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86 Abstract

87  The antigenic evolution of SARS-CoV-2 requires ongoing monitoring to judge the immune escape of
88 newly arising variants. A surveillance system necessitates an understanding of differences in

89 neutralization titers measured in different assays and using human and animal sera. We compared 18
90 datasets generated using human, hamster, and mouse sera, and six different neutralization assays.
91 Titer magnitude was lowest in human, intermediate in hamster, and highest in mouse sera. Fold

92 change, immunodominance patterns and antigenic maps were similar among sera. Most assays

93 yielded similar results, except for differences in fold change in cytopathic effect assays. Not enough
94 data was available for conclusively judging mouse sera, but hamster sera were a consistent surrogate

95 for human first-infection sera.

96 Introduction

97  The assessment of antigenic differences among SARS-CoV-2 variants is of critical importance for

98 interpreting the genetic evolution of the virus and for judging the need for vaccine updates.

99  Understanding the comparability of data generated in different laboratories using different
100 neutralization assays and human and animal sera would create a solid foundation for a surveillance
101 system that combines data from laboratories throughout the world.
102
103 Multiple laboratories have tested a wide range of variants against primary infection or vaccination sera
104  from species including humans, hamsters, and mice, using a variety of neutralization assays (1-72).
105 In the early phases of the pandemic, it was not clear which assay(s) would measure the most relevant
106 antigenic differences among variants for assessing protection in humans, and there was value in
107 multiple laboratories using different methods. Comparisons of different neutralization assays in the
108  same laboratory have shown that titers between assays broadly correlate (4, 73—15). A rough
109  correspondence has also been shown between titers generated by the same laboratory using
110 authentic SARS-CoV-2 and vesicular stomatitis virus (VSV) pseudotypes using plaque reduction
111 neutralization tests (PRNT) on Vero E6 and Calu-3 cells (4). However, differences in fold change have
112 been observed for BA.1, BA.2, BA.2.12.1, and BA.4/BA.5 VSV pseudotypes titrated in Vero
113  E6/TMPRSS2 and HEK293T/ACE2 cells (16). Further, neutralization titers measured against the B.1

114 variant using lentivirus pseudotype neutralization assays in the same sera in two clinically approved
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115  laboratories were higher in the assay that used TMPRSS2 overexpressing cells (717). Using the first
116 available neutralization data of the Omicron BA.1 variant drawn from 23 laboratories, Netzl et al.,
117 2022 found that pseudovirus-based assays measure two or three times higher geometric mean

118  neutralization titers (GMT) against the ancestral and BA.1 variants than authentic virus assays in sera
119  from vaccinees immunized with two or three times, respectively, but observed no substantial

120 difference in fold change between pseudovirus and live virus assays (78).

121

122 Human sera are the gold standard for assessing antigenic differences most relevant for escape from
123 population immunity. Sera from individuals with first infections or vaccinations with different variants
124 provide baseline information about antigenic relationships between SARS-CoV-2 variants (3, 5, 8, 12,
125 19, 20), to which antigenic distances measured in sera with more diverse or unknown infection

126 histories can be compared (217). Data from titrations of single-variant exposure sera against different
127  variants can be described using antigenic cartography (22), providing a visualization of antigenic
128 relationships between variants (3, 4, 7, 8, 11, 12). However, with a large fraction of the population
129 either vaccinated or previously infected, finding individuals with first infections or serum donors with
130 known infection histories is now no longer possible (other than sera from young children, which is
131 often difficult to obtain in large enough volumes, and identification of the infecting variant is

132 complicated by co-circulating variants, reduced genomic surveillance, and possible earlier

133 asymptomatic infections or maternal antibody transfer). An alternative is to use sera from

134 experimentally infected animals, which allows for the exact control of the infecting variant. In that
135  case, it is necessary to determine whether animal model sera accurately reflect human first-infection
136  sera with regard to their ability to neutralize different SARS-CoV-2 variants.

