

1 **Conditional Chemoconnectomics: A Set of Libraries Targeting All Chemical
2 Transmission Corresponding Genes Efficiently**

3 Renbo Mao^{a,b,✉}, Jianjun Yu^{a,✉}, Bowen Deng^a, Xihuimin Dai^a, Yuyao Du^a, Sujie Du^a, Wenxia
4 Zhang^a and Yi Rao^{a,1}

5 ^aLaboratory of Neurochemical Biology, Chinese Institute for Brain Research, Beijing; PKU-
6 IDG/McGovern Institute for Brain Research, Peking-Tsinghua Center for Life Sciences, School
7 of Life Sciences, Department of Chemical Biology, College of Chemistry and Chemical
8 Engineering, School of Pharmaceutical Sciences, Peking University, Beijing 100871; Chinese
9 Institutes for Medical Research, Capital Medical University; Changping Laboratory, Yard 28,
10 Science Park Road, Changping District; and Research Unit of Medical Neurobiology, Chinese
11 Academy of Medical Sciences, Beijing, China.

12 ^bNational Institute of Biological Sciences, Chinese Academy of Medical Sciences & Peking
13 Union Medical College, Beijing, China.

14

15 [#]Co-first authors

16 ¹ Corresponding Author Yi Rao

17 **Email:** yrao@pku.edu.cn

18

19 **Author Contributions:** R.M. and J.Y. performed majority of experiments and data analysis.
20 B.D., J.Y., and R.M. found advanced morning activity phenotype and carried out experiments
21 of CNMa/CNMaR. R.M., Y.D., and S.D. carried out experiments of cCCTomics fly generation.
22 R.M., J.Y., X.D., and Y.R. wrote the manuscript.

23

24 **Competing Interest Statement:** The authors declare no competing interest.

25

26 **Keywords:** chemoconnectome, CRISPR/Cas9, CNMa, circadian rhythm, morning anticipation

27 **Abstract**

28 Dissection of neural circuitry underlying behaviors is a central theme in neurobiology. Chemical
29 transmission is the predominant model for signaling between neurons. Here we have created
30 lines target all chemical transmission corresponding genes in *Drosophila* after modifying GFP
31 RNA interference, Flp-out and CRISPR/Cas9 technologies. After thorough validation, all three
32 strategies are demonstrated to be highly effective with the best using chromatin-peptide fused
33 Cas9 variants and scaffold optimized sgRNAs. As a proof of principle, we conduct a
34 comprehensive intersection analysis of chemoconnectome (CCT) genes expression profiles in
35 the clock neurons using chemoconnectomics driver lines, leading to the finding of 45 CCT
36 genes presented in clock neurons. Mutating these genes specifically in clock neurons revealed
37 that loss of the neuropeptide CNMa in two posterior dorsal clock neurons (DN1p) or its receptor
38 (CNMaR) caused advanced morning activity, opposite to the mutants of neuropeptide PDF or
39 its receptor (PDFR). These results demonstrate the effectiveness of conditional
40 chemoconnectomics libraries and indicate an antagonistic relationship between CNMa-CNMaR
41 and PDF-PDFR signaling in regulating morning anticipation.

42 **Introduction**

43 Much research efforts have been made in uncovering the wiring and signaling pathways of
44 neural circuits underlying specific behaviors. Multiple circuit dissection strategies have been
45 developed, including genetic screening, genetic labelling, circuit tracing, live imaging, genetic
46 sensors and central nervous system reconstruction via electron microscopy (EM) imaging.
47 Recently, we have developed chemoconnectomics (CCTomics), focusing on building a
48 comprehensive set of knockout and knockin tool lines of chemoconnectome (CCT) genes, to
49 dissect neural circuitry based on chemical transmission (Deng et al., 2019).

50 Each strategy has advantages and disadvantages, for example: genetic screening is less
51 biased but inefficient; circuit tracing with viruses provides information of connection, but is often
52 prone to leaky expression and inaccurate labelling; and EM reconstruction is anatomically
53 elaborate but does not allow for manipulation of corresponding neurons. CCTomics overcomes
54 some limitations of previous strategies by allowing for behavioral screening of CCT genes and
55 accurate labelling or manipulation of corresponding neurons. However, it is still limited in that
56 knockout of some CCT genes can be lethal during development and that CCT genes may
57 function differently in different neurons, which require a cell type-specific manipulation. Thus,
58 we decided to invent a conditional CCTomics (cCCTomics) in which gene deletion was
59 conditional.

60 There are three major strategies for somatic gene mutagenesis at the DNA/RNA level:
61 RNA interference, DNA site-specific recombination enzymes, and CRISPR/Cas system. RNA
62 interference targets RNAs conveniently and efficiently (Martin and Caplen, 2007; Oberdoerffer
63 et al., 2005). Libraries of transgenic RNAi flies covering almost the entire fly genome have been

64 established (Ni et al., 2011; Perkins et al., 2015). DNA site specific recombination enzymes
65 such as Flp, B3 and Cre mediate specific and efficient gene editing (Gaj et al., 2014; Grindley
66 et al., 2006). These strategies require flies with reverse repetitive sequences knocked into the
67 corresponding genes, which is time-consuming with relatively complex recombination for
68 genetic assays. CRISPR/Cas systems, particularly CRISPR/Cas9, which targets DNA with a
69 sgRNA/Cas protein complex, have been broadly applied in gene manipulation over the last
70 decade. The widespread use of CRISPR/Cas9 in Drosophila somatic gene manipulation began
71 in 2014 (Xue et al., 2014). Later, tRNA-flanking sgRNAs was designed and applied, which
72 enabled multiple sgRNAs to mature in a single transcript (Xie et al., 2015), accelerating the
73 application of this strategy in conditional gene manipulation in flies with impressive efficiency
74 (Delventhal et al., 2019; Port and Bullock, 2016; Port et al., 2020; Schlichting et al., 2019;
75 Schlichting et al., 2022). Additionally, libraries of UAS-sgRNA targeting kinases (Port et al.,
76 2020) and GPCRs (Schlichting et al., 2022) have been established, but no sgRNA libraries
77 covering all the CCT genes exists yet. The efficiency of CRISPR/Cas9 has not been validated
78 systematically in the Drosophila nervous system.

79 The circadian rhythm can be used for proof of principle testing of cCCTomics. Organisms
80 evolve periodic behaviors and physiological traits in response to cyclical environmental
81 changes. The rhythmic locomotor behavior of Drosophila, for instance, shows enhanced activity
82 before the light is turned on and off in a light-dark (LD) cycle, referred to as morning and evening
83 anticipations, respectively (Collins et al., 2005; Helfrich-Förster, 2001). Under dark-dark (DD)
84 conditions, the activities peaks regularly about every 24 hours (h) (Konopka and Benzer, 1971).
85 Approximately 150 clock neurons, circadian output neurons and extra-clock electrical

86 oscillators (xCEOs) coordinate *Drosophila* circadian behaviors (Dubowy and Sehgal, 2017;
87 Tang et al., 2022). The regulation of morning and evening anticipations, the most prominent
88 features in the LD condition, is primarily mediated by four pairs of sLNvs expressing pigment
89 dispersing factor (PDF), six pairs of LNds and the 5th s-LNv (Grima et al., 2004; Rieger et al.,
90 2006; Stoleru et al., 2004). At the molecular level, Pdf and Pdf receptor (PDFR) are well-known,
91 with their mutants showing an advanced evening activity peak and no morning anticipation
92 (Hyun et al., 2005; Lear et al., 2005; Renn et al., 1999). Other neuropeptides and their receptors,
93 including AstC/AstC-R2 and neuropeptide F (NPF) and its receptor (NPFR), have also been
94 reported to modulate evening activities (Díaz et al., 2019; He et al., 2013; Hermann et al., 2012),
95 while CCHa1/CCHa1-R and Dh31 regulate morning activities (Fujiwara et al., 2018; Goda et
96 al., 2019). To date, no advanced morning activity phenotype has been reported in flies.

97 To develop a more efficient approach for somatic gene manipulation, we have now
98 generated two systems for conditional manipulation of CCT genes. One is GFPi/Flp-out-based
99 conditional knockout system of CCT genes (cCCTomics) and another is CRISPR/Cas9-based
100 (C-cCCTomics). Both systems have achieved high efficiency of gene mutagenesis in the
101 *Drosophila* nervous system. C-cCCTomics, utilizing chromatin-peptide fused Cas9 and scaffold
102 optimized sgRNA, makes efficient conditional gene knockout as simple as RNAi. Further
103 application of C-cCCTomics in clock neurons revealed novel roles of CCT genes in circadian
104 behavior: CNMa-CNMaR modulates morning anticipation as an antagonistic signal of PDF-
105 PDFR.

106

107 **Results**

108 **Complete Disruption of Target Genes by GFPi and Flip-out Based cCCTomics**

109 For the purpose of conditional chemoconnectomics (cCCTomics), we initially leveraged the
110 benefits of our previously generated CCTomics attP lines (Deng et al., 2019), which enabled us
111 to fuse enhanced GFP coding sequence at the 3' end of each gene's coding region and flank
112 most or entire gene span with FRT sequence through site-specific recombination (Fig 1A, Table
113 S1). We designed this system so that it could be used to target genes tagged with GFP by RNAi
114 (Neumüller et al., 2012) and at the same time to enable flippase(Flp) mediated DNA fragment
115 excision between two FRT sequences when FRT sequences are in the same orientation (Vetter
116 et al., 1983) (Fig1A) .

117 To validate the efficiency of cCCTomics, we performed pan-neuronal expression of either
118 shRNA^{GFP} or flipase in cCCT flies. Immunofluorescent imaging showed that constitutive
119 expression of shRNA^{GFP} (Fig 1B-1D, Fig S1A-S1I) or flipase (Fig 1E-1G, Fig S1J-S1U) almost
120 completely eliminated GFP signals of target genes, indicating high efficiency. Knockout at the
121 adult stage using either hsFLP driven Flp-out (Golic and Lindquist, 1989) (Fig 1H-1J) or neurally
122 (elav-Switch) driven shRNA^{GFP} (Nicholson et al., 2008; Osterwalder et al., 2001) (Fig S2A-
123 S2I) also showed high efficiency of suppression. Notably, control group of CCT^{EGFP.FRT}; elav-
124 Switch/UAS-shRNAGFP flies fed with solvent (ethanol) showed obvious decreased GFP (Fig
125 S2B, S2E, and S2H) comparing with UAS-shRNA^{GFP}/CCT^{EGFP.FRT} flies fed with RU486 (Fig S2A,
126 S2D, and S2G), indicating leaky expression of elav-Switch.

127 We then applied cCCTomics in pan-neuronal knockout of nAChR β 2 which is required for
128 Drosophila sleep (Dai et al., 2021). Ablation of nAChR β 2 in the nervous system dramatically
129 decreased both day and night sleep of flies, which was the same as shown in the previous

130 paper (Dai et al., 2021) (Fig 1K, 1L). Therefore, cCCTomics is an effective toolkit for
131 manipulation of CCT genes and suitable for functional investigations of genes. Expression of
132 in-frame fused eGFP-labelled CCT genes highly co-localized with signals revealed by
133 immunocytochemistry (Fig S3A-S3I), allowing direct examination of gene expression without
134 amplification, which is different from the GAL4/UAS binary system.

135 We then checked the viability of cCCT lines and found that cCCT lines including
136 $\text{Capa}^{\text{EGFP.FRT}}$, $\text{ChAT}^{\text{EGFP.FRT}}$ and $\text{Eh}^{\text{EGFP.FRT}}$ were viable whereas their CCT mutants were lethal.
137 $\text{Gad1}^{\text{EGFP.FRT}}$, $\text{GluRIID}^{\text{EGFP.FRT}}$ and $\text{CapaR}^{\text{EGFP.FRT}}$ were still lethal as their CCT mutants were
138 (Table S2). This indicates that some of the cCCT knockin flies may functionally affect
139 corresponding genes, which are not suitable for conditional gene manipulation. Combination of
140 cCCT transgenic flies with UAS-flp, UAS-shRNA^{GFP} or specific drivers is complicated and
141 unfriendly for screen work, despite the almost 100% efficiency of gene suppression. Because
142 of the limitations of this method, we further created a CRISPR/Cas9 based conditional knockout
143 system of chemoconnectomics (C-cCCTomics).

144

145 **CRISPR/Cas9-Based Conditional Knockout System for CCTomics**

146 To simplify effective manipulation of CCT genes, we designed a vector based on pACU2 (Han
147 et al., 2011) with tRNA flanking sgRNAs (Port and Bullock, 2016; Xie et al., 2015) targeting CCT
148 genes (Fig 2A). We also adopted an optimized sgRNA scaffold “E+F” (E, stem extension; F, A-
149 U flip) (Chen et al., 2013), which facilitates Cas9-sgRNA complex formation and gene knockout
150 efficiency (Dang et al., 2015; Poe et al., 2019; Zhao et al., 2016), to all sgRNAs to improve gene
151 knockout efficiency. To balance efficiency and off-target effect, we selected three sgRNAs for

152 each CCT gene with highest predicted efficiency and no predicted off-target effect based on
153 previously reported models (Chu et al., 2016; Doench et al., 2014; Graf et al., 2019; Gratz et
154 al., 2014; Heigwer et al., 2014; Stemmer et al., 2015; Xu et al., 2015) (see Table S3 and details
155 at Methods).

156 We generated UAS-sgRNA^{3x} transgenic lines for all 209 defined CCT genes (Abruzzi et
157 al., 2017; Dai et al., 2019; Deng et al., 2019) and UAS-Cas9.HC (Cas9.HC) (Mali et al., 2013).

158 We first verified that C-cCCTomics mediated precise target DNA breaking by ubiquitous
159 expression of Cas9.P2 (Port et al., 2014) and sgRNA by targeting Pdf or Dh31. Sanger
160 sequencing showed that indels were present exactly at the Cas9 cleavage sites (Fig S4A-S4H).

161 To determine the efficiency of C-cCCTomics, we employed pan-neuronal expression of
162 Cas9.HC with sgRNA^{Dh31} or sgRNA^{pdf}. Targeting by Cas9.HC/sgRNA^{Dh31} eliminated most but
163 not all of the GFP signal in Dh31^{EGFP.FRT} (Fig 2B-2D), whereas all anti-PDF signals were
164 eliminated by Cas9.HC/sgRNA^{pdf} (Fig 2E-2G). Furthermore, we used the C-cCCT strategy to
165 conditionally knockout genes for pdfr, nAChR β 2 and nAChRa2, which were previously reported
166 as essential for circadian rhythm or sleep (Dai et al., 2021; Renn et al., 1999). Pan-neuronal
167 knockout of Pdfr phenocopied arrhythmicity of its null mutants (Fig 2H-2J) while there was no
168 significant sleep decrease in these conditional knockout (cKO) flies (Fig 2K-2L) when we
169 applied C-cCCTomics to manipulate nAChR β 2 or nAChRa2. Taken together, C-cCCTomics
170 (with Cas9.HC) achieved a relatively high gene knockout efficiency, but it was not effective
171 enough for all genes.

172

173 **Evaluation of Cas9 with Different Chromatin-Modulating Peptides**

174 Since the establishment of the CRISPR/Cas9 system a decade ago, many groups have
175 attempted to improve its efficiency in gene manipulation. Most attempts have been focused on
176 the two main components of this system, the Cas9 protein (Ding et al., 2019; Ling et al., 2020;
177 Liu et al., 2019; Zhao et al., 2016; Zheng et al., 2020) and the single guide RNA (Chen et al.,
178 2013; Chu et al., 2016; Dang et al., 2015; Doench et al., 2014; Filippova et al., 2019; Graf et
179 al., 2019; Labuhn et al., 2018; Mu et al., 2019; Nahar et al., 2018; Scott et al., 2019; Xu et al.,
180 2015). At the beginning of C-cCCTomics design, we adopted an optimized sgRNA scaffold and
181 selected sgRNAs with predicted high efficiency. We tried to further improve the efficacy by
182 modifying Cas9 protein. We fused a chromatin-modulating peptide (Ding et al., 2019), HMGN1
183 (High mobility group nucleosome binding domain 1), at the N-terminus of Cas9 and HMGB1
184 (High mobility group protein B1) at its C-terminus with GGSGP linker, termed Cas9.M9 (Fig 3A,
185 Methods). We also obtained a modified Cas9.M6 with HMGN1 at the N-terminus and an
186 undefined peptide (UDP) at the C-terminus (Fig 3A). We replaced the STARD linker between
187 Cas9 and NLS in Cas9.HC with GGSGP the linker (Zhao et al., 2016), termed Cas9.M0 (Fig
188 3A). None of these modifications have been validated previously in flies.

189 To determine whether the modified Cas9 variants were more efficient, we first pan-
190 neuronally expressed each Cas9 variant and sgRNA^{ple}, and assessed their efficiency by
191 immunofluorescence imaging. By counting anti-TH positive neurons in the brain (anterior view)
192 after targeting by Cas9/sgRNA^{ple}, we found that unmodified Cas9.HC/sgRNA^{ple} only achieved
193 $69.58 \pm 3.04\%$ ($n=5$) knockout efficiency (Fig 3G, 3K, 3L), while Cas9.M6/sgRNA^{ple} and
194 Cas9.M9/sgRNA^{ple} significantly improved efficiency to $87.53 \pm 3.06\%$ ($n=7$) and $97.19 \pm 2.15\%$
195 ($n=8$), respectively (Fig 3I-3L). Fourteen additional CCT genes were subjected to pan-neuronal

196 knockout, and the mRNA levels of the target genes were evaluated using real-time quantitative
197 PCR with at least one primer overlapping the sgRNA targeting site (Fig S5). Cas9.M6 and
198 Cas9.M9 demonstrated significantly higher gene disruption efficiency compared to the
199 unmodified Cas9.HC, achieving average efficiencies of $87.51\% \pm 2.24\%$ and $89.59\% \pm 2.39\%$ for
200 Cas9.M6 and Cas9.M9, respectively, in contrast to $70.72\% \pm 3.82\%$ for Cas9.HC. (Fig 3M, Fig
201 S5). To rule out the possibility of the observed variations in gene disruption efficiency being
202 attributed to differential Cas9 expression levels, we quantified the Cas9 expression levels and
203 noted that both Cas9.M6 and Cas9.M9 exhibited lower mRNA levels than Cas9.HC under the
204 experiment condition (Fig 3N). Subsequently, genomic DNA of Drosophila head was extracted,
205 and libraries encompassing target sites were constructed for high-throughput sequencing to
206 verify disparities in genetic editing efficiency among these three Cas9 variants (Fig 3O). In
207 almost all nineteen sites tested, the mutation ratio consistently showed a trend towards
208 Cas9.M6 and Cas9.M9 having a higher gene disruption efficiency than Cas9.HC (Fig 3P, Fig
209 S6). The single-site mutation rates varied from 5.81% to 43.47% for Cas9.HC, 22.40% to 53.54%
210 for Cas9.M6, and 19.90% to 63.57% for Cas9.M9 (Fig 3P, Fig S6). It should be noted that
211 genomic DNA extracted from fly heads contained glial cells, which did not express Cas9/sgRNA,
212 leading to a larger denominator and consequently reducing the observed mutation rates.
213 Unmodified Cas9 displayed mutation rates comparable to those previously reported by
214 Schlichting et al., 2022. The findings indicated that both Cas9.M6 and Cas9.M9 displayed
215 elevated efficiency compared to Cas9.HC, with Cas9.M9 exhibiting the highest mutagenesis
216 proficiency. These results suggest that the implementation of modified C-cCCTomics using
217 Cas9.M6 and Cas9.M9 achieved an elevated level of efficiency. While unmodified C-

218 cCCTomics was not efficient enough to knockout nAChR β 2 and nAChRa2 to phenocopy their
219 mutants, we employed Cas9.M9 in conditional knockout of these genes to verify its efficiency.
220 Pan-neuronal knocking out of nAChR β 2 or nAChRa2 by Cas9.M9/sgRNA showed significant
221 sleep decrease which was similar to their mutants (Fig 3Q-3R) (Dai et al., 2021).

222 Taken together, our results support that we have created a high efficiency toolkit for CCT
223 gene manipulation in the nervous system, as well as more efficient Cas9 variants, Cas9.M6
224 and Cas9.M9, which can also be applied to genes other than those in the CCT.

225

226 **45 CCT Genes Found in Clock Neurons by Genetic Intersection**

227 We analyzed the expression profile of CCT genes in circadian neurons with CCTomics driver
228 lines in all clock neurons expressing Clk856 (Gummadova et al., 2009). With the Flp-out or
229 split-lexA intersection strategy (Fig 4A, 4B), we found 45 out of 148 analyzed CCT genes
230 expressed in circadian neurons (Fig 4C, Fig S7-S8, Table S4, Table S5). In all eight subsets of
231 clock neurons, 24 CCT genes were expressed in DN1s, 20 in DN2s, 21 in DN3s, 29 in LNds,
232 15 in I-LNvs, 11 in s-LNvs, 5 in 5th s-LNv and 3 in LPNs, with a total of 128 gene-subsets.

233 Prior to transcriptomic analysis (Ma et al., 2021), 23 CCT genes had been reported in clock
234 neurons (Díaz et al., 2019; Duhart et al., 2020; Erion et al., 2016; Frenkel et al., 2017; Fujiwara
235 et al., 2018; Goda et al., 2016; Hamasaka et al., 2007; He et al., 2013; Hermann-Luibl et al.,
236 2014; Hermann et al., 2012; Hyun et al., 2005; Renn et al., 1999; Selcho et al., 2017). In our
237 intersection dissection, expression profiles of 15 CCT genes were similar but not identical to
238 previously reported 18 CCT genes in clock neurons (Fig 4C, Table S4). An additional 22 out of
239 30 CCT genes identified in our genetic intersection were also detected in the transcriptome

240 analysis (Ma et al., 2021). Among the 45 CCT genes expressed in eight clock neuron subsets,
241 128 gene-subsets, ~36% (46 out 128) were found in the transcriptome analysis (Ma et al., 2021)
242 (Fig 4C, Table S4). This suggests that the expression profile obtained through genetic
243 dissection overlapped with transcriptome results (see DISCUSSION).

244

245 **Conditional Knockout of CCT Genes in Circadian Neurons**

246 To investigate the function of CCT genes in circadian neurons with our conditional knockout
247 system, we knocked out all 67 (45 genes identified above and additional 22 genes reported
248 previously) CCT genes in Clk856-labeled clock neurons by C-cCCTomics.

249 In the pilot screen, we monitored fly activity by video recording (Dai et al., 2019) and analyzed
250 rhythmic behavior under LD and DD conditions. We analyzed morning anticipation index (MAI)
251 and evening anticipation index (EAI) under the LD condition (Harrisongh et al., 2007; Im and
252 Taghert, 2010)(Fig 5A), power, period and arrhythmic rate (AR) under the DD condition. Fly
253 activities tended to rise rapidly after ZT22.5 at dawn and ZT10 at dusk. Thus, we added two
254 more parameters to describe the anticipatory activity patterns of LD condition. Morning
255 anticipation pattern index (MAPI) was defined as the difference between
256 $P_{i_a}[\arctan(ZT20.5 \sim ZT22.5 \text{ activity increasing slope})]$ and $P_{i_p}[\arctan(ZT22.5 \sim ZT24 \text{ activity}$
257 increasing slope)], $M(P_{i_a} - P_{i_p})$. Evening anticipation pattern index (EAPI) was defined similar to
258 MAPI (Fig 5A, see Methods). P_{i_a} and P_{i_p} were positive, while MAPI and EAPI were negative,
259 for wild type (wt) flies as their activities gradually increases at dawn or dusk at increasing rates.
260 Knocking out Pdf or Pdfr in clock neurons phenocopied their mutants with lower MAI,
261 advanced evening activity, low power, high arrhythmic rate and shorter period (Hyun et al.,

262 2005; Lear et al., 2005; Renn et al., 1999) (Table S6, Fig S9A-S9D). The MAI-decreasing
263 phenotype of Dh31 knockout was also reproduced in this pilot screen (Goda et al., 2019) (Table
264 S6). All the above results verified the effectiveness of C-cCCTomics. Unexpectedly, additional
265 experimental replications with full controls using Cas9.M9 revealed that leaky expression of
266 Cas9.M9 and sgRNA might have caused disruption of Dh31, Dh44, Pdf and Pdfr (Fig S9A-S9D)
267 (see DISCUSSION), which was not suitable for neuronal specific mutagenesis of some genes.
268 Therefore, in the following work we primarily focused on Cas9.M6 instead.

269 Analysis of the newly defined parameters MAPI and EAPI showed that control flies (Clk856-
270 GLA4>UAS-Cas9.M9) had negative EAPI but slightly positive MAPI. The positive MAPI of
271 control flies in this screen might be caused by Cas9.M9 toxicity. Only the Pdf and Pdfr clock-
272 neuron knockout flies showed positive EAPIs, indicating an advanced evening activity (Table
273 S6, Fig S9A, S9C). nAChRa1, MsR1, mAChR-B, and CNMa cKO flies had highest MAPI values
274 (Table S6). We further confirmed their phenotypes using Cas9.M6 which revealed that CNMa
275 plays a role in regulating morning anticipatory activity (Fig S10A).

276

277 **Regulation of Morning Anticipation by CNMa-positive DN1p Neurons**

278 Conditionally knocking out CNMa in clock neurons advanced morning activity (Fig 5B, Fig S10B)
279 and increased MAPI (Fig 5C, Fig S10A, S10C), leaving the power and period intact in male flies
280 (Fig 5D, 5E). The same advanced morning activity phenotype were also observed in female
281 flies (Fig S10D-S10G). To further validate this phenotype, we generated a CNMa knockout
282 (CNMa^{KO}) line by replacing its whole coding region with an attP-splicing adaptor element (Deng
283 et al., 2019) (Fig 5F). Both male and female CNMa^{KO} flies exhibited the same phenotypes as

284 seen in the CNMa cKO (Fig 5G-5I).

285 Previous studies have found CNMa expression in DN1 neurons (Abruzzi et al., 2017; Jin et
286 al., 2021; Ma et al., 2021). Our intersection showed four DN1p and one DN3 CNMa positive
287 neurons in Clk856 labelled neurons (Fig S8 - 16, Fig 4C, Table S4). Analysis with an
288 endogenous CNMa-KI-GAL4 knockin driver showed that six pairs of CNMa neurons located in
289 the DN1p region and three pairs located in the subesophageal ganglion (SOG) had the brightest
290 GFP signals (Fig 6A). The anatomical features of CNMa neurons were further confirmed using
291 stingerRed and more neurons were found in regions, the anterior ventrolateral protocerebrum
292 (AVLP), and the antennal mechanosensory and motor center (AMMC) (Fig S11A). Dendrites of
293 CNMa neurons were concentrated in DN1p and SOG, with their axons distributed around DN1p
294 region, lateral horn (LH), and prowl region (PRW) (Fig 6B, 6C). Using the Trans-tango strategy
295 (Talay et al., 2017), we also found that downstream of CNMa neurons were about fifteen pairs
296 of neurons in the SOG, five pairs of LNd neurons, one pair of DN3 neurons and six pars
297 intercerebralis (PI) neurons (Fig 6D, arrowhead).

298 Because we had found that knocking out CNMa in Clk856-GAL4 labeled neurons produced
299 advanced morning activity, and that CNMa intersected with Clk856-Gal4 labeled neurons in 4
300 pairs of DN1ps and one pair of DN3 neurons (Fig S8-16), we focused on these neurons and
301 performed more intersections. Taking advantage of a series of clock neuron subset-labeled
302 drivers (Sekiguchi et al., 2020), we intersected CNMa-p65AD with 4 DN1 labelling drivers:
303 GMR51H05-GAL4, GMR91F02-GAL4, Pdfr-KI-GAL4 and GMR79A11-GAL4 (Fig 6E-6H). We
304 found two arborization patterns: Type I with two neurons whose branches projecting to the
305 anterior region, as in CNMa \cap GMR51H05, CNMa \cap Pdfr, and CNMa \cap GMR79A11 (Fig 6E, 5G,

306 6H), and type II with four neurons branching on the posterior side with few projections to the
307 anterior region, as in CNMa \cap GMR91F02 (Fig 6F).

308 CNMa knockout in Type I or Type II neurons (GMR51H05-GAL4, GMR91F02-GAL4, and
309 GMR79A11-GAL4) all reproduced the MAPI-increased phenotype of clk856 specific CNMa
310 knockout (Fig 6I). However, Type II neurons-specific CNMa knockout (CNMa \cap GMR91F02)
311 showed no advanced morning activity peak (Fig 6K), while Type I neurons-specific CNMa
312 knockout did (Fig 6J), indicating that these two type I CNMa neurons are the main functional
313 subset regulating the morning anticipation activity of fruit fly.

314 Pdf or Pdfr mutants have weak or no morning anticipation, which is in reversely related to
315 the phenotype of CNMa knockout flies. We also identified two Pdfr and CNMa double-positive
316 DN1ps, which have a type I projection pattern (Fig 6G). Reintroduction of Pdfr in Pdfr knockout
317 background revealed that GMR51H05 and GMR79A11Gal4 drivers, which covered the main
318 functional CNMa-positive subset, could partially rescue the morning anticipation and power
319 phenotype of Pdfr knockout flies to a considerably larger extent than the GMR91F02 driver (Fig
320 6L-6M). Moreover, knocking out Pdfr in type I CNMa neurons decreased morning anticipation
321 of flies (Fig 6N). Because the main subset of functional CNMa is also PDFR-positive, it is
322 possible that CNMa secretion is regulated by PDF/PDFR signal.

323

324 **Role of Neuronal CNMaR in Morning Anticipation**

325 There is only one CNMa receptor reported in the fly genome (Jung et al., 2014). We generated
326 a CNMaR^{KO-p65AD} line by CRISPR/Cas9 (Fig 7A) and this knockout showed advanced morning
327 activity (Fig 7B, 7D) and increased MAPI (Fig 7C, 7E) in both sexes. CNMaR^{KI-Gal4/UAS-}

328 mCD8::GFP and CNMaR^{KI-Gal4}/UAS-stinger::Red showed expression of CNMaR across the
329 whole brain (Fig 7F, Fig S11B), especially in DN1p, DN3, the PI and the SOG. The dendrite
330 arborization and synaptic projections of CNMaR neurons also covered broad regions (Fig 7G,
331 7H), at the PI, the SOG, the posterior ventrolateral protocerebrum (PVLP) and the central
332 complex (CC). Further conditional knockout of CNMaR in neurons by C-cCCTomics
333 phenocopied CNMaR^{KO-p65AD} phenotype (Fig 7I-7L). These results indicate that CNMaR is
334 similar to CNMa in regulating morning anticipation.

