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Abstract 28 

Whole genome duplication (WGD) brings challenges to key processes like meiosis, but 29 

nevertheless is associated with diversification in all kingdoms. How is WGD tolerated, and what 30 

processes commonly evolve to stabilize the new polyploid lineage? Here we study this in 31 

Cochlearia spp., which have experienced multiple rounds of WGD in the last 300,000 years. We 32 

first generate a chromosome-scale genome and sequence 113 individuals from 33 diploid, 33 

tetraploid, hexaploid, and outgroup populations. We detect the clearest post-WGD selection 34 

signatures in functionally interacting kinetochore components and ion transporters. We 35 

structurally model these derived selected alleles, associating them with known WGD-relevant 36 

functional variation and compare these results to independent recent post-WGD selection in 37 

Arabidopsis arenosa and Cardamine amara. Some of the same biological processes evolve in all 38 

three WGDs, but specific genes recruited are flexible. This points to a polygenic basis for 39 

modifying systems that control the kinetochore, meiotic crossover number, DNA repair, ion 40 

homeostasis, and cell cycle. Given that DNA management (especially repair) is the most salient 41 

category with the strongest selection signal, we speculate that the generation rate of structural 42 

genomic variants may be altered by WGD in young polyploids, contributing to their occasionally 43 

spectacular adaptability observed across kingdoms.  44 
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Whole genome duplication (WGD, leading to polyploidy) is a dramatic mutation that disrupts 45 

fundamental cellular processes. Yet, for those that can adapt to a transformed polyploid state, 46 

WGD holds great promise1-3. Despite its importance to evolution, agriculture, and human health, 47 

we do not yet know why some polyploids thrive, while others do not1,4.  48 

Immediately following WGD in autopolyploids (within-species WGD, not hybrid 49 

allopolyploids), novel challenges arise. The most obvious concerns meiosis: the instant doubling 50 

of homologs complicates chromosome pairing5. If a chromosome engages in crossing over with 51 

more than one homolog, entanglements and breakage ensue at anaphase. WGD also disrupts 52 

cellular equilibria, including ion homeostasis and cell size6. These challenges are insurmountable 53 

for many nascent polyploids, although established autopolyploids can persist, indicating that they 54 

can be overcome. 55 

To date, work in two diploid-autotetraploid model systems has explicitly sought a basis of 56 

adaptation to WGD in recent (< 300,000 year-old) autopolyploids. In Arabidopsis arenosa, a 57 

handful of physically and functionally interacting meiosis proteins undergo adaptive evolution less 58 

than 200,000 years post-WGD7,8. Derived alleles of these genes decrease chromosome 59 

crossover rates, stabilizing meiosis9-12. Next, a pool-seq-based scan in Cardamine, a genus 17 60 

million years diverged from Arabidopsis, showed only very modest convergence with A. arenosa 61 

on the level of functional pathways for processes under selection shortly post-WGD13. Meiosis 62 

showed little convergence and the signal of evolution of the meiosis genes obviously controlling 63 

crossovers seen in A. arenosa was absent. These works gave insight but had important 64 

limitations: there was very low sample number in A. arenosa (24 individuals7), and in C. amara, 65 

pool-seq of only four populations using a highly fragmented reference13. More significantly, as 66 

noted in the C. amara study, widespread vegetative reproduction in C. amara offers some escape 67 

from selection for meiotic stability post-WGD, consistent with the results13. Thus, minimal 68 

convergence between these systems leaves unresolved what salient processes stabilize recent 69 

polyploids. This is important because the genomic changes that occur post-WGD may also help 70 

explain why some polyploids are so successful and most are not. 71 

Here we address this in a novel system that overcomes these limitations in a more 72 

distantly related, independent, and successful set of WGD events within a single species flock (at 73 

least 5 WGDs in Cochlearia the last 300,000 years)14. The Cochlearia species complex exhibits 74 

diploid, autotetraploid, allohexaploid, octoploid and heptaploid cytotypes (Fig.1A)14-17, with the 75 

widespread autotetraploid cytotype14, similar in age to A. arenosa18,19. Cochlearia is found across 76 

Europe, from Spain to the Arctic, in a wide range of habitats including freshwater springs, coastal 77 

cliffs, sand dunes, salt marshes, metal contaminated sites and roadside grit (Fig. 1A)14,20-30. A 78 
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broad habitat differentiation is evident by ploidy, with diploids typically found in upland freshwater 79 

springs, autotetraploids overwhelmingly on coasts, often directly adjacent to seawater or 80 

continuously submerged, and hexaploids in extreme salt marsh conditions. In fact, the hexaploid 81 

Cochlearia danica is one of the most rapidly spreading invasive species in Europe, invading salted 82 

roadways since the 19709s23,31. 83 

Here we first assess Cochlearia demography by individually resequencing 113 plants from 84 

33 diploid, autotetraploid, hexaploid, and outgroup populations from across its ploidy-variable 85 

range. We then focus our analysis on closely related diploids and autotetraploids in the UK and 86 

scan for selective sweeps post-WGD. We dissect functional targets of adaptive evolution post-87 

WGD using protein modelling and identification of orthologous derived sites from functional 88 

studies. Our results show convergence at the process level in very recent WGD adaptation events 89 

in these three genera separated by greater spans of ~40 million years. This indicates that similar 90 

processes adapt in response to WGD, but that specific genes recruited are far less constrained. 91 

Surprisingly, also we also find strong signal of post-WGD evolution in several kinetochore 92 

components, pointing to a novel mechanism of adaptation to polyploid meiosis and mitosis. 93 

 94 

Results and Discussion 95 

Chromosome-level assembly. To serve as a reference for our demographic analysis and 96 

selection scans, we built a chromosome-level genome assembly of one diploid Cochlearia 97 

excelsa individual (Styria, Gurktaler Alpen, Austria). We chose C. excelsa because it is an early 98 

diverging diploid (2n = 12) and conveniently also a rare primarily selfing Cochlearia species. This 99 

resulted in a highly contiguous primary assembly (contig N50=15 Mb; Fig.1B), generated from 100 

Oxford Nanopore PromethION data (read N50=27 Kb). The primary assembly was performed 101 

with Flye 2.932 and NECAT33 with one round of polishing in Medaka34 and Pilon35 The assembled 102 

contigs were then scaffolded to chromosome scale using Hi-C (Fig.1B) and a final cleanup 103 

performed with Blobtools36 (Fig. S1). Hi-C-guided chromosome arm orientations were confirmed 104 

with concordant FISH and in silico mapping of telomeric and centromeric repeats (Fig.1B; Fig. 105 

S2). This assembly consists of six primary scaffolds corresponding to the six C. excelsa 106 

chromosomes with a scaffold N50 of 37 Mb and an overall genome size of 310 Mb (Fig.1B, C), 107 

matching our estimated haploid genome size of 302 Mb (Fig. S3). Gene space representation 108 

was very good, with 96.4% complete Brassicales BUSCOs37 found in the assembly Fig.1C). We 109 

performed an annotation incorporating RNA-seq data from the reference line (flower bud, leaf, 110 

stem, and silique), protein homology information, and ab initio modelling with BRAKER238. This 111 

yielded 54,424 gene models across the six chromosomes.   112 
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 113 
Figure 1 | Ploidy variation, genome assembly, sampling, and genetic structure.  (A) Three Cochlearia 114 
species in this study (top: C. pyrenaica [2n=2x=12], middle: C. officinalis [2n=4x=24], bottom: C. danica 115 
[2n=6x=42]. Scale bars, 10 µm; (B) Hi-C contact map and cytology used to orient chromosome arms. 116 
Chromosomes are bounded in blue and centromeres indicated in green. Cytology shows DAPI-stained 117 
chromosomes with heterochromatic pericentromeres (top) and 102 bp satellite (pink) and Arabidopsis-type 118 
telomeric satellite (green) probes hybridizing to all (peri)centromeres and telomeres, respectively (bottom). 119 
Scale bar, 10 µm; (C) Chromosome-scale assembly of the diploid C. excelsa genome; (D) The 30 120 
Cochlearia populations included in the short read sequencing (locations in Dataset S2); (E) Nei9s genetic 121 
distances between the populations (hexaploids excluded) visualized in SplitsTree39; (F) fastSTRUCTURE40 122 
analysis (k=3, min alleles=8) of all Cochlearia individuals in the study, with regions and ploidies indicated. 123 
Blue=diploids; orange=tetraploids; green=hexaploids. 124 
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Geographic distribution, ploidy variation, cohort construction and population sequencing. 125 

