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ABSTRACT 26 

The pathogen Streptococcus agalactiae, or Group B Streptococcus (GBS) infection is the 27 

leading cause of neonatal sepsis and meningitis in neonates. . In this study, we aimed to 28 

investigate the occurrence and diversity of the CRISPR-Cas system in S. agalactiae genomes 29 

using computational biology approaches. A total of 51 out of 52 complete genomes (98.07%) 30 

of S. agalactiae possess CRISPR arrays (75 CRISPR arrays) with 17 strains possessing 31 

multiple CRISPR arrays. There were only two CRISPR-Cas systems 3 type II-A system and 32 

type I-C system in S. agalactiae strains. RNA secondary structure analysis through direct repeat 33 

analysis showed that the analyzed strains could form stable secondary structures. The 16S 34 

rRNA phylogeny exhibited clustering of the strains into three major clades grouped on the type 35 

of CRISPR-Cas system. The anti-CRISPRs that contribute to CRISPR-Cas system diversity 36 

and prevent genome editing were also detected. These results provide valuable insights into 37 

elucidating the evolution, diversity, and function of CRISPR/Cas elements in this pathogen. 38 
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 51 

INTRODUCTION 52 

Streptococcus agalactiae (also known as Group B Streptococcus, GBS), a Gram-positive 53 

bacterium, is a common commensal of intestinal and reproductive tracts in healthy adults. It 54 

can be transmitted from mother to newborn during birth [1]. The GBS is a cause of stillbirth, 55 

chorioamnionitis, and neonatal infections including pneumonia, bacteremia, and meningitis. 56 

GBS-sepsis has a mortality rate of 10-18%, with a colonization rate of approximately 18335% 57 

in pregnant women, and neonatal infection rates of 0.4 to 1.1 cases per 1000 live births [2,3]. 58 

The infection process is mediated by multifunctional GBS virulence factors that could be a 59 

challenge to the immune-deficient neonates [4]. GBS displays virulence factors including a 60 

potent hemolytic toxin, proteases, and multiple surface proteins to conquer host tissues [5]. 61 

 62 

 Prokaryotes employ CRISPR-Cas systems (clustered regularly interspaced short 63 

palindromic repeat, with CRISPR-associated proteins), which provide sequence-based 64 

adaptive immunity against invasive transposable elements, conjugative plasmids, and phages 65 

[6]. About 40% of bacteria and 90% of archaea are equipped with CRISPR-Cas systems. 66 

Moreover, microbes may have more than one type of CRISPR3Cas system which function 67 

towards specific template based recognition, targeting, and degradation of exogenous nucleic 68 

acids [7]. These systems could differ in type of Cas proteins present and spacer sequences and 69 

also the length and number of CRISPR repeats. Although, initially known for its involvement 70 

in viral defense, recent findings suggest involvement of CRISPR-Cas systems in regulation of 71 

expression of virulence genes and escape host immunity [8]. CRISPR-Cas systems were earlier 72 

considered as adaptive immune system and widely studied in Streptococcus thermophilus [9]. 73 

 74 

Studies suggest that mainly three types of CRISPR-Cas9 systems are employed by 75 
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Streptococcus sp. type I, type II, and type III. In addition to these, they also harbor a single 76 

type V and unknown CRISPR loci.[10] . The recent reports on the emergence of hypervirulent 77 

S. agalactiae suggest the contribution of phages and other mobile genetic elements (MGE) in 78 

adaptation to different hosts and its virulence profile [11]. These phage-associated genes may 79 

play a major role in biological success of the strains by acting as delivery vehicles of resistance 80 

and virulence genes [12]. Recently, CRISPR analysis has been used as tool to follow maternal 81 

GBS colonization and also as a typing technique over traditional subtyping systems [13] .While 82 

extensive details are available on S. thermophilus and other animal pathogenic streptococci, 83 

detailed information on the CRISIPR-Cas systems in human pathogenic S. agalactiae are 84 

lacking. Therefore, in this regard, we sought to investigate the occurrence and diversity of 85 

CRISPR-Cas systems in S. agalactiae genomes. We used CRISPRminer2 server[14] and 86 

CRISPRCasFinder [15] - two most inclusive and widely used resources for the identification 87 

of CRISPR arrays and cas genes. We report here the diversity and provide insights into existing 88 

CRISPR-Cas systems in S. agalactiae based on 52 complete genomes of GBS of human origin. 89 

