

1 **Title: 5-hydroxymethylcytosines regulate gene expression as a passive DNA demethylation
2 resisting epigenetic mark in proliferative somatic cells**

3 **Authors:** Alex Wei^{1,2}, Hongjie Zhang^{1,2}, Qi Qiu^{1,2}, Emily B. Fabyanic^{1,2}, Peng Hu^{1,2,3}, Hao Wu^{1,2,4,5}

4 **Affiliations:**

5 ¹ Department of Genetics, University of Pennsylvania, Philadelphia, PA 19104

6 ² Penn Epigenetics Institute, University of Pennsylvania, Philadelphia, PA 19104

7 ³ Present address: College Fisheries and Life Sciences, Shanghai Ocean University, Shanghai, China

8 ⁴ Lead contact

9 [#]Correspondence should be addressed to H.W. (haowu2@pennmedicine.upenn.edu).

10 **SUMMARY**

11 Enzymatic erasure of DNA methylation in mammals involves iterative 5-methylcytosine (5mC) oxidation by
12 the ten-eleven translocation (TET) family of DNA dioxygenase proteins. As the most abundant form of
13 oxidized 5mC, the prevailing model considers 5-hydroxymethylcytosine (5hmC) as a key nexus in active
14 DNA demethylation that can either indirectly facilitate replication-dependent depletion of 5mC by inhibiting
15 maintenance DNA methylation machinery (UHRF1/DNMT1), or directly be iteratively oxidized to 5-
16 formylcytosine (5fC) and 5-carboxycytosine (5caC) and restored to cytosine (C) through thymine DNA
17 glycosylase (TDG)-mediated 5fC/5caC excision repair. In proliferative somatic cells, to what extent TET-
18 dependent removal of 5mC entails indirect DNA demethylation via 5hmC-induced replication-dependent
19 dilution or direct iterative conversion of 5hmC to 5fC/5caC is unclear. Here we leverage a catalytic
20 processivity stalling variant of human TET1 (TET1.var: T1662E) to decouple the stepwise generation of
21 5hmC from subsequent 5fC/5caC generation, excision and repair. By using a CRISPR/dCas9-based
22 epigenome-editing platform, we demonstrate that 5fC/5caC excision repair (by wild-type TET1, TET1.wt),
23 but not 5hmC generation alone (by TET1.var), is requisite for robust restoration of unmodified cytosines
24 and reversal of somatic silencing of the methylation-sensitive, germline-specific *RHOXF2B* gene promoter.
25 Furthermore, integrated whole-genome multi-modal epigenetic sequencing reveals that hemi-
26 hydroxymethylated CpG dyads predominantly resist replication-dependent depletion of 5mC on the
27 opposing strand in TET1.var-expressing cells. Notably, TET1.var-mediated 5hmC generation is sufficient
28 to induce similar levels of differential gene expression (compared to TET1.wt) without inducing major
29 changes in unmodified cytosine profiles across the genome. Our study suggests 5hmC alone plays a limited
30 role in driving replication-dependent DNA demethylation in the presence of functional DNMT1/UHRF1
31 mechanisms, but can regulate gene expression as a *bona fide* epigenetic mark in proliferative somatic cells.

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47 **INTRODUCTION**

48 DNA methylation is a dynamically regulated epigenetic modification with essential roles in gene regulation,
49 genome stability, mammalian development and tissue maturation (Bird, 2002; Greenberg and Bourc'his,
50 2019; Li, 2002; Reik, 2007; Smith and Meissner, 2013; Wei and Wu, 2022). Mammalian DNA cytosine
51 methylation predominantly occurs symmetrically within palindromic cytosine-guanine (CpG) dinucleotides.
52 New CpG methylation patterns are initially established by the enzymatic activity of the *de novo* DNA
53 methyltransferases DNMT3A and DNMT3B (Okano et al., 1999). In proliferating mammalian somatic cells,
54 global CpG methylation patterns are maintained during DNA replication by the maintenance DNA
55 methyltransferase DNMT1. Specifically, upon cell division, symmetrically methylated CpG patterns are
56 inherited onto nascent DNA strands by DNMT1 and its obligate interacting partner, ubiquitin-like, containing
57 PhD and RING finger domains 1 (UHRF1), a E3 ubiquitin-protein ligase that selectively recognizes hemi-
58 methylated CpGs on the parental strand (Bostick et al., 2007).

59
60 Dynamic regulation of the DNA methylome involves genome-wide and locus-specific 5mC removal. Global
61 5mC erasure occurs in biological systems where DNA maintenance machinery is functionally impaired,
62 precluding the re-establishment of 5mCG on nascent strands during DNA replication. For instance, DNA
63 methylation maintenance machinery inhibition can occur when DNMT1 is excluded from nucleus (e.g. in
64 early pre-implantation embryos) or when UHRF1 is transcriptionally repressed or functionally inhibited (e.g.
65 in developing germ cells). Functionally, replication-dependent passive DNA demethylation is an important
66 mechanism for erasing parental-origin specific imprints in developing germ cells, and for equalizing
67 differences between paternal and maternal DNA methylomes in pre-implantation embryos (Greenberg and
68 Bourc'his, 2019; Wu and Zhang, 2014).

69
70 Active erasure of CpG methylation requires 5mC oxidation by the TET family of dioxygenase proteins. TET-
71 dependent DNA demethylation can occur through two non-mutually exclusive pathways. The first involves
72 iterative oxidization of 5mC and 5hmC to generate highly oxidized methylcytosines: 5fC and 5caC. TDG
73 can then selectively excise 5fC and 5caC to generate abasic sites and single-strand breaks (SSBs), which
74 are subsequently restored to unmodified cytosines through the base excision repair (BER) pathway. By
75 comparison to the aforementioned global DNA demethylation pathway, this TET/TDG-mediated 5fC and
76 5caC excision repair pathway is replication-independent and can thus operate in both proliferative and post-
77 mitotic cells.

78
79 The second TET-dependent DNA demethylation mechanism operates indirectly, via oxidized hemi-
80 methylation (i.e. 5hmCG/5fCG/5caCG on parental strand) induced replication-dependent depletion of
81 5mCG on the nascent strand. In support of this mechanism, multiple *in vitro* biochemical studies using
82 recombinant proteins and modified duplex oligonucleotides demonstrated that DNMT1 exhibited markedly
83 reduced activity towards the unmodified strand of hemi-hydroxymethylated CpG dyads (13-60 fold
84 reduction compared to hemi-methylated CpG dyads) (Hashimoto et al., 2012; Valinluck and Sowers, 2007).
85 Similarly, highly oxidized methylcytosines 5fC (8-20 fold reduction) and 5caC (>9-fold reduction) can also
86 negatively impact DNMT1 enzymatic activity to methylate the CpG on the opposite strand (Ji et al., 2014;
87 Seiler et al., 2018). Furthermore, UHRF1, which is essential for recruiting DNMT1 to hemi-methylated CpG
88 dyads, has reduced affinity for selectively binding hemi-modified DNA when 5mC is replaced by 5hmC
89 (>10-fold reduction in binding affinity for 5hmCG/CG compared to 5mCG/CG containing DNA) (Hashimoto
90 et al., 2012). Together, these *in vitro* biochemical studies suggested a model in which oxidized forms of
91 5mC can substantially reduce the activity of maintenance methylation machinery (DNMT1/UHRF1) at CpG
92 dyads thus contributing to DNA demethylation in proliferative somatic cells.

94 Defining the relative contributions of both pathways is critical for understanding TET-dependent DNA
95 demethylation mechanisms. Complete inhibition of these pathways has previously been achieved by
96 deleting all three TET methylcytosine dioxygenases, *Tet1-3*, in cultured cells (Lu et al., 2014) and in mouse
97 embryos (Cheng et al., 2022; Dai et al., 2016). In these studies, whole-genome bisulfite sequencing
98 analyses indicate that the loss of all TET enzymes results in hypermethylation at various *cis*-regulatory
99 elements (CREs), including proximal promoters and distal enhancers. These findings thus support a model
100 where TET proteins and 5mC oxidation are required for driving active DNA demethylation at dynamically
101 regulated CREs. While 5hmC is the most abundant oxidized form of 5mC, direct evidence of 5hmC inducing
102 replication-dependent loss of 5mC in cellular contexts remains scarce. Thus, in proliferative somatic cells,
103 to what extent TET-dependent removal of 5mC entails indirect demethylation via 5hmC-induced replication-
104 dependent dilution or direct conversion of 5hmC to highly oxidized 5fC/5caC for excision repair remains
105 unclear.

106
107 In this study, we leveraged a catalytic processivity stalling variant of human TET1 (TET1.var: T1662E) to
108 decouple the stepwise generation of 5hmC from subsequent 5fC/5caC excision and repair (**Figure 1A**). By
109 combining locus-specific or epigenome-wide 5hmC editing (via TET1.var) with integrated multi-modal
110 epigenetic sequencing analysis, we delineate the contributions of direct versus indirect modes of 5hmC-
111 induced active DNA demethylation by contrasting cells expressing TET1 stalling variant (5hmC generation
112 alone) with those expressing wild-type TET1 (5hmC generation plus 5fC/5caC excision repair). In contrast
113 to the prevailing view, our study provides compelling evidence to support that 5hmC alone plays a limited
114 role in driving replication-dependent DNA demethylation in the presence of functional DNA maintenance
115 machinery DNMT1/UHRF1 but can regulate gene expression as a *bona fide* epigenetic mark in proliferative
116 somatic cells.

117 118 RESULTS

119 **Development of a CRISPR/dCas9-based locus-specific 5hmC editor to investigate regulatory roles** 120 **of TET-mediated direct and indirect DNA demethylation pathways**

121 Human TET2 enzymatic processivity can be engineered to impede successive 5mC oxidation beyond
122 5hmC by mutating a conserved active site residue (Caldwell et al., 2021; Liu et al., 2017). Thus, we
123 reasoned that targeted recruitment of a catalytic stalling TET variant can be a powerful approach to
124 mechanistically characterize the direct effects of 5hmC generation on targeted genomic loci. Specifically,
125 we introduced a threonine-to-glutamate (T1662E) mutation into the human TET1 active site (TET1.var),
126 thus biochemically decoupling 5hmC generation from 5fC/5caC excision repair and subsequent restoration
127 of unmodified C (**Figure 1A**).

128
129 To achieve targeted recruitment of TET1.var as a programmable 5hmC writer, we leveraged an optimized
130 catalytically inactivated *Streptococcus pyogenes* Cas9 (dSpCas9)-based peptide repeat system (dCas9-
131 SunTag) that enables the efficient recruitment of multiple copies of either DNMT3A- or TET1- catalytic
132 domain (CD) for targeted DNA methylation or demethylation, respectively, with minimal off-target effects
133 (Morita et al., 2016; Pflueger et al., 2018). We integrated TET1.var into a modular All-in-one construct that
134 encodes all three components required for the SunTag recruitment system (Morita et al., 2016): 1) multiple
135 short GCN4 peptide repeats are fused to a CRISPR RNA-guided dCas9 nuclease; 2) effectors (i.e. TET1
136 CD) are tethered to anti-GCN4 antibody single-chain variable fragments (scFv) and super-folder green
137 fluorescent protein (sfGFP); 3) human U6 promoter (hU6) driven single guide RNA (sgRNA) (**Figure 1B**).
138 As controls for TET1.var catalytic activity, we also constructed modular All-in-one vectors encoding wild-
139 type TET1 (TET1.wt: capable of generating 5hmC and 5fC/5caC) and catalytically inactivated TET1
140 (H1671Y/D1673A TET1.mut: no 5mC oxidation activity). Immunoblotting analysis of transfected cells

141 indicates that protein levels of both dCas9-5x[GCN4] (peptide repeats) and scFv-sfGFP-TET1 are
142 comparable among different TET1.wt/mut/var CDs (**Figure S1A-B**).
143

144 To benchmark dCas9-SunTag based 5hmC editing efficiency, we focused on the methylation-sensitive
145 promoter of a spermatogenesis gene, *RHOXF2B*, in HEK293T cells. Provided the relatively low expression
146 of endogenous TETs and low global 5hmC levels observed in HEK293T cells (Ito et al., 2011), these cells
147 afford an ideal platform for evaluating our platform. In a pilot experiment, we co-transfected HEK293T cells
148 with dCas9-SunTag constructs (without specific sgRNAs) and a separate pU6-sgRNA;pEF1a-Puro vector
149 encoding either scramble sgRNA (sg_{Ctrl}) or an sgRNA targeting ~200bp upstream of the *RHOXF2B*
150 (sg*RHOXF2B*) transcriptional start site (TSS). After 24 hours of transfection, we enriched for sgRNA
151 expressing cell populations using puromycin drug selection for 48 hours (**Figure S1A**). Next, we performed
152 5hmC DNA immunoprecipitation (5hmC-DIP) followed by quantitative polymerase chain reaction (qPCR)
153 (**Figure S1C** and **Table S1**). We validated both TET1.wt and TET1.var generate substantial levels of 5hmC
154 (TET1.wt: 16.1% and TET1.var: 17.3% of input) at the *RHOXF2B* promoter in a sgRNA- and TET1 catalytic
155 activity-dependent manner (**Figure S1C**).
156

157 To further characterize the targeted epigenome-editing efficiency and specificity of the dCas9-SunTag
158 system encoded by all-in-one vectors (**Figure S1D**), we performed comprehensive analysis of all major
159 cytosine modification states of fluorescence-activated cell sorting (FACS)-isolated GFP+/DAPI- HEK293T
160 cells to disambiguate 5mC from 5hmC (Huang et al., 2010) and unmodified C from 5fC/5caC (Wu et al.,
161 2014). First, to resolve base ambiguity between 5mC and 5hmC, we employed BS-seq in conjunction with
162 bisulfite-assisted APOBEC-Coupled-Epigenetic-sequencing (bACE-seq) (Fabianic et al., 2023).
163 Specifically, bACE-seq quantitatively profiles 5hmC at base resolution by harnessing the differential
164 deaminase activity of human APOBEC3A (A3A) deaminase towards 5mC and chemically protected 5hmC
165 (**Figure 1C**). Through subtracting bACE-seq from BS-seq signals, we can reveal true 5mC levels. Second,
166 to resolve epigenetic ambiguity between unmodified C and 5fC/5caC levels, we utilized M.SssI-assisted
167 Bisulfite sequencing (MAB-seq) (Wu et al., 2014). Together, with sample-specific lambda phage DNA spike-
168 ins as internal controls for validating A3A deaminase efficiency (n=7, mean±sd: 98.7±0.53% 5mCG
169 deamination rate for bACE-seq) and M.SssI methyltransferase (n=7, mean±sd: 98.0±0.20% 5CG
170 protection rate for MAB-seq) enzymatic activity (**Figure S1E-F**), the integrated BS/bACE/MAB-seq assays
171 afford precise, base-resolution analysis for 5mCG, 5hmCG, 5fCG/5caCG, and unmodified 5CG levels.
172

173 Because 5hmC (<0.5%) and true 5mC (<1.6%) levels were low at non-CG contexts (CHG and CHH) across
174 samples (**Figure S1G**), we focused our locus-specific epigenetic sequencing analysis on CpG sites (9
175 CpGs within 290 bp amplicons) at the *RHOXF2B* proximal promoter region. Locus-wide analysis of CG
176 modification levels reveal that in contrast to non-transfection control (NTC: 1.13%) or TET1.mut (sg_{Ctrl}:
177 1.40%, sg*RHOXF2B*: 1.51%), targeted recruitment of both TET.wt and TET.var to the *RHOXF2B* proximal
178 promoter markedly increases 5hmC levels (TET1.wt, sg_{Ctrl}: 8.31%, sg*RHOXF2B*: 19.2%; TET1.var, sg_{Ctrl}:
179 4.63%, sg*RHOXF2B*: 29.4%;) (**Figure 1D**). Expectedly, we also observe a corresponding decrease in
180 5mCG levels when TET1.wt and TET1.var are targeted by sg*RHOXF2B* to the promoter region (**Figure**
181 **1D**). While we did not observe any substantial increase in steady state 5fCG/5caCG levels across samples,
182 unmodified 5CG levels significantly increased in TET1.wt (sg_{Ctrl}: 29.0%, sg*RHOXF2B*: 48.8%) but not in
183 TET.var (sg_{Ctrl}: 27.1%, sg*RHOXF2B*: 28.5%) (**Figure 1D**). Base-resolution analysis of all 9 CpGs covered
184 by the amplicon further confirm these observations and reveal epigenetic heterogeneity between CpG sites
185 in response to targeted epigenome-editing (**Figure 1E**). Together, these results support a model in which
186 highly oxidized 5fC and 5caC (generated only by TET1.wt) are rapidly removed by endogenous TDG
187 enzyme and restored to unmodified C through excision repair in our system. As targeted recruitment of
188 TET1.var only results in marked increases in 5hmCG but not 5CG levels, these results validated that the

189 catalytic processivity of TET1.var is distinct from that of TET1.wt. Thus, when paired with the dCas9-
190 SunTag system, the TET1 stalling variant can serve as robust 5hmC editor at targeted loci.
191

192 To determine the potentially divergent gene regulatory effects of TET1.wt (5hmC generation plus 5CG
193 restoration) and TET1.var (5hmC generation alone) on the *RHOXF2B* gene expression, we performed qRT-
194 PCR analysis of FACS-isolated GFP+/DAPI- HEK293T cells transfected with all-in-one dCas9-SunTag-
195 TET1.wt/mut/var effectors for 72 hours (**Figure S1A**). While targeted recruitment of both TET1.wt (35.1-
196 fold for sg*RHOXF2B* vs. sgCtrl, $P=0.0245$) and TET1.var (4.94-fold for sg*RHOXF2B* vs. sgCtrl, $P=0.0313$)
197 results in substantial reactivation for *RHOXF2B* gene expression compared to scrambled sgRNA controls,
198 TET1.wt was significantly more robust in transcriptional activation (sg*RHOXF2B*: $P=0.0344$ for TET1.wt vs.
199 TET1.var) (**Figure 1F**). Given the relatively commensurate expression levels of dCas9-SunTag systems
200 (**Figures S1B and S1D**), this difference between TET1.wt and TET1.var in the transcriptional reversal of
201 somatic silencing of the methylation-sensitive *RHOXF2B* promoter may be predominantly attributed to
202 distinctions in the catalytic processivity of these TET variants.
203

