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Abstract 86 

The antigenic evolution of SARS-CoV-2 requires ongoing monitoring to judge the immune escape of 87 

newly arising variants. A surveillance system necessitates an understanding of differences in 88 

neutralization titers measured in different assays and using human and animal sera. We compared 18 89 

datasets generated using human, hamster, and mouse sera, and six different neutralization assays. 90 

Titer magnitude was lowest in human, intermediate in hamster, and highest in mouse sera. Fold 91 

change, immunodominance patterns and antigenic maps were similar among sera. Most assays 92 

yielded similar results, except for differences in fold change in cytopathic effect assays. Not enough 93 

data was available for conclusively judging mouse sera, but hamster sera were a consistent surrogate 94 

for human first-infection sera. 95 

Introduction 96 

The assessment of antigenic differences among SARS-CoV-2 variants is of critical importance for 97 

interpreting the genetic evolution of the virus and for judging the need for vaccine updates. 98 

Understanding the comparability of data generated in different laboratories using different 99 

neutralization assays and human and animal sera would create a solid foundation for a surveillance 100 

system that combines data from laboratories throughout the world.  101 

 102 

Multiple laboratories have tested a wide range of variants against primary infection or vaccination sera 103 

from species including humans, hamsters, and mice, using a variety of neutralization assays (1312). 104 

In the early phases of the pandemic, it was not clear which assay(s) would measure the most relevant 105 

antigenic differences among variants for assessing protection in humans, and there was value in 106 

multiple laboratories using different methods. Comparisons of different neutralization assays in the 107 

same laboratory have shown that titers between assays broadly correlate (4, 13315). A rough 108 

correspondence has also been shown between titers generated by the same laboratory using 109 

authentic SARS-CoV-2 and vesicular stomatitis virus (VSV) pseudotypes using plaque reduction 110 

neutralization tests (PRNT) on Vero E6 and Calu-3 cells (4). However, differences in fold change have 111 

been observed for BA.1, BA.2, BA.2.12.1, and BA.4/BA.5 VSV pseudotypes titrated in Vero 112 

E6/TMPRSS2 and HEK293T/ACE2 cells (16). Further, neutralization titers measured against the B.1 113 

variant using lentivirus pseudotype neutralization assays in the same sera in two clinically approved 114 
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laboratories were higher in the assay that used TMPRSS2 overexpressing cells (17). Using the first 115 

available neutralization data of the Omicron BA.1 variant drawn from 23 laboratories, Netzl et al., 116 

2022 found that pseudovirus-based assays measure two or three times higher geometric mean 117 

neutralization titers (GMT) against the ancestral and BA.1 variants than authentic virus assays in sera 118 

from vaccinees immunized with two or three times, respectively, but observed no substantial 119 

difference in fold change between pseudovirus and live virus assays (18). 120 

 121 

Human sera are the gold standard for assessing antigenic differences most relevant for escape from 122 

population immunity. Sera from individuals with first infections or vaccinations with different variants 123 

provide baseline information about antigenic relationships between SARS-CoV-2 variants (3, 5, 8, 12, 124 

19, 20), to which antigenic distances measured in sera with more diverse or unknown infection 125 

histories can be compared (21). Data from titrations of single-variant exposure sera against different 126 

variants can be described using antigenic cartography (22), providing a visualization of antigenic 127 

relationships between variants (3, 4, 7, 8, 11, 12). However, with a large fraction of the population 128 

either vaccinated or previously infected, finding individuals with first infections or serum donors with 129 

known infection histories is now no longer possible (other than sera from young children, which is 130 

often difficult to obtain in large enough volumes, and identification of the infecting variant is 131 

complicated by co-circulating variants, reduced genomic surveillance, and possible earlier 132 

asymptomatic infections or maternal antibody transfer). An alternative is to use sera from 133 

experimentally infected animals, which allows for the exact control of the infecting variant. In that 134 

case, it is necessary to determine whether animal model sera accurately reflect human first-infection 135 

sera with regard to their ability to neutralize different SARS-CoV-2 variants. 136 

 137 

To better understand variability of neutralization titers generated in different laboratories using 138 

different sera and assays, we analyze data from 18 studies of antigenic differences among SARS-139 