335

336 **DISCUSSION**

337 **Conditional CCTomics Strategies and Toolkit**

338 We have generated conditional gene manipulation systems based on Flp-out/GFPi or
339 CRISPR/Cas9. cCCT based gene deletion after heat-shock or mifepristone (RU486) eliminated
340 most GFP signals, and pan-neuronal constitutive expression of shRNA^{GFP} or flippase disrupted
341 seven out of eight tested genes completely while targeting of SIFa^{EGFP,FR}T achieved 96±3%
342 efficiency. Although the recombination of genetic elements is relatively cumbersome when
343 using cCCTomics, it is worthwhile to apply this method to specific genes given its high level of
344 efficiency. While two UAS-sgRNA libraries have been established, one primarily targeting
345 kinases (Port et al., 2020) and the other targeting GPCRs (Schlichting et al., 2022), both
346 libraries only cover a portion of CCT genes, and are thus insufficient for manipulating all CCT
347 genes. The development of C-cCCTomics, however, makes CCT gene manipulation as simple
348 as RNA interference. Furthermore, the use of modified Cas9.M6 or Cas9.M9 highly enhances
349 the efficiency of gene disruption in the nervous system, allowing for efficient manipulation of all

350 CCT genes in a cell-specific manner.

351 The toxicity of CRISPR/Cas9 depends on the Cas9 protein (Port et al., 2014). When
352 expressed pan-neuronally in nSyb-GAL4 (R57C10-GAL4, attP40) , Cas9.M9 slightly reduced
353 viability, while the expression of other Cas9 variants had no significant effect on viability (Fig
354 S12). Although Cas9.M9 showed leaky-expression- efficiency, this was not a problem with
355 Cas9.M6, which successfully disrupted Dh31, Dh44, Pdf, and Pdfr (Fig S9). A more restricted
356 expression of Cas9.M9 with lower toxicity is necessary for better somatic gene manipulation in
357 the future.

358

359 **CCT of Clock Neurons**

360 Intersecting Clk856-Gal4 or Clk856-p6AD with CCTomics, we identified 45 CCT genes in
361 Clk856 labelled clock neurons. Clock neurons appear highly heterogeneous both in our
362 intersection dissection and in a previous transcriptomic analysis (Abruzzi et al., 2017; Ma et al.,
363 2021). Comparing these two CCT gene expression profiles in clock neurons, 45 out of 128
364 gene-subsets are identical. The accuracy of our genetic intersection is limited by two
365 possibilities: 1) KI-LexA may not fully represent the expression pattern of the corresponding
366 gene, and 2) the efficiency of STOP cassette removal in the Flp-out strategy is limited. Moreover,
367 the leakage of LexAop-GFP may result in unreliable labelling in split-lexA strategy.

368 We have also observed that the expression profile of Pdfr in clock neurons is inconsistent
369 across studies, with different clock subsets being identified(Hyun et al., 2005; Im and Taghert,
370 2010; Lear et al., 2005; Ma et al., 2021; Mertens et al., 2005; Shafer et al., 2008) . The variability
371 in labelling clock neurons with Pdfr transgenic GAL4s, KI-myc tag, antibodies, and

372 transcriptomic anatomy reflects the limitations of each approach. The expression of Pdfr in
373 LNds and DN1s is considered reliable as they are labeled by all strategies. Our intersection
374 dissection is most closely aligned to Pdfr antibody-labelled neurons (Hyun et al., 2005). Both
375 genetic drivers and transcriptomic analysis contribute to our knowledge of the expression profile
376 of neurons. The physiological significance of each gene in a particular neuron should be further
377 investigated by genetic manipulation.

378

379 **Regulation of Rhythmic Behavior by CCT genes**

380 Multiple attractive genes have been identified in our functional screen of CCT genes in clock
381 neurons: for example, knocking out of VGlut weakens both morning anticipation and rhythmic
382 strength (Table S7). In further screening of brain regions, we have narrowed down the morning
383 anticipation regulation role of VGlut in R18H11-GAL4 labeled neurons (Table S8). VGlut in
384 these neurons has also been reported to regulate sleep in Drosophila (Guo et al., 2016). Its
385 downstream neurons may be the PI neurons or LNvs (Barber et al., 2021; Guo et al., 2016).

386 Moreover, the deficiency of the neuropeptide CNMa results in advanced morning activity.

387 We have validated that two Pdfr and CNMa double-positive DN1p neurons mainly regulate this
388 process through intersectional manipulation of CNMa. Knockout and reintroduction of Pdfr in
389 these neurons have verified that Pdfr partially functions in DN1p CNMa neurons, and PDF
390 increases cAMP level in Pdfr positive neurons (Shafer et al., 2008), suggesting the regulation
391 of CNMa signaling by PDF signaling. Furthermore, given that the morning anticipation vanishing
392 phenotype of Pdf or Pdfr mutant is opposite to that of CNMa knockout flies, we consider the
393 two signals to be antagonistic. However, knocking out CNMaR in Clk856 labelled clock neurons

394 showed no significant phenotype (Table S7), whereas the mutant and pan-neuronal knockout
395 flies had similar phenotypes to CNMa knockout flies, suggesting its role in the circadian output
396 neurons. Previous studies have indicated that CNMa integrate thermosensory inputs to
397 promote wakefulness, and CNMaR is thought to function in Dh44 positive PI neurons (Jin et al.,
398 2021), a subset of circadian output neurons. To gain a deeper understanding of the downstream
399 effects of DN1p CNMa positive neurons, further analysis focusing on specific brain regions is
400 necessary.

401 We have also reproduced phenotypes of Pdf, Pdfr, and Dh31 mutant flies with C-
402 cCCTomics as previous studies. Surprisingly, only five genes are functional among all sixty-
403 seven CCT genes in this prior screen. This may be caused by limitations of the simple
404 behavioral paradigm, single gene manipulation, and single GAL4 driver. For example, switching
405 of light condition from L: D = 12h: 12h to L: D = 6h:18h, AstC/AstC-R2 would suppress flies'
406 evening activity intensity to adapt to the environmental change (Díaz et al., 2019), and only
407 double knockout of AChRs and mGluRs in PI neurons can possibly result in alteration in
408 behavioral rhythms (Barber et al., 2021). Further diversified functional analysis of CCT genes
409 in clock neurons is required for clock circuit dissection.

410 **Methods**

411 **Fly Lines and Rearing Conditions**

412 Flies were reared on standard corn meal at 25 °C, 60% humidity, 12 h light: 12 h dark (LD)
413 cycle. For flies used in behavior assays, they were backcrossed into our isogenized Canton S
414 background for 5 to 7 generations. For heat induced assays, flies were reared at 20°C. All CCT
415 attP KO lines and CCT KI driver lines were previous generated at our lab (Deng et al., 2019).
416 Clk856-GAL4 and GMR57C10-GAL4 driver lines were gifts from Donggen Luo Lab (Peking
417 University). 13XLexAop2 (FRT.stop) myr::GFP was gift from Rubin Lab.

418

419 **C-cCCTomics sgRNAs design**

420 All sgRNAs target at or before functional coding regions (e.g. GPCR transmembrane domain,
421 synthetase substrate binding domain) of each CCT genes. For each gene, about 20 sgRNAs
422 with specific score ≥ 12 were firstly designed at CRISPRgold website (Chu et al., 2016; Graf et
423 al., 2019), then their specificity and efficacy were further valued in Optimal CRISPR target
424 finder(Gratz et al., 2014), E-CRISPR(Heigwer et al., 2014) and CCTop (Stemmer et al., 2015)
425 system. The first three highest efficacy sgRNAs with no predicted off-target effect were selected.
426 All selected sgRNAs are listed in Table S3.

427

428 **Molecular Biology**

429 All cCCTomics knockin (KI) lines and C-cCCTomics transgenic flies were generated through
430 phiC31 mediated attB/attP recombination, and the miniwhite gene was used as selection
431 marker.

432 For cCCTomics KI lines, backbone pBSK-attB-FRT-*Hpal*-T2A-EGFP-FRT was modified

433 from pBSK-attB-*loxP*-myc-T2A-Gal4-GMR-miniwhite (Deng et al., 2019). Myc-T2A-GAL4
434 cassette was removed by PCR amplification while first FRT cassette was introduced. Second
435 FRT cassette was inserted by T4 ligation between *SpeI* and *BamHI*. T2A-EGFP was cloned
436 from pEC14 and was inserted into the backbone between two FRT cassettes. All gene spans,
437 except for stop codon, deleted in CCT attP KO lines were cloned into pBSK-attB-FRT-*HpaI*-
438 T2A-EGFP-FRT at *HpaI* site.

439 For C-cCCTomics UAS-sgRNA lines, backbone pMsgNull was modified from pACU2 (Han
440 et al., 2011). Synthetic partial fly tRNA^{Gly} sequence was inserted between *EcoRI* and *KpnI*. An
441 irrelevant 1749 bp cassette amplified from pAAV-Efla-DIO-mScarlet (addgene#130999) was
442 inserted between *EagI* and *KpnI*. All sgRNA spacers were synthesized at primers, and “E+F”
443 sgRNA scaffold and rice tRNA^{Gly} was amplified from a synthetic backbone PM04. Finally, gRNA-
444 tRNA^{Gly} cassettes were cloned into pMsgNull between *EagI* and *KpnI* by Gibson Assembly.

445 All UAS-Cas9 variants generated in this research were cloned into vector pACU2 and all
446 Cas9 sequence were amplified from hCas9 (addgene#41815). Human codon optimized Cas9
447 was cloned into pACU2 to generate UAS-Cas9.HC. UAS-Cas9.M0 was modified from UAS-
448 Cas9.HC by introduce a 3x HA tag after NSL and replace the SARD linker with the 3xGGSGP
449 linker (Zhao et al., 2016). UAS-Cas9.M6 and UAS-Cas9.M9 were designed as HMGN1-Cas9-
450 UPD and HMGN1-Cas9-HB1 respectively. All these chromatin-modulating peptides were linked
451 with Cas9 by 3x GGSGP linker.

452 CNMaR^{KO-p65AD} is generated by replace the coding region of the first exon with T2A-p65AD
453 by CRISPR/Cas9, the T2A-p65AD was linked in frame after first ten amino acids. Spacers of
454 gRNAs used to break the targeted CNMaR region were 5'-GCAGATTCAGTTCATCTT-3', 5'-

455 GGCTTGGCAATGAC TATATA-3'.

456

457 **Gene expression quantitation and high-throughput sequencing**

458 Female flies were gathered six to eight days post-eclosion for gene expression quantification
459 and high-throughput sequencing. Fly heads were isolated by chilling them on liquid nitrogen
460 and subsequent shaking. mRNA extraction was performed using Trizol according to a
461 previously established protocol (Green and Sambrook, 2020). Genomic DNA was removed,
462 and cDNA was synthesized using a commercial kit (TIANGEN#DP419). For real-time
463 quantitative PCR, at least one PCR primer was designed to overlap with the sgRNA target site.

464 Genomic DNA from fly heads was extracted using a standard alkali lysis protocol(Huang
465 et al., 2009). Genomic regions approximately 130 to 230 bp in length, centered around the
466 sgRNA target site, were amplified by PCR employing Q5 polymerase (NEB#M0494).
467 Subsequently, libraries were prepared using the BTseq kit (Beijing Tsingke Biotech Co., Ltd.).
468 These libraries were pooled and subjected to sequencing on the MiSeq platform (Illumina).
469 Analysis of the libraries was conducted using Crispresso2(Clement et al., 2019).

470 **Generation of KI and Transgenic lines**

471 Generation of cCCTomics KI, CNMa^{KI-p65AD}, and CNMaR^{KO-p65AD} lines are the same as
472 generation of CCTomics KI driver lines as previously described (Deng et al., 2019). To generate
473 C-cCCTomics UAS-sgRNA or UAS-Cas9 variants lines, attB vectors were injected and
474 integrated into the attP40, attP2 or VK00005 through phiC31 mediated gene integration.

475 All flies generated in this research were selected by mini-white and confirmed by PCR.

476

477 **Behavioral assays**

478 Unmated male or female flies of 4 to 5 days were used in circadian rhythm assays. Before
479 measurement, flies were entrained under 12 h light: 12 h dark cycle at 25°C for at least 3 days
480 and then transferred to dark-dark condition for 7 days.

481 Virgin flies of 4 to 5 days were used in sleep assays. Flies were entrained to a 12 h light:
482 12 h dark cycle at 25°C for 2 days to eliminate the effect of CO₂ anesthesia before sleep record.
483 Sleep was defined as 5 min or longer immobility (Hendricks et al., 2000; Shaw et al., 2000) and
484 analyzed by in-house scripts as previously described ((Dai et al., 2021; Dai et al., 2019; Deng
485 et al., 2019)).

486 Locomotion was obtained as previously described (Dai et al., 2021). Locomotion activity
487 was measured and analyzed by Actogram J plugin (Dai et al., 2019). Morning anticipation index
488 and evening anticipation index were defined as the ratio of last 3 hours activity before light-on
489 or light-off accounts to last 6 hours activity before light-on or light-off
490 (Index=sum(3hrs)/sum(6hrs)) (Harris et al., 2007; Im and Taghert, 2010) and analyzed by
491 an in-house python script.

492

493 **Heat Shock and Drug Treatment**

494 For hsFLP mediated conditional knockout, flies of 4 to 6 days were heat shock at 37°C during
495 ZT10 to ZT12 for 4 days. And they were reared at 20°C for another 4-days and then dissected.

496 For mifepristone (RU486) induced conditional knockout, flies of 4 to 6 days were treated
497 with 500 µM RU486 mixed in corn food and then dissected 4 days later.

498

499 **Immunohistochemistry and Confocal Imaging**

500 For all imaging without staining, adult flies were anesthetized on ice and dissected in cold
501 phosphate-buffer saline (PBS). Brains or ventral nerve codes (VNC) were fixed in 2%
502 paraformaldehyde (weight/volume) for 30 min, washed with washing buffer (PBS with 1% Triton
503 X-100, v/v, 3% NaCl, g/mL) for 7 min three times and mounted in Focusclear (Cell Explorer
504 Labs, FC-101).

505 For imaging with staining, brains and VNCs were fixed for 30 min, washed for 15 min three
506 times. Then they were blocked in PBSTS, incubated with primary antibodies, washed with
507 washing buffer, incubated with second antibodies and mounted as described previously(Dai et
508 al., 2021; Dai et al., 2019).

509 All brains or VNCs were imaged on Zeiss LSM710 or Zeiss LSM880 confocal microscope
510 and processed by Imaris.

511 The following primary antibodies were used: mouse anti-PDF (1:200, DSHB), rabbit anti-
512 TH (1:1000, Novus Biologicals), rabbit anti-LK (1:1000, RaoLab, this paper). Rabbit anti-DSK
513 (1:1000) was a gift from Dr. C. Zhou Lab (Institute of Zoology, Chinese Academy of Science)
514 (Wu et al., 2020). The following secondary antibodies were used: AlexaFluor goat anti-mouse
515 488 (1:1000, Invitrogen), AlexaFluor goat anti-rabbit 488/633 (1:1000, Invitrogen).

516 For Fig 2, number of TH positive neurons were counted with Imaris Spots plugin.

517

518 **Quantification and Statistics**

519 MAI, MAPI, EAI, EAPI, power and period were calculated by python or R scripts. ZT0 was set
520 as the time point when light was on and ZT12 was set as the time point for light-off. Activity bins

521 started at ZT0 and each was calculated as a sum of the total activity within 30min. Flies were
522 regarded as death and removed if their activity value within last 2 bins was 0. A representative
523 24hr activity pattern was the average between corresponding activity bins from 2 consecutive
524 days. To minimize effects from singular values, each flies` activity was normalized using the
525 following formula:

$$526 \quad Nor_b_i = \frac{b_i - \min(b_0, \dots, b_{48})}{\max(b_0, \dots, b_{48}) - \min(b_0, \dots, b_{48})}$$

527 bi means the activity value for a certain bin. min(b0,...,b48) means the minimal bin value within
528 24hr and max(b0,...,b48) means the maximal bin value within 24hr. Nor_bi means the final
529 normalized bin value for a certain bin from a given fly. Normalized activity was used for following
530 analysis.

531 Morning activity arise (M_arise) was defined as the radian between the activity curve (ZT21-
532 ZT22) and the time coordinate. Morning activity plateau (M_plateau) was defined as the radian
533 between the activity curve (ZT22.5-ZT24) and the time coordinate. Evening activity arise
534 (E_arise) was defined as the radian between the activity curve (ZT8-ZT11.5) and the time
535 coordinate. Evening activity plateau (E_plateau) was defined as the radian between the activity
536 curve (ZT10.5-ZT12) and the time coordinate. Morning anticipation pattern index (MAPI) was
537 calculated by subtracting M_arise from M_plateau and Evening anticipation pattern index (EAPI)
538 was calculated by subtracting E_arise from E_plateau.

539 The original activity data from 7 consecutive days in dark-dark condition was used for power
540 and period calculation as described (Geissmann et al., 2019). Each flies` periodogram was
541 calculated based on Chi-Square algorithm (Sokolove and Bushell, 1978) and flies with a null
542 power value were regarded as arrhythmic.

543 All statistical analyses were carried out with Prism 8 (Graphpad software). The Kruskal-

544 Wallis ANOVA test followed by Dunn's posttest was used to compare multiple columns.

545

546 **ACKNOWLEDGEMENTS.**

547 We are grateful to Xiaofei Liu, Xueying Wang and Yile Jiao for sgRNA design and cloning, to

548 Linyi Zhang, Wenli Xu, Yuqing Gong and Quiquan Chen for assistance with behavior assays,

549 to Xiao Dong for cloning, to Xinwei Gao for assistance with imaging, to Pingping Yan, Lan

550 Wang, Yonghui Zhang and Haixia Zeng for fly rearing, to Enxing Zhou and Wei Yang for

551 Drosophila activity tracing scripts, to Donggen Luo, Chuan Zhou, Gerald M. Rubin, Vienna

552 Drosophila RNAi Center and Bloomington Drosophila Stock Center for flies, to Yuh-Nung Jan

553 for pACU2 construct.

554

555 **REFERENCES**

556 Abruzzi, K.C., Zadina, A., Luo, W., Wiyanto, E., Rahman, R., Guo, F., Shafer, O., and Rosbash,
557 M. (2017). RNA-seq analysis of *Drosophila* clock and non-clock neurons reveals neuron-
558 specific cycling and novel candidate neuropeptides. *PLoS genetics* *13*, e1006613.

559 Barber, A.F., Fong, S.Y., Kolesnik, A., Fetchko, M., and Sehgal, A. (2021). *Drosophila* clock
560 cells use multiple mechanisms to transmit time-of-day signals in the brain. *Proc Natl Acad Sci
561 USA* *118*, e2019826118.

562 Chen, B., Gilbert, L.A., Cimini, B.A., Schnitzbauer, J., Zhang, W., Li, G.W., Park, J., Blackburn,
563 E.H., Weissman, J.S., Qi, L.S., *et al.* (2013). Dynamic imaging of genomic loci in living human
564 cells by an optimized CRISPR/Cas system. *Cell* *155*, 1479-1491.

565 Chu, V.T., Graf, R., Wirtz, T., Weber, T., Favret, J., Li, X., Petsch, K., Tran, N.T., Sieweke, M.H.,
566 Berek, C., *et al.* (2016). Efficient CRISPR-mediated mutagenesis in primary immune cells using
567 CrispRGold and a C57BL/6 Cas9 transgenic mouse line. *Proc Natl Acad Sci USA* *113*, 12514-
568 12519.

569 Clement, K., Rees, H., Canver, M.C., Gehrke, J.M., Farouni, R., Hsu, J.Y., Cole, M.A., Liu, D.R.,
570 Joung, J.K., Bauer, D.E., *et al.* (2019). CRISPResso2 provides accurate and rapid genome
571 editing sequence analysis. *Nature Biotechnology* *37*, 224-226.

572 Collins, B.H., Dissel, S., Gaten, E., Rosato, E., and Kyriacou, C.P. (2005). Disruption of
573 Cryptochrome partially restores circadian rhythmicity to the arrhythmic period mutant of
574 *Drosophila*. *Proc Natl Acad Sci USA* *102*, 19021-19026.

575 Dai, X., Zhou, E., Yang, W., Mao, R., Zhang, W., and Rao, Y. (2021). Molecular resolution of a
576 behavioral paradox: sleep and arousal are regulated by distinct acetylcholine receptors in
577 different neuronal types in *Drosophila*. *Sleep* *44*, zsab017.

578 Dai, X., Zhou, E., Yang, W., Zhang, X., Zhang, W., and Rao, Y. (2019). D-Serine made by serine
579 racemase in *Drosophila* intestine plays a physiological role in sleep. *Nat Commun* *10*, 1986.

580 Dang, Y., Jia, G., Choi, J., Ma, H., Anaya, E., Ye, C., Shankar, P., and Wu, H. (2015). Optimizing
581 sgRNA structure to improve CRISPR-Cas9 knockout efficiency. *Genome Biol* *16*, 280.

582 Delventhal, R., O'Connor, R.M., Pantalia, M.M., Ulgherait, M., Kim, H.X., Basturk, M.K.,
583 Canman, J.C., and Shirasu-Hiza, M. (2019). Dissection of central clock function in *Drosophila*
584 through cell-specific CRISPR-mediated clock gene disruption. *eLife* *8*, e48308.

585 Deng, B., Li, Q., Liu, X., Cao, Y., Li, B., Qian, Y., Xu, R., Mao, R., Zhou, E., Zhang, W., *et al.*
586 (2019). Chemoconnectomics: mapping chemical transmission in *Drosophila*. *Neuron* *101*, 876-
587 893.e874.

588 Díaz, M.M., Schlichting, M., Abruzzi, K.C., Long, X., and Rosbash, M. (2019). Allatostatin-
589 C/AstC-R2 is a novel pathway to modulate the circadian activity pattern in *Drosophila*. *Curr Biol*
590 *29*, 13-22.

591 Ding, X., Seebeck, T., Feng, Y., Jiang, Y., Davis, G.D., and Chen, F. (2019). Improving CRISPR-
592 Cas9 genome editing efficiency by fusion with chromatin-modulating peptides. *Crispr j* *2*, 51-
593 63.

594 Doench, J.G., Hartenian, E., Graham, D.B., Tothova, Z., Hegde, M., Smith, I., Sullender, M.,
595 Ebert, B.L., Xavier, R.J., and Root, D.E. (2014). Rational design of highly active sgRNAs for
596 CRISPR-Cas9-mediated gene inactivation. *Nat Biotechnol* *32*, 1262-1267.

597 Dubowy, C., and Sehgal, A. (2017). Circadian Rhythms and Sleep in *Drosophila melanogaster*.

598 Genetics 205, 1373-1397.

599 Duhart, J.M., Herrero, A., de la Cruz, G., Ispizua, J.I., Pírez, N., and Ceriani, M.F. (2020).

600 Circadian Structural Plasticity Drives Remodeling of E Cell Output. *Curr Biol* 30, 5040-

601 5048.e5045.

602 Erion, R., King, A.N., Wu, G., Hogenesch, J.B., and Sehgal, A. (2016). Neural clocks and

603 Neuropeptide F/Y regulate circadian gene expression in a peripheral metabolic tissue. *eLife* 5,

604 e13552.

605 Filippova, J., Matveeva, A., Zhuravlev, E., and Stepanov, G. (2019). Guide RNA modification

606 as a way to improve CRISPR/Cas9-based genome-editing systems. *Biochimie* 167, 49-60.

607 Frenkel, L., Muraro, N.I., Beltrán González, A.N., Marcora, M.S., Bernabó, G., Hermann-Luibl,

608 C., Romero, J.I., Helfrich-Förster, C., Castaño, E.M., Marino-Busjle, C., *et al.* (2017).

609 Organization of circadian behavior relies on glycinergic transmission. *Cell Rep* 19, 72-85.

610 Fujiwara, Y., Hermann-Luibl, C., Katsura, M., Sekiguchi, M., Ida, T., Helfrich-Förster, C., and

611 Yoshii, T. (2018). The CCHamide1 neuropeptide expressed in the anterior dorsal neuron 1

612 conveys a circadian signal to the ventral lateral neurons in *Drosophila melanogaster*. *Front*

613 *Physiol* 9, 1276.

614 Gaj, T., Sirk, S.J., and Barbas, C.F., 3rd (2014). Expanding the scope of site-specific

615 recombinases for genetic and metabolic engineering. *Biotechnol Bioeng* 111, 1-15.

616 Geissmann, Q., Garcia Rodriguez, L., Beckwith, E.J., and Gilestro, G.F. (2019). Rethomics: An

617 R framework to analyse high-throughput behavioural data. *PLoS One* 14, e0209331.

618 Goda, T., Tang, X., Umezaki, Y., Chu, M.L., Kunst, M., Nitabach, M.N.N., and Hamada, F.N.

619 (2016). Drosophila DH31 neuropeptide and PDF receptor regulate night-onset temperature

620 preference. *J Neurosci* 36, 11739-11754.

621 Goda, T., Umezaki, Y., Alwattari, F., Seo, H.W., and Hamada, F.N. (2019). Neuropeptides PDF

622 and DH31 hierarchically regulate free-running rhythmicity in *Drosophila* circadian locomotor

623 activity. *Sci Rep* 9, 838.

624 Golic, K.G., and Lindquist, S. (1989). The FLP recombinase of yeast catalyzes site-specific

625 recombination in the *Drosophila* genome. *Cell* 59, 499-509.

626 Graf, R., Li, X., Chu, V.T., and Rajewsky, K. (2019). sgRNA Sequence Motifs Blocking Efficient

627 CRISPR/Cas9-Mediated Gene Editing. *Cell Rep* 26, 1098-1103.e1093.

628 Gratz, S.J., Ukken, F.P., Rubinstein, C.D., Thiede, G., Donohue, L.K., Cummings, A.M., and

629 O'Connor-Giles, K.M. (2014). Highly specific and efficient CRISPR/Cas9-catalyzed homology-

630 directed repair in *Drosophila*. *Genetics* 196, 961-971.

631 Green, M.R., and Sambrook, J. (2020). Total RNA Isolation from *Drosophila melanogaster*.

632 2020, pdb.prot101675.

633 Grima, B., Chélot, E., Xia, R., and Rouyer, F. (2004). Morning and evening peaks of activity rely

634 on different clock neurons of the *Drosophila* brain. *Nature* 431, 869-873.

635 Grindley, N.D., Whiteson, K.L., and Rice, P.A. (2006). Mechanisms of site-specific

636 recombination. *Annu Rev Biochem* 75, 567-605.

637 Gummadova, J.O., Coutts, G.A., and Glossop, N.R. (2009). Analysis of the *Drosophila* clock

638 promoter reveals heterogeneity in expression between subgroups of central oscillator cells and

639 identifies a novel enhancer region. *J Biol Rhythms* 24, 353-367.

640 Guo, F., Yu, J., Jung, H.J., Abruzzi, K.C., Luo, W., Griffith, L.C., and Rosbash, M. (2016).

641 Circadian neuron feedback controls the *Drosophila* sleep--activity profile. *Nature* 536, 292-297.

642 Hamasaka, Y., Rieger, D., Parmentier, M.L., Grau, Y., Helfrich-Förster, C., and Nässel, D.R.
643 (2007). Glutamate and its metabotropic receptor in *Drosophila* clock neuron circuits. *J Comp*
644 *Neurol* **505**, 32-45.

645 Han, C., Jan, L.Y., and Jan, Y.-N. (2011). Enhancer-driven membrane markers for analysis of
646 nonautonomous mechanisms reveal neuron-glia interactions in *Drosophila*. *Proc Natl Acad Sci*
647 *USA* **108**, 9673-9678.

648 Harrisongh, M.C., Wu, Y., Lnenicka, G.A., and Nitabach, M.N. (2007). Intracellular Ca²⁺
649 regulates free-running circadian clock oscillation in vivo. *J Neurosci* **27**, 12489-12499.

650 He, C., Cong, X., Zhang, R., Wu, D., An, C., and Zhao, Z. (2013). Regulation of circadian
651 locomotor rhythm by neuropeptide Y-like system in *Drosophila melanogaster*. *Insect Mol Biol*
652 **22**, 376-388.

653 Heigwer, F., Kerr, G., and Boutros, M. (2014). E-CRISP: fast CRISPR target site identification.
654 *Nat Methods* **11**, 122-123.

655 Helfrich-Förster, C. (2001). The locomotor activity rhythm of *Drosophila melanogaster* is
656 controlled by a dual oscillator system. *J Insect Physiol* **47**, 877-887.

657 Hendricks, J.C., Finn, S.M., Panckeri, K.A., Chavkin, J., Williams, J.A., Sehgal, A., and Pack,
658 A.I. (2000). Rest in *Drosophila* Is a Sleep-like State. *Neuron* **25**, 129-138.

659 Hermann-Luibl, C., Yoshii, T., Senthilan, P.R., Dirksen, H., and Helfrich-Förster, C. (2014). The
660 ion transport peptide is a new functional clock neuropeptide in the fruit fly *Drosophila*
661 *melanogaster*. *J Neurosci* **34**, 9522-9536.

662 Hermann, C., Yoshii, T., Dusik, V., and Helfrich-Förster, C. (2012). Neuropeptide F
663 immunoreactive clock neurons modify evening locomotor activity and free-running period in
664 *Drosophila melanogaster*. *J Comp Neurol* **520**, 970-987.

665 Huang, A.M., Rehm, E.J., and Rubin, G.M. (2009). Quick preparation of genomic DNA from
666 *Drosophila*. *Cold Spring Harb Protoc* **2009**, pdb.prot5198.

667 Hyun, S., Lee, Y., Hong, S.T., Bang, S., Paik, D., Kang, J., Shin, J., Lee, J., Jeon, K., Hwang,
668 S., et al. (2005). *Drosophila* GPCR Han is a receptor for the circadian clock neuropeptide PDF.
669 *Neuron* **48**, 267-278.

670 Im, S.H., and Taghert, P.H. (2010). PDF receptor expression reveals direct interactions between
671 circadian oscillators in *Drosophila*. *J Comp Neurol* **518**, 1925-1945.

672 Jin, X., Tian, Y., Zhang, Z.C., Gu, P., Liu, C., and Han, J. (2021). A subset of DN1p neurons
673 integrates thermosensory inputs to promote wakefulness via CNMa signaling. *Curr Biol*.

674 Jung, S.H., Lee, J.H., Chae, H.S., Seong, J.Y., Park, Y., Park, Z.Y., and Kim, Y.J. (2014).
675 Identification of a novel insect neuropeptide, CNMa and its receptor. *FEBS Lett* **588**, 2037-2041.

676 Konopka, R.J., and Benzer, S. (1971). Clock mutants of *Drosophila melanogaster*. *Proc Natl*
677 *Acad Sci USA* **68**, 2112-2116.

678 Labuhn, M., Adams, F.F., Ng, M., Knoess, S., Schambach, A., Charpentier, E.M., Schwarzer,
679 A., Mateo, J.L., Klusmann, J.H., and Heckl, D. (2018). Refined sgRNA efficacy prediction
680 improves large- and small-scale CRISPR-Cas9 applications. *Nucleic Acids Res* **46**, 1375-1385.