 90 

METHODOLOGY 91 

Sequence selection and retrieval 92 

The data set included complete genomes of Streptococcus agalactiae. Only the complete 93 

genomes with human/homo sapiens as hosts were selected and retrieved from NCBI website 94 

(https://www.ncbi.nlm.nih.gov/, last accessed on 21-08-2022). Except for the reference strain 95 

NGBS128 none of the other genomes had any plasmid sequences. A total of 52 such sequences 96 

were selected and their fasta files downloaded for NCBI. 97 

 98 

Detection of CRISPR-Cas features  99 
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The complete genomes of the 52 strains were screened for the presence of complete CRISPR3100 

Cas loci using CRISPRminer2 server. CRISPRminer2 is a comprehensive tool that uses a 101 

comparative genomics approach to identify and annotate CRISPR3Cas loci. This tool also 102 

helps with multiple detection options, including anti‐CRISPR detection and annotation, self‐103 

targeting spacer search, repeat type identification, bacteria3phage interaction detection, and 104 

prophage detection. Only <confirmed CRISPRs= identified by the CRISPRminer2 tool were 105 

selected for further analysis. The strains which then did not show CRISPR loci were eliminated 106 

and rest of the strains were retained for further analysis. The results were also corroborated by 107 

checking with CRISPRCasFinder. 108 

 109 

Signature genes 110 

The data from CRISPRminer2 was tabulated and a list of signature genes were determined. A 111 

tile map was generated to visualise the presence and distribution of these genes amongst the 43 112 

strains. CRISPR map server was also used to obtain in depth information on each of the strains. 113 

The CRISPR repeats were analysed through multiple sequence alignment and the aligned direct 114 

repeats visualised using the WebLogo program [16]. 115 

 116 

RNAFold Webserver 117 

Direct repeats (DR) obtained via CRISPRminer2 were then compiled and 11 unique repeats 118 

found were then used to generate free energy structures via the RNAFold server[17] . The 119 

RNAfold Webserver set to default parameters was used to predict the RNA secondary structure 120 

and minimum free energy (MFE) of each DR.  121 

 122 

Phylogenetic Trees 123 
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To understand CRISPR-Cas distribution in the genomes from a phylogenetic perspective, 124 

complete 16S rDNA sequences from 52 genomes were retrieved from NCBI and aligned using 125 

MUSCLE in MEGAX [18]. ML statistical method with model selection was used to compute 126 

BIC score and AICc value of 24 different nucleotide substitution models. A maximum 127 

likelihood phylogenetic tree was constructed (Kimura-2 model of nucleotide substitution) and 128 

bootstrap analysis with 1000 random replicates. The cas1 and cas9 genes were aligned and a 129 

ML phylogenetic tree was constructed with 1000 bootstrap values. Streptococcus pyogenes 130 

was taken as the outgroup. 131 

 132 

Spacer analysis 133 

The spacer targets were identified using the CRIPSRminer2. The visual representation of the 134 

CRISPR spacers was performed using Excel macros, with each unique colour combination 135 

representing one unique spacer sequence  136 

 137 

RESULTS 138 

Sequence selection and retrieval 139 

A search for S. agalactiae genomes in the NCBI database listed 1515 sequenced genomes 140 

amongst which 128 were complete genomes. Out of these only the ones affecting human/ homo 141 

sapiens hosts which resulted in a total of 52 genomes were considered for further analysis. Out 142 

of these 52 strains, 51 were determined to possess CRISPR arrays with a total of 75 CRISPR 143 

arrays detected and 21 strains possessing multiple of these CRISPR arrays. BJ01 and Sag27 144 

were noted to have the highest number of individual arrays each with three CRISPR-Cas arrays. 145 

 146 

Genomic context analysis of confirmed CRISPR-Cas loci 147 
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The selected strains were uploaded to CRISPRminer2 web server and results are tabulated in 148 

the Table 1. CRISPRminer2 provided details on the number and type of CRISPR locus found, 149 

number of spacers and direct repeats (DRs), including DR types, signature genes found within 150 

each locus. Other information such as number of prophages, anti-CRISPRs, mobile genetic 151 

elements and self-targeting spacers were all obtained from this server. All the strains were 152 

classified either into Type II, Type I or orphan CRISPR types (Supplementary table 1). Two 153 

types of DRs were found, II having 47 repeats and I having only 12, whilst the remaining 16 154 

repeats were determined to be NA (Not applicable).  GBS28 and NGB061 had the highest 155 

number of DRs with 31 whilst possessing only 1 CRISPR array. Meanwhile, Sag158 and BJ01 156 

have 31 and 35 DRs respectively but with multiple CRISPR arrays. The individual CRISPR 157 

length was observed to have a wide range with FDAARGO_670 and B509 having 7693bp and 158 