CoV-2 variants. Each study tested at least five variants against human, hamster, or mouse primary 140 

infection or vaccination sera raised against at least two different virus variants. The 18 datasets were 141 

made with six different neutralization assays. We sought to answer two questions: (i) how well do 142 

animal model sera replicate patterns of reactivity in human sera, and (ii) how do the various 143 

neutralization assays compare to each other. Datasets are compared according to four parameters: 144 
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titer magnitude, fold change from the homologous variant, patterns of immunodominance, and the 145 

antigenic maps constructed from these datasets. We also investigated how well a combined antigenic 146 

map constructed from a combination of the datasets corresponds to the antigenic maps constructed 147 

from each individual dataset.  148 

Results 149 

We compared 18 datasets from 14 different laboratories (Table 1, Table S1, Supplementary Text, figs. 150 

S1-S25). The datasets were generated and shared within the National Institute of Health SARS-CoV-151 

2 Assessment of Viral Evolution (NIH SAVE) consortium (23), and by outside collaborators. Datasets 152 

were generated using human (n=8), hamster (n=8), and mouse (n=2) sera, and six different 153 

neutralization assays (lentivirus pseudotype neutralization (n=3) (LV-PV-neut), VSV pseudotype 154 

neutralization (n=2) (VSV-PV-neut), focus reduction neutralization test (n=6) (FRNT), PRNT (n=3), 155 

microneutralization (n=1) (Microneut), and cytopathic effect / limiting dilution assays (n=3) (CPE)). 156 

Two datasets were generated using sera pooled from multiple individuals (Maryland (mouse sera) and 157 

Madison (pooled) (hamster sera)). The datasets contain between five and 21 variants and two to 13 158 

groups of sera raised by infection or vaccination with different variants. For the comparisons, we 159 

considered titrations generated using six different serum groups (4 weeks post mRNA-1273 160 

vaccination and convalescent D614G, B.1.1.7, B.1.351, P.1, and B.1.617.2 sera, Table S1) and 23 161 

different variants that were titrated in at least two datasets. 162 

Titer magnitude 163 

Titer magnitude can vary between individual sera that show otherwise similar patterns of reactivity. 164 

We therefore investigated overall differences in titer magnitude between the human, hamster, and 165 

mouse sera. Titers were generally lowest for human sera, and highest for mouse sera (~6.7-fold 166 

higher than human titers), with those for hamster sera being intermediate (~3.1-fold higher than 167 

human titers) (Fig. 1A, 1B, figs. S26-S28, S29A-B). The effect cannot be explained by differences in 168 

assays used (Fig. 1B, figs. S28, S29A,C).  169 

 170 

To control for the difference in magnitude among the raw titers (Fig. 1A, figs. S26-S28), we adjusted 171 

titrations for systematic differences in titer magnitude between datasets. To do so, we modeled each 172 

titer as a combination of the overall geometric mean titer for a variant and serum group, a reactivity 173 
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bias of each serum to account for individuals generating an immune response leading to generally 174 

higher or lower titers, and a per-dataset magnitude effect (Materials and Methods). After adjusting 175 

each titer by the estimated per-dataset magnitude effect, there is no systematic difference in variation 176 

around a common GMT in titrations generated using human and hamster sera, with higher variability 177 

in the two mouse sera datasets (Fig. 1C, figs. S30, S31, S33A) and no difference in variation using 178 

different assays (figs. S32, S33B). 179 

 180 

Therefore, these data indicate that after adjusting for titer magnitude, there is no evidence for 181 

systematic differences among hamster, mouse or human sera. Indeed, due to their higher titers, the 182 

dynamic range of measurement is greater before reaching the limit of detection of the assay in the 183 

hamster and mouse sera, making them more useful than human sera for measuring differences 184 

between antigenically diverse variants. 185 

Fold change 186 

The fold change in neutralization between different variants titrated against the same serum gives a 187 

representation of the antigenic distance between the variants, irrespective of titer magnitude 188 

differences. We investigated whether the fold change measured from the homologous variant to other 189 

variants differed systematically by animal model or assay (Fig. 2, figs. S34-S38). Overall, the datasets 190 

roughly agree in the rank order of fold change measured for the different variants, with the exception 191 

of the Maryland and Madison (pooled) datasets, both generated using a CPE assay (Fig. 2, figs. S34-192 

S35, S39). The amount of fold change differed between datasets. In particular, datasets generated 193 

using CPE assays measured less fold change than other datasets, whereas datasets generated using 194 

lentivirus pseudotype neutralization assays showed greater fold changes (Fig. 2, fig. S35, S40, 195 

