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Abstract

Background: Alzheimer’s Disease is a neurodegenerative condition
associated with the accumulation of two misfolded proteins,
amyloid-beta (Aβ) and tau. We study their effect on neuronal
activity, with the aim of assessing their individual and combined
impact.
Methods: We use a whole-brain dynamic model to find the

optimal parameters that best describe the effects of Aβ and tau on
the excitation-inhibition balance of the local nodes.
Results: We found a clear dominance of Aβ over tau in the early

disease stages (MCI), while tau dominates over Aβ in the latest
stages (AD). We identify crucial roles for Aβ and tau in complex
neuronal dynamics and demonstrate the viability of using regional
distributions to define models of large-scale brain function in AD.
Conclusions: Our study provides further insight into the

dynamics and complex interplay between these two proteins,
opening the path for further investigations on biomarkers and
candidate therapeutic targets in-silico.

Keywords: Alzheimer’s disease; Amyloid-Beta; Tau; Whole-Brain model;

Simulation

1 Background

Alzheimer’s Disease (AD) is a neurodegenerative disease that leads to progressive

impairment of memory and other cognitive domains, neuropsychiatric symptoms,

and, ultimately, severe impairment in all body functions. This results in both a

huge loss of quality of life for affected people and caregivers and high costs for

society at large. AD pathogenesis is associated with several interlinked pathomech-

anistic processes, from genomics to connectomics, including the Notch-1 pathway,

neurotransmitters, polygenetic factors, neuroinflammation, and neuroplasticity [1].

However, the accumulation of misfolded proteins is considered the pathological hall-

mark of AD: namely extracellular accumulation of Amyloid-beta (Aβ), forming se-

nile plaques; and intraneuronal aggregation of the microtubule protein tau, called

neurofibrillary tangles [2]. Treatments for removal of Aβ (e.g., with Adacanumab

and Lecanemab) are currently discussed in light of inconclusive effects on reducing

cognitive decline [3]. In spite of the large body of research on AD, many aspects
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regarding pathophysiology and the roles of Aβ and tau are still incompletely un-

derstood [4, 5].

Regarding brain dysfunction, several human autopsy and animal studies have

seen a disruption in excitation/inhibition (E/I) balance, especially in early stages

where neuronal hyperexcitability impairs cortical activity and thus contributes to

cognitive decline [6, 7]. Chang et al. [8] showed tau affects excitatory and inhibitory

neurons differently, and its removal decreases the baseline activity of excitatory

neurons and, simultaneously, affects the axon initial segments and the intrinsic ex-

citability of inhibitory neurons, resulting in network inhibition. In this line, Bi and

co-workers [9] hypothesized that Aβ impairs GABAergic function and thus pro-

duces synaptic hyperexcitation. Petrache et al. [10] found synaptic hyperexcitation

and severely disrupted E/I inputs onto principal cells, and a reduction in the so-

matic inhibitory axon terminals. Recently, Lauterborn and coauthors [11] revealed

significantly elevated E/I ratios in post-mortem cortex samples. While interesting

results regarding E/I imbalance with marked hyperexcitability were derived in an-

imals and post-mortem human cortex samples, in-vivo human studies are lacking,

as the activity of E/I populations cannot be directly measured using neuroimaging.

Most works on whole-brain dynamics studied activation patterns but were not in-

formative regarding the role of E/I populations [12, 13, 14, 15, 16]. To understand

the complex interplay between pathophysiological processes and brain activity (i.e.,

fMRI), models might improve when incorporating heterogeneity of brain dynamics

based on empirical data [17, 18, 19].

Earlier work using whole-brain simulations focused on linking global and local

brain dynamics to individual differences in cognitive performance scores from dif-

ferent conditions [12]. Demirtaş [14] et al. studied the effect of heterogeneity of local

synaptic strengths on a dynamical model of human cortex in healthy subjects, show-

ing that heterogeneity significantly improved the fitting of resting-state functional

connectivity. Stefanovski and co-authors [15] focused on the connection of Aβ with

neural function in The Virtual Brain [20] to examine how Aβ modulates regional

E/I balance, producing local hyperexcitation in regions with high Aβ loads. This

led to further improvements on classifications between AD and controls [16]. How-

ever, all these works study the effect of a single burden, namely Aβ, on the neuronal

dynamics, while our work focuses mostly on the interplay of both burdens, i.e., Aβ

and tau, assessing their relative impacts on brain dynamics.

In this paper, we use whole-brain modeling techniques to study the impact of both

Aβ and tau on the dynamics of regional behaviors in AD, discerning the impact of

each protein in isolation and in combination, and being able to assess their relative

weights on contributing to abnormal brain activity. We use the Balanced Excitation-

Inhibition (BEI) model [18], which can reproduce the fMRI activity based on in-

teractions of excitatory and inhibitory neural populations interconnected by white

matter tracts. We show in this work a clear dominance of the effects of Aβ over

tau on brain dynamics in the earlier stages of the disease (Mild Cognitive Impair-

ment, MCI), and a dominance of protein tau over Aβ in advanced stages (manifest

dementia).

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 30, 2023. ; https://doi.org/10.1101/2022.10.30.514365doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.30.514365
http://creativecommons.org/licenses/by-nc-nd/4.0/


Patow et al. Page 3 of 25

2 Methods

2.1 Methods Overview

Model Creation: Figure 1a presents an overview of our overall analysis strategy,

and the details could be found in the Methods Section. We make use of MRI and

positron emission tomography (PET) from the Alzheimer’s Disease Neuroimag-

ing Initiative (ADNI). In summary, we use diffusion MRI to generate the struc-

tural connectomes of healthy controls (HC), mild cognitive impairment (MCI) and

Alzheimer’s Disease (AD) subjects. We use task-free resting-state functional MRI

to fit a whole-brain model in which the local neuronal dynamics of each brain re-

gion evolves according to the dynamic mean field model by Deco et al. [18], which

is then connected to a spontaneous blood-oxygenation-level-dependent (BOLD) dy-

namics. We refer to this model as the Balanced Excitation-Inhibition (BEI) model,

which can be thought of as a homogeneous reference against which we evaluate the

performance of our heterogeneous AD model. Aβ and tau distributions are derived

from AV-45 and AV-1451 PET from ADNI. For the heterogeneous model, we incor-

porate regional heterogeneous distributions of the main proteins involved in AD,

namely Aβ and tau, as first order multiplicative polynomials for each burden and

for each type of population (excitatory/inhibitory) into the local gain parameter

M(E,I). Fitting the model to empirical fMRI data allows us to evaluate which effect

of Aβ and tau to the different populations can mechanistically explain the observed

behaviors.

