

1 **Deep learning models of RNA base-pairing structures generalize to unseen**
2 **folds and make accurate zero-shot predictions of base-base interactions of RNA**
3 **complexes**

4
5 Mei Lang¹, Thomas Litfin², Ke Chen¹, Jian Zhan^{1,3 a}, and Yaoqi Zhou^{1,2a}

6
7 ¹Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, 518107,
8 China

9 ²Institute for Glycomics, Griffith University, Parklands Dr, Southport, QLD 4222, Australia

10 ³Ribopeutic Inc, Guangzhou International Bio Island, Guangdong, 510320, China

11
12 ^aFor correspondence, please email to Dr. Yaoqi Zhou (zhouyq@szbl.ac.cn) or Dr. Jian Zhan
13 (zhanjian@szbl.ac.cn).

14
15 **ABSTRACT**

16
17 The intricate network of RNA-RNA interactions, crucial for orchestrating essential cellular
18 processes like transcriptional and translational regulation, has been unveiled through
19 high-throughput techniques and computational predictions. With the emergence of deep learning
20 methodologies, the question arises: how do these cutting-edge techniques for base-pairing
21 prediction compare to traditional free-energy-based approaches, particularly when applied to the
22 challenging domain of interaction prediction via chain concatenation? In this study, we employ
23 base pairs derived from three-dimensional RNA complex structures as the gold standard
24 benchmark to assess the performance of 22 different methods, including recently developed deep
25 learning models. Our results demonstrate that the deep-learning-based methods, SPOT-RNA and
26 coevolution-information-powered SPOT-RNA2, can be generalized to previously unseen RNA
27 structures and are capable of making accurate zero-shot predictions of RNA-RNA interactions.
28 The finding underscores the potential of deep learning as a robust tool for advancing our
29 understanding of these complex molecular interactions.

30

31 **Introduction**

32 Recent advancements in high-throughput techniques have unveiled a complex network of
33 RNA-RNA interactions (RRIs) critical for governing transcriptional and translational processes.
34 These interactions are pivotal in the biogenesis of various RNA molecules, including mRNAs,
35 rRNA, tRNA, microRNAs, and circRNAs¹⁻³. Large-scale detection of RRIs has been achieved
36 through innovative approaches that combine cross-linking techniques with high-throughput
37 sequencing. Notably, techniques such as PARIS⁴, SPLASH⁵, LIGR-seq⁶, and COMRADES⁷ have
38 employed psoralen or its derivatives, as well as formaldehyde in the case of RIC-Seq⁸, for
39 cross-linking. While these methods hold promise, they are not without limitations stemming from
40 probe biases and ligation efficiencies¹⁻³. Furthermore, many of these high-throughput techniques
41 have yet to achieve the single nucleotide resolution.

42

43 Attaining the nucleotide-level resolution in RNA structures has historically relied on

44 traditional structure-determination methods such as X-ray crystallography, Nuclear Magnetic
45 Resonance (NMR), and Cryo-electron microscopy. Yet, compared to proteins, determining RNA
46 structures presents formidable challenges due to the unique physiochemical properties of
47 nucleotides and the inherent fragility of RNA structures ⁹. This is reflected from the fact that only
48 a meagre 3% of structures in the Protein Data Bank contain RNAs, with even fewer dedicated to
49 RNA-RNA complexes (681 as of March 16, 2023, after redundancy removal)¹⁰. This stark contrast
50 becomes even more pronounced when considering the extensive collection of more than 31
51 million noncoding RNA sequences catalogued in the RNACentral database ¹¹. Given the cost and
52 challenges associated with experimental approaches, there is an imperative need for development
53 of complementary computational prediction techniques.

54

55 The existing methods for predicting RNA-RNA interactions (RRIs) can be broadly classified
56 into alignment-based, free-energy-based, and homology modeling approaches ^{12,13}.
57 Alignment-based techniques, such as GUUGle ¹⁴ and RIsearch ¹⁵, focus on inter-RNA base pairs
58 while overlooking potential intra-RNA interactions. Free-energy-based methods can be
59 categorized into those considering only intermolecular interactions for expediency (such as
60 RNAhybrid¹⁶, RNAduplex¹⁷, RNAPlex-c¹⁸, and DuplexFold¹⁹), those factoring in intramolecular
61 interactions based on solvent accessibility (such as RNAup²⁰, IntaRNA²¹, RNAPlex-a²², and
62 AccessFold²³), and those accommodating both intra- and inter-molecular base pairs through
63 sequence concatenation (such as PAIRFOLD²⁴, RNACofold²⁵ and biFold¹⁹) or without restrictions
64 (such as RactIP²⁶). Homology-based techniques, exemplified by TargetRNA2 ²⁷, CopraRNA ²⁸,
65 RNAAliduplex ¹⁷ and PETcofold²⁹, utilize evolutionary information to infer binding.

66

67 Presently, 'de novo' RRI prediction methods predominantly rely on free-energy-based
68 approaches, limited by their approximate energy or scoring functions, akin to the challenges faced
69 in RNA secondary structure prediction³⁰. Recent advancements have seen the emergence of deep
70 learning-based methods, starting with SPOT-RNA³¹, which achieved the first end-to-end
71 prediction of intra-RNA base pairs. Subsequent developments include mxfold2³², UFold³³, and
72 2dRNA³⁴. To further enhance prediction accuracy, SPOT-RNA2³⁵ was developed to integrate
73 evolutionary profiles and mutational coupling data generated by RNACmap ³⁶

74

75 In this study, we conducted a comprehensive benchmark of various methods for predicting
76 intra- and inter-RNA interactions. Our evaluation encompassed traditional energy-based
77 techniques and newly developed deep learning models based on simple sequence concatenation.
78 To ensure a rigorous assessment, we employed base pairs derived from experimentally-determined
79 RNA-RNA complex structures and eliminated monomer structures employed for training of
80 SPOT-RNA and SPOT-RNA2 through a strict structural similarity cutoff (TM-score ³⁷ <0.3). This
81 challenging set of the complex of unseen structures revealed significant improvements of
82 SPOT-RNA's performance over the other 21 methods evaluated, underscoring the transferability
83 of deep learning from intra-RNA to inter-RNA interaction prediction.

