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ABSTRACT

The intricate network of RNA-RNA interactions, crucial for orchestrating essential cellular
processes like transcriptional and translational regulation, has been unveiling through
high-throughput techniques and computational predictions. With the emergence of deep learning
methodologies, the question arises: how do these cutting-edge techniques for base-pairing
prediction compare to traditional free-energy-based approaches, particularly when applied to the
challenging domain of interaction prediction via chain concatenation? In this study, we employ
base pairs derived from three-dimensional RNA complex structures as the gold standard
benchmark to assess the performance of 22 different methods, including recently developed deep
learning models. Our results demonstrate that the deep-learning-based methods, SPOT-RNA and
coevolution-information-powered SPOT-RNAZ2, can be generalized to previously unseen RNA
structures and are capable of making accurate zero-shot predictions of RNA-RNA interactions.
The finding underscores the potential of deep learning as a robust tool for advancing our

understanding of these complex molecular interactions.

Introduction

Recent advancements in high-throughput techniques have unveiled a complex network of
RNA-RNA interactions (RRIs) critical for governing transcriptional and translational processes.
These interactions are pivotal in the biogenesis of various RNA molecules, including mRNAs,
rRNA, tRNA, microRNAs, and circRNAs 3. Large-scale detection of RRIs has been achieved
through innovative approaches that combine cross-linking techniques with high-throughput
sequencing. Notably, techniques such as PARIS 4, SPLASH?, LIGR-seq®, and COMRADES’ have
employed psoralen or its derivatives, as well as formaldehyde in the case of RIC-Seq ®, for
cross-linking. While these methods hold promise, they are not without limitations stemming from
probe biases and ligation efficiencies '->. Furthermore, many of these high-throughput techniques
have yet to achieve the single nucleotide resolution.

Attaining the nucleotide-level resolution in RNA structures has historically relied on
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44 traditional structure-determination methods such as X-ray crystallography, Nuclear Magnetic
45  Resonance (NMR), and Cryo-electron microscopy. Yet, compared to proteins, determining RNA
46  structures presents formidable challenges due to the unique physiochemical properties of
47  nucleotides and the inherent fragility of RNA structures °. This is reflected from the fact that only
48  a meagre 3% of structures in the Protein Data Bank contain RNAs, with even fewer dedicated to
49  RNA-RNA complexes (681 as of March 16, 2023, after redundancy removal)!?. This stark contrast
50  becomes even more pronounced when considering the extensive collection of more than 31
51  million noncoding RNA sequences catalogued in the RNAcentral database '!. Given the cost and
52 challenges associated with experimental approaches, there is an imperative need for development
53 of complementary computational prediction techniques.

54

55 The existing methods for predicting RNA-RNA interactions (RRIs) can be broadly classified
56  into alignment-based, free-energy-based, and homology modeling approaches '>13.
57  Alignment-based techniques, such as GUUGIe '* and Rlsearch '3, focus on inter-RNA base pairs
58  while overlooking potential intra-RNA interactions. Free-energy-based methods can be
59  categorized into those considering only intermolecular interactions for expediency (such as
60  RNAhybrid'®, RNAduplex'’, RNAplex-c'®, and DuplexFold'®), those factoring in intramolecular
61  interactions based on solvent accessibility (such as RNAup?’, IntaRNA?!, RNAplex-a?%, and
62  AccessFold?), and those accommodating both intra- and inter-molecular base pairs through
63  sequence concatenation (such as PAIRFOLD?*, RNAcofold* and biFold'®) or without restrictions
64  (such as RactIP?). Homology-based techniques, exemplified by TargetRNA2 27, CopraRNA 28,
65  RNAaliduplex 7 and PETcofold?, utilize evolutionary information to infer binding.

