk)

being the final measured BOLD signal.
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We actually used the updated version described later on [37], which consists on

introducing the change of variables Z = Inz, which induces the following change for

2z = fk, vr and ¢, with its corresponding state equation % = F(z), as:

dz din(z)dz F(2)

dt ~  dz dt =z

which results in z(t) = exp(2(t)) always being positive, which guarantees a proper
support for these non-negative states, and thus numerical stability when evaluating

the state equations during evaluation.

2.7 AB-Tau model:
In our heterogeneous model, AS and Tau are introduced, at the formulae for the

E,I) (

neuronal response functions, H( excitatory/inhibitory), into the gain factor

MIEE’I) for the k-th area as

M7 = (1+bi3g + 555 ABr) (1 + b7 + 57 tauy) ®)

M} = (14l + sh5ABK) (1 + bl + sltauy) (9)

where bg;;)ﬂ are the excitatory/inhibitory A5 and tau bias parameters, while
SEZ,ﬁI)T) are the respective scaling factors. These are the 8 (from which actually only
6 are needed as tau only affects excitatory neurons [38], see next section) parameters

that we will optimize for each subject individually.

2.8 Constraints
Based on previous neuroscientific experiments [4], we included constraints on the
direction of effect of A8 and tau (i.e., inhibitory vs. excitatory influence). We in-
troduced the following constraints:
e Af produces inhibitory GABAergic interneuron dysfunction [6, 39], thus we
can infer that sfw < 0.
e Af produces impaired glutamate reuptake [6, 39], so we can introduce the
bound sﬁﬁ > 0.
e Tau appears to target excitatory neurons [38], so we can safely consider that
bl = sl = 0.
e Tau binds to synaptogyrin-3, reducing excitatory synaptic neurotransmitter
release [40], thus s < 0.
Although the interplay between AS and tau is not completely known [4], but
there is evidence that Af promotes tau by cross-seeding [41, 42], thus the cross
term factors (i.e., the ones resulting from the multiplication of A and tau scaling

parameters) play a crucial role to elucidate the final impact of the combined burden.
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2.9 Observables

edge-centric FC' 'The static edge-level FC is defined as the N x N matrix of BOLD
signal correlations between brain areas computed over the entire recording period
(see Figure 3). We computed the empirical FC for each human participant and for
each simulated trial, as well as for the group-averages SC matrix of the healthy
cohort. All empirical and simulated FC matrices were compared by computing the
Pearson correlation between their upper triangular elements (given that the FC

matrices are symmetric).

swFCD The most common and straightforward approach to investigate the tem-
poral evolution of FC is the sliding-window FC dynamics (swFCD) [43]. This is
achieved by calculating the correlation matrix, F'C(t), restricted to a given time-
window (t — x : t 4+ z), and successively shifting this window in time resulting in a
time-varying F'Cnyn,r matrix (where N is the number of brain areas and T the
number of time windows considered). Here, we computed the FC over a sliding win-
dow of 30 TRs (corresponding approximately to 1.5 minutes) with incremental shifts
of 3 TRs. This FCD matrix is defined so that each entry, (FCD(t,,t,)) corresponds
to the correlation between the FC centered at times ¢, and the FC centered at t,.
In order to compare quantitatively the spatio-temporal dynamical characteristics
between empirical data and model simulations, we generate the distributions of the
upper triangular elements of the FCD matrices over all participants as well as of
the FCD matrices obtained from all simulated trials for a given parameter setting.
The similarity between the empirical and model FCD distributions is then com-
pared using the KS distance, Dgg, allowing for a meaningful evaluation of model
performance in predicting the changes observed in dynamic resting-state FC. How-
ever, the fundamental nature of the swFCD technique implies the choice of a fixed
window length, which limits the analysis to the frequency range below the window
period, so the ideal window length to use remains under debate [44].

phFCD In an attempt to overcome the limitations of the sliding-window analysis,
a few methods were proposed to estimate the F'C(t) at the instantaneous level. For
instance, phase Functional Connectivity Dynamics (phF'CD) consists in computing
the phase coherence between time series at each recording frame [21]. In brief, the
instantaneous BOLD phase of area n at time ¢, 0,,(¢), is estimated using the Hilbert
transform. Given the phase, the angle between two BOLD signals is given by their
absolute phase difference: ©,,, = |6,,(t) — 6,(t)|. Then, the phFCD(t) between a
pair of brain areas n and p is calculated as:

phFCDnp(t) = cos(Ony(t)),n,pe N =1,..,N

with IV the number of brain regions considered in the parcellation used. To compare
two phFCD matrices among themselves, e.g., a simulated and an empirical one,
again the KS distance is usually used.