7363bp being on the higher end. Meanwhile, BGS-M002 has the shortest CRISPR with only 159 

102 bp. Two types of Anti CRISPR (Acr) regions were also detected with AcrIIA21 being 108 160 

aa long and being present in 26 strains whilst AcrIIA18 being 176 aa in length and present in 161 

just GBS1-NY. NGBS061 and BJ01 both possess the highest amount of self-targeting spacers 162 

with 11 each. Strain NGBS128 was found to have the greatest number of Mobile Genetic 163 

Elements (MGEs) with 37 in its single CRISPR array.  164 

 165 

Cas genes 166 

The tile map generated using the presence/absence matrix shows the distribution of signature 167 

genes amongst the 51 genomes (Figure 1). From the given cas genes only cas1, cas2, csn2 168 

(Casein Beta which is a Protein Coding gene) and cas9 were seen to be present in all the 51 169 

strains. The strains B507, CUGBS591, CU_GBS_08, CU_GBS_98, NGBS572, Sag153, 170 

Sag37, SG-M1, SG-M158, SG-M63, SG-M29 and SG-M50 possessed 2 CRISPR arrays and 171 
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hence have the maximum cas proteins. None of the genomes possessed any transposons in the 172 

CRISPR loci. 173 

 174 

Direct repeats 175 

The DRs from all the CRISPRs were collected and the duplicates were removed. The 11 unique 176 

repeats were then uploaded to the RNAFold Webserver from which the free energy structure 177 

was obtained as seen in Figure 2. Shorter or incomplete DR sequences were eliminated and the 178 

remaining 9 structures were taken into consideration. DR1 and DR2 are seen to have the highest 179 

minimum free energy (MFE) value whilst DR2 has the lowest making it the most stable out of 180 

the 9 DR structures. The MFE of ribonucleic acids (RNAs) increases at an apparent linear rate 181 

with sequence length and the lower the MFE, the more stable the structure [19]. In this case 182 

DR2 with -13.10 kcal/mol is seen to be the most stable out of the 9 predicted structures. Both 183 

DR1 and DR3 have the least stable structure with -0.3 kcal/mol and -0.4 kcal/mol respectively. 184 

 185 

Spacer analysis 186 

In total, 862 spacers were identified among GBS genomes positive for CRISPR loci. Of the 187 

identified spacers, 812 were unique (Supplementary figure 1). The spacers in each array ranged 188 

from 23 to 104. Among the genomes, the least number of spacers (1) was seen within the 189 

CRISPR locus of BJ01, while the highest number of spacers (31) was seen in GBS28 genome 190 

with an average of 11.4 spacers per array. An analysis of spacer sequences showed 212 spacers 191 

to match plasmids (24.79%) and 568 spacers (66.43%) to match phages. The CRISPRminer2 192 

prediction indicated the absence of self‐targeting spacers. Furthermore, 16 genomes had 193 

duplicate spacers within their genome with a total of 50 duplicate spacers across all the GBS 194 

genomes studied.  195 

 196 
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Phylogenetic Trees 197 

Two separate phylogenetic trees were constructed for 16S sequences, and cas9 of the selected 198 

genomes (Figure 3). The 16S phylogenetic analysis showed all sequences clustering into 2 199 

major clades based on their CRISPR-Cas status. This close clustering of strains may be 200 

indicative of close intra-genus relationship among them. Cas9 phylogenetic tree showed 201 

clustering of the strains into 3 major clades grouped on the variations seen in their respective 202 

genes (Supplementary figure 1).   203 

 204 

DISCUSSION 205 

In this study, we investigated the CRISPR3Cas systems in the GBS genomes isolated from 206 

humans’ origin to gain insights into the occurrence, diversity, and features of its adaptive 207 

immune system. GBS had a high frequency of occurrence of the complete CRISPR3Cas system 208 

(91.4%). This is comparable to the reported prevalence of complete CRISPR loci for 209 