681 Lear, B.C., Merrill, C.E., Lin, J.-M., Schroeder, A., Zhang, L., and Allada, R. (2005). A G protein-
682 coupled receptor, groom-of-PDF, is required for PDF neuron action in circadian behavior.
683 *Neuron* **48**, 221-227.

684 Ling, X., Xie, B., Gao, X., Chang, L., Zheng, W., Chen, H., Huang, Y., Tan, L., Li, M., and Liu, T.
685 (2020). Improving the efficiency of precise genome editing with site-specific Cas9-

686 oligonucleotide conjugates. *Sci Adv* 6, eaaz0051.

687 Liu, G., Yin, K., Zhang, Q., Gao, C., and Qiu, J.L. (2019). Modulating chromatin accessibility by
688 transactivation and targeting proximal dsgRNAs enhances Cas9 editing efficiency in vivo.
689 *Genome Biol* 20, 145.

690 Ma, D., Przybylski, D., Abruzzi, K.C., Schlichting, M., Li, Q., Long, X., and Rosbash, M. (2021).
691 A transcriptomic taxonomy of *Drosophila* circadian neurons around the clock. *Elife* 10.

692 Mali, P., Yang, L., Esvelt, K.M., Aach, J., Guell, M., DiCarlo, J.E., Norville, J.E., and Church,
693 G.M. (2013). RNA-guided human genome engineering via Cas9. *Science* 339, 823-826.

694 Martin, S.E., and Caplen, N.J. (2007). Applications of RNA interference in mammalian systems.
695 *Annu Rev Genomics Hum Genet* 8, 81-108.

696 Mertens, I., Vandingen, A., Johnson, E.C., Shafer, O.T., Li, W., Trigg, J.S., De Loof, A.,
697 Schoofs, L., and Taghert, P.H. (2005). PDF receptor signaling in *Drosophila* contributes to both
698 circadian and geotactic behaviors. *Neuron* 48, 213-219.

699 Mu, W., Zhang, Y., Xue, X., Liu, L., Wei, X., and Wang, H. (2019). 5' capped and 3' polyA-tailed
700 sgRNAs enhance the efficiency of CRISPR-Cas9 system. *Protein Cell* 10, 223-228.

701 Nahar, S., Sehgal, P., Azhar, M., Rai, M., Singh, A., Sivasubbu, S., Chakraborty, D., and Maiti,
702 S. (2018). A G-quadruplex motif at the 3' end of sgRNAs improves CRISPR-Cas9 based
703 genome editing efficiency. *Chem Commun (Camb)* 54, 2377-2380.

704 Neumüller, R.A., Wirtz-Peitz, F., Lee, S., Kwon, Y., Buckner, M., Hoskins, R.A., Venken, K.J.,
705 Bellen, H.J., Mohr, S.E., and Perrimon, N. (2012). Stringent analysis of gene function and
706 protein-protein interactions using fluorescently tagged genes. *Genetics* 190, 931-940.

707 Ni, J.Q., Zhou, R., Czech, B., Liu, L.P., Holderbaum, L., Yang-Zhou, D., Shim, H.S., Tao, R.,
708 Handler, D., Karpowicz, P., *et al.* (2011). A genome-scale shRNA resource for transgenic RNAi
709 in *Drosophila*. *Nat Methods* 8, 405-407.

710 Nicholson, L., Singh, G.K., Osterwalder, T., Roman, G.W., Davis, R.L., and Keshishian, H.
711 (2008). Spatial and temporal control of gene expression in *Drosophila* using the inducible
712 GeneSwitch GAL4 system. I. Screen for larval nervous system drivers. *Genetics* 178, 215-234.

713 Oberdoerffer, P., Kanellopoulou, C., Heissmeyer, V., Paeper, C., Borowski, C., Aifantis, I., Rao,
714 A., and Rajewsky, K. (2005). Efficiency of RNA interference in the mouse hematopoietic system
715 varies between cell types and developmental stages. *Mol Cell Biol* 25, 3896-3905.

716 Osterwalder, T., Yoon, K.S., White, B.H., and Keshishian, H. (2001). A conditional tissue-
717 specific transgene expression system using inducible GAL4. *Proc Natl Acad Sci USA* 98,
718 12596-12601.

719 Perkins, L.A., Holderbaum, L., Tao, R., Hu, Y., Sopko, R., McCall, K., Yang-Zhou, D., Flockhart,
720 I., Binari, R., Shim, H.S., *et al.* (2015). The Transgenic RNAi project at harvard medical school:
721 resources and validation. *Genetics* 201, 843-852.

722 Poe, A.R., Wang, B., Sapar, M.L., Ji, H., Li, K., Onabajo, T., Fazliyeva, R., Gibbs, M., Qiu, Y.,
723 Hu, Y., *et al.* (2019). Robust CRISPR/Cas9-mediated tissue-specific mutagenesis reveals gene
724 redundancy and perdurance in *Drosophila*. *Genetics* 211, 459-472.

725 Port, F., and Bullock, S.L. (2016). Augmenting CRISPR applications in *Drosophila* with tRNA-
726 flanked sgRNAs. *Nature Methods* 13, 852-854.

727 Port, F., Chen, H.M., Lee, T., and Bullock, S.L. (2014). Optimized CRISPR/Cas tools for efficient
728 germline and somatic genome engineering in *Drosophila*. *Proc Natl Acad Sci USA* 111, E2967-
729 2976.

730 Port, F., Strein, C., Stricker, M., Rauscher, B., Heigwer, F., Zhou, J., Beyersdörffer, C., Frei, J.,
731 Hess, A., Kern, K., *et al.* (2020). A large-scale resource for tissue-specific CRISPR mutagenesis
732 in *Drosophila*. *eLife* 9, e53865.

733 Renn, S.C., Park, J.H., Rosbash, M., Hall, J.C., and Taghert, P.H. (1999). A pdf neuropeptide
734 gene mutation and ablation of PDF neurons each cause severe abnormalities of behavioral
735 circadian rhythms in *Drosophila*. *Cell* 99, 791-802.

736 Rieger, D., Shafer, O.T., Tomioka, K., and Helfrich-Förster, C. (2006). Functional analysis of
737 circadian pacemaker neurons in *Drosophila melanogaster*. *J Neurosci* 26, 2531-2543.

738 Schlichting, M., Díaz, M.M., Xin, J., and Rosbash, M. (2019). Neuron-specific knockouts
739 indicate the importance of network communication to *Drosophila* rhythmicity. *eLife* 8, e48301.

740 Schlichting, M., Richhariya, S., Herndon, N., Ma, D., Xin, J., Lenh, W., Abruzzi, K., and Rosbash,
741 M. (2022). Dopamine and GPCR-mediated modulation of DN1 clock neurons gates the
742 circadian timing of sleep. *Proc Natl Acad Sci USA* 119, e2206066119.

743 Scott, T., Urak, R., Soemardy, C., and Morris, K.V. (2019). Improved Cas9 activity by specific
744 modifications of the tracrRNA. *Sci Rep* 9, 16104.

745 Sekiguchi, M., Inoue, K., Yang, T., Luo, D.G., and Yoshii, T. (2020). A Catalog of GAL4 Drivers
746 for Labeling and Manipulating Circadian Clock Neurons in *Drosophila melanogaster*. *J Biol*
747 *Rhythms* 35, 207-213.

748 Selcho, M., Millán, C., Palacios-Muñoz, A., Ruf, F., Ubillo, L., Chen, J., Bergmann, G., Ito, C.,
749 Silva, V., Wegener, C., *et al.* (2017). Central and peripheral clocks are coupled by a
750 neuropeptide pathway in *Drosophila*. *Nat Commun* 8, 15563.

751 Shafer, O.T., Kim, D.J., Dunbar-Yaffe, R., Nikolaev, V.O., Lohse, M.J., and Taghert, P.H. (2008).
752 Widespread receptivity to neuropeptide PDF throughout the neuronal circadian clock network
753 of *Drosophila* revealed by real-time cyclic AMP imaging. *Neuron* 58, 223-237.

754 Shaw, P.J., Cirelli, C., Greenspan, R.J., and Tononi, G. (2000). Correlates of sleep and waking
755 in *Drosophila melanogaster*. *Science* 287, 1834-1837.

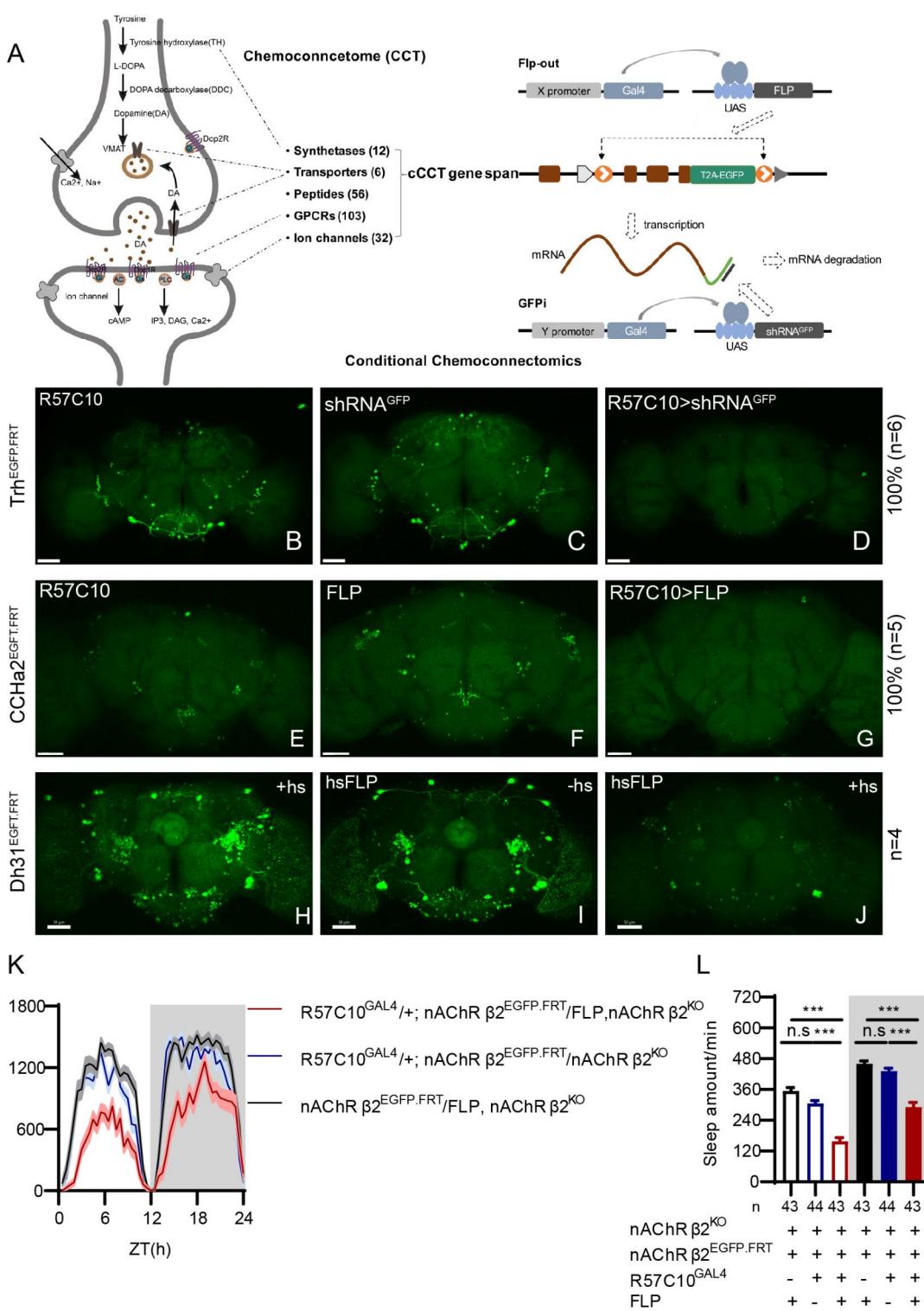
756 Sokolove, P.G., and Bushell, W.N. (1978). The chi square periodogram: Its utility for analysis of
757 circadian rhythms. *Journal of Theoretical Biology* 72, 131-160.

758 Stemmer, M., Thumberger, T., Del Sol Keyer, M., Wittbrodt, J., and Mateo, J.L. (2015). CCTop:
759 An Intuitive, Flexible and Reliable CRISPR/Cas9 Target Prediction Tool. *PLoS One* 10,
760 e0124633.

761 Stoleru, D., Peng, Y., Agosto, J., and Rosbash, M. (2004). Coupled oscillators control morning
762 and evening locomotor behaviour of *Drosophila*. *Nature* 431, 862-868.

763 Talay, M., Richman, E.B., Snell, N.J., Hartmann, G.G., Fisher, J.D., Sorkaç, A., Santoyo, J.F.,
764 Chou-Freed, C., Nair, N., Johnson, M., *et al.* (2017). Transsynaptic Mapping of Second-Order
765 Taste Neurons in Flies by trans-Tango. *Neuron* 96, 783-795.e784.

766 Tang, M., Cao, L.-H., Yang, T., Ma, S.-X., Jing, B.-Y., Xiao, N., Xu, S., Leng, K.-R., Yang, D., Li,
767 M.-T., *et al.* (2022). An extra-clock ultradian brain oscillator sustains circadian timekeeping. *Sci*
768 *Adv* 8, eab05506.

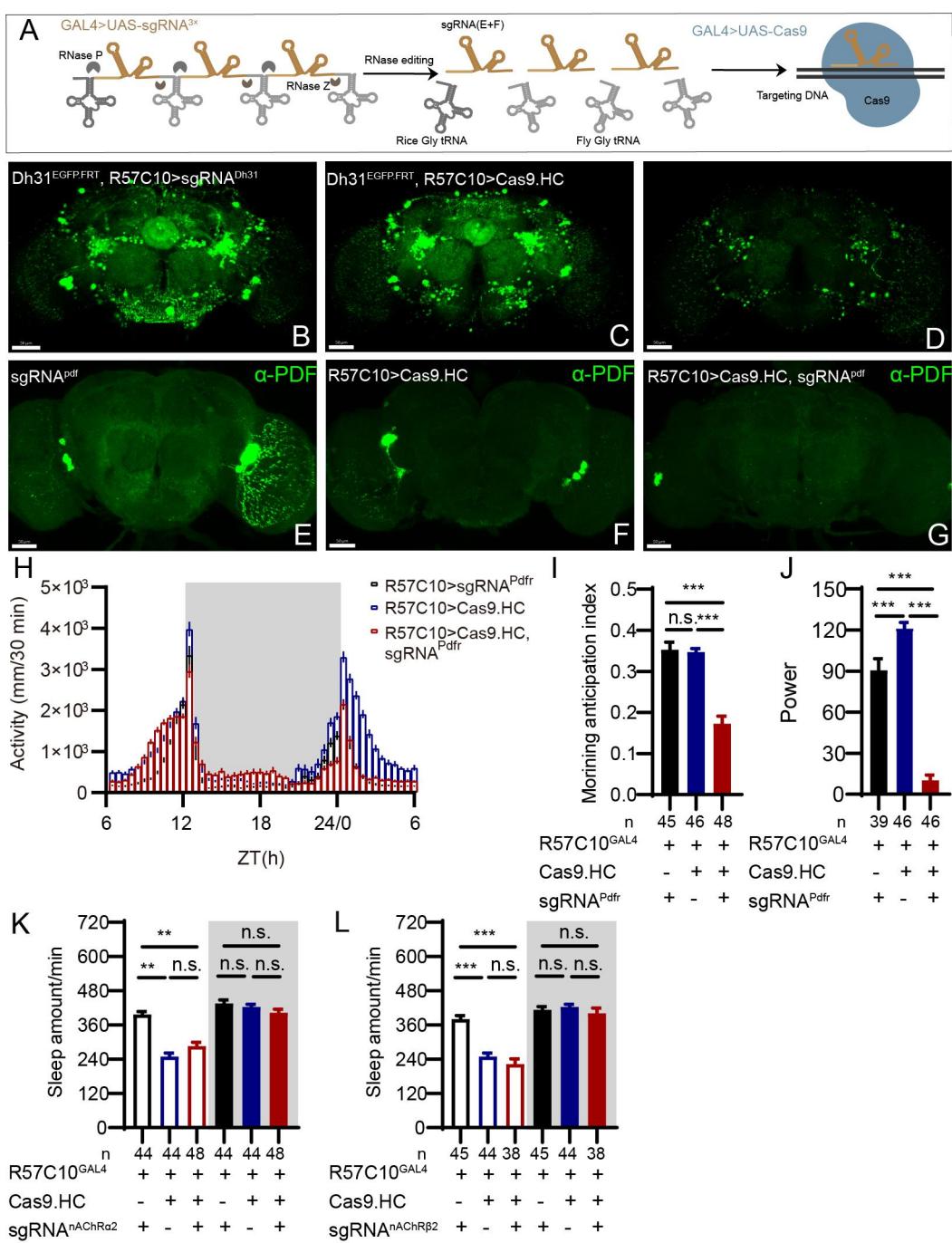

769 Vetter, D., Andrews, B.J., Roberts-Beatty, L., and Sadowski, P.D. (1983). Site-specific
770 recombination of yeast 2-micron DNA in vitro. *Proc Natl Acad Sci U S A* 80, 7284-7288.

771 Wu, F., Deng, B., Xiao, N., Wang, T., Li, Y., Wang, R., Shi, K., Luo, D.G., Rao, Y., and Zhou, C.
772 (2020). A neuropeptide regulates fighting behavior in *Drosophila melanogaster*. *Elife* 9, e54229.

773 Xie, K., Minkenberg, B., and Yang, Y. (2015). Boosting CRISPR/Cas9 multiplex editing

774 capability with the endogenous tRNA-processing system. Proc Natl Acad Sci U S A 112, 3570-
775 3575.
776 Xu, H., Xiao, T., Chen, C.H., Li, W., Meyer, C.A., Wu, Q., Wu, D., Cong, L., Zhang, F., Liu, J.S.,
777 *et al.* (2015). Sequence determinants of improved CRISPR sgRNA design. Genome Res 25,
778 1147-1157.
779 Xue, Z., Wu, M., Wen, K., Ren, M., Long, L., Zhang, X., and Gao, G. (2014). CRISPR/Cas9
780 mediates efficient conditional mutagenesis in Drosophila. G3 (Bethesda) 4, 2167-2173.
781 Zhao, P., Zhang, Z., Lv, X., Zhao, X., Suehiro, Y., Jiang, Y., Wang, X., Mitani, S., Gong, H., and
782 Xue, D. (2016). One-step homozygosity in precise gene editing by an improved CRISPR/Cas9
783 system. Cell Res 26, 633-636.
784 Zheng, X., Qi, C., Yang, L., Quan, Q., Liu, B., Zhong, Z., Tang, X., Fan, T., Zhou, J., and Zhang,
785 Y. (2020). The Improvement of CRISPR-Cas9 system with ubiquitin-associated domain fusion
786 for efficient plant genome editing. Front Plant Sci 11, 621.
787

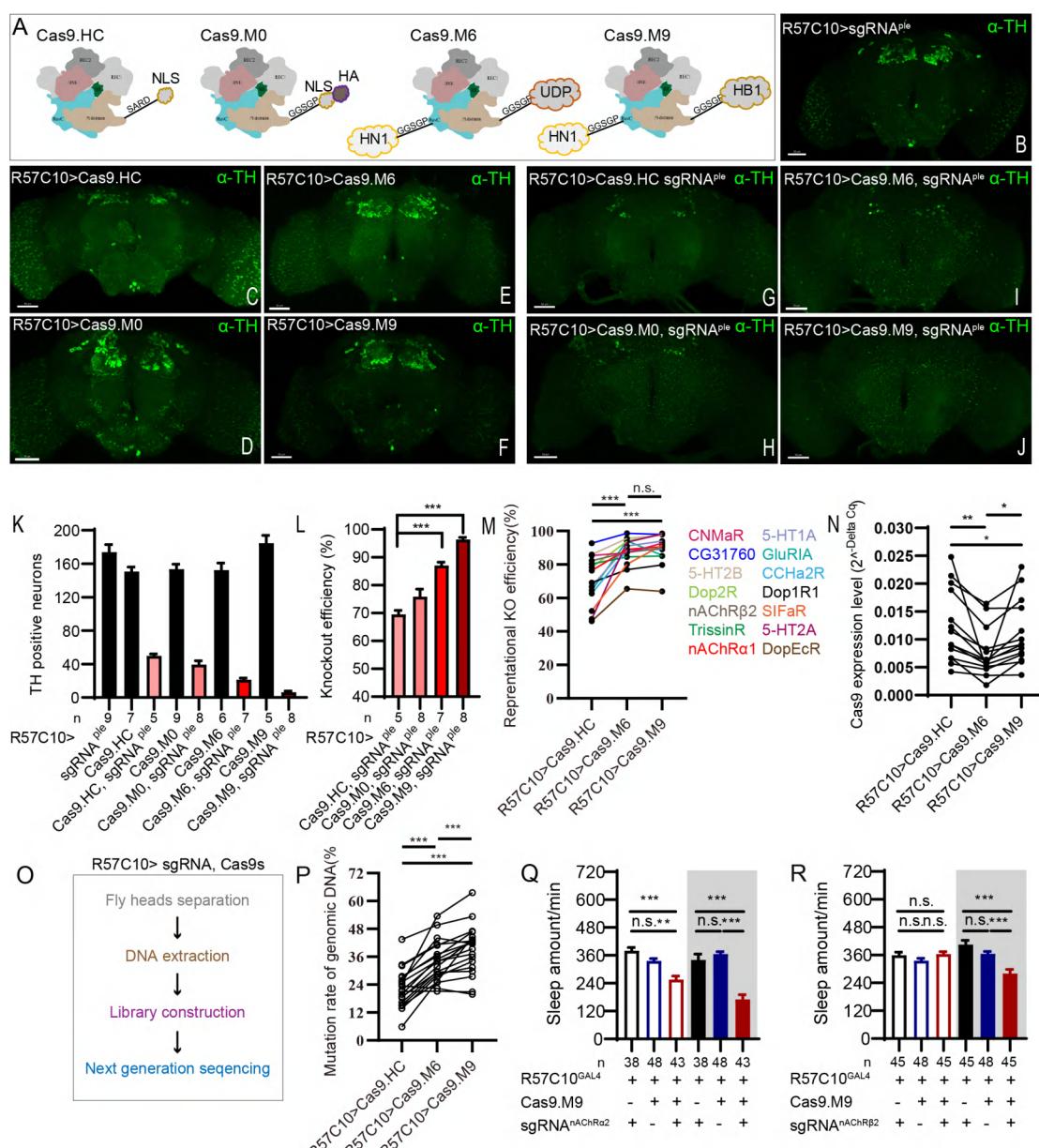
788 **FIGURES**


789

790 **Fig 1. cCCTomics Mediates Efficient Conditional Disruption of CCT Genes**

791 (A) Schematic of cCCT gene span and principle of cCCTomics. A T2A-EGFP sequence was
792 induced at the 3' end of CCT genes and their most or all coding regions (depending on attP-

793 KO lines) were flanked by 34 bp FRT sequence. Both Flp-out (top) and GFP RNAi (down) could
794 mediate CCT gene manipulation. (B-J) Expression of Trh (B-D), CCHa2 (E-G), and Dh31 (H-J)
795 are efficiently disrupted by pan-neuronal expression of GFP-RNAi (B-D), pan-neuronal
796 expression of Flp-out (E-G), and heatshock-Flp (H-J) respectively. Representative fluorescence
797 images of R57C10-Gal4/+;Trh^{EGFP.FRT}/+ (B), UAS-shRNA^{GFP}/Trh^{EGFP.FRT} (C), R57C10-Gal4/+;
798 UAS-shRNA^{GFP}/Trh^{EGFP.FRT} (D), R57C10-Gal4/+;CCHa2^{EGFP.FRT}/+; (E), UAS-
799 Flp/CCHa2^{EGFP.FRT} (F), R57C10-Gal4/+; UAS-Flp/CCHa2^{EGFP.FRT} (G), Dh31^{EGFP.FRT} with
800 heatshock (H), hs-Flp/Dh31^{EGFP.FRT} without heatshock (I), and hs-Flp/Dh31^{EGFP.FRT} with
801 heatshock are shown. Manipulation efficiency and experiment group fly number is noted on the
802 right. Scale bar, 50um. (K-L) sleep profiles (K) and statistical analysis (L) of Flp-out induced
803 nAChR β 2 neuronal knockout flies (red) and genotype controls (dark and blue). Sleep profiles
804 are plotted in 30 min bins. In this and other figures, blank background indicates the light phase
805 (ZT 0-12); shaded background indicates the dark phase (ZT 12-24). Both daytime sleep (open
806 bars) and nighttime sleep (filled bars) duration were significantly reduced in nAChR β 2 neuronal
807 knockout flies.


808 In all statistical panels, unless otherwise noted, 1) Numbers below each bar represent the
809 number of flies tested. 2) Mean \pm SEM is shown. 3) The Kruskal-Wallis test followed by Dunn's
810 post test was used. *** $p < 0.001$. ** $p < 0.01$. * $p < 0.05$. n.s. $p > 0.05$. Male flies were used
811 unless otherwise noted.

813 **Fig 2. C-cCCTomics Mediates Efficient Conditional Knockout of CCT Genes**

814 (A) Schematic of C-cCCTomics principle. Cas9 and three sgRNAs are driven by GAL4/UAS
 815 system. Three tandem sgRNAs are segregated by fly tRNA^{Gly} and matured by RNase Z and
 816 RNase P. (B-G) Pan-neuronal knockout of *Dh31* (D) and *Pdf* (G) by C-cCCTomics strategy.
 817 Representative fluorescence images presented expression of *Dh31* (B-D) or anti-*PDF* (E-G).
 818 Pan-neuronal expression of Cas9 and sgRNA eliminated most (D) or all (G) fluorescent signal

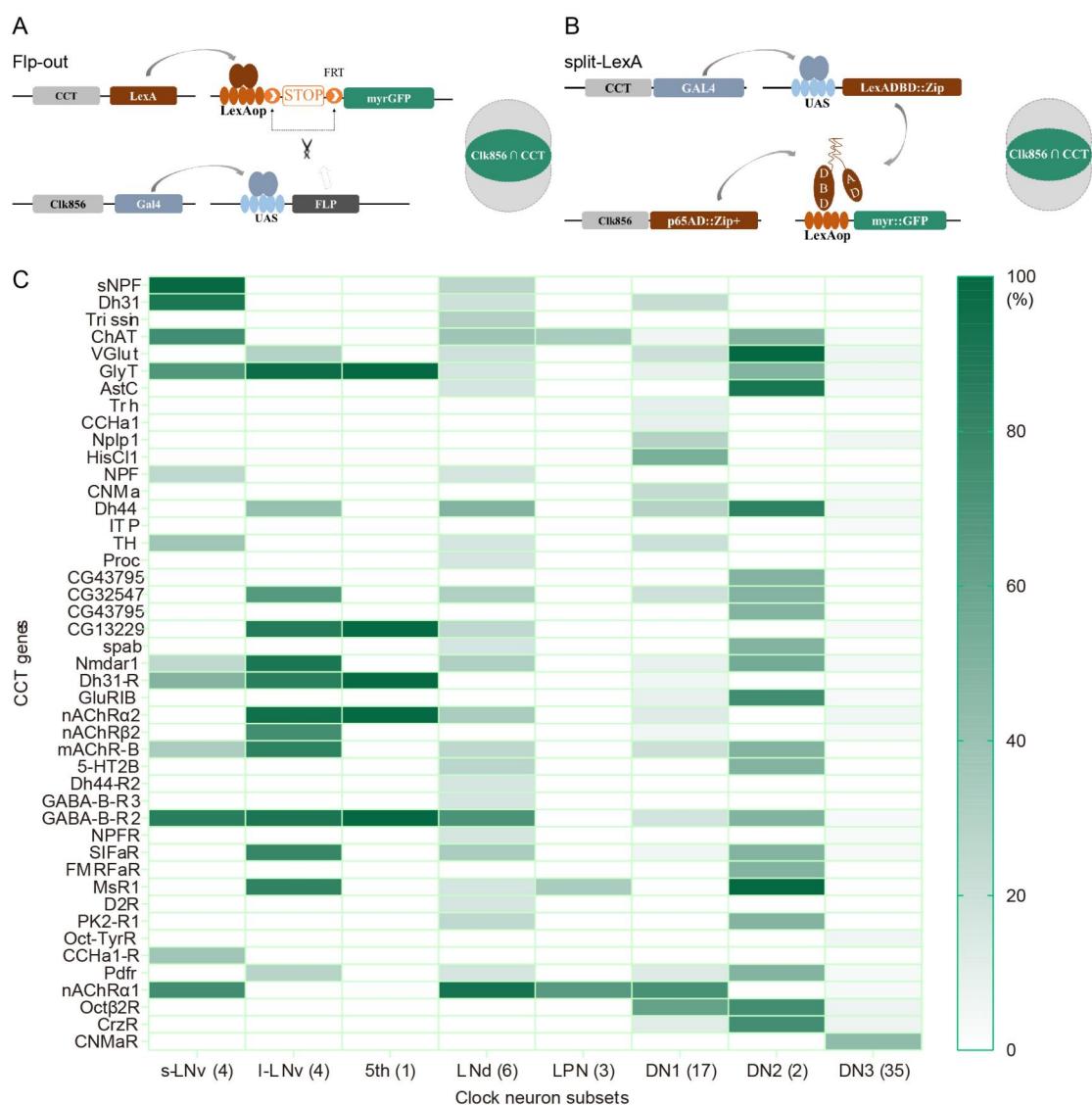
819 compared to control fly brains (B-C, E-F). Scale bar, 50 μ m. (H) Activity profiles of pan-neuronal
820 knockout of Pdf. Plotted in 30 min bins. (I-J) Statistical analysis of morning anticipation index (I)
821 and power (J) for pan-neuronal Pdf knockout flies. Knocking out of Pdf in neurons reduced both
822 morning anticipation index and power significantly. (K-L) Statistical analysis of nAChR α 2 (K)
823 and nAChR β 2 (L) pan-neuronal knockout flies' sleep phenotype. Sleep of these flies were not
824 disrupted.

