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ABSTRACT15

16
The intricate network of RNA-RNA interactions, crucial for orchestrating essential cellular17
processes like transcriptional and translational regulation, has been unveiling through18
high-throughput techniques and computational predictions. With the emergence of deep learning19
methodologies, the question arises: how do these cutting-edge techniques for base-pairing20
prediction compare to traditional free-energy-based approaches, particularly when applied to the21
challenging domain of interaction prediction via chain concatenation? In this study, we employ22
base pairs derived from three-dimensional RNA complex structures as the gold standard23
benchmark to assess the performance of 22 different methods, including recently developed deep24
learning models. Our results demonstrate that the deep-learning-based methods, SPOT-RNA and25
coevolution-information-powered SPOT-RNA2, can be generalized to previously unseen RNA26
structures and are capable of making accurate zero-shot predictions of RNA-RNA interactions.27
The finding underscores the potential of deep learning as a robust tool for advancing our28
understanding of these complex molecular interactions.29

30

Introduction31

Recent advancements in high-throughput techniques have unveiled a complex network of32
RNA-RNA interactions (RRIs) critical for governing transcriptional and translational processes.33
These interactions are pivotal in the biogenesis of various RNA molecules, including mRNAs,34
rRNA, tRNA, microRNAs, and circRNAs 1–3. Large-scale detection of RRIs has been achieved35
through innovative approaches that combine cross-linking techniques with high-throughput36
sequencing. Notably, techniques such as PARIS 4, SPLASH5, LIGR-seq6, and COMRADES7 have37
employed psoralen or its derivatives, as well as formaldehyde in the case of RIC-Seq 8, for38
cross-linking. While these methods hold promise, they are not without limitations stemming from39
probe biases and ligation efficiencies 1–3. Furthermore, many of these high-throughput techniques40
have yet to achieve the single nucleotide resolution.41

42
Attaining the nucleotide-level resolution in RNA structures has historically relied on43
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traditional structure-determination methods such as X-ray crystallography, Nuclear Magnetic44
Resonance (NMR), and Cryo-electron microscopy. Yet, compared to proteins, determining RNA45
structures presents formidable challenges due to the unique physiochemical properties of46
nucleotides and the inherent fragility of RNA structures 9. This is reflected from the fact that only47
a meagre 3% of structures in the Protein Data Bank contain RNAs, with even fewer dedicated to48
RNA-RNA complexes (681 as of March 16, 2023, after redundancy removal)10. This stark contrast49
becomes even more pronounced when considering the extensive collection of more than 3150
million noncoding RNA sequences catalogued in the RNAcentral database 11. Given the cost and51
challenges associated with experimental approaches, there is an imperative need for development52
of complementary computational prediction techniques.53

54
The existing methods for predicting RNA-RNA interactions (RRIs) can be broadly classified55

into alignment-based, free-energy-based, and homology modeling approaches 12,13.56
Alignment-based techniques, such as GUUGle 14 and RIsearch 15, focus on inter-RNA base pairs57
while overlooking potential intra-RNA interactions. Free-energy-based methods can be58
categorized into those considering only intermolecular interactions for expediency (such as59
RNAhybrid16, RNAduplex17, RNAplex-c18, and DuplexFold19), those factoring in intramolecular60
interactions based on solvent accessibility (such as RNAup20, IntaRNA21, RNAplex-a22, and61
AccessFold23), and those accommodating both intra- and inter-molecular base pairs through62
sequence concatenation (such as PAIRFOLD24, RNAcofold25 and biFold19) or without restrictions63
(such as RactIP26). Homology-based techniques, exemplified by TargetRNA2 27, CopraRNA 28,64
RNAaliduplex 17 and PETcofold29, utilize evolutionary information to infer binding.65

66
Presently, 'de novo' RRI prediction methods predominantly rely on free-energy-based67

approaches, limited by their approximate energy or scoring functions, akin to the challenges faced68
in RNA secondary structure prediction30. Recent advancements have seen the emergence of deep69
learning-based methods, starting with SPOT-RNA31, which achieved the first end-to-end70
prediction of intra-RNA base pairs. Subsequent developments include mxfold232, UFold33, and71
2dRNA34. To further enhance prediction accuracy, SPOT-RNA235 was developed to integrate72
evolutionary profiles and mutational coupling data generated by RNAcmap 3673

74
In this study, we conducted a comprehensive benchmark of various methods for predicting75

intra- and inter-RNA interactions. Our evaluation encompassed traditional energy-based76
techniques and newly developed deep learning models based on simple sequence concatenation.77
To ensure a rigorous assessment, we employed base pairs derived from experimentally-determined78
RNA-RNA complex structures and eliminated monomer structures employed for training of79
SPOT-RNA and SPOT-RNA2 through a strict structural similarity cutoff (TM-score 37 <0.3). This80
challenging set of the complex of unseen structures revealed significant improvements of81
SPOT-RNA's performance over the other 21 methods evaluated, underscoring the transferability82
of deep learning from intra-RNA to inter-RNA interaction prediction.83