2.10 Full Optimization

To efficiently optimize the 6-dimensional function described before for the three
bias and scaling values, a simple local optimization-based approach such as conju-
gate gradients cannot be used, as this is a (usually) ill-posed problem with a global
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minimum surrounded by many local minima. Instead, we need to resort to a global
optimization algorithm. In our case, mwe used a Bayesian minimization algorithm
using Gaussian Processes (GP), which approximates the function using a multi-
variate Gaussian. In particular, our implementation uses the gp_minimize method
from the scikit-optimize Python library®. At its core, the method approximates
the objective function with a Gaussian process, assuming that the values follow
a multivariate Gaussian. The covariance of the function values is given by a GP
kernel between the parameters. With this information, the algorithm chooses the
next parameter to evaluate by selecting the acquisition function over the Gaussian
prior. The error measure used was the KS distance between the empirical BOLD
signal and the average over a number of trials (10 in our case) of the simulated
signal, and we let the function run for 100 iterations. In all cases, the results moved
significantly away from the priors.

3 Results

We used diffusion MRI to generate the Structural Connectomes of 17 healthy control
(HC) subjects, 9 mild cognitive impairment (MCI) subjects, and 10 subjects with
Alzheimer’s Disease (AD) from ADNI, which are mostly the same participants as
those used by Stefanovski et al. [15] and Triebkorn et al. [16]. See Table 2 and
Figure 3.

Given these cohorts, we used the GxPower [45] software to conduct statistical
power calculations based on a two-group Wilcoxon-Mann-Whitney test, with sig-
nificance level @ = 0.05 and power 1 — 8 = 0.8. Assuming a standard deviation
o = 0.05 (a reasonable assumption given our results below), we obtained that the
minimum effect size we would be able to discern in this setting would be d = 1.1,
which implies that the minimum detectable difference between the means of the

control population and any of the other two would be around 0.055.

Diagnosis n (female) Mean age o Min. age Max. age Mean MMSE  oppmse Min. MMSE - Max. MMSE

AD 10 (5) 72.0 96 550 86.1 213 6.8 9 30
HC 17 (10) 70.8 43 631 78.0 29.3 07 28 30
MCI 9 (3) 68.8 58 578 76.6 27.4 15 25 30

Table 2 Epidemiological information of the population used in this study.

3.1 Fitting the Homogeneous Model

As a first step, we evaluated the capability of the homogeneous BEI model to re-
produce the empirical properties of resting-state FC data. To this end, we fitted the
global coupling parameter, G, without considering heterogeneity by setting all re-
gional gain parameters Mg,y = 1 [18]. Then, we evaluated the ability of the model
to reproduce three different properties of empirical resting-state fMRI recordings:
edge-level static FC, swFCD, and phFCD (see Methods for further details.) The
results of this analysis are shown in Figure 2A. To remove differences across sub-
jects related to age, we considered averaged values across subjects over the healthy
control group and took an equivalent number of simulated trials with the same du-

ration as the human experiments (see Methods). Following previous research [19]

[5] https://scikit-optimize.github.io/stable/modules/generated/skopt.gp_minimize.html
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fitting the phFCD better captures the spatiotemporal structure of the fMRI data,
being a stronger constraint on the model. Indeed, where FC fits are consistently
high across a broad range of G values, phFCD yields a clear global optimum at
G = 3.1. Thus, we choose to use phFCD for all further analysis.