825

826 **Figure 3. Efficiency Evaluation of Variations of Chromatin-Modulating Peptides Modified**

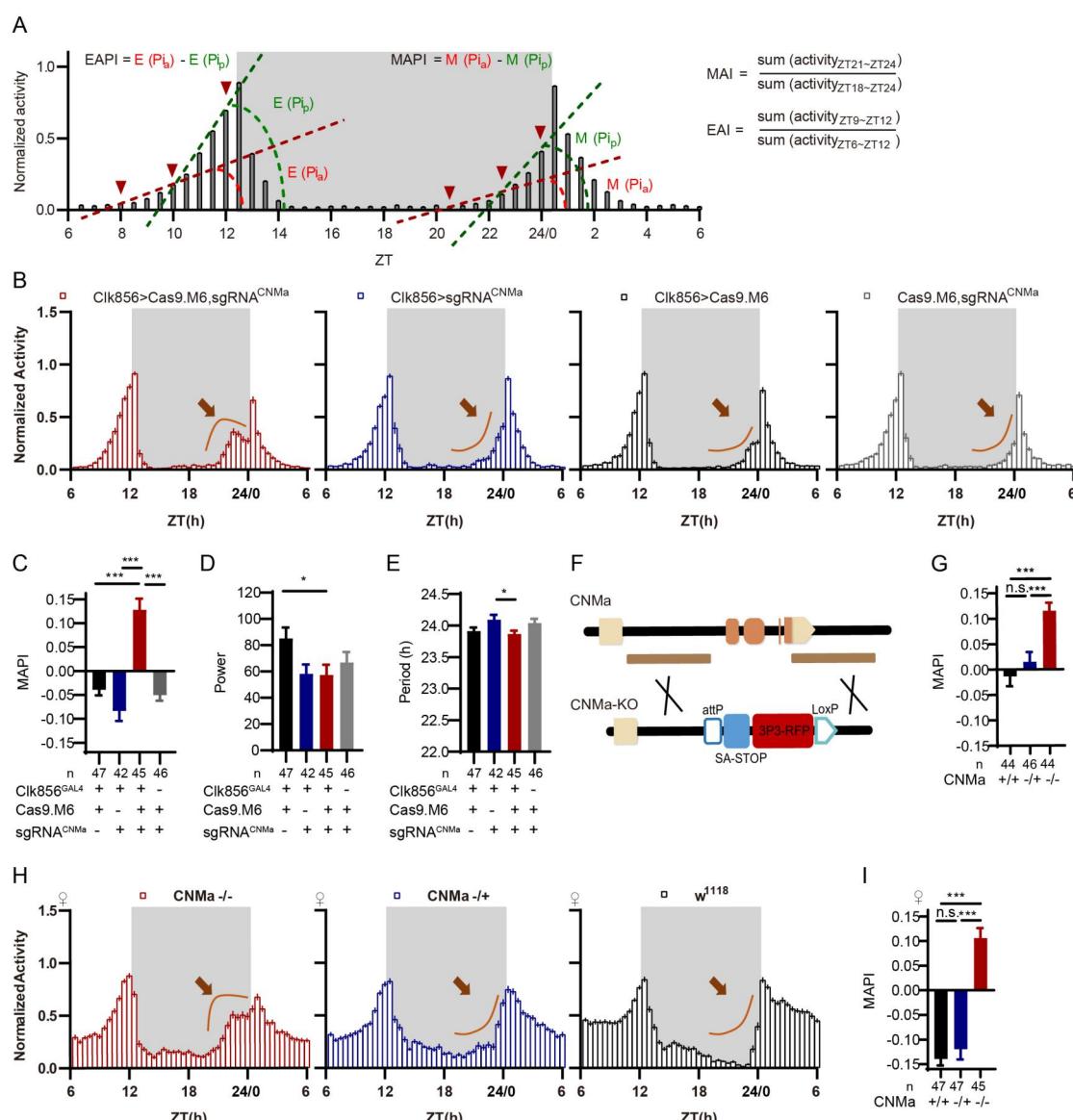
827 **Cas9.**

828 (A) Schematics of chromatin-modulating peptides modified Cas9. (B-J) Efficiency evaluation


829 of Cas9 variants. Fluorescence imaging of R57C10-Gal4>UAS-sgRNA^{ple} (B), R57C10-

830 Gal4>UAS-Cas9 (C-F), and R57C10-Gal4>UAS-Cas9, UAS-sgRNA^{ple} (G-J) flies are shown.

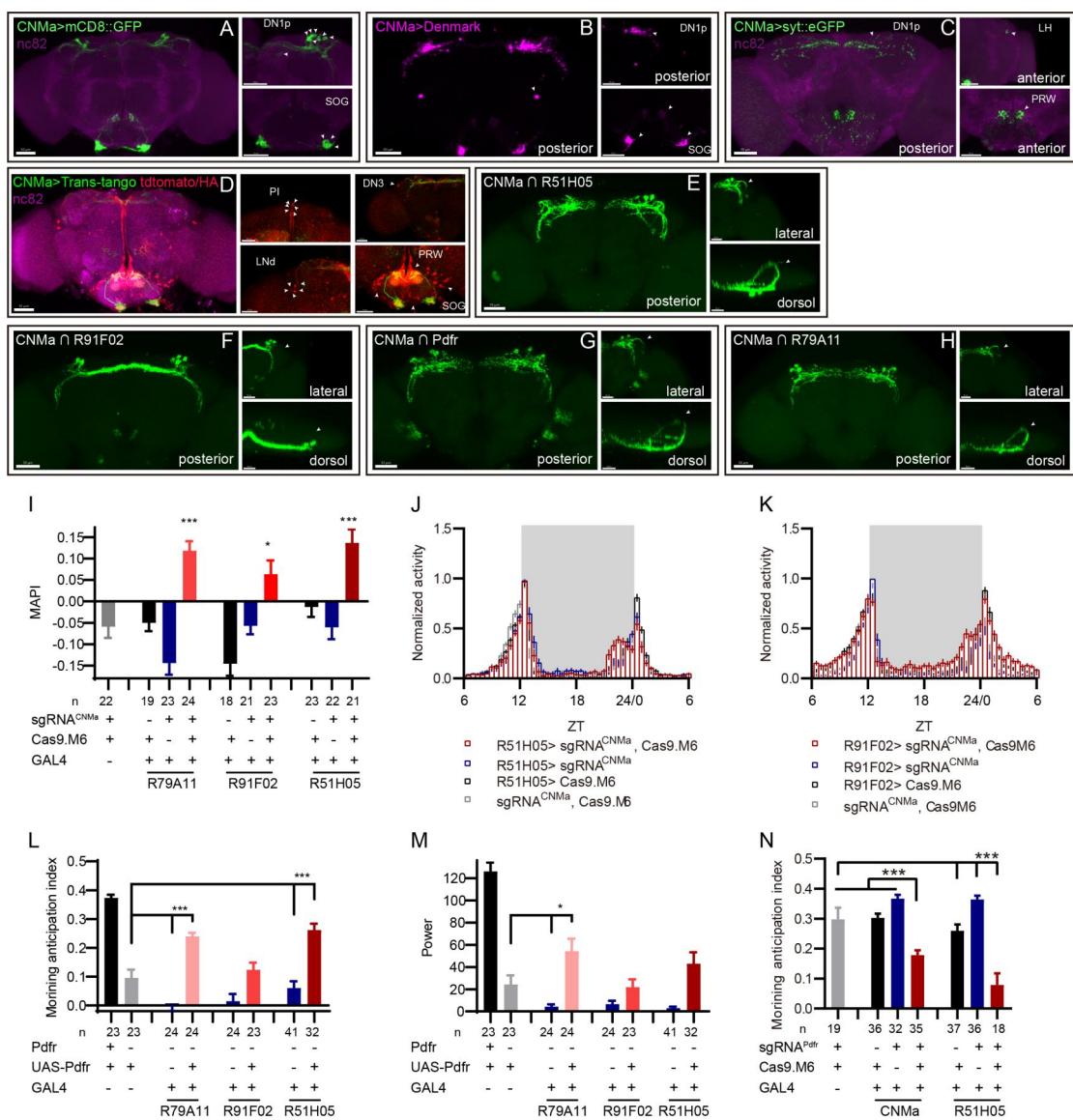
831 Brains were stained with anti-TH (green). Scale bar is 50 μm. (K) Anterior TH positive neurons


832 numbers of (K-U). (L) Statistical analysis of ple knockout efficiency related to (K). Modified

833 Cas9.M6 and Cas9.M9 showed an improved efficiency comparing to Cas9.HC. Student's t
834 test was used. (M) Statistical analysis of representational KO efficiency of Cas9 variants as
835 related to Figure S5. Gene symbols on the right indicate tested genes. (N) Statistical analysis
836 of Cas9 expression level. (O-P) Workflow of efficiency validation by next-generation
837 sequencing (O) and Statistical analysis of single-site mutation ratios induced by Cas9 variants
838 (P). Paired t test was used in (M), (N) and (P). (Q-R) Statistical analysis of sleep amount for
839 nAChR α 2 (X) or nAChR β 2 (Y) pan-neuronal knockout flies. Knockout of nAChR α 2 and
840 nAChR β 2 by modified Cas9.M9 significantly decreased flies' sleep amount.

Fig 4. Genetic Dissection of Clk856 Labelled Clock Neurons.

842 (A-B) Schematic of intersection strategies used in Clk856 labelled clock neurons dissection,
843 Flp-out strategy (A) and split-LexA strategy (B). (C) Expression profiles of CCT genes in clock
844 neurons. Gradient color denotes proportion of neurons that were positive for the CCT gene
845 within each subset. This figure is corresponding to Table S4.



847

848 **Fig 5. CNMa Regulation of Morning Anticipation in Clock Neuron**

849 (A) Schematic of MAI, EAI, MAPI and EAPI definition. (B) Activity plots of male flies with CNMa
 850 knockout in clock neurons (red) and controls (blue, black and grey), plotted in 30 min bins. An
 851 advancement of morning activity peak was presented in CNMa clock-neuron-specific mutants
 852 (brown arrowhead). (C-E) Statistical analyses of MAPI, power, and period of flies in (B). MAPI
 853 was significantly increased in clock neurons-specific CNMa deficient flies (C) while power (D)
 854 and period (E) were not changed. (F) Schematic of CNMa^{KO} generation. The entire encoding
 855 region of CNMa was replaced by an attP-SAstop-3P3-RFP-loxP cassette using CRISPR-Cas9

856 strategy. (G) Statistical analysis of MAPI of male CNMa^{KO} flies (red) and controls (blue and
857 black). MAPI significantly increased in male CNMa^{KO} flies. (H) Activity plots of female CNMa^{KO}
858 flies (red) and controls (blue and black). (I) Statistical analysis of MAPI of female CNMa^{KO} flies
859 (red) and controls (blue and black). MAPI was significantly increased in female CNMa^{KO} flies.

860

861 **Fig 6. Expression, Projection and Trans-projection Feature of CNMa Neurons and Its**

862 **Functional Subset**

863 (A-C) Expression and projection patterns of CNMa-KI-Gal4 in the brain. Membrane, dendrites,
 864 and axon projections are labelled by mCD8::GFP (A), Denmark (B), and syt::eGFP (C)
 865 respectively. (D) Downstream neurons labelled through trans-tango driven by CNMa-KI-GAL4.
 866 Arrowheads indicate candidate downstream neurons: six neurons in PI, one pair in DN3, five
 867 pairs in LNd and about 15 pairs in SOG. (E-H) Intersection of DN1p CNMa neurons with DN1p
 868 labelled drivers. GMR51H05-GAL4 (E), GMR91F02-GAL4 (F), Pdfr-KI-GAL4 (G) and

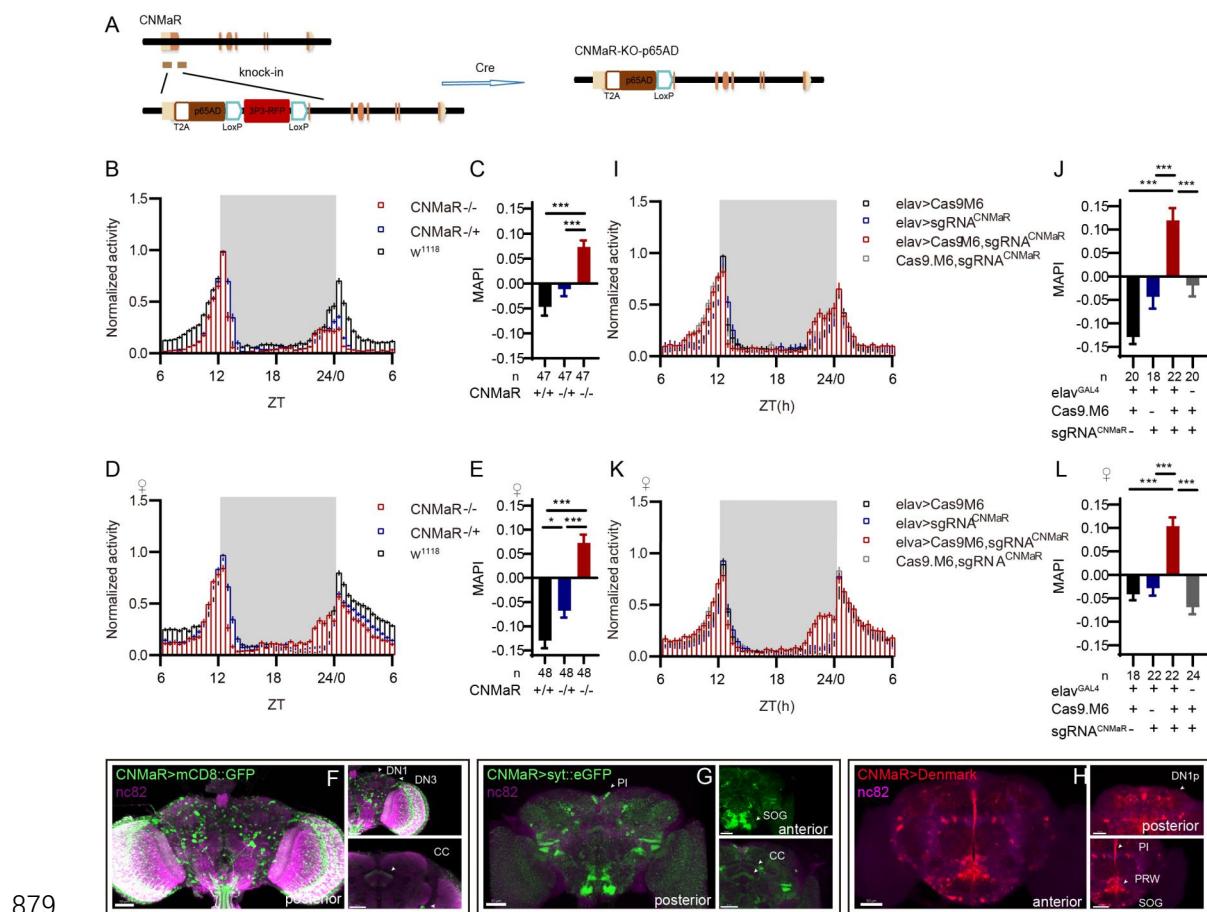
869 GMR79A11-GAL4 (H) were intersected with CNMa-p65AD, UAS-LexAOPDBD, LexAOP-myR::GFP.

870 Two type I (E, G, H) neurons projected to anterior region and four type II (F) neurons had fewer

871 projections to anterior region. Scale bar, 50 μ m. (I) MAPIs were significantly increased in all

872 three DN1p drivers mediated CNMa knockout. (J-K) Activity plots of CNMa knockout in

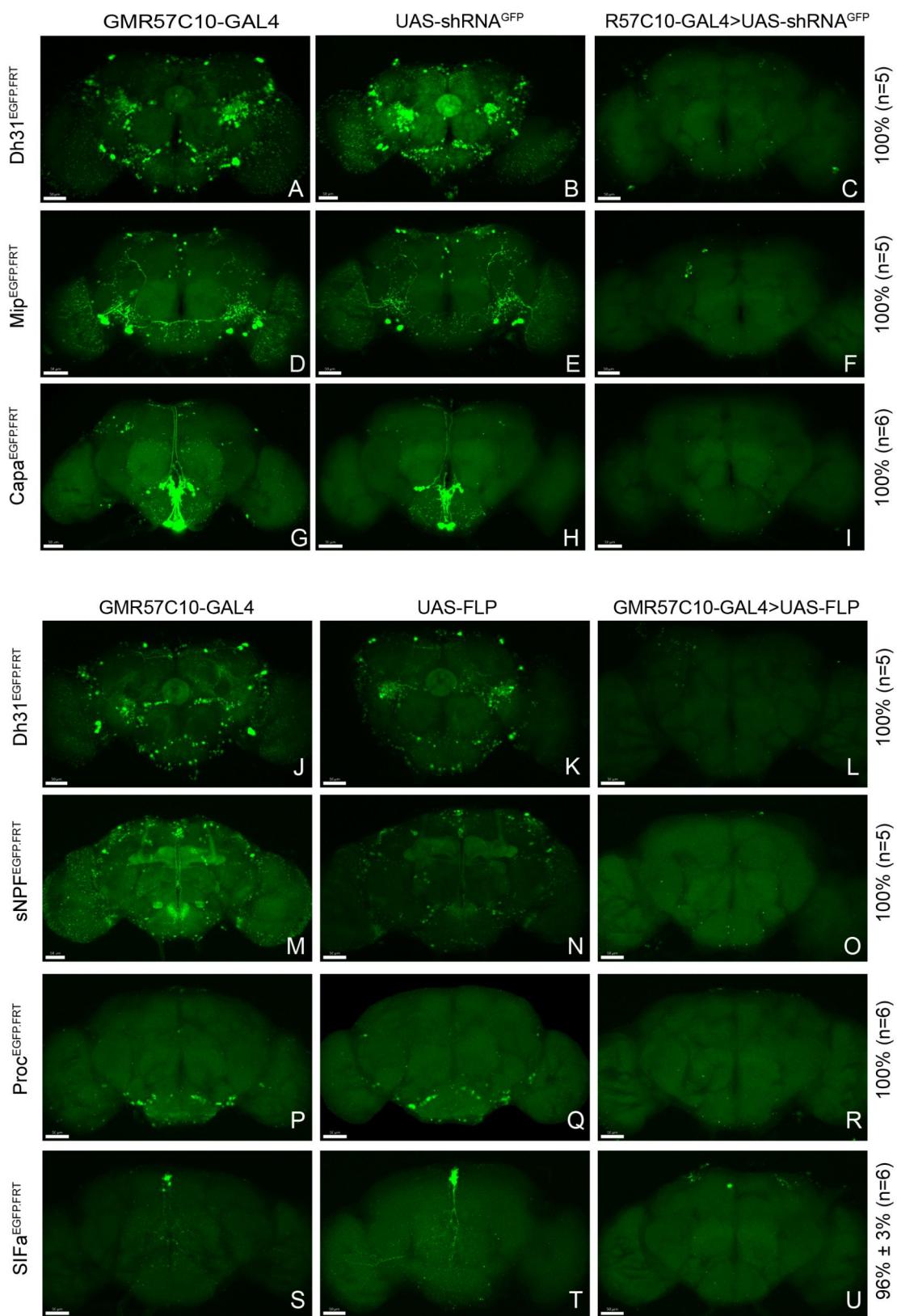
873 R51H05-GAL4 (J) and R91F02-GAL4 (K) neurons. R51H05-GAL4 mediated CNMa knockout

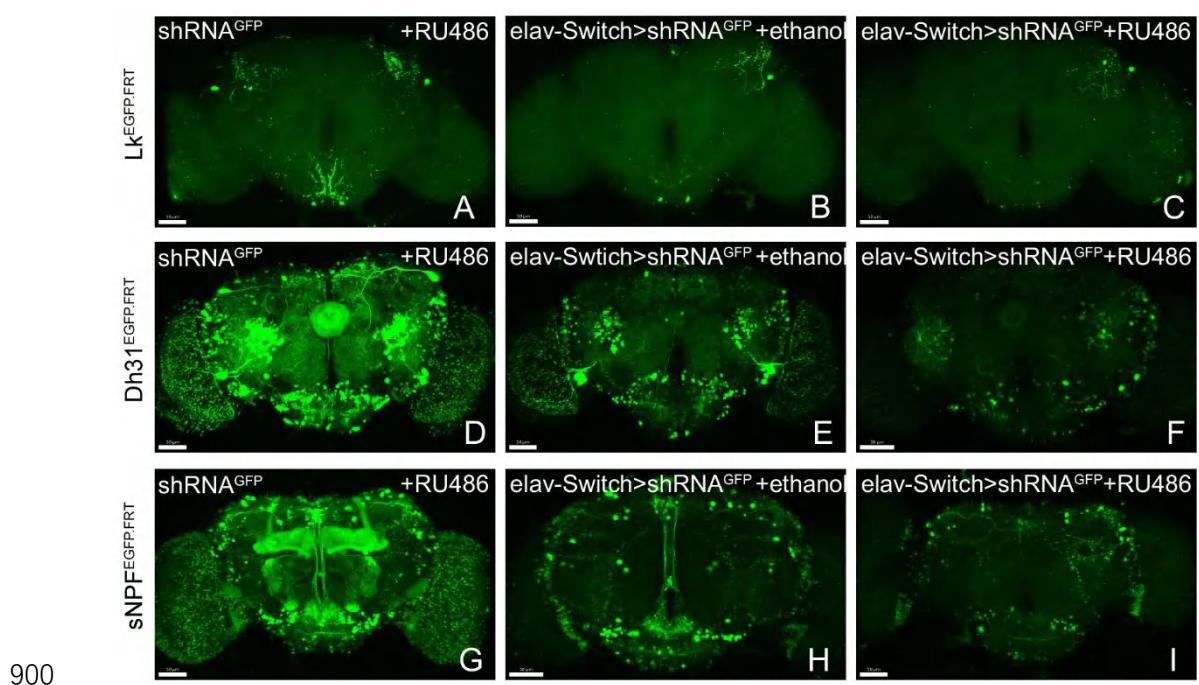

874 flies showed an advanced morning activity peak (J), while R91F02-Gal4 mediated CNMa

875 knockout flies did not (K). (L-M) Statistical analyses of MAI and power. Pdfr reintroduction in

876 R79A11 and R51H05 neurons could partially rescue the MAI-decreased phenotype of Pdfr

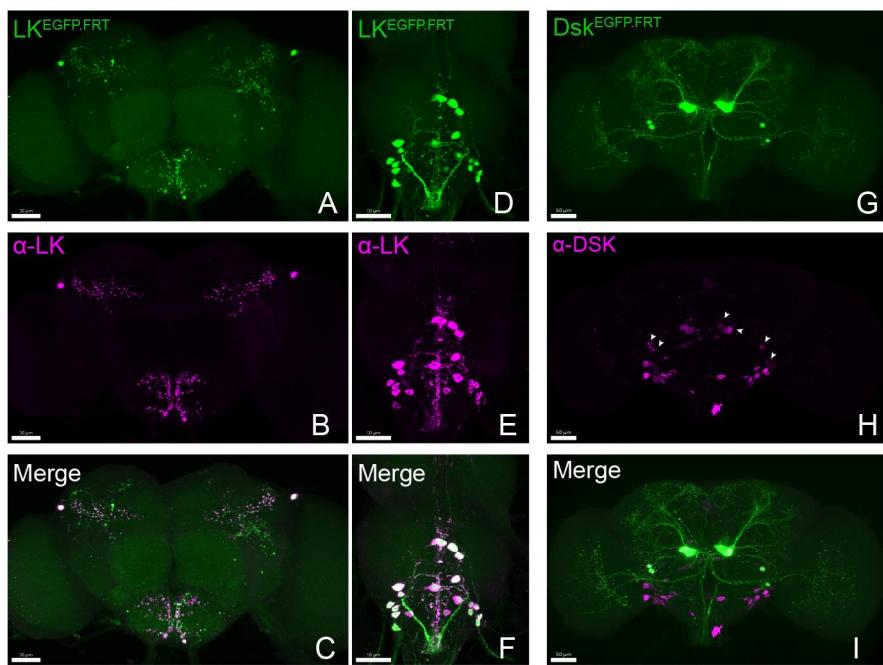
877 knockout flies. (N) Statistical analyses of MAI of Pdfr knocking out in CNMa-KI-GAL4 and


878 R51H05-GAL4 labelled neurons.


880 **Fig 7. CNMaR Regulation of Morning Anticipation**

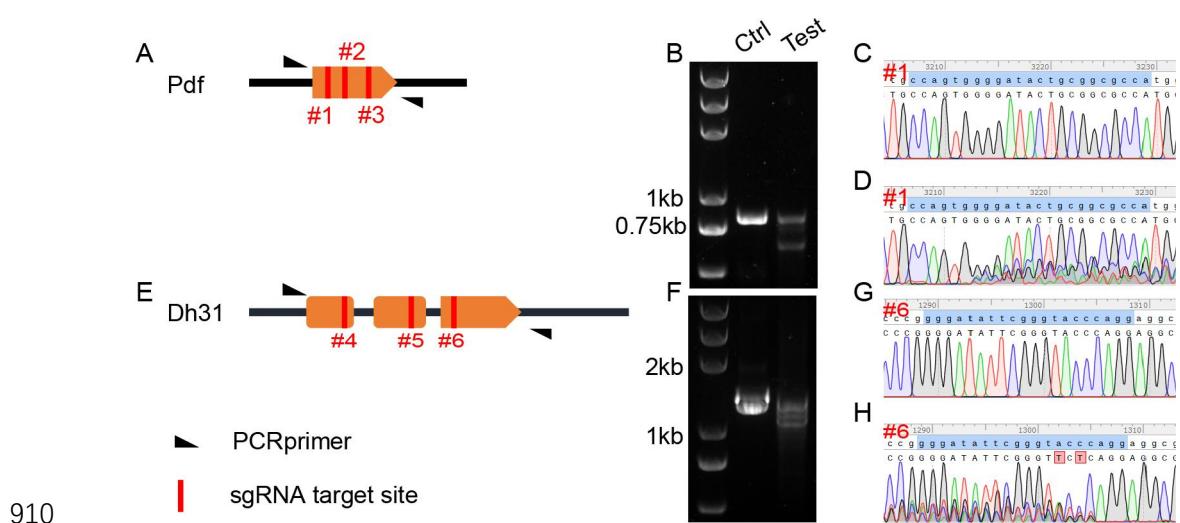
881 (A) Schematic of CNMaR^{KO-p65AD} generation. Most of the first exon in CNMaR was replaced by
 882 a T2A-p65AD-loxP-3P3-RFP-loxP cassette using CRISPR-Cas9 strategy and the T2A-p65AD
 883 was inserted in the reading frame of the remaining CNMaR codon. 3P3-RFP was removed
 884 latterly by Cre mediated recombination. (B-E) Activity plot (B, D) and statistical analysis (C, E)
 885 of male (B-C) or female (D-E) CNMaR^{KO-p65AD} flies (red) and genotypical controls (blue and
 886 black). MAPI was significantly increased in both male and female CNMaR^{KO-p65AD} flies. In this
 887 and other figures, “♀” denotes female flies. (F-H) Expression and projection patterns of
 888 CNMaR-KI-Gal4 in the brain. Scale bars, 50μm. (I-L) Activity plots (I, K) and statistical analyses
 889 (J, L) of CNMaR pan-neuronal knockout flies. Neuronal knockout of CNMaR increased MAPI
 890 (K).

891 **Supplementary Information**

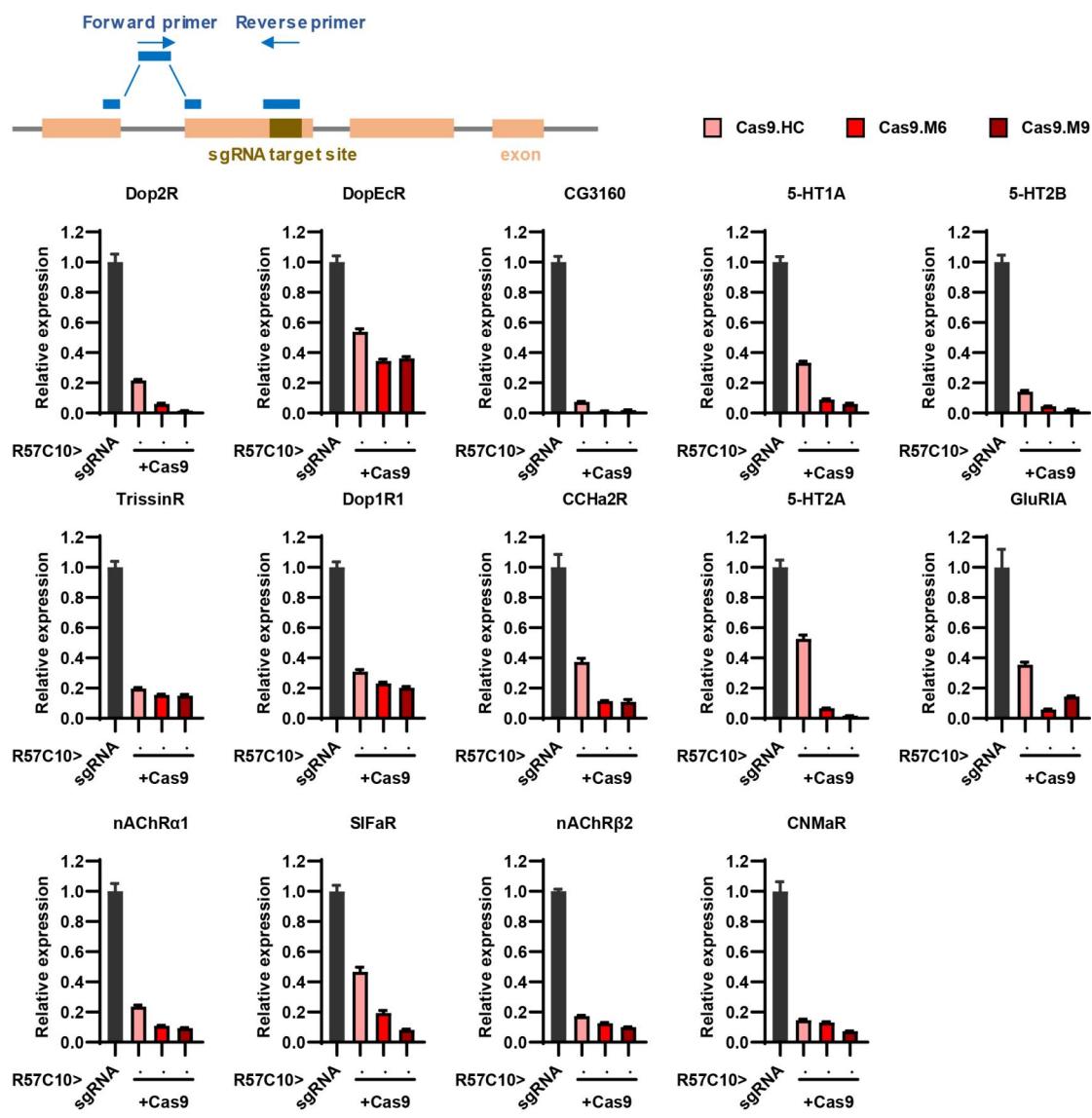


895 experimental fly brains (C, F, I) showed no GFP signal after knockdown by GFPi. As described
896 in Fig 1, all percentages in the right represent gene disruption efficiency and n represent number
897 of experimental flies. (J-U) Pan-neuronal knock out of Dh31, sNPF, Proc and SIFa by Flp-out
898 strategy. No obvious GFP signal was found in the experimental fly brains (L, O, R), excepting
899 one GFP positive neurons in SIFa flip-out group (U).

