

1 **A telomere-to-telomere genome assembly of Zhonghuang 13, a widely-grown**
2 **soybean variety from the original center of Glycine max**

3

4

5 Anqi Zhang^{1,4}, Tangchao Kong^{1,4}, Baiquan Sun^{2,4}, Shizheng Qiu^{1,4}, Jiahe Guo¹,
6 Shuyong Ruan¹, Yu Guo¹, Jirui Guo¹, Zhishuai Zhang¹, Yue Liu¹, Zheng Hu¹, Tao
7 Jiang¹, Yadong Liu¹, Shuqi Cao¹, Shi Sun², Tingting Wu², Hui long Hong³, Bingjun
8 Jiang², Maoxiang Yang², Xiangyu Yao², Yang Hu^{1,*}, Bo Liu^{1,*}, Tianfu Han^{2,*}, Yadong
9 Wang^{1,*}

10

11 ¹ Center for Bioinformatics, School of Computer Science and Technology, Harbin
12 Institute of Technology, Harbin, Heilongjiang 150001, China

13 ² Ministry of Agriculture Key Laboratory of Soybean Biology (Beijing), Institute of
14 Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China

15 ³ National Key Facility for Crop Gene Resources and Genetic Improvement, Institute
16 of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China

17 ⁴These authors contributed equally to this work.

18

19 Contact: ydwang@hit.edu.cn

20

21

22

23

24

25

26

27

28

29

30

31 **Abstract**

32 Soybean (*Glycine max*) stands as a globally significant agricultural crop, and the
33 comprehensive assembly of its genome is of paramount importance for unraveling its
34 biological characteristics and evolutionary history. Nevertheless, previous soybean
35 genome assemblies have harbored gaps and incompleteness, which have constrained
36 in-depth investigations into soybean. Here, we present the first Telomere-to-Telomere
37 (T2T) assembly of the Chinese soybean cultivar "Zhonghuang 13" (ZH13) genome,
38 termed ZH13-T2T, utilizing PacBio Hifi and ONT ultralong reads. We employed a
39 multi-assembler approach, integrating Hifiasm, NextDenovo, and Canu, to minimize
40 biases and enhance assembly accuracy. The assembly spans 1,015,024,879 bp,
41 effectively resolving all 393 gaps that previously plagued the reference genome. Our
42 annotation efforts identified 50,564 high-confidence protein-coding genes, 707 of
43 which are novel. ZH13-T2T revealed longer chromosomes, 421 not-aligned regions
44 (NARs), 112 structure variations (SVs), and a substantial expansion of repetitive
45 element compared to earlier assemblies. Specifically, we identified 25.67 Mb of
46 tandem repeats, an enrichment of 5S and 48S rDNAs, and characterized their
47 genotypic diversity. In summary, we deliver the first complete Chinese soybean
48 cultivar T2T genome. The comprehensive annotation, along with precise centromere
49 and telomere characterization, as well as insights into structural variations, further
50 enhance our understanding of soybean genetics and evolution.

51

52

53

54

55

56

57

58

59

60 **Introduction**

61 Soybeans (*Glycine max* [L.] Merr.), originating in China, hold a paramount
62 position as one of the most crucial oil and protein crops. They contribute to more than
63 a quarter of the protein utilized in both food and animal feed ^{1, 2, 3, 4, 5}. It is widely
64 acknowledged that the cultivated soybean emerged through the domestication of its
65 wild annual progenitor, *Glycine soja*, around 5,000 years ago from the Yellow River
66 Basin in temperate regions of China. This specific geographical range represents the
67 greatest allelic diversity of soybean ^{6, 7}. Subsequently, its distribution expanded
68 northward to encompass high-latitude cold zones and southward to encompass
69 low-latitude tropical regions. Therefore, the exploration of genetic resources within
70 the origin region bears immense significance in advancing the global frontiers of
71 soybean breeding.

72 "Zhonghuang 13", a soybean cultivar meticulously developed and released by
73 Chinese breeders in 2001, occupied the largest planting area in the first two decades
74 of 21st century in China, and stood as a testament to advanced agronomic traits and
75 remarkable adaptability to wide regions including Yellow River Basin, southern
76 Northeast, and some parts of Northwest and South China ^{8, 9}. In comparison to the
77 widely recognized Williams 82 cultivar, "Zhonghuang 13" boasts heightened genetic
78 diversity and ecological type of origin reign ¹⁰. Furthermore, "Zhonghuang 13" is an
79 ideal variety in the breeding strategy called "Potalaization", which allows breeding of
80 novel widely adapted soybean varieties through the use of multiple molecular tools in
81 existing elite widely adapted varieties ⁷.

82 Whole-genome sequencing of "Zhonghuang 13" has been previously conducted ^{8,}
83 ⁹. This approach enables the identification of crucial genes and genetic variants linked
84 to favorable traits, thereby enhancing our comprehension of soybean breeding ^{5, 11, 12,}
85 ^{13, 14, 15, 16}. Nonetheless, limitations inherent in second-generation sequencing,
86 including inadequate coverage of the genome and challenges in precisely assembling
87 and annotating repetitive genomic regions, such as telomeres and centromeres, have
88 resulted in the persistence of over 1,000 gaps within the most recent soybean

89 reference genome^{17, 18, 19, 20, 21}.

90 Telomere-to-Telomere (T2T) sequencing is a state-of-the-art genomic sequencing
91 method that employs long-read sequencing platforms such as Pacific Biosciences
92 (PacBio) or Oxford Nanopore Technologies (ONT) to obtain the comprehensive
93 sequence from one telomere to another, encompassing highly repetitive regions,
94 centromeres, and telomeres^{22, 23, 24}. This approach yields a complete and contiguous
95 assembly of the entire genome^{23, 25}. T2T sequencing effectively overcomes the
96 limitations associated with sequence gaps and assembly errors that are frequently
97 encountered in whole-genome sequencing²⁶. Moreover, it offers enhanced resolution
98 for the detection and characterization of large-scale SVs^{27, 28}. Consequently, T2T
99 sequencing exhibits immense potential in expanding our knowledge of intricate
100 genomes, such as soybeans, and driving advancements in breeding programs.

101 In this study, we utilized T2T sequencing to conduct *de novo* assembly of
102 “Zhonghuang 13” genomes. By employing this innovative genomic assembly
103 approach, we aim to deliver a fully covered soybean sequence encompassing 100% of
104 the genome. This significant advancement will enhance our comprehension of the
105 structure and functional significance of the soybean genome, and also provide a
106 reference genome sequence for elite cultivar improvement.

107

108 **Results**

109 **T2T assembly of the soybean ZH13 genome**

110 Four types of sequencing data were initially produced for a single ZH13 sample,
111 including PacBio Hifi reads (96.89 Gbp), ONT ultralong reads (96.63 Gbp), Illumina
112 whole genome sequencing (WGS) (55.40Gbp) and Illumina high-throughput
113 chromosome conformation capture (Hi-C) reads (106.4 Gbp). We only used the long
114 reads (PacBio Hifi and ONT ultralong) to implement T2T assembly, and the short
115 WGS and Hi-C reads were employed to assess assembly quality. The assembly was
116 implemented by a pipeline based on multiple assemblers and in-house tools in three
117 phases as following (a flowchart is in **Fig. 1**).

118 1) Draft assembly. At first, three set of contigs were independently produced by
119 various assemblers, i.e., Hifiasm^{29,30}, NextDenovo³¹ and Canu³². Both of Hifiasm
120 and NextDenovo used all the PacBio Hifi and ONT ultralong reads, and Canu used
121 PacBio reads only. The 23 >1Mbp contigs produced by Hifiasm were employed as
122 primary contigs and aligned to the current version of ZH13 reference³³ (termed as
123 ZH13-ref-2019) by minimap2³⁴. 22 of them can be colinearly aligned and 1 contig
124 were aligned to two different chromosomes. We manually checked this split alignment
125 and confirmed that it was a mis-assembly caused by Hifiasm. The contig was then
126 divided into two. A 24-contigs draft assembly was then generated, which 17 of the 20
127 ZH13 chromosomes were covered by a single contig, 2 and 1 chromosomes have 2
128 and 3 contigs, respectively. The PacBio reads, ONT reads and the contigs produced by
129 NextDenovo and Canu were aligned to the draft assembly for further refinement.

130 2) Assembly refinement. There were four remaining gaps in the draft assembly.
131 Moreover, we also detected high- and low coverage regions (HCRs and LCRs) by an
132 in-house script as they could be also mis-assembled regions. 43 HCRs and 2 LCRs
133 were found. We searched the sequences of the HCRs by BLAST and the results
134 indicated that all of them can be aligned to mitochondria, chloroplast, mRNAs or
135 mobile elements. Thus, we realized that they could be not mis-assembly. However,
136 plenty of read clippings were observed around the two LCRs, which indicated
137 mis-assembles. Thus, the four gaps (gap1: CM010418.2: 18,024,780-18,025,280,
138 gap2: CM010419.2: 27,778,852-27,779,352, gap3: CM010421.2: 3,326,824-3,327,324
139 and gap4: CM010421.2: 40,056,171-40,056,671) and the two LCRs (LCR1:
140 CM010409.2: 15,403,000-15,404,000 and LCR2: CM010427.2:
141 15,777,563-16,073,378) were refined with spanning NextDenovo and Canu contigs
142 (refer to Methods for more detailed information). Gap2, gap4 and LCR1 were
143 successfully reconstructed by two NextDenovo contigs and one Canu contig
144 (**Supplementary Figs. 1-3**), respectively. However, Gap1, gap3 and LCR2 were
145 turned to be HCRs (**Fig. 2-3, Supplementary Fig. 4**), indicating that the spanning
146 contigs also cannot well-handle them. Highly repetitive sequences were found there,
147 i.e., gap1 is full of LTR retrotransposons, while gap3 and LCR2 are rDNA arrays.