137

138  To better understand variability of neutralization titers generated in different laboratories using

139  different sera and assays, we analyze data from 18 studies of antigenic differences among SARS-
140 CoV-2 variants. Each study tested at least five variants against human, hamster, or mouse primary
141 infection or vaccination sera raised against at least two different virus variants. The 18 datasets were
142 made with six different neutralization assays. We sought to answer two questions: (i) how well do
143 animal model sera replicate patterns of reactivity in human sera, and (ii) how do the various

144 neutralization assays compare to each other. Datasets are compared according to four parameters:
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145  titer magnitude, fold change from the homologous variant, patterns of immunodominance, and the
146 antigenic maps constructed from these datasets. We also investigated how well a combined antigenic
147 map constructed from a combination of the datasets corresponds to the antigenic maps constructed

148 from each individual dataset.

149  Results
150  We compared 18 datasets from 14 different laboratories (Table 1, Table S1, Supplementary Text, figs.

151  S1-S25). The datasets were generated and shared within the National Institute of Health SARS-CoV-
152 2 Assessment of Viral Evolution (NIH SAVE) consortium (23), and by outside collaborators. Datasets
153  were generated using human (n=8), hamster (n=8), and mouse (n=2) sera, and six different

154 neutralization assays (lentivirus pseudotype neutralization (n=3) (LV-PV-neut), VSV pseudotype

155  neutralization (n=2) (VSV-PV-neut), focus reduction neutralization test (n=6) (FRNT), PRNT (n=3),
156 microneutralization (n=1) (Microneut), and cytopathic effect / limiting dilution assays (n=3) (CPE)).
157  Two datasets were generated using sera pooled from multiple individuals (Maryland (mouse sera) and
158  Madison (pooled) (hamster sera)). The datasets contain between five and 21 variants and two to 13
159  groups of sera raised by infection or vaccination with different variants. For the comparisons, we

160  considered titrations generated using six different serum groups (4 weeks post mMRNA-1273

161 vaccination and convalescent D614G, B.1.1.7, B.1.351, P.1, and B.1.617.2 sera, Table S1) and 23

162 different variants that were titrated in at least two datasets.

163  Titer magnitude
164 Titer magnitude can vary between individual sera that show otherwise similar patterns of reactivity.

165 We therefore investigated overall differences in titer magnitude between the human, hamster, and
166 mouse sera. Titers were generally lowest for human sera, and highest for mouse sera (~6.7-fold
167  higher than human titers), with those for hamster sera being intermediate (~3.1-fold higher than

168  human titers) (Fig. 1A, 1B, figs. S26-S28, S29A-B). The effect cannot be explained by differences in
169  assays used (Fig. 1B, figs. S28, S29A,C).

170

171 To control for the difference in magnitude among the raw titers (Fig. 1A, figs. S26-S28), we adjusted
172  titrations for systematic differences in titer magnitude between datasets. To do so, we modeled each

173  titer as a combination of the overall geometric mean titer for a variant and serum group, a reactivity
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174  bias of each serum to account for individuals generating an immune response leading to generally
175  higher or lower titers, and a per-dataset magnitude effect (Materials and Methods). After adjusting
176  each titer by the estimated per-dataset magnitude effect, there is no systematic difference in variation
177 around a common GMT in titrations generated using human and hamster sera, with higher variability
178  in the two mouse sera datasets (Fig. 1C, figs. S30, S31, S33A) and no difference in variation using
179  different assays (figs. S32, S33B).

180

181 Therefore, these data indicate that after adjusting for titer magnitude, there is no evidence for

182  systematic differences among hamster, mouse or human sera. Indeed, due to their higher titers, the
183  dynamic range of measurement is greater before reaching the limit of detection of the assay in the
184  hamster and mouse sera, making them more useful than human sera for measuring differences

185  between antigenically diverse variants.