Streptococcus genera [9]. High CRISPR-Cas prevalence has been attributed to high viral 210 

abundance coupled with lower viral diversity in the ecosystem [20]. Bacterial CRISPR-Cas 211 

systems have been associated with interaction of pathogens with host cells, immune evasion 212 

and other bacterial virulence [21]. Interestingly, contradictory functions have been reported on 213 

the functioning of CRISPRs. Short or complete absence of CRISPR arrays have led to increased 214 

pathogenicity as seen in gastroenteritis causing Campylobacter jejuni strains  [8], while cas 215 

genes has been shown to enhance virulence in S. agalactiae mutant studies [22]. On the one 216 

hand, CRISPR-Cas system may lessen the potential virulence by preventing MGE from 217 

introducing new virulence genes, while on the other hand, CRISPR-Cas may enhance virulence 218 

by regulating gene expression and promoting host colonization. GBS expresses various surface 219 

and secreted virulence factors to colonise and infect neonates, which also supports survival in 220 

the bloodstream. 221 
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 222 

The CRISPR3Cas systems are classified into two classes, Class I and Class II, 6 types 223 

and 33 subtypes based on the crRNA3effector complex [23]. The genera Streptococci 224 

fundamentally harbor type I, type II and type III CRISPR-Cas systems in addition to the 225 

individual type V and unknown CRISPR loci [24]. The type II system is involved in 226 

pathogenesis, quorum sensing, invasion and stress response among others while type I systems 227 

drives DNA targeting and cleavage associated with antiviral defense. Type III systems provides 228 

transcription-dependent immunity against diverse nucleic acid invaders [25]. In our study, out 229 

of selected 52 genomes, 51 genomes contain CRISPR arrays with a total of 75 CRISPR arrays 230 

detected and 17 strains possessing multiple of these CRISPR arrays further classified into Type 231 

II, Type I or orphan CRISPR types.  232 

 233 

A majority, 29 genomes (55.76%) of the CRISPR3Cas systems of the GBS genomes 234 

were of Type II-A, while 15 (28.84%) genomes contained both Type II-A and I-C type of the 235 

CRISPR3Cas system. This composition is similar to the that of CRISPR-Cas of other 236 

Streptococcus species like S. canis [26] and S. pyogenes [27]. The type I-C in GBS contains 237 

seven cas genes (cas3, cas5c, cas8c, cas7, cas4, cas1 and cas2) similar to the ones found in S. 238 

pyogenes [27]. Cas9 was found in all 51 genomes. The recent studies indicates that Type II 239 

CRISPR-associated protein 9 (cas9) influenced virulence in GBS strains [28,29]. The virulence 240 

factors of GBS have been implicated in vaginal colonization and invasive disease through Cas9 241 

based regulators [29].None of the genomes contained any transposon or retrotransposon 242 

elements in the CRISPR loci.  243 

 244 

Interestingly, we are also able to detect anti-CRISPRs from GBS, which contributes to 245 

CRISPR-Cas system diversity and which also prevents genome editing. Two types of Anti 246 
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CRISPR (Acr) regions were detected from selected strains as AcrIIA21 being present in 26 247 

strains whilst AcrIIA18 in just GBS1-NY strain. AcrIIA21 exhibits broad spectrum action by 248 

inhibiting Streptococcus pyogenes Cas9 (SpyCas9), Staphylococcus aureus Cas9 (SauCas9), 249 

and Streptococcus iniae Cas9 (SinCas9), exhibiting high efficacy against SinCas9 [30]. An in 250 

depth understanding of its mechanism remains elusive. Furthermore, the modulation of Cas9 251 

through sgRNA has also been reported from AcrIIA17 and AcrIIA18. The AcrIIA18 performs 252 

Cas9-dependent truncation of sgRNA which lead to generation of a shortened sgRNA which 253 

are incapable of triggering Cas9 activity [31].  254 

 255 

  CRISPR repeats are known to produce hairpin loops like secondary structure owing to 256 

its palindrome repeats. The stem-loop structure of DRs are known to facilitate the interaction 257 

between spacers and cas proteins. An investigation of the RNA secondary structures and their 258 

MFE values indicated that all but one DRs could form stable structures with ΔG < −10 kcal 259 

mol−1. DR1, DR3 and DR5 had lower MFE values in comparison to DR5, DR6, DR7, DR8 and 260 

DR9. Studies indicate that active CRISPR arrays tend to be long due to the continuous 261 

acquisition of spacers [32]. In this study, a maximum of 31 spacers were present in CRISPR 262 

loci indicating an active system. The average spacer length in the GBS genomes was 39 bp. In 263 

comparison, some genomes like that of E. coli contains an average length of 31 bp while it was 264 

found to be between 28 and 32 nucleotide bp length in S. thermophilus [33]. Studies indicate 265 

that CRISPR systems containing spacers of length >30 bp are more active than loci with shorter 266 

spacer lengths and more spacers allow bacteria to mount a better defense against viruses [34]. 267 