Model Fitting: For both of our models, homogeneous and heterogeneous, we as-

sume that all diffusion MRI-reconstructed streamline fibers have the same con-

ductivity and thus the coupling between different brain areas is scaled by a single

global parameter, G. We first tune the G parameter of the BEI model to adjust

the strength of effective coupling in the model and identify the brain’s dynamic

working-point by fitting the model to three empirical properties that are estimated

from the empirical fMRI data:

• the Pearson correlation between model and empirical estimates of static (i.e.,

time-averaged) functional connectivity estimated across all pairs of brain re-

gions (FC);

• similarity in sliding-window functional connectivity dynamics (swFCD);

• the KS distance between a set of dynamic functional connectivity matrices

(also called coherence connectivity matrix [21]) built from the average BOLD

time series of each ROI, which were Hilbert-transformed to yield the phase

evolution of the regional signals (phFCD).

We then fit the coefficients for the two burdens, for excitatory and inhibitory pop-

ulations, with a global optimization algorithm, within directional bounds obtained

from previous clinical observations (see below, in Section 2.8).

Result Evaluation: To demonstrate that E/I imbalance is dependent on the pre-

cise distribution of the Aβ and tau burdens, at the optimal values obtained with

the fitting procedure described above, we randomly shuffled the empirical protein

burdens; i.e., the original 378 values for each of the misfolded protein maps were

randomly re-assigned to different regions, and the model was run 10 times with each
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different randomly re-assigned receptor map, and the simulation was repeated 10

more times for each re-assigned receptor map, for a total of 100 simulations each

time. Figure 1b shows the results of randomly shuffling the empirical burden densi-

ties across the regions at the optimum point. This randomly reshuffled manipulation

yields a significantly worse fit compared to the actual empirical burden densities

(as shown by the Wilcoxon statistics in the boxplot). We additionally evaluate the

quality of the simulation results with the optimized parameters with original (i.e.,

not shuffled) burdens and with the homogeneous BEI model. Finally, we examine

the relevance of each type of burden by optimizing them in isolation from each

other (i.e., zeroing the other one out), and comparing the results. The whole com-

parisons include both burdens in isolation, both burdens simultaneously, and with

the homogeneous (i.e., BEI) model.

2.2 Participants

Empirical data were obtained from the Alzheimer’s Disease Neuroimaging Initiative

(ADNI) database (adni.loni.usc.edu), which is a longitudinal multi-site study

designed to develop biomarkers for Alzheimer’s disease (AD) across all stages. The

inclusion criteria for AD patients was the NINCDS-ADRDA criteria, which contains

only clinical features [22], and an MMSE score below 24. For both HC and MCI, the

inclusion criteria were a MMSE (Mini Mental State Examination) score between

24-30, as well as age between 55-90 years. Also, for MCI, participants had to have a

subjective memory complaint and abnormal results in another neuropsychological

memory test. Imaging and biomarkers were not used for the diagnosis.

2.3 Data Acquisition and Processing

All the data in this study were previously used in Stefanovski et al. [15] work, so

we will present here an abridged version of the processing performed on the original

data and refer to the original work for the details. All images used in this study

were taken from ADNI-3, using data from Siemens scanners with a magnetic field

strength of 3T.

2.3.1 Structural MRI

For each included participant, we created a brain parcellation for our structural

data using FLAIR, following the minimal preprocessing pipeline [23] of the Human

Connectome Project (HCP) using Freesurfer[1] [24], FSL [25, 26, 27] and connec-

tome workbench[2]. Therefore, we used T1 MPRAGE, FLAIR and fieldmaps for

the anatomical parcellation. We then registered the subject cortical surfaces to the

parcellation of Glasser et al. [28] using the multimodal surface matching (MSM)

tool [29]. In this parcellation, there were 379 regions: 180 left and 180 right cortical

regions, 9 left and 9 right subcortical regions, and 1 brainstem region.

2.3.2 PET Images

For Aβ, we used the version of AV-45 PET already preprocessed by ADNI, using

a standard image with a resolution of 1.5mm cubic voxels and matrix size of 160×

[1]https://surfer.nmr.mgh.harvard.edu/fswiki/FreeSurferMethodsCitation
[2]https://www.humanconnectome.org/software/connectome-workbench
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160 × 96, normalized so that the average voxel intensity was 1 and smoothed out

using a scanner-specific filter function. Then, a brainmask was generated from the

structural preprocessing pipeline (HCP) and used to mask the PET image. On the

other hand, to obtain the local burden of Aβ, we computed the relative intensity to

the cerebellum. We received in each voxel a relative Aβ burden which is aggregated

according to the parcellation used for our modeling approach. Subcortical region

PET loads were defined as the average SUVR in subcortical gray matter (GM).

With the help of the connectome workbench tool, using the pial and white matter

surfaces as ribbon constraints, we mapped the Cortical GM PET intensities onto

individual cortical surfaces. Finally, using the multimodal Glasser parcellation we

derived average regional PET loads.

For tau, we also used ADNI’s preprocessed version of AV-1451 (Flortaucipir)

following the same acquisition and processing, resulting in a single relative tau value

for each voxel. Then, these values were also aggregated to the selected parcellation,

also following the already mentioned steps. The final average regional tau loads

were obtained in the Glasser parcellation.

2.3.3 DWI

Individual tractographies were computed only for included HC participants, and

they were averaged to a standard brain template (see below). Preprocessing was

mainly done with the MRtrix3 software package[3].

In particular, the following steps were performed: First, we denoised the DWI

data [30], followed by motion and eddy current correction[4]. Then, B1 field inho-

mogeneity correction (ANTS N4), followed by a brainmask estimation from the

DWI images. Next, we normalized the DWI intensity for the group of participants,

which was used to generate a WM response function [31], and created an average

response function from all participants. Next, we estimated the fiber orientation dis-

tribution and the average response function [32] using the subject normalized DWI

image, to finally generate a five tissue type image. Finally, we used the iFOD2 algo-

rithm [33] and the SIFT2 algorithm [34] to get the weighted anatomical constrained

tractography [35], to end up merging all information into the Glasser connectome,

resulting in a structural connectome (SC).

It is important to note that the multi-center nature of ADNI data can be prob-

lematic, with inter-site differences in acquisition, scanner and protocol, being DWI

is particularly susceptible to multi-center related issues and problematic harmo-

nization. To prevent these problems, we actually restricted the data set to just

one scanner type, from Siemens. The details of the scanner metadata including

the acquisition centers and used scanners are also provided in the supplementary

material.