To determine optimal population contrasts for WGD-specific signatures of selection, we sampled 126 

populations across the reported range of the Cochlearia species throughout Europe14,17,22-25,27,28,30 127 

and conducted flow cytometry- and cytologically-based surveys of genome size and ploidy 128 

variation (Fig.1A; Dataset S1 Ploidy Survey; Fig. S4). Measurements were normalised against 129 

the diploid population with the most stable individual within-population genome size estimates, 130 

WOL (Dataset S1). We focus our demographic analysis on the three most abundant ploidies 131 

(Fig.1A): diploids = Cochlearia pyrenaica (inland UK and mainland Europe), autotetraploids = 132 

Cochlearia officinalis (coastal UK and Norway), hexaploids = Cochlearia danica (inland UK). 133 

Based on these ploidy surveys we chose 113 individuals from 33 populations for sequencing by 134 

Illumina PE (average per-individual depth = 17x; minimum = 4x; Fig.1D; Dataset S2 Sample 135 

Metrics). The final dataset consisted of 18,307,309 SNPs, on average one variant every 17 bp 136 

(quality and depth filtered; Methods). 137 

 138 

Genetic structure. To assess structure in our dataset, we first performed fastSTRUCTURE40 139 

(Fig. 1F) on our 109 Cochlearia individuals, excluding outgroup sister genus Ionopsidium (23,733 140 

LD-pruned, biallelic 4-fold-degenerate SNPs; max 20% missing data; min minor allele frequency  141 

= 0.02). K=3 maximized marginal likelihood and grouped samples by ploidy. Focusing on diploids 142 

vs tetraploids, PCA confirmed that ploidy dominates over geography (PC1 [ploidy] = 27% of 143 

variance explained; PC2 [UK vs Norwegian tetraploids] = 11% of variance explained; Fig. S5). 144 

This is reflected also in clean geographical groupings by SplitsTree39 analyses, which visualize 145 

simple genetic distances (Fig. 1E). This is consistent with a rapid inter- or peri-glacial radiation 146 

and postglacial migration such as found in other Cochlearia species14.  147 

 148 

Meiotic and ion homeostasis-related phenotypic shifts upon WGD. In a young autopolyploid, 149 

initial maintenance of diploid-like crossover frequencies can lead to chromosome entanglements 150 

and breakage at meiosis. We therefore confirmed the establishment of meiotic stability of these 151 

autotetraploids (Fig. 2). Similar to A. arenosa autotetraploids7, we found a significant per-152 

chromosome reduction in class I mature crossovers, evidenced by HEI10 foci (p <0.00001; Mann-153 

Whitney). This translated to a degree of meiotic stability in the Cochlearia tetraploids, although 154 

we observed considerably greater variation in meiotic stability in autotetraploids, which varied 155 

dramatically both within and between families for multivalent production, as seen in A. arenosa. 156 

This high variability suggests segregating variation for factors promoting stability (Fig. 2C, D).  157 
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 158 

Figure 2 | Reduction in crossover number, improved drought response, and high inter-lineage 159 
phenotypic variability upon WGD. (A and B) Quantification of mature meiotic crossover events by HEI10 160 
staining (green) on pachytene chromosomes stained by ZIP1 (red), showing a significant per-chromosome 161 
downregulation of crossovers in Cochlearia autotetraploids (p <0.00001; Mann-Whitney); (C) Metaphase I 162 
chromosome spreads and (D) quantification of meiotic stability, showing decreased, but highly variable 163 
stability in tetraploids relative to diploids. Increased stomatal conductance (E) and photosynthetic (F) rates 164 
under dehydration stress conditions in tetraploids. Plots show median and variation of drought stressed 165 
plants in comparison to well-watered plants. (Sign differences between diploids and autotetraploids as seen 166 
in one-way ANOVA with posthoc Tukey; Table S4) Blue=diploids; orange=tetraploids. Scale bars, 10 µm. 167 
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Cochlearia in the UK exhibits a broadly disjunct geographic distribution by ploidy, with 168 

diploids (n=6) deeply inland and autotetraploids inhabiting coastal regions of the highest salinity, 169 

including full seawater submergence (Fig.1A; Fig. S4). A direct mechanistic link between WGD 170 

and salinity tolerance was established in Arabidopsis thaliana, where first-generation 171 

neoautopolyploids (otherwise isogenic with diploid siblings) show elevated salinity tolerance and 172 

intracellular potassium41. We therefore tested for ploidy-related differences in salinity tolerance 173 

and dehydration stress tolerance in wild Cochlearia. Interestingly, in terms of overall plant survival, 174 

we found extreme salinity tolerance in all ecotypes tested, with even diploids tolerating up to 175 

600mM NaCl (salinity level of seawater), along with all higher ploidies (Table S1). Tetraploids 176 

showed signal of increased drought tolerance, with both elevated stomatal conductance and net 177 

photosynthetic rates under drought, relative to diploids (Fig. 2E and F; Tables S2-S4). This 178 

suggests an adaptive benefit specific to higher ploidies in response to drought. A benefit under 179 

salinity stress may be tempered by preadaptation to a stringent ionic challenge even in the diploids 180 

of this species flock, consistent with their halophyte and cold-loving nature42,43. 181 

 182 

Selective sweeps associated with WGD. To identify candidate genes and processes mediating 183 

adaptation to WGD, we next focused on the 18 geographically proximal populations from the UK 184 

(44 autotetraploid individuals and 29 diploid individuals) with good sequencing coverage. 185 

Concentrating the selection scan on UK diploids and autotetraploids minimizes the effect of 186 

genetic structure that would be introduced if we were to use the mainland European samples as 187 

well. To guide our selection scan window size choice, we calculated pairwise linkage decay, which 188 

was rapid in both diploids and tetraploids, with near complete lack of genotypic correlations within 189 

2 kb to very low background levels (Fig. 3A). We thus calculated in 1kb windows a battery of 190 

differentiation metrics (Dxy44, Rho45, Hudson9s FST
46, Nei9s FST

47, Weir-Cochran9s FST
48, and 191 

groupwise allele frequency difference [AFD]) genome-wide (minimum = 15; mean = 101 SNPs 192 

per window). After filtering, these scans overlapped 40,245 of 54,424 total predicted genes, or 193 

74% of gene coding loci with sufficient coverage for assessment. 194 

To empirically determine which metric most reliably identified genomic regions that exhibit 195 

localized peaks in AFD indicative of specific sweeps upon WGD, we performed an inspection of 196 

all AFD plots in all outlier tails (see Methods). From this, we identified Hudson9s FST as most 197 

reliably identifying regions of localized AFD peaks (and not e.g., low diversity44). This formulation 198 

of FST brings the added benefit of robustness for unequal population sizes and presence of rare 199 

variants49 and direct comparisons to the C. amara study, which used this same metric13. We 200 

therefore extracted windows in the top 1% of this distribution as candidate outliers, consisting of 201 
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1,823 1kb windows, overlapping 753 gene-coding loci for which we could obtain functional 202 

descriptions primarily from orthology (or, lacking this, close homology) to Arabidopsis thaliana 203 

(Dataset S3 Selective Sweep Candidates). We focus on the most extreme 25 of these (to the right 204 

of the dashed line in Fig 3B; Table 1), which we confirm exhibit elevated Dxy values (outlier FST 205 

peak Dxy=0.17; mean outside peak Dxy=0.06; Mann Whitney U test: P < 2 ´ 10-16; Fig. 3C). 206 

 207 

Figure 3 | Rapid linkage decay and empirical outlier analysis. (A) Immediate decay of genotypic 208 
correlations (r2) observed in both diploid (blue) and tetraploid (orange) Cochlearia; (B) Distribution of 209 
genome wide FST values for 182,327 1kb windows. The dashed red line gives the extreme stringency FST 210 
cutoff of the top 25 genome-wide outlier genes; the solid red line gives the 1% cutoff; windows inside the 211 
CENP-E gene coding region are highlighted in orange; (C) Dxy values are significantly elevated inside FST 212 
peaks (Mann Whitney U test: P < 2 ´ 10-16); (D) CENP-E, the #1 genome-wide FST outlier, also exhibits 213 
greatly excess differentiation for its level of diversity in the tetraploids, a classical signal of selective sweep. 214 
 215 