204 Taken together, these results suggest that dCas9-SunTag-TET1.var can efficiently oxidize 5mC to 5hmC
205 on hyper-methylated chromatin substrates in cells, but cannot generate 5fC/5caC and restore unmodified
206 C. Therefore, this dCas9-SunTag-TET1.var platform can serve as a versatile tool to characterize gene
207 regulatory roles of 5hmCG at directly targeted *cis*-regulatory elements. In addition, gene expression
208 analysis shows that 5hmC alone may have a moderate gene activating role at methylation-sensitive
209 promoters independent of its role as an intermediate of the TET-mediated direct DNA demethylation
210 pathway.
211

212 **Impact of the TET1 stalling variant on (hydroxy)methylomes and restoration of unmodified C across 213 diverse genomic features**

214 Having validated the catalytic processivity of 5hmC stalling variant (TET1.var) in the context of targeted
215 epigenome-editing of an endogenous genomic locus, we next sought to comprehensively analyze all three
216 major cytosine states (5C/5mC/5hmC in the CG context) in HEK293T cells that globally express
217 TET1.wt/mut/var CD (**Figure 2A and S2A**). Western blot analysis indicates that the protein levels of
218 different TET1 CDs are commensurately translated across biological replicates in HEK293T cells (**Figure
219 S2B**). Transcriptome-wide analysis shows that while all three endogenous TET enzymes (TET1-3) are
220 expressed at low levels, the normalized RNA levels of TET1.wt/mut/var were markedly higher (on average
221 38-fold) than that of endogenous TET1 in controls (**Figure S2C**). Therefore, these results suggest that 5mC
222 oxidation activity measured in TET1.wt- and TET1.var-expressing cells is predominantly derived from
223 exogenous TET enzymes. In addition, global expression of TET1.wt/mut/var did not detectably affect the
224 expression levels of endogenous genes encoding all major components involved in the DNA methylation
225 and demethylation enzymatic cascades (**Figure S2C**) (Wei and Wu, 2022).
226

227 To jointly profile 5mCG and 5hmCG from the same sample at base-resolution, we applied an integrated
228 (hydroxy)methylome sequencing approach by combining BS-seq (maps 5mC+5hmC) with bACE-seq
229 (maps 5hmC only) to analyze HEK293T cells that globally express TET1.wt/mut/var CDs (**Table S2**)
230 (Fabyanic et al., 2023). After 72 hours of transient transfection in HEK293T cells, genomic DNA (gDNA)
231 was co-purified with total RNAs from FACS-isolated GFP+/DAPI- cells and spiked with 0.5% lambda phage
232 gDNA as internal controls to access the sample-specific A3A performance in bACE-seq (average A3A
233 deamination efficiency: 99.1%, benchmarked by *in vitro* methylated lambda gDNA) (**Figure S3A**). Next, we
234 quantitatively determined global changes in 5mCG/5hmCG/5CG levels in response to TET variants with
235 different catalytic processivity (i.e. TET1.wt/mut/var). Global expression of TET1.var (5hmCG: 3.95%)
236 results in substantially higher level of 5hmCG levels compared to catalytically inactive TET1.mut (5hmCG:
237 0.92%), and TET1.var is less active than TET1.wt (5hmCG: 10.5%) in terms of 5hmC generation (**Figure**
238 5

238 **S3B**), which is consistent with previous results biochemically characterizing human TET2 variants *in vitro*
239 (Liu et al., 2017),
240

241 To gain a genome-wide view of 5hmCG levels, we analyzed 10-kb non-overlapping genomic intervals in
242 TET1.wt/mut/var expressing cells. Specifically, paired analysis of the same pool of bisulfite converted gDNA
243 shows that 5mCG and 5hmCG profiles are highly concordant between biological replicates (**Figure S3C**).
244 We then merged the two replicates and performed statistical calling of 5hmCG enriched 10-kb genomic
245 regions ($P < 2.5 \times 10^{-4}$) using a binomial distribution model previously established for identifying 5hmC-
246 modified CpG sites in mammalian genomes (Schutsky et al., 2018). Compared to controls (n=17,256) and
247 TET1.mut (n=9,512), we identified substantially higher numbers of 10-kb genomic regions that are
248 significantly enriched for 5hmCG in TET1.var (n=154,159) and TET1.wt (n=215,381) samples (**Figure 2B**).
249 Surprisingly, correlational analysis of unmodified 5CG levels for either all (n=282,870, top in **Figure 3C**) or
250 5hmCG-enriched (n=154,482, bottom in **Figure 3C**) 10-kb genomic intervals reveal that only TET1.wt but
251 not TET1.var induces marked increases in 5CG levels when compared to TET1.mut control. Quantitative
252 analysis of genomic intervals associated with different levels of 5hmCG show that 5CG levels only
253 substantially increased in TET1.wt-, but not in TET1.var-expressing cells when compared to TET1.mut
254 (**Figure S3D**). Taken together, these results suggest in contrast to TET1.wt, 5hmCG generation alone by
255 TET1.var is not sufficient to induce substantial genome-wide restoration of unmodified cytosines (i.e. 5CG).
256

257 Because TET enzymes are known to exhibit distinct catalytic processivity at different *cis*-regulatory
258 elements (Schutsky et al., 2018; Wu et al., 2014; Wu and Zhang, 2017), we next sought to determine
259 whether 5hmCG generation by TET1.var can mediate active DNA demethylation at specific genomic
260 features characterized by different levels of transcriptional activity or local chromatin states. To this end,
261 we annotated major genomic features (e.g. promoters, enhancers and genic regions) with ENCODE histone
262 modification profiles generated in wild-type HEK293T cells (Consortium, 2012). Across all annotated
263 genomic features, TET1.wt but not TET1.var, induced a marked increase in 5CG levels (**Figure S3E**). Next,
264 we performed quantitative analysis on a subset of genomic regions statistically enriched with comparable
265 levels of 5hmCG in TET1.var and TET1.wt (middle panel in **Figure 2D**). As expected, transcriptionally active
266 promoters and gene bodies are associated with lower levels of true 5mCG compared to their inactive
267 counterparts; and both TET1.wt and TET1.var-expressing cells are associated with varying degrees of
268 5mCG oxidation across different genomic features (top panel in **Figure 2D**). When compared to TET1.mut,
269 this analysis shows that TET1.wt induces marked increase in 5CG levels (mean 5CG restoration: 17.6%,
270 ranging from 12.6% for active promoters to 22.1% for enhancers) at various regulatory elements. By
271 comparison, TET1.var results in an approximately 10-fold less 5CG increase at corresponding genomic
272 elements (mean 5CG restoration: 1.72%, ranging from 1.1% for active promoters to 2.6% for enhancers)
273 (bottom panel in **Figure 2D**). Heatmap visualization of these 5hmCG-enriched genomic features further
274 confirm that 5hmCG generation by TET1.var only leads to minimal changes in 5CG levels at these sites
275 and their flanking regions (**Figure 2E**). Single-base resolution maps of 5mCG, 5hmCG and 5CG at
276 representative genomic features also support the conclusion that 5mCG oxidation to 5hmCG by TET1.var
277 is not sufficient to induce substantial 5CG restoration, suggesting that 5fCG/5caCG generation by TET1.wt
278 and subsequent excision repair by TDG/BER are likely required for robust active DNA demethylation
279 (**Figure 2F**).
280

281 **Hemi-hydroxymethylation is predominantly resistant to 5CG restoration on the opposing strand**

282 Previous *in vitro* biochemical studies suggested that hemi-hydroxymethylation can substantially reduce the
283 activity of maintenance methylation machinery (DNMT1/UHRF1) on the nascent strand of CpG dyads
284 (**Figure 3A**), thus contributing to DNA demethylation in proliferative somatic cells. This model predicts that
285 5hmCG generation by TET1.var would result in a substantial increase in 5CG levels on the opposing strand

286 in our system. To test this, we first performed strand-specific statistical calling of 5hmC-modified CG sites.
287 Using a *P* value cut-off of 2.5×10^{-4} , we identified a 4,183,293 and 928,205 5hmCG sites in TET1.wt- and
288 TET1.var-expressing cells (**Figure S4A**). As anticipated, a substantially lower number of high-confidence
289 5hmCG sites were identified in TET1.mut controls ($n=99,327$). By restricting our analysis to a subset of
290 5hmC-modified CpG dyads with sufficient sequencing coverage on both strands ($\text{cov} \geq 5$), we observe that
291 the majority of 5hmCG dyads in TET1.var (95.4%) are asymmetrically modified, whereas a higher number
292 of symmetrically modified 5hmCpG dyads were detected in TET1.wt (TET1.var: 4.6% vs. TET1.wt: 18.2%),
293 reflecting the higher catalytic activity of TET1.wt (**Figure S4B**).

294
295 We next analyzed 5mCG, 5hmCG and 5CG levels on both called and opposing strands for a cohort of
296 asymmetrically modified CpG dyads catalyzed by TET1.var (mean 5hmC level=30.4% on called strand,
297 blue in **Figure 3B**). Compared to TET1.mut control, this analysis shows that TET1.var only engenders a
298 relatively small increase in 5CG levels on the opposing strand (mean: 2.2%; measured by the difference
299 between TET1.var and TET1.mut), whereas TET1.wt induces a ~10-fold higher increase in 5CG levels
300 (mean: 21.3%; **Figure 3B**). Given the relatively low, but detectable, expression level of TET1-3 (**Figure**
301 **S2C**), the endogenous TET activity may also contribute to detected 5CG restoration observed in TET1.var-
302 expressing cells. Thus, this helps to quantitatively define the upper bound of TET1.var-mediated indirect
303 depletion of 5CG on the opposing strand (up to 2.2%). At these hemi-hydroxymethylated CpG dyads, a
304 marked decrease in 5mCG levels was only observed on the called strand (mean 5mCG oxidation: 29.5%;
305 measured by the difference between TET1.var and TET1.mut), but not on the opposing strand (mean
306 5mCG oxidation: 1.2%) (**Figure 3B**), which suggests that 5hmCG (on the called strand) may largely be
307 paired with 5mCG (on the opposing strand).

308
309 Similar analysis of a cohort of asymmetrically modified CpG dyads catalyzed by TET1.wt (mean 5hmC
310 level=32.1% on the called strand, red in **Figure S4C**) indicates that 5CG levels on both called and opposing
311 strands increase substantially in TET1.wt-expressing cells compared to TET1.mut. Thus, these results
312 suggest that unlike the limited impact of steady-state hemi-hydroxymethylation (generated by TET1.var) on
313 5CG restoration on the opposing strand (**Figure 3A-B**), TET1.wt-mediated 5fC/5caC excision repair may
314 induce the 5CG restoration on the called strand first, which subsequently causes replication-dependent
315 5mC loss on the opposing strand upon cell division (**Figure S4C-D**).

316
317 To extend beyond the analysis of population averages among asymmetrically modified CpG dyads, we
318 directly linked all three CG modification states (5mCG/5hmCG/5CG in ternary plots) on called strands with
319 levels of 5CG on opposing strands (colored coded: red – high 5CG levels, blue – low 5CG levels) in
320 TET1.wt/mut/var-expressing cells (**Figure 3C** and **S4E**). The ternary plots reveal high levels of epigenetic
321 heterogeneity among asymmetrically modified CpG dyads and show both 5CG and 5mCG preferentially
322 exist in symmetrically modified configurations (5mC-modified on both strands in the left bottom corners,
323 and unmodified 5CG on both strands in the right bottom corners in **Figure 3C** and **S4E**). Thus, these results
324 suggest that asymmetrical 5hmCG on the called strand tends to be paired with 5mCG, but not 5CG, on the
325 opposing strand. Taken together, our integrated base-resolution epigenomic analysis of all major CG
326 modification states support a model in which hemi-hydroxymethylation of CpGs by TET1 stalling variant
327 generally does not engender an indirect mode for 5CG restoration on the nascent strand upon DNA
328 replication.

329
330 **Transcriptome-wide RNA expression analysis reveals gene regulatory roles for 5hmC as a *bona fide*
331 epigenetic modification**

332 A previous study demonstrated that a mouse Tet2 stalling variant is functionally distinct from wild-type Tet2
333 in the somatic reprogramming of mouse fibroblasts to pluripotent stem cells (Caldwell et al., 2021),
334 suggesting these Tet2 catalytic processivity variants may regulate gene expression differently. However,

335 as somatic reprogramming is a highly dynamic process for cellular state transitions, it becomes challenging
336 to mechanistically dissect the specific gene regulatory roles of 5hmC generation and related DNA
337 demethylation pathways in this paradigm that contains heterogenous cell populations. Thus, the ability to
338 biochemically decouple 5hmC generation from 5fC/5caC excision repair and subsequent 5C restoration in
339 proliferative HEK293T cells affords an opportunity for investigating the potentially divergent regulatory
340 impact of wild-type and stalling mutant TET variants on gene expression in a more controlled cellular
341 context.

342
343 Because exogenous 5hmC generated by stalling variant TET1.var in proliferative HEK293T cells is largely
344 independent of both direct and indirect DNA demethylation in this relatively homogeneous cell population,
345 we can specifically evaluate whether 5hmC can contribute to gene regulation as a *bona fide* epigenetic
346 mark by performing a pairwise comparison between TET1.var and TET1.mut. Next, we reasoned that a
347 pairwise comparison between TET1.wt and TET1.var can reveal the specific gene regulatory role of
348 5fC/5caC excision repair and/or unmodified cytosine restoration. Finally, comparing TET1.mut and control
349 cells may uncover potential roles of catalytic activity independent functions of TET1 CD as a protein
350 interacting scaffold. To this end, we performed total RNA sequencing (RNA-seq) to quantify expression
351 levels of both protein-coding mRNAs and non-coding RNAs (ncRNAs) without polyA tails in control and
352 TET1.wt/mut/var-expressing cells (**Figure S2A** and **Table S3**).
353

354 While the transcriptome of TET1.mut cells is largely similar to control cells (17 genes up, 130 genes down),
355 both TET1.wt and TET1.var induced substantially more changes in gene expression compared to TET1.mut,
356 displaying a roughly five-to-seven-fold larger set of differentially expressed genes (**Figure 4A**). Interestingly,
357 protein-coding mRNAs reproducibly show both up- and down-regulation in response to TET1.var (5hmC
358 generation alone) or TET1.wt (5hmC generation and 5fC/5caC excision repair) mediated epigenome-wide
359 5mC oxidation, whereas non-coding RNAs (annotated by Gencode database) tend to be down-regulated
360 in TET1.var and TET1.wt cells (**Figure S5A-B**). Genes up-regulated by active DNA demethylation (up only
361 in TET1.wt; *TPM2* in **Figure 4B**) and 5hmC generation alone (up in both TET1.wt and TET1.var; *ZCCHC12*
362 in **Figure 4B**) are enriched for genes involved in pathways of specific cellular processes or tissue
363 development and morphogenesis (left in **Figure S5C**). In contrast, down-regulated genes tend to be
364 associated with molecular processes such as RNA splicing that require many functioning ncRNAs (*RUN4-1*
365 in **Figure 4B**; right in **Figure S5C**).
366

367 DISCUSSION

368 Since the initial discovery of TET-mediated 5mC oxidation to 5hmC and its unusually high enrichment in
369 post-mitotic neurons (Kriaucionis and Heintz, 2009; Tahiliani et al., 2009), it has been speculated that 5hmC
370 can potentially act as a *bona fide* epigenetic mark to regulate gene expression. Indeed, *in vitro* screening
371 and biochemical characterization demonstrated that 5hmC can potentially either attract candidate reader
372 proteins (Iurlaro et al., 2013; Spruijt et al., 2013) or repel 5mCG binding proteins such as *MECP2* (Kinde et
373 al., 2015). However, TET enzymes initiate active DNA demethylation through either iterative 5mC oxidation
374 and TDG/BER-induced excision repair, or by facilitating replication-dependent erasure of 5mC on the
375 opposing strand by oxidized 5mC-mediated inhibition of maintenance machinery (DNMT1/UHRF1) activity
376 or recruitment. Consequentially, it is technically challenging to bifurcate the direct (as a *bona fide* epigenetic
377 mark) versus indirect (as an intermediate of TET-dependent active DNA demethylation pathways)
378 contributions of 5hmC on gene regulation.
379

380 Here we sought to address two related questions regarding the epigenomic and gene regulatory functions
381 of 5hmC by leveraging a human TET1 stalling variant to decouple the stepwise process of initial 5mC
382 oxidation to 5hmC from subsequent 5fC/5caC generation/excision and repair. First, through developing a
383

383 dCas9-SunTag based approach for targeted TET1.var recruitment and applying it to study an endogenous
384 methylation-sensitive gene promoter, *RHOXF2B*, we demonstrate that TET1.var can robustly catalyze the
385 initial oxidation of 5mC to 5hmC, but stalls at this step without further generating 5fC/5caC by using
386 integrated epigenetic sequencing methods to disambiguate 5mC from 5hmC, and C from 5fC/5caC.
387 Importantly, this result confirmed *in vivo* specificity of TET1.var catalytic processivity on an endogenous
388 direct target. Second, we performed epigenome-wide editing using non-targeted TET1.wt/mut/var and
389 harnessed paired (hydroxy)methylome sequencing to reveal that hemi-hydroxymethylated CpG dyads are
390 not strongly linked to the restoration of 5CG across various genomic elements and on opposing strands in
391 proliferative HEK293T cells. In contrast to the prevailing view, these quantitative epigenomic sequencing
392 results provide cogent evidence that supports a model in which the direct mode of TET-dependent active
393 DNA demethylation (through 5fC/5caC excision repair) is the predominant mechanism to restore 5CG,
394 whereas the indirect pathway (through 5hmC-dependent inhibition of DNMT1/UHRF1) infrequently occurs
395 in proliferative somatic cells. Finally, the total RNA-seq analysis of transcriptomic responses to epigenome-
396 wide editing by TET1.wt and TET1.var reveals that 5hmC generated by TET1.var may induce similar levels
397 of gene expression changes as those stimulated by TET1.wt. This suggests that in specific cellular contexts,
398 5hmC may act as a gene regulatory epigenetic modification without inducing substantial remodeling of the
399 5CG landscape at *cis*-regulatory regions.