84
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Results85

Method Comparison on Inter-RNABase Pair Prediction86
87

In this study, we compare 22 different RRI predictors on a benchmark set of 64 RNA-RNA88
pairs after excluding all monomer structures remotely similar to the RNA structures employed in89
the training and validation sets for SPOT-RNA and SPOT-RNA2. We evaluate their performance90
in inter-RNA base pair prediction through precision/recall curves and F1 score distributions, as91
shown in Figure 1. The performance metrics, including overall F1-score, Mathews correlation92
coefficient (MCC) values, and the median F1-score and standard deviation of individual RNA93
pairs, are also summarized in Table 1. Predictors with probabilistic outputs are represented by94
precision-recall (PR) curves, while others are represented as single points. For all methods with95
chain concatenation for predicting RNA-RNA interactions, a low case “c” is appended to the96
method name. They are RNAfoldc, UFoldc, MXfold2c, SPOT-RNAc, and SPOT-RNA2c. No97
linker was employed because adding a 3-nucleotide link did not lead to performance improvement98
(See Methods).99

100
As shown in Figure 1A, SPOT-RNA2c is the most accurate predictor at low sensitivity (<0.2).101

However, the overall PR curve given by SPOT-RNAc has the best performance. We can also102
measure the performance by the overall F1-Score for all RNA pairs and the median F1-Score for103
individual RNA pairs. The thresholds for determining F1-scores of SPOT-RNAc and104
SPOT-RNA2c in the test set were set according to the thresholds for producing the highest105
F1-scores in the validation dataset for SPOT-RNAc and SPOT-RNA2c, respectively. Table 1106
confirmed the result from the PR curve that SPOT-RNAc achieved the best overall performance107
with an overall F1-Score of 0.583, outperforming SPOT-RNA2c (the overall F1-Score of 0.561)108
and RNAcoFold (F1-Score of 0.494). SPOT-RNAc improves over SPOT-RNA2c by more than109
4% and outperforms other methods by over 18%, a pattern similarly observed in MCC values110
(Table 1).111

112
Figure 1B presents the distribution of F1 scores for individual RNA pairs, including median,113

25th, and 75th percentiles. SPOT-RNAc continues to achieve the best performance with the114
highest median F1 score of 0.582, outperforming the next best SPOT-RNA2c (median F1-score of115
0.533) with a 10% improvement. The improvement of SPOT-RNAc over all methods are116
statistically significant with a p-value of 0.012 when comparing to the second best method117
SPOT-RNA2c (Table 1). SPOT-RNAc also has the narrowest distribution among the top 5118
predictors.119

120
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121
Figure 1: Performance Comparison of 22 Methods for Inter-RNA Base-Pair Prediction on122
the 64 Complexes of RNA Structures Unseen by SPOT-RNA and SPOT-RNA2. All structures123
in the test set have the structural similarity score TM-Score<0.3 compared to the monomeric124
structures used in training and validating SPOT-RNA and SPOT-RNA2 methods. (A)125
Precision-recall curves (for those methods with probabilistic outputs) or points given by 22126
methods (B) Distribution of F1 scores for inter-RNA base pair prediction for individual RNA pairs127
by the same 22 methods. Each boxplot shows the median, 25th, and 75th percentiles, with outliers128
represented by "•". SPOT-RNAc exhibits the best performance for both overall and individual129
measures of F1-scores.130

131
Table 1: Performance Comparison of 22 Predictors of Inter-RNA Base Pairs on 64132
Complexes of RNA Structures Unseen by SPOT-RNA and SPOT-RNA2. All single-chain133
structures in the test set have the structural similarity score TM-Score<0.3 compared to the134
monomeric structures used in training and validating SPOT-RNA and SPOT-RNA2 methods.135
Methods Precision Recall Overall F1

Score

MCC Median F1

Score ± Std

P-value

GUUGle 0.157 0.105 0.126 0.124 0.000 ±  7.90e-15

RIsearch 0.176 0.252 0.207 0.205 0.000 ±  2.03e-12

RNAplex-cA* 0.463 0.148 0.224 0.259 ±  1.56e-11

RNAaliduplex* 0.469 0.148 0.225 0.261 ±  1.56e-11

DuplexFold 0.181 0.455 0.259 0.281 ±  6.12e-08

RNAplex-c 0.189 0.442 0.265 0.283 ±  1.10e-08

RNAduplex 0.194 0.491 0.278 0.303 ±  8.49e-09

RNAplex-a 0.359 0.285 0.318 0.316 ±  1.43e-09

RNAup 0.285 0.365 0.32 0.318 ±  4.13e-12

AccessFold 0.317 0.507 0.39 0.397 ±  6.05e-06

PETcoFold* 0.434 0.365 0.397 0.395 ±  9.24e-05

RNAfoldc 0.384 0.582 0.463 0.469 ±  0.007

NUPACK 0.446 0.483 0.464 0.461 ±  0.001

MXfold2c 0.391 0.603 0.474 0.482 ±  0.004

UFoldc 0.422 0.545 0.476 0.476 ±  0.002
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bifold 0.412 0.566 0.477 0.48 ±  0.014