186  Fold change
187  The fold change in neutralization between different variants titrated against the same serum gives a

188 representation of the antigenic distance between the variants, irrespective of titer magnitude

189  differences. We investigated whether the fold change measured from the homologous variant to other
190  variants differed systematically by animal model or assay (Fig. 2, figs. S34-S38). Overall, the datasets
191 roughly agree in the rank order of fold change measured for the different variants, with the exception
192  of the Maryland and Madison (pooled) datasets, both generated using a CPE assay (Fig. 2, figs. S34-
193 S35, S39). The amount of fold change differed between datasets. In particular, datasets generated
194 using CPE assays measured less fold change than other datasets, whereas datasets generated using
195 lentivirus pseudotype neutralization assays showed greater fold changes (Fig. 2, fig. S35, S40,

196 S41).The amount of fold change measured using human, hamster, or mouse sera is similar, although
197  insignificantly higher for the human datasets (fig. S41). Consequently, we find that the hamster model
198  corresponds well with human sera with regards to fold change, with not enough data for conclusions

199 about sera from the mouse models.

200 Immunodominance patterns
201  Several studies have found evidence for variation in the sensitivity of sera to substitutions at different

202 positions in the spike protein, consistent with changes in the immunodominance of different sites
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203  depending on the infecting variant (3, 27, 28). For example, sera raised against the ancestral variants
204 are sensitive to substitutions at position 484 yet relatively insensitive to substitutions at position 501,
205 whereas B.1.351 convalescent sera show an opposite pattern, with substitutions at position 484

206 having little effect on reactivity and changes at position 501 having more effect (3, 27, 28). There is
207 increasing awareness that such changes in immunodominance may affect the epitopes preferentially
208 targeted by an individual's immune response, and hence its level of protection against subsequently
209  circulating variants (3). We investigated whether consistent patterns of immunodominance could be
210  observed in the datasets analyzed here with regards to sensitivity to substitutions at positions 484 and
21 501 already described for human sera.

212

213 Figure 3 shows fold differences between pairs of variants differing either at position 484 (E to K, panel
214 A)or 501 (N to Y, panel B) titrated against six groups of sera. Figures S42-S48 show the same data
215  split by animal model, assay, and cell type. In general, we find evidence that antibodies from mRNA-
216 1273-immunized and D614G and B.1.1.7 convalescent sera are escaped by substitutions at position
217 484 (no mouse sera were available for this comparison), whereas neutralization by P.1 convalescent
218  serais not affected by the E484K substitution (Fig. 3A, fig. S43, S44). However, we find larger

219  differences between datasets in the effect of the E484K substitution in B.1.351 convalescent sera,
220  where the FDA, Emory, and Innsbruck datasets see a strong increase of titers with presence of

221 E484K, in contrast to other datasets (Fig. 3A, figs. S43, 44). The FDA, Emory, and Innsbruck datasets
222  were all made with TMPRSS2 overexpressing cell lines, possibly suggesting an effect of TMPRSS2
223  overexpression on the reactivity to the E484K substitution in B.1.351 sera (figs. S47, Table 1).

224  However, the same pattern is not present in the Madison (pooled) and Madison (unpooled) datasets,
225  which were generated using CPE assays and TMPRSS2 overexpressing VeroES6 cells, and is also
226  absentin the EMC (PRNT) dataset, which was generated using Calu-3 cells that naturally express
227  TMPRSS2.

228

229  When considering effects of the N501Y substitution (Fig. 3B, fig. S45), we find that on average,

230 B.1.1.7 and B.1.351 convalescent sera are sensitive to the N501Y substitution in both human and

231 hamster sera, whereas mMRNA-1273, D614G, P.1, and B.1.617.2 convalescent sera are largely
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232  insensitive. There were no differences relating to the assay or the cell type that was used (figs. S42,
233  S46, S48).

234

235 Generally, our findings of the reactivity of different serum groups correspond to that found in Wilks et
236  al. (3), however, while Wilks et al., 2022 found evidence for spike positions other than 484 and 501
237 being preferentially targeted depending on first-infecting variant (3), we do not have sufficient data to
238  testthese here. Overall, sera from different animal models and titrated in different assays exhibit
239 broadly similar patterns of immunodominance, with the exception of differences in the reactivity of the
240  E484K substitution in B.1.351 between datasets, not directly attributable to the animal model, assay,

241 or cell type used.