400
401 In summary, our results suggest that 5hmC can not only act as an intermediate for active DNA
402 demethylation involving 5fC/5caC excision repair, but also regulate gene expression as a relatively stable
403 epigenetic modification in proliferative somatic cells. Moreover, the CRISPR/dCas9-based targeted
404 epigenome-editing approach developed in this study provides a versatile toolkit for mechanistically
405 dissecting of causal function of 5hmC versus 5fC/5caC excision repair at diverse regulatory elements in
406 future studies.

407

408 **Limitations of study**

409 HEK293T cells are highly proliferative but not synchronized in cell cycling in our study, so each cell may
410 have gone through different number of cell cycles, which may complicate the quantitative interpretation of
411 the population average of our epigenomic sequencing results in terms of estimating the theoretical upper
412 bound of 5hmC-induced passive DNA demethylation. Furthermore, because these cells also express *de*
413 *novo* DNA methyltransferases, DNMT3A and DNMT3B, at low levels, we cannot exclude the possibility that
414 the lack 5CG restoration in TET1.var-expressing cells is in part due to activity of DNMT3A/3B after cell
415 division. Finally, TET CDs may also potentially modulate RNA abundance by directly modifying RNAs, so
416 the observed TET1 catalytic activity-dependent changes in gene expression may in part be regulated at the
417 RNA level, instead of the DNA level.

418

419

420

421

422

423

424

425

426

427

428

429

430

431 **STAR METHODS**

432

433 **RESOURCE AVAILABILITY**

434

435 **Lead Contact**

436 Further information and requests for resources and reagents should be directed to and will be fulfilled by
437 the Lead Contact, Hao Wu (haowu2@pennmedicine.upenn.edu).

438

439 **Materials Availability**

440 Plasmids generated in this study will be deposited to Addgene.

441

442 **Data and code availability**

443 All sequencing data associated with this study will be available on the NCBI Gene Expression Omnibus
444 (GEO) database upon publication. The analysis source code underlying the final version of the paper will
445 be available on GitHub repository (<https://github.com/wulabupenn/>) upon publication.

446

447

448 **EXPERIMENTAL MODEL AND SUBJECT DETAILS**

449 **Human HEK293T cell culture**

450 Human HEK293T cells were maintained at 37°C with 5% CO₂ in CO₂ incubators (Thermo Scientific, 51-
451 033-774) in Dulbecco's Modified Eagle's Medium (DMEM) (Gibco, 11965084), supplemented with 10%
452 fetal bovine serum (Gibco, 16000044), 5% L-glutamine (Gibco, 25030081), 5% nonessential amino acid
453 (Gibco, 11140050), and 5% sodium pyruvate (Gibco, 11360070) in 10-cm dishes and passaged every 2-3
454 days at 70% confluence with PBS and 0.05% Trypsin-EDTA (Gibco, 25300054).

455

456 **METHOD DETAILS**

457 **Generation of Suntag-TET1.wt/var/mut constructs, and all-in-one plasmids**

458 Catalytically inactivated hTET1CD (H274Y/D276A) gBlock was ordered from Integrated-DNA technologies
459 (IDT) and amplified using 2x KAPA HiFi PCR kits, Hotstart Ready mix (Kapa biosciences, KK2602) per the
460 manufacturer's instruction. Site directed mutations to generate the 5hmC-stalling Suntag-TET.var (T246E)
461 was introduced by amplifying the previously validated Suntag-TET1CD construct (Addgene #82559) with
462 mutation containing primers (IDT). 1ug Suntag-TET1CD was digested with Nhe1-HF (New England Biolabs,
463 R3131L) and Not1-HF (New England Biolabs, R3189S) to isolate the backbone and release TET1CD.
464 Digested backbone and TET1.var amplified fragments were size-selected with Qiaquick Gel Extraction
465 kit (Qiagen, 28506), and cloned into Suntag-TET1CD Nhe1-HF/Not1-HF digested backbones with
466 NEBuilder HiFi DNA assembly Master Mix (New England Biolabs Inc. E2621L). Following bacterial
467 transformation into Stbl3 competent cells, inoculation, and construct isolation with the NucleoSpin Plasmid
468 kit (Macherey-Nagel, REF 740588.250), plasmids were verified with sanger sequencing.

469

470 To generate All-in-one plasmids that express *RHOXF2B* sgRNA concomitantly, 1ug SunTag-
471 (TET1.wt/mut/var) constructs were linearized with Af1II (New England Biolabs, R0520S), and isolated with
472 the Zymo DNA clean & concentrator kit (Zymo Research, D4033). sg*RHOXF2B* gblocks were ordered from
473 IDT, and cloned into digested backbones and isolated as described above. Plasmids were subsequently
474 validated with sanger sequencing.

475

476 **Construction of sgRNA expressing vectors with Golden Gate Cloning**

477 Complimentary *RHOXF2B* sgRNA oligos were ordered from IDT. 100uM Oligos were annealed using 10x
478 T4 DNA ligase reaction buffer (New England Biolabs, B0202S), and T4 Polynucleotide Kinase (New

479 England Biolabs, M0201L). 1uL of 1uM annealed sgRNA oligos were then cloned into 30ng Lenti-
480 sgRNA(MS2)-puro constructs (Addgene #73797) through Golden-gate assembly with BsmBI (Thermo
481 Scientific, FD0454), 2x rapid ligase buffer (Enzymatics, B101), Bovine Serum Albumin (New England
482 Biolabs, B9000S), and T7 ligase (Enzymatics, L602L). Constructs were transformed, inoculated, isolated,
483 and sequenced as described above.

484

485 ***Transient transfection and cellular expansion***

486 For FACS-sorted All-in-one experiments, 2ug of Suntag platform containing scrambled or *RHOXF2B*
487 sgRNA expressing constructs, and pTY-GFP (transfection control) were transiently transfected in
488 suspension with dissociated 2x10⁶cells per sample in Opti-MEM I Medium (Thermo Fisher Scientific,
489 31985062), with Lipofectamine 2000 (Invitrogen, 11668019) per manufacturer's recommendation into 12-
490 well plates. However, Lipofectamine 2000-DNA complexes were incubated for 45 minutes as opposed to
491 manufacturer's instruction. 24-hours post-transfection, the cells were expanded onto-6 well plates and
492 incubated for an additional 48-hours prior to GFP+/DAPI- gated FACS followed by gDNA/RNA (Zymo
493 Research, D7001), and protein isolation.

494

495 For unsorted experiments, 1x10⁶ dissociated cells were co-transfected in suspension with 800ng of
496 Suntag/pTY-GFP, and 200ng of scrambled or *RHOXF2B* sgRNA expressing plasmids from the generated
497 Lenti-sgRNA(MS2)-puro constructs. After 24 hours, cells were expanded, and further incubated an
498 additional 24hours before 0.5 µg/ml puromycin was administered to drug-select for sgRNA expressing
499 transfected cells. After 24 hours, gDNA and RNA was isolated with Quick-DNA/RNA miniprep kits (Zymo
500 Research, D7001).

501

502 ***Flow Cytometry to isolate for GFP+/DAPI- transfected cells***

503 Transfected cells are washed with PBS and dissociated with 0.05% Trypsin-EDTA, prior to being
504 resuspended with media, and spun down to form a pellet. Cells are then resuspended with 0.5mL 0.1%
505 PBS-BSA solution and passed through a 40uM filter (Fisher Scientific, 08-771-1) to dissociate into single-
506 cell suspension. The micron filter is subsequently washed with another 0.5mL 0.1% PBS-BSA solution. 1uL
507 100mg/uL DAPI (Sigma Aldrich, D9542) was added to each sample to stain for compromised cellular
508 membranes. Cell suspension was then sorted with BD Biosciences influx cell sorter at the University of
509 Pennsylvania Flow Cytometry and Cell Sorting core for DAPI negative, and GFP positive cell populations
510 into a 15mL conical tube loaded with 0.5mL PBS.

511

512 ***Hydroxymethylated DNA immunoprecipitation (5hmC-DIP) qPCR***

513 250 ng gDNA was sheared into 250 bp fragments using a M220 Focused ultra-sonicator (Covaris) with 50
514 peak power, 20 duty power, and 200 cycles, for 120s. Dynabeads Protein G (Thermo Fisher Scientific,
515 10004D) were washed with 1mL 0.5% BSA PBS blocking buffer twice on a magnetic rack and then
516 resuspended with 0.5% BSA PBS blocking buffer at the original volume. 1uL (1mg/ml) of anti-5hmC
517 antibody (Active Motif, 39769) or IgG was added for each reaction, and rotated for 5 hours in 4°C. Upon
518 completion, fragmented gDNA is combined with 5x MeDIP IP buffer (14% 5M NaCl, 5% 1M Sodium
519 phosphate Buffer, 2.5% 10% 10xTriton) in a separate PCR strip. 10uL of this mix is removed for
520 benchmarking input. The antibody-Dynabead mix is then added at a 1:1 ratio to the gDNA-MeDIP IP buffer
521 mix in the PCR strip, and undergoes overnight immunoprecipitation at 4°C. Samples were washed with
522 200ul 1x MeDIP IP buffer, three times on a magnetic rack over ice. 62.5uL MeDIP digestion buffer, and
523 0.875uL (20ug/uL) Proteinase K is added to each sample, and incubated in the thermal cycler at 55°C for
524 one hour. Eluate is transferred to a new PCR strip, where it is purified with RNA Clean XP beads (Beckman
525 Coulter Life Sciences, NC0068576) at 2x volume with standard instructions. qPCR analysis was

526 subsequently performed with 400nM primers (IDT), and 2x PowerUp SYBER Green master mix (Thermo
527 Fisher Scientific, A25742), to evaluate pulled-down methylated DNA fragments enrichment.

528

529 **Western blot**

530 FACS-sorted GFP+/DAPI- HEK293T cell populations were first washed with cold PBS, and lysed with 10X
531 RIPA buffer (Cell Signaling Technology, 9806) supplemented with 50x Complete protease inhibitor cocktail
532 (Sigma Aldrich, 11873580001). Lysates were centrifuged in 4°C, and the supernatant was transferred to a
533 new tube on ice. Protein concentration was measured using Bio-rad DC protein assay (Bio-rad, 5000112)
534 and a Beckman Spectrometer. 5ug of protein per sample was denatured with 4x Laemmli buffer (Bio-rad,
535 1610747) for 10 minutes at 95°C, and ran on a 4-15% Mini-PROTEAN-TGX precast protein gel (Bio-rad,
536 4561085) at 165V. For TDG overexpression experiments, 20 ug protein was used as starting material. The
537 protein is then transferred to PVDF midi membranes using the Trans-blot Turbo Transfer System (Bio-rad,
538 1704150).

539

540 Upon transfer completion, the PVDF membrane is washed with 1x TBST buffer (Thermo Scientific, 28358),
541 and then blocked with 5% milk 1xTBST solution at room temperature for 1 hour shaking. The membrane is
542 washed again with 1x TBST solution, and then incubated the primary antibody solution (3% BSA in TBST,
543 1:250 anti-HA (Sigma-Aldrich, A2095-1ML), 1:500 anti-FLAG (Sigma-Aldrich, F1804-1MG), 1:3000 anti-
544 ACTB (Cell Signaling Technology, 3700S) overnight in 4°C while shaking. PVDF membrane is then washed
545 with 1x TBST solution, and blocked with a secondary antibody solution (1:500 antibody dilution) comprised
546 of 5% milk and 1xTBST for 1 hour while shaking. The membrane is washed one final time with 1x TBST,
547 and then incubated with Clarity Max ECL Western Blotting Substrates (Bio Rad, 1705060), prior to
548 visualization with a Bio Rad ChemiDoc Imaging System.

549

550 **Gene expression analysis with RT-qPCR**

551 500ng RNA isolated from cell populations are synthesized into cDNA using iScript Reverse Transcription
552 Supermix (Bio Rad, 1708841) per manufacturer's recommendations. The resulting solution is further diluted
553 1:2.5 with ddH₂O for downstream qPCR. Converted cDNA is quantified using 2x KAPA SYBR Fast Master
554 Mix ROX Low (KAPA Biosystems, KK4620), with primers against upstream *RHOXF2B* TSS, and *ACTB* as
555 a baseline, to evaluate relative changes in gene transcription.

556

557 **Bisulfite conversion and A3A deamination for locus-specific BS-seq and bACE-seq**

558 To generate the requisite phage spike-in controls to evaluate A3A deamination efficiency, lambda phage
559 DNA was *in vitro* CpG methylated using the M.SssI methyltransferase (New England Biolabs, M0226M)
560 with S-adenosylmethionine (SAM) for 2 hours in 37°C. After the initial incubation, additional enzyme and
561 SAM is added to the solution for another 4 hours, prior to being inactivated at 65°C for 20 minutes. The
562 phage DNA is then purified using 1.6x volume of homebrewed solid phase reversible immobilization (SPRI
563 beads) (1mL Sera-Mag SpeedBeads (GE Healthcare, GE1715210401150), 9g PEG 8000 (Sigma,
564 1546606), 10mL 5M NaCl, 500μL 1M Tris-HCl pH 8.0 (Thermo Fisher Scientific, 15568025), 100μL 0.5M
565 EDTA pH 8.0 (Thermo Fisher Scientific, R1021). M.SssI *in vitro* methylated lambda phage spike-ins are
566 added to each sample at 1% total mass gDNA converted.

567

568 10 ng of gDNA isolated from GFP+/DAPI- FACS-sorted cell populations was first spiked with lambda phage
569 controls and was bisulfite-converted with the Zymo EZ DNA Methylation Direct Kit (Zymo Research, D5020)
570 per the manufacturer's protocol, with exception of using an alternate elution buffer. In lieu of the manual's
571 recommendation, 15uL 1mM Tris-HCl pH 7.5 elution buffer is used to maintain A3A reaction conditions
572 around pH 6.0. For 5uL of eluate, 1uL of 20mM 10x MES pH 6.0 and 0.1% tween, and 1uL DMSO is added
573 to solution over ice. Samples are then denatured in a thermal cycler at 95°C for 5 minutes, and immediately

574 transferred to a pre-chilled PCR rack in a -80°C fridge to snap-cool. 1uL of (80uM) A3A purified as
575 previously described, 1uL of 20mM 10x MES pH 6.0, and 2uL of ddH₂O is added to each sample prior to
576 thawing, and incubated at 37°C for 2 hours. Converted samples are then bead purified with 1.6x volume
577 homebrew SPRI beads, and eluted with 20uL of 10mM Tris-HCl pH 8.5.

578

579 ***MAB-seq in vitro methylation and bisulfite conversion***

580 0.5% unmethylated lambda phage spike-ins are added to 100 ng of gDNA isolated from GFP+/DAPI- FACS-
581 sorted cells to serve as internal controls for *in vitro* CpG methylation efficiency in each sample. During the
582 first round of *in vitro* methylation, 10x Mg²⁺-free buffer, 0.64 mM SAM, and 0.8 units/uL of M.SssI
583 methyltransferase is added to each sample and incubated for 4 hours 37°C. After completion, an additional
584 0.64 mM SAM and 6 units of M.SssI enzyme is added to the reaction, and incubated for 8 hours at 37°C,
585 and then inactivated with 20 min incubation at 65°C. DNA is then isolated using phenol-chloroform:isoamyl
586 alcohol (25:24:1) (Thermo Fisher Scientific, 15593031) as previously described (Wu et al., 2016). The
587 gDNA is eluted with 25.2uL ddH₂O and undergoes a second round of *in vitro* CpG methylation with
588 previously described parameters above with exception that 10x Mg²⁺-free buffer is replaced with equal
589 volume of NEB Buffer #2 (New England Biolabs, B7002S). The reaction is incubated again for 4 hours at
590 37°C, and another 8 hours after addition of 0.64 mM SAM and 6 units of M.SssI enzyme. M.SssI is then
591 deactivated with 20 minutes of incubation in 65°C. gDNA is isolated with phenol-chloroform extraction as
592 previously described, and eluted with 20uL of ddH₂O. Samples were bisulfite converted using the Qiagen
593 Epitect DNA Bisulfite Kit (Qiagen, 59104) per manufacturer's instructions. However, thermal cycling
594 conditions were altered so that the parameters were repeated twice for a total of 10 hours. Samples were
595 purified with the manual's instructions, and eluted in 30uL of 10mM Tris-HCl pH 8.5.

596

597 ***Locus-specific library preparation and sequencing***

598 All reactions were performed in a sterile, ventilated hood to limit contamination from the environment.
599 BS/bACE/MAB-seq converted gDNA is amplified with 500nM of primers against *RHOXF2B* TSS containing
600 adapters for downstream sample indexing, with KAPA2G Robust kits (KAPA Biosystems, KR0379). An
601 additional set of primers against spike-in lambda phage DNA is performed concomitantly to evaluate the
602 effects of A3A deamination (bACE) against 5mC, or *in vitro* CpG methylation (MAB) on unmodified C in
603 each sample. Thermal cycling conditions are as recommended from the manufacturer. However, individual
604 samples were optimized by modification to gDNA amplified, primer concentration, cycles of amplification,
605 and reaction volume to ensure robust locus amplification devoid of environmental contamination. PCR
606 Adapted samples are then gel purified using the Qiaquick Gel Extraction kit. 1ng of each sample is then
607 uniquely indexed using the NEBNext Multiplex Oligos (New England Biolabs, E7335L, E7500L) with 2x
608 KAPA HiFi Hotstart Ready mix for 8 cycles of amplification with the protocol's instructions. The indexed
609 fragments are then isolated using the Qiaquick Gel Extraction kit. The 4nM library is pooled together, and its
610 size is evaluated with the Bioanalyzer (Agilent, 5067-4626), and pair end sequenced on the Illumina MiSeq
611 using the MiSeq Reagent Nano Kit v2 (300-cycles) (Illumina, MS-102-2002).

612

613 ***Integrated whole genome BS-seq and bACE-seq***

614 The whole genome BS-seq (WGBS) and bACE-seq (WG-bACE-seq) experiments were performed as
615 previously described with minor modifications (Fabyanic et al., 2023; Fabyanic et al., 2021). Briefly, ~15 ng
616 of genomic DNA from each sample was first spiked in with *in vitro* methylated lambda phage genomic DNA
617 (0.2%) as controls and was then subjected to bisulfite conversion (EZ DNA Methylation-Direct Kit, Zymo
618 Research Cat# D5020). Half of the bisulfite converted DNA was used for low input WGBS analysis (for
619 5mC+5hmC profiling). The other half of eluate was subjected to the low input WG-bACE-seq workflow (for
620 5hmC profiling). For each bACE-seq reaction, 1.5μL 200mM MES pH 6.0 + 0.1% Tween and 1.5μL DMSO
621 were added to the 9μL eluent. The samples were then denatured at 95°C for 1min and snap cooled by

622 transfer to a PCR tube rack pre-incubated at -80°C (for bulk samples). Before thawing, 1.5µL 200 mM MES
623 pH 6.0 + 0.1% Tween-20 and 1.5µL 5µM A3A were added to each reaction to a final volume of 15µL (for a
624 final concentration of 500nM/µL A3A per reaction). The deamination reactions were incubated at 37°C for
625 2h, purified with 1.6x homebrew SPRI beads, eluted in 9µL Low EDTA TE buffer.