2.3.4 fMRI

With respect to the processing of the fMRI data, the images were initially pre-

processed in FSL FEAT and independent component analysis–based denoising

[3]http://www.mrtrix.org
[4]https://mrtrix.readthedocs.io/en/latest/dwi_preprocessing/dwipreproc.html
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(FSLFIX) following a basic pipeline [15]. Time courses for noise-labeled compo-

nents, along with 24 head motion parameters, were then removed from the voxel-

wise fMRI time series using ordinary least squares regression.

The resulting denoised functional data were spatially normalized to the MNI space

using Advanced Normalization Tools (version 2.2.0). Mean time series for each par-

cellated region were then extracted, and interregional FC matrices were estimated

using Pearson correlations between each pair of regional time series. Dynamic FC

matrices were also calculated for the empirical data, as outlined below.

2.4 Generation of a Standard Brain Template

As previously done [15], we average the SCs of all HC participants, using an arith-

metic mean

Cµ = (
n
∑

i=1

Ci)/n = (C1 + C2 + ...+ Cn)/n

wherein Cµ is the averaged SC matrix, n is the number of HC participants and Ci

is the individual SC matrix.

However, as matrices in this context are large (i.e., 379 regions), the average input

to any given node can be too large for the DMF, making fitting and processing in

general more difficult. Thus, we discarded the traditional normalization of dividing

the matrix elements by its maximum, and used a slightly different approach, instead.

First, we added one and applied the logarithm to every entry, as lC = log(Cµ +1).

Then, we computed the maximum input any node could receive for a unitary unit

input current, maxNodeInput = maxj(
∑

i(lCi,j)), and finally we normalized by

0.7 ∗ lC/maxNodeInput, where 0.7 was chosen to be a convenient normalization

value. Observe that this constant is actually multiplying another constant G in the

model which we fit to empirical data, so its actual value can safely be changed.

In Figure 3 we can find the SC matrix and organization graph, where we can

observe that the general characteristics of physiological SCs such as symmetry,

laterality, homology, and subcortical hubs are maintained in the averaged connec-

tome. The election of the averaged SC allowed us to control all factors (e.g., at-

rophy), which matched our objective of simulating the activity from both healthy

and “pathogenic” modifications by Aβ and tau.

2.5 Balanced Excitation-Inhibition (BEI) model

In this work we used the Dynamic Mean Field (DMF) model proposed by Deco et

al. [18], which consists of a network model to simulate spontaneous brain activity

at the whole-brain level. Following the original formulation, each node represents

a region of interest (i.e., a brain area) and the links represent the white matter

connections between them. In turn, each node is a reduced representation of large

ensembles of interconnected excitatory and inhibitory integrate-and-fire spiking neu-

rons (as in the original, respectively 80% and 20% neurons), to a set of dynamical

equations describing the activity of coupled excitatory (E) and inhibitory (I) pools

of neurons, based on the original reduction of Wong and Wang [36]. In the DMF

model, excitatory synaptic currents, I(E), are mediated by NMDA receptors, while

inhibitory currents, I(I), are mediated by GABAA receptors. Both neuronal pools
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are reciprocally connected, and the inter-area interactions occur at the excitatory

level only, scaled by the structural connectivity Ckj (see Section 2.3.1).

To be more specific, the DMF model is expressed by the following system of

coupled differential equations:

I
(E)
k = WE Io + w+ JN S

(E)
k + JNG

∑

j

CkjS
(E)
j − JkS

(I)
k + Iext (1)

I
(I)
k = WI Io + JNS

(E)
k − S

(I)
k + λJNG

∑

j

CkjS
(E)
j (2)

r
(E)
k = H(E)(I

(E)
k ) =

ME
k (aEI

(E)
k − bE)

1− exp(−dEME
k (aEI

(E)
k − bE))

(3)

r
(I)
k = H(I)(I

(I)
k ) =

M I
k (aII

(I)
k − bI)

1− exp(−dIM I
k (aII

(I)
k − bI))

(4)

Ṡ
(E)
k = −

S
(E)
k

τE
+ (1− S

(E)
k ) γH(E)(I

(E)
k ) (5)

Ṡ
(I)
k = −

S
(I)
k

τI
+H(I)(I

(I)
k ) (6)

Here, the last two equations should add, when integrating, an uncorrelated standard

Gaussian noise term with an amplitude of σ = 0.01nA (using Euler-Maruyama

integration). In these equations, λ is a parameter that can be equal to 1 or 0,

indicating whether long-range feedforward inhibition is considered (λ = 1) or not

(λ = 0). In the above equation, the kinetic parameters are γ = 0.641/1000 (the

factor 1000 is for expressing everything in ms), and τE = τNMDA and τI = τGABA.

The excitatory synaptic coupling JNMDA = 0.15 (nA). The overall effective external

input is I0 = 0.382 (nA) scaled by WE and WI , for the excitatory pools and the

inhibitory pools, respectively. The effective time constant of NMDA is τNMDA = 100

ms [36]. The values of WI , I0, and JNMDA were chosen to obtain a low level of

spontaneous activity for the isolated local area model. The values of the gating

variables can be found in Table 1.

Excitatory gating variables Inhibitory gating variables
aE = 310 (nC−1) aI = 615 (nC−1)
bE = 125 (Hz) bI = 177 (Hz)
dE = 0.16 (s) dI = 0.087 (s)

τE = τNMDA = 100 (ms) τI = τGABA = 10 (ms)
WE = 1 WI = 0.7

Table 1 Gating variables in the BEI model

As mentioned, the DMF model is derived from the original Wong and Wang

model [36] to emulate resting-state conditions, such that each isolated node displays

the typical noisy spontaneous activity with low firing rate (H(E) ∼ 3Hz) observed in

electrophysiology experiments, reusing most of the parameter values defined there.

We also implemented the Feedback Inhibition Control (FIC) mechanism described
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by Deco et al. [18], where the inhibition weight, Jn, was adjusted separately for

each node n such that the firing rate of the excitatory pools H(E) remains clamped

at 3Hz even when receiving excitatory input from connected areas. Deco et al. [18]

demonstrated that this mechanism leads to a better prediction of the resting-state

FC and to a more realistic evoked activity. We refer to this model as the balanced

excitation-inhibition (BEI) model. Although the local adjustments in this model

introduce some degree of regional heterogeneity, the firing rates are constrained

to be uniform across regions so we consider this BEI model as a homogeneous

benchmark against which we evaluate more sophisticated models that allow Aβ

and tau to affect intrinsic dynamical properties across regions.