3.2 Introducing AB and tau heterogeneity

Once the global coupling parameter has been found, we can introduce the regional
heterogeneity in the distributions of A5 and tau, and study how their introduction
leads to a better representation of neural dynamics, i.e., improves the fitting of
phFCD. Spatial maps for each form of protein burden used in our modeling are
shown in Figures 2G (for Af5) and 2H (for tau) for one particular individual. For
some individuals, (mainly HC subjects, e.g., as subject 003_S_6067 in the ADNI
database, with p = 0.92, p < 0.001) the AS and tau distributions are strongly
correlated, while for others the two maps show a weaker correlation (e.g., subject
036-S-4430, with p = 0.10, p = 0.04.) This observation indicates that each protein
burden introduces a different form of biological heterogeneity to the benchmark BEI
model, and thus should be modeled separately in our simulations.

We introduce these kinds of heterogeneity by modulating the regional gain func-
tions Mg 1) at the optimal working point of the homogeneous BEI model found at
the previous stage (G = 3.1), through the bias and scaling parameters introduced
above, denoted bﬁ 5 and sﬁﬁ for A3, and b¥ and sZ for tau, all for the excitatory
case, and similarly for the inhibitory case with superscript I. We perform a search
in parameter space with constraints introduced from experimental observations, see
Section 2.8, to find the optimal working point for the two protein burdens simulta-
neously, which results in an 8-degree of freedom optimization, which is reduced to
six degrees due to the constraints. For the optimization, we used Bayesian opti-
mization algorithm using Gaussian Processes, see Section 2.10. We can also
perform a simplified search, limited to the two-variable b/, ; and s, 5 space, i.e., the
inhibitory bias and scaling of the AS influence on inhibitory neuron parameters
(Equation 9). In this case, the 2D optimization results show a decreasing the neu-
ronal activity with increasing AS concentration, confirming previous results [15].
On average, for each group of subjects, we got the results shown numerically in
Table 3.

Cohort bfﬁ ng bE sE be46 3{4/3
AD 0.2 (05) | 23(1.2) | -0.4(0.6) | -2.6 (0.8) | 0.2(0.6) | -2.5(0.8)
MCI 0.4 (0.7) | 1.7 (1.5) | -0.5(0.5) | -2.8 (0.7) | -0.1 (0.8) | -2.1 (1.2)
HC 0.1 (0.8) | 1.7 (0.9) | -0.5(0.6) | -2.8 (1.0) | 0.3(0.6) | -3.1 (1.0)
Table 3 Resulting averaged parameters from the optimization procedure. In parenthesis, the
respective standard deviations.

These results can be seen visually in Figure 4. This figure shows that there is a
clear regime in which all three empirical properties are fitted well by the model,
particularly for the values shown above, where a fitting of phFCD of 0.13 is achieved
for the AD subjects, while the reference homogeneous value is equal to 0.5.

3.3 Analysis of burden impact
For the optimal parameter values resulting from model fitting, we simulated each
dynamical model 10 times for each subject to account for the inherently stochastic
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nature of the models and compute the respective measures of model fit. Figure 5
shows the distributions of fit statistics across runs for the homogeneous and the
heterogeneous model for the different cohorts. In addition, we show results for a
null ensemble of models in which the regional burden values were spatially shuf-
fled to generate surrogates with the same spatial autocorrelation as the empirical
data. Across the benchmark property to which the data were fitted —phFCD-—,
the models taking into account the regional burden heterogeneity perform bet-
ter than the homogeneous model (all pass the Mann-Whitney U rank test on two
independent samples with p < .0005). We also find a consistent gradient of per-
formance across all benchmarks, with the heterogeneous model performing best,
and the homogeneous model showing the poorest performance. For each bench-
mark metric, the performance of the heterogeneous model was better than all other
models (in all cases p < .06). Also, it must be noted that the differences in fit
statistics between models are significant, as shown in Figure 5. For example, for
the AD cohort, the correlation of the median phase FCD between the fitted model
and empirical data showed r < 0.1 for the heterogeneous model, and r ~ 0.2 for
the BEI model. In all subject groups, the difference between these two models is
clear, with p < 0.0005. In all reported results we used a Mann-Whitney-Wilcoxon
test two-sided with Benjamini-Hochberg correction (p-value annotation legend: ns:
p <= 1.00e + 00, *: 1.00e — 02 < p <= 5.00e — 02, **: 1.00e — 03 < p <= 1.00e — 02,
ik 1.00e — 04 < p <= 1.00e — 03, ****: p <= 1.00e — 04).