84

85 Results

86 Method Comparison on Inter-RNA Base Pair Prediction

87

88 In this study, we compare 22 different RRI predictors on a benchmark set of 64 RNA-RNA
89 pairs after excluding all monomer structures remotely similar to the RNA structures employed in
90 the training and validation sets for SPOT-RNA and SPOT-RNA2. We evaluate their performance
91 in inter-RNA base pair prediction through precision/recall curves and F1 score distributions, as
92 shown in Figure 1. The performance metrics, including overall F1-score, Mathews correlation
93 coefficient (MCC) values, and the median F1-score and standard deviation of individual RNA
94 pairs, are also summarized in Table 1. Predictors with probabilistic outputs are represented by
95 precision-recall (PR) curves, while others are represented as single points. For all methods with
96 chain concatenation for predicting RNA-RNA interactions, a low case “c” is appended to the
97 method name. They are RNAfoldc, UFoldc, MXfold2c, SPOT-RNAc, and SPOT-RNA2c. No
98 linker was employed because adding a 3-nucleotide link did not lead to performance improvement
99 (See Methods).

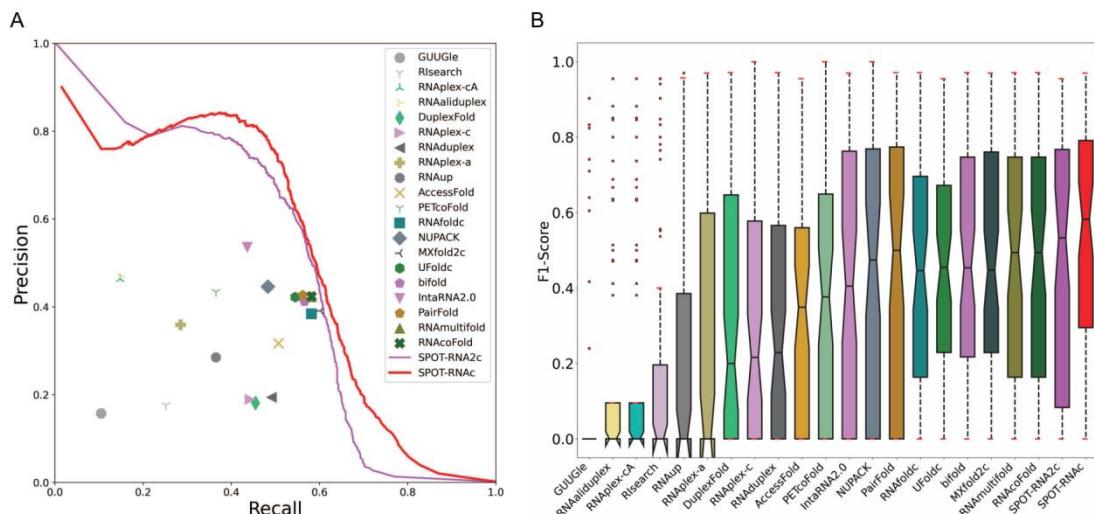
100

101 As shown in Figure 1A, SPOT-RNA2c is the most accurate predictor at low sensitivity (<0.2).
102 However, the overall PR curve given by SPOT-RNAc has the best performance. We can also
103 measure the performance by the overall F1-Score for all RNA pairs and the median F1-Score for
104 individual RNA pairs. The thresholds for determining F1-scores of SPOT-RNAc and
105 SPOT-RNA2c in the test set were set according to the thresholds for producing the highest
106 F1-scores in the validation dataset for SPOT-RNAc and SPOT-RNA2c, respectively. Table 1
107 confirmed the result from the PR curve that SPOT-RNAc achieved the best overall performance
108 with an overall F1-Score of 0.583, outperforming SPOT-RNA2c (the overall F1-Score of 0.561)
109 and RNACoFold (F1-Score of 0.494). SPOT-RNAc improves over SPOT-RNA2c by more than
110 4% and outperforms other methods by over 18%, a pattern similarly observed in MCC values
111 (Table 1).

112

113 Figure 1B presents the distribution of F1 scores for individual RNA pairs, including median,
114 25th, and 75th percentiles. SPOT-RNAC continues to achieve the best performance with the
115 highest median F1 score of 0.582, outperforming the next best SPOT-RNA2c (median F1-score of
116 0.533) with a 10% improvement. The improvement of SPOT-RNAC over all methods are
117 statistically significant with a p-value of 0.012 when comparing to the second best method
118 SPOT-RNA2c (Table 1). SPOT-RNAC also has the narrowest distribution among the top 5
119 predictors.

120



121

122 **Figure 1: Performance Comparison of 22 Methods for Inter-RNA Base-Pair Prediction on**
 123 **the 64 Complexes of RNA Structures Unseen by SPOT-RNA and SPOT-RNA2.** All structures
 124 in the test set have the structural similarity score TM-Score<0.3 compared to the monomeric
 125 structures used in training and validating SPOT-RNA and SPOT-RNA2 methods. (A)
 126 Precision-recall curves (for those methods with probabilistic outputs) or points given by 22
 127 methods (B) Distribution of F1 scores for inter-RNA base pair prediction for individual RNA pairs
 128 by the same 22 methods. Each boxplot shows the median, 25th, and 75th percentiles, with outliers
 129 represented by "•". SPOT-RNAc exhibits the best performance for both overall and individual
 130 measures of F1-scores.