148 Further, an in-house local assembly tool was employed to iteratively collect and tile
149 the reads anchored to the corresponding regions to refine the assembly. The solved
150 Gap1 is 467.3 Kbp long which mostly consists of gypsy and copia. Gap3 and LCR2
151 are about 4.15 Mbp and 414 Kbp long, respectively, having 545 48S rDNA copies and
152 1269 5S rDNA copies. We manually checked the read re-alignments to the three
153 regions with IGV³⁵ and normal coverages were observed (**Fig. 2-3, Supplementary**
154 **Fig. 4**). The genomic structures of all gaps were presented in the **Supplementary Fig.**
155 **5**.

156 3) Telomere identification and refinement. 37 telomeres were identified from 17
157 chromosomes of the draft assembly. We further checked the contigs produced by
158 NextDenovo, Canu and Hifiasm (using Hifi reads only), and reconstructed the three
159 missing telomeres, i.e., CM010417.C1 (downstream, 3831bp), CM010418. C1
160 (upstream, 5889 bp) and CM010423.C1 (downstream, 9764 bp). Thus, all the 40
161 telomeres were recovered with an 8449 bp median length.

162 Finally, a complete genome of ZH13 (termed as ZH13-T2T, **Fig. 4**) was generated
163 whose total length is 1,015,024,879 bp (no gap, N50: 52,033,905 bp). The quality of
164 the assembly was evaluated by various metrics and four issues are observed as
165 following. Firstly, the complete BUSCO metric³⁶ (99.8%, lineage dataset:
166 embryophyta_odb10) suggests its high completeness. More importantly, all the 393
167 gaps of ZH13-ref-2019 have been filled. Secondly, Illumina WGS read-based
168 Merqury's Qv metric³⁷ reaches 46.441, suggesting that it also achieves high
169 base-level accuracy. Thirdly, it is observed from the Hi-C map (**Supplementary Fig.**
170 **6**, generated by Juicerbox³⁸) that strong interactions are concentrated along the
171 diagonal, indicating that no obvious mis-assembly can be discovered from the view of
172 Hi-C data. Fourthly, with careful detection and correction of HCRs and LCRs, the
173 coverages of PacBio Hifi and ONT Ultralong reads are nearly uniform along the
174 whole ZH13-T2T genome, also suggesting that the assembly could be free of
175 mis-assembly.

176

177 **Genome-wide comparison to ZH13-ref-2019 and the T2T assembly of Wm82**

178 We compared ZH13-T2T with ZH13-ref-2019 by SyRI ³⁹(**Fig. 4**). Most of the
179 ZH13-T2T chromosomes are longer, mainly due to the filled gaps. There are also
180 421 >5K bp not-aligned regions (NARs, 16.3 Mbp in total), indicating that the
181 corresponding local sequences are quite different. Meanwhile, SyRI also identified
182 112 structure variations (SVs), i.e., 30 inversions, 15 translocations and 67
183 duplications. Most of them are in the NARs and highly complex, i.e., the
184 combinations of multiple inversions and duplications.

185 We further aligned the ONT ultralong reads of ZH13-T2T to ZH13-ref-2019 (by
186 minimap2). The local alignments in the NARs showed concentrated and extremely
187 complex SV signatures, i.e., plenty of large clippings, split alignments and abnormal
188 local coverages, especially for those SV-surrounding regions (an example is in
189 **Supplementary Fig. 7**). On the contrary, colinear alignments with normal coverages
190 were observed from the corresponding regions of ZH13-T2T, suggesting no obvious
191 SV signature there. We also investigated the alignments on the NARs without SVs
192 and similar results were observed (**Supplementary Fig. 8**). Under such circumstance,
193 we realize that although the different donor samples potentially have divergences in
194 genomic sequences, there could be also a number of mis-assemblies in ZH13-ref-2019,
195 possibly due to the limitation of its sequencing data. Moreover, considering the
196 consecutive read alignments on ZH13-T2T, the mis-assemblies should have been
197 largely resolved.

198 A comparison between ZH13-T2T and the newly published T2T assembly of
199 Wm82 (Wm82-NJAU) ⁴⁰ was also conducted. Mainly, 167 NARs (23.02 Mbp in total)
200 and 30 SVs (16 inversions, 7 translocations and 7 duplications) were identified. To
201 investigate the NARs and SVs, we also downloaded the PacBio Hifi and ONT
202 ultralong datasets of Wm82-NJAU and re-aligned them to the genome. In a large
203 proportion of the investigated regions, both of ZH13-T2T and Wm82-NJAU have
204 normal read alignments (**Supplementary Fig. 9**), suggesting the differences between
205 the two soybean genomes. However, in some of the NARs, abnormal read alignments

206 can still be found from Wm82-NJAU but not for ZH13-T2T (**Supplementary Fig.**
207 **10**). Moreover, we also checked the local read coverages along the whole
208 Wm82-NJAU genome and found tens of HCRs and LCRs.

209

210 **Genome annotation and gene prediction**

211 Complete T2T assembly of 20 chromosomes revealed that approximately 57.07%
212 of the soybean genome consisted of annotated repeating elements. Among these
213 elements, retrotransposons accounted for 38.16% (comprising 0.12% SINEs, 1.58%
214 LINEs, and 36.47% LTR elements), while DNA transposons accounted for 6.72%
215 (**Table 1, Fig. 5**). Furthermore, we detected 3.64 Mb of microsatellites, 11.58 Mb of
216 minisatellites, 11.44 Mb of satellites, 0.41 Mb of 5S rDNAs, and 4.16 Mb of 48S
217 rDNAs (**Table 2**). Collectively, these tandem repeats constitute 2.63% (26.65 Mb) of
218 the soybean genome, which significantly surpasses the 1.03% (10.54Mb) observed in
219 the Zhonghuang 13 reference sequence. Additionally, the intergenic spacer (IGS)
220 region of 5S rDNA is approximately 220 bp in length, while the 5S region itself spans
221 approximately 110 bp (**Fig. 6**). There is a partial overlap region of around 1533 bp
222 between 5.8S rDNA and 28S rDNA. Based on the analysis of 1 Indels, the 48S rDNA
223 has been categorized into 2 distinct genotypes. Furthermore, an examination of 13
224 SNPs and Indels has led to the classification of the 5S rDNA into 32 different
225 genotypes.

226 The annotation of the ZH13-T2T genome was performed using the Augustus
227 software for ab initio annotation. After excluding transposon genes and applying a
228 gene filtering process, a total of 50,564 high-confidence protein-coding genes were
229 obtained. Notably, in comparison to ZH13-2019, we identified 707 novel genes within
230 the gap regions. The results of the Gene Ontology (GO) function and Kyoto
231 Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis obtained
232 through KOBAS (Knowledgebase for Ontology-based Functional Annotation and
233 Analysis) reveal significant enrichments for newly discovered genes in various
234 biological pathways. Specifically, the novel genes were involved in various biological

235 processes, cellular components, and molecular functions, ranging from cell surface to
236 nucleus, including negative regulation of transcription, DNA-templated ($p=7.52E-05$),
237 protein autophosphorylation ($p=0.0003$), positive regulation of transcription by RNA
238 polymerase II ($p=0.0012$), and mRNA export from nucleus ($p=0.0094$)
239 (**Supplementary Fig. 11**). In the context of KEGG, these genes participated in
240 phenylalanine, tyrosine and tryptophan biosynthesis ($p=0.0004$), fatty acid
241 biosynthesis ($p=0.0007$), phosphatidylinositol signaling system ($p=0.0046$), fatty acid
242 metabolism ($p=0.0048$), RNA transport ($p=0.0105$), and the MAPK signaling pathway
243 - plant ($p=0.0156$) (**Supplementary Fig. 12**).

244 In the previous gap regions, we observed the highest number of newly discovered
245 genes within the 14.84-17.73Mb region of chromosome CM010421.C1, totaling 135
246 new genes. Furthermore, our analysis identified 42,668 TEs, 300 GmCent-1 elements,
247 and 586 GmCent-2 elements within these gap regions. Notably, the CM010420.C1
248 chromosome's 30.54-32.38Mb region contained the highest count of TEs, with a total
249 of 3,416 TEs. In the CM010413.C1 chromosome's 20.40-24.24Mb region, we
250 observed the highest number of GmCent-1 elements, amounting to 131, and in the
251 CM010419.C1 chromosome's 25.51-27.93Mb region, the highest count of GmCent-2
252 elements, totaling 64 (**Supplementary Fig. 5**).