242  Antigenic cartography
243 Antigenic maps provide a visual summary of titration data and can highlight patterns of reactivity to

244 different serum groups not easily identified from titer tables (22). They estimate the base antigenic
245 distances among variants, taking fold change compared to the maximum titer of each serum as input.
246  This makes antigenic maps insensitive to differences in titer magnitude between datasets. For

247  accurate placement in the antigenic map, each variant and serum should be determined by at least
248  three titrations. This ‘geometric averaging’ of the data can mitigate the impact of noisy assay

249 measurement, making the maps robust to some degree of titration error (22). Variants that are closely
250 related antigenically and that have been titrated against a common set of sera will be positioned

251 proximally in the map. Antigenic maps thus allow the easy identification of candidate vaccine variants
252 that most closely represent the currently circulating diversity. We investigated whether antigenic maps
253  constructed from the 18 datasets analyzed here show broadly similar topologies with regards to the
254 placement of the main variants.

255

256  All maps show a similar topology of the ancestral, B.1.351, B.1.617.2 and Omicron BA.1 variants (Fig.
257 4A), with the ancestral variant occupying a central position, B.1.351 positioned towards the top,

258  B.1.617.2 towards the bottom, and BA.1 furthest from D614G and mRNA-1273 vaccine sera, towards
259 the right. Where present, Omicron BA.5 was consistently placed at the top of Omicron BA.1. Three
260  maps (Madison (pooled), Madison (unpooled), and Maryland, third row of Fig. 4A) constructed from

261 titers generated using CPE assays, differ more substantially from the other maps — this was to some
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262  degree anticipated given that these datasets exhibit discrepancies in rank order and amount of fold
263  change between variants in at least one serum group (Fig. 2, fig. S34-S35, S40) compared to the
264  other datasets.

265

266  We considered differences in the relative spread of the pre-Omicron variants (as exemplified by the
267  distance between the D614G, B.1.351, and B.1.617.2 variants), and the Omicron variants (BA.1 and
268 BA.2). Antigenic maps made using PRNT assays and hamster sera (Charité, EMC) show a tighter
269 clustering of the pre-Omicron variants and a looser clustering of the Omicron variants, whereas maps
270  made using human sera and lentivirus pseudotypes (Duke, FDA, AMC) show the opposite (Fig. 4, fig.
271 S50). The tighter clustering of the Omicron variants in the Duke, FDA, and AMC datasets may be
272 related to the smaller number of Omicron sera (Duke: n=5, FDA: n=2, AMC: n=1), which in these
273  datasets also measure less fold change between BA.1 and BA.2 than other datasets. Given the

274  longer duration of the pandemic at the time of the circulation of BA.1, these sera may also be more
275  likely to be affected by undetected earlier infections. This, combined with the small number of

276 Omicron sera, may lead to lower confidence in the positioning of those variants in the antigenic maps
277  (fig. S51) and possibly cause the tighter clustering of Omicron variants in those datasets. The larger
278 distances between the pre-Omicron variants in the lentivirus pseudotype assay datasets is supported
279 Dby the larger fold change measured for those datasets (Fig. 2, fig. S52). Overall, the largely similar
280 relative position of variants in the different antigenic maps suggests that hamster sera can provide an
281  adequate surrogate for human first-infection sera, but that the choice of assay may affect the relative
282  distances between variants.

283

284 A global monitoring system of SARS-CoV-2 antigenic variability will benefit if titration data from

285  different laboratories, animal model sera, and assays can be combined to give a reliable consensus
286 representation of SARS-CoV-2 antigenic evolution. As distances in an antigenic map are insensitive
287  to overall titer magnitude, datasets with differences in titer magnitude can be compared and merged.
288 We therefore investigated how well an antigenic map constructed from all titrations from the 18

289 datasets reflects the antigenic map positions in each individual dataset. We merged datasets on a
290 per-variant basis, where we treated the variants as equal across datasets, and each serum was

291 considered individually. Although a two-dimensional antigenic map is easiest to interpret visually,
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292 antigenic maps can be constructed in different dimensions, with lower stress in higher dimensions.
293  Under cross-validation, we found that the merged map (Fig. 4B, fig. S53) provides a good fit to the
294  datain two dimensions (figs. S54, S55). The map was robust to assay noise (fig. S56) and missing
295 titers (figs. S57-S59) and to the exclusion of individual datasets (figs. S60, S61), although the merged
296  map systematically underestimates log: titers by ~1.66 (fig S58).