626
627 To add the first PCR adaptor (P5), random priming reactions were performed for both WGBS and WG-
628 bACE-seq library preparation. Deaminated DNA was first heated at 95°C using a thermocycler for 3min to
629 denature and were immediately chilled on ice for 2min. 10µL enzyme mix (2µL Blue Buffer (Enzymatics
630 B0110), 1µL 10mM dNTP (NEB N0447L), 1µL Klenow exo (50U/µL, Enzymatics P7010-HC-L), and 6µL
631 water) was added to each well and reactions were mixed by vortexing. Plates or reactions were treated
632 with the following program using a thermocycler: 4°C for 5min, ramp up to 25°C at 0.1°C/sec, 25°C for 5min,
633 ramp up to 37°C at 0.1°C/sec, 37°C for 60min, 4°C forever. Following this, 2µL Exonuclease 1 (20U/µL,
634 Enzymatics X8010L) and 1µL Shrimp Alkaline Phosphatase (rSAP) (1U/µL, NEB M0371L) was added to
635 each reaction followed by vortexing and incubation in a thermocycler at 37°C for 30min followed by 4°C
636 forever.

637
638 To add the second PCR adaptor (P7), the reactions were denatured in a thermocycler at 95°C for 3 min
639 and subsequently chilled on ice for 2 min. 10.5µL Adaptase master mix (2µL Buffer G1, 2µL Reagent G2,
640 1.25µL Reagent G3, 0.5µL Enzyme G4, 0.5µL Enzyme G5, and 4.25µL Low EDTA TE buffer; Accel-NGS
641 Adaptase Module for Single Cell Methyl-Seq Library Preparation, Swift Biosciences 33096) was added to
642 each reaction, followed by vortexing. Reactions were incubated in a thermocycler at 37°C for 30min then
643 4°C forever. Subsequently, 30µL PCR mix (25µL KAPA HiFi HotStart ReadyMix, KAPA BIOSYSTEMS
644 KK2602, 1µL 30µM P5 indexing primer, and 5µL 10µM P7 indexing primer) were added to each well,
645 followed by mixing with vortexing.

646
647 Next, we perform qPCR to determine the optimal cycle number of amplification for indexing PCR. Reactions
648 were transferred to a thermocycler programmed with the following stages: 95°C for 2min, 98°C for 30sec,
649 12-15 cycles of [98°C for 15sec, 64°C for 30sec, 72°C for 2min] (optimal cycle number may vary between
650 samples), 72°C for 5min, and 4°C forever. PCR products were cleaned with two rounds of 0.8x homebrew
651 SPRI beads, concentration was determined via Qbit® dsDNA High Sensitivity Assay Kit (Invitrogen
652 Q32851), and library size and quality was determined via Bioanalyzer (Agilent High Sensitivity DNA Kit,
653 5067-4626). Libraries were first sequenced on an Illumina MiSeq using the 300-cycle kit (v2) to determine
654 the WGBS and WG-bACE-seq library quality. Final libraries were diluted and pooled together for
655 sequencing on Illumina NovaSeq 6000 using a 300-cycle High Output v2 Kit (150bp x 2).

656
657 **Bulk RNA sequencing**
658 RNA was extracted from GFP+/DAPI- FAC-sorted transient transfected HEK293T cells with ZR-Duet
659 DNA/RNA MiniPrep Kit (Zymo Research, D7001). RNA-seq libraries were prepared using SMARTer
660 Stranded total RNA-seq Kit v3 (Clontech, 634486) per the manufacturer's instructions. However, 20ng of
661 RNA was used as starting input compared to the recommended 10ng. Library concentration and complexity
662 was validated with a Qubit Fluorometer and Agilent Bioanalyzer 2100 (Agilent, 5067-4626). Libraries were
663 diluted to 4nM and pooled together for sequencing on Illumina NextSeq 500 using a 300-cycle High Output
664 v2 Kit.

665
666 **QUANTIFICATION AND STATISTICAL ANALYSIS**

667
668 **Read mapping and quality filtering whole-genome BS-seq and bACE-seq**

669 The pre-processing (read alignment, quality filtering and read deduplication) was performed for BS-seq and
670 bACE-seq datasets as previously described with minor modifications (Fabianic et al., 2023; Fabianic et
671 al., 2021). Briefly, demultiplexing of inline barcodes was first performed allowing up to 1-nt mismatch. The
672 data quality was examined with FastQC (<http://www.bioinformatics.babraham.ac.uk/projects/fastqc/>). Raw
673 sequencing reads were trimmed for adaptor sequences and inline barcodes using Cutadapt (Kechin et al.,
674 2017) with the following parameters in paired-end mode: -f fastq -q 20 -u 16 -U 16 -m 30 -a
675 AGATCGGAAGAGCACACGTCTGAAC -A AGATCGGAAGAGCGTCGTAGGGAA. The trimmed R1 and
676 R2 reads were mapped independently against the reference genome (mm10) using Bismark (Krueger and
677 Andrews, 2011) (v0.18.2) with following parameters: --bowtie2 -D 15 -R 2 -L 20 -N 0 --score_min L,0,-0.2
678 (--pbat option was turned on for mapping R1 reads). Uniquely mapped reads were filtered for minimal
679 mapping quality (MAPQ>=10) using samtools (Li et al., 2009). PCR duplicates were removed using the
680 Picard *MarkDuplicates* (<http://broadinstitute.github.io/picard/>). To eliminate reads from strands not
681 deaminated by A3A, reads with three or more consecutive non-converted cytosines in the CH context were
682 removed using *filter_non_conversion* in Bismark. Base calling of unmethylated and methylated cytosines
683 was performed by *bismark_methylation_extractor* in Bismark in each individual nucleus. 5hmC signals were
684 calculated as % of C/(C+T) at each cytosine base. Sequencing reads for WG-bACE-seq were pre-
685 processed as previously reported (Schutsky et al., 2018).

686

687 **Statistical calling of 5hmC-enriched genomic regions or CpGs in whole-genome bACE-seq datasets**
688 For each genomic regions (**Figure 2B**) or CG dinucleotides (**Figure S4A**), we counted the number of 'C'
689 bases from bACE-seq reads as 5hmC (denoted N_C) and the number of 'T' bases as methylated or
690 unmodified cytosines (denoted N_T). For statistical calling, we used the binomial distribution (N as the
691 sequencing coverage ($N_T + N_C$) and p as the error rate of A3A deamination (1.61%, averaged non-
692 conversion rate for 5mCG in spiked-in λ phage DNA, from eight independent measurements)) to assess
693 the probability of observing N_C or greater by chance. We then merged the two replicates and performed
694 statistical calling of 5hmCG enriched 10-kb genomic regions or CpG sites ($P < 2.5 \times 10^{-4}$) using a binomial
695 distribution model previously established for identifying 5hmC-modified CpG sites in mammalian genomes
696 (Schutsky et al., 2018). To filter out low quality regions or CpG sites for statistically calling, we restricted
697 our statistical analysis to CG sites covered by at least 200 reads per region ($n = 282,870$ 10-kb genomic
698 intervals in **Figure 2B**) or 5 reads per strand ($n = 21,392,782$ CpG sites in **Figure S4A**).

699

700 **Calculating the true level of 5mCGs by combining bACE-seq with BS-seq**

701 For each CG site, the levels of 5mC and 5hmC were estimated using the MLML tool (Qu et al., 2013). This
702 approach arrives at maximum likelihood estimates for the 5mC and 5hmC levels by combining data from
703 bACE-seq and BS-seq (see below). Only CG sites with 0 conflicts were considered for further analysis.
704 From the MLML output, the level of unmodified CG was estimated by [100% – (abundance of 5hmC +
705 5mC)]. The results were further filtered, such that 5CG, 5mCG, and 5hmCG levels were non-negative. For
706 generating ternary plots (**Figure 3C** and **Figure S4E**), levels of 5CG, 5mCG, and 5hmCG (as percentage
707 of the sum of [CG + 5mCG + 5hmCG]) were calculated within CpG dyads across the genome.

708

709 **Total RNA sequencing analysis**

710 Raw data (fastq files) were mapped with strand-specific and single-end mode by Hisat2 (v2.2.1) (Kim et al.,
711 2019). Unique mapped reads were kept with the following parameters (-F 4 -F 256) and sorted by samtools
712 (v1.7) (Li et al., 2009). Human annotation file (Gencode v39) was downloaded from gencode. featureCounts
713 (v2.0.1) (Liao et al., 2014) was used to quantify reads from exon. Differential expression analysis of protein
714 coding genes ($n = 19,986$) and non-protein coding genes ($n = 41,547$) was performed using the edgeR
715 (v3.30.3) (Robinson et al., 2010) R package with the cutoff ($FDR < 0.05$ and $|log2 fold change| > 1.5$). Heatmap
716 of differentially expressed genes was visualized by ComplexHeatmap (v2.11.2) R package (Gu, 2022).

717 Gene ontology gene sets were retrieved from msigdbr (v7.5.1) (Dolgalev, 2020) R package.
718 Hypergeometric test of significant pathways ($P.adjust < 0.1$) was performed using enricher function from
719 clusterProfiler (v3.18.1) (Yu et al., 2012) R package.

720

721 **Data visualization**

722 Plots were generated using the ggplot2 (v. 3.3.0), and packages in R (version 3.5.1). RT-qPCR bar plot
723 was generated with GraphPad prism (v9.1.0). We used Integrative Genomics Viewer (IGV, v2.11.4) to
724 visualize WG-BS-seq and WG-bACE-seq signals using hg38 Refseq transcript annotation as reference
725 (**Fig. 2** and **Fig. 4**). 5hmCG signals (both strands combined) are indicated by upward ticks, with the height
726 of each tick representing the fraction of modification at the site ranging from 0-50%.

727

728 **Statistics**

729 Statistical analyses were performed using R. Statistical details for each experiment are also provided in the
730 figure legends. No statistical methods were used to predetermine sample size for any experiments. All
731 group results are expressed as mean +/- standard deviation unless otherwise stated. Specific p-values
732 used for calling modified cytosine bases are explicitly stated in the text and figure legends. Each figure
733 legend explicitly states the number of independent experiments.

734

735 **Published data sets**

736 For **Figure 2D-F**, **S3E**, and **4B**, we used the following published data sets: H3K4me1 (GSE174861),
737 H3K27ac (GSE174866), H3K4me3 (GSM945288), H3K36me3 (GSE175320), H3K27me3 (GSE133391).
738 For data initially mapped to hg19, they were re-mapped to hg38 using liftOver. Genomic coordinates for
739 exon, intron and gene body of UCSC RefSeq genes (GRCh38) were downloaded from Table browser
740 (<https://genome.ucsc.edu>).

741

742 **SUPPLEMENTAL INFORMATION**

743 **Figure S1.** Validation experiments for the CRISPR/dCas9-SunTag based 5hmC editing system. Related
744 to Figure 1.

745 **Figure S2.** Experimental design and expression analysis for genome-wide epigenome editing in HEK293T
746 cells. Related to Figure 2.

747 **Figure S3.** Validation experiments for integrated whole genome BS-seq and bACE-seq analyses. Related
748 to Figure 2.

749 **Figure S4.** TET-mediated iterative 5mC oxidation is required for active DNA demethylation on both called
750 and opposing strands of CpG dyads in proliferating somatic cells. Related to Figure 3.

751 **Figure S5.** Total RNA sequencing analysis reveals the gene regulatory roles of TET-mediated stepwise,
752 iterative 5mC oxidation on protein-coding and non-coding RNAs. Related to Figure 4.

753

754 **Table S1.** Oligonucleotides used in this study

755

756 **Table S2.** Whole genome BS-seq and bACE-seq libraries constructed in this study

757 **Table S3.** RNA-seq libraries constructed in this study

758

759

760

761

762

763

764

765 **ACKNOWLEDGEMENTS**

766 We are grateful to all members of the Wu lab for helpful discussion. This work was supported by the Penn
767 Epigenetics Institute, the National Human Genome Research Institute (NHGRI) grants R01-HG010646 and
768 U01-HG012047 (to H.W.) and NHGRI grant F31HG011429 (to A.W.).

769

770

771 **AUTHOR CONTRIBUTIONS**

772 Conceptualization: AW, HW
773 Methodology: AW, PH, QQ, EBF, HW
774 Investigation: AW, HW
775 Bioinformatic Analysis: AW, HZ, HW
776 Funding acquisition: AW, HW
777 Writing: AW, HW
778 Supervision: HW

779

780 **DECLARATION OF INTERESTS**

781 Authors declare that they have no competing interests.

782

783 **INCLUSION AND DIVERSITY**

784 We support inclusion, diverse and equitable conduct of research.

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813 **REFERENCES**

814

815 Bird, A. (2002). DNA methylation patterns and epigenetic memory. *Genes Dev* *16*, 6-21.

816 Bostick, M., Kim, J.K., Esteve, P.O., Clark, A., Pradhan, S., and Jacobsen, S.E. (2007). UHRF1 plays a role in
817 maintaining DNA methylation in mammalian cells. *Science* *317*, 1760-1764.

818 Caldwell, B.A., Liu, M.Y., Prasasya, R.D., Wang, T., DeNizio, J.E., Leu, N.A., Amoh, N.Y.A., Krapp, C., Lan,
819 Y., Shields, E.J., *et al.* (2021). Functionally distinct roles for TET-oxidized 5-methylcytosine bases in
820 somatic reprogramming to pluripotency. *Mol Cell* *81*, 859-869 e858.

821 Cheng, S., Mittnenzweig, M., Mayshar, Y., Lifshitz, A., Dunjic, M., Rais, Y., Ben-Yair, R., Gehrs, S.,
822 Chomsky, E., Mukamel, Z., *et al.* (2022). The intrinsic and extrinsic effects of TET proteins during
823 gastrulation. *Cell* *185*, 3169-3185 e3120.

824 Consortium, E.P. (2012). An integrated encyclopedia of DNA elements in the human genome. *Nature*
825 *489*, 57-74.

826 Dai, H.Q., Wang, B.A., Yang, L., Chen, J.J., Zhu, G.C., Sun, M.L., Ge, H., Wang, R., Chapman, D.L., Tang, F.,
827 *et al.* (2016). TET-mediated DNA demethylation controls gastrulation by regulating Lefty-Nodal
828 signalling. *Nature* *538*, 528-532.

829 Dolgalev, I. (2020). msigdbr: MSigDB gene sets for multiple organisms in a tidy data format. R package
830 version 7.

831 Fabyanic, E.B., Hu, P., Qiu, Q., Berrios, K.N., Connolly, D.R., Wang, T., Flournoy, J., Zhou, Z., Kohli, R.M.,
832 and Wu, H. (2023). Joint single-cell profiling resolves 5mC and 5hmC and reveals their distinct gene
833 regulatory effects. *Nat Biotechnol*.

834 Fabyanic, E.B., Hu, P., Qiu, Q., Wang, T., Berrios, K.N., Flournoy, J., Connolly, D.R., Zhou, Z., Kohli, R.M.,
835 and Wu, H. (2021). Quantitative single cell 5hmC sequencing reveals non-canonical gene regulation by
836 non-CG hydroxymethylation. *bioRxiv*, 2021.2003.2023.434325.

837 Greenberg, M.V.C., and Bourc'his, D. (2019). The diverse roles of DNA methylation in mammalian
838 development and disease. *Nature reviews Molecular cell biology* *20*, 590-607.

839 Gu, Z. (2022). Complex heatmap visualization. *iMeta* *1*, e43.

840 Hashimoto, H., Liu, Y., Upadhyay, A.K., Chang, Y., Howerton, S.B., Vertino, P.M., Zhang, X., and Cheng, X.
841 (2012). Recognition and potential mechanisms for replication and erasure of cytosine
842 hydroxymethylation. *Nucleic Acids Res* *40*, 4841-4849.

843 Huang, Y., Pastor, W.A., Shen, Y., Tahiliani, M., Liu, D.R., and Rao, A. (2010). The behaviour of 5-
844 hydroxymethylcytosine in bisulfite sequencing. *PLoS One* *5*, e8888.

845 Ito, S., Shen, L., Dai, Q., Wu, S.C., Collins, L.B., Swenberg, J.A., He, C., and Zhang, Y. (2011). Tet proteins
846 can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine. *Science* *333*, 1300-1303.

847 Iurlaro, M., Ficz, G., Oxley, D., Raiber, E.A., Bachman, M., Booth, M.J., Andrews, S., Balasubramanian, S.,
848 and Reik, W. (2013). A screen for hydroxymethylcytosine and formylcytosine binding proteins suggests
849 functions in transcription and chromatin regulation. *Genome Biol* *14*, R119.

850 Ji, D., Lin, K., Song, J., and Wang, Y. (2014). Effects of Tet-induced oxidation products of 5-methylcytosine
851 on Dnmt1- and DNMT3a-mediated cytosine methylation. *Mol Biosyst* *10*, 1749-1752.

852 Kechin, A., Boyarskikh, U., Kel, A., and Filipenko, M. (2017). cutPrimers: A New Tool for Accurate Cutting
853 of Primers from Reads of Targeted Next Generation Sequencing. *J Comput Biol* *24*, 1138-1143.

854 Kim, D., Paggi, J.M., Park, C., Bennett, C., and Salzberg, S.L. (2019). Graph-based genome alignment and
855 genotyping with HISAT2 and HISAT-genotype. *Nat Biotechnol* *37*, 907-915.

856 Kinde, B., Gabel, H.W., Gilbert, C.S., Griffith, E.C., and Greenberg, M.E. (2015). Reading the unique DNA
857 methylation landscape of the brain: Non-CpG methylation, hydroxymethylation, and MeCP2. *Proc Natl
858 Acad Sci U S A* *112*, 6800-6806.