253

254 **Detection of centromere**

255 The centromere, a crucial component of chromosome structure, consists of highly
256 repetitive heterochromatin and plays a vital role in ensuring accurate chromosome
257 segregation. In plants, the centromere region is characterized by an abundance of
258 retrotransposon and tandem repeats⁴¹. Investigating the potential functions of the
259 centromere in genome evolution and chromatin assembly holds significant importance.
260 However, current genome sequencing approaches face challenges in fully assembling
261 the repetitive sequences within the centromere region. Here, we employed the Tandem
262 Repeat Finder (TRF) tool to identify repeat monomers within the ZH13-T2T genome
263 that likely constitute the centromere. Consistent with previous studies, we found a

264 large number of tandem repeats of 91 and 92bp in length, complementing the gaps in
265 TE of centromere region (**Fig. 7A-D, Supplementary Fig. 13**) ⁴². The heat map
266 shows high similarity of sequences in the centromere region, indicating that the
267 centromere region is highly tandem repetitive (**Fig. 7E**).

268 Our findings indicate that the average length of the 20 centromeres analyzed is
269 2.40 Mb, with the longest centromere observed on CM010410.C1 (4.42 Mb) and the
270 shortest on CM010421.C1 (0.66 Mb) (**Fig. 7A**). Notably, no significant correlation
271 was observed between centromere length and chromosome size. Furthermore, the
272 relative positions of centromeres varied among different chromosomes, with the
273 minimum L/S ratio (long arm length/short arm length) recorded as 1.02
274 (CM010415.C1) and the maximum L/S ratio as 2.95 (CM010423.C1). A total of 8
275 genes were identified in the centromeric region of the soybean T2T genome. These
276 genes were mainly enriched in chromatin DNA binding, mRNA cis splicing via
277 spliceosome, histone binding, basal transcription factors, spliceosome, and pyrimidine
278 metabolism (**Fig. 7F**).

279 On average, centromere sequences were composed of 96.0% centromere satellite
280 DNA (CentC), centromere retrotransposons (CRM), and other non-CRM Gypsy
281 retrotransposons. The proportions of these components varied significantly across
282 different centromeres, ranging from 0.0% to 73.3% for GmCent-1, 0.0% to 90.4% for
283 GmCent-2, 0.0% to 2.2% for CRM, and 7.3% to 68.2% for other non-CRM Gypsy
284 retrotransposons (**Supplementary Fig. 14**). Almost all centromeres were rich in
285 CentC, and there are no CentC-poor centromeres.

286

287 **Discussion**

288 Cultivated soybeans originated in China, it has undergone strict genetic
289 bottlenecks during domestication, resulting in accessions from origin region possibly
290 exhibiting high genetic diversity. In this context, the cultivar "Zhonghuang 13,"
291 developed in 2001 through meticulous breeding efforts by Chinese scientists, stands
292 as a testament to the advancement of soybean agronomy and adaptability ^{8, 9}. Derived

293 from parent cultivars originating in the Yellow River Basin, "Zhonghuang 13" boasts
294 not only heightened genetic diversity but also a distinct ecological origin compared to
295 the widely recognized Williams 82 cultivar. While whole-genome sequencing efforts
296 of "Zhonghuang 13" have been previously undertaken, limitations inherent to
297 second-generation sequencing technologies, such as incomplete genome coverage and
298 challenges in assembling and annotating repetitive genomic regions, have hindered
299 the attainment of a comprehensive reference genome.

300 Herein, we generate ZH13-T2T, the first T2T genome assembly of Chinese
301 soybeans. With its unprecedented completeness and high quality, the assembly
302 provides a superior reference genome, as well as a new opportunity to
303 comprehensively decode and deeply understand the complex repeats in soybean
304 genomes, which is invaluable to the society for cutting-edge plant genomics studies.
305 Moreover, as the most planted soybean cultivar in China, the ZH13-T2T genome is
306 also a valuable resource to molecular inbreeding.

307 Although efforts have been made, it is still a non-trivial task to implement high
308 quality T2T genome assembly, as the employed assembly tools could still have bias
309 and lead to mis-assemblies, while the read length could be limited to solve those
310 extremely long repeats. During the generation of ZH13-T2T, we used several tailored
311 approaches guarantee assembly quality.

312 One is the use of multiple assemblers to take their advantages and reduce bias.
313 More precisely, the three sets of contigs independently produced by the Hifiasm,
314 NextDenovo and Canu played different roles. Overall, the Hifiasm contigs reconcile
315 accuracy and continuity, which were used as primary contigs. Some of NextDenovo
316 contigs have even higher ability to span long repetitive regions so that they were
317 employed to fill the unsolved regions. The Canu contigs are usually shorter due to the
318 limited length of Hifi reads, however, they are accurate and useful to reveal the
319 elements of difficult repetitive regions such as retrotransposon- or rDNA-rich loci.
320 Moreover, Canu also has good performance in telomere regions. Thus, they also
321 played an important role to guide gap filling, LCR correction and telomere
322 refinement.

323 Another one is the monitoring of read coverage, which is effective to prevent
324 mis-assembly. Theoretically, a perfect assembly should have uniform read coverage
325 along the whole genome, especially with the low GC-bias of long read sequencing.
326 Thus, abnormal read coverage is a good indicator to mis-assembly. During ZH13-T2T
327 assembly, we used local read coverages to conduct quality control all the way, which
328 not only helps to detect mis-assemblies, but also guide to correctly reconstruct the
329 sequences of gaps, LCRs and HCRs.

330 Long repeats are still difficult to solve in practice, even if ONT ultralong data is
331 available. We used an in-house tool to carefully collect and align anchored reads to
332 iterative infer those extremely long repetitive sequences, with the guidance of the
333 inherent sequence divergences and read coverages in local regions. The tool is able to
334 improve the assembly in long repetitive regions, especially with known elements.
335 However, it is still an open problem to develop more effective and generic tools to
336 solve long repeats with limited read length.

337 The meticulous analysis of the previous gap regions within the soybean genome
338 holds significant implications for soybean breeding. It is well established that soybean
339 is a quintessential short-day plant and, as such, inherently exhibits sensitivity to
340 photothermal conditions, particularly with regard to photoperiod. The responses to
341 these photothermal conditions play a pivotal role in determining the soybean's
342 capacity for growth, development, yield formation, and its ability to thrive across
343 varying geographical latitudes ^{4, 43}. Among these responses, flowering time and
344 maturity stand out as the most influential factors dictating the geographical
345 adaptability of soybean. Genetic investigations have identified no less than 11 loci,
346 denoted as E1 through E4, E6 through E11, and J, which actively participate in the
347 photoperiodic regulation of flowering time and maturity in soybean. To date, only two
348 of these loci, E7 and E8, remain elusive in terms of cloning. E7 is mapped to
349 chromosome 06 and is situated approximately 6 cM apart from E1
350 (Glyma.06G207800, Chr06:20207076-20207940), representing a distinct
351 photoperiod-related gene distinct from E1 ⁴⁴. Meanwhile, E8 is localized on
352 chromosome 04 in close proximity to two homologous genes, E1La

353 (Glyma.04G156400, Chr04:36758124-36758770) and E1Lb (Glyma.04G143300,
354 Chr04:26120010-26120532). Remarkably, despite extensive efforts, the E7 and E8
355 loci have remained uncloned. Our T2T-ZH13 reference genome annotation on
356 chromosomes 04 and 06 has unveiled a multitude of novel genes, offering promising
357 prospects for the cloning of E7 and E8 by providing fresh molecular targets.

358 Additionally, within these previously unexplored gap regions, we have annotated
359 505 novel genes. Through KEGG and GO enrichment analysis, it has come to light
360 that these genes are implicated in a diverse array of biological pathways,
361 encompassing various aspects of biosynthesis, metabolism, and cellular signal
362 transduction. Simultaneously, they play pivotal roles in several biological functions,
363 including gene regulation and RNA processing. These newfound genes hold the
364 promise of serving as novel molecular targets for subsequent Genome-wide
365 association studies (GWAS) and for the validation of related gene functions.

366 Beyond assembly improvements, "ZH13-T2T" enhances the soybean genome's
367 annotation, particularly regarding repetitive elements, centromeres, and telomeres.
368 Repetitive elements play a significant role in genome evolution and gene regulation ⁴⁵,
369 ^{46, 47, 48}. We found that repeat elements constituted a significant portion of the genome,
370 with retrotransposons, particularly LTR elements, being predominant. We also
371 identified the presence of abundant satellites and rDNAs. The T2T genome exhibits a
372 notable expansion in repetitive sequences compared to previous assemblies. Moreover,
373 the identification and characterization of centromeres and telomeres within
374 "ZH13-T2T" offer valuable insights into the organization and maintenance of
375 chromosomal integrity. Soybean, a relic of ancient tetraploid plant evolution, has
376 undergone two significant whole-genome duplication or polyploidization events ⁴⁹.
377 Within soybean genome, two distinct centromeric repeat classes exist, and their
378 distribution is notably uneven, signifying the presence of two subgenomes in soybean.
379 It is plausible that these subgenomes may have originated from the hybridization of
380 two now-extinct plants with 2n=20 chromosomes, followed by a subsequent partial
381 homogenization of one centromeric repeat class by the other. Research findings
382 suggest that the CentGm-1 ancestor possessed a higher chromosome count compared

383 to the CentGm-2 ancestor⁴².