Many of the geographically close strains carried a CRISPR cassette with diverse spacers. Such 268 

observations have recorded earlier from S. thermophilus where spacer hypervariability has 269 

been directly linked to phage exposure [35]. Some of the spacers within the CRISPR loci were 270 

duplicated within the genome, the exact significance of this is not clear. Further experimental 271 
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evidences are needed to investigate the functioning of the CRISPR3Cas systems on gene 272 

expression and regulation especially during host-pathogen interaction in GBS genomes.  273 

 274 
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Figure legends: 433 

Figure 1: Heatmap of presence/absence of various signature cas genes amongst the 52 strains. 434 

The tiles in dark blue denote the presence whilst the ones in light blue show absence.  435 

 436 

Figure 2: The secondary structure for consensus 11 unique direct repeat sequences of CRISPR 437 

arrays in GBS strains. The kcal/mol indicates the minimum free energy (MFE) which is known 438 

to increase at a clear linear rate with sequence length. The colours represent the base-pair 439 

probability range.  440 

 441 

Figure 3: Phylogeny of GBS used in this study. The tree was based on 65 non-redundant 442 

complete 16S rRNA sequences from 51 species of GBS. S. pyogenes was taken as the outgroup. 443 

Numbers next to nodes indicate bootstrap values (%) based on 1000 iterations. Branch length 444 

scale indicates the number of substitutions per site. The phylogeny tree was constructed in 445 

MEGA10 using the maximum likelihood method. 446 
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Table 1: Genomic properties and CRISPR-Cas type of the 52 GBS strains used in this study. 460 