Complementing this approach, we also focused our 1% outlier list on gene coding regions 216 

with a fineMAV approach50. Using Grantham scores to estimate functional impact of each non-217 

synonymous amino acid change encoded by a given SNP, this approach scales the severity of 218 

predicted amino acid change by the AFD between groups. Of the 107,055 non-synonymous-219 

encoding SNPs assigned a MAV score, the top 1% outliers from the empirical distribution were 220 

intersected with our FST outliers, yielding a protein-evolution-oriented list of 159 gene coding loci, 221 

harboring 290 MAV SNPs (bold in Dataset S3 Selective Sweep Candidates; 1% FST outliers with 222 

10 or more 1% extreme MAV outliers are given in Table 1). By these approaches, we could 223 

resolve clear gene-specific peaks of FST (Fig. 4A) and candidate selective sweep alleles in our 224 
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top 25 genome-wide outliers (Fig. 4 B-G). 225 

Table 1 | Top selective sweep candidates following WGD in Cochlearia. Top 25 of 40,245 genes 226 

assessed, with 5 additional genes (bottom) with 10 or more MAV SNPs and in top 1% FST tail.  * = contains 227 

37/39 whole-genome fixed differences between diploids and tetraploids and is also the only gene with three 228 

of the top 25 Dxy windows. Genome-wide FST rank is given in Column 1. 229 

 230 

FST 
rank 

Cochlearia  

ID 

A.thaliana  

ID 

Name Description 

1* g7445 AT3G10180 CENP-E CENTROMERE PROTEIN E. Kinetochore protein that moves mono-oriented 
chromosomes to the spindle equator51. Cooperates with chromokinesins and dynein 
to mediate chromosome congression. Activity is regulated by post-translational 
modifications, protein interactions and autoinhibition  
Tetraploid cancers are far more susceptible to CENP-E inhibitors than diploids52-54. 

2 g31016 AT1G06670 NIH NUCLEAR DEIH-BOX HELICASE. Binds DNA without clear specificity55.  

3 g7446 AT3G10070 TAF12 TATA-ASSOCIATED II 58. Controls stress responsive root growth56 

4 g40185 AT2G26690 NPF6.2 NITRATE TRANSPORTER 6.2. Mediates drought stress response57 

5 g25338 AT4G00060 MEE44 MATERNAL EFFECT EMBRO ARREST 44: Part of the RNA TRAMP complex 

6 g49945 AT1G15660 CENP-C CENTROMERE PROTEIN C. Kinetochore protein that is critical for centromere 
identity in both mitosis and meiosis. Loss of CENP-C results in aneuploidy and cell 
death60. Necessary in mitotic cells for kinetochore assembly centromere 
establishment. Mutants also fail to retain centromeric SC in late pachytene58,59. 

7 g25334 AT1G05940 CAT9 CATIONIC AMINO ACID TRANSPORTER 9 

8 g25335 AT4G00026 SD3 SEGREGATION DISTORTION 3. Mutants have lower ploidy60.  

9 g6996 AT3G16730 CAP-H2 
/ 

HEB2 

CONDENSIN-II COMPLEX SUBUNIT H2. Functions in DSB repair and arranges 
interphase chromatin61,62. Plays a role in alleviating DNA damage and genome 
integrity in A.thaliana62. Condensin II-depleted human cells have a defect in 
homologous recombination-mediated repair63. 

10 g24649 AT5G40595  Unknown protein 

11 g24648 AT4G02000  Ta11-like non-LTR retrotransposon 

12 g33330 AT1G54310  S-adenosyl-L-methionine-dependent methyltransferases superfamily protein 

13 g40302 AT4G10310 HKT1 HIGH-AFFINITY K+ TRANSPORTER 1. Sodium transporter. Mediates salinity 
tolerance in wild A. thaliana populations64. Under selection post-WGD in A. arenosa7. 

14 g33311 AT5G61390 NEN2 NAC45/86-DEPENDENT EXONUCLEASE-DOMAIN PROTEIN 2 

15 g10739 AT2G01980 SOS1 SALT OVERLY SENSITIVE 1. Plasma membrane-localized Na+/H+ antiporter that 
extrudes Na+ from cells. Is essential for plant salt and stress tolerance.  

16 g46402 AT1G77990 SULTR2 SULPHATE TRANSPORTER 2;2. A low-affinity sulfate transporter 

17 g4631 AT5G19270  Reverse transcriptase-like protein 

18 g4632 AT2G07200  Cysteine proteinases superfamily protein 

19 g25121 AT5G35970  P-loop containing nucleoside triphosphate hydrolases superfamily protein 

20 g45503 AT5G08620 STRS2 STRESS RESPONSE SUPPRESSOR 2. A DEA(D/H)-box helicase involved in 
drought, salt and cold stress responses. 

21 g25112 AT5G35980 YAK1 YAK1-related. Controls cell cycle and regulates drought tolerance65,66. 

22 g40349 AT4G11110 SPA2 SPA1-related 2.  Convergent with WGD adaptation in A. arenosa7. 

23 g54387 AT3G01420 DOX1 An alpha-dioxygenase involved in protection against oxidative stress.  

24 g25300 AT5G34940 GUS3 GLUCURONIDASE 3 

25 g45090 AT1G65320 CBSX6 Cystathionine beta-synthase family protein 

15 mav g39361 AT5G55820 INCEP 
/ 

 WYRD 

INNER CENTROMERE PROTEIN.  The largest subunit of the Chromosome 
Passenger Complex (CPC), and directly binds to all other subunits in animals and 
yeast67. The CPC ensures that all kinetochores are attached to microtubules 
emanating from opposing poles. INCENP is necessary for normal mitotic divisions68. 
At mitosis and meiosis localises to kinetochores, and later, the phragmoplast67.  

12 mav g25323 AT4G29090  Ribonuclease H-like superfamily protein 

11 mav g23778 AT4G25290  DNA photolyase 

11 mav g54385 AT1G56145 CORK1 A LRR receptor kinase required for cellooligomer-induced responses.  

10 mav g33400 AT1G50240 FU FUSED. An ARM repeat domain-containing protein kinase involved in male meiosis. 
Tightly localized to nascent phragmoplast and with the expanding phragmoplast ring.  
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 231 
Figure 4 | Selective sweep signatures of DNA management and ion homeostasis alleles. (A) Ploidy-232 
specific differentiation across the Cochlearia genome. The dashed orange line gives the extreme stringency 233 
FST cutoff of the top 25 outlier genes (of 40,245 assessed); the solid line gives a 1% FST cutoff; (B-G) 234 
Examples of selective sweep signal among 6 top outlier genes; (B-E) Represent kinetochore or DNA 235 
management; (F-G) ion homeostasis functional categories. The X axis gives genome position in 236 
megabases (Mb). The Y axis gives AFD values at single SNPs (dots) between diploid and tetraploid 237 
Cochlearia. Orange arrows indicate genes overlapping the top FST gene outliers, and grey lines indicate 238 
neighboring genes. Orange dots indicate MAV outliers. 239 
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Functional processes under selection post-WGD in Cochlearia. While we focus our 240 

discussion below to the top 25 genome-wide outliers, a broader, 1% FST list of 753 selective sweep 241 

candidates (Dataset S3) yield particularly informative gene ontology (GO) enrichments, with 181 242 

significantly enriched categories (using a conservative 8elim9 Exact Test; Dataset S4 Gene 243 

Ontology Enrichment Cochlearia). Many of the enriched categories can be grouped into three 244 

classes congruent with WGD-associated changes1,2,4-7,69: 1) DNA management: 29 categories 245 

relate to DNA integration, cell division, meiotic chromosome segregation, mitosis, DNA repair, 246 

and recombination; 2) Ion homeostasis: 26 categories relate to ion transport (principally 247 

extrusion), cation homeostasis, salt stress, and stomata; and 3) Cell stoichiometry: 7 categories 248 

relate to global gene expression, cell wall, and biosynthetics, pointing to both global gene 249 

expression and 8nucleotypic96 changes upon WGD. These categories often overlap, for example 250 