297

298  The merged map shows a similar overall topology to the individual antigenic maps (Fig. 4A, figs. S62-
299  S64), with the exception of the antigenic maps made from CPE assay datasets. In agreement with
300  observations elsewhere (3), pre-Omicron variants placed to the right of the ancestral variant have
301 substitutions at position 484 (light green, yellow, dark red), with variants in the top right additionally
302 having the N501Y substitution (yellow). Variants towards the bottom-left area have the L452R

303  substitution (orange). Omicron variants are placed furthest to the right of the ancestral variant, with

304  BA.2 and BA.5 placed towards the top of BA.1.

305 Discussion

306  We have constructed a statistical framework to compare SARS-CoV-2 neutralization titers and applied
307 it to data from 18 laboratories, investigating differences in titer magnitude and variability, fold change,
308 immunodominance patterns, and antigenic interrelatedness using antigenic cartography. Titers in the
309  human datasets were generally lowest, followed by the hamster datasets, with the highest titers in the
310  datasets generated using mouse sera. We did not find systematic differences in titer magnitude

311 related to the assay used. The higher titers for mouse and hamster sera may stem from a higher

312  inoculum dose used for raising animal sera compared to natural infections or vaccinations in humans.
313  As a proportion of body weight, the vaccine dose for mice is much higher than for humans. The dose
314 used for hamster infections was likely also higher than that estimated in human-to-human

315  transmission. In addition, animals were boosted in one mouse and one hamster dataset after the

316 initial infection or vaccination (Charité and WUSTL), again possibly leading to higher titers. Although
317 not investigated due to the absence of metadata, differences between human study populations (such
318  as age, co-morbidities and disease severity) as well as the timing of serum collection will affect titer
319  magnitude. For example, in the Galveston dataset, hamster sera were taken at days 14, 28, and 45

320  post infection, and homologous titers increased ~2.32-fold between day 14 and 45 (9). As we find that

10


https://paperpile.com/c/PLMlS1/SWWr6
https://paperpile.com/c/PLMlS1/SWWr6
https://paperpile.com/c/PLMlS1/SWWr6
https://paperpile.com/c/PLMlS1/YQ5Id
https://paperpile.com/c/PLMlS1/YQ5Id
https://paperpile.com/c/PLMlS1/YQ5Id
https://doi.org/10.1101/2023.09.27.559689
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.09.27.559689; this version posted September 27, 2023. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

321 the rank order of fold change is similar between different animal model sera, the higher titers in non-
322 human sera are not necessarily disadvantageous, as they may allow the characterisation of

323 antigenically diverse variants without reactivity falling below the limit of detection of the assay.

324  Dataset-specific differences in titer magnitude can be effectively adjusted for, and the remaining titer
325  variability is similar between the different human and animal sera and neutralization assays with the
326 exception of the two mouse datasets, which are more variable, possibly due to the smaller amount of
327  data.

328

329  We did not find evidence for systematic differences relating to human and animal model sera with
330 regards to amount of fold change or rank order of variants. However, we found that datasets

331 constructed using CPE assays measure less fold change with different rank order of variants

332 compared to other assays, whereas lentivirus pseudotype datasets tend to measure larger fold

333  changes but rank fold changes similarly. Likewise, antigenic map topology is similar for human,

334 hamster, and mouse sera and for different assays, with the exception of maps constructed from CPE
335  assay data that show a different arrangement of variants, and maps generated using lentivirus

336 pseudotype assay data that show a larger spread of the pre-Omicron variants. Larger fold change and
337 spread of the pre-Omicron variants in the lentivirus pseudotype assay datasets may be due to higher
338 assay sensitivity to RBD targeting antibodies, especially since the three datasets used ACE2

339  overexpressing cell lines. The level of ACE2 expression has been shown to increase how much RBD
340 targeting antibodies contribute to neutralization (29). Furthermore, changes to spike folding, cleavage,
341 and density, may lead to differences compared to live virus assays (30, 37). Since the fold changes
342 measured in the lentivirus pseudotype assay datasets correspond well with the other assays