384 In conclusion, the ZH13-T2T genome represents a significant advancement in
385 soybean genomics. The comprehensive genome annotation, identification of key
386 genomic features, and insights into structural variations contribute to our
387 understanding of soybean genetics and evolution. This high-quality reference genome
388 will serve as a valuable resource for future studies in biology and practices in
389 molecular breeding of soybean

390

391 **Methods**

392 **Plant material preparation and genome sequencing**

393 The soybean seeds of *Glycine max*, cv. Zhonghuang 13 (ZH13) were from the
394 Institute of Crop Science, Chinese Academy of Agricultural Sciences. Four soybean
395 seeds were planted in 10-litre pots on June 5, 2023, and grown outdoors under natural
396 conditions in Beijing, China (39.95°N, 116.32°E). On Day 20 after emergence (VE),
397 the fresh young leaf tissue was collected and frozen immediately in liquid nitrogen for
398 DNA extraction. The High Molecular Weight (HMW) DNA extraction was performed
399 using the modified cetyltrimethylammonium bromide (CTAB) method and large
400 fragments (>100 kb) were separated using the SageHLS HMW library system. The
401 standard libraries were constructed for subsequent sequencing. For PacBio HiFi
402 sequencing, the library was constructed using SMRTbell Express Template Prep Kit.
403 For ONT ultra-long sequencing, the library was created using SQK-ULK001 kit. For
404 WGS sequencing, the library was created using NEBNext Ultra II DNA Library Prep
405 Kit. For Hi-C sequencing, fresh leaves were fixed in 4% (vol/vol) formaldehyde after
406 grinding with liquid nitrogen. Cell lysis, chromatin capture and digestion, and DNA
407 quality check were performed according to the modified methods from⁵⁰. The library
408 was created using NEBNext Ultra II DNA Library Prep Kit. A PacBio Revio
409 sequencer was used to produce a 96.89 Gbp Hifi datasets (mean read length: 100.7
410 kbp) and a PromethION 48 sequencer was used to produce a 96.63 Gbp ultralong
411 dataset (mean read length: 100.7 kbp). Moreover, the 150 bp pair-end WGS

412 (55.40Gbp) and Hi-C (106.4 Gbp) datasets were produced by an Illumina Novaseq
413 6000 sequencer.

414

415 **Draft genome assembly by PacBio Hifi and ONT ultralong reads**

416 The PacBio Hifi reads were input to Hifiasm ²⁹ (version: 0.19.5-r590, default
417 parameters) to generate a Hifi graph, and the ONT ultralong reads were then aligned
418 to the graph to produce chromosome-level contigs ³⁰. For NextDenovo ³¹ (version:
419 2.5.2, parameters: read_cutoff = 1k, genome_size = 1g), the ONT ultralong reads were
420 input at first to produce initial contigs which were further polished by NextPolish ⁵¹
421 (version: 1.4.1, parameters: -x map-hifi -min_read_len 1k -max_depth 100) with input
422 PacBio Hifi reads. For Canu ³² (version: 2.2, parameters: genomeSize=1g), only the
423 PacBio Hifi reads were input to produce Hifi-only contigs.

424 The long (>1 Mbp) Hifiasm contigs were employed as primary contigs at first.
425 Moreover, BLAST was employed to check the 851 <1 Mbp Hifiasm contigs. We
426 found out that 759, 56 and 30 of the short contigs can be aligned to chloroplast,
427 mitochondrion and rDNA, and others can also be aligned to repeats of soybean
428 genomes as well. Thus, they were filtered out and the primary contig set did not
429 update since we would like to build a concise draft assembly and solve potential gaps
430 and mis-assemblies with the supplement of other assemblers. The primary contigs
431 were then aligned to ZH13-ref-2019 by minimap2 ³⁴ (version: 2.26-r1175, parameters:
432 -x asm5 -f 0.02) to determine their orders and orientations. A draft ZH13 assembly
433 was then generated and all the PacBio reads, ONT reads, NextDenovo contigs and
434 Canu contigs were aligned to it by minimap2 (parameters: -x map-pb -r 1000; -x
435 map-hifi -r 1000; -x map-ont -r 10000; -x asm5 -f 0.02) for further processing.

436

437 **Refinement of draft assembly**

438 An in-house script was used to divide the draft assembly into 10 Kbp sliding
439 windows and scan the read coverages to detect HCRs and LCRs. Herein, an HCR
440 (LCR) is defined as a window whose coverage is >200 (<30). The local sequences of

441 HCRs and LCRs were then searched by BLAST to check their homologies as an
442 evidence of mis-assembly or not. Moreover, the numbers and positions of read
443 clippings were also investigated as they are more important signatures to discover
444 mis-assemblies. Since the HCR sequences can be aligned to mitochondria, chloroplast,
445 mRNAs or mobile elements, their high coverages could be not due to mis-assembly,
446 but plausibly the affection of the reads from those elements as well as the aligner's
447 own strategy to handle repetitive reads. So, they were not considered for correction.

448 The two LCRs and four remaining gaps in the draft assembly were then
449 reconstructed in two steps. Firstly, we collected the NextDenovo and Canu contigs
450 which can span those regions. The local sequences were then replaced by
451 corresponding contigs with the guidance of nearby anchors. The reads were also
452 re-aligned after the reconstruction to re-check local coverages. Moreover, we selected
453 the contig leading to a local coverage closest to the mean coverage of the whole
454 genome, if multiple candidates exist. It is worthnoting that this approach can either
455 solve the LCRs/gaps or turn them to HCRs, since the employed contigs can at least
456 reflect most of the elements existed in local regions, even if the copy numbers are
457 incorrect and/or some of the local sequences are still absent.

458 For the still unsolved HCRs, we used an in-house tool to implement local
459 assembly. Given an HCR, the tool collected the reads harbored or anchored to that
460 region at first (termed as active reads) and iteratively assembles them. In each
461 iteration, the tool separately tries each of the active reads to extend the local sequence
462 from the region boundary, and aligns other reads to the extended sequence (by
463 BLAST). If there are enough reads being aligned with high scores, the HCR is
464 updated and a number (relative to the mean read coverage of the whole genome) of
465 highest scored reads are removed. The procedure continues until the contig reaches
466 the other boundary of the HCR, or no active read remains. The produced contig is
467 then integrated into the genome with manual curation and read coverage checking.

468

469 **Telomere identification and refinement**

470 The 7-mer repeats (CCCTAAA / TTTAGGG) were used to identify telomeres in
471 the draft assembly. 37 telomeres from 2212 to 18154 bp in length were identified.
472 Further, we used the 7-mer motif to search the contigs produced by NextDenovo,
473 Canu and Hifiasm (using hifi reads only), and identified the three missing ones. Two
474 (CM010418.C1 and CM010423.C1) were supplied by Canu and one (CM010417.C1)
475 was supplied by Hifiasm. Moreover, it was found that the CM010410.C1 upstream
476 telomere produced by Canu (8449 bp) was obviously longer than that of Hifiasm
477 (3045 bp), so that we updated it. The precise locations of telomeres within the
478 ZH13-T2T genome were ascertained by using seqtk (<https://github.com/lh3/seqtk>).
479 The command used was ‘seqtk telo -s 1 -m CCCTAAA ref.fa’.

480

481 **Genome-wide comparisons and identification of SVs**

482 We conducted a comparative analysis using publicly available ZH13 soybean
483 genome data and the assembled T2T sequencing results. First, we aligned the
484 ZH13-T2T genome data to the soybean reference genome using Minimap2 (Version
485 2.26-r1175) (<https://github.com/lh3/minimap2>)^{34, 52}. Minimap2 was utilized to map
486 the long sequencing fragments, present in fastq format files of each sample, to the
487 reference genome provided in fasta format³⁴. To enhance comparative efficiency, we
488 utilized the "-ax asm5 --eqx" parameters for fragment alignment, set the software to
489 work with a maximum of 96 threads using the "-t" parameter, filtered out regions with
490 sequence differences greater than 5%, and stored the results of sequence matches or
491 mismatches in SAM format. All other comparison parameters during the process were
492 left at their default settings. We subjected the comparison results of the two genome
493 versions to structural variation detection using the SyRI mutation detection tool
494 (<https://github.com/schneebergerlab/syri>), configured with default parameters, and
495 saved the mutation detection results as a "syri.out" file³⁹. Subsequently, we employed
496 the Plotsr software to visualize the mutation detection results, using default
497 parameters for the transformation process, and saved the generated images in PDF

498 format ⁵³. The visualization command used was "plotsr --sr syri.out --genomes
499 genome.txt".

500

501 **Identification of rDNA and non-coding RNA**

502 5S rRNA is transcribed from the 5S DNA, while 48S rRNA is composed of 28S
503 rRNA, 5.8S rRNA, and 18S rRNA. We identified tRNAs using tRNAscan-SE v2.0,
504 rRNAs using Barrnap v0.9 (<https://github.com/tseemann/barrnap>), and miRNA and
505 snRNA using INFERNAL (<http://eddylab.org/infernal/>) against the Rfam (release 12.0)
506 database ^{54, 55, 56}. Copy numbers of both 5S rDNA and 48S rDNA were determined
507 using Barrnap. Complete copies of 5S rDNA and 48S rDNA were used as input for
508 genotype identification. Subsequently, a multiple sequence alignment was performed
509 on 5S rDNA and 48S rDNA using MAFFT with default parameters
510 (<https://mafft.cbrc.jp/alignment/software/>) ^{57, 58}. For the 5S rDNA and 48S rDNA,
511 genotype analysis was conducted using single nucleotide polymorphisms (SNPs) and
512 insertions/deletions (indels) with over 10% support from the 5S rDNA copies. It is
513 important to note that all selected indices for 48S rRNAs were located within
514 intergenic spacer regions.