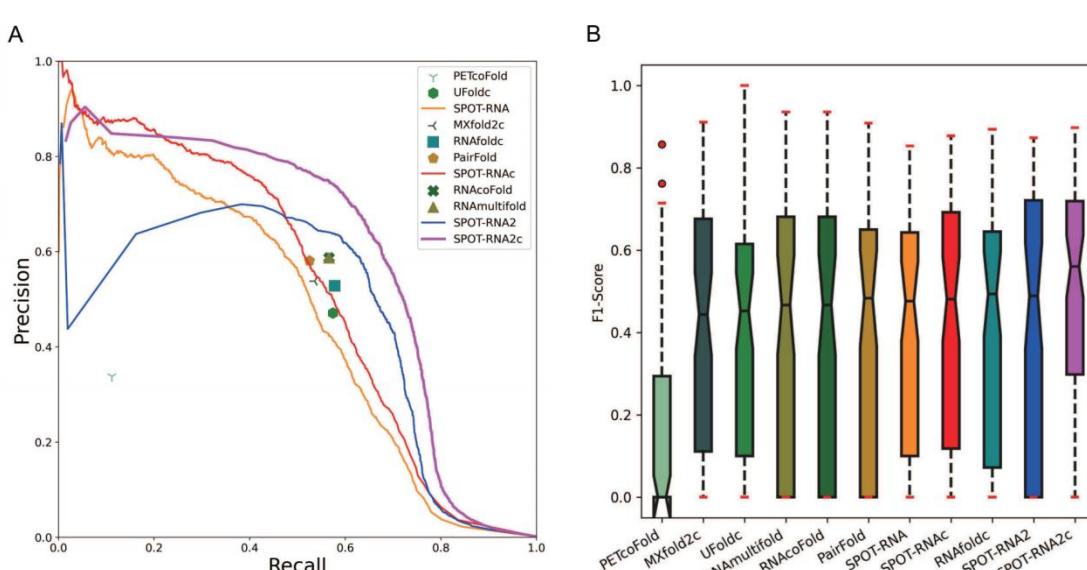
131

132 **Table 1: Performance Comparison of 22 Predictors of Inter-RNA Base Pairs on 64**
 133 **Complexes of RNA Structures Unseen by SPOT-RNA and SPOT-RNA2.** All single-chain
 134 structures in the test set have the structural similarity score TM-Score<0.3 compared to the
 135 monomeric structures used in training and validating SPOT-RNA and SPOT-RNA2 methods.

Methods	Precision	Recall	Overall F1 Score	MCC	Median F1 Score \pm Std	P-value
GUUGle	0.157	0.105	0.126	0.124	0.000 \pm 0.241	7.90e ⁻¹⁵
RISearch	0.176	0.252	0.207	0.205	0.000 \pm 0.319	2.03e ⁻¹²
RNAplex-cA*	0.463	0.148	0.224	0.259	0.000 \pm 0.296	1.56e ⁻¹¹
RNAaliduplex*	0.469	0.148	0.225	0.261	0.000 \pm 0.296	1.56e ⁻¹¹
DuplexFold	0.181	0.455	0.259	0.281	0.200 \pm 0.344	6.12e ⁻⁸
RNAplex-c	0.189	0.442	0.265	0.283	0.216 \pm 0.343	1.10e ⁻⁸
RNAAduplex	0.194	0.491	0.278	0.303	0.229 \pm 0.329	8.49e ⁻⁹
RNAplex-a	0.359	0.285	0.318	0.316	0.000 \pm 0.331	1.43e ⁻⁹
RNAup	0.285	0.365	0.32	0.318	0.000 \pm 0.342	4.13e ⁻¹²
AccessFold	0.317	0.507	0.39	0.397	0.349 \pm 0.315	6.05e ⁻⁶
PETcoFold*	0.434	0.365	0.397	0.395	0.376 \pm 0.352	9.24e ⁻⁵
RNAfoldc	0.384	0.582	0.463	0.469	0.446 \pm 0.318	0.007
NUPACK	0.446	0.483	0.464	0.461	0.474 \pm 0.355	0.001
MXfold2c	0.391	0.603	0.474	0.482	0.448 \pm 0.320	0.004
UFoldc	0.422	0.545	0.476	0.476	0.455 \pm 0.302	0.002

bifold	0.412	0.566	0.477	0.48	0.454 ± 0.325	0.014
IntaRNA2.0	0.536	0.436	0.481	0.481	0.405 ± 0.377	$9.75e^{-05}$
PairFold	0.427	0.562	0.485	0.486	0.500 ± 0.339	0.007
RNAmultifold	0.423	0.582	0.49	0.493	0.494 ± 0.325	0.015
RNAcoFold	0.424	0.582	0.491	0.494	0.494 ± 0.325	0.015
SPOT-RNA2c*	0.583	0.540	0.561	0.559	0.533 ± 0.331	0.012
SPOT-RNAC	0.620	0.551	0.583	0.583	0.582 ± 0.326	

136 Note: The overall F1-score is harmonic mean of precision and recall for all RNA pairs. MCC
 137 denotes Matthew's correlation coefficient. The star * denotes the use of evolution information.
 138 Methods with an ending of "c" indicate the use of chain concatenation for RNA-RNA interaction
 139 prediction. Median F1 means the median value of single RNA. The P-value of a given method was
 140 computed by against the result from SPOT-RNAC.
 141



142
 143 **Figure 2: Performance Comparison of Intra-RNA Base Pair Prediction by 11 methods (A)**
 144 Precision-recall curves and points illustrate the performance rankings. (B) A distribution of
 145 F1-scores for intra-RNA base pair prediction. SPOT-RNA and SPOT-RNAC represent
 146 evolution-based SPOT-RNA2c (or SPOT-RNA2) outperforms SPOT-RNAC (or SPOT-RNA) for
 147 intra-RNA base pairs.
 148

149
 150 It's important to assess how these methods perform on intra-molecular interactions, although
 151 not all RRI methods offer predictions for such interactions. We remove these RNAs without
 152 intra-base-pairing structures. This leads to 77 RNA chains. Figure 2A compares the PR curves or
 153 PR points given by 11 methods. Interestingly, PR curves indicate that SPOT-RNA2c now has the
 154 best performance. The overall performance according to overall F1-scores given by SPOT-RNA2c
 155 (Table 2) is the highest, surpassing the next best methods (SPOT-RNA2 without chain
 156 concatenation) by a 6% improvement in F1-score, and the third best (RNAmultifold or
 157 RNAcoFold) by 12%, with SPOT-RNAC ranking as the fourth best. This trend is consistent across
 158 MCC values.
 159

160 **Table 2: Performance Comparison of 11 Predictors for Predicting Intra-RNA Base Pairs on**
161 **77 unseen RNA chains that has intra secondary structure in 64 RNA-RNA Complex**
162 **Structures.**