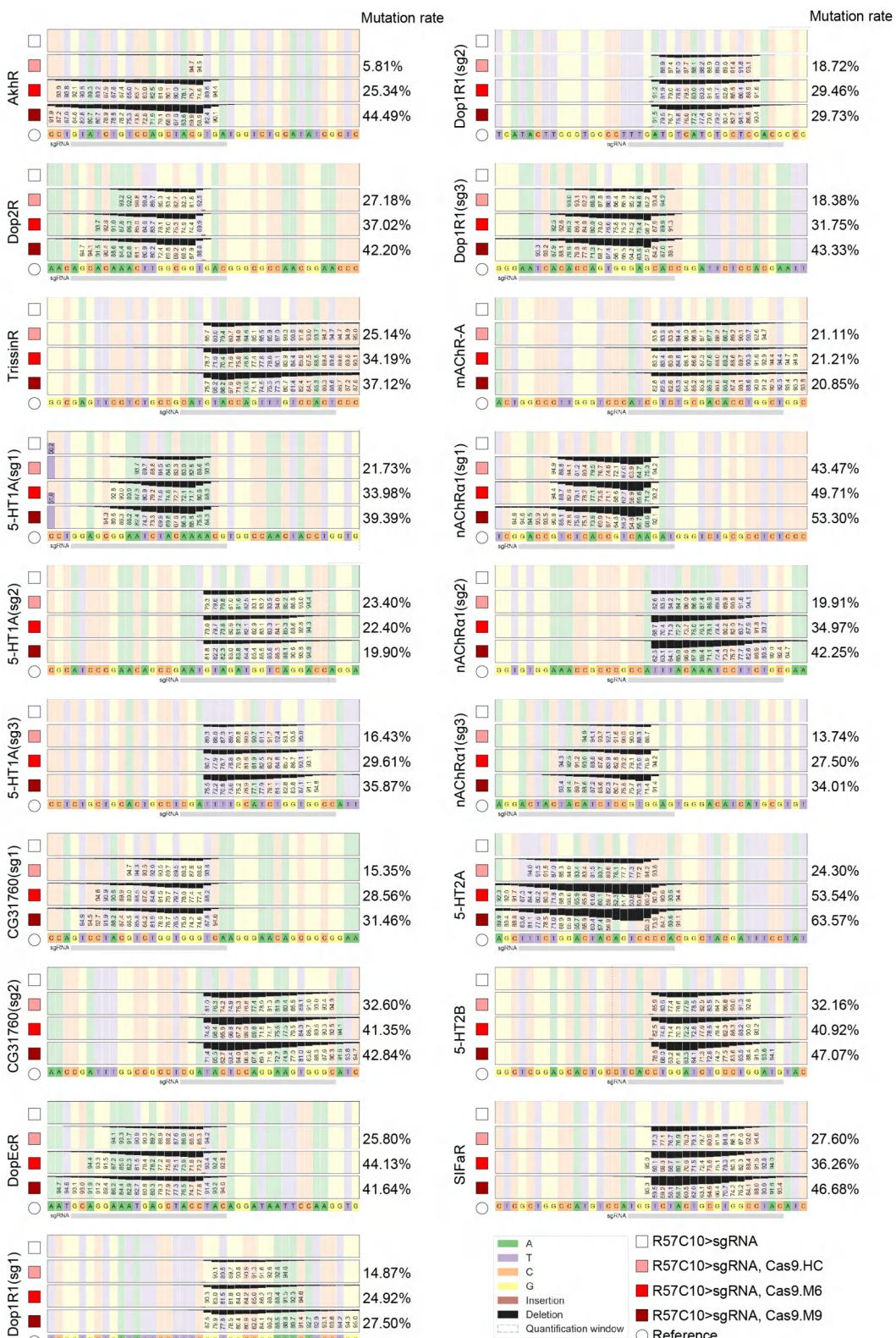
901 **Fig S2. Gene Disruption of Target Genes by Induced shRNA**


902 (A-J) Knockdown of Lk, Dh31 and sNPF by elav-Switch. Most GFP signal is lost in the
903 experimental group (C, F, I).

904


905 **Fig S3. Accurate Labeling of Target Genes by cCCT Lines**

906 (A-J) Co-localization of fused EGFP labelled CCT genes and corresponding antibodies. All the
907 EGFP labelled Lk (A, D) and Dsk (G) neurons (Green) were co-localized with anti-LK (B, E;
908 merge C, F) and anti-DSK (H, merge I) signal (purple). Arrowheads represent specific anti-DSK
909 signal (Wu et al., 2020).

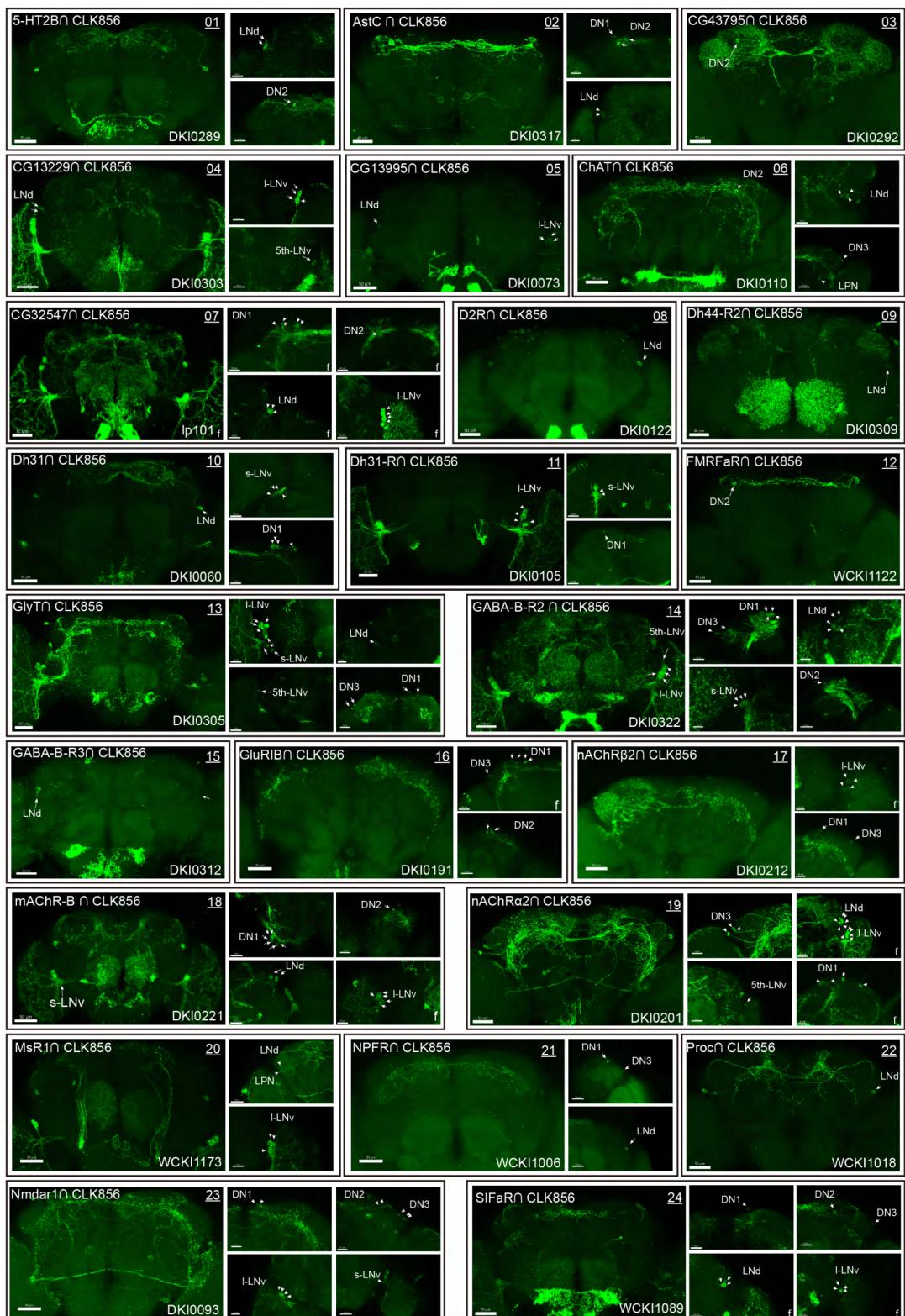

911 **Fig S4. Validation of Primary C-cCCTomics**

912 (A) Gene span of Pdf. #1, #2 and #3 with red lines denote sgRNA targets regions in Pdf coding
913 sequence. (B) DNA gel electrophoresis of PCR products after *pdf* KO by C-cCCTomics. “Ctrl”
914 denotes PCR products from genomic DNA mixture of Act5C-GAL4/+; UAS-Cas9.P2/+ flies and
915 UAS-sRNA^{Pdf} flies. “Test” denotes PCR products from Act5C-GAL4/ UAS-sRNA^{Pdf}; UAS-
916 Cas9.P2 flies. (C-D) Sanger sequencing results of Ctrl (C) and Test (D) PCR products at #1
917 sgRNA target site. (E-H) Similar to (A-D) with Dh31 as target. (I-J) Statistical analysis of
918 nAChRa2 (I) and nAChRβ2 (J) pan-neuronal knockout flies’ sleep phenotype. Sleep of these
919 flies were not disrupted.

921 **Fig S5. Efficiency validation by real-time quantitative PCR.**

922 This figure corresponds to Fig 3M. The schematic at the top illustrates the principle of primer
923 design. The gene symbol above each panel indicates the target of sgRNAs. The expression
924 of the target gene in the experimental groups (where R57C10-GAL4 drives the expression of
925 both Cas9 variants and sgRNA) was normalized to the control group (where R57C10-GAL4
926 drives sgRNA expression only).

927

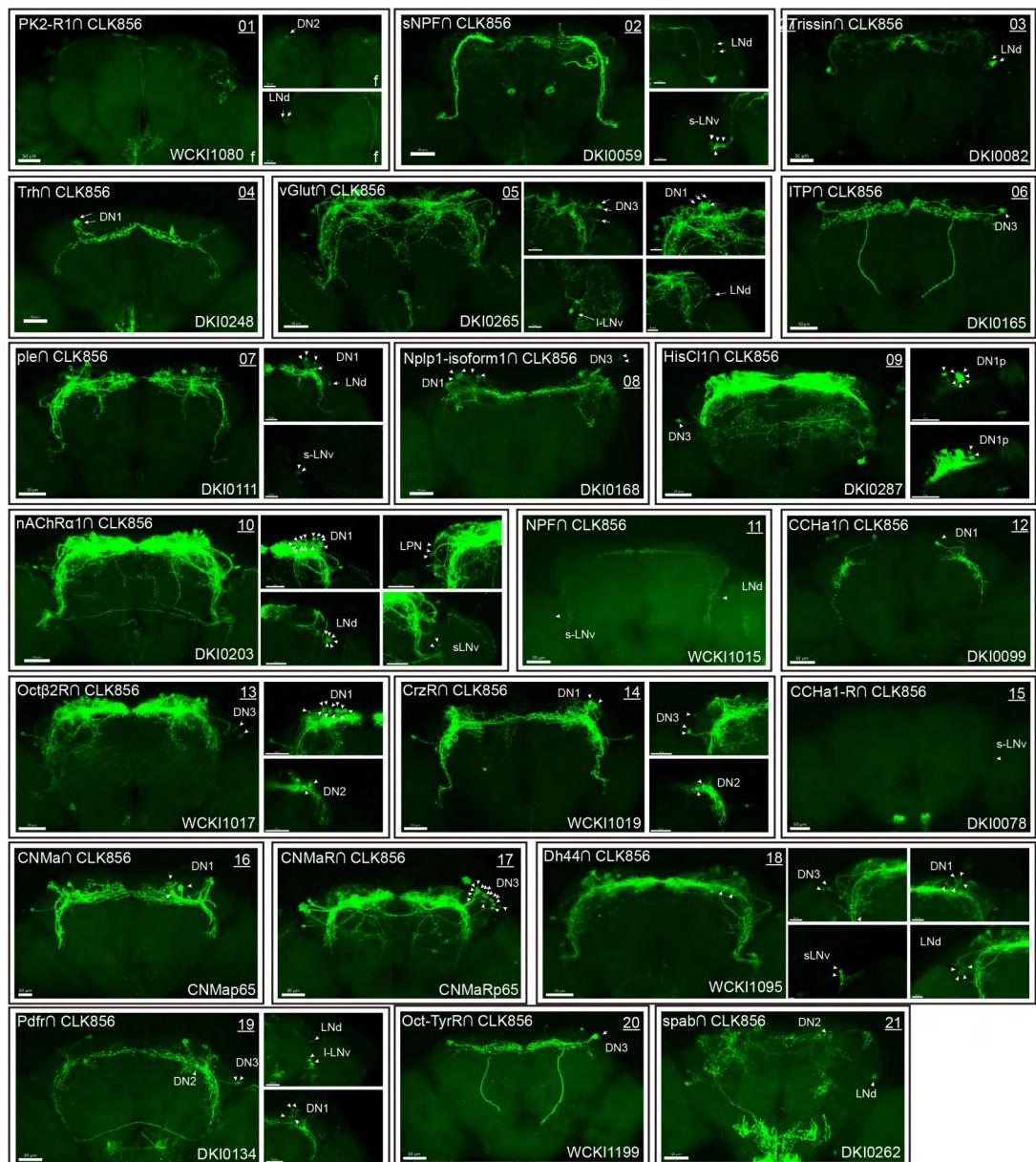

928 **Fig S6. Efficiency validation by high-throughput sequencing**

929 This figure corresponds to Fig 3P. Gene symbol on the left side of each panel denotes the target

930 gene, while the percentages on the right denotes mutation rate as calculated by CRISPResso2.

931 A minimum of 10,000 reads were analyzed for each genotype.

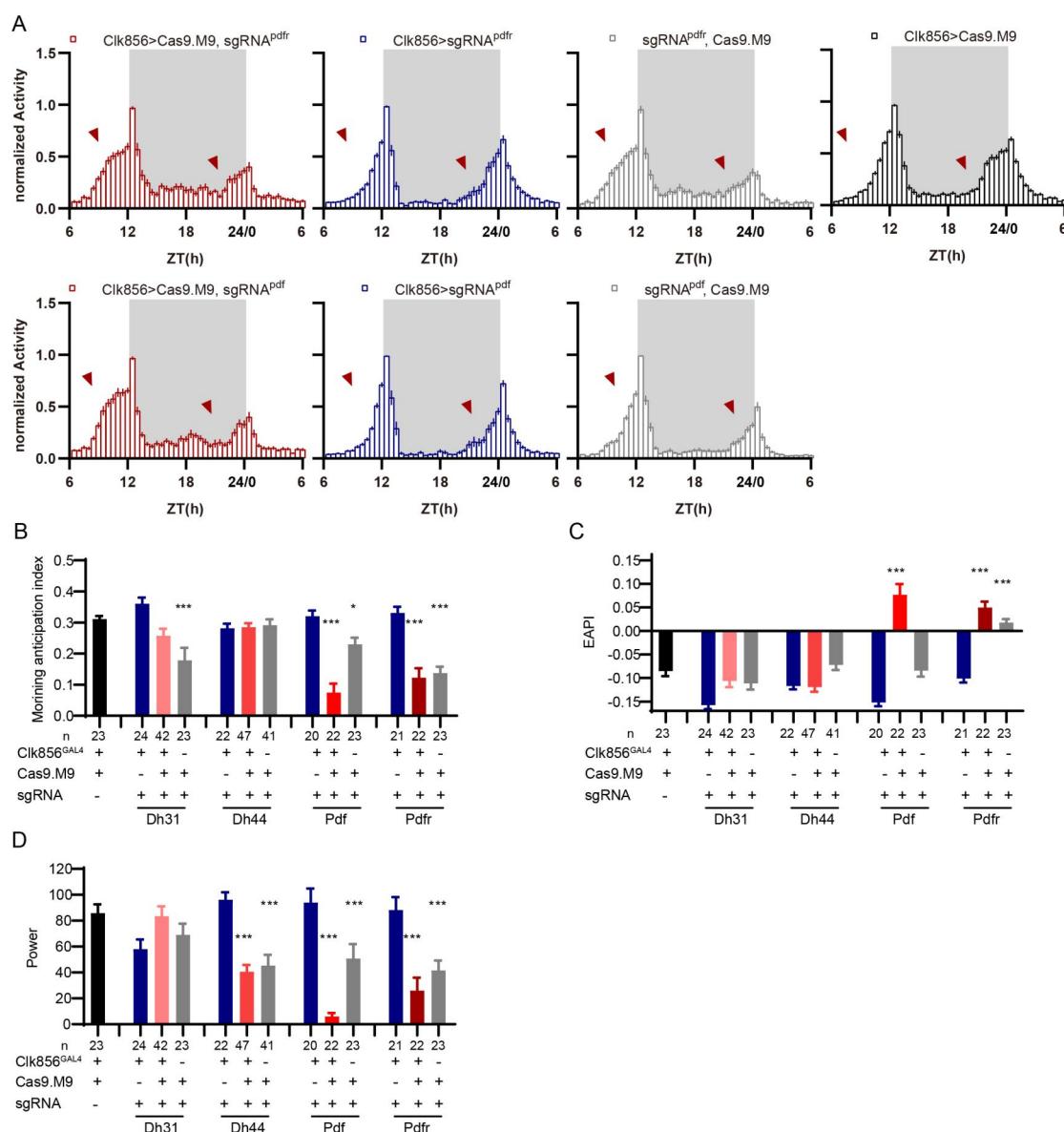
932


933

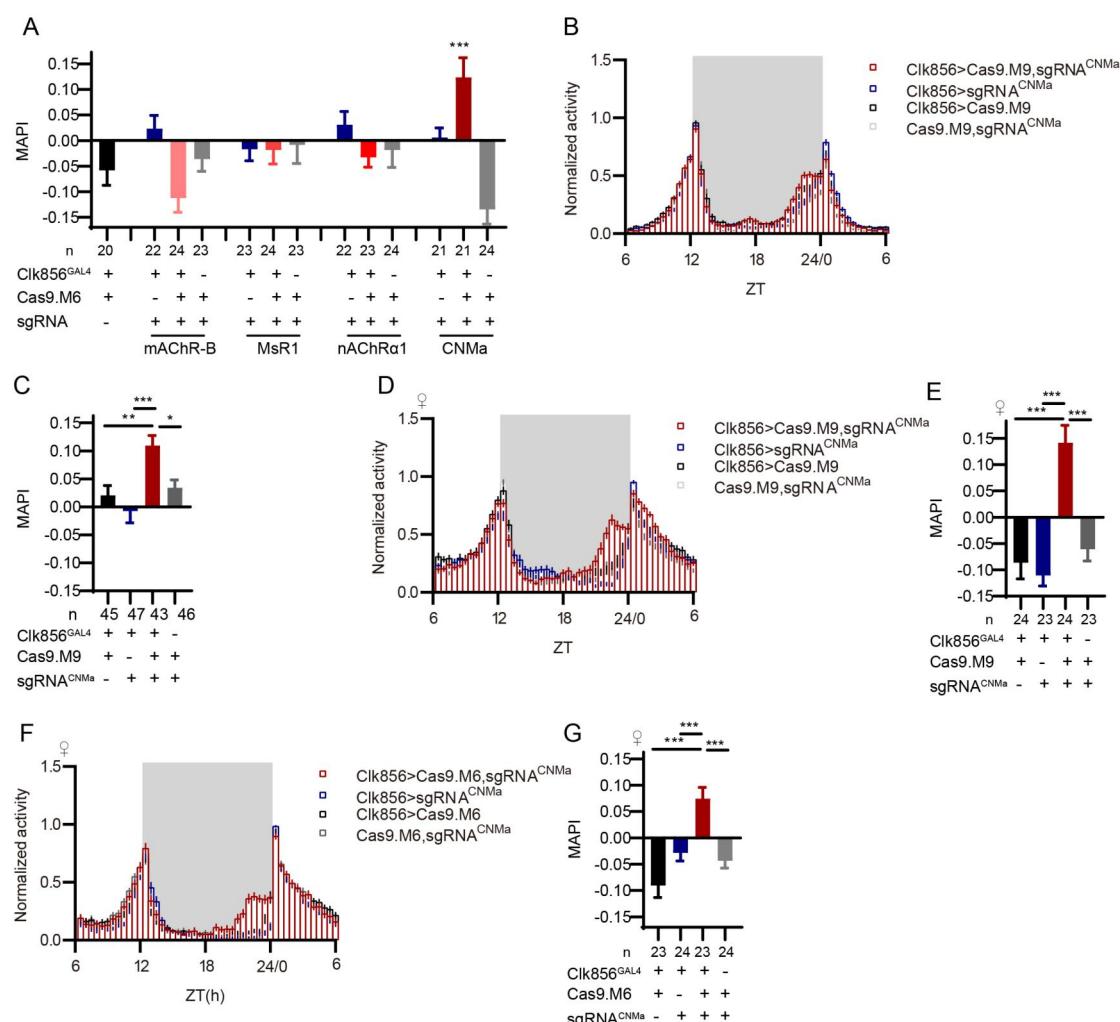
934 **Fig S7. Co-expression of Clk856 with CCT Genes**

935 (01-24) Intersectional expression patterns of CCT drivers with Clk856. Maximum neuron

936 numbers were presented in each image. Note at the bottom right corner is category ID of CCT

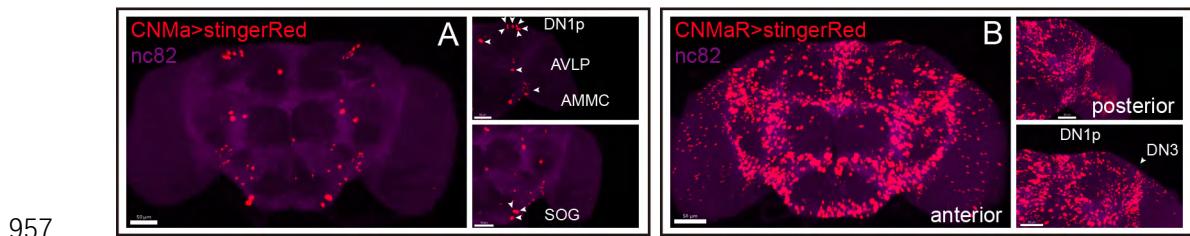

937 drivers in Rao Lab fly stock library. "f" denotes female fly brain, otherwise male brain is shown.

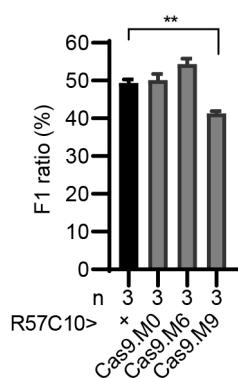
938


939 **Fig S8 Co-expression of Clk856 with CCT Genes**

940 (01-21) Intersectional expression patterns of CCT drivers with Clk856, similar to Fig S5.

Fig S9. Disruption of CCT Genes due to Leaky Expression of Cas9.M9


942 (A) Activity plots of Pdfr or Pdf clock-neuron knockout flies (red) and control groups (blue, black, and gray). (B-D) Statistical analyses of morning anticipation index (B), EAPI (C) and power (D) after CCT genes were knockdown by Cas9.M9/sgRNAs. Leakage expression of Cas9.M9 and sgRNAs might disrupt target genes at certain levels (grey bar). Cas9.M9 denotes UAS-Cas9.M9. sgRNA denotes UAS-sgRNA.



948

949 **Fig S10. Morning Activity Advanced by Loss of CNMa**

950 (A) MAPI statistical analyses after mAChR-B, MsR1, nAChR α 1 and CNMa knockout in clock
 951 neurons. Only the CNMa knockout in clock neurons increased MAPI significantly. (B-E) Activity
 952 plots (B, D) and statistical analyses (C, E) of male (B, C) and female (D, E) flies with CNMa
 953 knockout in clock neurons. Both male and female flies showed advanced morning activity
 954 patterns B, C) and increased MAPIs (D, E). UAS-sgRNA^{CNMa}/UAS-Cas9.M9 flies showed a
 955 slightly increased MAPI which indicate possible leakage expression. (F-G) Activity plots (F) and
 956 statistical analyses (G) of female flies with CNMa deficient in clock neurons with Cas9.M6 used.

961

962 **Fig S12. Impact on Viability of Cas9 Variants Expression by GMR57C10-GAL4**

963 F1 ratio of UAS-Cas9 variants (male) cross GMR57C10-GAL4/cyo (virgin female). Expression

964 of Cas9.M9 decreased progeny viability slightly.

965 ** $p < 0.01$. Two-student test was used.

Table S1 cCCT Knockin fly list

cCCT NO.	CG number	Gene Symbol	cCCT NO.	CG number	Gene Symbol
CCT1002C	CG11325	AkhR	CCT1087C	CG42244	Oct β 3R
CCT1003C	CG14375	CCHa2	CCT1088C	CG7411	Ort
CCT1004C	CG14593	CCHa2-R	CCT1089C	CG1543	T β H
CCT1007C	CG6936	mth	CCT1093C	CG13968	sNPF
CCT1008C	CG31147	mthl11	CCT1097C	CG15520	Capa
CCT1009C	CG17084	mthl9	CCT1098C	CG4910	CCAP
CCT1010C	CG6496	Pdf	CCT1099C	CG11318	CG11318
CCT1011C	CG8784	PK2-R1	CCT1102C	CG13229	CG13229
CCT1012C	CG13687	Ptth	CCT1103C	CG15556	CG15556
CCT1013C	CG14734	Tk	CCT1107C	CG30340	CG30340
CCT1014C	CG6515	TkR86C	CCT1108C	CG32447	CG32447
CCT1016C	CG13633	AstA	CCT1109C	CG33639	CG33639
CCT1019C	CG3302	Crz	CCT1110C	CG33696	CNMaR
CCT1020C	CG10698	CrzR	CCT1111C	CG34411	Lgr4
CCT1021C	CG2902	Nmdar1	CCT1113C	CG43795	CG43795
CCT1024C	CG32540	CCKLR-17D3	CCT1114C	CG44153	CG44153
CCT1025C	CG33517	D2R	CCT1117C	CG12345	Cha
CCT1026C	CG13094	Dh31	CCT1118C	CG13936	CNamide
CCT1027C	CG32843	Dh31-R	CCT1119C	CG8380	DAT
CCT1028C	CG18090	Dsk	CCT1120C	CG9887	dVGLUT
CCT1029C	CG6440	Ms	CCT1121C	CG5400	Eh
CCT1030C	CG43745	MsR2	CCT1122C	CG18105	ETH
CCT1034C	CG13480	Lk	CCT1123C	CG5911	ETHR
CCT1035C	CG10626	Lkr	CCT1124C	CG2346	FMRFa
CCT1036C	CG4128	nAChR α 6	CCT1126C	CG15274	GABA-B-R1
CCT1037C	CG33976	Oct β 2R	CCT1128C	CG14994	gad1
CCT1039C	CG14358	CCHa1	CCT1129C	CG8442	GluRIA
CCT1040C	CG30106	CCHa1-R	CCT1130C	CG43743	GluRIB
CCT1041C	CG13575	CG13575	CCT1131C	CG6992	GluRIIA
CCT1042C	CG13995	CG13995	CCT1133C	CG4226	GluRIIC
CCT1043C	CG33495	Dup99B	CCT1134C	CG18039	GluRIID
CCT1044C	CG31720	mthl15	CCT1135C	CG31201	GluRIIE
CCT1047C	CG1147	NPFr	CCT1136C	CG14723	HisCl1
CCT1050C	CG16752	SPR	CCT1137C	CG13586	ITP
CCT1051C	CG14871	Trissin	CCT1138C	CG7665	Lgr1
CCT1052C	CG34381	TrissinR	CCT1143C	CG8985	MsR1
CCT1053C	CG16720	5-HT1A	CCT1145C	CG32853	mthl12
CCT1055C	CG12073	5HT7	CCT1147C	CG30018	mthl13
CCT1056C	CG14919	AstC	CCT1148C	CG17795	mthl2
CCT1057C	CG14575	CapaR	CCT1149C	CG6536	mthl4
CCT1058C	CG33344	CCAP-R	CCT1150C	CG6965	mthl5
CCT1059C	CG13579	CG13579	CCT1151C	CG16992	mthl6

CCT1060C	CG31760	CG31760	CCT1152C	CG7476	mthl7
CCT1061C	CG32547	CG32547	CCT1153C	CG32475	mthl8
CCT1062C	CG18314	DopEcR	CCT1156C	CG32538	nAChR α 7
CCT1065C	CG3454	HDC	CCT1158C	CG34388	natalisin
CCT1066C	CG4395	hec	CCT1159C	CG3441	Nplp1
CCT1068C	CG6456	Mip	CCT1161C	CG15361	Nplp4
CCT1070C	CG6530	mthl3	CCT1164C	CG13565	Orcokinin
CCT1071C	CG5610	nAChR α 1	CCT1165C	CG15284	Pburs
CCT1072C	CG6844	nAChR α 2	CCT1166C	CG31660	pog
CCT1073C	CG2302	nAChR α 3	CCT1167C	CG7105	Proc
CCT1074C	CG11348	nAChR β 1	CCT1168C	CG6986	Proc-R
CCT1075C	CG6798	nAChR β 2	CCT1169C	CG10537	Rdl
CCT1076C	CG6919	oa2	CCT1170C	CG8930	rk
CCT1078C	CG7395	sNPF-R	CCT1172C	CG5811	RYa-R
CCT1079C	CG11895	stan	CCT1174C	CG33527	SIFa
CCT1080C	CG9122	TRH	CCT1175C	CG10823	SIFaR
CCT1081C	CG1056	5-HT2A	CCT1176C	CG3171	Tre1
CCT1082C	CG42796	5HT2B	CCT1177C	CG7431	TyrR
CCT1083C	CG9753	AdoR	CCT1179C	CG8394	vGAT
CCT1084C	CG18208	Octa2R	CCT1183C	CG5621	Grik
CCT1085C	CG18741	DopR2	CCT1186C	CG8681	clumsy
CCT1086C	CG32476	mthl14	CCT1189C	CG12344	CG12344

Table S2 cCCT knockin strategy can't rescue all knockout phenotype

CG No.	Gene Symbol	attP KO phenotype	cCCT phenotype
CG15520	Capa	lethal	viable
CG12345	ChAT	lethal	viable
CG5400	Eh	lethal	viable
CG5911	ETHR	lethal	viable
CG10537	Rdl	lethal	viable
CG14575	CapaR	lethal	lethal
CG14994	gad1	lethal	lethal
CG18039	GluRIID	lethal	lethal
CG33976	Oct β 2R	sterile	fertile
Rescue Rate		6/9	