8cell stoichiometry9 and 8DNA management9 in terms of global RNA transcriptional changes post-251 

WGD, which should alter due to doubled DNA template.  252 

 253 

Kinetochore evolution upon WGD. Genome-wide, the most dramatic selection signature is 254 

directly over the coding region of the CENTROMERE PROTEIN E ortholog (CENP-E; Fig. 4A, 255 

B)70. This gene overlaps the 5 top FST outlier windows (mean FST = 0.88) and includes 37 of the 256 

39 genome-wide fixed differences between ploidies. An essential kinetochore protein, CENP-E 257 

moves mono-oriented chromosomes to the spindle equator, mediating congression51,71,72. 258 

Strikingly, tetraploid cancers are far more susceptible to CENP-E inhibitors than diploids52-54,73,74.  259 

 The Cochlearia CENP-E coding region contains 26 SNPs (synonymous or non-260 

synonymous) that are highly differentiated between diploids and tetraploids (>50% AFD). Six of 261 

these are unique to Cochlearia tetraploids, at highly conserved sites across angiosperms (Fig. 262 

5A). None are in characterized conserved functional regions of the kinase domain75, meaning 263 

motor activity is likely intact. Most of the tetraploid-specific changes are in the coiled coil regions, 264 

which in animals are important for regulation of cell division via phosphorylation and protein-265 

protein interactions51. For example, point mutations in the coiled coils are associated with human 266 

disease (e.g., microcephaly76,77). In humans and Xenopus, these regions are known to be 267 

extensively phosphorylated during the cell cycle and may be involved in the autoinhibition of 268 

CENP-E78-81. Indeed, we see four tetraploid-specific changes that may affect regulation via the 269 

loss of phosphorylation (S717A, S821A, S1059L and S1169). Three additional changes toward 270 

the C-terminus are in a cargo (chromosomes) binding region. Four of the tetraploid-specific 271 

changes show remarkable conservation across plants, being otherwise absolutely conserved 272 

across CENP-E-like kinesins (Fig. 5A; A607G, Q613D, R899Q and Q1024E). Taken together, 273 
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these data suggest changed regulation of CENP-E at mitosis and/or meiosis. This is consistent 274 

with functional evidence from A. thaliana showing that CENP-E mutations extend the cell cycle81. 275 

 276 

Figure 5 | Tetraploid-derived protein structure changes in CENP-E and HKT1. (A) Kinetochore subunit 277 
CENP-E structural prediction and pan-plant diversity alignment. Structure: diploid structure (blue), 278 
consensus (>50% allele frequency) derived polymorphisms in tetraploids (orange), kinesin motor domain 279 
(slate). Alignment: colour by percentage identity; consensus mutations at highly conserved sites (orange 280 
boxes); (B-D) Ion channel HKT1: diploid structure (blue), mutation sites (orange; diploids, magenta: 281 
tetraploids), pore domains (teal); (C) HKT1 extracellular surface. Salinity tolerance-mediating change 282 
L344V in red and selectivity filter residues S/G1, G2, G3 and G4 (black); (D) superimposition of diploid 283 
(blue) and tetraploid (grey) intracellular domains. Structures that are predicted to have rotated are 284 
highlighted on the tetraploid structure (dark grey). Tetraploid consensus mutations (magenta). 285 
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Our top outlier list (Table 1) contains two additional orthologs of A. thaliana kinetochore 286 

components: CENP-C, an essential kinetochore component in both mitosis and meiosis, needed 287 

for centromere identity in plants, yeast, Drosophila, and humans58,59,82 (Fig. 4C) and INNER 288 

CENTROMERE PROTEIN (INCENP), which controls mitotic and meiotic chromosome 289 

segregation and cytokinesis in plants, yeast and animals68,83. At mitosis and meiosis INCENP 290 

localizes to kinetochores, and later, the phragmoplast as the main subunit of the Chromosome 291 

Passenger Complex67. Both INCENP and CENP-C contain 1% outlier-MAV SNPs, with INCENP 292 

harboring a remarkable 15 MAV outlier SNPs, the greatest number of any gene in the genome. 293 

 294 

Evolution of DNA repair and transcription. Several of the top signals of selective sweeps are 295 

in DNA repair-related genes, for example in CONDENSIN-II COMPLEX SUBUNIT 296 

H2/HYPERSENSITIVITY TO EXCESS BORON 2 (Fig. 4D), which functions directly in double-297 

strand break (DSB) repair62,84 and chromatin management in plants, mouse and Drosophila61,85. 298 

Condensin II is required for proper DNA DSB repair by homologous recombination (HR) repair in 299 

A. thaliana and humans62,63, and has been implicated association and dissociation of 300 

centromeres85. We find in our 1% FST outliers an outlier also at a homolog of DAYSLEEPER, an 301 

essential domesticated transposase86. DAYSLEEPER binds the Kubox1 motif upstream of the 302 

DNA repair gene Ku70 to regulate non-homologous end joining double-strand break repair, the 303 

only alternative to HR87,88. 304 

In a young polyploid, the total DNA content doubles but the protein content and cell size 305 

does not scale accordingly6, so we predicted that the control of global gene expression, like 306 

meiosis, should undergo adaptive evolution post-WGD. Here we see signal of this, with a suite of 307 

DNA or RNA polymerase-associated genes among our selective sweep outliers. In our 1% FST 308 

outliers this includes NRPB9, an RNA polymerase subunit that is implicated in transcription 309 

initiation, processivity, fidelity, proofreading and DNA repair89-93 as well as the ortholog of MED13, 310 

of the mediator complex, which is essential for the production of nearly all cellular transcripts94 311 

(Dataset S3). 312 

 313 

Evolution of ion homeostasis, transport and stress signaling. The ionomic equilibrium of the 314 

cell is immediately disrupted at WGD41; in particular K+ concentrations are increased instantly, 315 

consistent with increases in salinity tolerance in synthetic A. thaliana autotetraploids41. In our 316 

young tetraploids, among the top selective sweeps are ion channels that function explicitly to 317 

remove K+, Na+ and other cations from the cell. At FST rank 13 genome-wide, we see the ortholog 318 

of HIGH-AFFINITY K+ TRANSPORTER64,95 (HKT1; Fig 4G, 5B), and at rank 15, SALT OVERLY 319 
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SENSITIVE 1 (SOS1), a membrane Na+/H+ transporter that removes excessive Na+ from the cell 320 

and is central to salt tolerance96,97 (Fig 4F). Several studies have demonstrated adaptive natural 321 

variation in response to salinity in HKT164,95, but among natural systems there have been to date 322 

no works until now that implicate SOS1, although this gene is central to salt tolerance pathways 323 

(discussed in 98).  324 

 Our modeling confirms that the Cochlearia HKT under selection is class 1 from its 325 

selectivity filter residue configuration (S-G-G-G), indicating it is likely Na+ selective (and K+ non-326 

selective)99. There is a L344V mutation in the tetraploid relative to the diploid; remarkably, this is 327 

the identical site and amino acid change that is associated with salt tolerance in rice OsHKT1;5 328 

(Fig 5B)100,101: functional confirmation in rice shows the orthologous site substitution to valine in 329 

our tetraploid to be associated with salt tolerance (including faster Na+ transport), while the diploid 330 

leucine is associated with salt sensitivity (including slower Na+ transport)100. Given that the 331 

tetraploids live overwhelmingly in coastal regions where they are exposed to extreme Na levels, 332 

while the diploid lives in low Na freshwater streams, this makes biological sense. While the close 333 

proximity of L344 alone is likely enough to disrupt pore rigidity via its larger side chain relative to 334 