859 Kriaucionis, S., and Heintz, N. (2009). The nuclear DNA base 5-hydroxymethylcytosine is present in
860 Purkinje neurons and the brain. *Science* *324*, 929-930.

861 Krueger, F., and Andrews, S.R. (2011). Bismark: a flexible aligner and methylation caller for Bisulfite-Seq
862 applications. *Bioinformatics* *27*, 1571-1572.

863 Li, E. (2002). Chromatin modification and epigenetic reprogramming in mammalian development. *Nat Rev Genet* 3, 662-673.

864

865 Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth, G., Abecasis, G., Durbin, R., and Genome Project Data Processing, S. (2009). The Sequence Alignment/Map format and SAMtools. *Bioinformatics* 25, 2078-2079.

866

867 Liao, Y., Smyth, G.K., and Shi, W. (2014). featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. *Bioinformatics* 30, 923-930.

868

869 Liu, M.Y., Torabifard, H., Crawford, D.J., DeNizio, J.E., Cao, X.J., Garcia, B.A., Cisneros, G.A., and Kohli, R.M. (2017). Mutations along a TET2 active site scaffold stall oxidation at 5-hydroxymethylcytosine. *Nature chemical biology* 13, 181-187.

870

871 Lu, F., Liu, Y., Jiang, L., Yamaguchi, S., and Zhang, Y. (2014). Role of Tet proteins in enhancer activity and telomere elongation. *Genes Dev* 28, 2103-2119.

872

873 Morita, S., Noguchi, H., Horii, T., Nakabayashi, K., Kimura, M., Okamura, K., Sakai, A., Nakashima, H., Hata, K., Nakashima, K., et al. (2016). Targeted DNA demethylation in vivo using dCas9-peptide repeat and scFv-TET1 catalytic domain fusions. *Nat Biotechnol* 34, 1060-1065.

874

875 Okano, M., Bell, D.W., Haber, D.A., and Li, E. (1999). DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. *Cell* 99, 247-257.

876

877 Pflueger, C., Tan, D., Swain, T., Nguyen, T., Pflueger, J., Nefzger, C., Polo, J.M., Ford, E., and Lister, R. (2018). A modular dCas9-SunTag DNMT3A epigenome editing system overcomes pervasive off-target activity of direct fusion dCas9-DNMT3A constructs. *Genome Res* 28, 1193-1206.

878

879 Qu, J., Zhou, M., Song, Q., Hong, E.E., and Smith, A.D. (2013). MLML: consistent simultaneous estimates of DNA methylation and hydroxymethylation. *Bioinformatics* 29, 2645-2646.

880

881 Reik, W. (2007). Stability and flexibility of epigenetic gene regulation in mammalian development. *Nature* 447, 425-432.

882

883 Robinson, M.D., McCarthy, D.J., and Smyth, G.K. (2010). edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. *Bioinformatics* 26, 139-140.

884

885 Schutsky, E.K., DeNizio, J.E., Hu, P., Liu, M.Y., Nabel, C.S., Fabyanic, E.B., Hwang, Y., Bushman, F.D., Wu, H., and Kohli, R.M. (2018). Nondestructive, base-resolution sequencing of 5-hydroxymethylcytosine using a DNA deaminase. *Nat Biotechnol*.

886

887 Seiler, C.L., Fernandez, J., Koerperich, Z., Andersen, M.P., Kotandeniya, D., Nguyen, M.E., Sham, Y.Y., and Tretyakova, N.Y. (2018). Maintenance DNA Methyltransferase Activity in the Presence of Oxidized Forms of 5-Methylcytosine: Structural Basis for Ten Eleven Translocation-Mediated DNA Demethylation. *Biochemistry* 57, 6061-6069.

888

889 Smith, Z.D., and Meissner, A. (2013). DNA methylation: roles in mammalian development. *Nature reviews Genetics* 14, 204-220.

890

891 Spruijt, C.G., Gnerlich, F., Smits, A.H., Pfaffeneder, T., Jansen, P.W.T.C., Bauer, C., Münzel, M., Wagner, M., Müller, M., Khan, F., et al. (2013). Dynamic readers for 5-(hydroxy)methylcytosine and its oxidized derivatives. *Cell* 152, 1146-1159.

892

893 Tahiliani, M., Koh, K.P., Shen, Y., Pastor, W.A., Bandukwala, H., Brudno, Y., Agarwal, S., Iyer, L.M., Liu, D.R., Aravind, L., et al. (2009). Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. *Science* 324, 930-935.

894

895 Valinluck, V., and Sowers, L.C. (2007). Endogenous cytosine damage products alter the site selectivity of human DNA maintenance methyltransferase DNMT1. *Cancer Res* 67, 946-950.

896

897 Wei, A., and Wu, H. (2022). Mammalian DNA methylome dynamics: mechanisms, functions and new frontiers. *Development* 149.

898

899 Wu, H., Wu, X., Shen, L., and Zhang, Y. (2014). Single-base resolution analysis of active DNA demethylation using methylase-assisted bisulfite sequencing. *Nat Biotechnol* 32, 1231-1240.

900

901 Wu, H., Wu, X., and Zhang, Y. (2016). Base-resolution profiling of active DNA demethylation using MAB-seq and caMAB-seq. *Nature protocols* 11, 1081-1100.

902

903

904

905

906

907

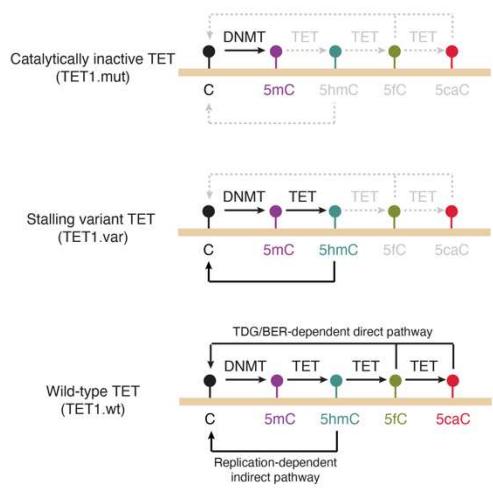
908

909

910

911

912 Wu, H., and Zhang, Y. (2014). Reversing DNA methylation: mechanisms, genomics, and biological
913 functions. *Cell* *156*, 45-68.


914 Wu, X., and Zhang, Y. (2017). TET-mediated active DNA demethylation: mechanism, function and
915 beyond. *Nat Rev Genet* *18*, 517-534.

916 Yu, G., Wang, L.G., Han, Y., and He, Q.Y. (2012). clusterProfiler: an R package for comparing biological
917 themes among gene clusters. *OMICS* *16*, 284-287.

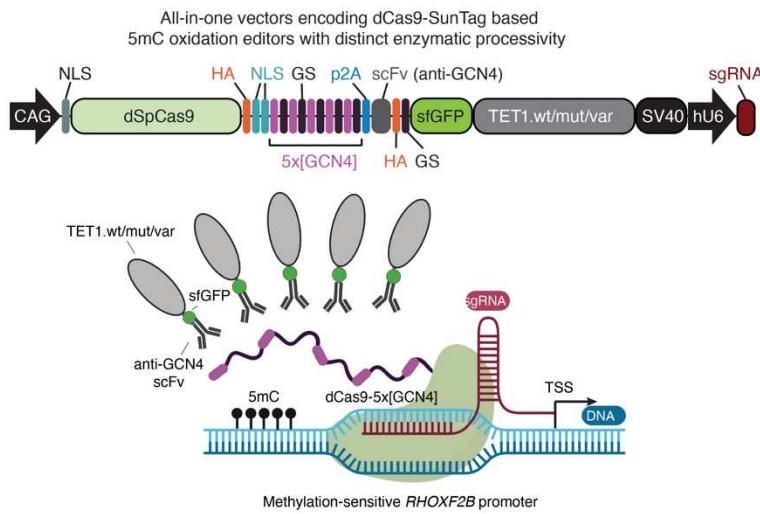
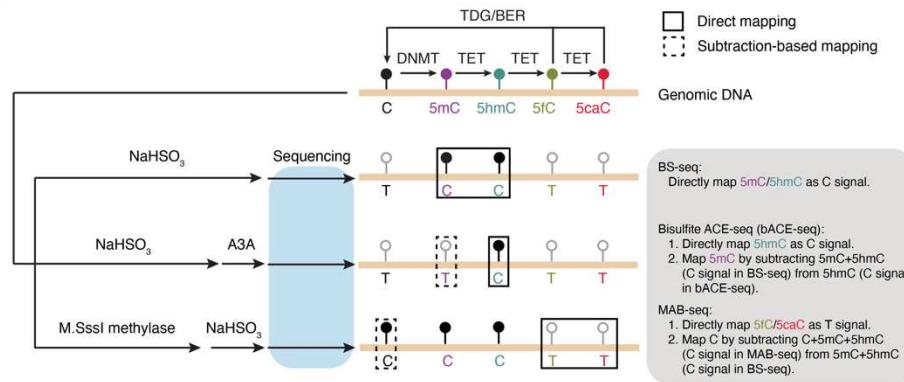
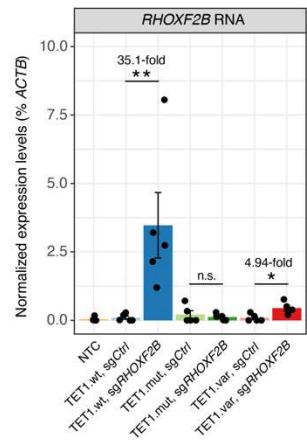
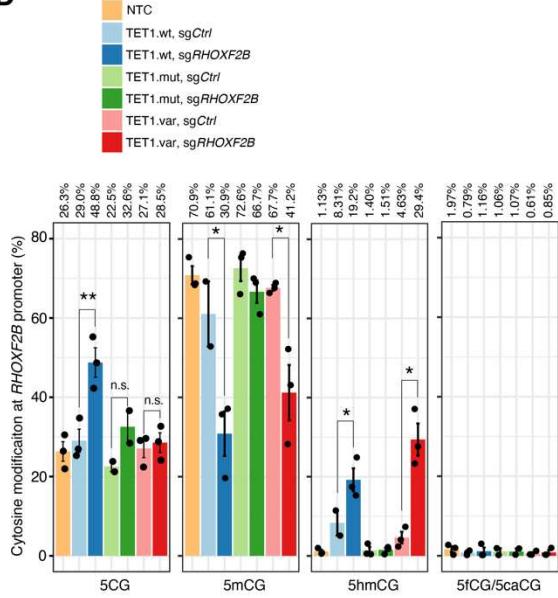
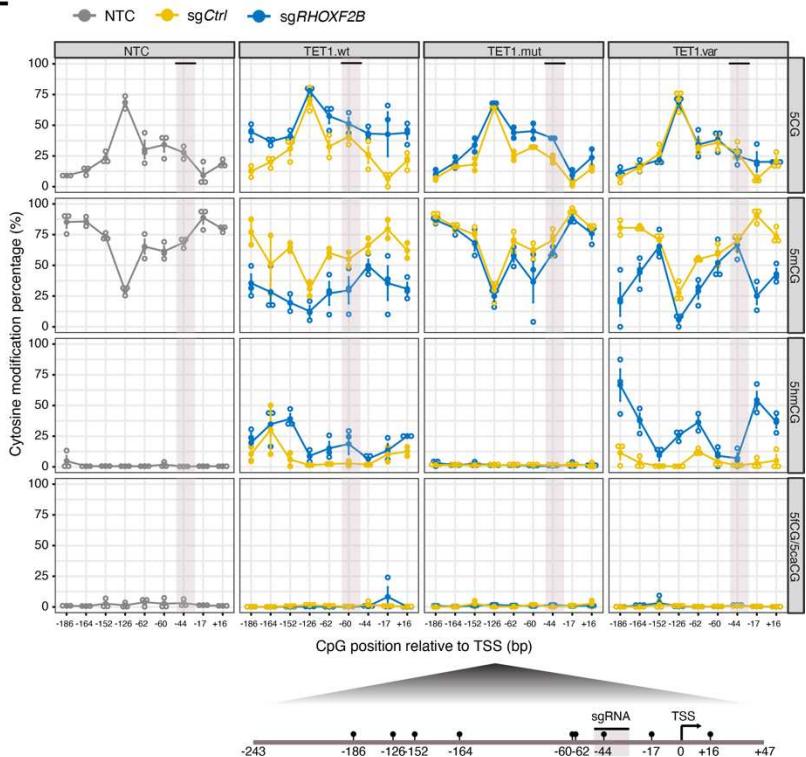

918
919

Figure 1


A


B


C


F

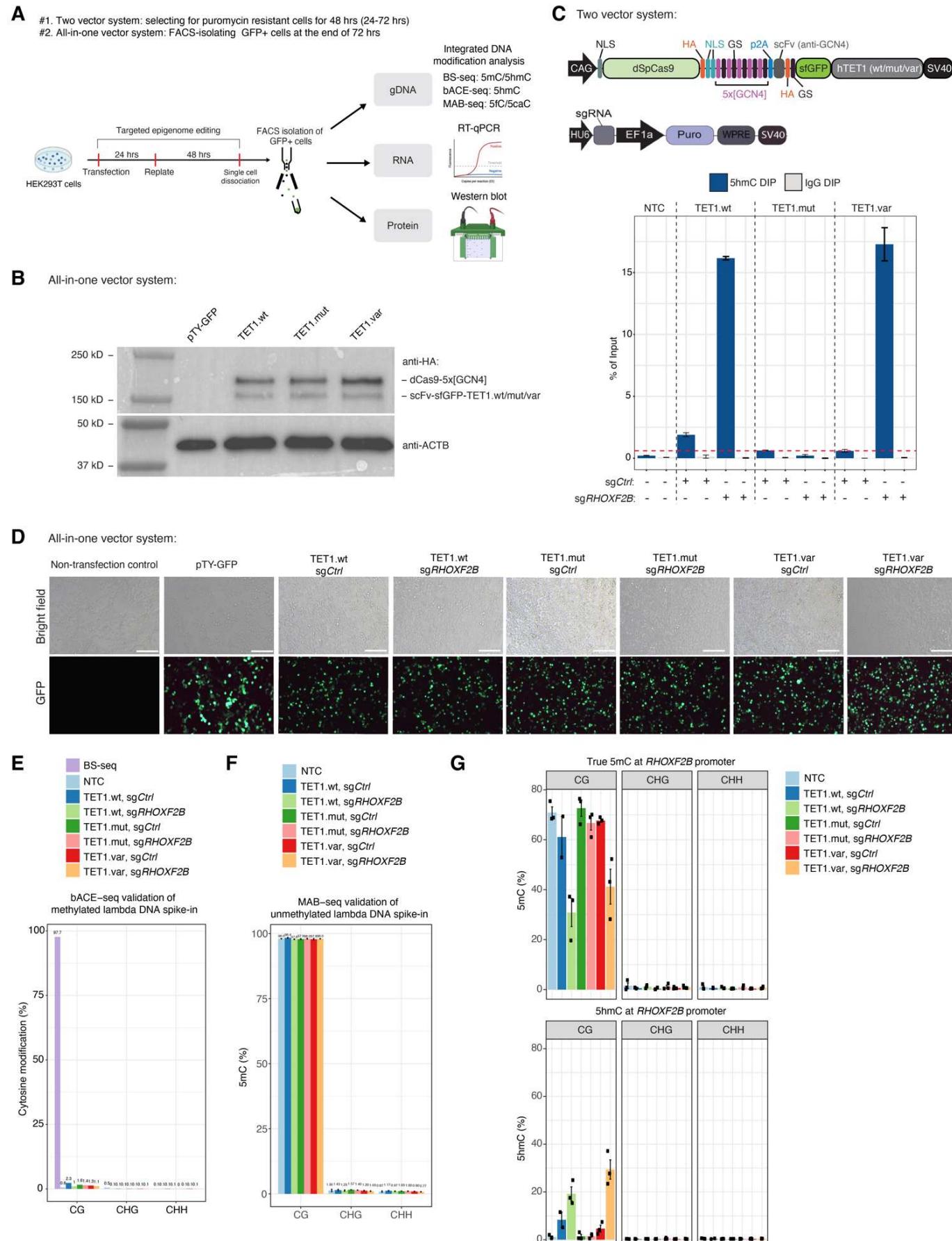
D

E

Figure 1. Dissecting regulatory roles of TET-mediated direct and indirect DNA demethylation pathways at specific genomic locus by a CRISPR/dCas9-SunTag-based 5-hydroxymethylome editor

(A) Schematic overview for the impact of TET enzyme with different levels of enzymatic processivity on active DNA demethylation pathways. Wild-type TET (TET.wt) affords generation of all ox-mCs and potential to regenerate unmodified C through TDG excision of 5fC/5caC and subsequent BER. TET stalling variant (TET.var) affords 5hmC accumulation and precludes higher ox-mC generation providing a comparison against wild-type TET facilitated full active DNA demethylation to directly study 5hmC function. Catalytically inactivated TET mutant (TET.mut) identifies catalytically independent effects without editing DNA modifications.

(B) Schematic of the All-in-one vector encoding CRISPR/dCas9-SunTag based DNA methylome editors that concomitantly express sgRNA (Top). Visual representation of the SunTag system recruiting multiple copies of human TET1 CD (wt/mut/var) to individual GCN4 peptide repeats (purple) to modify 5mC at the methylation sensitive *RHOXF2B* promoter (bottom). Abbreviations: Base Excision Repair (BER), CAG promoter (CAG), Deactivated *Streptococcus pyogenes* Cas9 (dSpCas9), Nuclear Localization Signal (NLS), General Control Transcription Factor GCN4 (GCN4), Glycine-Serine Linker (GS), single chain variable Fragment (scFv), super-folder Green Fluorescent Protein (sfGFP), human U6 promoter (hU6). The SunTag epigenome-editing schematic and experimental workflow was generated with Biorender.


(C) Schematic depiction on the enzymatic predilections of BS/bACE/MAB-seq toward DNA modifications and their sequencing output. Integrating BS/bACE/MAB-seq affords a tetra-modal heterogenous signature that quantifies unmodified C, 5mC, 5hmC, and 5fC/5caC. Solid squares represent DNA modifications directly profiled by the assay. Dotted boxes require subtractive methods in combination with multiple assays to bifurcate modifications. Grey font delineates the enzymatic function of either sodium bisulfite (NaHSO_3) or M.SssI Methyltransferase. Black lollipops represent DNA modifications sequenced as "C"; Empty ones represent modifications sequenced as "T".