Finally, we performed an analysis comparing the impact of each type of burden,
in isolation or together, onto the simulation results. In Figures 2D-2F we can see
these results for the different cohorts, for A8 and tau, AS alone, tau alone and fi-
nally the homogeneous BEI model, added for reference. As we can see, with respect
to the homogeneous model, the best performance is systematically obtained by the
combined action of both A5 and tau, giving a value with p < 0.0004 in all cases.
However, for each cohort, each protein shows to play a different role in the devel-
opment of the disease. For AD subjects, the effect of AS on the optimal combined
result is small, with a p < 0.0005, while the influence of tau alone has a p value that
does not allow us to distinguish between its effect and the combined effect of both
proteins (p = 0.172), implying a clear dominance of tau over Aj in this stage of the
disease. Also, with respect to the homogeneous BEI model, tau presents p < 0.005,
while AS alone shows a much higher value (p = 0.339), not allowing us to clearly
distinguish between these two models. In the case of the MCI cohort, in Figure 2E,
we can observe that the effect of AS alone clearly gives the major contribution to
the final combined fitting, rather than tau, with a p < 0.0003 between all cases.
Finally, in the HC case in Figure 2D, the effects of the A5 and tau proteins are close
to the homogeneous BEI model, with AS presenting a somewhat higher prevalence
than tau. However, it is noticeable that the differences between this case and the
previous one are small, showing that AS already plays an important role even in
HC subjects.

3.4 2D Ap Optimization
We can use our model to verify the results by Stefanovski et al. [15] by limiting
our analysis to the parameters of AS at the inhibitory level (i.e., the inhibitory
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bias b, 5 and scaling st 5 parameters only, defined in Equation 9). This way, we can
replicate, up to a certain degree, the results from that paper, being limited by the
fact that we use a different model, based on the BEI model instead of the Jansen-
Rit model [46]; a different expression for the burden, i.e., a linear approximation
instead of a sigmoid; different units, etc. See Figure 4. By analyzing the obtained
data at the optimal fit, the same behavior of decreasing the neuronal activity of
inhibitory neurons with the scaling parameter s, 3, corresponding to an increase in
A concentration, can be observed, as shown in Figure 6.

4 Discussion

In this paper we studied the influence of the regional variability of two pathological
proteins, namely A5 and tau, on cortical activity and E/I balance in the con-
text of AD using whole-brain dynamic modeling, which allowed us to disentangle
separate and synergistic effects of these two proteins in-silico. The incorporation of
such heterogeneous patterns of neuropathology into whole-brain models of neuronal
dynamics has been made possible by the availability of in-vivo quantitative PET
imaging. We have shown that the heterogeneous model, which incorporates regional
information on both types of neuropathological burdens more faithfully reproduces
empirical properties of dynamic brain activity than the model with fixed and homo-
geneous parameters. Our findings highlight the central role of both types of burden
in disturbing the E /I balance, supporting the hypothesis of hyperexcitation in AD.
Regarding the individual influence of A and tau on brain activity, our results have
shown a dominance of AS influence on neural dynamics in earlier stages of AD (i.e.,
MCI) and even in healthy controls, while tau plays a larger role in later stages.
These key findings highlight the prominent role of these pathological proteins in
contributing to the abnormal brain activity patterns in the course of AD [47].

4.1 How does burden heterogeneity shape neuronal dynamics?

We introduced burden heterogeneity into our dynamical model by modifying the re-
gional excitability of neural population activity. We achieved this by modifying each
brain region’s gain response function M; of inhibitory and excitatory populations,
i.e., the net excitability of the according population. This was done, in accordance
with previous works exploring the effect of regional parameters on E/I balance [19],
thus focusing on how the interaction of neuronal populations contributes to neuronal
dynamics (i.e., FC or FCD) and their relative impacts over time. Our approach is
different from the work by Stefanovski et al. [15], where the A8 burden was used to
modulate regional E/I balance by negatively modulating the inhibitory time con-
stant, slowing down synaptic transmission and thus increasing excitatory activity
and producing a higher output of the pyramidal cell populations, resulting in a
local hyperexcitation with high AS loads. However, our approach, when limited to
the effect of AS in the early stages of the disease, results in the same behavior of
neural populations as a function of Af, similarly resulting in a net increase of the
excitatory activity with increased A burden. There are other approaches available
to introduce heterogeneity, such as an adjustment of the inter-node connectivity to
fit empirical and simulated FCs [48]; or variations of within- and inter-area con-
nectivity [49]. However, based on the empirical evidence that the interplay of both
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burdens, AS and tau, severely disrupt normal neuronal function, we decided to
model their direct effect on the E/I balance.