V, in Cochlearia HKT1 we also see T220M (a highly conserved residue) and I346F mutations 335 

which are even closer to the P1-4 pore domains that hold S-G2-G3-G4 together to create the 336 

selectivity control. These mutations all introduce large side chains that likely affect structural 337 

dynamics at the P1-4 pore100,101. In addition, mutations F326I, R200P L180F, Q303H, M360I are 338 

all in (R200P and F326I) or in contact with the four alpha helices that stabilize the SGGG 339 

selectivity filter. While this may seem an excessive quantity of mutations, suggesting gene 340 

inactivation and relaxation of selection, all the sites except M360I, T220M and L344V are loosly 341 

conserved, suggesting flexibility in these regions. 342 

 There are also mutations on the cytosolic side of the protein, a few poorly conserved 343 

residues appear to induce small structural changes (Fig 5D). This includes a cluster of changed 344 

residues (I388N, S386T, N384K, R396G) which are predicted to break up an alpha helicase in 345 

the tetraploid, and P18S and S19R, which appear to induce a break in the first alpha helicase of 346 

the protein. To our knowledge this domain is not functionally characterized, though given this 347 

positioning, this could represent a change in signaling or regulation. 348 

 Congruent with its conserved central role in ion homeostasis, SOS1 is highly conserved 349 

and tetraploid-specific changes are not near active transport (nucleotide or ion) binding sites, nor 350 

dimerization domains. Instead, a tight cluster of 3 mutations marks the boundary between the ³-351 

sheet-rich cytoplasmic domain (³-CTD) and the C-terminal autoinhibition (CTA) domain which 352 

contains a further 3 mutations (K1014E, T1075S and R1101Q). The CTA is unstructured; 353 
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however, it has been experimentally shown that truncation, or just two point mutations, can 354 

radically change the behavior of the channel, presumably by releasing autoinhibition increasing 355 

Na+ transport and therefore increasing salt tolerance102. Notably, this includes one T1075S 356 

substitution: S and T are two of the three amino acids that can be phosphorylated and it has been 357 

shown that this exact residue behaves differently when phosphorylated, which suggests that the 358 

choice of S or T may have evolutionary consequences103. 359 

Ion homeostasis shifts should be associated with changes in responses to salt, osmotic, 360 

and cold stress, as all these stressors have a common osmotic basis. Such a link between 361 

immediate ionomic changes in the polyploid cell may be a key functional basis for the observed 362 

ecotypic differentiation of young polyploids, especially as observed in arctic and alpine conditions. 363 

We accordingly see in our top outliers categories of relevant genes, for example among the top 364 

candidates the ortholog of DEAD-BOX RNA HELICASE 25 (STRS2), identified in A. thaliana as 365 

a repressor of stress signaling for salt, osmotic, and cold stress104,105. This gene also controls 366 

freezing tolerance106, highly relevant to the cold-loving arctic and alpine history of Cochlearia14.  367 

To assess if perhaps these sweeps were better associated with ecotype differences 368 

between ploidies, we performed a salt tolerance experiment on diploid and tetraploid plants. 369 

Interestingly, given their divergent ecotype preferences (Fig. S4), with tetraploids found in more 370 

saline conditions, we found that the diploid Cochlearia are in fact more salt tolerant than the 371 

tetraploids (p = 2.178 x 10-05; See Supplementary Text 1 and Table S5.). This finding also 372 

contrasts with observations of increased salinity tolerance in neotetraploid Arabidopsis thaliana41. 373 

Again, however, this may be a signal of preadaptation to osmotic challenge (common to freezing, 374 

salinity, and dehydration) across the halophyte Cochlearia42. 375 

Relevant also to these phenotypes, genes involved in stomatal function were outliers post-376 

WGD, such as the ortholog of OPEN STOMATA2, a target of ABA stress signaling to close the 377 

stomata during drought response107. This gene is an ATPase in the plasma membrane that drives 378 

hyperpolarization and initiates stomatal opening105. We also see TOO MANY MOUTHS, where a 379 

mutation leads to disruption of asymmetric cell division during stomata development108. Finally, 380 

we see selection signal in STOMAGEN, which acts on the epidermis to increase stomatal 381 

formation109.  Sweeps in these loci are consistent with the phenotypic shifts we observe of 382 

increased stomatal conductance and net photosynthetic rate under drought conditions in 383 

tetraploid Cochlearia populations relative to diploids (Fig. 2E; Supplementary Text 2).  384 

 385 

Gene-level convergence. To test for convergence at the ortholog level, we first determined 386 

orthogroups110 between Cochlearia, A. arenosa, and C. amara (Methods). Top 1% FST outliers for 387 
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Cochlearia (n=753; Dataset S3), A. arenosa (n=452; Dataset S5), and C. amara (n=229; Dataset 388 

S6) were considered orthologues if they were part of the same orthogroup. By this criterion not a 389 

single ortholog was under selection in all three species (Fig. S6A; Dataset S7 Gene Ortholog 390 

Convergence). This approach depends on strict 3-way orthogroup assignment, so we then 391 

searched for convergence by assigning all genes in the outlier lists to a nearest A. thaliana 392 

homolog. By this 8nearest homolog9 criterion, only one gene was selected in all three WGDs: 393 

DAYSLEEPER, an essential domesticated transposase86 with a role in regulating non-394 

homologous end joining double-strand break repair (Fig. S6B; Dataset S8). 395 

Interestingly, by both homolog assignment methods, several of the best Cochlearia WGD 396 

adaptation candidates are candidates also in A. arenosa: ASY3, functionally validated9,12 to have 397 

an primary role in stabilizing autotetraploid meiosis in A. arenosa is also in our 1% FST outlier list 398 

in Cochlearia9. This gene, along with ASY1, is critical for formation of meiotic chromosome axes, 399 

and tetraploid alleles of both genes result in fewer deleterious multichromosome associations and 400 

more rod-shaped bivalents in metaphase I12. We also see CYCD5;1, which is a QTL for 401 

endoreduplication111. Additionally, the salinity and osmotic genes HKT1 and OST2 in both top 402 

candidate lists (Fig. S6A; Dataset S7 Gene Ortholog Convergence). All of these genes are 403 

involved in processes that have been implicated in adaptation to WGD1,2,4-7 and therefore stand 404 

as good candidates in salient challenges to nascent polyploids. We note that overlap between 405 

Cochlearia and both A. arenosa and C. amara candidates was greater than expected by chance 406 

(SuperExactTest p=0.0024 and p=0.0047 respectively), but only marginally for C. amara and A. 407 

arenosa (SuperExactTest p=0.014).  408 

 409 

Process-level convergence. We reasoned that there may be similarities in processes under 410 

selection between the three independent WGDs, despite modest gene-level convergence. To 411 

estimate this, we first compared our GO results from those published in A. arenosa and C. amara. 412 

The much greater signal of overlap (process-level convergence; Fig. S6C) was between 413 

Cochlearia and A. arenosa: of the 113 GO biological process terms significantly enriched in 414 

Cochlearia, 17 were among the 73 GO terms enriched in A. arenosa (Dataset S4). These were 415 

high-level GO terms including representatives of ploidy-relevant categories, e.g. 8cell division9, 416 

8transmembrane transport, and 8regulation of RNA metabolic processes9.  417 

Despite this evident convergence, in Cochlearia an array of DNA repair and kinetochore 418 

genes were among top candidates, signaling a shift relative to A. arenosa, where a more focused 419 

prophase I-oriented signal emerged primarily around Synaptonemal Complex (SC)-associated 420 

proteins mediating lower crossover rates7. However, given that CENP-C mutants fail to retain an 421 
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SC at the centromere and CENP-C appears to have functions in synapsis, cohesion, and 422 

centromere clustering112, there may be a closer parallel between the obviously 8SC- focused9 423 

adaptive response in A. arenosa and that in Cochlearia. Indeed, aside from ASY3, in the 424 

Cochlearia 1% FST outlier list we also see ATAXIA-TELANGIECTASIA MUTATED (ATM; also with 425 

6 MAV SNPs; Dataset S3). This gene controls meiotic DNA double-strand break formation and 426 

recombination and affects synaptonemal complex organization113. We also see a PDS5 cohesion 427 

cofactor ortholog and REC Q MEDIATED INSTABILITY 1 (RMI1), which suppresses somatic 428 

crossovers and is essential for resolution of meiotic recombination intermediates114. Notable also 429 

are BRCA2-like B (which is essential at meiosis and interacts with Rad51, Dss1, and Dmc1) and 430 

SHUGOSHIN C (which protects meiotic centromere cohesion).  431 

Further evidence of functional association outliers found in Cochlearia with those in A. 432 

arenosa can be observed in protein interaction information from the STRING database, which 433 

provides an estimate of proteins9 joint contributions to a shared function115. Using comparable 1% 434 