IntaRNA2.0 0.536 0.436 0.481 0.481 ±  9.75e-05

PairFold 0.427 0.562 0.485 0.486 ±  0.007

RNAmultifold 0.423 0.582 0.49 0.493 ±  0.015

RNAcoFold 0.424 0.582 0.491 0.494 ±  0.015

SPOT-RNA2c* 0.583 0.540 0.561 0.559 ±  0.012

SPOT-RNAc 0.620 0.551 0.583 0.583 ± 

Note: The overall F1-score is harmonic mean of precision and recall for all RNA pairs. MCC136
denotes Matthew’s correlation coefficient. The star * denotes the use of evolution information.137
Methods with an ending of “c” indicate the use of chain concatenation for RNA-RNA interaction138
prediction. Median F1 means the median value of single RNA. The P-value of a given method was139
computed by against the result from SPOT-RNAc.140

141

142
Figure 2: Performance Comparison of Intra-RNA Base Pair Prediction by 11 methods (A)143
Precision-recall curves and points illustrate the performance rankings. (B) A distribution of144
F1-scores for intra-RNA base pair prediction. SPOT-RNA and SPOT-RNAc represent145
intramolecular base pair prediction as single and concatenated chains, respectively.146
Evolution-based SPOT-RNA2c (or SPOT-RNA2) outperforms SPOT-RNAc (or SPOT-RNA) for147
intra-RNA base pairs.148

149
It's important to assess how these methods perform on intra-molecular interactions, although150

not all RRI methods offer predictions for such interactions. We remove these RNAs without151
intra-base-pairing structures. This leads to 77 RNA chains. Figure 2A compares the PR curves or152
PR points given by 11 methods. Interestingly, PR curves indicate that SPOT-RNA2c now has the153
best performance. The overall performance according to overall F1-scores given by SPOT-RNA2c154
(Table 2) is the highest, surpassing the next best methods (SPOT-RNA2 without chain155
concatenation) by a 6% improvement in F1-score, and the third best (RNAmultifold or156
RNAcoFold) by 12%, with SPOT-RNAc ranking as the fourth best. This trend is consistent across157
MCC values.158

159
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Table 2: Performance Comparison of 11 Predictors for Predicting Intra-RNA Base Pairs on160
77 unseen RNA chains that has intra secondary structure in 64 RNA-RNA Complex161
Structures.162

163
Methods Precision Recall Overall

F1-Score

MCC Individual

F1-Score Median

±Std

p-value

PETcoFold* 0.338 0.112 0.168 0.194 0.000 ± 0.217 1.62e-15

UFold 0.471 0.574 0.517 0.519 0.452 ± 0.278 5.33e-07

SPOT-RNA 0.584 0.486 0.531 0.531 0.476 ± 0.271 1.51e-06

MXfold2 0.538 0.536 0.537 0.536 0.444 ± 0.291 0.0001

RNAfoldc 0.528 0.578 0.552 0.551 0.494 ± 0.287 1.06e-05

PairFold 0.581 0.525 0.552 0.551 0.483 ± 0.308 8.15e-05

SPOT-RNAc 0.653 0.493 0.562 0.567 0.481 ± 0.291 0.0005

RNAcoFold 0.587 0.566 0.576 0.576 0.467 ± 0.305 0.001

RNAmultifold 0.587 0.566 0.576 0.576 0.467 ± 0.305 0.001

SPOT-RNA2* 0.589 0.629 0.608 0.607 0.489 ± 0.310 0.007

SPOT-RNA2c* 0.626 0.665 0.645 0.644 0.560 ± 0.294 -

Note: The overall F1-score is harmonic mean of precision and recall for all RNA pairs. MCC164
denotes Matthew’s correlation coefficient. The star * denotes the use of evolution information,Std165
means standard deviation .Median F1 means the median value of individual RNA chains. The166
P-value of a given method is compute by against the result of SPOT-RNAc.167

168
Figure 2B further delves into performance by analyzing the distribution of F1-scores for169

individual RNAs. SPOT-RNA2c continues to lead with the highest median F1-score at 0.560,170
while SPOT-RNA2 follows closely with the second-best median F1-score of 0.608. The171
differences in F1-score distributions between SPOT-RNA2c and other methods are all statistically172
significant, with a p-value of 0.007 when comparing SPOT-RNA2c to the second best173
SPOT-RNA2 (Table 2).174