163

Methods	Precision	Recall	Overall F1-Score	MCC	Individual F1-Score Median \pm Std	p-value
PETcoFold*	0.338	0.112	0.168	0.194	0.000 \pm 0.217	1.62e ⁻¹⁵
UFold	0.471	0.574	0.517	0.519	0.452 \pm 0.278	5.33e ⁻⁰⁷
SPOT-RNA	0.584	0.486	0.531	0.531	0.476 \pm 0.271	1.51e ⁻⁰⁶
MXfold2	0.538	0.536	0.537	0.536	0.444 \pm 0.291	0.0001
RNAfoldc	0.528	0.578	0.552	0.551	0.494 \pm 0.287	1.06e ⁻⁰⁵
PairFold	0.581	0.525	0.552	0.551	0.483 \pm 0.308	8.15e ⁻⁰⁵
SPOT-RNAc	0.653	0.493	0.562	0.567	0.481 \pm 0.291	0.0005
RNAcoFold	0.587	0.566	0.576	0.576	0.467 \pm 0.305	0.001
RNAmultifold	0.587	0.566	0.576	0.576	0.467 \pm 0.305	0.001
SPOT-RNA2*	0.589	0.629	0.608	0.607	0.489 \pm 0.310	0.007
SPOT-RNA2c*	0.626	0.665	0.645	0.644	0.560 \pm 0.294	-

164 Note: The overall F1-score is harmonic mean of precision and recall for all RNA pairs. MCC
165 denotes Matthew's correlation coefficient. The star * denotes the use of evolution information, Std
166 means standard deviation . Median F1 means the median value of individual RNA chains. The
167 P-value of a given method is compute by against the result of SPOT-RNAc.

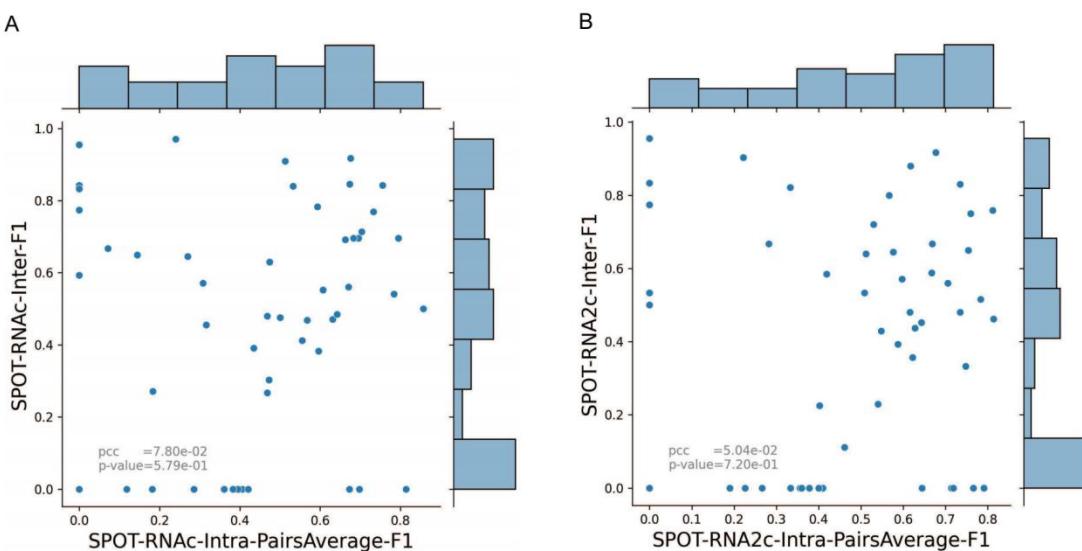
168

169 Figure 2B further delves into performance by analyzing the distribution of F1-scores for
170 individual RNAs. SPOT-RNA2c continues to lead with the highest median F1-score at 0.560,
171 while SPOT-RNA2 follows closely with the second-best median F1-score of 0.608. The
172 differences in F1-score distributions between SPOT-RNA2c and other methods are all statistically
173 significant, with a p-value of 0.007 when comparing SPOT-RNA2c to the second best
174 SPOT-RNA2 (Table 2).

175

176 Intuitively, a better intra-RNA base-pairing prediction should lead to a better inter-RNA
177 base-pairing prediction. However, although SPOT-RNA2c has the best performance for
178 intra-RNA interaction prediction, it is SPOT-RNAc with the best performance for inter-RNA
179 interaction prediction. If we remove these RNA RRI pairs of which both chains do not have
180 intra-base-pairing structures, this leads to 53 RRI pairs. Figure 3A compares intermolecular
181 F1-scores for individual RNA pairs from SPOT-RNAc with the average intramolecular F1-scores.
182 No correlation was found. Similar uncorrelated intra- and inter-RNA F1-scores are observed for
183 SPOT-RNA2c (Figure 3B). This suggests that the evolution information contained in
184 SPOT-RNA2c did contain the co-evolution information for predicting intra-RNA, but not
185 inter-RNA interactions.

186



187

188 **Figure 3 No Correlation between Inter-RNA F1-scores and Intra-RNA F1-scores. (A)**

189 Inter-RNA F1-scores versus the average Intra-RNA F1-scores of SPOT-RNAc for 53 RNA
190 complex structures with intra-RNA base pairs for both chains. (B) Inter-RNA F1-scores versus
191 Intra-RNA F1-scores of SPOT-RNA2c for 53 RNA complex structures.

192

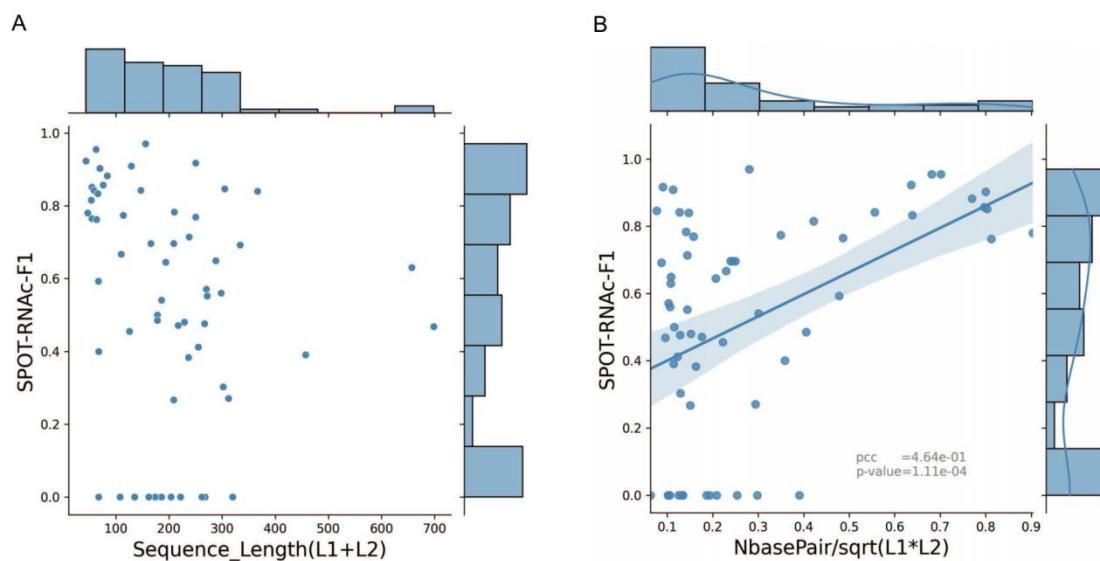
193 We also assessed the impact of sequence concatenation on the intra-RNA base-pair
194 prediction (i.e., SPOT-RNA versus SPOT-RNAc, SPOT-RNA2 versus SPOT-RNA2c). Table 2
195 shows that SPOT-RNAc/SPOT-RNA2c are better than SPOT-RNA/SPOT-RNA2 based on either
196 overall F1-score or the median of individual F1-scores. In both cases, the difference is statistically
197 significant with a p-value of 0.0007 between SPOT-RNA and SPOT-RNAc and a p-value of 0.007
198 between SPOT-RNA2 and SPOT-RNA2c. This indicates that knowing the binding partner
199 improves the intra-RNA base pair prediction.