Table S3 C-eCCTomics sgRNAs list

CCTsgEF No.	CG No.	Spacer + PAM	CCTsgEF No.	CG No.	Spacer + PAM
CCT1001sgEF	CG1171	GGCCAGCAGCATGAAAGACACGG	CCT1108sgEF	CG32447	GATGGCCCCAAACTAGCGCAGG
CCT1001sgEF	CG1171	TIGACCTCTCGCCGGATIGGG	CCT1108sgEF	CG32447	TGGGTGGACACTATACTGGCGG
CCT1001sgEF	CG1171	TGCAATGAGGACTTCGCTCTGG	CCT1108sgEF	CG32447	CACGCCCGTCGGAGTTICAGGGG
CCT1002sgEF	CG11325	GTATCTGCCAGCTACGTGATGG	CCT1109sgEF	CG33639	TCCCTCAGCGATTCCGTCGG
CCT1002sgEF	CG11325	ACACGGTGTGGACAAATCGGTGG	CCT1109sgEF	CG33639	GCCCAGATAAAGCTCCAGGTGGG
CCT1002sgEF	CG11325	CTTGGTCAGCAGATAACGACCGG	CCT1109sgEF	CG33639	CCGCTCTCAGCAGCGACCTGAGG
CCT1003sgEF	CG14375	ACTGGTCGTTATCTGCACCGTGG	CCT1110sgEF	CG33696	TGTTTGTATTCCTGACATTGG
CCT1003sgEF	CG14375	TTTCGCTTGGCTCTGTCGCGG	CCT1110sgEF	CG33696	CTGCTCCGCTGGTTGTGG
CCT1003sgEF	CG14375	TCAGAGGGATGCCAGGCCACGG	CCT1110sgEF	CG33696	AGTGAGCGACACCTGCTCCTGG
CCT1004sgEF	CG14593	ACGGTGACAATGTACGTCTCCGG	CCT1111sgEF	CG34411	GCCGAAACACTCTCCCCGAGG
CCT1004sgEF	CG14593	GCCGTCGCTATCCGCCAGCCTGG	CCT1111sgEF	CG34411	ACTGTGCCGTTGTATTGAGTGG
CCT1004sgEF	CG14593	CTCCTGCTCCAGACCTTGTCGG	CCT1111sgEF	CG34411	CTAACGCTCTGCTCCTAACGGG
CCT1005sgEF	CG4313	GATGCACGGCACCATGAAAGCGG	CCT1113sgEF	CG43795	GGAGAGCTCATTCGTACGGCGG
CCT1005sgEF	CG4313	GATCAGGAAAAGGTCAGCCTGGG	CCT1113sgEF	CG43795	AATGCGACCGAGAGGCCCGTGG
CCT1005sgEF	CG4313	GATCCAGGACGCCCTTGTCGG	CCT1113sgEF	CG43795	GGAACCTGTCCCTGAGCATAACGGG
CCT1006sgEF	CG6371	AGCAGGTAATAGGTCACTGGCGG	CCT1114sgEF	CG44153	GGTATGCTAAAGGCACGCCATGG
CCT1006sgEF	CG6371	GGCACGTAAAAGCGGCCATGG	CCT1114sgEF	CG44153	CCTCGGTGAGCGTGAAGACGCGG
CCT1006sgEF	CG6371	TTGCACACTGCTGCTAATCGCGG	CCT1114sgEF	CG44153	CGAAATAAACGAGACTACGCAGG
CCT1007sgEF	CG6936	GCCATCAATTACCGTCAGACGG	CCT1115sgEF	CG7497	TTTGCATAGAGCGCTTCGGAGG
CCT1007sgEF	CG6936	GACCTACCGATGCCGTGTACGG	CCT1115sgEF	CG7497	ATGCATTCAGCAGCAGTTATGGCGG
CCT1007sgEF	CG6936	TATCCATGATATGGCTGAGGG	CCT1115sgEF	CG7497	CCACTCGGATGAAAGACTGCAGG
CCT1008sgEF	CG31147	AATGAATAGTGTCTCGCAGGG	CCT1116sgEF	CG8216	GTTTGCCTAGCAGCACATAACGGCGG
CCT1008sgEF	CG31147	GCAAACTGAAGACATGCATCCGG	CCT1116sgEF	CG8216	GATGCGGACGCCGGAGCGAGGG
CCT1008sgEF	CG31147	TAGTTCTTACCGGTAATGTCGG	CCT1116sgEF	CG8216	CTGGGCCTTGAAGAACCTGGG
CCT1009sgEF	CG17084	GCTCCACGTGAGTGGACTCGCGG	CCT1117sgEF	CG12345	AGGCAGTCTCGGCTCCCAAGG
CCT1009sgEF	CG17084	TGAGTATTGCTTAGCCGTTGG	CCT1117sgEF	CG12345	GGCCGACTATAACCGCCCTGG
CCT1009sgEF	CG17084	CACTACTCCAGCGTATGAGTAGG	CCT1117sgEF	CG12345	TTGAAACAGGCCTATTACTACTGG
CCT1010sgEF	CG6496	GTTCGCGCTTCTGATGGCACGG	CCT1118sgEF	CG13936	GATTGGACCGGGAGACGCCATGG
CCT1010sgEF	CG6496	CCTCGACTGGTCAACAACGTGG	CCT1118sgEF	CG13936	GAGCACAGATCCCTACGGAGG
CCT1010sgEF	CG6496	TGGCCCGCAGTATCCCACTGG	CCT1118sgEF	CG13936	CACAGGCTCGGCATAATGGAGG
CCT1011sgEF	CG8784	GTATTAAGTCGAAACGCCAGG	CCT1119sgEF	CG8380	GACGAGCGCGAACATGGAGCGG
CCT1011sgEF	CG8784	GATACATATCCGATACCAAGG	CCT1119sgEF	CG8380	CTTACGATTGTGCTGACCCAGGG
CCT1011sgEF	CG8784	GCTCGCATTTGTGCCGTCTGG	CCT1119sgEF	CG8380	GGTGCTGATAGCCTCTATGTGG
CCT1012sgEF	CG13687	GAGTCGAAACACCGCGCGAGG	CCT1120sgEF	CG9887	CACGAAGAGATGCAGCGTGGCGG
CCT1012sgEF	CG13687	GCCATGCCATAATGAAATGGG	CCT1120sgEF	CG9887	TCTGACGGCGTTAAGGAGAAGG
CCT1012sgEF	CG13687	GTACATGGCGGCCAGCTGATGGG	CCT1120sgEF	CG9887	TCATGATCGCCTTCGGCATGAGG
CCT1013sgEF	CG14734	GCTGACGGCACCATCGAGTCGG	CCT1121sgEF	CG5400	GTGCGTATAATGACTATGGCGG
CCT1013sgEF	CG14734	CATCCAATGCGCCCTCTGAGCGG	CCT1121sgEF	CG5400	TTTCTGCGAGACTCCATGGGTGG
CCT1013sgEF	CG14734	GCCCGCTTACCAACCGACCGGG	CCT1121sgEF	CG5400	CTTGATTTGTGACCCCTGTGG
CCT1014sgEF	CG6515	ATTGTGAACACCACCGCTCTGG	CCT1122sgEF	CG18105	TGCTCACTGCGTCCTATGCGAGG
CCT1014sgEF	CG6515	CAACGTCACGGTCTACGTGG	CCT1122sgEF	CG18105	ACCAAGAACGTACCGCGCTGGG
CCT1014sgEF	CG6515	CAAGACCGTACGAGTTGCCATGG	CCT1122sgEF	CG18105	CTGTCCTGTTTCGCTTGGTGGG

CCT1015sgEF	CG7887	ATGGTCATTGTGGCGACGGCGG	CCT1123sgEF	CG5911	GACTATGCAGAACATGGCGG
CCT1015sgEF	CG7887	GTCTTCCACGTCCCCGACGGCGG	CCT1123sgEF	CG5911	CACGCCAACGTCCTCGTGGAGG
CCT1015sgEF	CG7887	GTGAAGGTGACGTTCAGGCTGG	CCT1123sgEF	CG5911	CATCTCGTGGCCAAGTACCCAGG
CCT1016sgEF	CG13633	GACGAGATGCCGACAAAGGTGG	CCT1124sgEF	CG2346	ACTTCATGCACITCGCAAGAGG
CCT1016sgEF	CG13633	GCAGTAGGAGGTGGCGTGAAGG	CCT1124sgEF	CG2346	CGATGCCAACACAGAGATGGGG
CCT1016sgEF	CG13633	CAGCTCCCGGTATTGGCCAGG	CCT1124sgEF	CG2346	GGCGACTGCATCTGGTACAGGG
CCT1017sgEF	CG2872	CGAATGATCCGTGTTCCGAGG	CCT1125sgEF	CG2114	AATCGTCCTAACACACGGAGG
CCT1017sgEF	CG2872	GACGAACAGAATGTCGAGACGG	CCT1125sgEF	CG2114	AGAACAAATCGATTGAGTTCTGG
CCT1017sgEF	CG2872	TTGTGGATACGATCCGTTGAGG	CCT1125sgEF	CG2114	TGGATTGGCCGCTGTGATACGG
CCT1018sgEF	CG10001	ACTGCCATATGGAAGGTTCTGG	CCT1126sgEF	CG15274	GGATCTCGAGAATCGATGCATGG
CCT1018sgEF	CG10001	GATTACGAACATCAGATCAGCGG	CCT1126sgEF	CG15274	GCCTGCCGCAAGACTGGCGTTGG
CCT1018sgEF	CG10001	AAGAAGAATCCCACTATCCACGG	CCT1126sgEF	CG15274	TGCAGGATGAGCTGAAGCCGGG
CCT1019sgEF	CG3302	TCTTGGCGTTGGTCCATCCGCGG	CCT1127sgEF	CG6706	GGCGTGGAAAACCTCTACACCGG
CCT1019sgEF	CG3302	GAAGGTCTGGCCATGCACATGG	CCT1127sgEF	CG6706	GAAGGACGTGAGGATCATCTGG
CCT1019sgEF	CG3302	CCATCCGCGGGAGTACTGGAAGG	CCT1127sgEF	CG6706	TCTACGTAATACATCCTCGAGG
CCT1020sgEF	CG10698	CTCCCCGATAATGCAGAACCGG	CCT1128sgEF	CG14994	CGAGTAATGGCACTGATCCGAGG
CCT1020sgEF	CG10698	TGGTGCTTCATGGCGACTATTGG	CCT1128sgEF	CG14994	ACGGGTATAAACTGTCGAGAGG
CCT1020sgEF	CG10698	GGTCAGCAATTGGTCCACACTGG	CCT1128sgEF	CG14994	GCTTCATGTCTCGGGATGGTGG
CCT1021sgEF	CG2902	AATGGTGACCGAATCTACGCCGG	CCT1129sgEF	CG8442	GCCAAAGCCAGAACGCAGGGGGG
CCT1021sgEF	CG2902	ACGAGAGTACTCGATCGTGACGG	CCT1129sgEF	CG8442	GTACACCTACGGAAATCATGG
CCT1021sgEF	CG2902	GAATCCGTTGTATAACTCACGG	CCT1129sgEF	CG8442	ATCGATACCACCATCAGTACTACGG
CCT1022sgEF	CG33513	GGACGGGGACCTGCGCTCGCGG	CCT1130sgEF	CG43743	ATTCGTCCGGATACAGACCTCGG
CCT1022sgEF	CG33513	CACTGTTAACAGCTCCATGAGG	CCT1130sgEF	CG43743	GCCGTGCAGCTCTCACCAAAGG
CCT1022sgEF	CG33513	GGAGGCCTACCTAACGGATCCGG	CCT1130sgEF	CG43743	GGGGAAACAGGGCGTCACGAAGG
CCT1023sgEF	CG42301	AGCTGTAACCGTCAGGACACGG	CCT1131sgEF	CG6992	AAGCTTGCTAATGAGATCCACGG
CCT1023sgEF	CG42301	GCTCGCGTATTCTGCATGCCGG	CCT1131sgEF	CG6992	TCTGCACTAACAGACTCCCGG
CCT1023sgEF	CG42301	CTTAGGTCGGGATTGAGTGTGG	CCT1131sgEF	CG6992	ACGCGAGAGTACTGACAAGGAGG
CCT1024sgEF	CG32540	GTAGTCGAGCAGTCCCTAAGG	CCT1132sgEF	CG7234	CCTTAATCCGTATAATGCCAGG
CCT1024sgEF	CG32540	TGGACTTGAACGGGCCAGGG	CCT1132sgEF	CG7234	GCATCCCCAGCAGTCGAACAGGG
CCT1024sgEF	CG32540	GAGCAGGAACACGGTTATGG	CCT1132sgEF	CG7234	AGTCATATTATAATCCAATCGAGG
CCT1025sgEF	CG33517	CTACAATGGGAGCACGGTTGG	CCT1133sgEF	CG4226	GCTCGTTATCTGACCCGAGGG
CCT1025sgEF	CG33517	ACGGTGGCGCGCGAGACGCTGG	CCT1133sgEF	CG4226	CCTCTATCAAGGATATGCCGTGG
CCT1025sgEF	CG33517	AGCACAAACTGGCGGTGACGG	CCT1133sgEF	CG4226	AATGACCTTAACCTCTACCCGG
CCT1026sgEF	CG13094	GGGATATTGGGACCGGAGGAGG	CCT1134sgEF	CG18039	GATCACCTAACGCGATACGG
CCT1026sgEF	CG13094	CTTGGCCATCTCGAGCATCGAGG	CCT1134sgEF	CG18039	GGATGCAGATTGAAACCATCCGG
CCT1026sgEF	CG13094	GCTTGGACGCCATCATAACGG	CCT1134sgEF	CG18039	GTCATTGCCACCGTCGCGGAAGG
CCT1027sgEF	CG32843	GAGGTCTCGAGATTACGCAGG	CCT1135sgEF	CG31201	GAGTGTGGACCTCTCGTCGCGG
CCT1027sgEF	CG32843	GTCCGGGACAGAGTCGTAGGCGG	CCT1135sgEF	CG31201	CCGGCGGGTTCGAACGTCGTGG
CCT1027sgEF	CG32843	TCGCTGCCATAACTCGTTGTGG	CCT1135sgEF	CG31201	TCGCATGTAATCTGAAAGGAGG
CCT1028sgEF	CG18090	GACTAGTCTACAGAACGCTAAGG	CCT1136sgEF	CG14723	GATTGCGTGTATGCCGATAGG
CCT1028sgEF	CG18090	CATTCTCTATTGGGGACAGG	CCT1136sgEF	CG14723	CCAGGGAGAGGACCGTGACATGG
CCT1028sgEF	CG18090	CACGCTGTTATGCCACTCTGGG	CCT1136sgEF	CG14723	GGCAATATAATTGCACGCGCTGG
CCT1029sgEF	CG6440	CAGTTGATCGGAGTTCTCCAGGG	CCT1137sgEF	CG13586	CCGACTGGACCGCATTGCGAGG
CCT1029sgEF	CG6440	TCCTGGCCGTGTCCAAACACGG	CCT1137sgEF	CG13586	TTCTCGACCTGGAGTGCAGGG

CCT1029sgEF	CG6440	GCTTGTGTTAGTTCTTCAACAGG	CCT1137sgEF	CG13586	CCACCGAGATCTTATGTTGCGG
CCT1030sgEF	CG43745	ATGCCGGTGCCGCAATAATGCGG	CCT1138sgEF	CG7665	CGATGTCTACCCCAATCTCACGG
CCT1030sgEF	CG43745	GGCAGTTGGCGGTACATAGCGG	CCT1138sgEF	CG7665	CTGCTGCTAACGTCGCTGAGTGG
CCT1030sgEF	CG43745	CTCGCGGCAGCCTAACACTGAGG	CCT1138sgEF	CG7665	AGCACCCGAGTCTGTCAGCAGCGG
CCT1031sgEF	CG8348	GTTCCATCCGGTAGTCAGAGG	CCT1139sgEF	CG31096	GTGACCTCCGAAC TGAGACGCGG
CCT1031sgEF	CG8348	GCTGTCCATTGTCAATCCGCTGG	CCT1139sgEF	CG31096	GGTCATCAGACAGAACGCTACGG
CCT1031sgEF	CG8348	GGCGTGCAGACGAGCCTTGTGG	CCT1139sgEF	CG31096	TAGAGGAGACCGCACTCCACCGG
CCT1032sgEF	CG8422	CTGCACAAACCTAGATGGCATCGG	CCT1140sgEF	CG7918	TGTATCATCTTACGGTGGCGG
CCT1032sgEF	CG8422	GCCACTATCGTGCATAGGTGG	CCT1140sgEF	CG7918	CAAGCAGTCCTGACCGCACACGG
CCT1032sgEF	CG8422	AGGGTACCGCGAGCTGTCTCGG	CCT1140sgEF	CG7918	GCTCAAGGGTTATTGGGACCTGG
CCT1033sgEF	CG12370	GCTGTTGACACTGAGCGTGTGG	CCT1141sgEF	CG11144	GTTGAGGCCGGTATACTTGAGG
CCT1033sgEF	CG12370	AGACGACGATTGAGGGCACTGG	CCT1141sgEF	CG11144	GCGACCAAACGACTGAGACAAGG
CCT1033sgEF	CG12370	TAGTGATCCCACGTCCTGGTTGG	CCT1141sgEF	CG11144	CAAAAGAACCTAACGCTCGCGG
CCT1034sgEF	CG13480	CAGCGATTCCACTCGTGGGGCGG	CCT1142sgEF	CG4322	TATCCAATACGGAAACATAGGGG
CCT1034sgEF	CG13480	GGCTGGCTCCATAGACTTGACGG	CCT1142sgEF	CG4322	GGCCCTGCTGAAATGTCCAAGG
CCT1034sgEF	CG13480	GGTGGGGCGTAGTCCGGAAGGG	CCT1142sgEF	CG4322	GGAGGACGGCTATCCCCCTGG
CCT1035sgEF	CG10626	GGAAATTCTGCCGGAGCCGAGG	CCT1143sgEF	CG8985	GATATTCAAGGTATTCCGATGG
CCT1035sgEF	CG10626	TACACTCAGGGCTGGACGAAGG	CCT1143sgEF	CG8985	GAAACTGAGCCGCTACTGCGG
CCT1035sgEF	CG10626	CTATGGGGAATCAGTATCGTGG	CCT1143sgEF	CG8985	GATGTAGTCGTATGGTAGG
CCT1036sgEF	CG4128	GTGCTCTGAAGATACCAAGGGG	CCT1144sgEF	CG17061	GCACAGCGAGGAGTAACCCACGG
CCT1036sgEF	CG4128	CAATACGCTGGAGCGACCCGTGG	CCT1144sgEF	CG17061	CCTGGAGGATCCCTATACTGCGG
CCT1036sgEF	CG4128	AACGGAATACGGCGGGGTCAAGG	CCT1144sgEF	CG17061	GAACGGATCCATGCTCCGTGTGG
CCT1037sgEF	CG33976	GCCCCGAGCCACCCGGCAAAGG	CCT1145sgEF	CG32853	GCTGACGGATCCAACCTTAGCGG
CCT1037sgEF	CG33976	AAACATTGGCGCGGGTCACGGGG	CCT1145sgEF	CG32853	TCTTATCCGAAATCTACTCGG
CCT1037sgEF	CG33976	CAACATCGTTGGGTGTTCAAGG	CCT1145sgEF	CG32853	GAAATTCCCTGCAACCTGACCGG
CCT1038sgEF	CG13758	TCTACGCCATGAAGCCGCCAGG	CCT1147sgEF	CG30018	ACTCGATGATAATTCAACAGGG
CCT1038sgEF	CG13758	GCATCGAAATCGTGCAGTAGTGG	CCT1147sgEF	CG30018	CTTGTGTGATAATAATCCATATGG
CCT1038sgEF	CG13758	GACGCAAGCGTAGATCCAGGG	CCT1147sgEF	CG30018	TATGGATGAACTACGATTGTGG
CCT1039sgEF	CG14358	GCTCATGGCAAGCGTCCGGCGG	CCT1148sgEF	CG17795	GATACCGTTGATACTCGGAAGG
CCT1039sgEF	CG14358	GAATACGGACATTCTGTTGGGG	CCT1148sgEF	CG17795	GGTGCAAGGCACATAAGAAGG
CCT1039sgEF	CG14358	TCAGGTICCTGCCTGGAATACGG	CCT1148sgEF	CG17795	TCATTAGCTCTAACGCACAGG
CCT1040sgEF	CG30106	GAGACACCCCTACGTGCCCTACGG	CCT1149sgEF	CG6536	GTGATTGCACTGATGATTAGCGG
CCT1040sgEF	CG30106	CATCCTTCATGAACCTCGACAGG	CCT1149sgEF	CG6536	GCATACAACTTAACGCCCTGGGG
CCT1040sgEF	CG30106	TTCGCATCTGTCGCACACTGAGG	CCT1149sgEF	CG6536	GACTAAACCTAACCGCAAGTGG
CCT1041sgEF	CG13575	GCTCGAGTTGACCTGAAATGGG	CCT1150sgEF	CG6965	CCGATGTTACCACTAGGCCGG
CCT1041sgEF	CG13575	CCAGTGAGATGAGGCAGGCCGG	CCT1150sgEF	CG6965	ACCAGTCATGTCACAGGCCGG
CCT1041sgEF	CG13575	CCCTCGATCCAGCCGATCCGGG	CCT1150sgEF	CG6965	TGGCCAATATACCACTATGCTGG
CCT1042sgEF	CG13995	TCTAGGCAATCCGTATGACGTGG	CCT1151sgEF	CG16992	GAATTCCGATCTCCAAACGGGG
CCT1042sgEF	CG13995	TTGCCATAGTCGTAGTCCGGGG	CCT1151sgEF	CG16992	GATTAGCTCCTCGTACCCGATAGG
CCT1042sgEF	CG13995	GAGGGCGAGATGCGACTCCCGGG	CCT1151sgEF	CG16992	GAAGGTGTTCCGGTACAGGAGG
CCT1043sgEF	CG33495	CTAAACTTAGGACCCACCTCGG	CCT1152sgEF	CG7476	TGAGTGGTACTCGTGCCTGTAGG
CCT1043sgEF	CG33495	AGGATCGAAATGATAACGGAGTGG	CCT1152sgEF	CG7476	CTAAGGATCCAGGAGATATGTGG
CCT1043sgEF	CG33495	ACGACCAAGAGGGAGAAATACGGG	CCT1152sgEF	CG7476	GTGTCGTAGTAGTTGCACCCGGG
CCT1044sgEF	CG31720	GGTTCCATCGATCTGCAATAGG	CCT1153sgEF	CG32475	GCAAACATAACGGGGAGCTACGG

CCT1044sgEF	CG31720	TACGAATACTCAGTACTGCGTGG	CCT1153sgEF	CG32475	GAGGCAGTGCTTAGTCCCTGTGG
CCT1044sgEF	CG31720	AAACGTAATAAATCCCTGTGGG	CCT1153sgEF	CG32475	GATGGTCTACCTTATGTGTCGG
CCT1045sgEF	CG30361	ATGCACCGCGACCTGTGCGCGG	CCT1154sgEF	CG12414	ACATCTGCTGTTAACACAGG
CCT1045sgEF	CG30361	AGTACACCGAGGGCGAGCTGCGG	CCT1154sgEF	CG12414	AAATAATAAACCGTGCACTGGG
CCT1045sgEF	CG30361	CATCCACTCAAGCAGTCCCAGG	CCT1154sgEF	CG12414	TTGGCAGTTGGACTTATGATGGG
CCT1046sgEF	CG10342	GCCGGCGGCTAGGAGGGCAAGGG	CCT1155sgEF	CG32975	CGTGCTGATGTACAACAGTGC
CCT1046sgEF	CG10342	TTGACATCGTTCTTCGCGGAGG	CCT1155sgEF	CG32975	AATACTGAACTCATTGTCGCTGG
CCT1046sgEF	CG10342	GACAGAGCCCGCGTTCGGTTCGG	CCT1155sgEF	CG32975	GTCATTGCTCTACCGTGGTTGG
CCT1047sgEF	CG1147	TGGACCCGGTGCTTATCGATAGG	CCT1156sgEF	CG32538	ATCTCGTCTATCCTGACCAGGG
CCT1047sgEF	CG1147	GCTGATGAGCATGTGGTACCAAGG	CCT1156sgEF	CG32538	TTGGTTCGTGGACCTACGATGGG
CCT1047sgEF	CG1147	GCGTCGCTATCTGGACGACGG	CCT1156sgEF	CG32538	TGGAGTAGCCGCTCTCATGGGG
CCT1048sgEF	CG13061	AGAGGAAGATCCGACAACGGTGGG	CCT1157sgEF	CG11822	GGACGCCGGTGTAGATGACGG
CCT1048sgEF	CG13061	CAGAGGAAGGATGCACTTGGG	CCT1157sgEF	CG11822	GATCGGCTCTGGGGCCTGAAGG
CCT1048sgEF	CG13061	GATCAAGAGCGTCCATGGCCTGG	CCT1157sgEF	CG11822	AGTCGTGAAACAGGCCGGTGG
CCT1049sgEF	CG8795	GGTGTATCGGGTCACCGTGGG	CCT1158sgEF	CG34388	AGGCGGCCCTGAGCCACCAACGG
CCT1049sgEF	CG8795	AAATCATGTCGGATATAGCGAGG	CCT1158sgEF	CG34388	GGAGGAGCTGGCCCCAGAAATCGG
CCT1049sgEF	CG8795	GGAGAGCGTCTCTCGGAAACGG	CCT1158sgEF	CG34388	GCTGGCCCCAAACCCGATGAGGG
CCT1050sgEF	CG16752	GATCCCGTCAAGATGGTCCGG	CCT1159sgEF	CG3441	GCACTCACAATAATGGACCGTGG
CCT1050sgEF	CG16752	GGCATACAGTAGCCATAAGCGG	CCT1159sgEF	CG3441	GGAGGAGGACAAACGTTCGTGG
CCT1050sgEF	CG16752	GCTAAAACGAGCACAACTAGGG	CCT1159sgEF	CG3441	GAAGCTGGTACTCGGACTGGGG
CCT1051sgEF	CG14871	TTATGGCCTCGAACCTGGGGGG	CCT1160sgEF	CG11051	GAATTCTGTTAAATCACCTGGG
CCT1051sgEF	CG14871	GTAGTTAACGAGCATGTGCTGG	CCT1160sgEF	CG11051	CAGGATTGGATTCCCTACGGGGG
CCT1051sgEF	CG14871	TGACTAACACAAGATGCAATTGG	CCT1160sgEF	CG11051	GTCCGCCCGCGTCCCCGTGAGG
CCT1052sgEF	CG34381	TCCGTCCTCCGGAGAGTCCGGTGG	CCT1161sgEF	CG15361	GATTGGGGCGGGATTGGCACGGG
CCT1052sgEF	CG34381	CCACCGACAACAAACGCCGG	CCT1161sgEF	CG15361	CTAGCTCCGTAGTAGTACTGGGG
CCT1052sgEF	CG34381	AGTGGACAACACTGGTACATGCGG	CCT1161sgEF	CG15361	AGCAACAAACATGTTCAAGCTGG
CCT1053sgEF	CG16720	GGAGCGGAATCTACAACACGTGG	CCT1162sgEF	CG3856	GATGAACCTCGAGTACGGCCAGGG
CCT1053sgEF	CG16720	GGGCCACCAGATGCCAACATCGAGG	CCT1162sgEF	CG3856	GGCCAAACCCACCAGAACATCGG
CCT1053sgEF	CG16720	TGGTCCTGACCATCTACATTGG	CCT1162sgEF	CG3856	TCTCTGGTGCCGCATTGGCTGG
CCT1054sgEF	CG15113	TGGTCGATGACGACAACAGGCGG	CCT1163sgEF	CG7485	GGCGGCCGGCTAACCGCTGCGG
CCT1054sgEF	CG15113	AATGCCAACAGGTGCAGTATGG	CCT1163sgEF	CG7485	CAACGTGGCTTACTCGATCCTGG
CCT1055sgEF	CG12073	CAGCTGGATAGCCTATGCGCGG	CCT1164sgEF	CG13565	GCGTTAACAGAAATTGTGTAACGG
CCT1055sgEF	CG12073	GCAAATTCCCTCCAGGAGCAAAGG	CCT1164sgEF	CG13565	GGAACACCGATAACCCGCCAGG
CCT1055sgEF	CG12073	TCCGTCCTCGCCTTCCACGAGCGG	CCT1164sgEF	CG13565	CATTACCGCAGGCCCGTGTG
CCT1056sgEF	CG14919	GGTCTGTCTGGCACCGAAGGG	CCT1165sgEF	CG15284	GAACCTCGAGACTCTCAAGTCGG
CCT1056sgEF	CG14919	CCTCGCTGAGGGCAAAGAACAGG	CCT1165sgEF	CG15284	AGGGCATTGCGATAAGCCAAGG
CCT1056sgEF	CG14919	GACGTGCGAGGGCGCTATGGAGG	CCT1165sgEF	CG15284	GCATTGGGGCACTAGGATCGCGG
CCT1057sgEF	CG14575	TCCTCTCAAATCCATGGGATGG	CCT1166sgEF	CG31660	CGATGACCGACAGTGGGAGG
CCT1057sgEF	CG14575	GGTCTGTGGTCCAAGCACAAGG	CCT1166sgEF	CG31660	TGTGTCCGCTCTCAGTCGGCGG
CCT1057sgEF	CG14575	TAAGAGATTACCAACGACCCGG	CCT1166sgEF	CG31660	CAACATTATCCGAATCCACTAGG
CCT1058sgEF	CG33344	TGCGATATCACACGTGATGCTGG	CCT1167sgEF	CG7105	GCTGTGGAAGTGGACACAGGTGG
CCT1058sgEF	CG33344	GGACGCCAGCCCCGAGGATTGG	CCT1167sgEF	CG7105	GCGACCTGTGGCAGGTAACGG
CCT1058sgEF	CG33344	GTCAAATTGCGCCGGGTCGCTGG	CCT1167sgEF	CG7105	CTCCACAAATGAGGCCACCGGTGG