S41).The amount of fold change measured using human, hamster, or mouse sera is similar, although 196 

insignificantly higher for the human datasets (fig. S41). Consequently, we find that the hamster model 197 

corresponds well with human sera with regards to fold change, with not enough data for conclusions 198 

about sera from the mouse models. 199 

Immunodominance patterns 200 

Several studies have found evidence for variation in the sensitivity of sera to substitutions at different 201 

positions in the spike protein, consistent with changes in the immunodominance of different sites 202 
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depending on the infecting variant (3, 27, 28). For example, sera raised against the ancestral variants 203 

are sensitive to substitutions at position 484 yet relatively insensitive to substitutions at position 501, 204 

whereas B.1.351 convalescent sera show an opposite pattern, with substitutions at position 484 205 

having little effect on reactivity and changes at position 501 having more effect (3, 27, 28). There is 206 

increasing awareness that such changes in immunodominance may affect the epitopes preferentially 207 

targeted by an individual's immune response, and hence its level of protection against subsequently 208 

circulating variants (3). We investigated whether consistent patterns of immunodominance could be 209 

observed in the datasets analyzed here with regards to sensitivity to substitutions at positions 484 and 210 

501 already described for human sera.  211 

 212 

Figure 3 shows fold differences between pairs of variants differing either at position 484 (E to K, panel 213 

A) or 501 (N to Y, panel B) titrated against six groups of sera. Figures S42-S48 show the same data 214 

split by animal model, assay, and cell type. In general, we find evidence that antibodies from mRNA-215 

1273-immunized and D614G and B.1.1.7 convalescent sera are escaped by substitutions at position 216 

484 (no mouse sera were available for this comparison), whereas neutralization by P.1 convalescent 217 

sera is not affected by the E484K substitution (Fig. 3A, fig. S43, S44). However, we find larger 218 

differences between datasets in the effect of the E484K substitution in B.1.351 convalescent sera, 219 

where the FDA, Emory, and Innsbruck datasets see a strong increase of titers with presence of 220 

E484K, in contrast to other datasets (Fig. 3A, figs. S43, 44). The FDA, Emory, and Innsbruck datasets 221 

were all made with TMPRSS2 overexpressing cell lines, possibly suggesting an effect of TMPRSS2 222 

overexpression on the reactivity to the E484K substitution in B.1.351 sera (figs. S47, Table 1). 223 

However, the same pattern is not present in the Madison (pooled) and Madison (unpooled) datasets, 224 

which were generated using CPE assays and TMPRSS2 overexpressing VeroE6 cells, and is also 225 

absent in the EMC (PRNT) dataset, which was generated using Calu-3 cells that naturally express 226 

TMPRSS2.  227 

 228 

When considering effects of the N501Y substitution (Fig. 3B, fig. S45), we find that on average, 229 

B.1.1.7 and B.1.351 convalescent sera are sensitive to the N501Y substitution in both human and 230 

hamster sera, whereas mRNA-1273, D614G, P.1, and B.1.617.2 convalescent sera are largely 231 
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insensitive. There were no differences relating to the assay or the cell type that was used (figs. S42, 232 

S46, S48).  233 

 234 

Generally, our findings of the reactivity of different serum groups correspond to that found in Wilks et 235 

al. (3), however, while Wilks et al., 2022 found evidence for spike positions other than 484 and 501 236 

being preferentially targeted depending on first-infecting variant (3), we do not have sufficient data to 237 

test these here. Overall, sera from different animal models and titrated in different assays exhibit 238 

broadly similar patterns of immunodominance, with the exception of differences in the reactivity of the 239 

E484K substitution in B.1.351 between datasets, not directly attributable to the animal model, assay, 240 

or cell type used.   241 

Antigenic cartography  242 

Antigenic maps provide a visual summary of titration data and can highlight patterns of reactivity to 243 

different serum groups not easily identified from titer tables (22). They estimate the base antigenic 244 

distances among variants, taking fold change compared to the maximum titer of each serum as input. 245 