(D) Locus-wide comprehensive DNA modification profiling of unmodified 5CG, 5mCG, 5hmCG, and 5fC/5caCG profiles at the *RHOXF2B* gene promoter, with modification levels (%) shown on the top. Quantification is measured by all modified CpGs as a percentage across amplicons. Individual dots represent independent biological replicates. Error bars correspond to +/- standard error. Statistical significance is established with paired one-tailed *t*-tests. *, $P<0.05$, **, $P<0.005$.

(E) (Top) Base resolution quantities of unmodified 5CG, 5mCG, 5hmCG, and 5fC/5caCG across the *RHOXF2B* promoter [-186 to +16 bp] spanning the TSS across 9 CpG sites. Individual sites are measured as a percentage of called modification reads/total reads and further stratified by TET1 isoforms and sgCtrl (yellow) versus sg*RHOXF2B* (blue). Black horizontal bar and mauve vertical bar denotes sgRNA target site. Individual open circles denote independent biological replicates. Dark circles represent mean values of each CpG site. Error bars represent +/- standard error from mean values. (Bottom) Schematic depiction of the *RHOXF2B* amplicon and individual CpG sites analyzed. Individual black lollipops represent 5mC enriched CpG sites. Relative distance to TSS is denoted by underlying numeric values.

(F) *RHOXF2B* gene expression normalized against β -Actin (ACTB) expression after methylome-editing. Individual dots represent independent biological replicates. Error bars represent +/- standard error. Bar height denotes mean value amongst biological replicates. Statistical significance established with one tailed paired *t*-test. *, $P<0.05$. Non-transfection control (NTC), scrambled sgRNA (sgCtrl), *RHOXF2B* promoter targeting sgRNA (sg*RHOXF2B*), non-significant (n.s). Statistical significance is established with paired one-tailed *t*-tests. *, $P=0.0313$, **, $P=0.0245$.

Figure S1

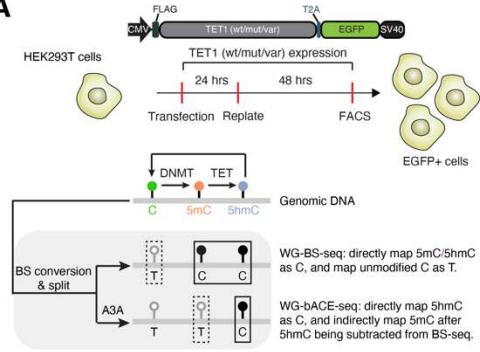
Figure S1. Validation experiments for the CRISPR/dCas9-SunTag based 5hmC editing system

(A) Schematic experimental workflow for transfecting SunTag.TET (wt/mut/var) constructs into HEK293T cells. All-in-one plasmids include the expression of the sgRNA in the same construct. Non-inclusive transfection experiments utilized co-transfection strategies outlined in the methods. Following transfection, cells are sorted with FACS to isolate GFP+/DAPI- cell populations. gDNA, RNA, and protein are isolated for downstream integrated DNA modification-, transcription-, and protein analysis. Abbreviations: FACS, Fluorescent Activated Cell Sorting; BS-seq, Bisulfite Sequencing; bACE-seq, bisulfite-assisted APOBEC Coupled Epigenetic Sequencing; MAB-seq, M.Sssl Assisted Bisulfite Sequencing; scFv, single-chain variable Fragment; sfGFP; Super Folder Green fluorescent Protein; ACTB, β -Actin.

(B) Representative western blot analysis evaluating the protein expression of our recombinant plasmids in FACS-sorted GFP+/DAPI- cells. Top bands represent dCas9-5x[GCN4]; bottom bands represent scFv-sfGFP-TET1.wt/mut/var. β -Actin is used as a loading control to ensure commensurate sample loading across samples.

(C) (Top) Schematics of the two-vector system, where dCas9-SunTag-TET1 and sgRNA are encoded by separate vectors. (Bottom) 5hmC DNA immunoprecipitation (5hmC-DIP) in puromycin-selected HEK293T cells qualitatively evaluating SunTag.TET1.var 5hmC generation capacity relative to SunTag.TET1.wt and SunTag.TET1.mut at the *RHOXF2B* promoter. Enrichment is measured by qPCR as a percentage relative to input. Red dotted lines denote average background levels of 5hmC from sgCtrl samples.

(D) Brightfield (top) and fluorescent (bottom) microscopic visualization of transfection efficiency measured by GFP signals. Abbreviations: sgCtrl, scrambled sgRNA; sg*RHOXF2B*, *RHOXF2B* promoter targeting sgRNA. pTY-GFP, a lentiviral vector encoding the EF1a promoter and EGFP transgene.


(E) bACE-seq samples are individually spiked with M.Sssl *in vitro* CpG methylated lambda phage DNA to benchmark APOBEC3A (A3A) 5mC deamination efficiency. A3A-mediated deamination is measured for CG/CHG/CHH sequence contexts. CHG/CHH 5mC is further utilized to evaluate for off-target *in vitro* methylation from M.Sssl. BS-seq samples (furthest left in purple) do not experience A3A enzymatic deamination to benchmark M.Sssl *in vitro* methylation efficiency against unmethylated lambda phage DNA. See methods for details on generating spike-in controls. Numbers on top represent mean percentage of called cytosine modifications. Percentages are calculated as total cytosine modification calls/total CpG sites across the amplicon multiplied by 100.

(F) MAB-seq samples are individually spiked in with unmethylated lambda phage DNA to benchmark M.Sssl *in vitro* methylation against unmodified CpG dyads to protect against BS-mediated deamination. Unmodified C protection is quantified by measuring total called C/C+T multiplied by 100 as a percentage in the CpG context. CHG/CHH sequences are measured to quantify off-target M.Sssl *in vitro* methylation effects.

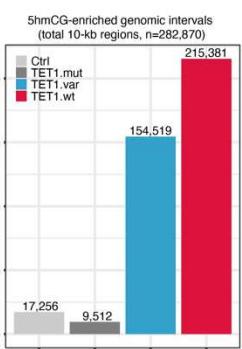
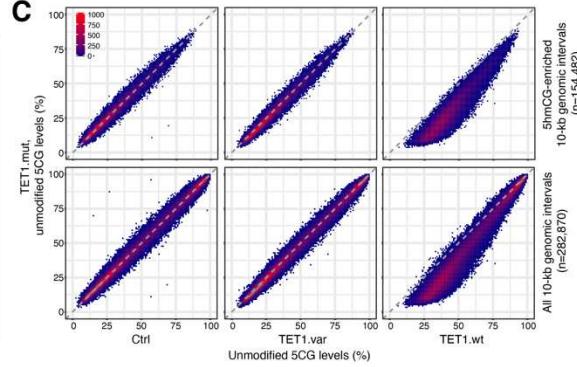
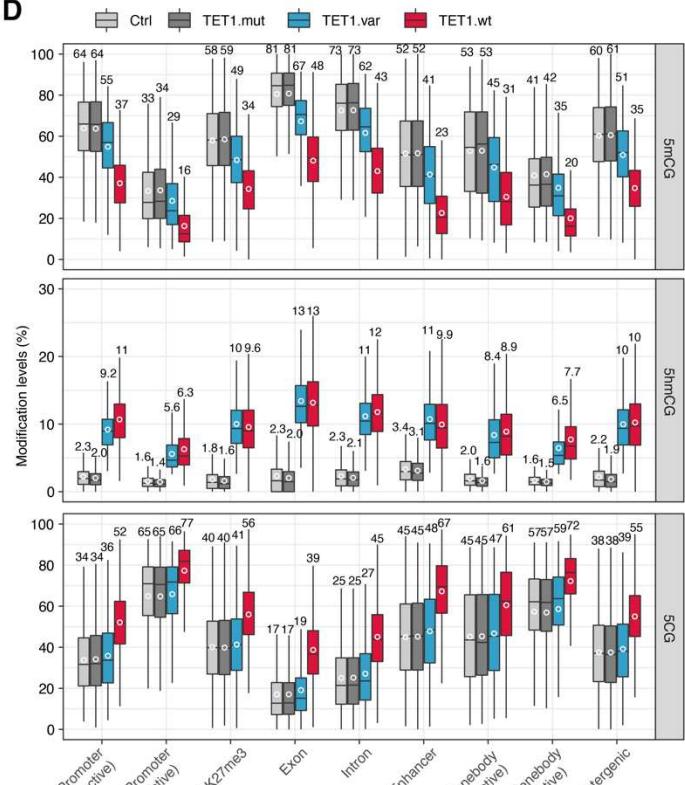
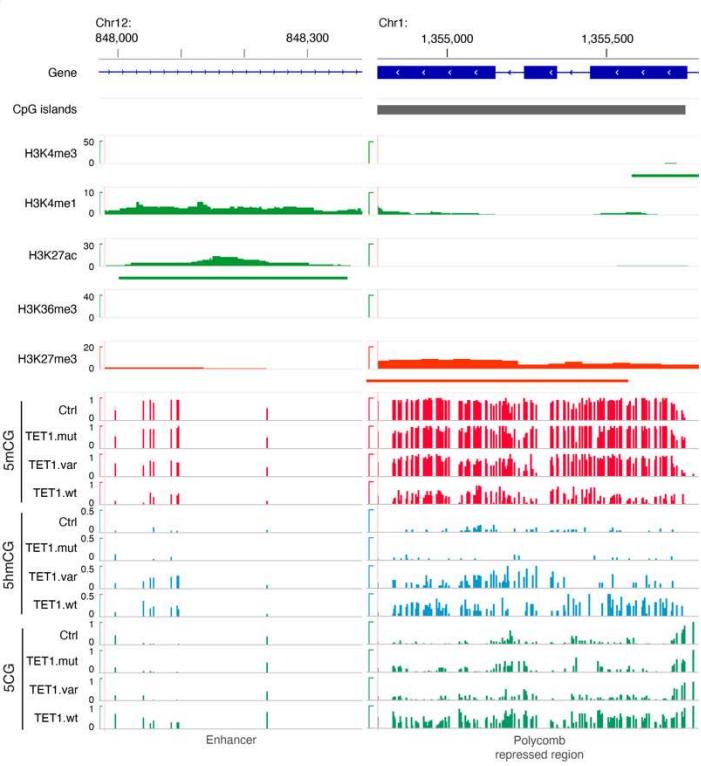
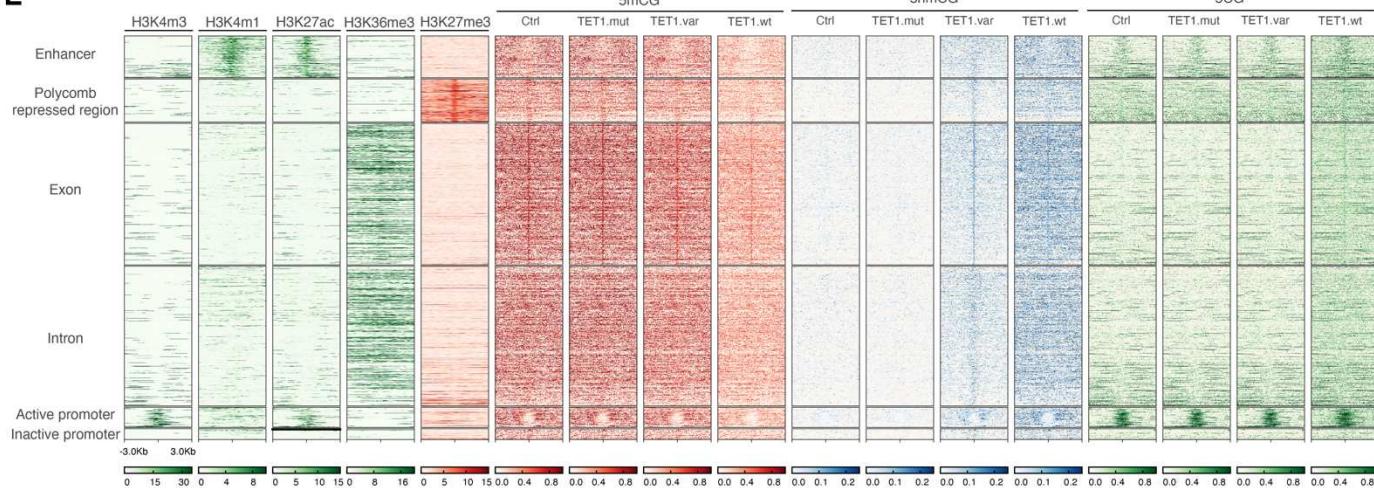

(G) Locus-wide quantifications of true 5mC (top) and 5hmC levels (bottom) in CG and non-CG (CHG/CHH) sequence contexts. True 5mC levels are calculated by subtracting called cytosine modifications from bACE-seq from BS-seq quantities. Bar heights represent mean values. Individual dots represent independent biological replicates. Error bars denote +/- standard error.

Figure 2


A


B


C


D

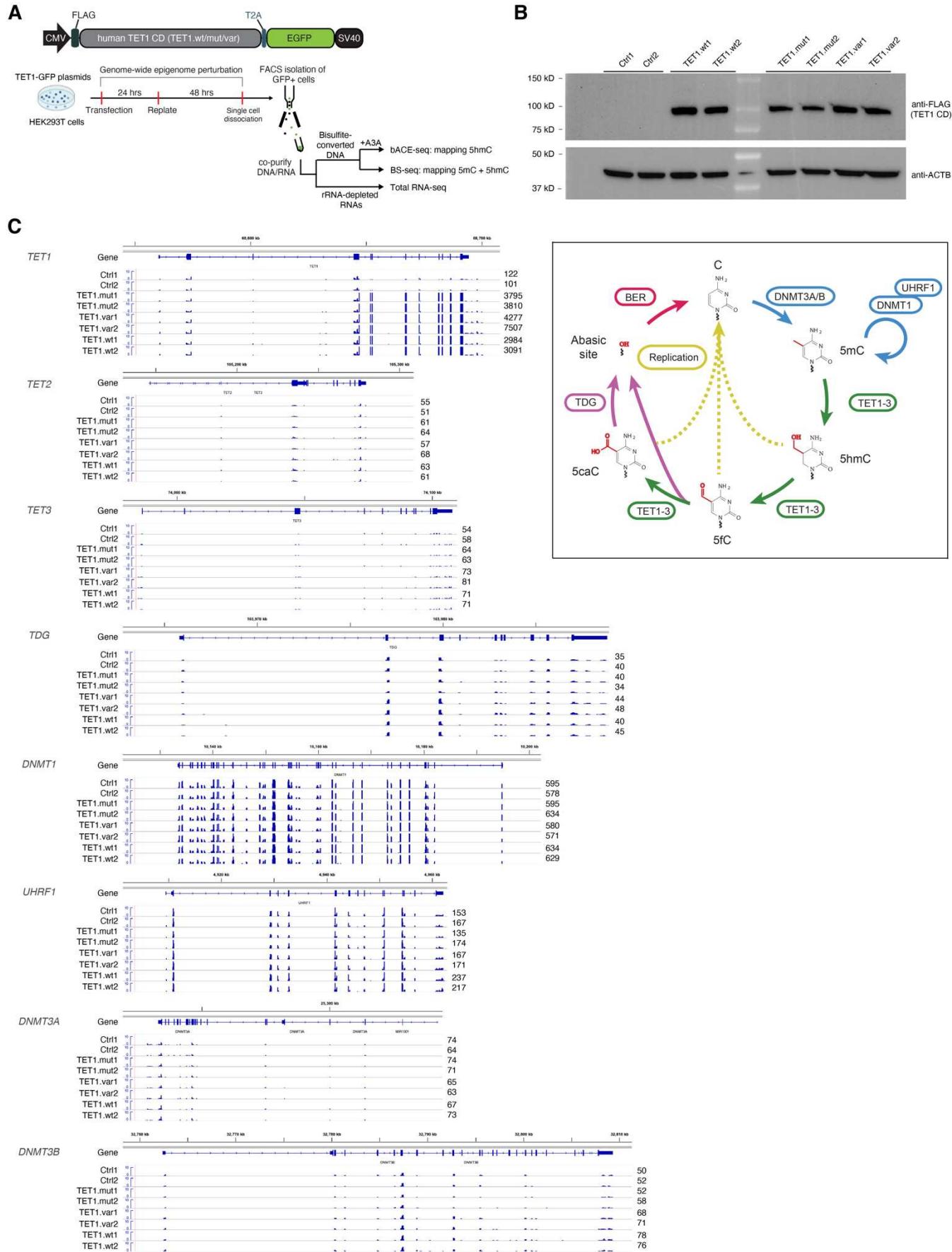
F

E

Figure 2. Genomic regions enriched with 5hmCG alone are not associated with global restoration of 5CG in proliferating somatic cells

(A) (Top) Schematic depiction of the over-expression vectors used for transfections experiments. hTET1 catalytic domains were generated to express either TET1 wild-type (wt), catalytic mutant (mut), or 5hmC-stalling variant (var). EGFP is used to isolate plasmid expressing cells with FACS. FLAG-tag was used to probe for protein expression. TET1 isoform over expression plasmids are transfected into HEK293T cells for 72 hours prior to isolating for GFP+/DAPI- cell populations. (Bottom) Schematic for the sequencing output for integrated whole genome (WG)-BS-seq and WG-bACE-seq to quantify 5mC, 5hmC, and unmodified C. Stagnated rectangle boxes denote enzymatic deamination by sodium bisulfite and APOBEC3A (A3A) for unmodified C and 5mCG in BS-seq and bACE-seq respectively that are read as thymine (T). Solid rectangle boxes designate DNA modifications read as cytosine (C) through sequencing output. Notably, because steady state 5fC/5caC are nearly undetectable, they have been grouped as unmodified C (C).

(B) Bar graph of 10-kb genomic regions enriched for statistically significant level of 5hmCG (P value = 2.5×10^{-4}) in control and TET1.mut/var/wt-expressing HEK293T cells, with number of 5hmCG-enriched genomic intervals listed above each bar.


(C) Correlation density plots of 5CG levels between TET1.mut and Ctrl/TET1.var/TET1.wt cells. Correlation analysis is performed with 5hmCG-enriched (top: $n = 154,482$, common to both TET1.wt and TET1.var) or all (bottom: $n = 282,870$) 10-kb genomic bins spanning the human genome.