CCT1059sgEF	CG13579	GTATGTAGGCCGCATAGCGCGG	CCT1168sgEF	CG6986	AGTCCAATAACAAAAACGCACGG
CCT1059sgEF	CG13579	GGAAAGCGCCCCTCGAGCAGGG	CCT1168sgEF	CG6986	GTAGAGCTTGAATGATACTTGG
CCT1059sgEF	CG13579	TGACAGAAGATCTCTCCGTATGG	CCT1168sgEF	CG6986	GATTAACTGGCACGTCAAGTAGG
CCT1060sgEF	CG31760	GATAGGGCTCCGCCTCGCATTGG	CCT1169sgEF	CG10537	GGTGTAGAAAACACTATCGTTGG
CCT1060sgEF	CG31760	GCCCACTTCCTGGAGTAATCGAGG	CCT1169sgEF	CG10537	ACGGATCCATACTGCAAGCGG
CCT1060sgEF	CG31760	GTCCTACGTCTGGTGGGTCAAGG	CCT1169sgEF	CG10537	TTTGTCTGAACTAACACTAAAGG
CCT1061sgEF	CG32547	GTAGGGCGAGAGCTCGTACTGG	CCT1170sgEF	CG8930	AAAAACCTCCCAGGTCAGGAGG
CCT1061sgEF	CG32547	GTGACATGGAGCGACTTAGTGG	CCT1170sgEF	CG8930	AAGTCCTTGCAAGGAATACCATGG
CCT1061sgEF	CG32547	CAGATTGATGATGAACGCATGGG	CCT1170sgEF	CG8930	GCGCAGGGTAGAAAAGGTCTGG
CCT1062sgEF	CG18314	GCAGGAAATGAGCTACCTACAGG	CCT1171sgEF	CG40733	AGAAAGAAATGCTCGTTCGAGG
CCT1062sgEF	CG18314	GTAGTAGTTGATCACCTCTGTGG	CCT1171sgEF	CG40733	TCTCTTCTTGGCTCTCGGTACGG
CCT1062sgEF	CG18314	TATCGGTATACACCTTCATGTGG	CCT1171sgEF	CG40733	AGGTACGATGAAATGCGTCTGG
CCT1063sgEF	CG9652	GGATGTTCCGGCACCGAAAGG	CCT1172sgEF	CG5811	CGACTATGACCTTCTATCGGAGG
CCT1063sgEF	CG9652	AATCACACCAGTGGGAGCACCGG	CCT1172sgEF	CG5811	GACCGTGCATGCGAGGTGTGG
CCT1063sgEF	CG9652	CGTCGAGCACATGACATCAAAGG	CCT1172sgEF	CG5811	GACGATGAAGGTCCAACATATGG
CCT1064sgEF	CG3022	ATACGGTCCATGGCCGGCGTGG	CCT1173sgEF	CG4545	GAGAGGACTCGCGAGACCTGGGG
CCT1064sgEF	CG3022	CGTCGTTGTACTTCAATCGG	CCT1173sgEF	CG4545	GGGATTAGCGAGCGGCCGTGTGG
CCT1064sgEF	CG3022	GGCCCTTGCCTGGCAACGTCGG	CCT1173sgEF	CG4545	TGGACTGCCCTGTCTACATGG
CCT1065sgEF	CG3454	CTATATGCGCAGTTACTGCGG	CCT1174sgEF	CG33527	AAGATGCTGCCGTGACCGAGG
CCT1065sgEF	CG3454	GACAGTACTCACCCCTTGGG	CCT1174sgEF	CG33527	GCTCCAGTGAAGCAGCCTACAGG
CCT1065sgEF	CG3454	GCAGGCCGGCGAGCTGCCAGG	CCT1174sgEF	CG33527	CTGCGACCAGGATCGTGACCAGG
CCT1066sgEF	CG4395	TGACTCAGCACAGTGCCGGCCGG	CCT1175sgEF	CG10823	GCTGGGACGGTTCTACTACGG
CCT1066sgEF	CG4395	GCGGCATTCTCCAGATATCGCGG	CCT1175sgEF	CG10823	CCATTCCGACCATGGCGCGGGGG
CCT1066sgEF	CG4395	CCAGAAATGTCACATACGATAACGG	CCT1175sgEF	CG10823	GTAGGCCACGCAGTAGACCATGG
CCT1067sgEF	CG4356	CGGGCTATACGATCCCTATTCGG	CCT1176sgEF	CG3171	ATGCGGGTAGATCGATTGCGTGG
CCT1067sgEF	CG4356	GCCAATGCCAGACTCATGACCGG	CCT1176sgEF	CG3171	ACATTGCCATAGAACATACCGG
CCT1067sgEF	CG4356	AGCCAGGTGTCGCAGACGATGGG	CCT1176sgEF	CG3171	GCTCAAGAGCCCCACGATAACGG
CCT1068sgEF	CG6456	CTATGGCTCACACTAACGACGG	CCT1177sgEF	CG7431	GTAGGAGGTGGATAATCCAGCGG
CCT1068sgEF	CG6456	CCACCCCTAATGAACCAGGAGG	CCT1177sgEF	CG7431	GTAGAAAGTGCGCCATTGGCGGG
CCT1068sgEF	CG6456	ACGGCAACAATAAGCGCGCCTGG	CCT1177sgEF	CG7431	GAAGATGCCACGAGAACGGTCGG
CCT1069sgEF	CG4521	GGATCCTCCAGAGCATTGTACGG	CCT1178sgEF	CG16766	GGCGTGTGGTCAGAACGGCGAGG
CCT1069sgEF	CG4521	GCATGGTGTAGCAAGCGTATGG	CCT1178sgEF	CG16766	CAGACCAGTGCAGGCCAGGTGG
CCT1069sgEF	CG4521	GGCAGCTATCAGACTAGCTACGG	CCT1178sgEF	CG16766	GGATGGAGCCGCTGCAGAGCAGG
CCT1070sgEF	CG6530	GCCGCTAAATGAATTCCAGAGGG	CCT1179sgEF	CG8394	CATTCCGAAACGCCGTAGCTGG
CCT1070sgEF	CG6530	GAAATATCCCAGGAACAAGGAGG	CCT1179sgEF	CG8394	AAAGACTACGAGCAACGCCGGGG
CCT1070sgEF	CG6530	CATTAGCGGCAACTCCAGCTGG	CCT1179sgEF	CG8394	CCTTCAATGAGTACGACGGCAGG
CCT1071sgEF	CG5610	GCAGAAGGATTGTAATGGCGG	CCT1180sgEF	CG3822	GCGAGGTACCCAGGTAGCTATGG
CCT1071sgEF	CG5610	GACCGTCTCACCGTCAAGATGGG	CCT1180sgEF	CG3822	GGACATGTCGAGCTCACTCCGG
CCT1071sgEF	CG5610	ACTACTACATCTCCGTGGAGTGG	CCT1180sgEF	CG3822	TCCCCACTGGAGAAATCGCTGGG
CCT1072sgEF	CG6844	GTGACGCCGCCATCTCGAGGG	CCT1182sgEF	CG5549	ATAGACGGCCACGGGACCCAGGG
CCT1072sgEF	CG6844	GGATACGGTTCGGCACAGCAGGG	CCT1182sgEF	CG5549	TCGCTGCTGGATACTCAGTGGG
CCT1072sgEF	CG6844	TCGCCTGAACGGTTTCGAGAGG	CCT1182sgEF	CG5549	AGGCGTGGTCTGCCCTACGG
CCT1073sgEF	CG2302	GAGCTCCTGCAGATGTGATCGG	CCT1183sgEF	CG5621	GATGCTCATCGCGTACGGCGGG
CCT1073sgEF	CG2302	GTCCGGACGCCAGATGTGATCGG	CCT1183sgEF	CG5621	GGTCTCCTTGTGATGCCATAGG

CCT1073sgEF	CG2302	TTCGACGGACGTATAAGAACCTCGG	CCT1183sgEF	CG5621	CAAACCGAATGGGTCCCGTGAGG
CCT1074sgEF	CG11348	GGCTTCAAACCTTGTGGGGGG	CCT1184sgEF	CG7446	GATCCGGGCCATGGACCAAGGG
CCT1074sgEF	CG11348	ATGTGATGTCAGTCCTCGTGGGG	CCT1184sgEF	CG7446	GGTGGCTCGGGTTCGACCAACGGG
CCT1074sgEF	CG11348	ATAACGGCCCTGCCGAAAGGG	CCT1184sgEF	CG7446	CGTCGGATGTCATCTACCGTTGG
CCT1075sgEF	CG6798	GGAGTATTACCCGATACACTGG	CCT1185sgEF	CG7589	GTCTTTCAGTCGATCATAGCGG
CCT1075sgEF	CG6798	TTCTCCGTATACTTCAGAGTGG	CCT1185sgEF	CG7589	GATCATCTCACGCGATGCAGG
CCT1075sgEF	CG6798	ACTTGCACTAGGTTACTGCCAGG	CCT1185sgEF	CG7589	TCGTAGTGTGTCAGCAACTGG
CCT1076sgEF	CG6919	GACCACGTCTAACGGATAACGG	CCT1186sgEF	CG8681	GGTCGAGGCCAACATAACTACGG
CCT1076sgEF	CG6919	TTCGTCAAGTGTTCATTATTGG	CCT1186sgEF	CG8681	TTTATGTATCCTCACGCCCTGGG
CCT1076sgEF	CG6919	TAATGCTCCGTATGATCTCGG	CCT1186sgEF	CG8681	ACAGTAAAACAACGGGGGGGG
CCT1077sgEF	CG9918	GGCCGTAATCGTAGCACCCTGG	CCT1187sgEF	CG9935	GAACCTCTCCGTAAATGACCGG
CCT1077sgEF	CG9918	GGCCATCGTATAACCGTAACGG	CCT1187sgEF	CG9935	GGGCAAGCCGGCTATGTTGGG
CCT1077sgEF	CG9918	CCTCGGAAACGCCGACAACAGG	CCT1187sgEF	CG9935	CCAGCTGGAATGTATAACCGG
CCT1078sgEF	CG7395	GGACATTCCGAAGACACCCAGG	CCT1188sgEF	CG11155	TCTCTTTAACATAACATACGG
CCT1078sgEF	CG7395	ATGGCACAGACTCTGCCGAGG	CCT1188sgEF	CG11155	ATCATTCAGGTTGGTCGGAGG
CCT1078sgEF	CG7395	CAACTGGAGCCTAACGTCGCCGG	CCT1188sgEF	CG11155	CTAGCTAAAAGAGCATCTGTTGG
CCT1079sgEF	CG11895	GTCTCCGTGAATACAAGGATGG	CCT1189sgEF	CG12344	TTAGGCGGAAGAACTACTCGCGG
CCT1079sgEF	CG11895	TTAAGGTAGATTCCAGGACAGG	CCT1189sgEF	CG12344	CTACGTACGCTGCTTCAGAGG
CCT1079sgEF	CG11895	GAGATCCGTCGATGCAGGGCGGG	CCT1189sgEF	CG12344	CGAAGCGGAAGTACCGGTGAGG
CCT1080sgEF	CG9122	GTTCCTCACCTGGTACCGAGG	CCT1190sgEF	CG32848	GGGTATCGATACAACTACGAGG
CCT1080sgEF	CG9122	CTACACTTCGTAAACACGAGG	CCT1190sgEF	CG32848	CCCGTATATTATCCCTAACCGG
CCT1080sgEF	CG9122	CAGGCCAGAACACTCTCCGG	CCT1190sgEF	CG32848	TCGACGGCAGTCTTGTGTTGG
CCT1081sgEF	CG1056	TTCTGGACTACAGTCCCCACGG	CCT1191sgEF	CG7535	GCCTTCGTATAGGAAACGGCGG
CCT1081sgEF	CG1056	ACTGTGCGATGCCGTACGAGG	CCT1191sgEF	CG7535	GAGCAGATCTGCTATCCAGCGG
CCT1081sgEF	CG1056	ATGCAAAGCTACTCTGGTCGTGG	CCT1191sgEF	CG7535	AAAGTATCTGACCCCTGACGGAGG
CCT1082sgEF	CG42796	GCACCTGGTCCTGTGGAGGAGG	CCT1192sgEF	CG17336	GAGGCCGTGATAGACTCCAGTGG
CCT1082sgEF	CG42796	CATCCAGGCAGATCCAGGTGAGG	CCT1192sgEF	CG17336	GTAGTGCAGATCCATATGCAGG
CCT1082sgEF	CG42796	TCGTCCCTGGAAACAGCGGCCGG	CCT1192sgEF	CG17336	GTATTGGCGCGACGAGCGTTGG
CCT1083sgEF	CG9753	GTTCCTGGTAGTCCCATTGGAGG	CCT1194sgEF	CG11236	ACTGGCAACACCAATTACCCGG
CCT1083sgEF	CG9753	GGTGTAGGGTAGTTCAGCTGG	CCT1194sgEF	CG11236	TGGGGTCCGTACCTCTGGCGGG
CCT1083sgEF	CG9753	GGCGTCGCAACTTCTCCGG	CCT1194sgEF	CG11236	CATAAAGGTGACGATCATATCGG
CCT1084sgEF	CG18208	CGTCTCTCGACCGAAAGCCGG	CCT1195sgEF	CG12338	CTCCTCTGGAGTTCTAACCGGG
CCT1084sgEF	CG18208	TCGCTGGCCAATGAGCTATTGG	CCT1195sgEF	CG12338	TAGTGGCATAGGGCAAGAAGAGG
CCT1084sgEF	CG18208	CGAACACAGAACGACTGG	CCT1195sgEF	CG12338	ATCCCAGTAGTGAAGGCATCGG
CCT1085sgEF	CG18741	AGGAGCCGGCGGCCCTCTGG	CCT1196sgEF	CG4827	GGTGCCTTCCTAACGCCGTG
CCT1085sgEF	CG18741	CCGTGTGCAAGTACCGCTCCGG	CCT1196sgEF	CG4827	GAATCCCATITGCACCCGGCGG
CCT1085sgEF	CG18741	CCTCTGTGACCCATCGCAGG	CCT1196sgEF	CG4827	GTTCCGAAAGGCAAGCACCTGG
CCT1086sgEF	CG32476	AGACAACCGTTAGATCCGGGG	CCT1197sgEF	CG30104	TATCGTAAGGAGGCTCAGGAGGG
CCT1086sgEF	CG32476	GCAAATAACTAACTAATAGCAGG	CCT1197sgEF	CG30104	TCAGTTGGGAAACCTGCTTAGG
CCT1086sgEF	CG32476	CAACGAATCATACTGTGAGG	CCT1197sgEF	CG30104	TGGCCACTCGGGTTATTGAAGG
CCT1087sgEF	CG42244	CATTGCGGTGGATAACCAGGCGG	CCT1198sgEF	CG8129	GGCCATGCGAATGTCCCGAGG
CCT1087sgEF	CG42244	GCCTATAACATCGAATTGTGG	CCT1198sgEF	CG8129	ATCTATTAGCGGCATTGCGGTGG
CCT1087sgEF	CG42244	AACGCCCTCGTGGAACTGTCCGG	CCT1198sgEF	CG8129	TTAACGGCTGTGGCAATACCGG
CCT1088sgEF	CG7411	GGAATACCGCCTGTCGAGGTGG	CCT1199sgEF	CG3011	GGCCTGGATCTGCCCGATGGCGG

CCT1088sgEF	CG7411	GGGGCGTTGTTGGATCCCCACTGG	CCT1199sgEF	CG3011	AGGGATATCCCGGCAAGAGTGG
CCT1088sgEF	CG7411	GTTCACCCCTTAAGCGTCGTTGG	CCT1199sgEF	CG3011	GTCTCCGGTTCACTTGTACGG
CCT1089sgEF	CG1543	GGTGAGACGGGACTACCAGCAGG	CCT1200sgEF	CG13317	GCCGCTGATACCCACGCCGAGG
CCT1089sgEF	CG1543	CAATGTGACGGCACCGCACGAGG	CCT1200sgEF	CG13317	TTTTGTTGCGCCGTGTCAGTCGG
CCT1089sgEF	CG1543	TGTGATGATGATAAGCCAGTGG	CCT1200sgEF	CG13317	AGTTGACAACTCACCGCTCGCGG
CCT1090sgEF	CG10118	GGAGTCCCGTCAGTCGCGGTGG	CCT1201sgEF	CG14049	GATATGCGTAAGCGGAA CGGTGG
CCT1090sgEF	CG10118	GAGGCGTGTGGGGAACACGG	CCT1201sgEF	CG14049	TATCACATCGCTGAGGCCGTGG
CCT1090sgEF	CG10118	ATCCCGCCGTCGCAGCCTGGTGG	CCT1201sgEF	CG14049	GGCCACCTGTTGCCGTGGCGG
CCT1091sgEF	CG7285	TGTCTCCAGTTGTAAAGGGG	CCT1202sgEF	CG14059	GTGCGAGCACCTCTTCAGGCCG
CCT1091sgEF	CG7285	GCTATGCAATGTTGATAGGTGGG	CCT1202sgEF	CG14059	ACTCGATGGACCTCTGTCGCGG
CCT1091sgEF	CG7285	ATATATCCTGAACTCGCGGTGG	CCT1202sgEF	CG14059	CATCGGAGTCTGTTGCCGTATGG
CCT1092sgEF	CG13702	CATACTGAATCTGGCTATCGCGG	CCT1203sgEF	CG14167	CTACTAACCTTATGATCGGCCG
CCT1092sgEF	CG13702	TGTAGCTGTACGAACAGTCGGGG	CCT1203sgEF	CG14167	GCGGCCGACAACCTCATGGTGG
CCT1092sgEF	CG13702	GTCCAGGTGGGTGCGCACACTGG	CCT1203sgEF	CG14167	GTAGGAGTAGGCTAGGTAGCAGG
CCT1093sgEF	CG13968	TTATCATAGAGATTGCTCAGGGG	CCT1204sgEF	CG14173	CCCGAAACCACAAACTCTGCCG
CCT1093sgEF	CG13968	GATGCAGCAGCCCCCCCAGGCGG	CCT1204sgEF	CG14173	TGCAGGATGATA GCAGCATGTGG
CCT1093sgEF	CG13968	ACTGAGTCAGGCTGCGCCTTGG	CCT1204sgEF	CG14173	GCATGTGGCAGACACTGGACGGG
CCT1094sgEF	CG11937	TACAACCGCTGCCGCAACGCCG	CCT1205sgEF	CG14920	AAATCCCTCCGGCTGACTGGGG
CCT1094sgEF	CG11937	TTCGGCTCTCTCTTCGGCTGG	CCT1205sgEF	CG14920	AGAAGTGTACAAAGCTTGGCGG
CCT1094sgEF	CG11937	TTCGAAAGGTAGCCGACTGG	CCT1205sgEF	CG14920	AGCCGGAGAGGTGACATTGCCG
CCT1096sgEF	CG13419	GCTCCGCCACGAGAACAAACAAGG	CCT1206sgEF	CG17673	TCCAGGCCTGGGAATGCCGTGG
CCT1096sgEF	CG13419	TCAAATACCATTATCCGTGGCGG	CCT1206sgEF	CG17673	TTTGTAGGCTTCCTATTCCACGG
CCT1096sgEF	CG13419	CAGCATCTGAACCTCTGACGG	CCT1206sgEF	CG17673	ACTCGGCTTGGTCCAGGCCTGGG
CCT1097sgEF	CG15520	GACCACGACAAGAACCGACGAGG	CCT1207sgEF	CG17878	CATTGGCCAACGCTCACCACCTGG
CCT1097sgEF	CG15520	GAAGGCATAAGCCCCATGTGG	CCT1207sgEF	CG17878	CAGTTGAGAAGAACCCATCTCGG
CCT1097sgEF	CG15520	ATCGCCGAATTCACTACAGCTGG	CCT1207sgEF	CG17878	ACTCAATGGGAAAGGACGCTTGG
CCT1098sgEF	CG4910	CGTCCATGAGGATTCCCTGAGG	CCT1208sgEF	CG33273	GGAGAACTGGGATACGGAGCGG
CCT1098sgEF	CG4910	AGCTAAGTGGCTTATACAATGG	CCT1208sgEF	CG33273	TCAGCATGTCCATCAAGGCCGGG
CCT1098sgEF	CG4910	GAACAA CGAGGGCACCAATATGG	CCT1208sgEF	CG33273	AGCTATCCAATCCGCCAAGTGG
CCT1099sgEF	CG11318	GTACCGTTCCACTCCAGTAGTGG	CCT1209sgEF	CG40041	TATACGTGTATAACCGACGATGG
CCT1099sgEF	CG11318	TATGAAACCTGGTCAACTGAGGG	CCT1209sgEF	CG40041	GTIGGGACTATGTAAGCGTTGG
CCT1100sgEF	CG12290	TGGAGAGGAACGTAAATCATGG	CCT1209sgEF	CG40041	CGCTGGCGTGGACACAAACAGG
CCT1100sgEF	CG12290	GCAGTCCCAGGAACAAAGTGGGG	CCT1210sgEF	CG6736	GATTACACGCCGTGTCAGGCCG
CCT1100sgEF	CG12290	CTCCGTGGGTAAGCTCTCAAAGG	CCT1210sgEF	CG6736	CGGCTGCACTGACACCGG
CCT1100sgEF	CG12290	GGGATCCGTAACGGCACCCAGG	CCT1210sgEF	CG6736	GTGCGCGAGGCTGATCCAGG
CCT1101sgEF	CG12796	GATTGGAGATGACCGATCGCAGG	CCT1211sgEF	CG8167	CTGCAGTGAAAGCTCAACGAGG
CCT1101sgEF	CG12796	GAGCTTCGATAATCCAAGCGGG	CCT1211sgEF	CG8167	GAAGGACAAGGCTGCTCATGG
CCT1101sgEF	CG12796	CAGCAGGCGAGGACCTCTCATGG	CCT1211sgEF	CG8167	GCGCGCTTGTGTTGGAATCACGGG
CCT1102sgEF	CG13229	TGTCGGTAAAGGAAACCGCTGG	CCT1212sgEF	CG17777	TATGGACACGGTCACTACGGCGG
CCT1102sgEF	CG13229	AGATTGAGCTACACCTGGCGG	CCT1212sgEF	CG17777	CGTCTTCTCTCATCCACGCCG
CCT1102sgEF	CG13229	TTCCAGCATACAAACATATCGG	CCT1212sgEF	CG17777	CGCCGTAGCCGCCATAGCCGTGG
CCT1103sgEF	CG15556	GGATCACGTGACCTGAGGTGG	CCT1213sgEF	CG45777	CGTGTCTGGCGAGCACGGAGG
CCT1103sgEF	CG15556	TATGAGACCTGGCTAGCGATGG	CCT1213sgEF	CG45777	GGAGGCGAGTGCCTGCCACGG
CCT1103sgEF	CG15556	TGAGTCGGAACGATGTACTCTGG	CCT1213sgEF	CG45777	GGAGCGTTGCTAAAGGAAGCGGG

CCT1104sgEF	CG15614	GATGCAGTCCATCCACGAAAGGG	CCT1214sgEF	CG34136	GAAGAATGCAAGGCACAGTAGGG
CCT1104sgEF	CG15614	TCACCAGCTCAGAACATCCGGTTGG	CCT1214sgEF	CG34136	GAATGAGGTGAGCGGAAGACAGG
CCT1104sgEF	CG15614	AAAGTTCTGACACAGTCCAAGG	CCT1214sgEF	CG34136	TTGCCCAAGCGAACGAAATGCAAGG
CCT1105sgEF	CG15744	GCTCTCCCTGGGCACACCAATGG	CCT1215sgEF	CG43117	GAATTGGTCTGGCTGAGGAAGG
CCT1105sgEF	CG15744	GCCATTAGGCCACATCTATGAGGG	CCT1215sgEF	CG43117	ATCCACCAACACCCACACACGG
CCT1105sgEF	CG15744	CGCCTGGCCCCCTCTGCTGCGG	CCT1215sgEF	CG43117	GCAGGCAGAACATCGCGAACATAGG
CCT1107sgEF	CG30340	CTGGCTGCACAAGCCAATGGGG			
CCT1107sgEF	CG30340	GACTACCGAGAGATTGAGCACGG			
CCT1107sgEF	CG30340	CTTCTATCAGAACTACCAGTTGG			

Table S4 CCT gene expression profile of clock neurons

GluRIB	/	/	/	/	/	/	/	/	/	/	/	1.56 ± 1.01	9	1.5 ± 0.58	4	1 ± 0	2
mAChR-B	1.33 ± 0.58	3	3.33 ± 0.87	9	/	/	1.5 ± 0.53	8	/	/	3.38 ± 2.33	8	1 ± 0	5	/	/	
MsR1	/	/	3.29 ± 0.49	7	/	/	1 ± 0	7	1 ± 1	1	/	/	2 ± 0	1	/	/	
nAChRa1	3 ± 0	2	/	/	/	/	5.6 ± 0.89	5	2 ± 1	3	12.4 ± 1.52	5	/	/	1 ± 0	2	
nAChRa2	/	/	3.8 ± 0.45	5	1 ± 0	1	2 ± 0.89	6	/	/	2.17 ± 1.17	6	/	/	2 ± 0.71	5	
nAChRβ2	/	/	3 ± 1	3	/	/	/	/	/	/	1 ± 0	2	/	/	1 ± 0	5	
Nmdar1	1 ± 0	2	3.64 ± 0.5	11	/	/	1.88 ± 0.35	8	/	/	1.5 ± 0.58	4	1.11 ± 0.33	9	1.4 ± 0.84	10	
NPFR	/	/	/	/	/	/	1 ± 0	10	/	/	/	/	/	/	1.14 ± 0.38	7	
Oct-TyrR	/	/	/	/	/	/	/	/	/	/	/	/	/	/	2 ± 0	2	
Octβ2R	/	/	/	/	/	/	/	/	/	/	10.5 ± 0.71	2	1.5 ± 0.71	2	2.5 ± 0.71	2	
Pdfr	/	/	1.14 ± 0.38	7	/	/	1 ± 0	2	/	/	2.29 ± 1.11	7	1 ± 0	6	1.33 ± 0.58	3	
PK2-R1	/	/	/	/	/	/	1.5 ± 0.71	2	/	/	/	/	1 ± 0	3	/	/	
SIFaR	/	/	3.21 ± 0.43	14	/	/	2 ± 0.39	14	/	/	1 ± 0	5	1 ± 0	6	1.22 ± 0.44	9	
spab	/	/	/	/	/	/	1 ± 0	4	/	/	/	/	1 ± 0	2	/	/	
CG13995	/	/	3 ± 0	1	/	/	1 ± 0	1	/	/	/	/	/	/	/	/	

N[#] represents GFP positive brain number

/ represents no GFP found in corresponding clock neuron subset

Table S5 List of CCT genes intersected with Clk856 drivers

RaoLab Stock No.	CG No.	Gene Symbol	Driver	Intersection with Clk856
DKI0289	CG42796	5-HT2B	LexA	Clk856-GAL4
DKI0317	CG14919	AstC	LexA	Clk856-GAL4
DKI0292	CG43795	CG43795	LexA	Clk856-GAL4
DKI0303	CG13229	CG13229	LexA	Clk856-GAL4
DKI0073	CG13995	CG13995	LexA	Clk856-GAL4
DKI0110	CG12345	ChAT	LexA	Clk856-GAL4
DKI0254	CG32547	CG32547	LexA	Clk856-GAL4
DKI0121	CG33517	Dop2R	LexA	Clk856-GAL4
DKI0309	CG12370	Dh44-R2	LexA	Clk856-GAL4
DKI0060	CG13094	Dh31	LexA	Clk856-GAL4
DKI0105	CG32843	Dh31-R	LexA	Clk856-GAL4
WCKI1122	CG2114	FMRFaR	LexA	Clk856-GAL4
DKI0305	CG5549	GlyT	LexA	Clk856-GAL4
DKI0322	CG6706	GABA-B-R2	LexA	Clk856-GAL4
DKI0312	CG3022	GABA-B-R3	LexA	Clk856-GAL4
DKI0191	CG43743	GluRIB	LexA	Clk856-GAL4
DKI0212	CG6798	nAChR β 2	LexA	Clk856-GAL4
DKI0221	CG7918	mAChR-B	LexA	Clk856-GAL4
DKI0201	CG6844	nAChR α 2	LexA	Clk856-GAL4
WCKI1173	CG8985	MsR1	LexA	Clk856-GAL4
WCKI1006	CG1147	NPFR	LexA	Clk856-GAL4
WCKI1018	CG7105	Proc	LexA	Clk856-GAL4
DKI0093	CG2902	Nmdar1	LexA	Clk856-GAL4
WCKI1089	CG10823	SIFaR	LexA	Clk856-GAL4
WCKI1080	CG8784	PK2-R1	LexA	Clk856-GAL4
DKI0059	CG13968	sNPF	LexA	Clk856-GAL4
DKI0082	CG14871	Trissin	LexA	Clk856-GAL4
DKI0248	CG9122	Trh	LexA	Clk856-GAL4
DKI0265	CG9887	VGlut	LexA	Clk856-GAL4
DKI0165	CG13586	ITP	Gal4	Clk856-p65AD
DKI0111	CG10118	TH	Gal4	Clk856-p65AD
DKI0168	CG3441	Nplp1	Gal4	Clk856-p65AD
DKI0287	CG14723	HisCl1	Gal4	Clk856-p65AD
DKI0203	CG5610	nAChR α 1	Gal4	Clk856-p65AD
WCKI1015	CG10342	NPF	LexA	Clk856-GAL4
DKI0099	CG14358	CChA1	LexA	Clk856-GAL4
WCKI1017	CG33976	Oct β 2R	Gal4	Clk856-p65AD
WCKI1019	CG10698	CrzR	Gal4	Clk856-p65AD
DKI0078	CG30106	CChA1-R	LexA	Clk856-GAL4
DKI0029	CG13936	CNMa	p65AD	Clk856-GAL4
DKI0288	CG33696	CNMaR	p65AD	Clk856-GAL4
WCKI1095	CG8348	Dh44	GAL4	Clk856-p65AD