515

516 **Repeat identification and gene annotation**

517 We utilized the EDTA pipeline (<https://github.com/oushujun/EDTA>) for
518 transposable element (TE) annotation ^{59, 60}. The main steps involved in identifying
519 repetitive sequences in the genome were as follows: First, we created an indexed
520 database using the RMblast engine. Then, we employed RepeatModeler
521 (<https://www.repeatmasker.org/RepeatModeler/>) for de novo prediction, which
522 involved five iterative rounds to obtain repetitive sequences and Stockholm format
523 seed alignment files ⁶¹. Subsequently, we performed genome annotation using
524 RepeatMasker ^{62, 63, 64}. Low-complexity sequences and small RNA (pseudo) genes
525 were not masked, and the search for insertions of missing sequences was disabled.
526 Repeat-masked genome and repeat sequence library constructed by RepeatModeler

527 and RepeatMasker were used for subsequent TE analysis.

528 For ab initio annotation, we utilized BUSCO (<https://github.com/metashot/busco>)
529 to create a training dataset for Augustus (<https://github.com/Gaius-Augustus/Augustus>)
530⁶⁵. Based on this training dataset, we further applied Augustus to predict the coding
531 regions of genes on the masked genome. We further analyzed the component
532 composition of the previous gap region and enriched the new annotated genes by GO
533 and KEGG using KOBAS, with p<0.05 as the threshold⁶⁶.

534

535 **Centromere localization**

536 We employed Tandem Repeat Finder (TRF, version 4.09.1)
537 (<https://github.com/Benson-Genomics-Lab/TRF>) to discern and classify satellite,
538 small satellite, and microsatellite sequences within the soybean T2T genome⁶⁷. The
539 default parameters utilized for TRF were set to '2 7 7 80 10 50 500 -f -d -m', and the
540 results of TRF annotation were merged using TRF2GFF
541 (<https://github.com/Adamtaranto/TRF2GFF>). We manually eliminated tandem repeats
542 with fewer than five copies and redundant occurrences. Sequences characterized by
543 lengths of less than 10 base pairs (bp), between 10 bp and 100 bp, and exceeding 100
544 bp were respectively categorized as microsatellites, minisatellites, and satellites.
545 Building upon the results obtained from the previous EDTA pipeline and TEsorter
546 (<https://github.com/zhangrengang/TEsorter>), we obtained TE annotation files and the
547 total number of copies of different period sequences in various chromosomes^{59, 60, 68}.
548 Utilizing two high-copy satellite repeat subfamilies, CentGm-1 and CentGm-2, which
549 are exclusive to the centromeric region, we ascertained the approximate location of
550 the centromere⁴². Lastly, by employing the Integrative Genomics Viewer (IGV)
551 browser, we observed an overlap between the regions with TE annotation loss and the
552 region where the 91/92bp-long sequences were concentrated, thereby identifying the
553 centromere region^{69, 70, 71, 72}.

554

555

556 **Data availability**

557 The genome assembly data generated in this study can be achieved from NCBI with
558 BioProject ID: PRJNA1015379 and BioSample accession: SAMN37355196.

559

560 **Competing interests**

561 The authors declare no competing interests.

562

563

564

565

566

567

568 **Reference**

569

570 1. Liu Y, *et al.* Pan-Genome of Wild and Cultivated Soybeans. *Cell* **182**, 162-176
571 e113 (2020).

572

573 2. Ainsworth EA, Yendrek CR, Skoneczka JA, Long SP. Accelerating yield
574 potential in soybean: potential targets for biotechnological improvement. *Plant
575 Cell Environ* **35**, 38-52 (2012).

576

577 3. Graham PH, Vance CP. Legumes: importance and constraints to greater use.
578 *Plant Physiol* **131**, 872-877 (2003).

579

580 4. Sedivy EJ, Wu F, Hanzawa Y. Soybean domestication: the origin, genetic
581 architecture and molecular bases. *New Phytol* **214**, 539-553 (2017).

582

583 5. Zhang JP, *et al.* Genome-wide Scan for Seed Composition Provides Insights
584 into Soybean Quality Improvement and the Impacts of Domestication and

585 Breeding. *Mol Plant* **11**, 460-472 (2018).

586

587 6. Qi XP, *et al.* Genomic dissection of widely planted soybean cultivars leads to
588 a new breeding strategy of crops in the post-genomic era. *Crop J* **9**, 1079-1087
589 (2021).

590

591 7. Wu T, *et al.* Molecular breeding for improvement of photothermal adaptability
592 in soybean. *Mol Breed* **43**, 60 (2023).

593

594 8. Shen Y, *et al.* De novo assembly of a Chinese soybean genome. *Sci China Life
595 Sci* **61**, 871-884 (2018).

596

597 9. Shen Y, *et al.* Update soybean Zhonghuang 13 genome to a golden reference.
598 *Sci China Life Sci* **62**, 1257-1260 (2019).

599

600 10. Haun WJ, *et al.* The Composition and Origins of Genomic Variation among
601 Individuals of the Soybean Reference Cultivar Williams 82. *Plant Physiology*
602 **155**, 645-655 (2011).

603

604 11. Fang C, *et al.* Genome-wide association studies dissect the genetic networks
605 underlying agronomical traits in soybean. *Genome Biol* **18**, 161 (2017).

606

607 12. Wang Z, Tian Z. Genomics progress will facilitate molecular breeding in
608 soybean. *Sci China Life Sci* **58**, 813-815 (2015).

609

610 13. Petereit J, *et al.* Genetic and Genomic Resources for Soybean Breeding
611 Research. *Plants (Basel)* **11**, (2022).

612

613 14. Kajiya-Kanegae H, *et al.* Whole-genome sequence diversity and association
614 analysis of 198 soybean accessions in mini-core collections. *DNA Res* **28**,

615 (2021).

616

617 15. Kim MY, *et al.* Whole-genome sequencing and intensive analysis of the
618 undomesticated soybean (*Glycine soja* Sieb. and Zucc.) genome. *Proc Natl
619 Acad Sci U S A* **107**, 22032-22037 (2010).

620

621 16. Wang J, *et al.* Whole-genome resequencing reveals signature of local
622 adaptation and divergence in wild soybean. *Evol Appl* **15**, 1820-1833 (2022).

623

624 17. Logsdon GA, Vollger MR, Eichler EE. Long-read human genome sequencing
625 and its applications. *Nat Rev Genet* **21**, 597-614 (2020).

626

627 18. Ding Z, Mangino M, Aviv A, Spector T, Durbin R, Consortium UK.
628 Estimating telomere length from whole genome sequence data. *Nucleic Acids
629 Res* **42**, e75 (2014).

630

631 19. Lappalainen T, Scott AJ, Brandt M, Hall IM. Genomic Analysis in the Age of
632 Human Genome Sequencing. *Cell* **177**, 70-84 (2019).

633

634 20. Yue J, *et al.* Telomere-to-telomere and gap-free reference genome assembly of
635 the kiwifruit *Actinidia chinensis*. *Hortic Res* **10**, uhac264 (2023).

636

637 21. Logsdon GA, *et al.* The structure, function and evolution of a complete human
638 chromosome 8. *Nature* **593**, 101-107 (2021).

639

640 22. Nurk S, *et al.* The complete sequence of a human genome. *Science* **376**, 44-53
641 (2022).

642

643 23. Miga KH, *et al.* Telomere-to-telomere assembly of a complete human X
644 chromosome. *Nature* **585**, 79-84 (2020).

645

646 24. Altemose N, *et al.* Complete genomic and epigenetic maps of human
647 centromeres. *Science* **376**, eabl4178 (2022).

648

649 25. Aganezov S, *et al.* A complete reference genome improves analysis of human
650 genetic variation. *Science* **376**, eabl3533 (2022).

651

652 26. Hoyt SJ, *et al.* From telomere to telomere: The transcriptional and epigenetic
653 state of human repeat elements. *Science* **376**, eabk3112 (2022).

654

655 27. Vollger MR, *et al.* Segmental duplications and their variation in a complete
656 human genome. *Science* **376**, eabj6965 (2022).

657

658 28. Wang T, *et al.* The Human Pangenome Project: a global resource to map
659 genomic diversity. *Nature* **604**, 437-446 (2022).

660

661 29. Cheng HY, Concepcion GT, Feng XW, Zhang HW, Li H. Haplotype-resolved
662 de novo assembly using phased assembly graphs with hifiasm. *Nature
663 Methods* **18**, 170-+ (2021).

664

665 30. Cheng H, Asri M, Lucas J, Koren S, Li H. Scalable telomere-to-telomere
666 assembly for diploid and polyploid genomes with double graph. *ArXiv*,
667 (2023).