This makes antigenic maps insensitive to differences in titer magnitude between datasets. For 246 

accurate placement in the antigenic map, each variant and serum should be determined by at least 247 

three titrations. This 8geometric averaging9 of the data can mitigate the impact of noisy assay 248 

measurement, making the maps robust to some degree of titration error (22). Variants that are closely 249 

related antigenically and that have been titrated against a common set of sera will be positioned 250 

proximally in the map. Antigenic maps thus allow the easy identification of candidate vaccine variants 251 

that most closely represent the currently circulating diversity. We investigated whether antigenic maps 252 

constructed from the 18 datasets analyzed here show broadly similar topologies with regards to the 253 

placement of the main variants. 254 

 255 

All maps show a similar topology of the ancestral, B.1.351, B.1.617.2 and Omicron BA.1 variants (Fig. 256 

4A), with the ancestral variant occupying a central position, B.1.351 positioned towards the top, 257 

B.1.617.2 towards the bottom, and BA.1 furthest from D614G and mRNA-1273 vaccine sera, towards 258 

the right. Where present, Omicron BA.5 was consistently placed at the top of Omicron BA.1. Three 259 

maps (Madison (pooled), Madison (unpooled), and Maryland, third row of Fig. 4A) constructed from 260 

titers generated using CPE assays, differ more substantially from the other maps 3 this was to some 261 
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degree anticipated given that these datasets exhibit discrepancies in rank order and amount of fold 262 

change between variants in at least one serum group (Fig. 2, fig. S34-S35, S40) compared to the 263 

other datasets.  264 

 265 

We considered differences in the relative spread of the pre-Omicron variants (as exemplified by the 266 

distance between the D614G, B.1.351, and B.1.617.2 variants), and the Omicron variants (BA.1 and 267 

BA.2). Antigenic maps made using PRNT assays and hamster sera (Charité, EMC) show a tighter 268 

clustering of the pre-Omicron variants and a looser clustering of the Omicron variants, whereas maps 269 

made using human sera and lentivirus pseudotypes (Duke, FDA, AMC) show the opposite (Fig. 4, fig. 270 

S50). The tighter clustering of the Omicron variants in the Duke, FDA, and AMC datasets may be 271 

related to the smaller number of Omicron sera (Duke: n=5, FDA: n=2, AMC: n=1), which in these 272 

datasets also measure less fold change between BA.1 and BA.2 than other datasets. Given the 273 

longer duration of the pandemic at the time of the circulation of BA.1, these sera may also be more 274 

likely to be affected by undetected earlier infections. This, combined with the small number of 275 

Omicron sera, may lead to lower confidence in the positioning of those variants in the antigenic maps 276 

(fig. S51) and possibly cause the tighter clustering of Omicron variants in those datasets. The larger 277 

distances between the pre-Omicron variants in the lentivirus pseudotype assay datasets is supported 278 

by the larger fold change measured for those datasets (Fig. 2, fig. S52). Overall, the largely similar 279 

relative position of variants in the different antigenic maps suggests that hamster sera can provide an 280 

adequate surrogate for human first-infection sera, but that the choice of assay may affect the relative 281 

distances between variants. 282 

 283 

A global monitoring system of SARS-CoV-2 antigenic variability will benefit if titration data from 284 

different laboratories, animal model sera, and assays can be combined to give a reliable consensus 285 

representation of SARS-CoV-2 antigenic evolution. As distances in an antigenic map are insensitive 286 

to overall titer magnitude, datasets with differences in titer magnitude can be compared and merged. 287 

We therefore investigated how well an antigenic map constructed from all titrations from the 18 288 

datasets reflects the antigenic map positions in each individual dataset. We merged datasets on a 289 

per-variant basis, where we treated the variants as equal across datasets, and each serum was 290 

considered individually. Although a two-dimensional antigenic map is easiest to interpret visually, 291 
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antigenic maps can be constructed in different dimensions, with lower stress in higher dimensions. 292 

Under cross-validation, we found that the merged map (Fig. 4B, fig. S53) provides a good fit to the 293 

data in two dimensions (figs. S54, S55). The map was robust to assay noise (fig. S56) and missing 294 

titers (figs. S57-S59) and to the exclusion of individual datasets (figs. S60, S61), although the merged 295 

map systematically underestimates log2 titers by ~1.66 (fig S58).  296 

 297 

The merged map shows a similar overall topology to the individual antigenic maps (Fig. 4A, figs. S62-298 