200

201 In Figures 3A and 3B, some inter-RNA (and intra-RNA) interactions were predicted with
202 F1-scores of 0. To understand the reasons behind these poor predictions, we examined F1-scores
203 given by SPOT-RNAc as a function of sequence length (L_1+L_2) in Figure 4A. No obvious
204 correlation was found. However, when we plotted F1-scores against the number of true inter-RNA
205 base pairs divided by the square root of ($L_1 \cdot L_2$), a clear and strong correlation emerged with a
206 Pearson's correlation coefficient (PCC) of 0.464 (Figure 4B). Thus, poor predictions, including
207 those with F1-scores of 0, can be attributed to the scarcity of inter-RNA contacts relative to the
208 sequence lengths. This observation holds true for intra-RNA base pair prediction as well:
209 intra-RNA interactions with F1-scores of 0 also involve very few intra-RNA base pairs (<5).

210

211



212

213 **Figure 4: Relationship Between Inter-RNA Base Pairing Prediction and**
214 **Sequence/Interaction Characteristics.** (A) The inter-RNA F1 scores for individual RNA-RNA
215 complexes from SPOT-RNAC plotted against the sum of sequence lengths (L1+L2). (B) The
216 inter-RNA F1 scores for individual RNA-RNA complexes from SPOT-RNAC plotted against the
217 normalized number of inter-RNA base pairs (the number of true inter-RNA base pairs divided by
218 the square root of L1*L2). The performance does not correlate with sequence length but is related
219 to the normalized number of inter-RNA base pairs.

220

221 We selected one example to illustrate SPOT-RNA's performance in RRI prediction. Figure
222 4A displays predicted and actual base-pairing maps for the subunits L2a rRNA complexed with
223 L3b rRNA from *Chlamydomonas reinhardtii* mitoribosome (PDB ID 7PKT, chain ID 2 and chain
224 ID 3). Figure 5A displays the intra- and inter-base-pairing maps of these two RNAs with Figure
225 5B for inter-base-pairing maps only. The F1 scores for intra-RNA base pairs are 0.32 for L2a
226 rRNA and 0.30 for L3b rRNA, while the F1-score for inter-RNA base pairs is 0.571. Correctly
227 predicted base pairs are highlighted with red dots in Figures 5B and 5C, and their 3D locations
228 were shown as red-colored bases in Figure 5C. For this complex structure, precision for
229 inter-RNA base pairs is 0.435, and sensitivity is relatively high (0.769).

230

231



232

233 **Figure 5: Accurate Prediction of Key Inter-RNA Base-pairing Contacts in RNA Complexes**
234 by SPOT-RNAc. Complex structure of large subunits of the Chlamydomonas reinhardtii
235 mitoribosome (L2aRNA and L3bRNA in PDB ID 7PKT) with true distance-contact map and
236 predicted intra and inter-RNA base pairs (A), inter-RNA base pairs only (B), and 3-D structure
237 (C). Predicted intra-base pairs and inter-base pairs are denoted by black and red dots, respectively,
238 in the base-pairing maps. In the 3-D structure (C), correctly predicted inter-RNA base pairs are
239 highlighted in red.

240

241

242

Discussion

243

244 This study represents a comprehensive benchmark for assessing more than 20 methods in
245 predicting RNA-RNA interactions. Previous benchmarks were constrained to interactions
246 involving small RNAs without intra-RNA base pairs. For instance, Lai and Meyer ¹³ compared 14
247 RRI methods based on experimentally confirmed interactions in fungal snoRNA-rRNA and
248 bacterial sRNA-mRNA pairs. Umu and Gardner (Umu and Gardner, 2017a) examined 15 RRI
249 methods using a dataset focused on short linear base-pair matching. Antonov et al.³⁸ compared 13
250 RRI methods on mammalian lncRNAs with experimentally proven hybridizations. In contrast, our
251 study presents the first comprehensive benchmark of 22 RRI prediction methods using known RRI
252 interactions derived from 3D structures at the base pair level. Notably, most of these complexes
253 (53/64) include RNAs with 3D structures and intra-RNA base pairs. Additionally, this study
254 marks the first inclusion of deep-learning based methods for comparisons, utilizing chain
255 concatenation.

256

257

258

259

256 In contrast to proteins, the available non-redundant data for RNA structures is limited. This
257 raises concerns about the generalizability of deep learning models trained on such limited data.
258 Previous studies by Szikszai et al ³⁹ and Qiu ⁴⁰ highlighted the challenges of deep-learning models
259 when applied to unseen families not present in the training and validation sets. To evaluate the

260 adaptability of SPOT-RNA and SPOT-RNA2 beyond their training and validation data, we
261 conducted a test by removing all test set structures with the structural similarity score (TM-score)
262 ≥ 0.3 compared to those in the training and validation sets. SPOT-RNA and SPOT-RNA2
263 performed exceptionally well, outperforming most other methods for both intra- and inter-RNA
264 base pair prediction. This demonstrates that deep learning, even with a limited number of 3D
265 structures for training, can yield generalizable models for base pair prediction. This may be
266 attributed to the fact that a large set of approximate secondary structures from bpRNA was used
267 for training, followed by transfer learning with 3D structure-derived base pairs in SPOT-RNA and
268 SPOT-RNA2.