66

67 Presently, 'de novo' RRI prediction methods predominantly rely on free-energy-based
68  approaches, limited by their approximate energy or scoring functions, akin to the challenges faced
69  in RNA secondary structure prediction®’. Recent advancements have seen the emergence of deep
70  learning-based methods, starting with SPOT-RNA3!, which achieved the first end-to-end
71  prediction of intra-RNA base pairs. Subsequent developments include mxfold23?, UFold3?, and
72 2dRNA34. To further enhance prediction accuracy, SPOT-RNA2% was developed to integrate
73 evolutionary profiles and mutational coupling data generated by RNAcmap 3°

74

75 In this study, we conducted a comprehensive benchmark of various methods for predicting
76  intra- and inter-RNA interactions. Our evaluation encompassed traditional energy-based
77  techniques and newly developed deep learning models based on simple sequence concatenation.
78  To ensure a rigorous assessment, we employed base pairs derived from experimentally-determined
79  RNA-RNA complex structures and eliminated monomer structures employed for training of
80  SPOT-RNA and SPOT-RNAZ2 through a strict structural similarity cutoff (TM-score 37 <0.3). This
81  challenging set of the complex of unseen structures revealed significant improvements of
82  SPOT-RNA's performance over the other 21 methods evaluated, underscoring the transferability
83  of deep learning from intra-RNA to inter-RNA interaction prediction.

84
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85  Results

86  Method Comparison on Inter-RNA Base Pair Prediction
87
88 In this study, we compare 22 different RRI predictors on a benchmark set of 64 RNA-RNA
89  pairs after excluding all monomer structures remotely similar to the RNA structures employed in
90 the training and validation sets for SPOT-RNA and SPOT-RNA2. We evaluate their performance
91 in inter-RNA base pair prediction through precision/recall curves and F1 score distributions, as
92  shown in Figure 1. The performance metrics, including overall F1-score, Mathews correlation
93 coefficient (MCC) values, and the median F1-score and standard deviation of individual RNA
94  pairs, are also summarized in Table 1. Predictors with probabilistic outputs are represented by
95  precision-recall (PR) curves, while others are represented as single points. For all methods with
96  chain concatenation for predicting RNA-RNA interactions, a low case “c” is appended to the
97 method name. They are RNAfoldc, UFoldc, MXfold2¢c, SPOT-RNAc, and SPOT-RNA2c. No
98  linker was employed because adding a 3-nucleotide link did not lead to performance improvement
99 (See Methods).
100
101 As shown in Figure 1A, SPOT-RNAZ2c is the most accurate predictor at low sensitivity (<0.2).
102  However, the overall PR curve given by SPOT-RNACc has the best performance. We can also
103  measure the performance by the overall F1-Score for all RNA pairs and the median F1-Score for
104 individual RNA pairs. The thresholds for determining F1-scores of SPOT-RNAc and
105  SPOT-RNAZ2c in the test set were set according to the thresholds for producing the highest
106  Fl-scores in the validation dataset for SPOT-RNAc and SPOT-RNAZ2c, respectively. Table 1
107  confirmed the result from the PR curve that SPOT-RNAc achieved the best overall performance
108  with an overall F1-Score of 0.583, outperforming SPOT-RNA2c (the overall F1-Score of 0.561)
109 and RNAcoFold (F1-Score of 0.494). SPOT-RNAc improves over SPOT-RNA2¢ by more than
110 4% and outperforms other methods by over 18%, a pattern similarly observed in MCC values
111 (Table 1).
112
113 Figure 1B presents the distribution of F1 scores for individual RNA pairs, including median,
114 25th, and 75th percentiles. SPOT-RNAc continues to achieve the best performance with the
115  highest median F1 score of 0.582, outperforming the next best SPOT-RNA2c¢ (median F1-score of
116  0.533) with a 10% improvement. The improvement of SPOT-RNAc over all methods are
117  statistically significant with a p-value of 0.012 when comparing to the second best method
118  SPOT-RNA2c (Table 1). SPOT-RNAc also has the narrowest distribution among the top 5
119  predictors.
120
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122 Figure 1: Performance Comparison of 22 Methods for Inter-RNA Base-Pair Prediction on
123 the 64 Complexes of RNA Structures Unseen by SPOT-RNA and SPOT-RNA2. All structures
124 in the test set have the structural similarity score TM-Score<0.3 compared to the monomeric

125  structures used in training and validating SPOT-RNA and SPOT-RNA2 methods. (A)

126 Precision-recall curves (for those methods with probabilistic outputs) or points given by 22

127 methods (B) Distribution of F1 scores for inter-RNA base pair prediction for individual RNA pairs
128 by the same 22 methods. Each boxplot shows the median, 25th, and 75th percentiles, with outliers
129 represented by "". SPOT-RNACc exhibits the best performance for both overall and individual

130 measures of F1-scores.