S64), with the exception of the antigenic maps made from CPE assay datasets. In agreement with 299 

observations elsewhere (3), pre-Omicron variants placed to the right of the ancestral variant have 300 

substitutions at position 484 (light green, yellow, dark red), with variants in the top right additionally 301 

having the N501Y substitution (yellow). Variants towards the bottom-left area have the L452R 302 

substitution (orange). Omicron variants are placed furthest to the right of the ancestral variant, with 303 

BA.2 and BA.5 placed towards the top of BA.1. 304 

Discussion 305 

We have constructed a statistical framework to compare SARS-CoV-2 neutralization titers and applied 306 

it to data from 18 laboratories, investigating differences in titer magnitude and variability, fold change, 307 

immunodominance patterns, and antigenic interrelatedness using antigenic cartography. Titers in the 308 

human datasets were generally lowest, followed by the hamster datasets, with the highest titers in the 309 

datasets generated using mouse sera. We did not find systematic differences in titer magnitude 310 

related to the assay used. The higher titers for mouse and hamster sera may stem from a higher 311 

inoculum dose used for raising animal sera compared to natural infections or vaccinations in humans. 312 

As a proportion of body weight, the vaccine dose for mice is much higher than for humans. The dose 313 

used for hamster infections was likely also higher than that estimated in human-to-human 314 

transmission. In addition, animals were boosted in one mouse and one hamster dataset after the 315 

initial infection or vaccination (Charité and WUSTL), again possibly leading to higher titers. Although 316 

not investigated due to the absence of metadata, differences between human study populations (such 317 

as age, co-morbidities and disease severity) as well as the timing of serum collection will affect titer 318 

magnitude. For example, in the Galveston dataset, hamster sera were taken at days 14, 28, and 45 319 

post infection, and homologous titers increased ~2.32-fold between day 14 and 45 (9). As we find that 320 
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the rank order of fold change is similar between different animal model sera, the higher titers in non-321 

human sera are not necessarily disadvantageous, as they may allow the characterisation of 322 

antigenically diverse variants without reactivity falling below the limit of detection of the assay. 323 

Dataset-specific differences in titer magnitude can be effectively adjusted for, and the remaining titer 324 

variability is similar between the different human and animal sera and neutralization assays with the 325 

exception of the two mouse datasets, which are more variable, possibly due to the smaller amount of 326 

data.  327 

 328 

We did not find evidence for systematic differences relating to human and animal model sera with 329 

regards to amount of fold change or rank order of variants. However, we found that datasets 330 

constructed using CPE assays measure less fold change with different rank order of variants 331 

compared to other assays, whereas lentivirus pseudotype datasets tend to measure larger fold 332 

changes but rank fold changes similarly. Likewise, antigenic map topology is similar for human, 333 

hamster, and mouse sera and for different assays, with the exception of maps constructed from CPE 334 

assay data that show a different arrangement of variants, and maps generated using lentivirus 335 

pseudotype assay data that show a larger spread of the pre-Omicron variants. Larger fold change and 336 

spread of the pre-Omicron variants in the lentivirus pseudotype assay datasets may be due to higher 337 

assay sensitivity to RBD targeting antibodies, especially since the three datasets used ACE2 338 

overexpressing cell lines. The level of ACE2 expression has been shown to increase how much RBD 339 

targeting antibodies contribute to neutralization (29). Furthermore, changes to spike folding, cleavage, 340 

and density, may lead to differences compared to live virus assays (30, 31). Since the fold changes 341 

measured in the lentivirus pseudotype assay datasets correspond well with the other assays 342 

(excluding the CPE assay) modulo a scale factor, differences to other datasets can be adjusted for by 343 

a linear scale factor as was done in (3). The different rank order and amount of fold change in CPE 344 

assays may be because those assays measure neutralization across multiple replication cycles, and 345 

titers in these assays correspond to a different endpoint, requiring ~99% of the initial inoculum to be 346 

inhibited by antibodies, compared to a ~50% or ~90% inhibition measured in corresponding PRNT, 347 

FRNT, and single-cycle pseudovirus neutralization assays (32). The differences in rank order of fold 348 

change and antigenic map topology in the CPE assays, and the relative correspondence among the 349 
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other datasets suggest that CPE assay datasets may not be suitable for long-term routine antigenic 350 

characterisation of SARS-CoV-2. 351 

 352 

We find that hamster sera mostly recapitulate the immunodominance patterns seen in human sera for 353 