269

270 SPOT-RNA2, which incorporates evolution and co-evolution information, outperforms
271 SPOT-RNA for intra-RNA base pairs, aligning with previous findings (Table 2) ³⁵. However,
272 SPOT-RNA2c underperforms SPOT-RNAc for inter-RNA base pairs. Notably, SPOT-RNA2
273 exhibits a positive correlation with the number of effective homologous sequences for intra-RNA
274 base-pair prediction ($PCC=0.5$, $p\text{-value}=2 \times 10^{-6}$) Supplementary Figure 1C), but this correlation
275 nearly diminishes for SPOT-RNA2c for intra-RNA base pairs ($PCC=0.27$, $p\text{-value}=0.05$) and
276 turned negative for inter-RNA base pair prediction ($PCC=-0.3$, $p\text{-value}=0.02$). This suggests that
277 using linked sequences in SPOT-RNA2c for homology search may have provided harmful
278 information for inferring inter-RNA interactions. In the future, it may be necessary to utilize
279 sequences from the same species for homology searches, as co-evolution information can only be
280 detected through inter-species comparisons via Multiple Sequence Alignment (MSA) pairing as
281 has been done for proteins⁴¹. Such data for RNAs is few but could be explored in future studies.

282

283 For predicting RNA-RNA interactions, we concatenated two chains (A and B) as a single
284 chain. To eliminate artificial sequence-order dependence, we predicted results for both AB and
285 BA chains and then calculated the average. Interestingly, we found that in some cases, one
286 sequence order (e.g., BA) outperformed the other (i.e., AB). Upon closer examination, we
287 discovered for some RNA pairs that the order with a shorter separation in sequence positions for
288 contacting base pairs tended to perform better. This observation is intuitive, as longer-range
289 interactions are inherently more challenging to predict. However, there were some outliers
290 deserving further studies.

291

292 **Methods**

293 **Benchmark dataset**

294

295 We retrieved all RNA structures from the Protein Data Bank (PDB) in March 2023¹⁰ and
296 specifically selected structures featuring two RNA chains with a minimum of 5 inter-RNA base
297 pairs. The identification of base pairs was carried out using DSSR⁴². To eliminate redundancy, we
298 applied CD-HIT-EST⁴³, removing binding pairs with over 80% sequence identity between either
299 chain. This initial step resulted in 155 unique RNA-RNA interaction (RRI) pairs.

300

301 To ensure stringency, we further filtered out RRI pairs that exhibited single-chain structural
302 similarities with any RNAs in the SPOT-RNA training set, defined by TM-score ≥ 0.3 using
303 RNA-align⁴⁴ with the length of the query sequence for normalization. This rigorous process
304 yielded a final benchmark set comprising 64 unique RRI pairs. The PDB IDs of the benchmark set
305 can be found in Supplementary Table 2.

306

307 **Performance evaluation**

308 We evaluated performance using common metrics: Recall (sensitivity), Precision, and the F1
309 score. Precision is $TP/(TP+FP)$, Recall is $TP/(TP+FN)$, and the F1 score is
310 $2(Recall*Precision)/(Recall + Precision)$. Here, TP, FP, and FN are true positive, false positive
311 and false negative, respectively. We also calculated Matthew's correlation coefficient (MCC) to
312 provide a balanced measure as below:

$$313 MCC = \frac{TP \times TN - FP \times FN}{\sqrt{(TP + FP)(TP + FN)(TN + FP)(TN + FN)}},$$

314 where TN denotes true negatives. MCC considers true negatives (TN) and measures the
315 correlation between expected and observed classes. It ranges from 0 (no correlation) to 1 (highest
316 correlation).

317

318 **Methods for interaction prediction**

319

320 We summarized the comparison methods in Table 3, with detailed settings provided in the
321 Supplementary method description in the Supplementary Material. As per Lai and Meyer¹³, we
322 categorized the algorithms into four types: 1) 'Interaction only' methods predict intermolecular
323 hybridization, ignoring RNA secondary structures; 2) 'Accessibility' methods consider RNA
324 secondary structures using a partition function for unpaired probability; 3) 'Concatenation'
325 algorithms treat two input sequences as a single chain and predict a joint secondary structure; and
326 4) 'Complex joint' methods also predict joint secondary structures but without concatenating the
327 input sequences.

328

329 We used concatenation for comparing recent deep-learning methods with traditional
330 free-energy-based methods. When dealing with concatenated chains, we made predictions for both
331 sequence orders (AB and BA) and reported the average if probabilities were predicted. For those
332 methods providing a two-state prediction, we considered the union of base pairs predicted for both
333 sequence orders as a positive prediction (i.e. a positive prediction from either AB or BA
334 concatenation will be considered as positive).

335

336 We experimented with and without a three-nucleotide linker (AAA, UUU, CCC, or GGG)
337 and found that direct concatenation without any linker yielded slightly better results, although not
338 statistically significant compared to AAA/CCC linkers (Supplementary Table 1). Therefore, we
339 report results based on direct concatenation without any linkers.

340

341 **Table 1** RRI interaction tools employed in this study for comparison, listed according to the year
342 of publication along with their categories, the use of evolution information (MSA), the algorithm,
343 and the capability of predicting intra-RNA base pairs.

Methods	Ref	Year	Category ^a	MSA ^b	Algorithms ^c	Intra-RNA base pairs ^d
RNAfold ^e	45	2004	concatenation	No	MFE	Yes
PairFold	24	2005	concatenation	No	MFE	Yes
RNAup	20	2006	accessibility	No	MFE	No
GUUGle	14	2006	interaction only	No	MFE	No
RNAcoFold	25	2006	concatenation	No	partition + MFE	Yes
NUPACK	46	2007	concatenation	No	MFE	No
RNAplex-c	18	2008	interaction only	No	MFE	No
RNAplex-a	18	2008	accessibility	No	MFE	No
RNAplex-cA	18	2008	interaction only	Yes	MFE	No
bifold	19	2010	complex joint	No	MFE	No
DuplexFold	47	2010	interaction only	No	MFE	No
PETcoFold	29	2011	complex joint	Yes	MFE	Yes
RNAduplex	17	2011	interaction only	No	MFE	No
RNAaliduplex	17	2011	interaction only	Yes	MFE	No
RNAmultifold	17	2011	concatenation	No	MFE	Yes
RIsearch	15	2012	interaction only	No	MFE	No
AccessFold	23	2016	concatenation	No	MFE	No
IntaRNA2.0	48	2017	accessibility	No	MFE + partition	No
SPOT-RNAc ^e	31	2019	concatenation	No	DL	Yes
SPOT-RNA2c ^e	35	2021	concatenation	Yes	DL	Yes
MXfold2c ^e	32	2021	concatenation	No	DL	Yes
UFoldc ^e	33	2022	concatenation	No	DL	Yes