175
Intuitively, a better intra-RNA base-pairing prediction should lead to a better inter-RNA176

base-pairing prediction. However, although SPOT-RNA2c has the best performance for177
intra-RNA interaction prediction, it is SPOT-RNAc with the best performance for inter-RNA178
interaction prediction. If we remove these RNA RRI pairs of which both chains do not have179
intra-base-pairing structures, this leads to 53 RRI pairs. Figure 3A compares intermolecular180
F1-scores for individual RNA pairs from SPOT-RNAc with the average intramolecular F1-scores.181
No correlation was found. Similar uncorrelated intra- and inter-RNA F1-scores are observed for182
SPOT-RNA2c (Figure 3B). This suggests that the evolution information contained in183
SPOT-RNA2c did contain the co-evolution information for predicting intra-RNA, but not184
inter-RNA interactions.185

186
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187
Figure 3 No Correlation between Inter-RNA F1-scores and Intra-RNA F1-scores. (A)188

Inter-RNA F1-scores versus the average Intra-RNA F1-scores of SPOT-RNAc for 53 RNA189
complex structures with intra-RNA base pairs for both chains. (B) Inter-RNA F1-scores versus190
Intra-RNA F1-scores of SPOT-RNA2c for 53 RNA complex structures.191

192
We also assessed the impact of sequence concatenation on the intra-RNA base-pair193

prediction (i.e., SPOT-RNA versus SPOT-RNAc, SPOT-RNA2 versus SPOT-RNA2c). Table 2194
shows that SPOT-RNAc/SPOT-RNA2c are better than SPOT-RNA/SPOT-RNA2 based on either195
overall F1-score or the median of individual F1-scores. In both cases, the difference is statistically196
significant with a p-value of 0.0007 between SPOT-RNA and SPOT-RNAc and a p-value of 0.007197
between SPOT-RNA2 and SPOT-RNA2c. This indicates that knowing the binding partner198
improves the intra-RNA base pair prediction.199

200
In Figures 3A and 3B, some inter-RNA (and intra-RNA) interactions were predicted with201

F1-scores of 0. To understand the reasons behind these poor predictions, we examined F1-scores202
given by SPOT-RNAc as a function of sequence length (L1+L2) in Figure 4A. No obvious203
correlation was found. However, when we plotted F1-scores against the number of true inter-RNA204
base pairs divided by the square root of (L1*L2), a clear and strong correlation emerged with a205
Pearson’s correlation coefficient (PCC) of 0.464 (Figure 4B). Thus, poor predictions, including206
those with F1-scores of 0, can be attributed to the scarcity of inter-RNA contacts relative to the207
sequence lengths. This observation holds true for intra-RNA base pair prediction as well:208
intra-RNA interactions with F1-scores of 0 also involve very few intra-RNA base pairs (<5).209

210
211
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212
Figure 4: Relationship Between Inter-RNA Base Pairing Prediction and213
Sequence/Interaction Characteristics. (A) The inter-RNA F1 scores for individual RNA-RNA214
complexes from SPOT-RNAc plotted against the sum of sequence lengths (L1+L2). (B) The215
inter-RNA F1 scores for individual RNA-RNA complexes from SPOT-RNAc plotted against the216
normalized number of inter-RNA base pairs (the number of true inter-RNA base pairs divided by217
the square root of L1*L2). The performance does not correlate with sequence length but is related218
to the normalized number of inter-RNA base pairs.219

220
We selected one example to illustrate SPOT-RNA's performance in RRI prediction. Figure221

4A displays predicted and actual base-pairing maps for the subunits L2a rRNA complexed with222
L3b rRNA from Chlamydomonas reinhardtii mitoribosome (PDB ID 7PKT, chain ID 2 and chain223
ID 3). Figure 5A displays the intra- and inter-base-pairing maps of these two RNAs with Figure224
5B for inter-base-pairing maps only. The F1 scores for intra-RNA base pairs are 0.32 for L2a225
rRNA and 0.30 for L3b rRNA, while the F1-score for inter-RNA base pairs is 0.571. Correctly226
predicted base pairs are highlighted with red dots in Figures 5B and 5C, and their 3D locations227
were shown as red-colored bases in Figure 5C. For this complex structure, precision for228
inter-RNA base pairs is 0.435, and sensitivity is relatively high (0.769).229

230
231

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 28, 2023. ; https://doi.org/10.1101/2023.09.26.559463doi: bioRxiv preprint 

https://doi.org/10.1101/2023.09.26.559463
http://creativecommons.org/licenses/by-nc-nd/4.0/


232
Figure 5: Accurate Prediction of Key Inter-RNA Base-pairing Contacts in RNA Complexes233
by SPOT-RNAc. Complex structure of large subunits of the Chlamydomonas reinhardtii234
mitoribosome (L2aRNA and L3bRNA in PDB ID 7PKT) with true distance-contact map and235
predicted intra and inter-RNA base pairs (A), inter-RNA base pairs only (B), and 3-D structure236
(C). Predicted intra-base pairs and inter-base pairs are denoted by black and red dots, respectively,237
in the base-pairing maps. In the 3-D structure (C), correctly predicted inter-RNA base pairs are238
highlighted in red.239