In this paper we have chosen to incorporate heterogeneity into the model by modu-
lating population gain response functions H¥:1). Here, adjusting the gain function
parameter M; allows us to demonstrate how local variations in the E/I balance
will affect the net excitability of the population. We thus assume that changes in
regional gain are the common final pathways of different neuropathology-related
pathomechanisms which might have an influence on neuronal populations, i.e., re-
sult in realistic representation of direct effects of A and tau and also associated
processes (i.e., non-direct effects).

In particular, we introduced regional variations of M; as the product of linear
terms consisting of a constant (bias), and a scaling factor. This introduced eight
degrees of freedom, which we could narrow down to six degrees of freedom by in-
troducing constraints to the direction of effect based on previous research [4]. In
sum, our model was created based on assumptions that AS leads to GABAergic
interneuron dysfunction and impaired glutamate reuptake, while tau leads to re-
duced synaptic neurotransmitter release in excitatory cells. This hypothesis-driven
amount of degrees is substantially less than used in other models [49, 48], making
a fast parameter optimization feasible, while ensuring sufficient biological realism.
Furthermore, in all cases, the bias parameters for the different burdens (Figure 4)
were approximately 0, thus indicating that the influence of the bias parameters with
respect to the homogeneous model can be ignored, further reducing computational
complexity. The respective scaling parameters take non-negligible values, showing
a linear relationship between A and tau on neural dynamics. We used Bayesian
optimization using Gaussian Processes (see Methods) to address the challenge of
multiple local minima that could trap traditional optimization methods.

4.2 Evaluating AB and tau impact

A large body of scientific literature focused on linking global and local brain dynam-
ics to individual differences in cognitive performance scores [12] and showed that pa-
tients with AD and MCI show less variation in neuronal connectivity during resting-
state, and even presented benchmarks for predictive models based on resting-state
fMRI, revealing biomarkers of individual psychological or clinical traits [13]. How-
ever, the pattern of neuronal connectivity alterations has been incompletely un-
derstood. More recent work focused on the effect of A5 on hyperexcitability, and
how AS modulates regional E/I balance, resulting in local hyperexcitation in brain
regions with high loads of AS [15]. To our knowledge, no prior study has evalu-
ated both types of neuropathological burden, A8 and tau, simultaneously, linking
neuropathological data with dynamic whole-brain modeling.

As explained in the Methods Section, we compared the impact of each type of
burden, in isolation or interaction, onto neural dynamics. We found that the model
fitting optimum is systematically obtained by the interaction of both burdens, un-
derlining the interaction of both proteins in disturbing neural activity. Also, we have
found that for each condition (i.e., HC, MCI or AD), each protein has a different
impact on the brain dynamics. In the case of AD, A has a small impact on the com-
bined result, while tau alone had almost all of the impact, showing its dominance
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over Af in regard to generating abnormal brain dynamics. Also, in comparison to
the homogeneous BEI model, we observed that tau is clearly distinguishable, but
Ap is not. Taken together, these results imply that we cannot distinguish between
the effect on the brain activity of both proteins together vs. the effect of tau alone,
while the effect of A is clearly distinguishable from the combined effect. As a con-
sequence, this allows us to conclude that the impact of tau in the late stage of the
disease (AD) is clearly dominant over Aj3. In contrast, in MCI, the influence of
Ap alone is clearly dominant over tau, see Figure 2E. Finally, when studying the
effect of both proteins in HC, we can observe that the effect of the AS and tau
proteins is close to the homogeneous BEI model, with A8 presenting a relatively
higher influence than tau. The influence of A5 both in MCI patients as well as in
HC shows that AS leads to a measurable change in brain dynamics in elderly peo-
ple, independent of existing cognitive impairment. However, we acknowledge that
on a pathophysiological level, there is a strong interplay between AS and tau, and
further (causal) research is needed to clearly discern the role each protein plays
in the generation of neuronal dysfunction. Despite our findings from model fitting,
we acknowledge that we only observe the current influence of A8 vs. tau in differ-
ent disease stages in a cross-sectional cohort. Longitudinal examinations might also
replicate the abundant evidence in the literature [4] that both proteins interplay a
toxic feedback loop, which is ultimately responsible (perhaps among other factors)
for the development of the disease.