344
345 ^a Category: the broad category of the method (see text for more details);
346 ^bMSA—indicate whether it takes multiple sequence alignment as input;
347 ^cAlgorithm: MFE: minimum free energy, Partition; partition function, DL: deep learning;
348 ^dIntra-RNA Base Pairs —whether the output of a software also contains base pairing information
349 for intramolecular interactions.
350 ^ec – indicates concatenation of two chains. For example SPOT-RNAc and SPOT-RNA2c denotes
351 SPOT-RNA and SPOT-RNA2 with sequence concatenation, respectively, to distinguish from the
352 methods dedicated to individual chains (SPOT-RNA and SPOT-RNA2, respectively)

353

354 **Homology search**

355

356 For these methods that do not predicted RRI by employing a linked chain such as
357 RNAplex-cA, PETcoFold, RNAaliduplex and SPOT-RNA2, we searched the homologs using the
358 single chain. For SPOT-RNA2c using a link chain, we searched the homologs with the linked
359 chain.

360

361 **Data and code availability**

362 All data and codes are available at <https://github.com/meilanglang/RNA-RNA-Interaction>
363

364 **Acknowledgement**

365
366 We express our gratitude to Dr. Jaswinder Singh for valuable discussions and insights. This
367 research received support from the National Natural Science Foundation of China (Grant #
368 22350710182), the Shenzhen Science and Technology Program (Grant No.
369 KQTD20170330155106581), and benefited from access to the supercomputing resources at
370 Shenzhen Bay Laboratory.

371
372 **Conflict of Interest.**
373

374 All authors declare no financial interest. Zhan and Zhou are the CEO and the chair of the
375 scientific advisor board for Ribopeutic, respectively.
376

377 **Reference**

- 378 1. Dai, X., Zhang, S. & Zaleta-Rivera, K. RNA: interactions drive functionalities. *Mol Biol Rep* **47**,
379 1413–1434 (2020).
- 380 2. Singh, S., Shyamal, S. & Panda, A. C. Detecting RNA–RNA interactome. *WIREs RNA* **13**, e1715
381 (2022).
- 382 3. Gong, J., Ju, Y., Shao, D. & Zhang, Q. C. Advances and challenges towards the study of
383 RNA–RNA interactions in a transcriptome-wide scale. *Quant Biol* **6**, 239–252 (2018).
- 384 4. Lu, Z. *et al.* RNA Duplex Map in Living Cells Reveals Higher-Order Transcriptome Structure.
385 *Cell* **165**, 1267–1279 (2016).
- 386 5. Aw, J. G. A. *et al.* In Vivo Mapping of Eukaryotic RNA Interactomes Reveals Principles of
387 Higher-Order Organization and Regulation. *Mol Cell* **62**, 603–617 (2016).
- 388 6. Sharma, E., Sterne-Weiler, T., O’Hanlon, D. & Blencowe, B. J. Global Mapping of Human
389 RNA–RNA Interactions. *Mol Cell* **62**, 618–626 (2016).
- 390 7. Ziv, O. *et al.* COMRADES determines in vivo RNA structures and interactions. *Nat Methods* **15**,
391 785–788 (2018).
- 392 8. Cai, Z. *et al.* RIC-seq for global in situ profiling of RNA–RNA spatial interactions. *Nature* **582**,
393 432–437 (2020).
- 394 9. Xu, B. *et al.* Recent advances in RNA structurome. *Sci China Life Sci* **65**, 1285–1324 (2022).
- 395 10. Burley, S. K. *et al.* RCSB Protein Data Bank: powerful new tools for exploring 3D structures of
396 biological macromolecules for basic and applied research and education in fundamental biology,
397 biomedicine, biotechnology, bioengineering and energy sciences. *Nucleic Acids Res* **49**,
398 D437–D451 (2021).
- 399 11. RNACentral Consortium. RNACentral 2021: secondary structure integration, improved
400 sequence search and new member databases. *Nucleic Acids Res* **49**, D212–D220 (2021).
- 401 12. Umu, S. U. & Gardner, P. P. A comprehensive benchmark of RNA–RNA interaction prediction