Following the Glasser parcellation [23], we considered N = 379 brain areas in

our whole-brain network model. Each area n receives excitatory input from all

structurally connected areas into its excitatory pool, weighted by the connectivity

matrix, obtained from dMRI (see Section 2.3.3). Furthermore, all inter-area E-to-E

connections are equally scaled by a global coupling factor G. This global scaling

factor is the only control parameter that is adjusted to move the system to its

optimal working point, where the simulated activity maximally fits the empirical

resting-state activity of healthy control participants. Simulations were run for a

range of G between 0 and 5.5 with an increment of 0.05 and with a time step of

1 ms. For each G, we ran 200 simulations of 435 s each, in order to emulate the

empirical resting-state scans from 17 participants. The optimum value found, for

the phFCD observable, is for G = 3.1. See Figure 2A.

2.6 Simulated BOLD signal

Once we have obtained the simulated mean field activity, we need to transform it

into a BOLD signal we used the generalized hemodynamic model of Stephan et

al. [37]. We compute the BOLD signal in the k-th brain area from the firing rate of

the excitatory pools H(E), such that an increase in the firing rate causes an increase

in a vasodilatory signal, sk, that is subject to auto-regulatory feedback. Blood inflow

fk responds in proportion to this signal inducing changes in blood volume vk and

deoxyhemoglobin content qk. The equations relating these biophysical variables are:

dsk
dt

= 0.5r
(E)
k + 3− ksk − γ(fk − 1)

dfk
dt

= sk

τ
dvk
dt

= fk − vα
−1

k

τ
dqk
dt

= fk
1− (1− ρ)f

−1
k

ρ
− qk

vα
−1

k

vk

(7)

with finally

Bk = v0

[

k1(1− qk) + k2(1−
qk
vk

) + k3(1− vk)

]

being the final measured BOLD signal.
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We actually used the updated version described later on [37], which consists on

introducing the change of variables ẑ = lnz, which induces the following change for

z = fk, vk and qk, with its corresponding state equation dz
dt

= F (z), as:

dẑ

dt
=

d ln(z)

dz

dz

dt
=

F (z)

z

which results in z(t) = exp(ẑ(t)) always being positive, which guarantees a proper

support for these non-negative states, and thus numerical stability when evaluating

the state equations during evaluation.

2.7 Aβ-Tau model:

In our heterogeneous model, Aβ and Tau are introduced, at the formulae for the

neuronal response functions, H(E,I) (excitatory/inhibitory), into the gain factor

M
(E,I)
k for the k-th area as

ME
k = (1 + bEAβ + sEAβAβk)(1 + bEτ + sEτ tauk) (8)

M I
k = (1 + bIAβ + sIAβAβk)(1 + bIτ + sIτ tauk) (9)

where b
(E,I)
(Aβ,τ) are the excitatory/inhibitory Aβ and tau bias parameters, while

s
(E,I)
(Aβ,τ) are the respective scaling factors. These are the 8 (from which actually only

6 are needed as tau only affects excitatory neurons [38], see next section) parameters

that we will optimize for each subject individually.

2.8 Constraints

Based on previous neuroscientific experiments [4], we included constraints on the

direction of effect of Aβ and tau (i.e., inhibitory vs. excitatory influence). We in-

troduced the following constraints:

• Aβ produces inhibitory GABAergic interneuron dysfunction [6, 39], thus we

can infer that sIAβ < 0.

• Aβ produces impaired glutamate reuptake [6, 39], so we can introduce the

bound sEAβ > 0.

• Tau appears to target excitatory neurons [38], so we can safely consider that

bIτ = sIτ = 0.

• Tau binds to synaptogyrin-3, reducing excitatory synaptic neurotransmitter

release [40], thus sEτ < 0.

Although the interplay between Aβ and tau is not completely known [4], but

there is evidence that Aβ promotes tau by cross-seeding [41, 42], thus the cross

term factors (i.e., the ones resulting from the multiplication of Aβ and tau scaling

parameters) play a crucial role to elucidate the final impact of the combined burden.
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2.9 Observables

edge-centric FC The static edge-level FC is defined as the N×N matrix of BOLD

signal correlations between brain areas computed over the entire recording period

(see Figure 3). We computed the empirical FC for each human participant and for

each simulated trial, as well as for the group-averages SC matrix of the healthy

cohort. All empirical and simulated FC matrices were compared by computing the

Pearson correlation between their upper triangular elements (given that the FC

matrices are symmetric).

swFCD The most common and straightforward approach to investigate the tem-

poral evolution of FC is the sliding-window FC dynamics (swFCD) [43]. This is

achieved by calculating the correlation matrix, FC(t), restricted to a given time-

window (t− x : t+ x), and successively shifting this window in time resulting in a

time-varying FCNxNxT matrix (where N is the number of brain areas and T the

number of time windows considered). Here, we computed the FC over a sliding win-

dow of 30 TRs (corresponding approximately to 1.5 minutes) with incremental shifts

of 3 TRs. This FCD matrix is defined so that each entry, (FCD(tx, ty)) corresponds

to the correlation between the FC centered at times tx and the FC centered at ty.

In order to compare quantitatively the spatio-temporal dynamical characteristics

between empirical data and model simulations, we generate the distributions of the

upper triangular elements of the FCD matrices over all participants as well as of

the FCD matrices obtained from all simulated trials for a given parameter setting.

The similarity between the empirical and model FCD distributions is then com-

pared using the KS distance, DKS , allowing for a meaningful evaluation of model

performance in predicting the changes observed in dynamic resting-state FC. How-

ever, the fundamental nature of the swFCD technique implies the choice of a fixed

window length, which limits the analysis to the frequency range below the window

period, so the ideal window length to use remains under debate [44].

phFCD In an attempt to overcome the limitations of the sliding-window analysis,

a few methods were proposed to estimate the FC(t) at the instantaneous level. For

instance, phase Functional Connectivity Dynamics (phFCD) consists in computing

the phase coherence between time series at each recording frame [21]. In brief, the

instantaneous BOLD phase of area n at time t, θn(t), is estimated using the Hilbert

transform. Given the phase, the angle between two BOLD signals is given by their

absolute phase difference: Θnp = |θn(t) − θp(t)|. Then, the phFCD(t) between a

pair of brain areas n and p is calculated as:

phFCDnp(t) = cos(Θnp(t)), n, p ∈ N = 1, ..., N

with N the number of brain regions considered in the parcellation used. To compare

two phFCD matrices among themselves, e.g., a simulated and an empirical one,

again the KS distance is usually used.