FST outlier lists from the two species, we see many connections between these independent 435 

WGDs. Here we see particularly large clusters (Fig. 6A,B) in center of the overall network (Fig. 436 

6C). In particular, the endopolyploidy gene111 CYCD5;1, and DNA Pol V, a shared outlier in both 437 

species, interact with a broad array of other outliers in each selection scan (Fig. 6A). This analysis 438 

reveals, for example, that DNA Pol V shares as a top candidate either NRPB9A (in A. arenosa) 439 

or NRPB9B (in Cochlearia). These subunits are partly redundant interactors with Pol II, IV, and V 440 

and the double mutant is fatal in A. thaliana91.  441 

Taken together, these results indicate that adaptive evolution in response to WGD is 442 

focused on particular functions instead of specific genes. These functions involve DNA 443 

management and ion homeostasis. However, it is unclear why particular solutions are favored in 444 

one species relative to another. A degree of stochasticity depending on available standing 445 

variation can be expected, but species histories likely play a role, offering preadaptations that may 446 

8nudge9 evolution. For example, our analysis of salinity tolerance in Cochlearia gave the surprising 447 

result that the diploid was at least as tolerant to extreme salt concentrations as the tetraploid, 448 

although the diploid is found predominantly inland, except for rare diploid coastal populations from 449 

Spain.  A postglacial and boreal spread of the diploid towards the UK may have brought salinity 450 

and cold tolerance along the way116, altering the genomic substrate upon which selection acted 451 

in response to WGD-associated ionomic challenge. 452 
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 453 

Figure 6 | Evidence for functional convergence between Cochlearia and Arabidopsis 454 
arenosa following independent WGDs. STRING115 plots show Cochlearia candidate genes 455 
(blue) and A. arenosa candidate genes (red). Convergent genes that are present in both species9 456 
outlier lists as selection candidates are in yellow. (A) A large shared cluster surrounding the 457 
endopolyploidy gene CYCD5;1, which has many connections to large cluster centering on DNA 458 
pol V, which is an outlier in both datasets; (B) ion transport-related genes with a highly 459 
interconnected cluster of top outliers in both genome scans, HKT1, KUP9, and HA1; (C) The 460 
entire set of candidates in both genome scans for which the STRING database has information. 461 
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Conclusion  462 

Following whole genome duplication (WGD), the newly polyploid cell requires modifications to 463 

chromosome segregation, ion homeostasis, stomatal function, and diverse other processes1,2,4,6. 464 

Here we investigated the signals of adaptive evolution post-WGD in a successful novel polyploid 465 

system, Cochlearia. We discovered striking signals of selection in core kinetochore components, 466 

CENP-E, CENP-C, INCEP, CAP-H2, and others, as well as well-studied ion homeostasis loci, 467 

HKT1 and SOS1. We detail specific changes in these proteins upon WGD which are known in 468 

model systems to directly modulate WGD-relevant function. We also compare our results to 469 

independent WGD adaptation events, finding convergence of these processes, but not genes, 470 

indicating a highly flexible array of adaptive mechanisms. 471 

Our results also suggest a hypothesis for the occasionally spectacular adaptability of 472 

polyploids. We observed a broad array of DNA management and repair processes under selection 473 

in all species, and especially Cochlearia. This may signal a temporarily increased post-WGD 474 

susceptibility to DNA damage, due to suboptimal function of DNA repair genes during the process 475 

of adaptation to the WGD state. This may result in a relative 8mutator phenotype9 in neopolyploids. 476 

Such a mutator phenotype has been plainly observed in polyploid metastatic human cancers, 477 

which not only exhibit SNP-level hypermutator phenotypes, but also dramatic structural variation 478 

in malignant aneuploid swarms that are associated with progression3. We speculate that a parallel 479 

to this may exists following other WGDs. Whether this hypothesis is further supported by future 480 

discoveries, the centrality of WGD to evolution, ecology and agriculture, underscores the 481 

importance of understanding the processes mediating adaptation to4and perhaps also by4482 

WGD.   483 
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Methods 484 

Plant material. We first located 89 Cochlearia populations throughout Europe and collected 485 

population samplings of plants from each, aiming for at least 10 plants per population, with each 486 

sampled plant a minimum of 2 meters from any other. Of these, we selected 33 geographically 487 

and ecotypically diverse representative populations for population resequencing, including the 488 

outgroup Ionopsidium (Dataset S2 Sample Metrics). An average of 4 individuals per population 489 

were sequenced. A total of 149 individuals were initially sequenced, which was narrowed down 490 

by a cutoff of minimum average depth of 4x, leaving 113 individuals from 33 populations in the 491 

final analysed dataset, including the outgroup Ionopsidium. 492 

 493 

Ploidy Determination by flow cytometry. DNA content and ploidy were inferred for populations 494 

using flow cytometry (Dataset S1). Approximately 1 square cm of leaf material was diced 495 

alongside an internal reference using razor blades in 1 ml ice cold extraction buffer (either 45 mM 496 

MgCl2, 30 mM sodium citrate, 20mM MOPS, 1% Triton-100, pH 7 with NaOH for relative staining 497 

or 0.1 M citric acid, 0.5% Tween 20 for absolute measurements). The resultant slurry was then 498 

filtered through a 40-¿m nylon mesh before the nuclei were stained with the addition of 1 ml 499 

staining buffer (either CyStain UV precise P [Sysmex, Fluorescence emission: 435nm to 500nm] 500 

for relative ploidy, or Otto 2 buffer [0.4 M Na2HPO4·12H2O, Propidium iodide 50 ¿gmL21, RNase 501 

50 ¿gmL21], for absolute DNA content). After 1 minute of incubation at room temperature the 502 

sample was run for 5,000 particles on either a Partec PA II flow cytometer or a BD FACS Melody. 503 

Histograms were evaluated using FlowJo software version 10.6.1. 504 

 505 

HEI10 immunostaining. Pachytene chromosome spreads were prepared from fixed anthers, as 506 

described previously117. Immunostaining was conducted using two primary antibodies: anti-507 

AtZYP1C rat, 1:500118 and anti-HvHEI10 rabbit, 1:250119, followed by two secondary antibodies: 508 

goat anti-rat Alexa Fluor® 594 (Invitrogen) and goat anti-rabbit Alexa Fluor® 488 (Invitrogen). A 509 

Nikon Eclipse Ci fluorescence microscope equipped with NIS elements software was used to 510 

capture and quantify images. HEI10 foci were counted at pachytene using NIS software and 511 

significance established using the Mann-Whitney U test (Minitab v 18.1.0.0). 512 

 513 

Fluorescence in situ hybridization. Mitotic chromosome spreads from fixed root tips were 514 

prepared as described previously120. The Arabidopsis-type telomere repeat (TTTAGGG)n was 515 

prepared according to 121. The Cochlearia-specific 102-bp (GTTAGATGTTTCATAAGTTCGTCAA 516 

ACTTGTACAAAGCTCATTGAGACACTTATAAGCACTCATGTTGCATGAAACTTGGTTTAGAG517 

TCCTAGAAACGCGTT) tandem repeat was designed and prepared based on Mandáková et al. 518 

(2013) and used for identification of centromeres. The DNA probes were labeled by nick 519 

translation with biotin-dUTP and digoxigenin-dUTP according to 122, pooled and precipitated by 520 

adding 1/10 volume of 3 M sodium acetate, pH 5.2, and 2.5 volumes of ice-cold 96% ethanol and 521 

kept at -20°C for 30 min. The pellet was then centrifuged at 13,000 g at 4°C for 30 min. The pellet 522 

was resuspended in 20 µl of the hybridization mix (50% formamide and 10% dextran sulfate in 523 

2×SSC) per slide. 20 µl of the probe was pipetted onto a chromosome-containing slide. The cover 524 

slips were framed with rubber cement. The probe and chromosomes were denatured together on 525 

a hot plate at 80°C for 2 min and incubated in a moist chamber at 37°C overnight. Post-526 

hybridization washing was performed according to 122. After immunodetection, chromosomes 527 
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were counterstained with 49, 6-diamidino-2-phenylindole (DAPI, 2 µg/ml) in Vectashield (Vector 528 