240
241

Discussion242

This study represents a comprehensive benchmark for assessing more than 20 methods in243
predicting RNA-RNA interactions. Previous benchmarks were constrained to interactions244
involving small RNAs without intra-RNA base pairs. For instance, Lai and Meyer 13 compared 14245
RRI methods based on experimentally confirmed interactions in fungal snoRNA-rRNA and246
bacterial sRNA-mRNA pairs. Umu and Gardner (Umu and Gardner, 2017a) examined 15 RRI247
methods using a dataset focused on short linear base-pair matching. Antonov et al.38 compared 13248
RRI methods on mammalian lncRNAs with experimentally proven hybridizations. In contrast, our249
study presents the first comprehensive benchmark of 22 RRI prediction methods using known RRI250
interactions derived from 3D structures at the base pair level. Notably, most of these complexes251
(53/64) include RNAs with 3D structures and intra-RNA base pairs. Additionally, this study252
marks the first inclusion of deep-learning based methods for comparisons, utilizing chain253
concatenation.254

255
In contrast to proteins, the available non-redundant data for RNA structures is limited. This256

raises concerns about the generalizability of deep learning models trained on such limited data.257
Previous studies by Szikszai et al 39 and Qiu 40 highlighted the challenges of deep-learning models258
when applied to unseen families not present in the training and validation sets. To evaluate the259
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adaptability of SPOT-RNA and SPOT-RNA2 beyond their training and validation data, we260
conducted a test by removing all test set structures with the structural similarity score (TM-score)261

≥ 0.3 compared to those in the training and validation sets. SPOT-RNA and SPOT-RNA2262

performed exceptionally well, outperforming most other methods for both intra- and inter-RNA263
base pair prediction. This demonstrates that deep learning, even with a limited number of 3D264
structures for training, can yield generalizable models for base pair prediction. This may be265
attributed to the fact that a large set of approximate secondary structures from bpRNA was used266
for training, followed by transfer learning with 3D structure-derived base pairs in SPOT-RNA and267
SPOT-RNA2.268

269
SPOT-RNA2, which incorporates evolution and co-evolution information, outperforms270

SPOT-RNA for intra-RNA base pairs, aligning with previous findings (Table 2) 35. However,271
SPOT-RNA2c underperforms SPOT-RNAc for inter-RNA base pairs. Notably, SPOT-RNA2272
exhibits a positive correlation with the number of effective homologous sequences for intra-RNA273
base-pair prediction (PCC=0.5, p-value=210-6) Supplementary Figure 1C), but this correlation274
nearly diminishes for SPOT-RNA2c for intra-RNA base pairs (PCC=0.27, p-value=0.05) and275
turned negative for inter-RNA base pair prediction (PCC=-0.3, p-value=0.02). This suggests that276
using linked sequences in SPOT-RNA2c for homology search may have provided harmful277
information for inferring inter-RNA interactions. In the future, it may be necessary to utilize278
sequences from the same species for homology searches, as co-evolution information can only be279
detected through inter-species comparisons via Multiple Sequence Alignment (MSA) pairing as280
has been done for proteins41. Such data for RNAs is few but could be explored in future studies.281

282
For predicting RNA-RNA interactions, we concatenated two chains (A and B) as a single283

chain. To eliminate artificial sequence-order dependence, we predicted results for both AB and284
BA chains and then calculated the average. Interestingly, we found that in some cases, one285
sequence order (e.g., BA) outperformed the other (i.e., AB). Upon closer examination, we286
discovered for some RNA pairs that the order with a shorter separation in sequence positions for287
contacting base pairs tended to perform better. This observation is intuitive, as longer-range288
interactions are inherently more challenging to predict. However, there were some outerliers289
deserving further studies.290

291

Methods292

Benchmark dataset293
294

We retrieved all RNA structures from the Protein Data Bank (PDB) in March 202310 and295
specifically selected structures featuring two RNA chains with a minimum of 5 inter-RNA base296
pairs. The identification of base pairs was carried out using DSSR42. To eliminate redundancy, we297
applied CD-HIT-EST43, removing binding pairs with over 80% sequence identity between either298
chain. This initial step resulted in 155 unique RNA-RNA interaction (RRI) pairs.299

300
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To ensure stringency, we further filtered out RRI pairs that exhibited single-chain structural301
similarities with any RNAs in the SPOT-RNA training set, defined by TM-score  0.3 using302
RNA-align44 with the length of the query sequence for normalization. This rigorous process303
yielded a final benchmark set comprising 64 unique RRI pairs. The PDB IDs of the benchmark set304
can be found in Supplementary Table 2.305

306
Performance evaluation307

We evaluated performance using common metrics: Recall (sensitivity), Precision, and the F1308
score. Precision is TP/(TP+FP), Recall is TP/(TP+FN), and the F1 score is309
2(Recall*Precision)/(Recall + Precision). Here, TP, FP, and FN are true positive, false positive310
and false negative, respectively. We also calculated Matthew's correlation coefficient (MCC) to311
provide a balanced measure as below:312