(D) Box plots of 5mCG, 5hmCG and 5CG levels at subsets of annotated genomic or regulatory regions enriched for 5hmCG in both TET1.var and TET1.wt cells.

(E) Heat map representation of normalized ChIP-seq signals of major histone modifications (H3K4me3, H3K4me1, H3K27ac, H3K36me3 and H3K27me3 in wild-type HEK293T), and 5hmCG (bACE-seq), 5mCG (derived from BS-seq and bACE-seq), and 5CG (derived from BS-seq) in Ctrl and TET1.mut/var/wt HEK293T cells across a subset of annotated genomic or regulatory regions enriched for 5hmCG in both TET1.var and TET1.wt cells. The genomic features are ranked by 5hmCG levels in TET1.var cells.

(F) Genomic track view of major histone modifications and base-resolution 5mCG (red), 5hmCG (blue) and 5CG (green) maps at two representative loci (left: H3K4me1/H3K27ac marked intragenic enhancer; right: H3K27me3-marked CG-rich Polycomb repressed regions). Only CGs covered by at least two reads are shown. BS-seq and bACE-seq tracks represent merged data sets from two biological replicates.

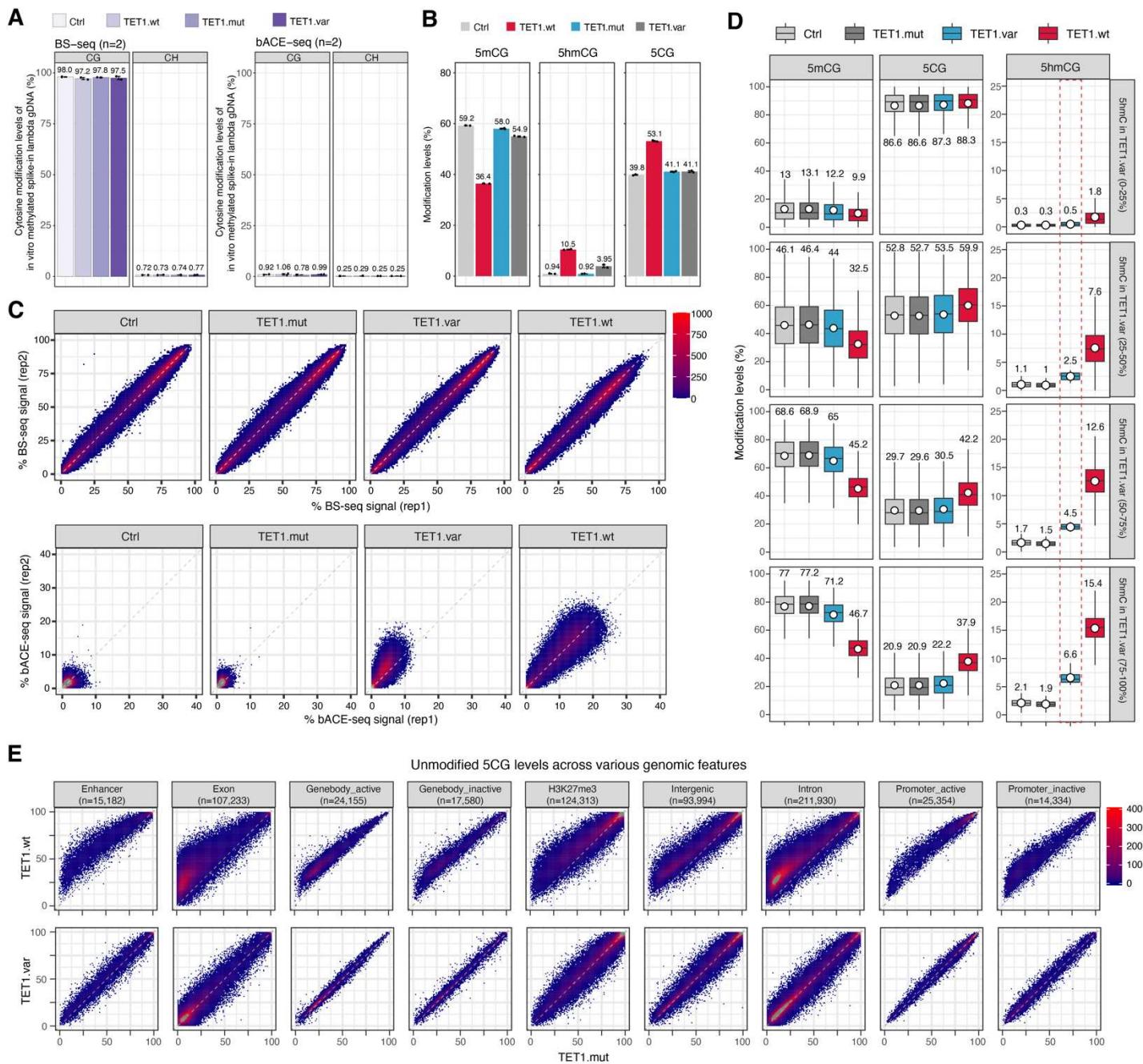

Figure S2

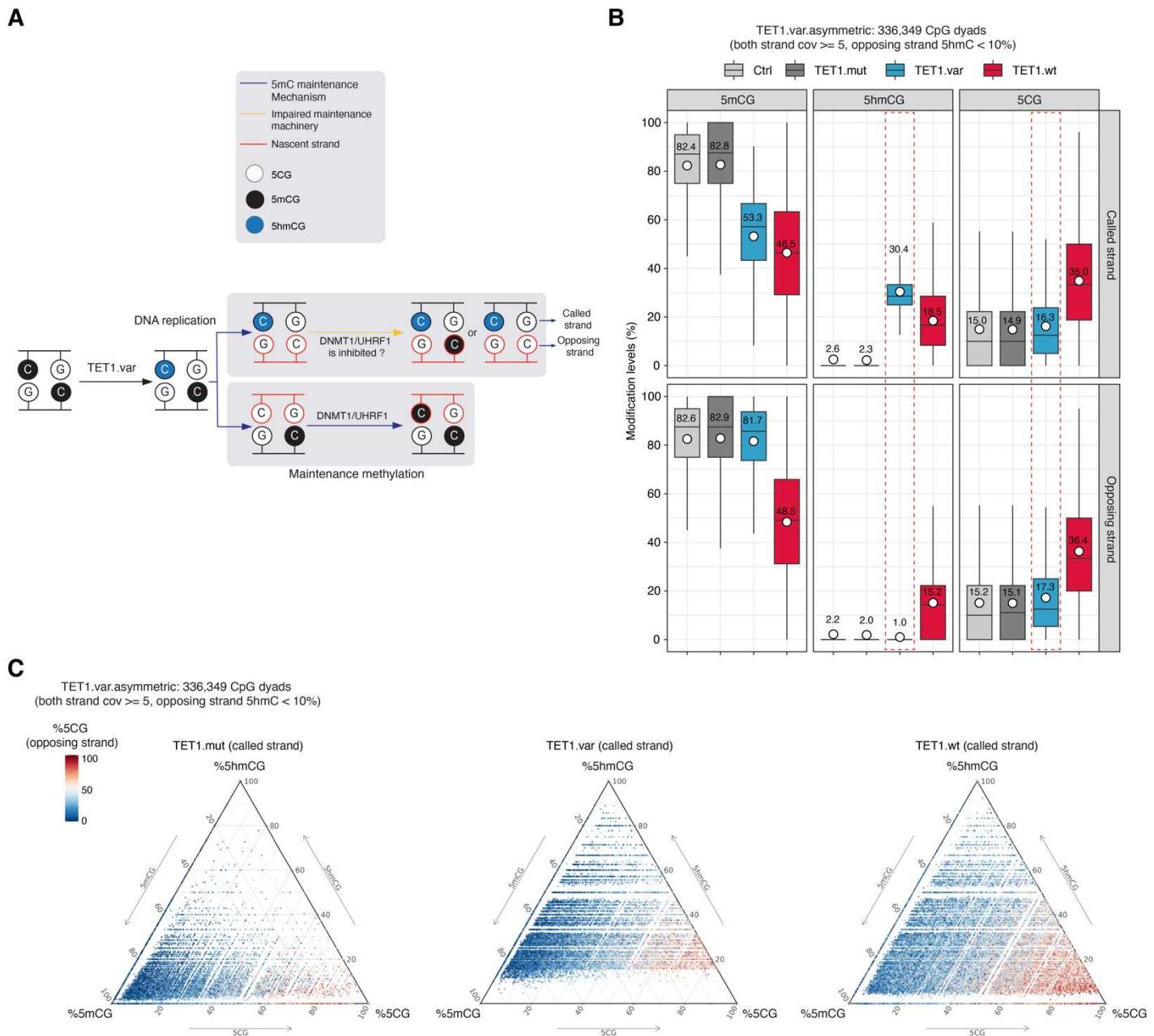
Figure S2. Experimental design and expression analysis for genome-wide epigenome editing in HEK293T cells

- (A)** Schematic experimental workflow for transfecting expression vectors encoding human TET1 (wt/mut/var) catalytic domains (CD) into HEK293T cells. Following transfection, cells are sorted with FACS to isolate GFP+/DAPI- cell populations.
- (B)** Representative western blot analysis evaluating the protein expression of our recombinant plasmids in FACS-sorted GFP+/DAPI- cells. Top panel represents Flag-tagged human TET1.wt/mut/var CD; bottom panel denotes β -Actin, which is used as a loading control. Ctrl1, non-transfection control cells; Ctrl2, pTY-GFP expressing cells.
- (C)** Genome browser view of gene annotation tracks and total RNA levels (scale of y-axis: 0 to 10) of genes encoding all major proteins involved in DNA methylation and demethylation dynamics in control (Ctrl1/2), TET1.mut, TET1.var, and TET1.wt expressing HEK293T cells, with normalized expression levels (in counts per million (CPM)) for each replicate shown next to the tracks. . (Right) Diagram depicting the major components of the DNA methylation and demethylation cyclic cascade.

Figure S3

Figure S3. Validation experiments for integrated whole genome BS-seq and bACE-seq analyses

(A) Bar graph of 5mC levels within CpG and CpH contexts for *in vitro* methylated lambda phage genomic DNA (used as spiked-in controls in BS-seq and bACE-seq experiments), with 5mC levels (%) listed above each bar.


(B) Bar graph of global levels of 5mCG, 5hmCG and 5CG in Ctrl and TET1.mut/var/wt-expressing cells, with cytosine modification levels (%) listed above each bar.

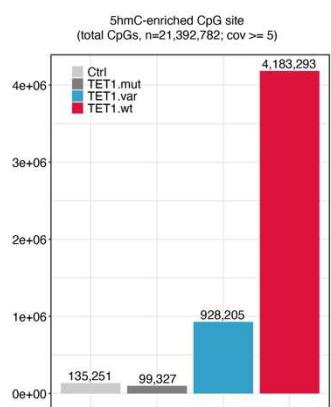
(C) Correlation density plot between two replicates of BS-seq (top) or bACE-seq (bottom) for Ctrl and TET1.mut/var/wt-expressing cells. Correlation analysis is performed with all 10-kb genomic bins spanning the human genome.

(D) Box plots of 5mCG, 5hmCG and 5CG levels at genomic regions enriched for different levels of 5hmCG in TET1.var-expressing cells (indicated by dashed red box).

(E) Correlation density plot of 5CG levels between TET1.mut and TET1.wt (top) or TET1.var (bottom) cells across all annotated genomic or regulatory regions, with the number of regions listed for each category.

Figure 3

Figure 3. CpG sites enriched with 5hmCG resist 5mCG depletion on opposing strands in proliferating somatic cells


(A) Schematic diagram of the hemi-methylated CpG maintenance mechanism by DNMT1/UHRF1 and the potential impairment of hemi-hydroxymethylation on the CpG methylation maintenance on the opposing strand.

(B) Box plots of 5mCG, 5hmCG and 5CG levels (%) on the called (top) and opposing (bottom) strands of asymmetrically hydroxymethylated CpG dyads ($n = 336,349$ sites; the population averages of 5hmCG and 5CG for this group of CpGs in TET1.var are highlighted by red dotted line) in TET1.var expressing cells. TET1.mut/wt are shown as controls.

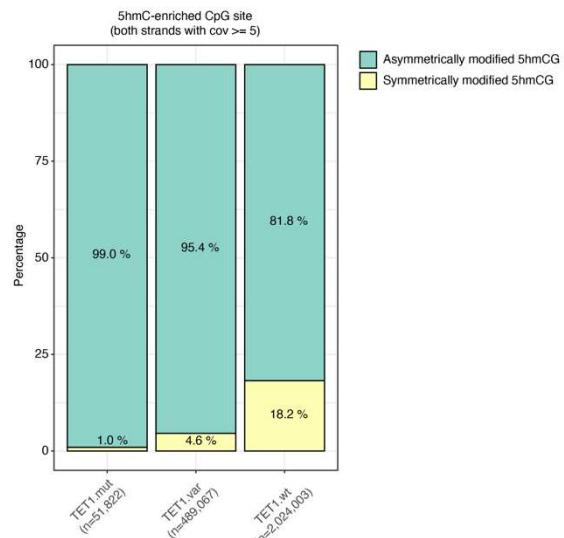
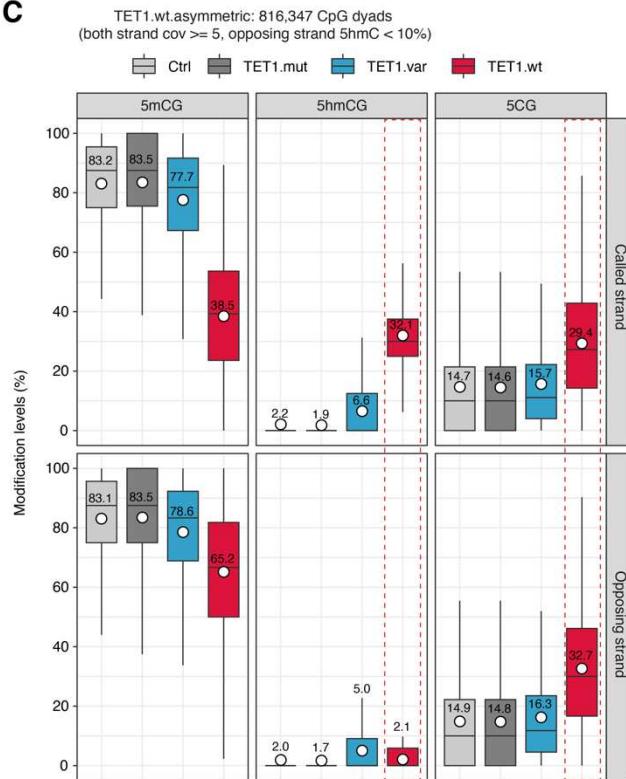
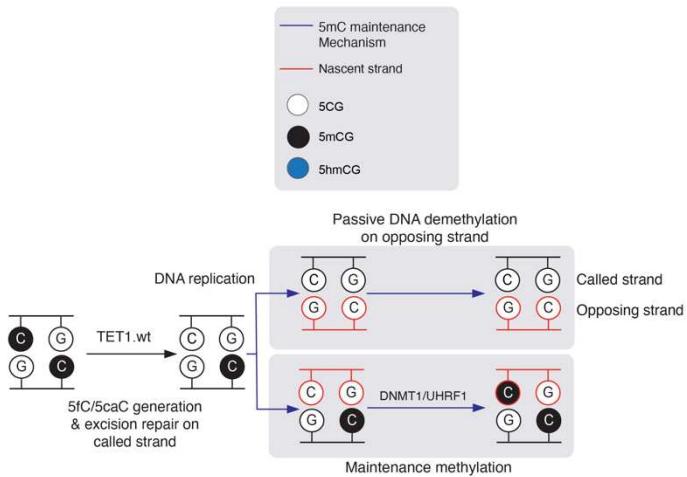
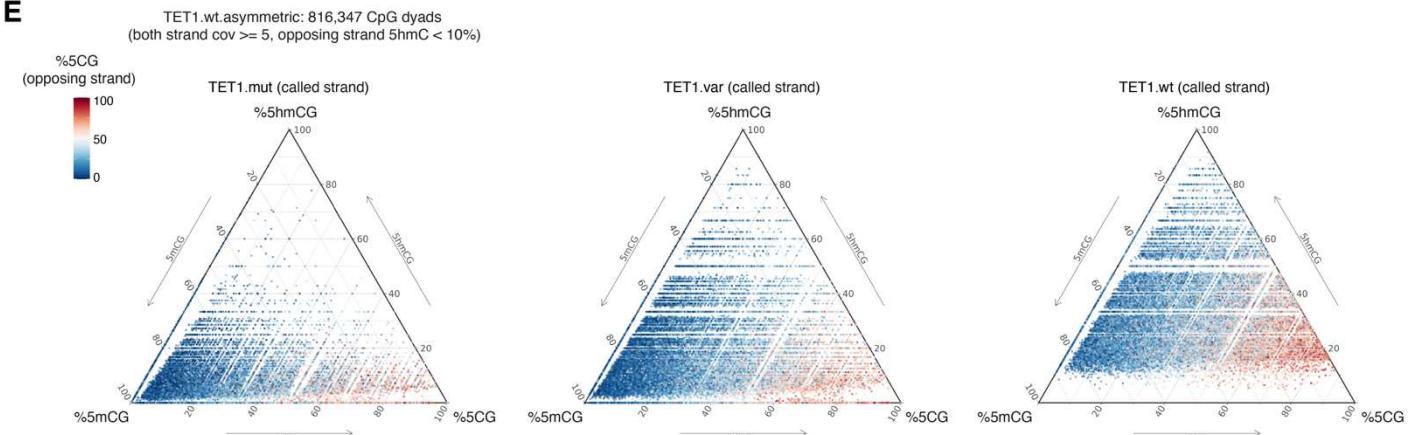

(C) Ternary plots showing levels of 5CG, 5mCG and 5hmCG (%) on the called strand of asymmetrically hydroxymethylated CpG dyads ($n = 336,349$ sites) in TET1.var expressing cells. TET1.mut/wt are shown as controls. The 5CG levels (%) on the opposing strand for the same CpG dyad are color coded (red: high; blue: low).