343  (excluding the CPE assay) modulo a scale factor, differences to other datasets can be adjusted for by
344  alinear scale factor as was done in (3). The different rank order and amount of fold change in CPE
345 assays may be because those assays measure neutralization across multiple replication cycles, and
346 titers in these assays correspond to a different endpoint, requiring ~99% of the initial inoculum to be
347  inhibited by antibodies, compared to a ~50% or ~90% inhibition measured in corresponding PRNT,
348  FRNT, and single-cycle pseudovirus neutralization assays (32). The differences in rank order of fold

349 change and antigenic map topology in the CPE assays, and the relative correspondence among the
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350  other datasets suggest that CPE assay datasets may not be suitable for long-term routine antigenic
351  characterisation of SARS-CoV-2.

352

353 We find that hamster sera mostly recapitulate the immunodominance patterns seen in human sera for
354 E484K and N501Y, with not enough data yet to tell for mouse sera. The variation in reactivity to the
355  E484K substitution in B.1.351 sera between different datasets is not directly attributable to the animal
356 model, assay, or cell type, showing that depending on the dataset, different conclusions about

357  immunodominance patterns with regards to the E484K substitution may be reached. Head-to-head
358 comparisons of the same sera and variants in different assays and different laboratories are required
359 to further elucidate possible drivers of this effect.

360

361 The merged antigenic map generated from titrations from all datasets broadly replicates patterns

362 observed in the individual maps. Similarly, Netzl et al., 2022, found that an antigenic map constructed
363  from GMTs extracted from 23 studies was broadly similar to the map presented in Wilks et al., 2022
364 (78). This provides evidence that data from a variety of sources can be combined to provide a general
365  overview of the evolution of SARS-CoV-2, which can be helpful for a surveillance system, especially
366  when datasets from individual laboratories may be incomplete on their own.

367

368  The 18 datasets considered here are heterogeneous with regards to the type of sera and

369 neutralization assays used, which does not allow us to elucidate all possible causes of the patterns
370 observed, as not all types of sera have been titrated in each assay. Further, due to absence of data,
371 we were only able to compare immunodominance patterns for the E484K and N501Y substitutions
372 and the pre-Omicron serum groups. Finally, because of the very limited number of human first-

373 infection sera to variants arising after Omicron BA.1, we limited our analyses to variants up to BA.5.
374 Therefore, we were not able to compare serum reactivities and antigenic differences of later Omicron
375  variants, which are antigenically more diverse than pre-Omicron variants in hamster sera (25, 33) and
376  for which there may be greater variability between first-infection animal sera and assays.

377

378 Despite these limitations, the results suggest that all assays performed similarly, except for the CPE

379 assay, and the differences present between human and animal sera and among assays can be
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380  accounted for by linear scale factors. Hamster sera can therefore serve as a useful substitute for

381 human first-infection sera, with more data needed to determine the same for mouse sera. To advance
382  SARS-CoV-2 antigenic surveillance and address the limitations discussed here, two key areas of
383 ongoing investigation are crucial. First, within-laboratory comparisons of neutralization titers when
384 using the same sera in different assays, as well as different animal model sera using the same assay.
385  Second, upon circulation of major new variants, sourcing of first-infection human sera, to continually
386  monitor the validity of the animal model sera as a surrogate system. These results, combined with the
387 statistical framework established here for the ongoing comparative analysis SARS-CoV-2

388 neutralization data from a network of collaborating laboratories, are key components of a coordinated

389  global surveillance system for monitoring SARS-CoV-2 antigenic variation.