131

132 Table 1: Performance Comparison of 22 Predictors of Inter-RNA Base Pairs on 64

133 Complexes of RNA Structures Unseen by SPOT-RNA and SPOT-RNA2. All single-chain

134 structures in the test set have the structural similarity score TM-Score<0.3 compared to the

135  monomeric structures used in training and validating SPOT-RNA and SPOT-RNA2 methods.

Methods Precision Recall Overall F1 MCC Median F1 P-value
Score Score + Std

GUUGIe 0.157 0.105 0.126 0.124 0.000 =+ 0.241 7.90e’15
RlIsearch 0.176 0.252 0.207 0.205 0.000 + 0.319 2.03¢12
RNAplex-cA* 0.463 0.148 0.224 0.259 0.000 £ 0.296 1.56¢e7!!
RNAaliduplex* | 0.469 0.148 0.225 0.261 0.000 + 0.296 1.56¢!!
DuplexFold 0.181 0.455 0.259 0.281 0.200 =+ 0.344 6.12¢%
RNAplex-c¢ 0.189 0.442 0.265 0.283 0.216 & 0.343 1.10e%
RNAduplex 0.194 0.491 0.278 0.303 0.229 + 0.329 8.49¢ "
RNAplex-a 0.359 0.285 0.318 0.316 0.000 * 0.331 1.43e%
RNAup 0.285 0.365 0.32 0.318 0.000 £ 0.342 4.13e1?
AccessFold 0.317 0.507 0.39 0.397 0.349 £+ 0.315 6.05¢7%
PETcoFold* 0.434 0.365 0.397 0.395 0.376 £+ 0.352 9.24¢%5
RNAfoldc 0.384 0.582 0.463 0.469 0.446 = 0.318 0.007

NUPACK 0.446 0.483 0.464 0.461 0.474 £+ 0.355 0.001

MXfold2c 0.391 0.603 0.474 0.482 0.448 £ 0.320 0.004

UFoldc 0.422 0.545 0.476 0.476 0.455 £+ 0.302 0.002
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bifold 0.412 0.566 0.477 0.48 0.454 + 0.325 0.014
IntaRNA2.0 0.536 0.436 0.481 0.481 0.405 + 0.377 9.75¢%
PairFold 0.427 0.562 0.485 0.486 0.500 + 0.339 0.007
RNAmultifold 0.423 0.582 0.49 0.493 0.494 + 0.325 0.015
RNAcoFold 0.424 0.582 0.491 0.494 0.494 &+ 0.325 0.015
SPOT-RNA2c¢c* | 0.583 0.540 0.561 0.559 0.533 £ 0.331 0.012
SPOT-RNAc¢ 0.620 0.551 0.583 0.583 0.582 £ 0.326

136 Note: The overall F1-score is harmonic mean of precision and recall for all RNA pairs. MCC

137  denotes Matthew’s correlation coefficient. The star * denotes the use of evolution information.

138 Methods with an ending of “c” indicate the use of chain concatenation for RNA-RNA interaction
139  prediction. Median F1 means the median value of single RNA. The P-value of a given method was
140  computed by against the result from SPOT-RNAc.
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143 Figure 2: Performance Comparison of Intra-RNA Base Pair Prediction by 11 methods (A)
144  Precision-recall curves and points illustrate the performance rankings. (B) A distribution of

145  Fl-scores for intra-RNA base pair prediction. SPOT-RNA and SPOT-RNAc represent

146  intramolecular base pair prediction as single and concatenated chains, respectively.

147  Evolution-based SPOT-RNA2c (or SPOT-RNA?2) outperforms SPOT-RNAc (or SPOT-RNA) for
148  intra-RNA base pairs.

149

150 It's important to assess how these methods perform on intra-molecular interactions, although
151 not all RRI methods offer predictions for such interactions. We remove these RNAs without

152 intra-base-pairing structures. This leads to 77 RNA chains. Figure 2A compares the PR curves or
153 PR points given by 11 methods. Interestingly, PR curves indicate that SPOT-RNA2c now has the
154  best performance. The overall performance according to overall F1-scores given by SPOT-RNA2c
155  (Table 2) is the highest, surpassing the next best methods (SPOT-RNA2 without chain

156  concatenation) by a 6% improvement in F1-score, and the third best (RNAmultifold or

157  RNAcoFold) by 12%, with SPOT-RNAc ranking as the fourth best. This trend is consistent across
158  MCC values.

159
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160  Table 2: Performance Comparison of 11 Predictors for Predicting Intra-RNA Base Pairs on
161 77 unseen RNA chains that has intra secondary structure in 64 RNA-RNA Complex
162 Structures.