DKI0134	CG13758	Pdfr	LexA	Clk856-GAL4
WCKI1199	CG7485	Oct-TyrR	Gal4	Clk856-p65AD
DKI0262	CG8216	spab	LexA	Clk856-GAL4
DKI0013	CG10537	Rdl	LexA	Clk856-GAL4
DKI0069	CG1056	5-HT2A	LexA	Clk856-GAL4
WCKI1162	CG10626	Lkr	LexA	Clk856-GAL4
DKI0251	CG11318	CG11318	LexA	Clk856-GAL4
WCKI1030	CG11325	AkhR	LexA	Clk856-GAL4
WCKI1201	CG1171	Akh	LexA	Clk856-GAL4
DKI0215	CG11822	nAChR β 3	LexA	Clk856-GAL4
CG11883-L-LexA	CG11883	CG11883	LexA	Clk856-GAL4
CG11883-S-LexA	CG11883	CG11883	LexA	Clk856-GAL4
WCKI1180	CG11937	amn	LexA	Clk856-GAL4
DKI0307	CG12344	CG12344	LexA	Clk856-GAL4
Nplp3-LexA	CG13061	Nplp3	LexA	Clk856-GAL4
L53-T5-W-	CG13480	Lk	LexA	Clk856-GAL4
DKI0302	CG13565	Orcokinin	LexA	Clk856-GAL4
DKI0050	CG13575	CG13575	LexA	Clk856-GAL4
DKI0160	CG13579	CG13579	LexA	Clk856-GAL4
DKI0286	CG13579	CG13579-RB	LexA	Clk856-GAL4
DKI0091	CG13633	AstA	LexA	Clk856-GAL4
DKI0096	CG14375	CCHa2	LexA	Clk856-GAL4
DKI0086	CG14575	CapaR	LexA	Clk856-GAL4
DKI0007	CG14593	CCHa2-R	LexA	Clk856-GAL4
DKI0094	CG14734	Tk	LexA	Clk856-GAL4
DKI0020	CG14994	gad1	LexA	Clk856-GAL4
DKI0089	CG15113	5-HT1B	LexA	Clk856-GAL4
DKI0187	CG15274	GABA-B-R1	LexA	Clk856-GAL4
DKI0055	CG15284	Pburs	LexA	Clk856-GAL4
T β h-LexA	CG1543	T β h	LexA	Clk856-GAL4
DKI0143	CG15520	Capa	LexA	Clk856-GAL4
WCKI1196	CG15614	CG15614	LexA	Clk856-GAL4
DKI0159	CG15744	CG15744	LexA	Clk856-GAL4
DKI0030	CG16720	5-HT1A	LexA	Clk856-GAL4
DKI0146	CG16752	SPR	LexA	Clk856-GAL4
DKI0156	CG16992	mthl6	LexA	Clk856-GAL4
DKI0294	CG17061	mthl10	LexA	Clk856-GAL4
WCKI1120	CG17084	CG17084	LexA	Clk856-GAL4
DKI0031	CG17795	mthl2	LexA	Clk856-GAL4
DKI0196	CG18039	GluRIID	LexA	Clk856-GAL4
DKI0148	CG18090	Dsk	LexA	Clk856-GAL4
WCKI1097	CG18208	CG18208	LexA	Clk856-GAL4
DKI0321	CG18314	DopEcR	LexA	Clk856-GAL4
DKI0123	CG18741	DopR2	LexA	Clk856-GAL4

DKI0205	CG2302	nAChR α 3	LexA	Clk856-GAL4
WCKI1184	CG2346	FMRFa	LexA	Clk856-GAL4
DKI0225	CG2872	AstA-R1	LexA	Clk856-GAL4
DKI0290	CG30018	mthl13	LexA	Clk856-GAL4
DKI0066	CG30340	CG30340	LexA	Clk856-GAL4
DKI0151	CG31096	Lgr3	LexA	Clk856-GAL4
DKI0231	CG31147	mthl11	LexA	Clk856-GAL4
DKI0232	CG31760	CG31760	LexA	Clk856-GAL4
DKI0234	CG32447	CG32447	LexA	Clk856-GAL4
DKI0259	CG32475	mthl8	LexA	Clk856-GAL4
WCKI1107	CG32476	CG32476	LexA	Clk856-GAL4
DKI0252	CG32540	CCKLR-17D3	LexA	Clk856-GAL4
DKI0206	CG32975	nAChR α 5	LexA	Clk856-GAL4
DKI0101	CG33344	CCAP-R	LexA	Clk856-GAL4
DKI0284	CG33495	Dup99B	LexA	Clk856-GAL4
DKI0087	CG33495	Dup99B	LexA	Clk856-GAL4
DKI0128	CG33513	Nmdar2	LexA	Clk856-GAL4
DKI0315	CG33527	SIFa	LexA	Clk856-GAL4
DKI0180	CG33639	CG33639	LexA	Clk856-GAL4
DKI0246	CG34388	natalisin	LexA	Clk856-GAL4
DKI0175	CG34411	CG34411	LexA	Clk856-GAL4
DKI0102	CG3454	HDC	LexA	Clk856-GAL4
WCKI1101	CG3856	oamb	LexA	Clk856-GAL4
DKI0208	CG4128	nAChR α 6	LexA	Clk856-GAL4
WCKI1044	CG42244	Oct β 3R	LexA	Clk856-GAL4
DKI0193	CG4226	GluRIIC	LexA	Clk856-GAL4
DKI0173	CG42301	CCKLR-17D1	LexA	Clk856-GAL4
WCKI1166	CG4313	CG4313	LexA	Clk856-GAL4
DKI0276	CG4356	mAChR-A	LexA	Clk856-GAL4
DKI0016	CG43745	MsR2	LexA	Clk856-GAL4
WCKI1169	CG4395	hec	LexA	Clk856-GAL4
NT5E1-lexA	CG4827	NT5E-1	LexA	Clk856-GAL4
WCKI1176	CG5400	Eh	LexA	Clk856-GAL4
WCKI1203	CG5811	RYa-R	LexA	Clk856-GAL4
WCKI1205	CG5911	ETHR	LexA	Clk856-GAL4
WCKI1055	CG6371	CG6371	LexA	Clk856-GAL4
WCKI1009	CG6440	Ms	LexA	Clk856-GAL4
WCKI1011	CG6456	Mip	LexA	Clk856-GAL4
WCKI1192	CG6530	mthl3	LexA	Clk856-GAL4
WCKI1194	CG6536	mthl4	LexA	Clk856-GAL4
WCKI1049	CG6919	oa2	LexA	Clk856-GAL4
WCKI1118	CG6965	CG6965	LexA	Clk856-GAL4
DKI0192	CG6992	GluRIIA	LexA	Clk856-GAL4
WCKI1093	CG7285	AstC-R1	LexA	Clk856-GAL4

DKI0071	CG7411	Ort	LexA	Clk856-GAL4
DKI0311	CG7431	TyrR	LexA	Clk856-GAL4
DKI0299	CG7446	Grd	LexA	Clk856-GAL4
DKI0320	CG7497	CG7497	LexA	Clk856-GAL4
WCKI1094	CG7665	Lgr1	LexA	Clk856-GAL4
DKI0240	CG8380	DAT	LexA	Clk856-GAL4
DKI0047	CG8394	vGAT	LexA	Clk856-GAL4
WCKI1181	CG8422	Dh44-R1	LexA	Clk856-GAL4
DKI0269	CG8442	GluRIA	LexA	Clk856-GAL4
WCKI1174	CG8795	PK2-R2	LexA	Clk856-GAL4
WCKI1060	CG10001	CG10001	Gal4	Clk856-p65AD
DKI0130	CG14723	HisCl1	Gal4	Clk856-p65AD
DKI0041	CG15361	Nplp4	Gal4	Clk856-p65AD
WCKI1198	CG15556	CG15556	Gal4	Clk856-p65AD
DKI0255	CG18105	ETH	Gal4	Clk856-p65AD
DKI0198	CG31201	GluRIIE	Gal4	Clk856-p65AD
WCKI1164	CG3171	Tre1	Gal4	Clk856-p65AD
DKI0300	CG4910	CCAP	Gal4	Clk856-p65AD
DKI0226	CG6936	mth	Gal4	Clk856-p65AD
WCKI1178	CG6986	Proc-R	Gal4	Clk856-p65AD
DKI0297	CG7476	mthl7	Gal4	Clk856-p65AD
WCKI1053	CG9918	PK1-R	Gal4	Clk856-p65AD

Table S6 Phenotypes of CCT genes knocking out in clock neurons

Target Gene	LD condition				DD condition		
	MAI	MAPI	FAI	EAPI	Power	Period	AR
Pdfr	0.087 ± 0.119	-0.047 ± 0.175	0.34 ± 0.076	0.101 ± 0.071	3.45 ± 7.54	22.41 ± 0.51	17/22
Pdf	0.11 ± 0.124	0.026 ± 0.12	0.383 ± 0.065	0.114 ± 0.094	15.46 ± 34.25	22.31 ± 0.4	13/23
nAChRa1	0.316 ± 0.121	0.14 ± 0.145	0.352 ± 0.094	-0.094 ± 0.068	37.83 ± 27.68	23.18 ± 0.43	1/14
Dh44	0.339 ± 0.111	0.042 ± 0.106	0.367 ± 0.09	-0.138 ± 0.088	44.22 ± 45.84	23.55 ± 0.24	7/19
CNMaR	0.345 ± 0.063	0.062 ± 0.129	0.342 ± 0.132	-0.042 ± 0.061	71.37 ± 39.43	24.01 ± 0.8	1/22
SIFaR	0.296 ± 0.076	0.062 ± 0.098	0.381 ± 0.08	-0.041 ± 0.078	75.56 ± 66.38	23.32 ± 0.33	4/24
ITP	0.277 ± 0.103	0.015 ± 0.106	0.357 ± 0.058	-0.06 ± 0.075	80.74 ± 39.06	23.75 ± 0.29	2/24
CG17777	0.272 ± 0.096	-0.025 ± 0.18	0.453 ± 0.068	-0.114 ± 0.048	81.81 ± 49.34	23.74 ± 0.29	1/22
Dh31	0.205 ± 0.122	-0.035 ± 0.134	0.405 ± 0.075	-0.092 ± 0.094	82.44 ± 51.16	23.5 ± 0.29	1/22
CG13995	0.346 ± 0.087	0.011 ± 0.152	0.414 ± 0.055	-0.072 ± 0.099	87.7 ± 36.53	23.56 ± 0.33	1/24
nAChRa2	0.26 ± 0.1	0 ± 0.145	0.348 ± 0.088	-0.042 ± 0.078	88.15 ± 50.2	23.7 ± 0.24	1/22
NPFR	0.269 ± 0.174	0.042 ± 0.092	0.403 ± 0.089	-0.072 ± 0.073	88.69 ± 46.62	23.35 ± 0.33	2/24
CrzR	0.324 ± 0.087	0.026 ± 0.122	0.415 ± 0.068	-0.028 ± 0.083	91.63 ± 54.11	23.35 ± 0.39	2/24
HisCl1	0.306 ± 0.075	0.08 ± 0.097	0.398 ± 0.04	-0.04 ± 0.096	93.7 ± 48.07	23.8 ± 0.39	1/23
AstC-R2	0.363 ± 0.074	-0.073 ± 0.164	0.465 ± 0.082	-0.136 ± 0.073	94.45 ± 57.72	24.04 ± 0.38	1/24
VGAT	0.249 ± 0.093	0.078 ± 0.118	0.402 ± 0.054	-0.106 ± 0.078	98.11 ± 52.33	23.42 ± 0.36	1/21
MsR1	0.31 ± 0.069	0.091 ± 0.089	0.336 ± 0.086	-0.099 ± 0.077	99.46 ± 46.48	24.14 ± 0.65	1/24
CCAP	0.321 ± 0.075	-0.028 ± 0.191	0.464 ± 0.06	-0.105 ± 0.074	99.76 ± 57.98	23.84 ± 0.37	0/22
CG34136	0.278 ± 0.084	0.022 ± 0.099	0.388 ± 0.052	-0.037 ± 0.085	101.43 ± 54.01	23.7 ± 0.43	1/22
GABA-B-R2	0.277 ± 0.078	-0.016 ± 0.108	0.337 ± 0.074	-0.084 ± 0.071	101.92 ± 30.51	23.95 ± 0.4	0/20
Hug	0.337 ± 0.073	0.013 ± 0.093	0.41 ± 0.042	-0.059 ± 0.081	102 ± 51.47	23.55 ± 0.39	1/23
nAChRβ2	0.254 ± 0.095	0.035 ± 0.121	0.355 ± 0.079	-0.011 ± 0.07	104.34 ± 42.52	23.91 ± 0.3	0/22
AstC	0.329 ± 0.102	-0.005 ± 0.178	0.36 ± 0.098	-0.017 ± 0.057	104.4 ± 48.76	23.71 ± 0.4	2/23
Nplp3	0.38 ± 0.06	0.023 ± 0.102	0.415 ± 0.041	-0.124 ± 0.076	105.02 ± 47.1	23.66 ± 0.35	1/22
Ptth	0.377 ± 0.069	-0.028 ± 0.127	0.409 ± 0.057	-0.061 ± 0.085	105.4 ± 35.61	23.49 ± 0.32	0/24
GluRIB	0.317 ± 0.079	-0.016 ± 0.137	0.363 ± 0.057	-0.059 ± 0.077	106.25 ± 41.48	23.78 ± 0.25	0/18
CCHa1-R	0.307 ± 0.1	0.052 ± 0.088	0.419 ± 0.041	-0.064 ± 0.073	106.83 ± 46.29	23.28 ± 0.4	0/23
TbH	0.257 ± 0.103	0.037 ± 0.123	0.31 ± 0.061	-0.05 ± 0.079	107.86 ± 44.06	23.74 ± 0.38	0/19
Oct-TyrR	0.343 ± 0.085	0.013 ± 0.107	0.387 ± 0.061	-0.088 ± 0.1	108.19 ± 56.73	23.94 ± 0.32	2/22
Clk856-GAL4>Cas9.M9	0.3 ± 0.076	0.016 ± 0.09	0.38 ± 0.048	-0.066 ± 0.074	108.37 ± 30.19	23.8 ± 0.25	0/24
Dop2R	0.357 ± 0.075	0.063 ± 0.137	0.425 ± 0.084	-0.076 ± 0.073	109.27 ± 69.88	23.51 ± 0.51	2/24
Mip	0.316 ± 0.052	0 ± 0.134	0.402 ± 0.048	-0.068 ± 0.066	111.37 ± 42.75	23.47 ± 0.42	1/22
TrH	0.26 ± 0.124	0.05 ± 0.124	0.365 ± 0.051	-0.024 ± 0.07	111.5 ± 41	23.7 ± 0.44	0/23
Trissin	0.261 ± 0.086	0.056 ± 0.116	0.362 ± 0.065	-0.073 ± 0.056	111.89 ± 54.79	23.4 ± 0.29	2/22
CG43795	0.333 ± 0.113	0.007 ± 0.114	0.415 ± 0.054	-0.099 ± 0.071	111.9 ± 57.29	23.57 ± 0.35	0/22
CG7589	0.327 ± 0.061	0.013 ± 0.12	0.474 ± 0.065	-0.092 ± 0.07	112.13 ± 45.66	23.8 ± 0.38	0/23
CNMa	0.284 ± 0.086	0.082 ± 0.12	0.364 ± 0.041	-0.091 ± 0.085	112.6 ± 41.9	23.97 ± 0.22	0/24
CG32547	0.249 ± 0.098	-0.015 ± 0.116	0.344 ± 0.078	-0.049 ± 0.072	112.98 ± 63.4	23.69 ± 0.29	2/23
CG45777	0.36 ± 0.067	-0.047 ± 0.154	0.484 ± 0.065	-0.119 ± 0.077	113.47 ± 68.45	23.55 ± 0.25	0/24
Octβ2R	0.319 ± 0.081	0.028 ± 0.065	0.434 ± 0.07	-0.061 ± 0.071	114.28 ± 63.82	23.55 ± 0.41	1/24
Dh44-R2	0.357 ± 0.058	0.054 ± 0.067	0.403 ± 0.047	-0.039 ± 0.07	115.91 ± 61.1	23.51 ± 0.39	1/23
VAChT	0.284 ± 0.095	-0.118 ± 0.116	0.401 ± 0.084	-0.154 ± 0.058	116.69 ± 74.92	23.93 ± 0.3	1/21
CCHa1	0.352 ± 0.058	0.002 ± 0.086	0.39 ± 0.062	-0.119 ± 0.081	116.75 ± 44.06	23.73 ± 0.32	1/22
mGluRA	0.321 ± 0.065	-0.005 ± 0.078	0.49 ± 0.047	-0.062 ± 0.073	116.82 ± 50.26	24.04 ± 0.25	1/23
PK2-R1	0.333 ± 0.079	0.037 ± 0.121	0.429 ± 0.046	-0.099 ± 0.093	117.33 ± 50.14	23.95 ± 0.27	1/22
spab	0.253 ± 0.08	-0.005 ± 0.094	0.363 ± 0.046	0.002 ± 0.057	117.38 ± 46.52	23.64 ± 0.26	0/22

Dh31-R	0.321 \pm 0.103	-0.021 \pm 0.161	0.412 \pm 0.043	-0.09 \pm 0.072	118.71 \pm 50.62	23.6 \pm 0.23	1/20
FMRFaR	0.294 \pm 0.092	-0.013 \pm 0.099	0.373 \pm 0.033	-0.111 \pm 0.074	119.47 \pm 42.54	23.86 \pm 0.32	0/21
CG13229	0.359 \pm 0.069	0.059 \pm 0.098	0.421 \pm 0.049	-0.068 \pm 0.066	122.46 \pm 60.2	23.36 \pm 0.37	2/21
mAChR-B	0.242 \pm 0.112	0.09 \pm 0.087	0.388 \pm 0.037	-0.047 \pm 0.081	122.88 \pm 40.64	23.77 \pm 0.42	0/23
5-HT2B	0.293 \pm 0.085	0.035 \pm 0.123	0.373 \pm 0.042	-0.095 \pm 0.084	124.65 \pm 34.31	24.03 \pm 0.29	0/24
TH	0.3 \pm 0.101	0.016 \pm 0.131	0.349 \pm 0.11	-0.032 \pm 0.086	125.71 \pm 44.74	23.94 \pm 0.33	1/23
Proc	0.362 \pm 0.072	0.028 \pm 0.142	0.437 \pm 0.03	-0.086 \pm 0.095	128.13 \pm 61.01	23.57 \pm 0.37	0/23
AstA	0.312 \pm 0.092	-0.025 \pm 0.113	0.412 \pm 0.051	-0.082 \pm 0.089	131.22 \pm 35.09	23.63 \pm 0.31	0/24
5-HT1B	0.313 \pm 0.072	0.047 \pm 0.117	0.402 \pm 0.062	-0.083 \pm 0.091	132.29 \pm 41.37	23.5 \pm 0.29	0/20
sNPF-R	0.283 \pm 0.112	0.035 \pm 0.069	0.387 \pm 0.035	-0.089 \pm 0.056	133.38 \pm 41.77	23.74 \pm 0.4	0/21
CG43117	0.285 \pm 0.084	-0.03 \pm 0.134	0.333 \pm 0.081	-0.095 \pm 0.092	134.98 \pm 58.52	23.72 \pm 0.33	0/21
NMDAR1	0.341 \pm 0.066	0.065 \pm 0.134	0.408 \pm 0.052	-0.084 \pm 0.083	135.01 \pm 45.81	23.76 \pm 0.23	1/19
GABA-B-R3	0.314 \pm 0.104	0.041 \pm 0.097	0.362 \pm 0.061	-0.081 \pm 0.056	135.49 \pm 37.61	23.79 \pm 0.24	0/23
CG12344	0.327 \pm 0.062	-0.043 \pm 0.154	0.465 \pm 0.099	-0.121 \pm 0.067	138.31 \pm 63.27	23.98 \pm 0.35	0/23
Gpb5	0.268 \pm 0.058	-0.006 \pm 0.12	0.424 \pm 0.077	-0.078 \pm 0.068	138.41 \pm 42.42	23.69 \pm 0.29	0/23
Nplp1	0.248 \pm 0.115	0.072 \pm 0.087	0.414 \pm 0.023	-0.071 \pm 0.103	138.54 \pm 40.39	23.92 \pm 0.3	0/23
Grd	0.26 \pm 0.091	0.008 \pm 0.132	0.448 \pm 0.075	-0.065 \pm 0.064	139.49 \pm 78.28	23.65 \pm 0.39	1/24
NPF	0.329 \pm 0.086	0.007 \pm 0.147	0.404 \pm 0.067	-0.071 \pm 0.05	139.57 \pm 44.27	23.72 \pm 0.3	0/23
sNPF	0.346 \pm 0.084	-0.007 \pm 0.118	0.414 \pm 0.062	-0.111 \pm 0.065	146.16 \pm 58.23	23.6 \pm 0.45	0/17
GlyT	0.273 \pm 0.111	-0.119 \pm 0.117	0.395 \pm 0.076	-0.193 \pm 0.105	105.325 \pm 60.615	23.548 \pm 0.245	5/43

VGlut and ChAT presented in Table S7

Table S7 Phenotypes of candidate CCT genes knockout in clock neurons

Genotype	LD condition				DD condition		
	MAI	MAPI	EAI	EAPI	Power	Period	AR
sgRNA ^{Dh44} , Cas9.M6	0.329 ± 0.086	-0.058 ± 0.119	0.38 ± 0.058	-0.081 ± 0.065	66.38 ± 40.4	23.18 ± 0.31	2/22
Clk856 > sgRNA ^{Dh44}	0.354 ± 0.093	0.03 ± 0.131	0.444 ± 0.045	-0.085 ± 0.066	94 ± 45.35	23.61 ± 0.34	2/20
Clk856 > sgRNA ^{Dh44} , Cas9.M6	0.346 ± 0.096	-0.02 ± 0.165	0.397 ± 0.059	-0.085 ± 0.077	74.64 ± 27.25	23.75 ± 0.31	0/20
sgRNA ^{nAChRα1} , Cas9.M6	0.29 ± 0.089	-0.064 ± 0.139	0.363 ± 0.056	-0.071 ± 0.064	58.35 ± 43.82	23.53 ± 0.45	2/13
Clk856 > sgRNA ^{nAChRα1}	0.318 ± 0.096	0.019 ± 0.137	0.401 ± 0.052	-0.08 ± 0.071	56.89 ± 45.03	23.66 ± 0.43	1/12
Clk856 > sgRNA ^{nAChRα1} , Cas9.M6	0.307 ± 0.154	-0.031 ± 0.099	0.381 ± 0.056	-0.074 ± 0.074	69.21 ± 52.1	23.71 ± 0.29	2/13
sgRNA ^{ChAT} , Cas9.M6	0.292 ± 0.096	0.026 ± 0.155	0.291 ± 0.092	-0.1 ± 0.055	91.48 ± 55.18	23.43 ± 0.41	3/19
Clk856 > sgRNA ^{ChAT}	0.298 ± 0.098	-0.016 ± 0.157	0.353 ± 0.071	-0.079 ± 0.051	78.66 ± 41.65	23.54 ± 0.25	1/22
Clk856 > sgRNA ^{ChAT} , Cas9.M6	0.22 ± 0.137	0.003 ± 0.123	0.318 ± 0.078	-0.124 ± 0.075	49.35 ± 42.11	23.7 ± 0.2	4/14
sgRNA ^{CNMa} , Cas9.M6	0.342 ± 0.076	-0.141 ± 0.138	0.35 ± 0.091	-0.088 ± 0.079	92.81 ± 39.89	23.98 ± 0.44	1/23
Clk856 > sgRNA ^{CNMa}	0.355 ± 0.181	0.019 ± 0.093	0.431 ± 0.05	-0.121 ± 0.079	18.96 ± 22.19	23.8 ± 0.27	7/14
Clk856 > sgRNA ^{CNMa} , Cas9.M6	0.354 ± 0.11	0.113 ± 0.169	0.353 ± 0.086	-0.072 ± 0.066	93.51 ± 48.39	24.17 ± 0.42	1/20
sgRNA ^{VGlut} , Cas9.M6	0.254 ± 0.114	-0.115 ± 0.14	0.32 ± 0.066	-0.073 ± 0.043	56.28 ± 39.85	23.41 ± 0.38	1/20
Clk856 > sgRNA ^{VGlut}	0.306 ± 0.102	-0.026 ± 0.146	0.369 ± 0.074	-0.104 ± 0.067	63.82 ± 48.6	23.6 ± 0.36	5/20
Clk856 > sgRNA ^{VGlut} , Cas9.M6	0.179 ± 0.1**	-0.087 ± 0.107	0.27 ± 0.07	-0.158 ± 0.063	45.09 ± 41.35	23.7 ± 0.27	6/21
sgRNA ^{nAChR-B} , Cas9.M6	0.37 ± 0.062	-0.047 ± 0.109	0.374 ± 0.064	-0.076 ± 0.054	110.16 ± 32.99	23.78 ± 0.47	0/21
Clk856 > sgRNA ^{nAChR-B}	0.358 ± 0.095	-0.003 ± 0.109	0.442 ± 0.038	-0.143 ± 0.087	73 ± 36	23.48 ± 0.45	0/17
Clk856 > sgRNA ^{nAChR-B} , Cas9.M6	0.259 ± 0.1	-0.109 ± 0.139	0.357 ± 0.066	-0.088 ± 0.074	109.35 ± 45.07	23.71 ± 0.36	0/22
sgRNA ^{MsR1} , Cas9.M6	0.339 ± 0.078	-0.011 ± 0.175	0.368 ± 0.061	-0.072 ± 0.087	55.68 ± 49.3	23.77 ± 0.55	5/22
Clk856 > sgRNA ^{MsR1}	0.378 ± 0.098	-0.023 ± 0.114	0.4 ± 0.036	-0.143 ± 0.075	55.05 ± 43.19	23.89 ± 0.4	3/19
Clk856 > sgRNA ^{MsR1} , Cas9.M6	0.276 ± 0.085	-0.04 ± 0.123	0.313 ± 0.063	-0.085 ± 0.083	78.21 ± 50.06	23.85 ± 0.48	2/21
sgRNA ^{SIFaR} , Cas9.M6	0.254 ± 0.104	-0.075 ± 0.14	0.34 ± 0.047	-0.072 ± 0.052	82.85 ± 42.29	23.63 ± 0.35	0/23
Clk856 > sgRNA ^{SIFaR}	0.329 ± 0.122	-0.058 ± 0.121	0.375 ± 0.059	-0.096 ± 0.05	81.71 ± 41.2	23.82 ± 0.36	0/21
Clk856 > sgRNA ^{SIFaR} , Cas9.M6	0.219 ± 0.143	-0.142 ± 0.172	0.299 ± 0.095	-0.117 ± 0.088	94.45 ± 32.78	24.04 ± 0.38	0/19
Clk856 > Cas9.M6	0.295 ± 0.12	-0.043 ± 0.109	0.325 ± 0.081	-0.118 ± 0.048	90.64 ± 43.86	23.7 ± 0.27	1/16

Clk856 > sgRNA^{VGlut}, Cas9.M6 vs Clk856 > sgRNA^{VGlut}, **P < 0.01

Clk856 > sgRNA^{VGlut}, Cas9.M6 vs Clk856 > Cas9.M6, **P < 0.01

Clk856 > sgRNA^{VGlut}, Cas9.M6 vs sgRNA^{VGlut}, Cas9.M6, P = 0.0921

Table S8 Conditional knockout of VGlut in DN1s

Genotype	LD condition				DD condition		
	MAI	MAPI	FAI	EAPI	POWER	PERIOD	AR
sgRNA ^{VGlut} ,Cas9.M6	0.268 ± 0.124	-0.072 ± 0.106	0.328 ± 0.071	-0.065 ± 0.035	79.06 ± 49.45	22.89 ± 0.19	1/23
R18H11>sgRNA ^{VGlut}	0.258 ± 0.085	-0.093 ± 0.104	0.327 ± 0.05	-0.124 ± 0.069	67.49 ± 42.52	23.38 ± 0.36	1/21
R18H11>sgRNA ^{VGlut} ,Cas9.M6	0.136 ± 0.148 **	-0.109 ± 0.116	0.284 ± 0.106	-0.084 ± 0.061	61.9 ± 42.35	23.18 ± 0.27	4/24
R18H11>Cas9.M6	0.25 ± 0.093	-0.068 ± 0.124	0.387 ± 0.055	-0.048 ± 0.057	55.46 ± 49.14	23.33 ± 0.43	5/20
R51H05>sgRNA ^{VGlut}	0.348 ± 0.067	-0.078 ± 0.078	0.398 ± 0.051	-0.103 ± 0.047	122.02 ± 38.89	23.4 ± 0.37	0/20
R51H05>sgRNA ^{VGlut} ,Cas9.M6	0.26 ± 0.097	-0.16 ± 0.116	0.312 ± 0.073	-0.062 ± 0.059	82.56 ± 48.06	23.23 ± 0.33	2/22
R51H05>Cas9.M6	0.251 ± 0.098	-0.118 ± 0.143	0.349 ± 0.087	-0.055 ± 0.072	45.76 ± 41.2	23.19 ± 0.39	3/17
R79A11>sgRNA ^{VGlut}	0.172 ± 0.131	-0.11 ± 0.102	0.378 ± 0.055	-0.087 ± 0.062	88.87 ± 40.43	23.43 ± 0.31	1/21
R79A11>sgRNA ^{VGlut} ,Cas9.M6	0.178 ± 0.11	-0.131 ± 0.083	0.325 ± 0.08	-0.068 ± 0.037	75.67 ± 45.37	23.3 ± 0.29	1/19
R79A11>Cas9.M6	0.19 ± 0.132	-0.128 ± 0.114	0.346 ± 0.052	-0.082 ± 0.065	31.29 ± 32.62	23.16 ± 0.47	3/21
R91F02>sgRNA ^{VGlut}	0.233 ± 0.099	-0.108 ± 0.1	0.341 ± 0.069	-0.081 ± 0.049	97.13 ± 41.94	23.73 ± 0.39	0/21
R91F02>sgRNA ^{VGlut} ,Cas9.M6	0.301 ± 0.109	-0.109 ± 0.056	0.381 ± 0.071	-0.061 ± 0.042	112.28 ± 47.81	23.45 ± 0.31	0/24
R91F02>Cas9.M6	0.26 ± 0.166	-0.078 ± 0.107	0.366 ± 0.065	-0.035 ± 0.04	72.82 ± 45.83	23.43 ± 0.41	2/22
CNMa-KI-GAL4>sgRNA ^{VGlut}	0.28 ± 0.123	-0.058 ± 0.088	0.357 ± 0.043	-0.063 ± 0.019	54.7 ± 43.96	23.03 ± 0.33	3/23
CNMa-KI-GAL4>sgRNA ^{VGlut} ,Cas9.M6	0.268 ± 0.094	-0.117 ± 0.119	0.331 ± 0.055	-0.048 ± 0.086	51.21 ± 36.91	22.83 ± 0.29	3/18
CNMa-KI-GAL4>Cas9.M6	0.261 ± 0.066	-0.155 ± 0.114	0.342 ± 0.051	-0.088 ± 0.08	54.14 ± 36.21	22.85 ± 0.21	2/24
Clk4.1M>sgRNA ^{VGlut}	0.281 ± 0.116	-0.052 ± 0.102	0.4 ± 0.057	-0.174 ± 0.043	61.29 ± 46.5	23.45 ± 0.39	3/23
Clk4.1M>sgRNA ^{VGlut} ,Cas9.M6	0.181 ± 0.111	-0.074 ± 0.07	0.313 ± 0.101	-0.112 ± 0.047	77.13 ± 38.86	23.44 ± 0.38	0/21
Clk4.1M>Cas9.M6	0.294 ± 0.102	-0.096 ± 0.098	0.41 ± 0.035	-0.087 ± 0.051	80.18 ± 40.76	23.51 ± 0.25	0/24

** *P* < 0.01