Laboratories). The preparations were photographed using a Zeiss Axioimager Z2 epifluorescence 529 

microscope with a CoolCube camera (MetaSystems). The three monochromatic images were 530 

pseudocolored, merged and cropped using Photoshop CS (Adobe Systems) and Image J 531 

(National Institutes of Health) softwares. 532 

 533 

Reference Genome Assembly and Alignment. We generated a long read-based de 534 

novo genome assembly using Oxford Nanopore and Hi-C approaches, below.  535 

 536 

High Molecular Weight DNA isolation and Oxford Nanopore sequencing. A total of 0.4 g 537 

Cochlearia excelsa leaf material from one individual plant was ground using liquid nitrogen before 538 

the addition of 10 ml of CTAB DNA extraction buffer (100 mM Tris-HCl, 2% CTAB, 1.4 M NaCl, 539 

20 mM EDTA, and 0.004 mg/ml Proteinase K). The mixture was incubated at 55°C for 1 hour then 540 

cooled on ice before the addition of 5 ml Chloroform. This was then centrifuged at 3000 rpm for 541 

30 minutes and the upper phase taken, this was added to 1X volume of 542 

phenol:chloroform:isoamyl-alcohol and spun for 30 minutes at 3000 rpm. Again, the upper phase 543 

was taken and mixed with a 10% volume of 3M NaOAc and 2.5X volume of 100% ethanol at 4 544 

°C. This was incubated on ice for 30 minutes before being centrifuged for 30 minutes at 3000 rpm 545 

and 4 °C. Three times the pellet was washed in 4ml 70% ethanol at 4 °C before being centrifuged 546 

again for 10 minutes at 3000 rpm and 4°C. The pellet was then air dried and resuspend in 300 µl 547 

nuclease-free water containing 0.0036 mg/ml RNase A. The quantity and quality of high molecular 548 

weight DNA was checked on a Qubit Fluorometer 2.0 (Invitrogen) using the Qubit dsDNA HS 549 

Assay kit. Fragment sizes were assessed using a Q-card (OpGen Argus) and the Genomic DNA 550 

Tapestation assay (Agilent). Removal of short DNA fragments and final purification to HMW DNA 551 

was performed with the Circulomics Short Read Eliminator XS kit. 552 

 553 

Long read libraries were prepared using the Genomic DNA by Ligation kit (SQK-LSK109; Oxford 554 

Nanopore Technologies) following the manufacturer9s procedure. Libraries were then loaded onto 555 

a R9.4.1 PromethION Flow Cell (Oxford Nanopore Technologies) and run on a PromethION Beta 556 

sequencer. Due to the rapid accumulation of blocked flow cell pores or due to apparent read 557 

length anomalies on some Cochlearia runs, flow cells used in runs were treated with a nuclease 558 

flush to digest blocking DNA fragments before loading with fresh library according to the Oxford 559 

Nanopore Technologies Nuclease Flush protocol, version NFL_9076_v109_revD_08Oct2018. 560 

 561 

Genome size estimation and computational ploidy inference. We used KMC123 to create a k-562 

mer frequency spectrum (Kmer length=21) of trimmed Illumina reads. We then used 563 

GenomeScope 2.0 (parameters: -k 21 -m 61) and Smudgeplot124 to estimate genome size and 564 

heterozygosity from k-mer spectra. 565 

 566 

Data processing and assembly. Fast5 sequences produced by PromethION sequencing were 567 

base called using the Guppy 6 high accuracy base calling model (dna_r9.4.1_450bps_hac.cfg) 568 

and the resulting fastq files were quality filtered by the base caller. A total of 17.2 GB base called 569 

data were generated for the primary assembly, resulting in 60x expected coverage. Primary 570 
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assembly was performed in Flye32 and Necat33. The contigs were polished to improve the single-571 

base accuracy in a single round of polishing in Medaka34 and Pilon35.  572 

 573 

Pseudomolecule construction by Hi-C, assembly cleanup, and polishing. To scaffold the 574 

assembled contigs into pseudomolecules, we performed chromosome conformation capture 575 

using HiC. Leaves from a single plant were snap-frozen in liquid N and ground to a fine powder 576 

using mortar and pestle. The sample was then homogenised, cross-linked and shipped to Phase 577 

Genomics (Seattle, USA), who prepared and sequenced an in vivo Hi-C library. After filtering low-578 

quality reads with Trimmomatic125, we aligned the Hi-C reads against the contig-level assembly 579 

using bwa-mem126 (settings -5 -S -P) and removed PCR duplicated using Picard Tools 580 

(https://broadinstitute.github.io/picard/). We used 3D-DNA127 to conduct the initial scaffolding, 581 

followed by a manual curation in Juicebox128. After manually assigning chromosome boundaries, 582 

we searched for centromeric and telomeric repeats to orient the chromosome arms and to assess 583 

the completeness of the assembled pseudomolecules. To identify the centromeric repeat motif in 584 

C. excelsa, we used the RepeatExplorer129 pipeline to search for repetitive elements from short-585 

read sequence data originating from the reference individual. RepeatExplorer discovered a highly 586 

abundant 102 nucleotide repeat element (comprising 21% of the short-read sequence), which we 587 

confirmed as the centromeric repeat motif by fluorescence in situ hybridisation. Using BLAST, we 588 

localised the centromeric and telomeric (TTTAGGG) repeats and used them to orient the 589 

chromosome arms. We performed a final assembly cleanup in Blobtools36 (Fig.S1). Gene space 590 

completeness was assessed using BUSCO version 3.0.2)37.  591 

 592 

Assembly annotation and RNA-seq. Prior to gene annotation, we identified and masked 593 

transposable element (TE) sequences from the genome assembly. To do so, we used the EDTA 594 

pipeline130, which combines multiple methods to comprehensively identify both retrotransposons 595 

and DNA transposons. After running EDTA on our chromosome-level genome assembly, we 596 

performed BLAST queries against a curated protein database from Swiss-Prot to remove putative 597 

gene sequences from the TE library and masked the remaining sequences from the assembly 598 

using RepeatMasker (https://www.repeatmasker.org).  599 

 600 

We then used the BRAKER238 pipeline to conduct gene annotatation on the TE-masked genome 601 

assembly. Evidence types included RNAseq data from the identical C. excelsa line and protein 602 

data from related species. RNA-seq was generated from bud, stem and leaf tissue. Total RNA 603 

was extracted from each tissue using the Qiagen RNeasy Extraction Kit. Stranded RNA libraries 604 

with polyA were constructed Using NEB Next Ultra II Directional RNA Library Prep Kit for Illumina 605 

and then evaluated by qPCR, TapeStation and Qubit at the DeepSeq facility (Nottingham, UK) 606 

before being sequenced at PE 150 at Novogene, inc (Cambridge, UK). We mapped the RNA-seq 607 

reads of each tissue to our reference genome using STAR131 with default parameters (-608 

twopassMode Basic) before running BRAKER2. Running BRAKER2 without UTR prediction 609 

generated more gene models and much better BUSCO metrics than with UTR prediction (97.8% 610 

[raw, pre-Blobtools trimmed] complete BUSCOs without UTR prediction vs 91.7% with UTR 611 

prediction), so for the final annotation we used the more complete set and ran BRAKER2 without 612 

UTR prediction. 613 

 614 
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Population Resequencing and Analysis. 615 

Library preparation and sequencing. DNA was prepared using the commercially available 616 

DNeasy Plant Mini Kit from Qiagen. DNA libraries were made using TruSeq DNA PCR-free Library 617 

kit from Illumina as per the manufacturer9s instructions and were multiplexed based on 618 

concentrations measured with a Qubit Flourometer 2.0 (Invitrogen) using the Qubit dsDNA HS 619 

Assay kit. Sequencing was carried out on either NextSeq 550 (Illumina) in house (4 runs) or sent 620 

to Novogene for Illumina Hiseq X, PE150 sequencing (2 runs). 621 

 622 

Data preparation, alignment, and genotyping. Reads were quality trimmed with Trimmomatic 623 

0.39125 (PE -phred33 LEADING:10 TRAILING:10 SLIDINGWINDOW:4:15 MINLEN:50) and then 624 

aligned to the C. excelsa reference using bwa-mem132 and further processed with samtools133. 625 