Figure S4


A


B


C

D

E

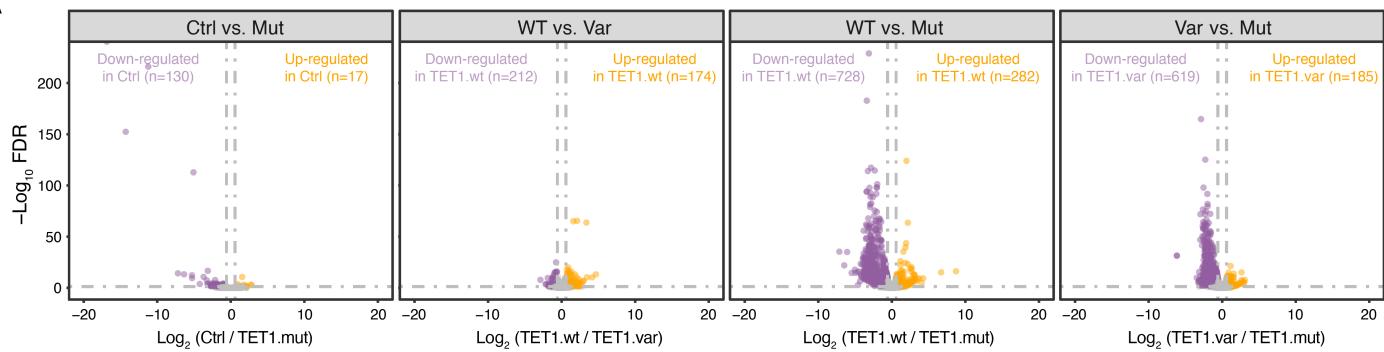


Figure S4. TET-mediated iterative 5mC oxidation is required for active DNA demethylation on both called and opposing strands of CpG dyads in proliferating somatic cells

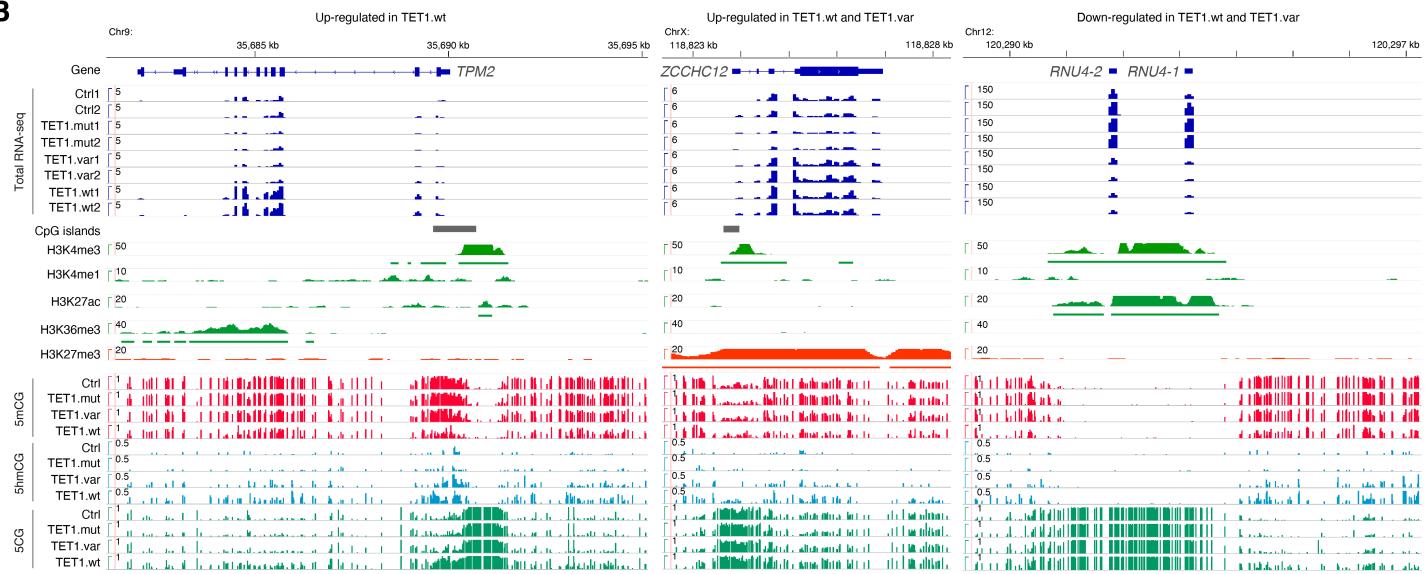
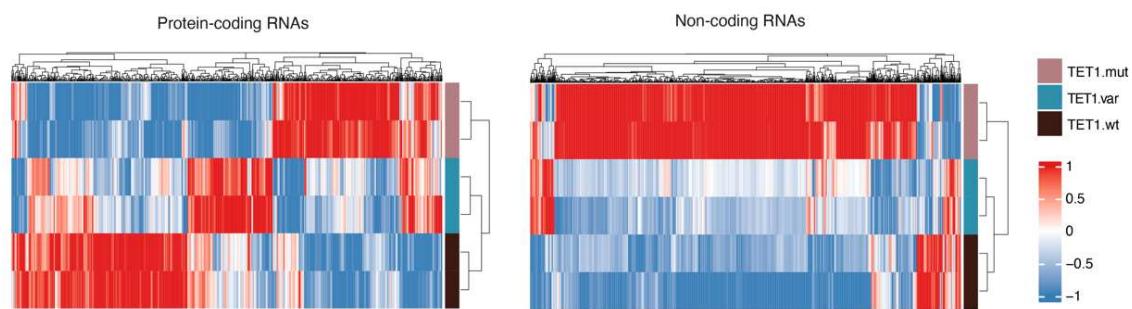

- (A)** Bar graph of CpG site (strand-specific) enriched for statistically significant 5hmC levels (P value = 2.5×10^{-4}) in control and TET1.mut/var/wt-expressing human 293T cells, with the number of 5hmC-enriched CpG sites listed above each bar.
- (B)** Bar graph showing the proportion of symmetrically (both strands modified) and asymmetrically (only one strand modified) hydroxymethylated CpG dyads in TET1.mut/var/wt-expressing HEK293T cells.
- (C)** Box plots of 5mCG, 5hmCG and 5CG levels (%) on the called (top) and opposing (bottom) strands of asymmetrically hydroxymethylated CpG dyads ($n = 816,347$ sites) in TET1.wt expressing cells.
- (D)** Schematic diagram of TET1.wt/TDG-mediated 5fC/5caC generation and excision repair and the impact of resulting hemi-methylation on the 5CG restoration on the opposing strand.
- (E)** Ternary plots show the levels of 5CG, 5mCG and 5hmCG (%) on the called strand of asymmetrically hydroxymethylated CpG dyads ($n = 816,347$ sites) in TET1.wt expressing cells. TET.mut/var are shown as controls. The 5CG levels (%) on the opposing strand for the same CpG dyad are color coded (red: high; blue: low).

Figure 4

A

B


Figure 4. Total RNA sequencing analysis reveals 5hmC alone may act as a gene regulatory epigenetic modification

(A) Volcano plots of differentially expressed genes (DEGs, including both protein-coding and non-coding genes) among four pairwise comparisons: control versus TET1.mut (regulated by TET1 protein scaffold), TET1.wt versus TET1.var (regulated by iterative 5mC oxidation alone), TET1.wt versus TET1.mut (regulated by iterative 5mC oxidation and/or 5hmC generation), and TET1.var versus TET1.mut (regulated by 5hmC generation alone). The cutoff for identifying DEGs is FDR < 0.05 and fold change > 1.5. Up-regulated genes are shown in orange; down-regulated genes are displayed in purple; insignificant genes are shown in grey.

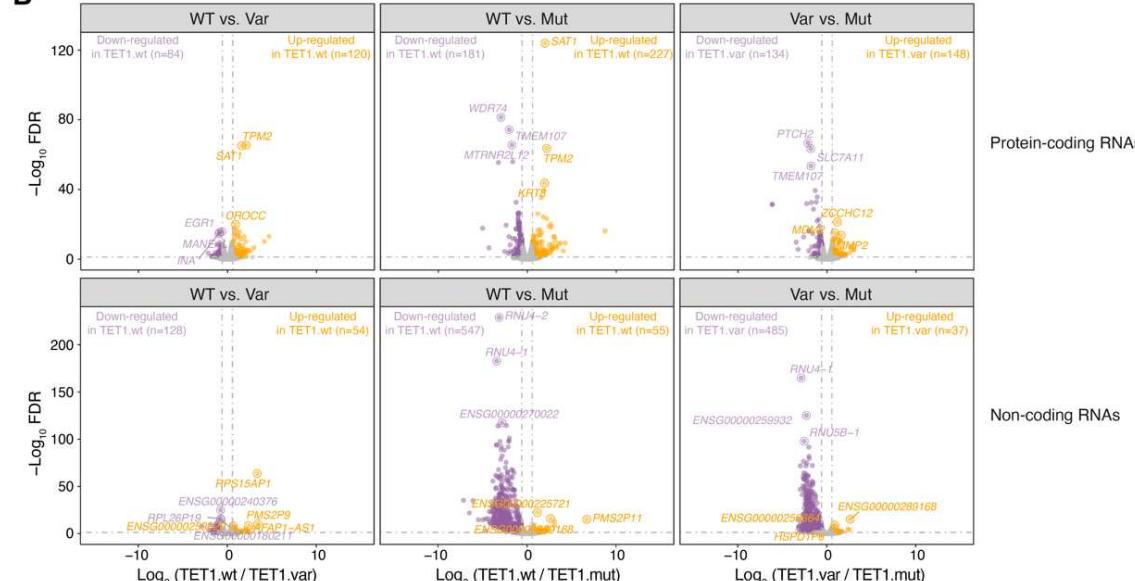
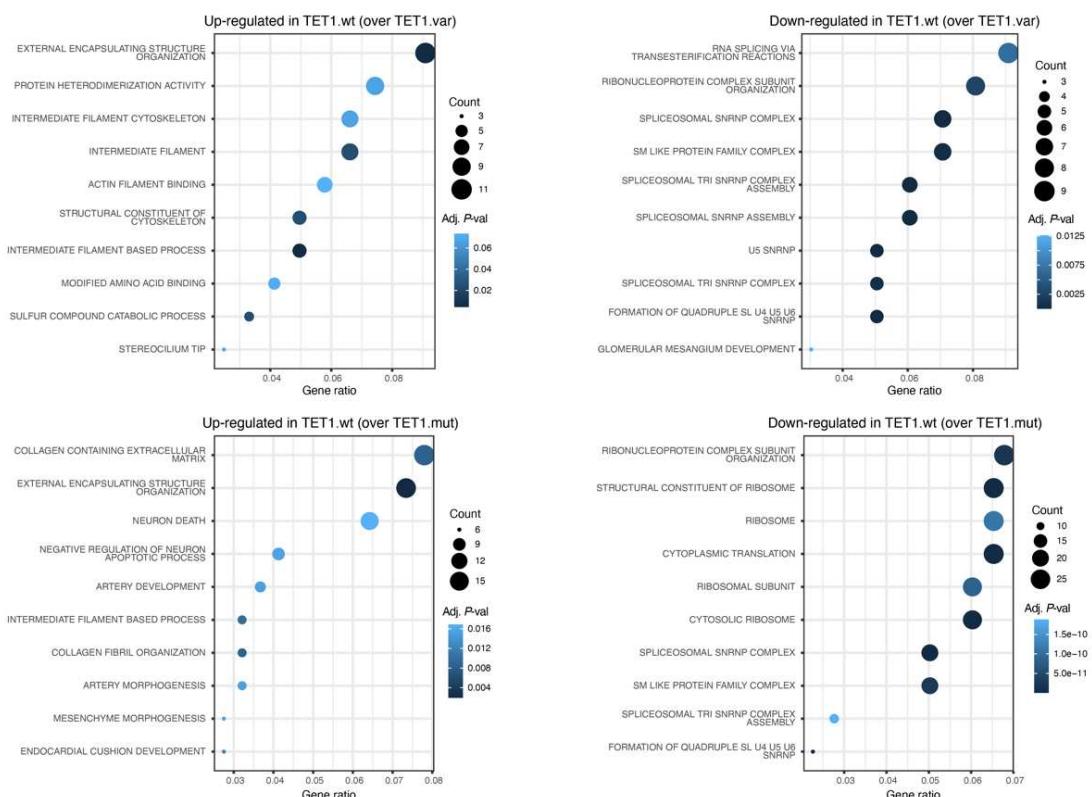

(B) Genome browser tracks of gene annotations, CpG islands, major histone modifications (wild-type only, normalized signals to library size, counts per million reads), total RNA levels (CPM, counts per million reads; with both biological replicates shown), 5mCG (0-100%), 5hmCG (0-50%) and 5CG (0-100%) signals for three representative DEGs (up-regulated in TET1.wt: *TPM2*, up-regulated in TET1.wt/var: *ZCCHC12*, and down-regulated in TET1.wt/var: *RNU4*) in control, TET1.mut, TET1.var, and TET1.wt cells, with scale of y-axis shown.

Figure S5


A

B

C

Figure S5. Total RNA sequencing analysis reveals the gene regulatory roles of TET-mediated stepwise, iterative 5mC oxidation on protein-coding and non-coding RNAs

(A) Heat maps showing differentially expressed genes of protein-coding (left) and non-coding (right) RNAs among three pairwise comparisons: TET1.wt versus TET1.var (regulated by iterative 5mC oxidation alone), TET1.wt versus TET1.mut (regulated by iterative 5mC oxidation and/or 5hmC generation), and TET1.var versus TET1.mut (regulated by 5hmC generation alone). Both biological replicates are shown, and the relative gene expression is scaled by z-score.

(B) Volcano plots of differentially expressed protein-coding (top) and non-coding (bottom) genes among three pairwise comparisons: TET1.wt versus TET1.var (regulated by iterative 5mC oxidation or 5hmC generation), TET1.wt versus TET1.mut (regulated by iterative 5mC oxidation alone), and TET1.var versus TET1.mut (regulated by 5hmC generation alone). Up-regulated genes are shown in orange, down-regulated genes are displayed in purple, and insignificant genes are shown in grey.

(C) Top 10 enriched gene ontology terms for genes significantly up-regulated (left) or down-regulated (right) in pairwise comparisons [TET1.wt vs. TET1.var (top) or TET1.wt vs. TET1.mut (bottom)], respectively.

Table S1. Oligonucleotides

DIP-Forward Primer:

CACACCCCTACTACACCACCTACCC

DIP-Reverse Primer:

CTATTGCTGTGGGTTGGCCTG

sgRHOXF2B Sequence:

GCTTGGCCTTGGCCGGATGA

Amplicon Primer Forward for locus-specific BS-seq/bACE-seq/MAB-seq:

GTTATAAAATGGGTTTGTATAATTAGTAT

Amplicon Primer Reverse for locus-specific BS-seq/bACE-seq/MAB-seq:

AAACACCTCCTCTTACTTTCTACTTC

RT-qPCR Primer Forward:

CATTTCCAACCGCGAGCAGT

RT-qPCR Primer Reverse:

AAGGGCAGCATGTTCTTGC

Table S2. Whole genome BS-seq and bACE-seq libraries

Samples	Method	Total reads	Uniquely mapped read	Mapping rate	Filtered reads (MAPQ>10)	Duplicated reads	mCG_hg38	mCHG_hg38	mCHH_hg38
Ctrl, rep1	BS-seq	334,288,342	238,498,927	71%	211,530,779	193,058,053	60.40%	1.05%	0.90%
Ctrl, rep2	BS-seq	266,931,214	188,676,517	71%	166,439,687	151,739,026	59.55%	0.65%	0.65%
TET1.mut, rep1	BS-seq	283,148,414	208,015,932	73%	184,774,024	167,454,528	59.30%	0.80%	0.70%
TET1.mut, rep2	BS-seq	230,391,624	168,692,947	73%	149,309,898	138,179,851	58.75%	0.95%	0.85%
TET1.var, rep1	BS-seq	369,668,236	262,061,271	71%	230,813,407	211,071,722	58.40%	1.00%	0.90%
TET1.var, rep2	BS-seq	360,806,174	263,813,761	73%	234,880,075	204,110,021	58.10%	0.55%	0.45%
TET1.wt, rep1	BS-seq	280,966,192	204,391,306	73%	181,858,027	165,996,992	47.15%	0.70%	0.65%
TET1.wt, rep2	BS-seq	277,940,218	200,134,050	72%	177,562,459	161,792,630	47.30%	0.50%	0.50%
Ctrl, rep1	bACE-seq	324,346,398	233,704,049	72%	206,291,639	169,971,900	1.60%	0.20%	0.20%
Ctrl, rep2	bACE-seq	274,174,202	190,216,083	69%	164,188,282	126,799,473	1.60%	0.20%	0.20%
TET1.mut, rep1	bACE-seq	387,222,684	291,336,125	75%	259,149,190	207,691,499	1.30%	0.20%	0.20%
TET1.mut, rep2	bACE-seq	304,185,702	223,394,523	73%	196,605,310	165,626,923	1.50%	0.20%	0.20%
TET1.var, rep1	bACE-seq	299,113,246	222,841,634	74%	196,965,929	162,771,549	3.60%	0.20%	0.20%
TET1.var, rep2	bACE-seq	191,328,540	137,622,290	71%	121,106,913	88,851,703	5.20%	0.20%	0.20%
TET1.wt, rep1	bACE-seq	239,583,876	178,930,525	74%	158,917,149	126,722,086	10.70%	0.20%	0.20%
TET1.wt, rep2	bACE-seq	242,202,052	177,349,318	73%	157,267,397	140,828,650	11.30%	0.20%	0.20%

Table S3. RNA-seq libraries

Library type	Cell line	Samples	Total reads	Mapping rate
Total RNA-seq	HEK293T	Ctrl, rep1	67,620,107	87.9%
Total RNA-seq	HEK293T	Ctrl, rep2	55,050,053	87.5%
Total RNA-seq	HEK293T	TET1.wt, rep1	63,936,554	89.1%
Total RNA-seq	HEK293T	TET1.wt, rep2	71,047,248	86.4%
Total RNA-seq	HEK293T	TET1.mut, rep1	78,802,333	80.5%
Total RNA-seq	HEK293T	TET1.mut, rep2	67,864,894	81.6%
Total RNA-seq	HEK293T	TET1.var, rep1	80,512,210	86.2%
Total RNA-seq	HEK293T	TET1.var, rep2	69,421,508	88.4%