163
Methods Precision | Recall Overall MCC Individual p-value
F1-Score F1-Score Median
+Std

PETcoFold* 0.338 0.112 0.168 0.194 0.000 £ 0.217 1.62¢15
UFold 0.471 0.574 0.517 0.519 0.452 £ 0.278 5.33¢7
SPOT-RNA 0.584 0.486 0.531 0.531 0.476 £ 0.271 1.51¢7%
MXfold2 0.538 0.536 0.537 0.536 0.444 + 0.291 0.0001
RNAfoldc 0.528 0.578 0.552 0.551 0.494 + 0.287 1.06e%
PairFold 0.581 0.525 0.552 0.551 0.483 + 0.308 8.15¢%
SPOT-RNAc 0.653 0.493 0.562 0.567 0.481 + 0.291 0.0005
RNAcoFold 0.587 0.566 0.576 0.576 0.467 £ 0.305 0.001
RNAmultifold 0.587 0.566 0.576 0.576 0.467 + 0.305 0.001
SPOT-RNA2* 0.589 0.629 0.608 0.607 0.489 + 0.310 0.007
SPOT-RNA2c* 0.626 0.665 0.645 0.644 0.560 + 0.294 -

164  Note: The overall F1-score is harmonic mean of precision and recall for all RNA pairs. MCC

165 denotes Matthew’s correlation coefficient. The star * denotes the use of evolution information,Std
166  means standard deviation . Median F1 means the median value of individual RNA chains. The
167  P-value of a given method is compute by against the result of SPOT-RNAc.

168

169 Figure 2B further delves into performance by analyzing the distribution of F1-scores for

170 individual RNAs. SPOT-RNA2c continues to lead with the highest median F1-score at 0.560,

171  while SPOT-RNAZ2 follows closely with the second-best median F1-score of 0.608. The

172 differences in Fl-score distributions between SPOT-RNA2c and other methods are all statistically
173 significant, with a p-value of 0.007 when comparing SPOT-RNAZ2c to the second best

174  SPOT-RNAZ2 (Table 2).

175

176 Intuitively, a better intra-RNA base-pairing prediction should lead to a better inter-RNA

177  base-pairing prediction. However, although SPOT-RNA2c has the best performance for

178  intra-RNA interaction prediction, it is SPOT-RNAc with the best performance for inter-RNA

179  interaction prediction. If we remove these RNA RRI pairs of which both chains do not have

180  intra-base-pairing structures, this leads to 53 RRI pairs. Figure 3A compares intermolecular

181  Fl-scores for individual RNA pairs from SPOT-RNAc with the average intramolecular F1-scores.
182  No correlation was found. Similar uncorrelated intra- and inter-RNA F1-scores are observed for
183 SPOT-RNAZ2c (Figure 3B). This suggests that the evolution information contained in

184  SPOT-RNA2c did contain the co-evolution information for predicting intra-RNA, but not

185  inter-RNA interactions.

186
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Figure 3 No Correlation between Inter-RNA Fl1-scores and Intra-RNA F1-scores. (A)
Inter-RNA F1-scores versus the average Intra-RNA F1-scores of SPOT-RNAc for 53 RNA
complex structures with intra-RNA base pairs for both chains. (B) Inter-RNA F1-scores versus
Intra-RNA F1-scores of SPOT-RNA2c¢ for 53 RNA complex structures.

We also assessed the impact of sequence concatenation on the intra-RNA base-pair

prediction (i.e., SPOT-RNA versus SPOT-RNAc, SPOT-RNA2 versus SPOT-RNA2c). Table 2
shows that SPOT-RNAc/SPOT-RNA2c are better than SPOT-RNA/SPOT-RNA?2 based on either
overall F1-score or the median of individual F1-scores. In both cases, the difference is statistically
significant with a p-value of 0.0007 between SPOT-RNA and SPOT-RNAc and a p-value of 0.007
between SPOT-RNA2 and SPOT-RNAZ2c. This indicates that knowing the binding partner

improves the intra-RNA base pair prediction.