2.10 Full Optimization

To efficiently optimize the 6-dimensional function described before for the three

bias and scaling values, a simple local optimization-based approach such as conju-

gate gradients cannot be used, as this is a (usually) ill-posed problem with a global
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minimum surrounded by many local minima. Instead, we need to resort to a global

optimization algorithm. In our case, mwe used a Bayesian minimization algorithm

using Gaussian Processes (GP), which approximates the function using a multi-

variate Gaussian. In particular, our implementation uses the gp minimize method

from the scikit-optimize Python library[5]. At its core, the method approximates

the objective function with a Gaussian process, assuming that the values follow

a multivariate Gaussian. The covariance of the function values is given by a GP

kernel between the parameters. With this information, the algorithm chooses the

next parameter to evaluate by selecting the acquisition function over the Gaussian

prior. The error measure used was the KS distance between the empirical BOLD

signal and the average over a number of trials (10 in our case) of the simulated

signal, and we let the function run for 100 iterations. In all cases, the results moved

significantly away from the priors.

3 Results

We used diffusion MRI to generate the Structural Connectomes of 17 healthy control

(HC) subjects, 9 mild cognitive impairment (MCI) subjects, and 10 subjects with

Alzheimer’s Disease (AD) from ADNI, which are mostly the same participants as

those used by Stefanovski et al. [15] and Triebkorn et al. [16]. See Table 2 and

Figure 3.

Given these cohorts, we used the G∗Power [45] software to conduct statistical

power calculations based on a two-group Wilcoxon-Mann-Whitney test, with sig-

nificance level α = 0.05 and power 1 − β = 0.8. Assuming a standard deviation

σ = 0.05 (a reasonable assumption given our results below), we obtained that the

minimum effect size we would be able to discern in this setting would be d = 1.1,

which implies that the minimum detectable difference between the means of the

control population and any of the other two would be around 0.055.

Diagnosis n (female) Mean age σ Min. age Max. age Mean MMSE σMMSE Min. MMSE Max. MMSE
AD 10 (5) 72.0 9.6 55.9 86.1 21.3 6.8 9 30
HC 17 (10) 70.8 4.3 63.1 78.0 29.3 0.7 28 30
MCI 9 (3) 68.8 5.8 57.8 76.6 27.4 1.5 25 30

Table 2 Epidemiological information of the population used in this study.

3.1 Fitting the Homogeneous Model

As a first step, we evaluated the capability of the homogeneous BEI model to re-

produce the empirical properties of resting-state FC data. To this end, we fitted the

global coupling parameter, G, without considering heterogeneity by setting all re-

gional gain parameters M(E,I) = 1 [18]. Then, we evaluated the ability of the model

to reproduce three different properties of empirical resting-state fMRI recordings:

edge-level static FC, swFCD, and phFCD (see Methods for further details.) The

results of this analysis are shown in Figure 2A. To remove differences across sub-

jects related to age, we considered averaged values across subjects over the healthy

control group and took an equivalent number of simulated trials with the same du-

ration as the human experiments (see Methods). Following previous research [19]

[5]https://scikit-optimize.github.io/stable/modules/generated/skopt.gp_minimize.html
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fitting the phFCD better captures the spatiotemporal structure of the fMRI data,

being a stronger constraint on the model. Indeed, where FC fits are consistently

high across a broad range of G values, phFCD yields a clear global optimum at

G = 3.1. Thus, we choose to use phFCD for all further analysis.

3.2 Introducing Aβ and tau heterogeneity

Once the global coupling parameter has been found, we can introduce the regional

heterogeneity in the distributions of Aβ and tau, and study how their introduction

leads to a better representation of neural dynamics, i.e., improves the fitting of

phFCD. Spatial maps for each form of protein burden used in our modeling are

shown in Figures 2G (for Aβ) and 2H (for tau) for one particular individual. For

some individuals, (mainly HC subjects, e.g., as subject 003 S 6067 in the ADNI

database, with ρ = 0.92, p < 0.001) the Aβ and tau distributions are strongly

correlated, while for others the two maps show a weaker correlation (e.g., subject

036 S 4430, with ρ = 0.10, p = 0.04.) This observation indicates that each protein

burden introduces a different form of biological heterogeneity to the benchmark BEI

model, and thus should be modeled separately in our simulations.

We introduce these kinds of heterogeneity by modulating the regional gain func-

tions M(E,I) at the optimal working point of the homogeneous BEI model found at

the previous stage (G = 3.1), through the bias and scaling parameters introduced

above, denoted bEAβ and sEAβ for Aβ, and bEτ and sEτ for tau, all for the excitatory

case, and similarly for the inhibitory case with superscript I. We perform a search

in parameter space with constraints introduced from experimental observations, see

Section 2.8, to find the optimal working point for the two protein burdens simulta-

neously, which results in an 8-degree of freedom optimization, which is reduced to

six degrees due to the constraints. For the optimization, we used Bayesian opti-

mization algorithm using Gaussian Processes, see Section 2.10. We can also

perform a simplified search, limited to the two-variable bIAβ and sIAβ space, i.e., the

inhibitory bias and scaling of the Aβ influence on inhibitory neuron parameters

(Equation 9). In this case, the 2D optimization results show a decreasing the neu-

ronal activity with increasing Aβ concentration, confirming previous results [15].

On average, for each group of subjects, we got the results shown numerically in

Table 3.

Cohort bE
Aβ

sE
Aβ

bEτ sEτ bI
Aβ

sI
Aβ

AD 0.2 (0.5) 2.3 (1.2) -0.4 (0.6) -2.6 (0.8) 0.2 (0.6) -2.5 (0.8)
MCI 0.4 (0.7) 1.7 (1.5) -0.5 (0.5) -2.8 (0.7) -0.1 (0.8) -2.1 (1.2)
HC 0.1 (0.8) 1.7 (0.9) -0.5 (0.6) -2.8 (1.0) 0.3 (0.6) -3.1 (1.0)

Table 3 Resulting averaged parameters from the optimization procedure. In parenthesis, the
respective standard deviations.

These results can be seen visually in Figure 4. This figure shows that there is a

clear regime in which all three empirical properties are fitted well by the model,

particularly for the values shown above, where a fitting of phFCD of 0.13 is achieved

for the AD subjects, while the reference homogeneous value is equal to 0.5.