E484K and N501Y, with not enough data yet to tell for mouse sera. The variation in reactivity to the 354 

E484K substitution in B.1.351 sera between different datasets is not directly attributable to the animal 355 

model, assay, or cell type, showing that depending on the dataset, different conclusions about 356 

immunodominance patterns with regards to the E484K substitution may be reached. Head-to-head 357 

comparisons of the same sera and variants in different assays and different laboratories are required 358 

to further elucidate possible drivers of this effect. 359 

 360 

The merged antigenic map generated from titrations from all datasets broadly replicates patterns 361 

observed in the individual maps. Similarly, Netzl et al., 2022, found that an antigenic map constructed 362 

from GMTs extracted from 23 studies was broadly similar to the map presented in Wilks et al., 2022 363 

(18). This provides evidence that data from a variety of sources can be combined to provide a general 364 

overview of the evolution of SARS-CoV-2, which can be helpful for a surveillance system, especially 365 

when datasets from individual laboratories may be incomplete on their own. 366 

 367 

The 18 datasets considered here are heterogeneous with regards to the type of sera and 368 

neutralization assays used, which does not allow us to elucidate all possible causes of the patterns 369 

observed, as not all types of sera have been titrated in each assay. Further, due to absence of data, 370 

we were only able to compare immunodominance patterns for the E484K and N501Y substitutions 371 

and the pre-Omicron serum groups. Finally, because of the very limited number of human first-372 

infection sera to variants arising after Omicron BA.1, we limited our analyses to variants up to BA.5. 373 

Therefore, we were not able to compare serum reactivities and antigenic differences of later Omicron 374 

variants, which are antigenically more diverse than pre-Omicron variants in hamster sera (25, 33) and 375 

for which there may be greater variability between first-infection animal sera and assays.  376 

 377 

Despite these limitations, the results suggest that all assays performed similarly, except for the CPE 378 

assay, and the differences present between human and animal sera and among assays can be 379 
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accounted for by linear scale factors. Hamster sera can therefore serve as a useful substitute for 380 

human first-infection sera, with more data needed to determine the same for mouse sera. To advance 381 

SARS-CoV-2 antigenic surveillance and address the limitations discussed here, two key areas of 382 

ongoing investigation are crucial. First, within-laboratory comparisons of neutralization titers when 383 

using the same sera in different assays, as well as different animal model sera using the same assay. 384 

Second, upon circulation of major new variants, sourcing of first-infection human sera, to continually 385 

monitor the validity of the animal model sera as a surrogate system. These results, combined with the 386 

statistical framework established here for the ongoing comparative analysis SARS-CoV-2 387 

neutralization data from a network of collaborating laboratories, are key components of a coordinated 388 

global surveillance system for monitoring SARS-CoV-2 antigenic variation.  389 

  390 
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 715 

Figure 1: Comparison of titers between datasets as exemplified by the B.1.351 convalescent 716 

serum group. (A) Raw titers for the B.1.351 convalescent serum group. (B) Posterior distribution of 717 

the dataset magnitude effect. Datasets are grouped by animal model on the y-axis and coloured by 718 

assay (blue: FRNT, red: LV-PV-neut, yellow: VSV-PV-neut, purple: Microneut, green: PRNT, orange: 719 

CPE). Vertical bars show the 95% highest posterior density interval, each with a colored dot denoting 720 

the mean. (C) Titers after adjusting for dataset magnitude effects. In A and C, each dot corresponds 721 

to the GMT of a variant titrated against all B.1.351 sera in a particular dataset, GMTs in panel C were 722 

calculated from titers adjusted for dataset magnitude effect. Dots are colored by the animal model 723 

(red: human, green: hamster, blue: mouse). The gray bar heights indicate the median of the GMTs of 724 

the individual datasets. Equivalent figures for the other five serum groups can be found in figs. S27 725 

(titer magnitude) and S31 (titer variability). 726 
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 727 

Figure 2: Fold change in the mRNA-1273, D614G, B.1.351, and B.1.617.2 convalescent serum 728 

groups measured in the 18 datasets. Dots show the mean estimated fold change for each variant 729 

and the bars show the estimated 95% highest posterior density intervals, with the colors 730 

corresponding to the variant. Datasets are grouped on the x-axis with bold vertical lines separating the 731 