- 402 tools for all domains of life. *Bioinformatics* **33**, 988–996 (2017).
- 403 13. Lai, D. & Meyer, I. M. A comprehensive comparison of general RNA-RNA interaction
404 prediction methods. *Nucleic Acids Res* **44**, e61 (2016).
- 405 14. Gerlach, W. & Giegerich, R. GUUGle: a utility for fast exact matching under RNA
406 complementary rules including G-U base pairing. *Bioinformatics* **22**, 762–764 (2006).
- 407 15. Wenzel, A., Akbasli, E. & Gorodkin, J. Rlsearch: fast RNA-RNA interaction search using a
408 simplified nearest-neighbor energy model. *Bioinformatics* **28**, 2738–2746 (2012).
- 409 16. Krüger, J. & Rehmsmeier, M. RNAhybrid: microRNA target prediction easy, fast and flexible.
410 *Nucleic Acids Res* **34**, W451–454 (2006).
- 411 17. Lorenz, R. *et al.* ViennaRNA Package 2.0. *Algorithms Mol Biol* **6**, 26 (2011).
- 412 18. Tafer, H. & Hofacker, I. L. RNAPlex: a fast tool for RNA-RNA interaction search. *Bioinformatics*
413 **24**, 2657–2663 (2008).
- 414 19. Reuter, J. S. & Mathews, D. H. RNAstructure: software for RNA secondary structure
415 prediction and analysis. *BMC Bioinformatics* **11**, 129 (2010).
- 416 20. Mückstein, U. *et al.* Thermodynamics of RNA-RNA binding. *Bioinformatics* **22**, 1177–1182
417 (2006).
- 418 21. Busch, A., Richter, A. S. & Backofen, R. IntaRNA: efficient prediction of bacterial sRNA targets
419 incorporating target site accessibility and seed regions. *Bioinformatics* **24**, 2849–2856 (2008).
- 420 22. Tafer, H., Amman, F., Eggenhofer, F., Stadler, P. F. & Hofacker, I. L. Fast accessibility-based
421 prediction of RNA-RNA interactions. *Bioinformatics* **27**, 1934–1940 (2011).
- 422 23. DiCiacchio, L., Sloma, M. F. & Mathews, D. H. AccessFold: predicting RNA-RNA interactions
423 with consideration for competing self-structure. *Bioinformatics* **32**, 1033–1039 (2016).
- 424 24. Andronescu, M., Zhang, Z. C. & Condon, A. Secondary structure prediction of interacting
425 RNA molecules. *J Mol Biol* **345**, 987–1001 (2005).
- 426 25. Bernhart, S. H. *et al.* Partition function and base pairing probabilities of RNA heterodimers.
427 *Algorithms Mol Biol* **1**, 3 (2006).
- 428 26. Kato, Y. *et al.* RactIP: fast and accurate prediction of RNA-RNA interaction using integer
429 programming. *Bioinformatics* **26**, i460–466 (2010).
- 430 27. Kery, M. B., Feldman, M., Livny, J. & Tjaden, B. TargetRNA2: identifying targets of small
431 regulatory RNAs in bacteria. *Nucleic Acids Res* **42**, W124–129 (2014).
- 432 28. Wright, P. R. *et al.* Comparative genomics boosts target prediction for bacterial small RNAs.
433 *Proc Natl Acad Sci U S A* **110**, E3487–3496 (2013).
- 434 29. Seemann, S. E., Richter, A. S., Gesell, T., Backofen, R. & Gorodkin, J. PETcofold: predicting
435 conserved interactions and structures of two multiple alignments of RNA sequences.
436 *Bioinformatics* **27**, 211–219 (2011).
- 437 30. Zhao, Y., Wang, J., Zeng, C. & Xiao, Y. Evaluation of RNA secondary structure prediction for
438 both base-pairing and topology. *Biophys Rep* **4**, 123–132 (2018).
- 439 31. Singh, J., Hanson, J., Paliwal, K. & Zhou, Y. RNA secondary structure prediction using an
440 ensemble of two-dimensional deep neural networks and transfer learning. *Nat Commun* **10**, 5407
441 (2019).
- 442 32. Sato, K., Akiyama, M. & Sakakibara, Y. RNA secondary structure prediction using deep
443 learning with thermodynamic integration. *Nat Commun* **12**, 941 (2021).
- 444 33. Fu, L. *et al.* UFold: fast and accurate RNA secondary structure prediction with deep learning.
445 *Nucleic Acids Res* **50**, e14 (2022).

- 446 34. Mao, K., Wang, J. & Xiao, Y. Length-Dependent Deep Learning Model for RNA Secondary
447 Structure Prediction. *Molecules* **27**, 1030 (2022).
- 448 35. Singh, J. *et al.* Improved RNA Secondary Structure and Tertiary Base-pairing Prediction Using
449 Evolutionary Profile, Mutational Coupling and Two-dimensional Transfer Learning. *Bioinformatics*
450 btab165 (2021) doi:10.1093/bioinformatics/btab165.
- 451 36. Zhang, T. *et al.* RNAcmap: A Fully Automatic Pipeline for Predicting Contact Maps of RNAs by
452 Evolutionary Coupling Analysis. *Bioinformatics* btab391 (2021)
453 doi:10.1093/bioinformatics/btab391.
- 454 37. Gong, S., Zhang, C. & Zhang, Y. RNA-align: quick and accurate alignment of RNA 3D
455 structures based on size-independent TM-scoreRNA. *Bioinformatics* **35**, 4459–4461 (2019).
- 456 38. Antonov, I. V., Mazurov, E., Borodovsky, M. & Medvedeva, Y. A. Prediction of lncRNAs and
457 their interactions with nucleic acids: benchmarking bioinformatics tools. *Briefings in
458 Bioinformatics* **20**, 551–564 (2019).
- 459 39. Szikszai, M., Wise, M., Datta, A., Ward, M. & Mathews, D. H. Deep learning models for RNA
460 secondary structure prediction (probably) do not generalize across families. *Bioinformatics* **38**,
461 3892–3899 (2022).
- 462 40. Qiu, X. Sequence similarity governs generalizability of de novo deep learning models for RNA
463 secondary structure prediction. *PLOS Computational Biology* **19**, e1011047 (2023).
- 464 41. Improved prediction of protein-protein interactions using AlphaFold2 | Nature
465 Communications. <https://www.nature.com/articles/s41467-022-28865-w>.
- 466 42. Lu, X.-J., Bussemaker, H. J. & Olson, W. K. DSSR: an integrated software tool for dissecting the
467 spatial structure of RNA. *Nucleic Acids Res* **43**, e142 (2015).
- 468 43. Li, W. & Godzik, A. Cd-hit: a fast program for clustering and comparing large sets of protein
469 or nucleotide sequences. *Bioinformatics* **22**, 1658–1659 (2006).
- 470 44. Zheng, J., Xie, J., Hong, X. & Liu, S. RMalign: an RNA structural alignment tool based on a
471 novel scoring function RMscore. *BMC Genomics* **20**, 276 (2019).
- 472 45. Mathews, D. H. *et al.* Incorporating chemical modification constraints into a dynamic
473 programming algorithm for prediction of RNA secondary structure. *Proc Natl Acad Sci U S A* **101**,
474 7287–7292 (2004).
- 475 46. Dirks, R. M., Bois, J. S., Schaeffer, J. M., Winfree, E. & Pierce, N. A. Thermodynamic Analysis
476 of Interacting Nucleic Acid Strands. *SIAM Rev.* **49**, 65–88 (2007).
- 477 47. Reuter, J. S. & Mathews, D. H. RNAstructure: software for RNA secondary structure
478 prediction and analysis. *BMC Bioinformatics* **11**, 129 (2010).
- 479 48. Mann, M., Wright, P. R. & Backofen, R. IntaRNA 2.0: enhanced and customizable prediction
480 of RNA–RNA interactions. *Nucleic Acids Research* **45**, W435–W439 (2017).
- 481