3.3 Analysis of burden impact

For the optimal parameter values resulting from model fitting, we simulated each

dynamical model 10 times for each subject to account for the inherently stochastic
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nature of the models and compute the respective measures of model fit. Figure 5

shows the distributions of fit statistics across runs for the homogeneous and the

heterogeneous model for the different cohorts. In addition, we show results for a

null ensemble of models in which the regional burden values were spatially shuf-

fled to generate surrogates with the same spatial autocorrelation as the empirical

data. Across the benchmark property to which the data were fitted –—phFCD-––,

the models taking into account the regional burden heterogeneity perform bet-

ter than the homogeneous model (all pass the Mann-Whitney U rank test on two

independent samples with p < .0005). We also find a consistent gradient of per-

formance across all benchmarks, with the heterogeneous model performing best,

and the homogeneous model showing the poorest performance. For each bench-

mark metric, the performance of the heterogeneous model was better than all other

models (in all cases p < .06). Also, it must be noted that the differences in fit

statistics between models are significant, as shown in Figure 5. For example, for

the AD cohort, the correlation of the median phase FCD between the fitted model

and empirical data showed r < 0.1 for the heterogeneous model, and r ≈ 0.2 for

the BEI model. In all subject groups, the difference between these two models is

clear, with p < 0.0005. In all reported results we used a Mann-Whitney-Wilcoxon

test two-sided with Benjamini-Hochberg correction (p-value annotation legend: ns:

p <= 1.00e+00, *: 1.00e−02 < p <= 5.00e−02, **: 1.00e−03 < p <= 1.00e−02,

***: 1.00e− 04 < p <= 1.00e− 03, ****: p <= 1.00e− 04).

Finally, we performed an analysis comparing the impact of each type of burden,

in isolation or together, onto the simulation results. In Figures 2D-2F we can see

these results for the different cohorts, for Aβ and tau, Aβ alone, tau alone and fi-

nally the homogeneous BEI model, added for reference. As we can see, with respect

to the homogeneous model, the best performance is systematically obtained by the

combined action of both Aβ and tau, giving a value with p < 0.0004 in all cases.

However, for each cohort, each protein shows to play a different role in the devel-

opment of the disease. For AD subjects, the effect of Aβ on the optimal combined

result is small, with a p < 0.0005, while the influence of tau alone has a p value that

does not allow us to distinguish between its effect and the combined effect of both

proteins (p = 0.172), implying a clear dominance of tau over Aβ in this stage of the

disease. Also, with respect to the homogeneous BEI model, tau presents p < 0.005,

while Aβ alone shows a much higher value (p = 0.339), not allowing us to clearly

distinguish between these two models. In the case of the MCI cohort, in Figure 2E,

we can observe that the effect of Aβ alone clearly gives the major contribution to

the final combined fitting, rather than tau, with a p < 0.0003 between all cases.

Finally, in the HC case in Figure 2D, the effects of the Aβ and tau proteins are close

to the homogeneous BEI model, with Aβ presenting a somewhat higher prevalence

than tau. However, it is noticeable that the differences between this case and the

previous one are small, showing that Aβ already plays an important role even in

HC subjects.

3.4 2D Aβ Optimization

We can use our model to verify the results by Stefanovski et al. [15] by limiting

our analysis to the parameters of Aβ at the inhibitory level (i.e., the inhibitory
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bias bIAβ and scaling sIAβ parameters only, defined in Equation 9). This way, we can

replicate, up to a certain degree, the results from that paper, being limited by the

fact that we use a different model, based on the BEI model instead of the Jansen-

Rit model [46]; a different expression for the burden, i.e., a linear approximation

instead of a sigmoid; different units, etc. See Figure 4. By analyzing the obtained

data at the optimal fit, the same behavior of decreasing the neuronal activity of

inhibitory neurons with the scaling parameter sIAβ , corresponding to an increase in

Aβ concentration, can be observed, as shown in Figure 6.

4 Discussion

In this paper we studied the influence of the regional variability of two pathological

proteins, namely Aβ and tau, on cortical activity and E/I balance in the con-

text of AD using whole-brain dynamic modeling, which allowed us to disentangle

separate and synergistic effects of these two proteins in-silico. The incorporation of

such heterogeneous patterns of neuropathology into whole-brain models of neuronal

dynamics has been made possible by the availability of in-vivo quantitative PET

imaging. We have shown that the heterogeneous model, which incorporates regional

information on both types of neuropathological burdens more faithfully reproduces

empirical properties of dynamic brain activity than the model with fixed and homo-

geneous parameters. Our findings highlight the central role of both types of burden

in disturbing the E/I balance, supporting the hypothesis of hyperexcitation in AD.

Regarding the individual influence of Aβ and tau on brain activity, our results have

shown a dominance of Aβ influence on neural dynamics in earlier stages of AD (i.e.,

MCI) and even in healthy controls, while tau plays a larger role in later stages.

These key findings highlight the prominent role of these pathological proteins in

contributing to the abnormal brain activity patterns in the course of AD [47].

4.1 How does burden heterogeneity shape neuronal dynamics?

We introduced burden heterogeneity into our dynamical model by modifying the re-

gional excitability of neural population activity. We achieved this by modifying each

brain region’s gain response function Mi of inhibitory and excitatory populations,

i.e., the net excitability of the according population. This was done, in accordance

with previous works exploring the effect of regional parameters on E/I balance [19],

thus focusing on how the interaction of neuronal populations contributes to neuronal

dynamics (i.e., FC or FCD) and their relative impacts over time. Our approach is

different from the work by Stefanovski et al. [15], where the Aβ burden was used to

modulate regional E/I balance by negatively modulating the inhibitory time con-

stant, slowing down synaptic transmission and thus increasing excitatory activity

and producing a higher output of the pyramidal cell populations, resulting in a

local hyperexcitation with high Aβ loads. However, our approach, when limited to

the effect of Aβ in the early stages of the disease, results in the same behavior of

neural populations as a function of Aβ, similarly resulting in a net increase of the

excitatory activity with increased Aβ burden. There are other approaches available

to introduce heterogeneity, such as an adjustment of the inter-node connectivity to

fit empirical and simulated FCs [48]; or variations of within- and inter-area con-

nectivity [49]. However, based on the empirical evidence that the interplay of both
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burdens, Aβ and tau, severely disrupt normal neuronal function, we decided to

model their direct effect on the E/I balance.

In this paper we have chosen to incorporate heterogeneity into the model by modu-

lating population gain response functions H(E,I). Here, adjusting the gain function

parameter Mi allows us to demonstrate how local variations in the E/I balance

will affect the net excitability of the population. We thus assume that changes in

regional gain are the common final pathways of different neuropathology-related

pathomechanisms which might have an influence on neuronal populations, i.e., re-

sult in realistic representation of direct effects of Aβ and tau and also associated

processes (i.e., non-direct effects).

In particular, we introduced regional variations of Mi as the product of linear

terms consisting of a constant (bias), and a scaling factor. This introduced eight

degrees of freedom, which we could narrow down to six degrees of freedom by in-

troducing constraints to the direction of effect based on previous research [4]. In

sum, our model was created based on assumptions that Aβ leads to GABAergic

interneuron dysfunction and impaired glutamate reuptake, while tau leads to re-

duced synaptic neurotransmitter release in excitatory cells. This hypothesis-driven

amount of degrees is substantially less than used in other models [49, 48], making

a fast parameter optimization feasible, while ensuring sufficient biological realism.