668

669 31. Hu J, *et al.* An efficient error correction and accurate assembly tool for noisy
670 long reads. *bioRxiv*, 2023.2003.2009.531669 (2023).

671

672 32. Koren S, Walenz BP, Berlin K, Miller JR, Bergman NH, Phillippy AM. Canu:
673 scalable and accurate long-read assembly via adaptive k-mer weighting and
674 repeat separation. *Genome Research* **27**, 722-736 (2017).

675

676 33. Shen YT, *et al.* Update soybean Zhonghuang 13 genome to a golden reference.

677 *Science China-Life Sciences* **62**, 1257-1260 (2019).

678

679 34. Li H. Minimap2: pairwise alignment for nucleotide sequences. *Bioinformatics*

680 **34**, 3094-3100 (2018).

681

682 35. Thorvaldsdottir H, Robinson JT, Mesirov JP. Integrative Genomics Viewer

683 (IGV): high-performance genomics data visualization and exploration.

684 *Briefings in Bioinformatics* **14**, 178-192 (2013).

685

686 36. Simao FA, Waterhouse RM, Ioannidis P, Kriventseva EV, Zdobnov EM.

687 BUSCO: assessing genome assembly and annotation completeness with

688 single-copy orthologs. *Bioinformatics* **31**, 3210-3212 (2015).

689

690 37. Rhee A, Walenz BP, Koren S, Phillippy AM. Merqury: reference-free quality,

691 completeness, and phasing assessment for genome assemblies. *Genome*

692 *Biology* **21**, (2020).

693

694 38. Durand NC, *et al.* Juicer Provides a One-Click System for Analyzing

695 Loop-Resolution Hi-C Experiments. *Cell Systems* **3**, 95-98 (2016).

696

697 39. Goel M, Sun H, Jiao WB, Schneeberger K. SyRI: finding genomic

698 rearrangements and local sequence differences from whole-genome assemblies.

699 *Genome Biol* **20**, 277 (2019).

700

701 40. Wang L, Zhang M, Li M, Jiang X, Jiao W, Song Q. A telomere-to-telomere

702 gap-free assembly of soybean genome. *Mol Plant*, (2023).

703

704 41. Liu Y, *et al.* Genome-wide mapping reveals R-loops associated with

705 centromeric repeats in maize. *Genome Res* **31**, 1409-1418 (2021).

706

707 42. Gill N, *et al.* Molecular and chromosomal evidence for allopolyploidy in
708 soybean. *Plant Physiol* **151**, 1167-1174 (2009).

709

710 43. Lin X, Liu B, Weller JL, Abe J, Kong F. Molecular mechanisms for the
711 photoperiodic regulation of flowering in soybean. *J Integr Plant Biol* **63**,
712 981-994 (2021).

713

714 44. Molnar SJ, Rai S, Charette M, Cober ER. Simple sequence repeat (SSR)
715 markers linked to E1, E3, E4, and E7 maturity genes in soybean. *Genome* **46**,
716 1024-1036 (2003).

717

718 45. Angeloni A, Bogdanovic O. Enhancer DNA methylation: implications for
719 gene regulation. *Essays Biochem* **63**, 707-715 (2019).

720

721 46. Shapiro JA, von Sternberg R. Why repetitive DNA is essential to genome
722 function. *Biol Rev* **80**, 227-250 (2005).

723

724 47. Ahmad SF, Singchat W, Panthum T, Srikulnath K. Impact of Repetitive DNA
725 Elements on Snake Genome Biology and Evolution. *Cells* **10**, (2021).

726

727 48. Antoniolli HRM, Depra M, Valente VLS. Patterns of genome size evolution
728 versus fraction of repetitive elements in statu nascendi species: the case of the
729 willistoni subgroup of *Drosophila* (Diptera, Drosophilidae). *Genome* **66**,
730 193-201 (2023).

731

732 49. Innes RW, *et al.* Differential accumulation of retroelements and diversification
733 of NB-LRR disease resistance genes in duplicated regions following
734 polyploidy in the ancestor of soybean. *Plant Physiol* **148**, 1740-1759 (2008).

735

736 50. Belton JM, McCord RP, Gibcus JH, Naumova N, Zhan Y, Dekker J. Hi-C: a
737 comprehensive technique to capture the conformation of genomes. *Methods* **58**,
738 268-276 (2012).

739

740 51. Hu J, Fan JP, Sun ZY, Liu SL. NextPolish: a fast and efficient genome
741 polishing tool for long-read assembly. *Bioinformatics* **36**, 2253-2255 (2020).

742

743 52. Li H. Minimap and miniasm: fast mapping and de novo assembly for noisy
744 long sequences. *Bioinformatics* **32**, 2103-2110 (2016).

745

746 53. Goel M, Schneeberger K. plotsr: visualizing structural similarities and
747 rearrangements between multiple genomes. *Bioinformatics* **38**, 2922-2926
748 (2022).

749

750 54. Chan PP, Lin BY, Mak AJ, Lowe TM. tRNAscan-SE 2.0: improved detection
751 and functional classification of transfer RNA genes. *Nucleic Acids Res* **49**,
752 9077-9096 (2021).

753

754 55. Chan PP, Lowe TM. tRNAscan-SE: Searching for tRNA Genes in Genomic
755 Sequences. *Methods Mol Biol* **1962**, 1-14 (2019).

756

757 56. Lowe TM, Chan PP. tRNAscan-SE On-line: integrating search and context for
758 analysis of transfer RNA genes. *Nucleic Acids Res* **44**, W54-57 (2016).

759

760 57. Rozewicki J, Li S, Amada KM, Standley DM, Katoh K. MAFFT-DASH:
761 integrated protein sequence and structural alignment. *Nucleic Acids Res* **47**,
762 W5-W10 (2019).

763

764 58. Katoh K, Misawa K, Kuma K, Miyata T. MAFFT: a novel method for rapid

multiple sequence alignment based on fast Fourier transform. *Nucleic Acids Res* **30**, 3059-3066 (2002).

59. Su W, Ou S, Hufford MB, Peterson T. A Tutorial of EDTA: Extensive De Novo TE Annotator. *Methods Mol Biol* **2250**, 55-67 (2021).

60. Ou S, *et al.* Benchmarking transposable element annotation methods for creation of a streamlined, comprehensive pipeline. *Genome Biol* **20**, 275 (2019).

61. Flynn JM, *et al.* RepeatModeler2 for automated genomic discovery of transposable element families. *Proc Natl Acad Sci U S A* **117**, 9451-9457 (2020).

62. Chen N. Using RepeatMasker to identify repetitive elements in genomic sequences. *Curr Protoc Bioinformatics Chapter 4*, Unit 4 10 (2004).

63. Tempel S. Using and understanding RepeatMasker. *Methods Mol Biol* **859**, 29-51 (2012).

64. Tarailo-Graovac M, Chen N. Using RepeatMasker to identify repetitive elements in genomic sequences. *Curr Protoc Bioinformatics Chapter 4*, 4 10 11-14 10 14 (2009).

65. Stanke M, Diekhans M, Baertsch R, Haussler D. Using native and syntenically mapped cDNA alignments to improve de novo gene finding. *Bioinformatics* **24**, 637-644 (2008).

66. Bu D, *et al.* KOBAS-i: intelligent prioritization and exploratory visualization of biological functions for gene enrichment analysis. *Nucleic Acids Res* **49**,

795 W317-W325 (2021).

796

797 67. Benson G. Tandem repeats finder: a program to analyze DNA sequences.
798 *Nucleic Acids Res* **27**, 573-580 (1999).

799

800 68. Zhang RG, *et al.* TEsorter: an accurate and fast method to classify
801 LTR-retrotransposons in plant genomes. *Hortic Res* **9**, (2022).

802

803 69. Robinson JT, *et al.* Integrative genomics viewer. *Nat Biotechnol* **29**, 24-26
804 (2011).

805

806 70. Thorvaldsdottir H, Robinson JT, Mesirov JP. Integrative Genomics Viewer
807 (IGV): high-performance genomics data visualization and exploration. *Brief
808 Bioinform* **14**, 178-192 (2013).

809

810 71. Robinson JT, Thorvaldsdottir H, Turner D, Mesirov JP. igv.js: an embeddable
811 JavaScript implementation of the Integrative Genomics Viewer (IGV).
812 *Bioinformatics* **39**, (2023).

813

814 72. Robinson JT, Thorvaldsdottir H, Wenger AM, Zehir A, Mesirov JP. Variant
815 Review with the Integrative Genomics Viewer. *Cancer Res* **77**, e31-e34
816 (2017).

817

818

819

820

821

822

823

824

825

826

827

828

829

Table 1. Statistics of repetitive elements in ZH13-T2T.