390
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Figure 1: Comparison of titers between datasets as exemplified by the B.1.351 convalescent
serum group. (A) Raw titers for the B.1.351 convalescent serum group. (B) Posterior distribution of
the dataset magnitude effect. Datasets are grouped by animal model on the y-axis and coloured by
assay (blue: FRNT, red: LV-PV-neut, yellow: VSV-PV-neut, purple: Microneut, green: PRNT, orange:
CPE). Vertical bars show the 95% highest posterior density interval, each with a colored dot denoting
the mean. (C) Titers after adjusting for dataset magnitude effects. In A and C, each dot corresponds
to the GMT of a variant titrated against all B.1.351 sera in a particular dataset, GMTs in panel C were
calculated from titers adjusted for dataset magnitude effect. Dots are colored by the animal model
(red: human, green: hamster, blue: mouse). The gray bar heights indicate the median of the GMTs of
the individual datasets. Equivalent figures for the other five serum groups can be found in figs. S27

(titer magnitude) and S31 (titer variability).
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Estimated fold change per variant across all datasets.
— Estimated fold change per variant after accounting for dataset differences.

Figure 2: Fold change in the mRNA-1273, D614G, B.1.351, and B.1.617.2 convalescent serum
groups measured in the 18 datasets. Dots show the mean estimated fold change for each variant
and the bars show the estimated 95% highest posterior density intervals, with the colors
corresponding to the variant. Datasets are grouped on the x-axis with bold vertical lines separating the
FRNT, LV-PV-neut, VSV-PV-neut, PRNT, Microneut, and CPE datasets. The light gray line in each
panel indicates the estimated fold change per variant in a particular serum group calculated across all
datasets, in descending order. The black line shows the estimated fold change per variant in
descending order after accounting for differences in fold change between datasets (Material and
Methods). Variants are ordered on the x-axis by decreasing estimated fold change, calculated in a
particular serum group across all datasets. Equivalent figures that include the B.1.1.7 and P.1
convalescent serum groups, as well as ordered by animal model sera are shown in figs. S30 and S31,
respectively. Figures split by variant are shown in figures S36 (by dataset), S37 (by animal model),

and S38 (by assay).
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Figure 3: Sensitivity of different serum groups to the E484K and N501Y substitutions. Each row

shows the average fold difference in titer between the two variants on the right, which differ by only

the E484K (A) or the N501Y (B) substitution in the receptor binding domain (RBD). A positive fold

difference corresponds to higher titers against the variant with the substitution, while a negative fold

difference corresponds to higher titers against the variant without the substitution. Symbols and

ranges correspond to the average fold difference and 95% highest posterior density intervals,
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748  calculated as described in the Methods. Data are colored by animal model (red: human, green:

749  hamster, blue: mouse). Vertical lines indicate the average fold difference in each dataset, colored by
750 animal model (red: human, green: hamster, blue: mouse). The gray line indicates no difference in
751 titers between variants. Figure S42 shows the same figure split by assay.

752
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753

754 Figure 4: Antigenic map comparison. (A) Antigenic maps for each of the 18 datasets. Arrows point
755 to the position of each variant in the merged map shown in panel B. Data for the maps in the bottom
756  row were generated using CPE assays. (B) Antigenic map constructed from merging all titers of the
757 18 datasets. D614G, B.1.351, B.1.617.2, BA.1, BA.2 and BA.4/5 are highlighted. A version of this map
758 colored by variant is shown in fig. S53. In both panels, variants are colored by substitutions in the
759 RBD. Blue: no substitutions in RBD relative to the ancestral variant, except S477N. Includes ancestral
760 (D614G and 614D), A.23.1, B.1.526, and B.1.526+S477N variants. Dark green: variants with only the
761 N501Y substitution in the RBD. Includes B.1.1.7 and D614G+N501Y variants. Light green: variants
762  with only the E484K substitution in the RBD. Includes B.1.525, R.1, P.2, and B.1.526+E484K variants.
763  Yellow: variants with the E484K and N501Y substitutions in the RBD. Includes P.1 (+K417T), B.1.351
764  (+K417N), B.1.1.7+E484K, and B.1.621 (+R346K) variants. Orange: variants with the L452R (or Q, in
765  the case of C.37) substitution in the RBD: Includes C.36.3, C.37 (+F490S), B.1.429, B.1.617.2

766  (+T478K), B.1.617.2+K417N (+T478K), AY.4.2 (+T478K), AY.1+K417N (+T478K), and AY.2+K417N
767  (+T478K) variants. Dark red: variants with L452R and E484Q: includes B.1.617.1 (+T478K), B.1.630
768  (+T478K), and AY.3+E484Q (+T478K) variants. Bright red: Omicron BA.1 and BA.1.1 variants.

