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Abstract

We present MMORF-—FSL’s MultiMOdal Registration Framework—a newly
released nonlinear image registration tool designed primarily for application
to MRI images of the brain. MMOREF is capable of simultaneously optimis-
ing both displacement and rotational transformations within a single regis-
tration framework by leveraging rich information from multiple scalar and
tensor modalities. The regularisation employed in MMORF promotes lo-
cal rigidity in the deformation, and we have previously demonstrated how
this effectively controls both shape and size distortion, and leads to more
biologically plausible warps. The performance of MMORF is benchmarked
against three established nonlinear registration methods—FNIRT, ANTs and
DR-TAMAS—across four domains: FreeSurfer label overlap, DTT similarity,
task-fMRI cluster mass, and distortion. Results show that MMORF per-
forms as well as or better than all other methods across every domain—both
in terms of accuracy and levels of distortion. MMORF is available as part
of FSL, and its inputs and outputs are fully compatible with existing work-
flows. We believe that MMORF will be a valuable tool for the neuroimaging
community, regardless of the domain of any downstream analysis, providing
state-of-the-art registration performance that integrates into the rich and
widely adopted suite of analysis tools in FSL.
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1 1. Introduction

2 In this paper we describe and evaluate FSL’s MultiMOdal Registration
3 Framework (MMORF). MMOREF is a nonlinear image registration tool, pri-
» marily intended for magnetic resonance imaging (MRI) of the brain.

5 Biomedical image registration is a core component in most neuroimaging
s processing pipelines. If we assume that all brains, regardless of appear-
7 ance, are built using the same anatomical components arranged in the same
s configuration (i.e., they are topologically identical), then we can use image
o registration to find the set of deformations that map all brains to a com-
1 mon reference space/template brain in a one-to-one manner. In this case, a
un  template may refer to either a group-average brain or an individual subject
12 brain. Although this assumption may not always hold, it is valid enough
13 for registration to be used in both the localisation and quantification of sim-
1 ilarities and differences between individuals or population groups—that is,
15 the template allows us to say where the differences occur, and the mappings
16 ensure that what we are comparing is measured at the same place in all sub-
17 jects. A poor registration will, therefore, impact both the power to detect
18 and the ability to accurately localise any effects of interest across subjects.
19 However, the reality is that image registration is an ill-posed problem,
2 and therefore the true, one-to-one mapping can generally never be found.
a1 By ill-posed, we mean that there is typically not enough information in an
» image itself to find a mapping that uniquely maximises some measure of sim-
23 ilarity between a subject’s brain and the template. Therefore, registration
2 methods require regularisation to constrain the solution to be unique. Reg-
s ularisation achieves this by encoding a model of which types of deformations
» are considered more likely than others. The challenge in designing a regis-
27 tration tool is then to find the best way to combine image information and
s reqularisation to produce as good an approximation to the true mapping as
2 possible.

30 MMORF addresses the image information aspect of this challenge by
a1 taking a multimodal approach to computing brain similarity. Up until now we
2 have described registration as if there is only one measurement/image of the
;3 brain that we can use to find the correct mapping. However, with MRI we are
s able to acquire a number of different image modalities—all within the same
35 imaging session, and each with different contrast and information content.
s In MMORF, we have leveraged this complementary information to reduce
s7 the degree to which the registration problem is ill-posed, thereby improving


https://doi.org/10.1101/2023.09.26.559484
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.09.26.559484; this version posted September 27, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

;s our confidence that we are finding an accurate mapping for each subject.
s MMOREF'’s registration abilities extend beyond scalar modalities to include
w diffusion tensor imaging (DTT). When using the full tensor data (rather than
s scalar, rotationally-invariant, derived features such as fractional anisotropy
2 (FA)), it matches the directional information in the diffusion tensor to guide
s the alignment of, in particular, white matter.

o MMORF’s regularisation method is one of its most unique attributes. By
s employing a penalty that aims to preserve the original shape and volume of
s the data as far as is reasonable, it is able to produce deformations that are far
s more biologically plausible than those generated by conventional techniques.
s A detailed description of its implementation in MMORF, and a thorough
s evaluation of the benefits of this form of regularisation, can be found in
so Lange et al. (2020).