In Figures 3A and 3B, some inter-RNA (and intra-RNA) interactions were predicted with

Fl-scores of 0. To understand the reasons behind these poor predictions, we examined F1-scores
given by SPOT-RNAc as a function of sequence length (L1+L2) in Figure 4A. No obvious
correlation was found. However, when we plotted F1-scores against the number of true inter-RNA

base pairs divided by the square root of (L1*L2), a clear and strong correlation emerged with a

Pearson’s correlation coefficient (PCC) of 0.464 (Figure 4B). Thus, poor predictions, including

those with Fl-scores of 0, can be attributed to the scarcity of inter-RNA contacts relative to the

sequence lengths. This observation holds true for intra-RNA base pair prediction as well:

intra-RNA interactions with F1-scores of 0 also involve very few intra-RNA base pairs (<5).
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212
213 Figure 4: Relationship Between Inter-RNA Base Pairing Prediction and
214 Sequence/Interaction Characteristics. (A) The inter-RNA F1 scores for individual RNA-RNA
215  complexes from SPOT-RNAc plotted against the sum of sequence lengths (L1+L2). (B) The
216  inter-RNA F1 scores for individual RNA-RNA complexes from SPOT-RNAc plotted against the
217  normalized number of inter-RNA base pairs (the number of true inter-RNA base pairs divided by
218  the square root of L1*L2). The performance does not correlate with sequence length but is related
219  to the normalized number of inter-RNA base pairs.

220

221 We selected one example to illustrate SPOT-RNA's performance in RRI prediction. Figure
222 4A displays predicted and actual base-pairing maps for the subunits L2a rRNA complexed with
223 L3b rRNA from Chlamydomonas reinhardtii mitoribosome (PDB ID 7PKT, chain ID 2 and chain
224 1D 3). Figure 5A displays the intra- and inter-base-pairing maps of these two RNAs with Figure
225 5B for inter-base-pairing maps only. The F1 scores for intra-RNA base pairs are 0.32 for L2a
226  rRNA and 0.30 for L3b rRNA, while the Fl-score for inter-RNA base pairs is 0.571. Correctly
227  predicted base pairs are highlighted with red dots in Figures 5B and 5C, and their 3D locations
228  were shown as red-colored bases in Figure 5C. For this complex structure, precision for
229  inter-RNA base pairs is 0.435, and sensitivity is relatively high (0.769).

230

231
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233 Figure 5: Accurate Prediction of Key Inter-RNA Base-pairing Contacts in RNA Complexes
234 by SPOT-RNAc. Complex structure of large subunits of the Chlamydomonas reinhardtii
235  mitoribosome (L2aRNA and L3bRNA in PDB ID 7PKT) with true distance-contact map and
236  predicted intra and inter-RNA base pairs (A), inter-RNA base pairs only (B), and 3-D structure
237  (C). Predicted intra-base pairs and inter-base pairs are denoted by black and red dots, respectively,
238  in the base-pairing maps. In the 3-D structure (C), correctly predicted inter-RNA base pairs are
239  highlighted in red.

240

241

242 Discussion

243 This study represents a comprehensive benchmark for assessing more than 20 methods in
244  predicting RNA-RNA interactions. Previous benchmarks were constrained to interactions
245  involving small RNAs without intra-RNA base pairs. For instance, Lai and Meyer !* compared 14
246  RRI methods based on experimentally confirmed interactions in fungal snoRNA-rRNA and
247  bacterial SRNA-mRNA pairs. Umu and Gardner (Umu and Gardner, 2017a) examined 15 RRI
248  methods using a dataset focused on short linear base-pair matching. Antonov et al.3® compared 13
249  RRI methods on mammalian IncRNAs with experimentally proven hybridizations. In contrast, our
250  study presents the first comprehensive benchmark of 22 RRI prediction methods using known RRI
251 interactions derived from 3D structures at the base pair level. Notably, most of these complexes
252 (53/64) include RNAs with 3D structures and intra-RNA base pairs. Additionally, this study
253  marks the first inclusion of deep-learning based methods for comparisons, utilizing chain
254 concatenation.