Category/sub-category	Number of elements	Length occupied (bp)	Percentage of sequence (%)
Retroelements	902455	387358521	38.16
SINEs	8063	1202704	0.12
Penelope	0	0	0
LINEs	35254	15995961	1.58
L2/CR1/Rex	2743	366689	0.04
R1/LOA/Jockey	399	88426	0.01
RTE/Bov-B	5485	2382436	0.23
L1/CIN4	25785	12959723	1.28
LTR elements	859138	370159856	36.47
BEL/Pao	268	186537	0.02
Ty1/Copia	107698	100954814	9.95
Gypsy/DIRS1	741385	264105317	26.02
Retroviral	1580	712734	0.07
DNA transposons	189561	68217977	6.72
hobo-Activator	39737	9942511	0.98

Tc1-IS630-Pogo	1308	289894	0.03
MULE-MuDR	69849	28549006	2.81
PiggyBac	357	94762	0.01
Tourist/Harbinger	7945	2312518	0.23
Rolling-circles	8322	5068793	0.5
Unclassified	787918	99856969	9.84
Total interspersed repeats		555433467	54.72
Small RNA	5991	5150692	0.51
Simple repeats	245669	11525507	1.14
Low complexity	52316	2670917	0.26

831

832

833

834

835

836

837 **Table 2. Summary of non-coding RNAs.**

		Length (MB)	NO.
rRNA	total	3.289768	2937
	28S_rRNA	2.072602	560
	5_8S_rRNA	0.084246	551
	18S_rRNA	0.992039	554
	5S_rRNA	0.140881	1272
tRNA		0.08185	1102
snRNA		0.208934	1943
miRNA		0.167272	1459