Our analysis based on furthermore shows that edge-level measures of static FC
offer loose constraints for model optimization, showing comparably high fit statistics
across a broad range of values of the global coupling parameter. In contrast, fitting to
dynamical functional connectivity shows a clear optimum, mirroring similar results
reported previously [19]. We can conclude that fitting models to both static and
dynamic properties is thus important for identifying an appropriate working point
for each model.

Across all these properties, we observe that the model that incorporates the het-
erogeneous burden loads provides a better match to the data than the homogeneous
BEI model, which does not incorporate a fitting of the gain response function of
inhibitory and excitatory populations to the data. This shows that constraining
regional heterogeneity by the protein burdens yields a more faithful replication of
brain dynamics, as measured by empirical phFCD. The superiority of our model
using heterogeneous, empirically estimated parameters, suggests that regional het-
erogeneity plays a significant role in shaping the effects of Alzheimer’s disease on
spontaneous BOLD-dynamics. As we already mentioned, it must be noted that the
differences in fit statistics between models are significant. These results suggest that
these empirical fit statistics have good capacity to tease apart dynamical differences
between models, which gives the opportunity to disentangle the influence of different
pathomechanisms in vivo.

5 Limitations

In our implementation, we used SC matrices derived from DWI. However, as many
factors such as myelination and diameter impact the conductivity of white matter
tracts, it may be a confounding factor that coupling between different brain areas
is not affected by this.
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It is important to mention that, in our study, we included sub-cortical regions,
which are particularly susceptible to off-target binding of the AV-1451 tracer, which
may introduce a potential confound. For this study we did not have controlled the
images for off-target binding. Recent studies show that, besides Tau tangles, AV-
1451 also binds on neuromelanin, melanin and other blood products [50]. This is a
genuine restriction of the imaging method (as many PET tracers have one) and we
are not aware of a standard that corrects for this phenomenon. Moreover, it is kind
of controversially discussed whether this is always off-target binding or detecting
tangles that other methods are not aware of [51]. In any case, it can be argued that
the typical finding of this off-target bidding is affecting AD, MCI and controls to
the same amount, which implies this is something that cannot cause artificial group

differences and can therefore be safely ignored in the context of this study.

6 Conclusion

In summary, in this paper, we have presented a whole-brain dynamic model con-
necting the main protein burdens, namely A8 and tau, in different stages of AD and
in HC. Our results not only reproduce previous research regarding E/I imbalance in
AD, and also shed further light on the relative impact of each type of burden during
different disease stages, opening new avenues to focus research efforts. As a general
conclusion, our study shows that theory-driven whole-brain modeling enables us to
do research on disease mechanisms in-silico and to empirically compare competing
hypotheses against each other and thus complements data-driven modeling such as
machine learning. Thus, whole-brain modeling can incorporate sufficient biological
realism to contribute to improved diagnostic procedures (i.e., enable the use of {MRI