255

256 In contrast to proteins, the available non-redundant data for RNA structures is limited. This
257  raises concerns about the generalizability of deep learning models trained on such limited data.
258  Previous studies by Szikszai et al 3° and Qiu #° highlighted the challenges of deep-learning models
259  when applied to unseen families not present in the training and validation sets. To evaluate the
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260  adaptability of SPOT-RNA and SPOT-RNA2 beyond their training and validation data, we
261 conducted a test by removing all test set structures with the structural similarity score (TM-score)

262 > 0.3 compared to those in the training and validation sets. SPOT-RNA and SPOT-RNA2

263  performed exceptionally well, outperforming most other methods for both intra- and inter-RNA
264  base pair prediction. This demonstrates that deep learning, even with a limited number of 3D
265  structures for training, can yield generalizable models for base pair prediction. This may be
266  attributed to the fact that a large set of approximate secondary structures from bpRNA was used
267  for training, followed by transfer learning with 3D structure-derived base pairs in SPOT-RNA and
268  SPOT-RNA2.

269

270 SPOT-RNA2, which incorporates evolution and co-evolution information, outperforms
271 SPOT-RNA for intra-RNA base pairs, aligning with previous findings (Table 2) 3. However,
272 SPOT-RNA2c¢ underperforms SPOT-RNAc for inter-RNA base pairs. Notably, SPOT-RNA2
273 exhibits a positive correlation with the number of effective homologous sequences for intra-RNA
274  base-pair prediction (PCC=0.5, p-value=2 x 10) Supplementary Figure 1C), but this correlation
275  nearly diminishes for SPOT-RNA2c¢ for intra-RNA base pairs (PCC=0.27, p-value=0.05) and
276  turned negative for inter-RNA base pair prediction (PCC=-0.3, p-value=0.02). This suggests that
277  using linked sequences in SPOT-RNA2c for homology search may have provided harmful
278  information for inferring inter-RNA interactions. In the future, it may be necessary to utilize
279  sequences from the same species for homology searches, as co-evolution information can only be
280  detected through inter-species comparisons via Multiple Sequence Alignment (MSA) pairing as
281 has been done for proteins*!. Such data for RNAs is few but could be explored in future studies.
282

283 For predicting RNA-RNA interactions, we concatenated two chains (A and B) as a single
284  chain. To eliminate artificial sequence-order dependence, we predicted results for both AB and
285  BA chains and then calculated the average. Interestingly, we found that in some cases, one
286  sequence order (e.g., BA) outperformed the other (i.e., AB). Upon closer examination, we
287  discovered for some RNA pairs that the order with a shorter separation in sequence positions for
288  contacting base pairs tended to perform better. This observation is intuitive, as longer-range
289  interactions are inherently more challenging to predict. However, there were some outerliers
290  deserving further studies.

291

292  Methods

293 Benchmark dataset

294

295 We retrieved all RNA structures from the Protein Data Bank (PDB) in March 2023'0 and
296  specifically selected structures featuring two RNA chains with a minimum of 5 inter-RNA base
297  pairs. The identification of base pairs was carried out using DSSR*2. To eliminate redundancy, we
298  applied CD-HIT-EST*, removing binding pairs with over 80% sequence identity between either
299  chain. This initial step resulted in 155 unique RNA-RNA interaction (RRI) pairs.

300
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301 To ensure stringency, we further filtered out RRI pairs that exhibited single-chain structural
302  similarities with any RNAs in the SPOT-RNA training set, defined by TM-score > 0.3 using
303  RNA-align** with the length of the query sequence for normalization. This rigorous process
304  yielded a final benchmark set comprising 64 unique RRI pairs. The PDB IDs of the benchmark set
305  can be found in Supplementary Table 2.

306

307  Performance evaluation

308 We evaluated performance using common metrics: Recall (sensitivity), Precision, and the F1
309  score. Precision is TP/(TP+FP), Recall is TP/(TP+FN), and the F1 score is
310  2(Recall*Precision)/(Recall + Precision). Here, TP, FP, and FN are true positive, false positive
311 and false negative, respectively. We also calculated Matthew's correlation coefficient (MCC) to
312 provide a balanced measure as below:

~ TPxTN — FPx FN
J(TP+ FP)(TP + FN)(IN + FP)(TN + FN)

mcc
313

314 where TN denotes true negatives. MCC considers true negatives (TN) and measures the
315  correlation between expected and observed classes. It ranges from 0 (no correlation) to 1 (highest
316  correlation).