Furthermore, in all cases, the bias parameters for the different burdens (Figure 4)

were approximately 0, thus indicating that the influence of the bias parameters with

respect to the homogeneous model can be ignored, further reducing computational

complexity. The respective scaling parameters take non-negligible values, showing

a linear relationship between Aβ and tau on neural dynamics. We used Bayesian

optimization using Gaussian Processes (see Methods) to address the challenge of

multiple local minima that could trap traditional optimization methods.

4.2 Evaluating Aβ and tau impact

A large body of scientific literature focused on linking global and local brain dynam-

ics to individual differences in cognitive performance scores [12] and showed that pa-

tients with AD and MCI show less variation in neuronal connectivity during resting-

state, and even presented benchmarks for predictive models based on resting-state

fMRI, revealing biomarkers of individual psychological or clinical traits [13]. How-

ever, the pattern of neuronal connectivity alterations has been incompletely un-

derstood. More recent work focused on the effect of Aβ on hyperexcitability, and

how Aβ modulates regional E/I balance, resulting in local hyperexcitation in brain

regions with high loads of Aβ [15]. To our knowledge, no prior study has evalu-

ated both types of neuropathological burden, Aβ and tau, simultaneously, linking

neuropathological data with dynamic whole-brain modeling.

As explained in the Methods Section, we compared the impact of each type of

burden, in isolation or interaction, onto neural dynamics. We found that the model

fitting optimum is systematically obtained by the interaction of both burdens, un-

derlining the interaction of both proteins in disturbing neural activity. Also, we have

found that for each condition (i.e., HC, MCI or AD), each protein has a different

impact on the brain dynamics. In the case of AD, Aβ has a small impact on the com-

bined result, while tau alone had almost all of the impact, showing its dominance
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over Aβ in regard to generating abnormal brain dynamics. Also, in comparison to

the homogeneous BEI model, we observed that tau is clearly distinguishable, but

Aβ is not. Taken together, these results imply that we cannot distinguish between

the effect on the brain activity of both proteins together vs. the effect of tau alone,

while the effect of Aβ is clearly distinguishable from the combined effect. As a con-

sequence, this allows us to conclude that the impact of tau in the late stage of the

disease (AD) is clearly dominant over Aβ. In contrast, in MCI, the influence of

Aβ alone is clearly dominant over tau, see Figure 2E. Finally, when studying the

effect of both proteins in HC, we can observe that the effect of the Aβ and tau

proteins is close to the homogeneous BEI model, with Aβ presenting a relatively

higher influence than tau. The influence of Aβ both in MCI patients as well as in

HC shows that Aβ leads to a measurable change in brain dynamics in elderly peo-

ple, independent of existing cognitive impairment. However, we acknowledge that

on a pathophysiological level, there is a strong interplay between Aβ and tau, and

further (causal) research is needed to clearly discern the role each protein plays

in the generation of neuronal dysfunction. Despite our findings from model fitting,

we acknowledge that we only observe the current influence of Aβ vs. tau in differ-

ent disease stages in a cross-sectional cohort. Longitudinal examinations might also

replicate the abundant evidence in the literature [4] that both proteins interplay a

toxic feedback loop, which is ultimately responsible (perhaps among other factors)

for the development of the disease.

Our analysis based on furthermore shows that edge-level measures of static FC

offer loose constraints for model optimization, showing comparably high fit statistics

across a broad range of values of the global coupling parameter. In contrast, fitting to

dynamical functional connectivity shows a clear optimum, mirroring similar results

reported previously [19]. We can conclude that fitting models to both static and

dynamic properties is thus important for identifying an appropriate working point

for each model.

Across all these properties, we observe that the model that incorporates the het-

erogeneous burden loads provides a better match to the data than the homogeneous

BEI model, which does not incorporate a fitting of the gain response function of

inhibitory and excitatory populations to the data. This shows that constraining

regional heterogeneity by the protein burdens yields a more faithful replication of

brain dynamics, as measured by empirical phFCD. The superiority of our model

using heterogeneous, empirically estimated parameters, suggests that regional het-

erogeneity plays a significant role in shaping the effects of Alzheimer’s disease on

spontaneous BOLD-dynamics. As we already mentioned, it must be noted that the

differences in fit statistics between models are significant. These results suggest that

these empirical fit statistics have good capacity to tease apart dynamical differences

between models, which gives the opportunity to disentangle the influence of different

pathomechanisms in vivo.

5 Limitations

In our implementation, we used SC matrices derived from DWI. However, as many

factors such as myelination and diameter impact the conductivity of white matter

tracts, it may be a confounding factor that coupling between different brain areas

is not affected by this.
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It is important to mention that, in our study, we included sub-cortical regions,

which are particularly susceptible to off-target binding of the AV-1451 tracer, which

may introduce a potential confound. For this study we did not have controlled the

images for off-target binding. Recent studies show that, besides Tau tangles, AV-

1451 also binds on neuromelanin, melanin and other blood products [50]. This is a

genuine restriction of the imaging method (as many PET tracers have one) and we

are not aware of a standard that corrects for this phenomenon. Moreover, it is kind

of controversially discussed whether this is always off-target binding or detecting

tangles that other methods are not aware of [51]. In any case, it can be argued that

the typical finding of this off-target bidding is affecting AD, MCI and controls to

the same amount, which implies this is something that cannot cause artificial group

differences and can therefore be safely ignored in the context of this study.

6 Conclusion

In summary, in this paper, we have presented a whole-brain dynamic model con-

necting the main protein burdens, namely Aβ and tau, in different stages of AD and

in HC. Our results not only reproduce previous research regarding E/I imbalance in

AD, and also shed further light on the relative impact of each type of burden during

different disease stages, opening new avenues to focus research efforts. As a general

conclusion, our study shows that theory-driven whole-brain modeling enables us to

do research on disease mechanisms in-silico and to empirically compare competing

hypotheses against each other and thus complements data-driven modeling such as

machine learning. Thus, whole-brain modeling can incorporate sufficient biological

realism to contribute to improved diagnostic procedures (i.e., enable the use of fMRI

for diagnosis) to discover new therapies (e.g., by simulating novel treatments).

Declarations

Ethics approval and consent to participate

Ethical approval was obtained by ADNI sites and written informed consent was

collected from all participants. No further consent was necessary.