( )( )( )( )
TP TN FP FNMCC

TP FP TP FN TN FP TN FN
  


    ,313

where TN denotes true negatives. MCC considers true negatives (TN) and measures the314
correlation between expected and observed classes. It ranges from 0 (no correlation) to 1 (highest315
correlation).316

317
Methods for interaction prediction318

319
We summarized the comparison methods in Table 3, with detailed settings provided in the320

Supplementary method description in the Supplementary Material. As per Lai and Meyer13, we321
categorized the algorithms into four types: 1) 'Interaction only' methods predict intermolecular322
hybridization, ignoring RNA secondary structures; 2) 'Accessibility' methods consider RNA323
secondary structures using a partition function for unpaired probability; 3) 'Concatenation'324
algorithms treat two input sequences as a single chain and predict a joint secondary structure; and325
4) 'Complex joint' methods also predict joint secondary structures but without concatenating the326
input sequences.327

328
We used concatenation for comparing recent deep-learning methods with traditional329

free-energy-based methods. When dealing with concatenated chains, we made predictions for both330
sequence orders (AB and BA) and reported the average if probabilities were predicted. For those331
methods providing a two-state prediction, we considered the union of base pairs predicted for both332
sequence orders as a positive prediction (i.e. a positive prediction from either AB or BA333
concatenation will be considered as positive).334

335
We experimented with and without a three-nucleotide linker (AAA, UUU, CCC, or GGG)336

and found that direct concatenation without any linker yielded slightly better results, although not337
statistically significant compared to AAA/CCC linkers (Supplementary Table 1). Therefore, we338
report results based on direct concatenation without any linkers.339

340
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Table 1 RRI interaction tools employed in this study for comparison, listed according to the year341
of publication along with their categories, the use of evolution information (MSA), the algorithm,342
and the capability of predicting intra-RNA base pairs.343
Methods Ref Year Categorya MSAb Algorithmsc Intra-RNA base pairsd

RNAfoldce 45 2004 concatenation No MFE Yes

PairFold 24 2005 concatenation No MFE Yes

RNAup 20 2006 accessibility No MFE No

GUUGle 14 2006 interaction only No MFE No

RNAcoFold 25 2006 concatenation No partition + MFE Yes

NUPACK 46 2007 concatenation No MFE No

RNAplex-c 18 2008 interaction only No MFE No

RNAplex-a 18 2008 accessibility No MFE No

RNAplex-cA 18 2008 interaction only Yes MFE No

bifold 19 2010 complex joint No MFE No

DuplexFold 47 2010 interaction only No MFE No

PETcoFold 29 2011 complex joint Yes MFE Yes

RNAduplex 17 2011 interaction only No MFE No

RNAaliduplex 17 2011 interaction only Yes MFE No

RNAmultifold 17 2011 concatenation No MFE Yes

RIsearch 15 2012 interaction only No MFE No

AccessFold 23 2016 concatenation No MFE No

IntaRNA2.0 48 2017 accessibility No MFE + partition No

SPOT-RNAce 31 2019 concatenation No DL Yes

SPOT-RNA2ce 35 2021 concatenation Yes DL Yes

MXfold2ce 32 2021 concatenation No DL Yes

UFoldce 33 2022 concatenation No DL Yes

344
a Category: the broad category of the method (see text for more details);345
bMSA—indicate whether it takes multiple sequence alignment as input;346
cAlgorithm: MFE: minimum free energy, Partition; partition function, DL: deep learning;347
dIntra-RNA Base Pairs —whether the output of a software also contains base pairing information348
for intramolecular interactions.349
ec – indicates concatenation of two chains. For example SPOT-RNAc and SPOT-RNA2c denotes350
SPOT-RNA and SPOT-RNA2 with sequence concatenation, respectively, to distinguish from the351
methods dedicated to individual chains (SPOT-RNA and SPOT-RNA2, respectively)352

353
Homology search354

355
For these methods that do not predicted RRI by employing a linked chain such as356

RNAplex-cA, PETcoFold, RNAaliduplex and SPOT-RNA2, we searched the homologs using the357
single chain. For SPOT-RNA2c using a link chain, we searched the homologs with the linked358
chain.359

360
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Data and code availability361

All data and codes are available at https://github.com/meilanglang/RNA-RNA-Interaction362
363

Acknowledgement364

365
We express our gratitude to Dr. Jaswinder Singh for valuable discussions and insights. This366
research received support from the National Natural Science Foundation of China (Grant #367
22350710182), the Shenzhen Science and Technology Program (Grant No.368
KQTD20170330155106581), and benefited from access to the supercomputing resources at369
Shenzhen Bay Laboratory.370