for diagnosis) to discover new therapies (e.g., by simulating novel treatments).
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Figure 1 lllustrative overview of our processing pipeline. ((a)) Basic ingredients for the integration
of protein burden data from structural (dMRI, top left), functional (fMRI, top right), and burden
(PET, right) using the same parcellation for each neuroimaging modality (top, middle) for
generating a whole-brain computational model (bottom left). Each node of the model is using a
realistic underlying biophysical neuronal model including AMPA (blue connections), GABA (red),
and NMDA (gray) synapses as well as neurotransmitter gain modulation of these. ((b)) Fitting
the measures in the whole-brain model: First, we simulate the BOLD timeseries for each brain
region in the parcellation, for each subject. These timeseries are defined by its inputs, namely a
previously found global coupling constant G, an individual Structural Connectivity (SC) matrix,
and the corresponding individual A and tau burdens. Subsequently, we compute a
time-versus-time matrix of phase functional connectivity dynamics (phFCD). This is compared to
a reference empirical phFCD extracted from the fMRI data off the same subject using the
Kolmogorov-Smirnov distance (KS), Dk g, which is minimized to find the generative parameters
of the model. This process is repeated for the other two measures of brain dynamics, functional
connectivity (FC) and sliding-window functional connectivity dynamics (swFCD).
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Figure 2 Optimization and evaluation of the model: First, using only HC subjects, the global
coupling parameter G is found, and then the model is adjusted to minimize the distance between
the empirical and simulated fMRI data, taking into account the regional burden distributions. (A)
Minimization of G between 0 and 5.5, for Functional connectivity (FC), sliding-window Functional
connectivity Dynamics (swFCD), and phase FCD (phFCD). Given their strong similarity in the
results, phFCD was used for all subsequent computations. (B, C) Shows the normalized (in [0, 1])
FCD distributions for the empirical data (top) and the simulated model at the optimal result
(bottom). (D, E, F): Analysis of the impact (smaller values are better) of the different burdens
with respect to their impact on the phFCD (KS distance) when optimized together and in
isolation, with the homogeneous state as a reference. Clearly, in all cases, the combined burden
outperforms any other model. However, as can be seen, the results for AD clearly show that tau
alone accounts for the vast majority of the weight of the impact on brain activity (F), while for
MCI patients it is A3 who dominates (E). For HC patients we also see a predominance of Af,
although with less difference between the model incorporating A3 and tau vs. A3 in isolation (D).
Example distributions of A3 (G) and Tau burdens (H) of one subject (036_S_4430 in ADNI's
database). Colors correspond to the normalized burden of each protein.
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Figure 3 Visualization of the SC graph, in matrix form (left) and as a graph showing the
strongest 5% of connections. Node positions are computed with Fruchterman and Reingold’s [52]
algorithm, which assumes stronger forces between tightly connected nodes. Besides the high
degree of symmetry, we can observe the laterality is kept in the graph structure (also for
subcortical regions). Node size linearly represents the graph theoretical measure of structural
degree for each node. As we can see, the most important hubs are in the subcortical regions.
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Figure 4 Parameter values found after the optimization stage for HC, MCl and AD subjects.
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Observe that all b(Aﬁ,-r)’

values, while the scaling parameters s

the excitatory/inhibitory A3 and tau bias parameters, have negligible
(E,I)
(AB,T)
the different scaling parameters across the cohorts are different in a moderately significant way
(p < 0.03), remarkably between HC and AD, but usually not between MCI and AD. In these
plots, boxes extend from the lower to upper quartile values of the data, adding an orange line at
the median. Also, whiskers are used to show the range of the data, extending from the box.

present non-null values. Of note, the p-values between
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Figure 5 Comparison between the homogeneous model, the optimum result obtained with the
heterogeneous model (optim), and the same parameter values but with shuffled burdens. As can
be seen, the differences in fit statistics between models are significant. In particular, for the AD
cohort, the median phFCD correlation between model and data showed r < 0.1 for the
heterogeneous model, and r =~ 0.2 for the BEI model. In all subject groups, the difference between
these two models is clear, with p < 0.0005.
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Figure 6 Excitatory and inhibitory mean firing rates as a function of the Ag inhibitory scaling
sﬁm, with all the other parameters of the model at the (averaged) fitted optimum values. For the
purpose of clarity, the horizontal axis for the scaling has been taken as absolute values, to
illustrate the behavior with increasing A3 loads. The vertical axis shows the firing rates of both
excitatory and inhibitory populations. It can be clearly seen that the net effect of the burden is to
increase the overall region firing rate, measured at the excitatory population. For the sake of
clarity, the inhibitory firing rate has been vertically inverted (negated) to show their decreased
effect on the excitatory population, thus confirming previous findings [15]. The vertical
discontinuous line shows the optimum found for S{LXB‘
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