Availability of data and materials

All code for implementing computational models and reproducing our results

will be available at the first author’s repository: https://github.com/dagush/

WholeBrain Data used in preparation of this article were obtained from the

Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.

edu). As such, the investigators within the ADNI contributed to the design and

implementation of ADNI and/or provided data but did not participate in anal-

ysis or writing of this report. A complete listing of ADNI investigators can

be found at: https://adni.loni.usc.edu/wp-content/uploads/how_to_apply/

ADNI_Acknowledgement_List.pdf.

Competing interests

The authors declare that they have no competing interests.

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 30, 2023. ; https://doi.org/10.1101/2022.10.30.514365doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.30.514365
http://creativecommons.org/licenses/by-nc-nd/4.0/


Patow et al. Page 18 of 25

Funding

This research was partially funded by Grant PID2021-122136OB-C22 funded by

MCIN/AEI/ 10.13039/501100011033 and by ERDF A way of making Europe of

GP. This work was supported by an add-on fellowship of the Joachim Herz Foun-

dation of XK. PR had the support of the following grants: H2020 Research and In-

novation Action Grant Human Brain Project SGA2 785907 (PR), H2020 Research

and Innovation Action Grant Human Brain Project SGA3 945539 (PR), H2020

Research and Innovation Action Grant Interactive Computing E-Infrastructure for

the Human Brain Project ICEI 800858 (PR), H2020 Research and Innovation Ac-

tion Grant EOSC VirtualBrainCloud 826421 (PR), H2020 Research and Innova-

tion Action Grant AISN 101057655 (PR), H2020 Research Infrastructures Grant

EBRAINS-PREP 101079717 (PR), H2020 European Innovation Council PHRASE

101058240 (PR), H2020 Research Infrastructures Grant EBRAIN-Health 101058516

(PR), H2020 European Research Council Grant ERC BrainModes 683049 (PR),

JPND ERA PerMed PatternCog 2522FSB904 (PR), Berlin Institute of Health &
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Figure 1 Illustrative overview of our processing pipeline. ((a)) Basic ingredients for the integration
of protein burden data from structural (dMRI, top left), functional (fMRI, top right), and burden
(PET, right) using the same parcellation for each neuroimaging modality (top, middle) for
generating a whole-brain computational model (bottom left). Each node of the model is using a
realistic underlying biophysical neuronal model including AMPA (blue connections), GABA (red),
and NMDA (gray) synapses as well as neurotransmitter gain modulation of these. ((b)) Fitting
the measures in the whole-brain model: First, we simulate the BOLD timeseries for each brain
region in the parcellation, for each subject. These timeseries are defined by its inputs, namely a
previously found global coupling constant G, an individual Structural Connectivity (SC) matrix,
and the corresponding individual Aβ and tau burdens. Subsequently, we compute a
time-versus-time matrix of phase functional connectivity dynamics (phFCD). This is compared to
a reference empirical phFCD extracted from the fMRI data off the same subject using the
Kolmogorov-Smirnov distance (KS), DKS , which is minimized to find the generative parameters
of the model. This process is repeated for the other two measures of brain dynamics, functional
connectivity (FC) and sliding-window functional connectivity dynamics (swFCD).
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Figure 2 Optimization and evaluation of the model: First, using only HC subjects, the global
coupling parameter G is found, and then the model is adjusted to minimize the distance between
the empirical and simulated fMRI data, taking into account the regional burden distributions. (A)
Minimization of G between 0 and 5.5, for Functional connectivity (FC), sliding-window Functional
connectivity Dynamics (swFCD), and phase FCD (phFCD). Given their strong similarity in the
results, phFCD was used for all subsequent computations. (B, C) Shows the normalized (in [0, 1])
FCD distributions for the empirical data (top) and the simulated model at the optimal result
(bottom). (D, E, F): Analysis of the impact (smaller values are better) of the different burdens
with respect to their impact on the phFCD (KS distance) when optimized together and in
isolation, with the homogeneous state as a reference. Clearly, in all cases, the combined burden
outperforms any other model. However, as can be seen, the results for AD clearly show that tau
alone accounts for the vast majority of the weight of the impact on brain activity (F), while for
MCI patients it is Aβ who dominates (E). For HC patients we also see a predominance of Aβ,
although with less difference between the model incorporating Aβ and tau vs. Aβ in isolation (D).
Example distributions of Aβ (G) and Tau burdens (H) of one subject (036 S 4430 in ADNI’s
database). Colors correspond to the normalized burden of each protein.
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Figure 3 Visualization of the SC graph, in matrix form (left) and as a graph showing the
strongest 5% of connections. Node positions are computed with Fruchterman and Reingold’s [52]
algorithm, which assumes stronger forces between tightly connected nodes. Besides the high
degree of symmetry, we can observe the laterality is kept in the graph structure (also for
subcortical regions). Node size linearly represents the graph theoretical measure of structural
degree for each node. As we can see, the most important hubs are in the subcortical regions.

Figure 4 Parameter values found after the optimization stage for HC, MCI and AD subjects.

Observe that all b
(E,I)
(Aβ,τ)

, the excitatory/inhibitory Aβ and tau bias parameters, have negligible

values, while the scaling parameters s
(E,I)
(Aβ,τ)

present non-null values. Of note, the p-values between

the different scaling parameters across the cohorts are different in a moderately significant way
(p < 0.03), remarkably between HC and AD, but usually not between MCI and AD. In these
plots, boxes extend from the lower to upper quartile values of the data, adding an orange line at
the median. Also, whiskers are used to show the range of the data, extending from the box.
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Figure 5 Comparison between the homogeneous model, the optimum result obtained with the
heterogeneous model (optim), and the same parameter values but with shuffled burdens. As can
be seen, the differences in fit statistics between models are significant. In particular, for the AD
cohort, the median phFCD correlation between model and data showed r < 0.1 for the
heterogeneous model, and r ≈ 0.2 for the BEI model. In all subject groups, the difference between
these two models is clear, with p < 0.0005.

Figure 6 Excitatory and inhibitory mean firing rates as a function of the Aβ inhibitory scaling
sI
Aβ

, with all the other parameters of the model at the (averaged) fitted optimum values. For the

purpose of clarity, the horizontal axis for the scaling has been taken as absolute values, to
illustrate the behavior with increasing Aβ loads. The vertical axis shows the firing rates of both
excitatory and inhibitory populations. It can be clearly seen that the net effect of the burden is to
increase the overall region firing rate, measured at the excitatory population. For the sake of
clarity, the inhibitory firing rate has been vertically inverted (negated) to show their decreased
effect on the excitatory population, thus confirming previous findings [15]. The vertical
discontinuous line shows the optimum found for sI

Aβ
.

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 30, 2023. ; https://doi.org/10.1101/2022.10.30.514365doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.30.514365
http://creativecommons.org/licenses/by-nc-nd/4.0/