838

839

840

841

842

843

844

845

846

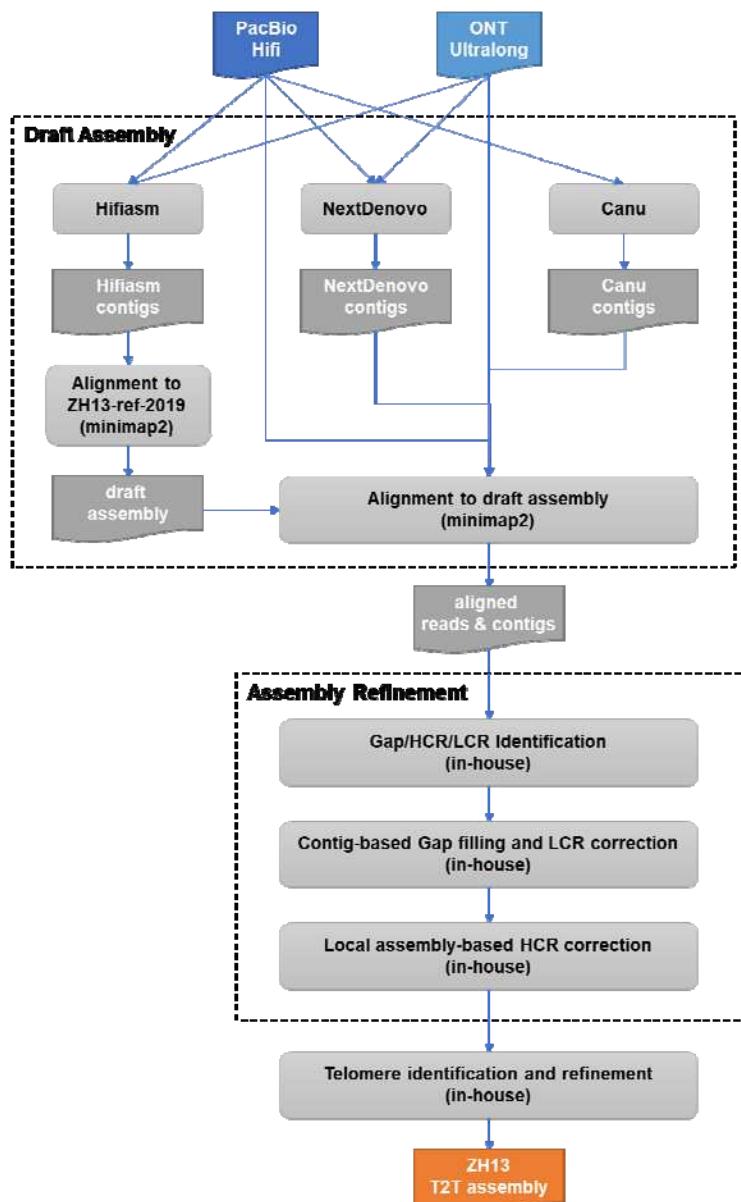
847

848

849

850

851


852

853

854

855

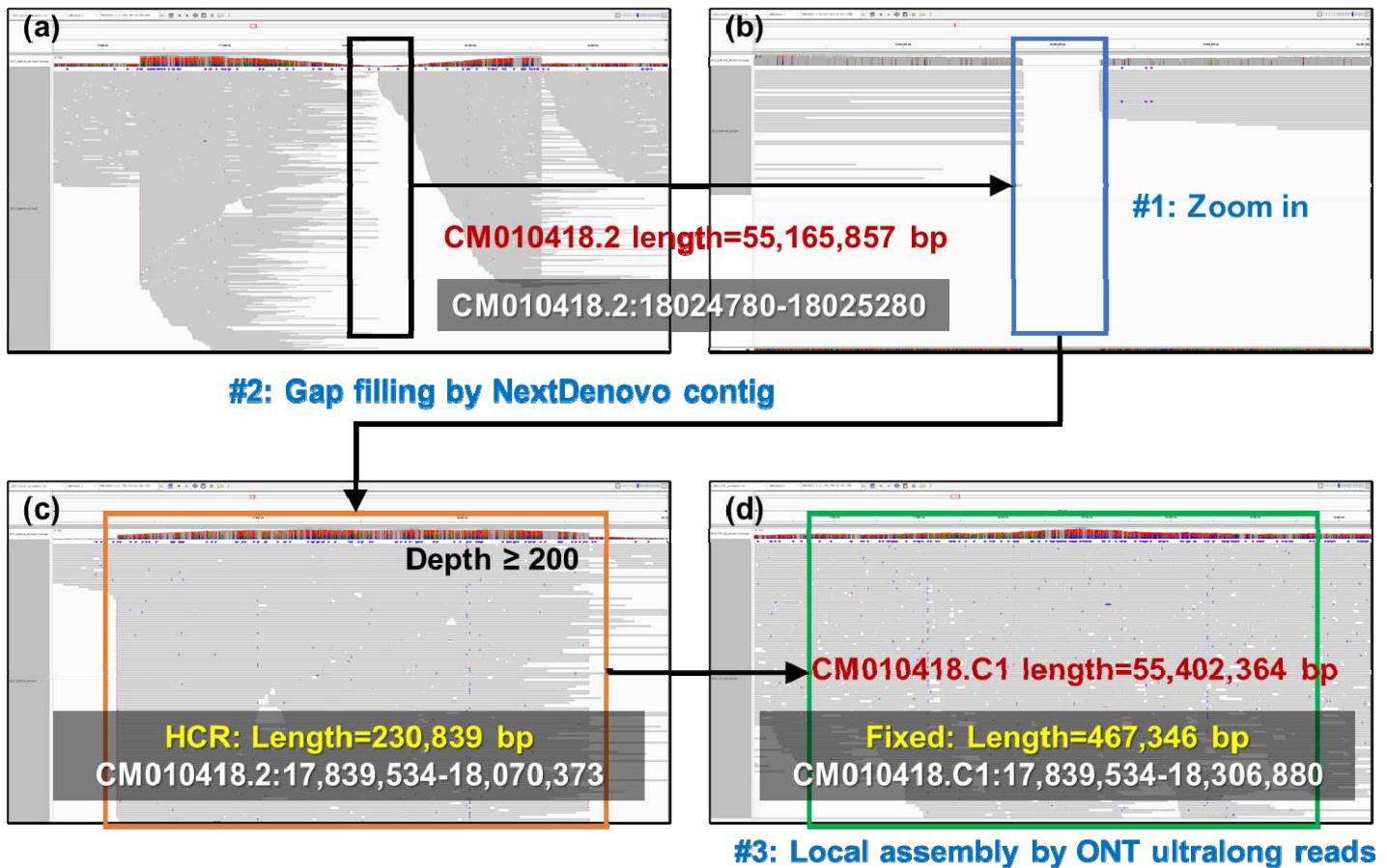
856

857

858 **Fig. 1. ZH13-T2T assembly pipeline.**

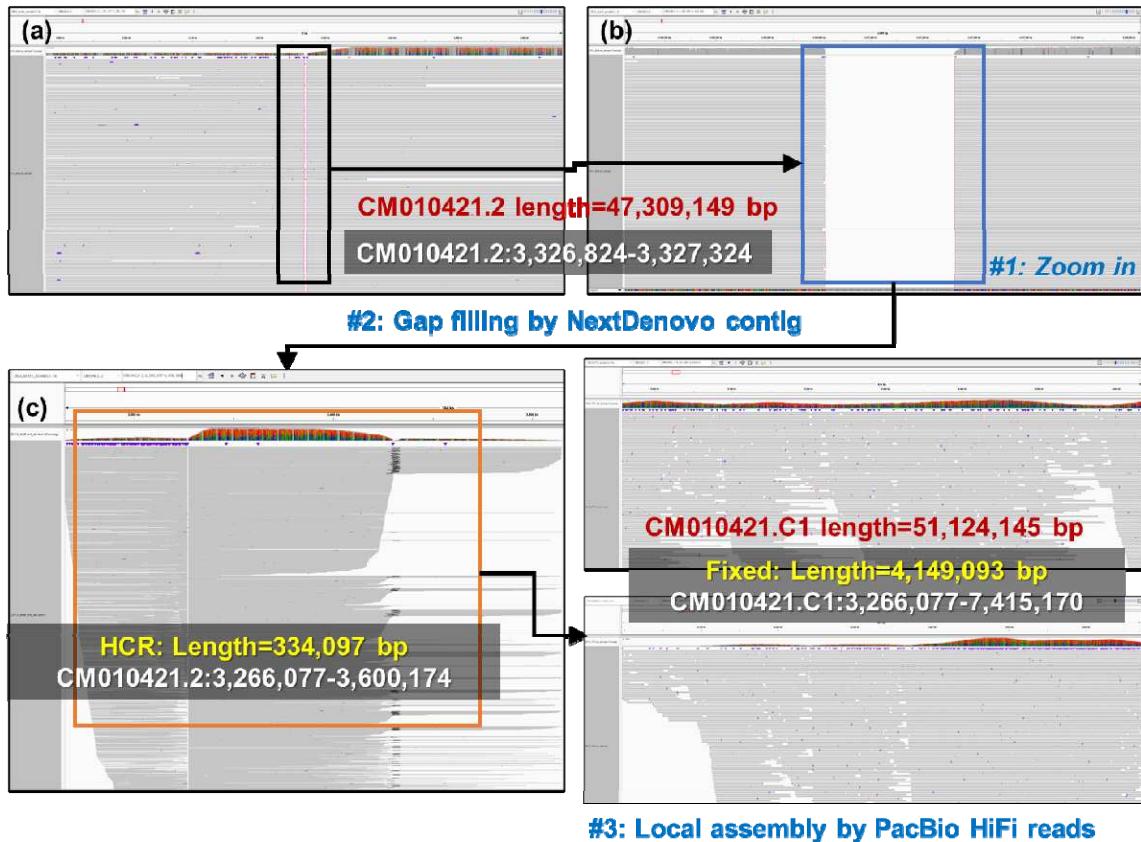
859

860


861

862

863


864

865


Fig. 2. The filling of gap1.

a) the IGV snapshot of ONT ultralong read alignment in the surrounding region of gap1 in ZH13-ref-2019; b) a zoom-in view of gap1; c) the IGV snapshot ONT ultralong read alignment after NextDenovo contig correction (HCR was observed); d) the IGV snapshot of ONT ultralong read alignment after local assembly-based correction with anchored ONT ultralong reads (consecutive alignments and normal coverage were observed).

Fig. 3. The filling of gap3.

a) the IGV snapshot of ONT ultralong read alignment in the surrounding region of gap3 in ZH13-ref-2019; b) the IGV snapshot of ONT ultralong alignment after NextDenovo contig correction (HCR was observed and 48S rDNA array was identified); c) the IGV snapshot of ONT ultralong read alignment after local assembly-based correction with anchored reads, consecutive read alignments were observed. Moreover, by manually checking the alignment details we also found many reads having very low MAPQ, i.e., each of the reads had multiple candidate mapping positions and cannot be confidently aligned. Overall normal coverage was proved by considering all the primary and secondary alignments of the reads.

2 **Fig. 4. The ZH13-T2T assembly and its comparison to ZH13-ref-2019 and**
3 **Wm82-NJAU.**

4 The orange, blue and green lines indicate ZH13-T2T, ZH13-ref-2019 and
5 Wm82-NJAU, respectively. Gray and blank blocks between various genomes indicate
6 syntenic regions and NARs. Inversions, translocations and duplications are marked by
7 filled orange, green and blue curves.

8

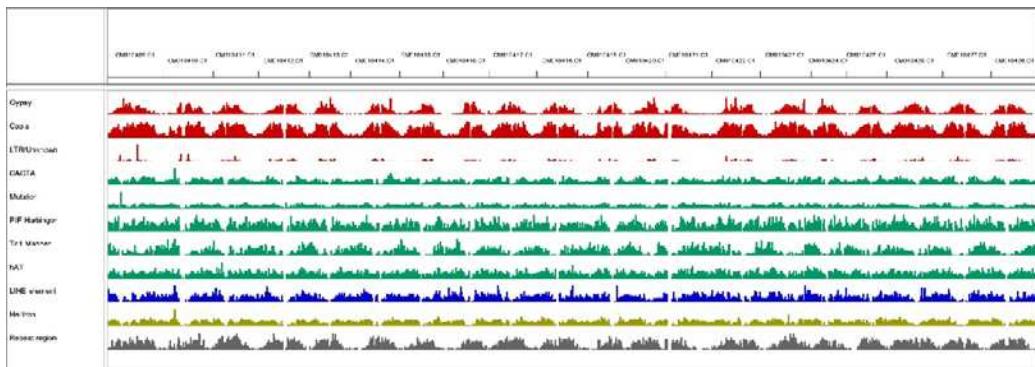
9

10

11

12

13


14

15

16

17

18

20 **Fig. 5. Distribution of TE in the ZH13-T2T genome.**


21

22

23

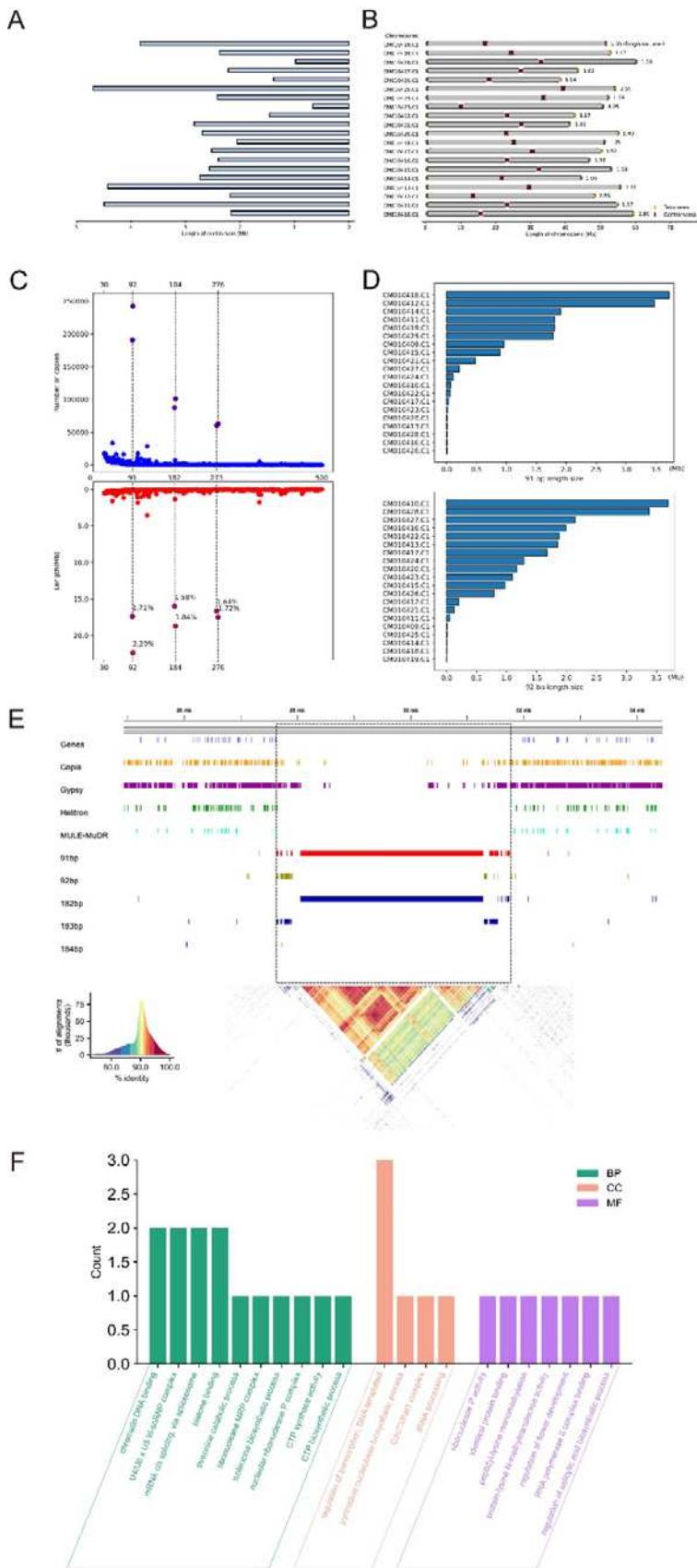
24

25

26

27 **Fig. 6. Genome structure of 5S and 48S rDNA arrays.** (A). Sequence structure of a
28 typical 5S (up) and 48S rDNAs (down) repeat unit. IGS, intergenic spacer region; ITS,
29 internal transcribed spacer region. (B). Variations of the most abundant genotypes of
30 5S rDNAs (up) and 48S rDNAs (down). (C). Genome structure of rDNAs (up) and
31 48S rDNAs (down).

32


33

34

35

36

37

39 **Fig. 7. Genomic structure of telomere and centromere.**

40 (A) The length of the centromere.

41 (B) The location of centromere in the genome.

42 (C) The number of copies in the genome of tandem repeats with lengths of 91 and

43 92bp.

44 (D) The total length of tandem repeats of 91bp and 92bp in each chromosome.

45 (E) The distribution and degree of correlation of various sequences in the centromere

46 region are represented by heat maps.

47 (F) Enrichment of genes in centromere region.

48