769  Magenta: Omicron BA.2, BA.2.12.1, and BA.3 variants. Light pink: Omicron BA.4 and BA.5 variants.
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Laboratory Animal model Antigen type Assay / cell type Number of serum Number of Reference
groups variants
Duke Human Lentivirus Pseudovirus neutralization 13 21 3)
pseudotypes HEK293T-ACE2

Emory Human Live virus FRNT 4 21 unpublished
VeroE6-TMPRSS2

US Food and Drug Human Lentivirus Pseudovirus neutralization 10 15 (8)

Administration (FDA) pseudotypes HEK293T-ACE2-TMPRSS2 cells

Innsbruck Human Live virus FRNT 10 9 (12)
Vero-TMPRSS2-ACE2

Oxford Human Live virus FRNT 6 8 (20)
Vero

Mt. Sinai Human Live virus Microneutralization 2 8 (24)
VeroE6

Amsterdam Medical Human Lentivirus Pseudovirus neutralization 7 7 (11)

Centre (AMC) pseudotypes HEK293T-ACE2

Geneva Human Live virus PRNT 6 7 (7)
VeroE6

Madison (pooled) Hamster, pooled Live virus CPE 8 12 unpublished

sera VeroE6-TMPRSS2

Charité Hamster Live virus PRNT 7 11 (25)
VeroE6

Erasmus Medical Centre Hamster Live virus PRNT 7 11 (4)

(EMC) (PRNT) Calu-3

Madison (unpooled) Hamster Live virus CPE 7 10 unpublished

VeroE6-TMPRSS2
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https://paperpile.com/c/PLMlS1/SWWr6
https://paperpile.com/c/PLMlS1/SWWr6
https://paperpile.com/c/PLMlS1/sfblr
https://paperpile.com/c/PLMlS1/sfblr
https://paperpile.com/c/PLMlS1/sfblr
https://paperpile.com/c/PLMlS1/OJyyr
https://paperpile.com/c/PLMlS1/OJyyr
https://paperpile.com/c/PLMlS1/OJyyr
https://paperpile.com/c/PLMlS1/i8016
https://paperpile.com/c/PLMlS1/i8016
https://paperpile.com/c/PLMlS1/i8016
https://paperpile.com/c/PLMlS1/DnuyA
https://paperpile.com/c/PLMlS1/DnuyA
https://paperpile.com/c/PLMlS1/DnuyA
https://paperpile.com/c/PLMlS1/RSS6g
https://paperpile.com/c/PLMlS1/RSS6g
https://paperpile.com/c/PLMlS1/RSS6g
https://paperpile.com/c/PLMlS1/KcrWV
https://paperpile.com/c/PLMlS1/KcrWV
https://paperpile.com/c/PLMlS1/KcrWV
https://paperpile.com/c/PLMlS1/iQAPE
https://paperpile.com/c/PLMlS1/iQAPE
https://paperpile.com/c/PLMlS1/iQAPE
https://paperpile.com/c/PLMlS1/mW8Vd
https://paperpile.com/c/PLMlS1/mW8Vd
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St. Louis (WUSTL)

EMC (VeroE6) Hamster VSV pseudotypes Pseudovirus neutralization (4)
VeroE6

EMC (Calu-3) Hamster VSV pseudotypes Pseudovirus neutralization (4)
Calu-3

Galveston Hamster Live virus FRNT 9)
VeroE6

Madison (FRNT) Hamster Live virus FRNT unpublished
VeroE6-TMPRSS2

Maryland Mouse (BALB/c), Live virus CPE (26)

pooled sera VeroE6-TMPRSS2
Washington University at Mouse (129S2) Live virus FRNT (10)

VeroE6-TMPRSS2

Table 1: Overview of datasets used in this study. For detailed information on animal model sera and variants, see Table S1, Supplementary Text, figs. S1-

S25.
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