FRNT, LV-PV-neut, VSV-PV-neut, PRNT, Microneut, and CPE datasets. The light gray line in each 732 

panel indicates the estimated fold change per variant in a particular serum group calculated across all 733 

datasets, in descending order. The black line shows the estimated fold change per variant in 734 

descending order after accounting for differences in fold change between datasets (Material and 735 

Methods). Variants are ordered on the x-axis by decreasing estimated fold change, calculated in a 736 

particular serum group across all datasets. Equivalent figures that include the B.1.1.7 and P.1 737 

convalescent serum groups, as well as ordered by animal model sera are shown in figs. S30 and S31, 738 

respectively. Figures split by variant are shown in figures S36 (by dataset), S37 (by animal model), 739 

and S38 (by assay).  740 
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 741 

Figure 3: Sensitivity of different serum groups to the E484K and N501Y substitutions. Each row 742 

shows the average fold difference in titer between the two variants on the right, which differ by only 743 

the E484K (A) or the N501Y (B) substitution in the receptor binding domain (RBD). A positive fold 744 

difference corresponds to higher titers against the variant with the substitution, while a negative fold 745 

difference corresponds to higher titers against the variant without the substitution. Symbols and 746 

ranges correspond to the average fold difference and 95% highest posterior density intervals, 747 
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calculated as described in the Methods. Data are colored by animal model (red: human, green: 748 

hamster, blue: mouse). Vertical lines indicate the average fold difference in each dataset, colored by 749 

animal model (red: human, green: hamster, blue: mouse). The gray line indicates no difference in 750 

titers between variants. Figure S42 shows the same figure split by assay.  751 

  752 
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 753 

Figure 4: Antigenic map comparison. (A) Antigenic maps for each of the 18 datasets. Arrows point 754 

to the position of each variant in the merged map shown in panel B. Data for the maps in the bottom 755 

row were generated using CPE assays. (B) Antigenic map constructed from merging all titers of the 756 

18 datasets. D614G, B.1.351, B.1.617.2, BA.1, BA.2 and BA.4/5 are highlighted. A version of this map 757 

colored by variant is shown in fig. S53. In both panels, variants are colored by substitutions in the 758 

RBD. Blue: no substitutions in RBD relative to the ancestral variant, except S477N. Includes ancestral 759 

(D614G and 614D), A.23.1, B.1.526, and B.1.526+S477N variants. Dark green: variants with only the 760 

N501Y substitution in the RBD. Includes B.1.1.7 and D614G+N501Y variants. Light green: variants 761 

with only the E484K substitution in the RBD. Includes B.1.525, R.1, P.2, and B.1.526+E484K variants. 762 

Yellow: variants with the E484K and N501Y substitutions in the RBD. Includes P.1 (+K417T), B.1.351 763 

(+K417N), B.1.1.7+E484K, and B.1.621 (+R346K) variants. Orange: variants with the L452R (or Q, in 764 

the case of C.37) substitution in the RBD: Includes C.36.3, C.37 (+F490S), B.1.429, B.1.617.2 765 

(+T478K), B.1.617.2+K417N (+T478K), AY.4.2 (+T478K), AY.1+K417N (+T478K), and AY.2+K417N 766 

(+T478K) variants. Dark red: variants with L452R and E484Q: includes B.1.617.1 (+T478K), B.1.630 767 

(+T478K), and AY.3+E484Q (+T478K) variants. Bright red: Omicron BA.1 and BA.1.1 variants. 768 

Magenta: Omicron BA.2, BA.2.12.1, and BA.3 variants. Light pink: Omicron BA.4 and BA.5 variants.  769 
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 771 

Laboratory Animal model Antigen type Assay / cell type Number of serum 
groups 

Number of 
variants 

Reference 

Duke Human Lentivirus 
pseudotypes 

Pseudovirus neutralization 
HEK293T-ACE2 

13 21 (3) 

Emory Human Live virus FRNT 
VeroE6-TMPRSS2 

4 21 unpublished 

US Food and Drug 
Administration (FDA) 

Human Lentivirus 
pseudotypes 

Pseudovirus neutralization 
HEK293T-ACE2-TMPRSS2 cells 

10 15 (8) 

Innsbruck Human Live virus FRNT 
Vero-TMPRSS2-ACE2 

10 9 (12) 

Oxford Human Live virus FRNT 
Vero 

6 8 (20) 