371
Conflict of Interest.372

373
All authors declare no financial interest. Zhan and Zhou are the CEO and the chair of the374

scientific advisor board for Ribopeutic, respectively.375
376

Reference377

1. Dai, X., Zhang, S. & Zaleta-Rivera, K. RNA: interactions drive functionalities. Mol Biol Rep 47,378
1413–1434 (2020).379
2. Singh, S., Shyamal, S. & Panda, A. C. Detecting RNA–RNA interactome. WIREs RNA 13, e1715380
(2022).381
3. Gong, J., Ju, Y., Shao, D. & Zhang, Q. C. Advances and challenges towards the study of382
RNA-RNA interactions in a transcriptome-wide scale. Quant Biol 6, 239–252 (2018).383
4. Lu, Z. et al. RNA Duplex Map in Living Cells Reveals Higher-Order Transcriptome Structure.384
Cell 165, 1267–1279 (2016).385
5. Aw, J. G. A. et al. In Vivo Mapping of Eukaryotic RNA Interactomes Reveals Principles of386
Higher-Order Organization and Regulation.Mol Cell 62, 603–617 (2016).387
6. Sharma, E., Sterne-Weiler, T., O’Hanlon, D. & Blencowe, B. J. Global Mapping of Human388
RNA-RNA Interactions.Mol Cell 62, 618–626 (2016).389
7. Ziv, O. et al. COMRADES determines in vivo RNA structures and interactions. Nat Methods 15,390
785–788 (2018).391
8. Cai, Z. et al. RIC-seq for global in situ profiling of RNA–RNA spatial interactions. Nature 582,392
432–437 (2020).393
9. Xu, B. et al. Recent advances in RNA structurome. Sci China Life Sci 65, 1285–1324 (2022).394
10. Burley, S. K. et al. RCSB Protein Data Bank: powerful new tools for exploring 3D structures of395
biological macromolecules for basic and applied research and education in fundamental biology,396
biomedicine, biotechnology, bioengineering and energy sciences. Nucleic Acids Res 49,397
D437–D451 (2021).398
11. RNAcentral Consortium. RNAcentral 2021: secondary structure integration, improved399
sequence search and new member databases. Nucleic Acids Res 49, D212–D220 (2021).400
12. Umu, S. U. & Gardner, P. P. A comprehensive benchmark of RNA–RNA interaction prediction401

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 28, 2023. ; https://doi.org/10.1101/2023.09.26.559463doi: bioRxiv preprint 

https://doi.org/10.1101/2023.09.26.559463
http://creativecommons.org/licenses/by-nc-nd/4.0/


tools for all domains of life. Bioinformatics 33, 988–996 (2017).402
13. Lai, D. & Meyer, I. M. A comprehensive comparison of general RNA-RNA interaction403
prediction methods. Nucleic Acids Res 44, e61 (2016).404
14. Gerlach, W. & Giegerich, R. GUUGle: a utility for fast exact matching under RNA405
complementary rules including G-U base pairing. Bioinformatics 22, 762–764 (2006).406
15. Wenzel, A., Akbasli, E. & Gorodkin, J. RIsearch: fast RNA-RNA interaction search using a407
simplified nearest-neighbor energy model. Bioinformatics 28, 2738–2746 (2012).408
16. Krüger, J. & Rehmsmeier, M. RNAhybrid: microRNA target prediction easy, fast and flexible.409
Nucleic Acids Res 34, W451-454 (2006).410
17. Lorenz, R. et al. ViennaRNA Package 2.0. Algorithms Mol Biol 6, 26 (2011).411
18. Tafer, H. & Hofacker, I. L. RNAplex: a fast tool for RNA-RNA interaction search. Bioinformatics412
24, 2657–2663 (2008).413
19. Reuter, J. S. & Mathews, D. H. RNAstructure: software for RNA secondary structure414
prediction and analysis. BMC Bioinformatics 11, 129 (2010).415
20. Mückstein, U. et al. Thermodynamics of RNA-RNA binding. Bioinformatics 22, 1177–1182416
(2006).417
21. Busch, A., Richter, A. S. & Backofen, R. IntaRNA: efficient prediction of bacterial sRNA targets418
incorporating target site accessibility and seed regions. Bioinformatics 24, 2849–2856 (2008).419
22. Tafer, H., Amman, F., Eggenhofer, F., Stadler, P. F. & Hofacker, I. L. Fast accessibility-based420
prediction of RNA-RNA interactions. Bioinformatics 27, 1934–1940 (2011).421
23. DiChiacchio, L., Sloma, M. F. & Mathews, D. H. AccessFold: predicting RNA-RNA interactions422
with consideration for competing self-structure. Bioinformatics 32, 1033–1039 (2016).423
24. Andronescu, M., Zhang, Z. C. & Condon, A. Secondary structure prediction of interacting424
RNA molecules. J Mol Biol 345, 987–1001 (2005).425
25. Bernhart, S. H. et al. Partition function and base pairing probabilities of RNA heterodimers.426
Algorithms Mol Biol 1, 3 (2006).427
26. Kato, Y. et al. RactIP: fast and accurate prediction of RNA-RNA interaction using integer428
programming. Bioinformatics 26, i460-466 (2010).429
27. Kery, M. B., Feldman, M., Livny, J. & Tjaden, B. TargetRNA2: identifying targets of small430
regulatory RNAs in bacteria. Nucleic Acids Res 42, W124-129 (2014).431
28. Wright, P. R. et al. Comparative genomics boosts target prediction for bacterial small RNAs.432
Proc Natl Acad Sci U S A 110, E3487-3496 (2013).433
29. Seemann, S. E., Richter, A. S., Gesell, T., Backofen, R. & Gorodkin, J. PETcofold: predicting434
conserved interactions and structures of two multiple alignments of RNA sequences.435
Bioinformatics 27, 211–219 (2011).436
30. Zhao, Y., Wang, J., Zeng, C. & Xiao, Y. Evaluation of RNA secondary structure prediction for437
both base-pairing and topology. Biophys Rep 4, 123–132 (2018).438
31. Singh, J., Hanson, J., Paliwal, K. & Zhou, Y. RNA secondary structure prediction using an439
ensemble of two-dimensional deep neural networks and transfer learning. Nat Commun 10, 5407440
(2019).441
32. Sato, K., Akiyama, M. & Sakakibara, Y. RNA secondary structure prediction using deep442
learning with thermodynamic integration. Nat Commun 12, 941 (2021).443
33. Fu, L. et al. UFold: fast and accurate RNA secondary structure prediction with deep learning.444
Nucleic Acids Res 50, e14 (2022).445