 461 

# 

Strain/Accession 

number Source Condition 

CRISPR 

type 

Length 

(Mb) GC% 

Protein 

Count 

1 

32790-3A / 

NZ_CP029561.1 Guangzhou, China Hospital II-A 2.15 35.7 2167 

2 

874391 / 

NZ_CP022537.1 Japan Vagina II-A 2.15 35.5 1991 

3 

B111 / 

NZ_CP021772.1 Shenzhen, China Neonatal sepsis II-A 2.15 35.4 2021 

4 

B507 / 

NZ_CP021771.1 Shenzhen, China Vagina (mother) II-A, I-C 2.08 35.4 1936 

5 

B508 / 

NZ_CP021770.1 Shenzhen, China Vagina (mother) II-A 2.20 35.6 2204 

6 

BJ01 / 

NZ_CP059383.1 Beijing, China Neonate blood Orphan 2.15 35.7 2037 

7 

CJB111 / 

NZ_CP063198.2 USA Blood II-A 2.09 35.5 1955 

8 

CNCTC 10_84/ 

NZ_CP006910.1 Atlanta, USA Hospital II-A 2.01 35.4 2046 

9 

COH1 / 

NZ_HG939456.1 Institute Pasteur Sepsis (new-born) II-A 2.07 35.4 1893 

10 

CU_GBS_08 / 

NZ_CP010874.1 Hong Kong Hospital II-A, I-C 2.08 35.4 1987 

11 

CU_GBS_98 / 

NZ_CP010875.1 Hong Kong 

Meningitis 

(Hospital) II-A, I-C 2.03 35.4 1916 

12 

CUGBS591 / 

NZ_CP021862.1 Hong Kong 

Arthritis 

(Hospital) II-A, I-C 2.23 35.8 2103 

13 

GBS11 / 

NZ_CP041999.1 Houston, USA Blood II-A 2.14 35.6 2180 

14 

GBS19 / 

NZ_CP042000.1 Houston, USA Blood II-A 2.10 35.5 2120 

15 

GBS1-NY / 

NZ_CP007570.1 USA Blood II-A 2.24 35.9 2059 

16 

GBS28 / 

NZ_CP042001.1 Tennessee, USA Health Centre II-A 2.14 35.7 2024 

17 

GBS2-NM / 

NZ_CP007571.1 USA Hospital II-A 2.21 35.9 2036 

18 

GBS30 / 

NZ_CP042002.1 Houston, USA Blood II-A 2.08 35.5 2096 

19 

GBS6 / 

NZ_CP007572.1 Houston, USA Hospital II-A 2.23 35.8 2054 

20 

GBS7 / 

NZ_CP041998.1 Houston, USA Blood II-A 2.09 35.5 1957 

21 

GBS85147 / 

NZ_CP010319.1 Rio de Janeiro, Brazil New-born II-A 2.00 35.5 1992 

22 

GBS-M002 / 

NZ_CP013908.1 Taiwan Cervix II-A 2.09 35.6 1955 

23 

H002 / 

NZ_CP011329.1 Guangxi, China Vagina II-A 2.15 35.7 1984 

24 

HU-GS5823 / 

NZ_AP018935.1 Hokkaido, Japan Hospital II-A 2.23 35.6 2233 

25 

NEM316 / 

NC_004368.1 Institute Pasteur Septicemia II-A 2.21 35.6 2227 

26 

NGBS061 / 

NZ_CP007631.2 Toronto, Canada Health Centre II-A 2.22 35.5 2275 

27 

NGBS572 / 

NZ_CP007632.1 Toronto, Canada Health Centre II-A, I-C 2.06 35.5 2079 
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28 

PLGBS13 / 

NZ_CP029749.1 Alberta, Canada 

Wound (Soft 

tissue) II-A, I-C 2.10 35.5 2122 

29 

Sag153 / 

NZ_CP036376.1 Shanghai, China Vagina II-A, I-C 2.17 35.8 2223 

30 

Sag158 / 

NZ_CP019979.1 Shanghai, China Hospital II-A, I-C 2.10 35.7 1941 

31 

Sag27 / 

NZ_CP031556.1 Shanghai, China Perianal region 

II-A, 

Orphan 

(2) 2.21 35.7 2074 

32 

Sag37 / 

NZ_CP019978.1 Shanghai, China Blood II-A, I-C 2.20 35.8 2250 

33 

SG-M1 / 

NZ_CP012419.2 Singapore Blood II-A, I-C 2.12 35.5 2180 

34 

SG-M158 / 

NZ_CP021864.1 Singapore Blood II-A, I-C 2.11 35.5 2025 

35 

SG-M163 / 

NZ_CP021863.1 Singapore Blood II-A, I-C 2.12 35.5 2025 

36 

SG-M25   

NZ_CP021867.1 Singapore Blood 

II-A, 

Orphan 2.21 35.7 2075 

37 

SG-M29 / 

NZ_CP021866.1 Singapore Blood II-A, I-C 2.12 35.5 2025 

38 

SG-M4 / 

NZ_CP021870.1 Singapore Blood II-A 2.07 35.5 2085 

39 

SG-M50 / 

NZ_CP021865.1 Singapore Blood II-A, I-C 2.12 35.5 2023 

40 

SG-M6 / 

NZ_CP021869.1 Singapore Blood II-A, I-C 2.11 35.6 1954 

41 

SG-M8 / 

NZ_CP021868.1 Singapore Blood II-A 2.17 35.6 2186 

42 

SS1 / 

NZ_CP010867.1 Houston, USA Blood II-A 2.09 35.5 2110 

43 

SS1168 / 

NZ_CP038809.1 Houston, USA Hospital II-A 2.04 35.4 1911 

44 

2012-845 / 

CP051842.1 Versailles, France Blood 

0 

CRISPR 1.53 35.3 

 

45 

B105 / 

NZ_CP021773.1 Shenzhen, China 

Blood sample 

from a new-born Orphan 2.27 35.7 2076 

46 

B509 / 

NZ_CP021769.1 Shenzhen, China 

Vagina swab from 

a perinatal mother II-A 2.06 35.5 1928 

47 

S9968 / 

NZ_CP058666.1 Seoul, South Korea Urine 

II-A, 

Orphan 

(2) 2.20 35.7 2088 

48 

NGBS128 / 

NZ_CP012480.1 

Greater Toronto 

area/Peel, Canada Infection sample Orphan 2.08 35.7 1879 

49 

FDAARGOS_254 / 

NZ_CP020449.2 DC, USA Blood II-A 2.22 35.7 2060 

50 

FDAARGOS_512 / 

NZ_CP033822.1 DC, USA 

Endotracheal 

aspirate Orphan 2.13 35.6 2000 

51 

FDAARGOS_669 / 

NZ_CP044091.1 DC, USA Clinical isolate II-A 2.07 35.4 1937 

52 

FDAARGOS_670 / 

NZ_CP044090.1 DC, USA Clinical isolate II-A 2.21 35.8 2098 
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Fig. 1 482 
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Fig. 2 497 
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Fig. 3 530 
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