317

318  Methods for interaction prediction

319

320 We summarized the comparison methods in Table 3, with detailed settings provided in the

321 Supplementary method description in the Supplementary Material. As per Lai and Meyer'3, we
322 categorized the algorithms into four types: 1) 'Interaction only' methods predict intermolecular
323 hybridization, ignoring RNA secondary structures; 2) 'Accessibility’ methods consider RNA
324 secondary structures using a partition function for unpaired probability; 3) 'Concatenation'
325  algorithms treat two input sequences as a single chain and predict a joint secondary structure; and
326  4) 'Complex joint' methods also predict joint secondary structures but without concatenating the
327  input sequences.

328

329 We used concatenation for comparing recent deep-learning methods with traditional
330  free-energy-based methods. When dealing with concatenated chains, we made predictions for both
331 sequence orders (AB and BA) and reported the average if probabilities were predicted. For those
332  methods providing a two-state prediction, we considered the union of base pairs predicted for both
333 sequence orders as a positive prediction (i.e. a positive prediction from either AB or BA
334  concatenation will be considered as positive).

335

336 We experimented with and without a three-nucleotide linker (AAA, UUU, CCC, or GGG)
337  and found that direct concatenation without any linker yielded slightly better results, although not
338  statistically significant compared to AAA/CCC linkers (Supplementary Table 1). Therefore, we
339  report results based on direct concatenation without any linkers.

340
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341 Table 1 RRI interaction tools employed in this study for comparison, listed according to the year
342 of publication along with their categories, the use of evolution information (MSA), the algorithm,
343 and the capability of predicting intra-RNA base pairs.

Methods Ref Year Category” MSAP Algorithms® Intra-RNA base pairs?
RNAfoldc® 4 2004 concatenation No MFE Yes
PairFold 24 2005 concatenation No MFE Yes
RNAup 20 2006 accessibility No MFE No
GUUGIe 14 2006 interaction only No MFE No
RNAcoFold 2 2006 concatenation No partition + MFE Yes
NUPACK 46 2007 concatenation No MFE No
RNAplex-c 18 2008 interaction only No MFE No
RNAplex-a 18 2008 accessibility No MFE No
RNAplex-cA 18 2008 interaction only Yes MFE No
bifold 19 2010 complex joint No MFE No
DuplexFold 4 2010 interaction only No MFE No
PETcoFold 2 2011 complex joint Yes MFE Yes
RNAduplex 7 2011 interaction only No MFE No
RNAaliduplex 7 2011 interaction only Yes MFE No
RNAmultifold 7 2011 concatenation No MFE Yes
Rlsearch 15 2012 interaction only No MFE No
AccessFold 23 2016 concatenation No MFE No
IntaRNA2.0 8 2017 accessibility No MFE + partition No
SPOT-RNAc® 31 2019 concatenation No DL Yes
SPOT-RNA2c® 33 2021 concatenation Yes DL Yes
MXfold2c® 2 2021 concatenation No DL Yes
UFoldc® 3 2022 concatenation No DL Yes
344
345 2 Category: the broad category of the method (see text for more details);
346  "MSA—indicate whether it takes multiple sequence alignment as input;
347  °Algorithm: MFE: minimum free energy, Partition; partition function, DL: deep learning;
348  YIntra-RNA Base Pairs —whether the output of a software also contains base pairing information
349  for intramolecular interactions.
350  °c —indicates concatenation of two chains. For example SPOT-RNAc and SPOT-RNA2c denotes
351 SPOT-RNA and SPOT-RNA2 with sequence concatenation, respectively, to distinguish from the
352 methods dedicated to individual chains (SPOT-RNA and SPOT-RNA2, respectively)
353
354  Homology search
355
356 For these methods that do not predicted RRI by employing a linked chain such as
357  RNAplex-cA, PETcoFold, RNAaliduplex and SPOT-RNA2, we searched the homologs using the
358  single chain. For SPOT-RNA2c using a link chain, we searched the homologs with the linked
359  chain.

360
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361 Data and code availability

362 All data and codes are available at https://github.com/meilanglang/RNA-RNA-Interaction
363
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