Mt. Sinai Human Live virus Microneutralization 
VeroE6 

2 8 (24) 

Amsterdam Medical 
Centre (AMC) 

Human Lentivirus 
pseudotypes 

Pseudovirus neutralization 
HEK293T-ACE2 

7 7 (11) 

Geneva Human Live virus PRNT 
VeroE6 

6 7 (7) 

Madison (pooled) Hamster, pooled 
sera 

Live virus CPE 
VeroE6-TMPRSS2 

8 12 unpublished 

Charité Hamster Live virus PRNT 
VeroE6 

7 11 (25) 

Erasmus Medical Centre 
(EMC) (PRNT) 

Hamster Live virus PRNT 
Calu-3 

7 11 (4) 

Madison (unpooled) Hamster Live virus CPE 
VeroE6-TMPRSS2 

7 10 unpublished 

https://paperpile.com/c/PLMlS1/SWWr6
https://paperpile.com/c/PLMlS1/SWWr6
https://paperpile.com/c/PLMlS1/SWWr6
https://paperpile.com/c/PLMlS1/sfblr
https://paperpile.com/c/PLMlS1/sfblr
https://paperpile.com/c/PLMlS1/sfblr
https://paperpile.com/c/PLMlS1/OJyyr
https://paperpile.com/c/PLMlS1/OJyyr
https://paperpile.com/c/PLMlS1/OJyyr
https://paperpile.com/c/PLMlS1/i8016
https://paperpile.com/c/PLMlS1/i8016
https://paperpile.com/c/PLMlS1/i8016
https://paperpile.com/c/PLMlS1/DnuyA
https://paperpile.com/c/PLMlS1/DnuyA
https://paperpile.com/c/PLMlS1/DnuyA
https://paperpile.com/c/PLMlS1/RSS6g
https://paperpile.com/c/PLMlS1/RSS6g
https://paperpile.com/c/PLMlS1/RSS6g
https://paperpile.com/c/PLMlS1/KcrWV
https://paperpile.com/c/PLMlS1/KcrWV
https://paperpile.com/c/PLMlS1/KcrWV
https://paperpile.com/c/PLMlS1/iQAPE
https://paperpile.com/c/PLMlS1/iQAPE
https://paperpile.com/c/PLMlS1/iQAPE
https://paperpile.com/c/PLMlS1/mW8Vd
https://paperpile.com/c/PLMlS1/mW8Vd
https://paperpile.com/c/PLMlS1/mW8Vd
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EMC (VeroE6) Hamster VSV pseudotypes Pseudovirus neutralization 
VeroE6 

5 7 (4) 

EMC (Calu-3) Hamster VSV pseudotypes Pseudovirus neutralization 
Calu-3 

5 7 (4) 

Galveston Hamster Live virus FRNT 
VeroE6 

5 6 (9) 

Madison (FRNT) Hamster Live virus FRNT 
VeroE6-TMPRSS2 

5 5 unpublished 

Maryland Mouse (BALB/c), 
pooled sera 

Live virus CPE 
VeroE6-TMPRSS2 

6 8 (26) 

Washington University at 
St. Louis (WUSTL) 

Mouse (129S2) Live virus FRNT 
VeroE6-TMPRSS2 

2 5 (10) 

Table 1: Overview of datasets used in this study. For detailed information on animal model sera and variants, see Table S1, Supplementary Text, figs. S1-772 

S25.773 

https://paperpile.com/c/PLMlS1/mW8Vd
https://paperpile.com/c/PLMlS1/mW8Vd
https://paperpile.com/c/PLMlS1/mW8Vd
https://paperpile.com/c/PLMlS1/mW8Vd
https://paperpile.com/c/PLMlS1/mW8Vd
https://paperpile.com/c/PLMlS1/mW8Vd
https://paperpile.com/c/PLMlS1/YQ5Id
https://paperpile.com/c/PLMlS1/YQ5Id
https://paperpile.com/c/PLMlS1/YQ5Id
https://paperpile.com/c/PLMlS1/ph7vF
https://paperpile.com/c/PLMlS1/ph7vF
https://paperpile.com/c/PLMlS1/ph7vF
https://paperpile.com/c/PLMlS1/9UqQ1
https://paperpile.com/c/PLMlS1/9UqQ1
https://paperpile.com/c/PLMlS1/9UqQ1
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