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 28, 2023. ; https://doi.org/10.1101/2023.09.26.559463doi: bioRxiv preprint 

https://doi.org/10.1101/2023.09.26.559463
http://creativecommons.org/licenses/by-nc-nd/4.0/


34. Mao, K., Wang, J. & Xiao, Y. Length-Dependent Deep Learning Model for RNA Secondary446
Structure Prediction.Molecules 27, 1030 (2022).447
35. Singh, J. et al. Improved RNA Secondary Structure and Tertiary Base-pairing Prediction Using448
Evolutionary Profile, Mutational Coupling and Two-dimensional Transfer Learning. Bioinformatics449
btab165 (2021) doi:10.1093/bioinformatics/btab165.450
36. Zhang, T. et al. RNAcmap: A Fully Automatic Pipeline for Predicting Contact Maps of RNAs by451
Evolutionary Coupling Analysis. Bioinformatics btab391 (2021)452
doi:10.1093/bioinformatics/btab391.453
37. Gong, S., Zhang, C. & Zhang, Y. RNA-align: quick and accurate alignment of RNA 3D454
structures based on size-independent TM-scoreRNA. Bioinformatics 35, 4459–4461 (2019).455
38. Antonov, I. V., Mazurov, E., Borodovsky, M. & Medvedeva, Y. A. Prediction of lncRNAs and456
their interactions with nucleic acids: benchmarking bioinformatics tools. Briefings in457
Bioinformatics 20, 551–564 (2019).458
39. Szikszai, M., Wise, M., Datta, A., Ward, M. & Mathews, D. H. Deep learning models for RNA459
secondary structure prediction (probably) do not generalize across families. Bioinformatics 38,460
3892–3899 (2022).461
40. Qiu, X. Sequence similarity governs generalizability of de novo deep learning models for RNA462
secondary structure prediction. PLOS Computational Biology 19, e1011047 (2023).463
41. Improved prediction of protein-protein interactions using AlphaFold2 | Nature464
Communications. https://www.nature.com/articles/s41467-022-28865-w.465
42. Lu, X.-J., Bussemaker, H. J. & Olson, W. K. DSSR: an integrated software tool for dissecting the466
spatial structure of RNA. Nucleic Acids Res 43, e142 (2015).467
43. Li, W. & Godzik, A. Cd-hit: a fast program for clustering and comparing large sets of protein468
or nucleotide sequences. Bioinformatics 22, 1658–1659 (2006).469
44. Zheng, J., Xie, J., Hong, X. & Liu, S. RMalign: an RNA structural alignment tool based on a470
novel scoring function RMscore. BMC Genomics 20, 276 (2019).471
45. Mathews, D. H. et al. Incorporating chemical modification constraints into a dynamic472
programming algorithm for prediction of RNA secondary structure. Proc Natl Acad Sci U S A 101,473
7287–7292 (2004).474
46. Dirks, R. M., Bois, J. S., Schaeffer, J. M., Winfree, E. & Pierce, N. A. Thermodynamic Analysis475
of Interacting Nucleic Acid Strands. SIAM Rev. 49, 65–88 (2007).476
47. Reuter, J. S. & Mathews, D. H. RNAstructure: software for RNA secondary structure477
prediction and analysis. BMC Bioinformatics 11, 129 (2010).478
48. Mann, M., Wright, P. R. & Backofen, R. IntaRNA 2.0: enhanced and customizable prediction479
of RNA–RNA interactions. Nucleic Acids Research 45, W435–W439 (2017).480

481

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 28, 2023. ; https://doi.org/10.1101/2023.09.26.559463doi: bioRxiv preprint 

https://doi.org/10.1101/2023.09.26.559463
http://creativecommons.org/licenses/by-nc-nd/4.0/