Duplicate reads were removed and read group IDs added to the bam files using Picard (version 626 

1.134). Indels were realigned with GATK (version 4.2.3.0)134. Samples were first genotyped 627 

individually with <HaplotypeCaller= (--emit-ref-confidence BP_RESOLUTION --min-base-quality-628 

score 25 --minimum-mapping-quality 25) and were then genotyped jointly using 629 

<GenotypeGVCFs= in GATK (version 4.2.3.0). The resulting VCF files were then filtered for 630 

biallelic sites and mapping quality (QD < 2.0, FS > 60.0, MQ < 40.0, MQRankSum < -12.5, 631 

ReadPosRankSum < -8.0, HaplotypeScore < 13.0). The VCF was then filtered by depth. Based 632 

on this distribution a depth cutoff of 4,322 was applied to the VCF containing the dataset and this 633 

was then used as a mask for the final VCF containing all individuals.  634 

 635 

Demographic analysis. We first inferred genetic relationships between individuals using 636 

principal component analysis (PCA). Following 135, we estimated a matrix of genetic covariances 637 

between each pair of individuals. For two individuals, � and �, covariance (�) was calculated as: 638 

 639 

�!" =
1
�'(�!# 2 �!"�#)(�"# 2 �!"�#)

�!"�#(1 2 �#)
$

#%&

, 640 

 641 

where � is the number of variable sites, �!# is the genotype of individual � in site �, � is the average 642 

ploidy level of the two individuals, and � is the alternate allele frequency. PCA was performed on 643 

the matrix using the R function prcomp, setting scaling to TRUE, and first two axes of the rotated 644 

data extracted for plotting. For fastSTRUCTURE we followed 136 by randomly subsampling two 645 

alleles from tetraploid and hexaploid populations using a custom script. We have previously 646 

demonstrated that results generated in this way are directly comparable to results generated with 647 

the full dataset in STRUCTURE136. We calculated Nei9s distances among all individuals in 648 

StAMPP137 and visualized these using SplitsTree39. Linkage disequilibrium was estimated using 649 

ldsep138. To avoid biasing the estimates with unequal sample sizes, we chose 39 diploids and 650 

tetraploids for the analysis. To reduce computation time, the analysis was performed on 4-fold 651 

sites from a single chromosome (chromosome 1). To visualize the decay of LD as a function of 652 

physical distance, we calculated average r2 in 10 bp non-overlapping windows and fit a loess 653 

curve on the binned data. 654 

 655 

Window-based scan for selective sweep signatures. We performed a window-based 656 

divergence scan for selection consisting of 1 kb windows that contained at least 15 SNPs. The 657 
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data were filtered as described above and in addition was filtered for no more than 20% missing 658 

data and a depth of >= 8x. We calculated the following metrics: Rho45, Nei9s FST 
47, Weir-Cochran9s 659 

FST
48, Hudson9s FST

46, Dxy44, number of fixed differences and average groupwise allele frequency 660 

difference (AFD). To determine the best metric to detect localised peaks of divergence we 661 

performed a quantitative analysis of AFD plot quality for all 1% outliers of each metric. Each 662 

window was given a score of 0-4, with 0 being the lowest quality and 4 the highest. Scores were 663 

based on two qualities: peak height and peak specificity. For peak height one point was awarded 664 

if the window contained one SNP of AFD between 0.5 and 0.7, and two points were awarded for 665 

any SNP of AFD > 0.7. Likewise, for peak specificity two points were awarded for an AFD peak 666 

that was restricted to a single gene and one point was awarded for a peak that was restricted to 667 

2-3 genes. Compared to all other single 1% outlier lists and all permutations of overlapped 1% 668 

outlier lists, the top 1% outliers from Hudson9s FST performed most favorably as it maximized the 669 

number of 849 and 839 scores while minimizing the number of 819 and 809 scores. Finally, we masked 670 

from downstream analysis a region of uniformly high differentiation marking a suspected inversion 671 

at scaffold 6 (between 5,890,246 and 6,137,362 bp). 672 

 673 

MAV analysis. Following 13, we performed a FineMAV50-like analysis on all biallelic, non-674 

synonymous SNPs passing the same filters as the window-based selection scan. SNPs were 675 

assigned a Grantham score according to the amino acid change and this was scaled by the AFD 676 

between ploidies. SNPs were first filtered for a minimum AFD of 0.25. The top 1% outliers of all 677 

these MAV-SNPs were then overlapped with the genes in our 1% FST outlier windows to give a 678 

refined list of candidate genes that contain potentially functionally significant non-synonymous 679 

mutations at high AFD between cytotypes. The code outlining this can be found at 680 

https://github.com/paajanen/meiosis_protein_evolution/tree/master/FAAD.  681 

 682 

Orthogrouping and Reciprocal Best Blast Hits. We performed an orthogroup analysis using 683 

Orthofinder version 2.5.5110. to infer orthologous groups (OGs) from four species (C. amara, A. 684 

lyrata, A. thaliana, C. excelsa). A total of 25,199 OGs were found. Best reciprocal blast hits (RBHs) 685 

for Cochlearia and A. thaliana genes were found using BLAST version 2.9.0. Cochlearia genes 686 

were then assigned an A. thaliana gene ID for GO enrichment analysis in one of five ways. First 687 

if the genes9 OG contained only one A. thaliana gene ID, that gene ID was used. If the OG 688 

contained more than one A. thaliana gene ID then the RBH was taken. If there was no RBH then 689 

the OG gene with the lowest E-value in a BLAST versus the TAIR10 database was taken. If no 690 

OG contained the Cochlearia gene then the RBH was taken. Finally, if there was no OG or RBH 691 

then the gene with the lowest E-value in a BLAST versus the TAIR10 database was taken. 692 

BLASTs were performed using the TAIR10.1 genome with data generated on 2023-01-02. 693 

 694 

GO Enrichment Analysis. To infer functions significantly associated with directional selection 695 

following WGD, we performed gene ontology enrichment of candidate genes in the R package 696 

TopGO v.2.52139, using our Cochlearia universe set. We tested for overrepresented Gene 697 

Ontology (GO) terms within the three domains Biological Process (BP), Cellular Component (CC) 698 

and Molecular Function (MF) using Fisher9s exact test with conservative 8elim9 method, which 699 

tests for enrichment of terms from the bottom of the hierarchy to the top and discards any genes 700 

that are significantly enriched in a descendant GO term. We used a significance cut-off of 0.05. 701 
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 702 

Generation of Consensus Sequences. Consensus sequences were generated for proteins of 703 

interest so that they could be closely inspected via MSAs and 3D protein structure prediction. 704 

Genomic regions were selected for either all diploids or all tetraploids present in the selection 705 

scan with GATK SelectVariants, while simultaneously being filtered for biallelic SNPs, <--max-706 

nocall-fraction 0.2= and <-select 8AF > 0.59=. A consensus sequence was generated for exons by 707 

combining samtools faidx and bcftools consensus. Finally, a VCF containing only non-biallelic 708 

variation was manually inspected and any multiallelic variants at AF>0.5 and max-nocall-709 

fraction<0.2 manually incorporated into the consensus. 710 

 711 

Multiple Sequence Alignments (MSAs). We generated multiple sequence alignments using 712 

Clustal-Omega140 in combination with amino acid sequences from the GenBank database. 713 

Sequences were selected either because the genes/proteins were well studied in other organisms 714 

or to give a phylogenetically broad coverage. Alignments were manually refined and visualised in 715 

JalView141. 716 

 717 

Protein modeling. Protein homology models were created using AlphaFold142 version 2.1 on the 718 

Czech national HPC MetaCentrum. The full database was uses with a model preset of monomer 719 

and a maximum template data of 2020-05-14. Structures were visualised and images generated 720 

in the PyMOL Molecular Graphics System (Version 2.0 Schrödinger, LLC). 721 

 722 

Data Availability 723 

Sequence data for this study have been deposited in the European Nucleotide Archive (ENA) at 724 

EMBL-EBI (https://www.ebi.ac.uk/ena/browser/view/PRJEB66308) under accession number 725 

PRJEB66308.  726 
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