51 The cost of combining multiple modalities with a complex regularisation
52 model is that the computational requirements of the method increase. We
53 have addressed this from the outset by designing MMORF to use graphics
s« processing units (GPUs) to parallelise its execution. This allows MMORF to
55 execute 1mm isotropic registrations with reasonable runtimes of between 5
s and 45 minutes on modern hardware, depending on the number of modalities
sz used.

58 Through reducing the degree to which the registration problem is ill-
5o posed (using multimodal data), and producing more realistic deformations
0 in those regions where it is (using biomechanically realistic regularisation),
s1  MMORF is capable of state-of-the-art registration accuracy. In the methods
s section below we detail the most important design decisions made when de-
&3 veloping MMORF, so that how it operates can be clearly understood. We
s« then contextualise these decisions with reference to a set of comparable cur-
s rent registration tools. Finally, we validate and benchmark MMORF against
s these tools in order to demonstrate its performance and utility.

v 2. Methods

68 As stated in the introduction, the true one-to-one mapping between brain
s images can never be known, and therefore image registration can only find the
7 “optimal” mapping based on the available information and our prior beliefs
71 about what mappings are more likely than others. Unsurprisingly then,
72 registration is normally formulated as an optimisation problem, requiring a
73 cost function to minimise. MMORF is intended to be used with any number
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72 of scalar and tensor images driving the registration, and we therefore choose
75 to minimise a total cost function C,; that is defined as follows:

Crot(W) = (Z ACa(W, X) + ) NG (W, X) + A Co(w, x)> (1)

xEN s t

7 where w are the warp parameters being optimised, 2 is the domain over
77 which the warp is defined, A, are cost function weightings, and subscripts s,
7 t, and r refer to scalar, tensor and regularisation respectively.

79 Each scalar and tensor cost function is based on an image dissimilarity
so metric between a pair of images—one belonging to the reference subject (of-
s ten a template), and one to the moving subject. Although Equation 1 shows
&2 that these cost functions are separable, and can therefore be evaluated in-
&3 dependently, it is critical that within each subject all images are accurately
s co-registered. If not, then a single warp cannot correctly map all modalities
&s  between subjects, and registration accuracy will suffer. We do not attempt
s to ensure this within MMORF itself. Rather, we rely on running accurate,
& rigid, between-modality, within-subject registration using FSL FLIRT (Jenk-
gs inson and Smith, 2001; Jenkinson et al., 2002), as well as distortion correction
g0 for relevant modalities such as DTI (Andersson et al., 2003; Andersson and
o Sotiropoulos, 2016), before performing nonlinear registration. However, it is
a1 not necessary to resample any of the images following rigid alignment be-
o fore feeding them into MMOREF. Instead, MMORF expects a separate affine
3 transformation matrix to be supplied for each image being registered (in
s both the moving and reference subject datasets). This affine transformation
s points to a separate, user-specified, “warp-space image”, whose extents de-
o fine the domain over which MMORF will estimate and output its nonlinear
o7 deformation. This eliminates the need for multiple resampling of the data,
e and requires no matching of the image resolution or dimensions of any of the
o images being registered.

100 With this information in hand, the following sections elaborate on some
w1 of the key decisions that went into MMOREF’s design, and the role they play
02 in its performance.

w3 2.1. Optimisation Strategy

104 Nonlinear image registration tools generally use one of two iterative op-
105 timisation approaches—first or second order. First order methods consider

4
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ws only the gradient of the cost function, with respect to each optimisable pa-
w7 rameter, when picking a parameter update step. Second order methods ex-
s tend this by also considering how long the derivative is valid for and the
w9 interaction between parameters. First order algorithms tend to have up-
no date steps that can be calculated more quickly, but second order algorithms
m  tend to require fewer update steps to reach convergence. In our experience,
n2 the trade-off tends to favour second order approaches for methods such as
u3  MMORF.
114 We have, therefore, implemented two variants of the (second-order) Gauss-
us  Newton (GN) optimisation strategy—which is itself a variation on Newton’s
1s method.
Newton’s method is an iterative optimisation algorithm that uses a quadratic
Taylor approximation of the cost function C around the current set of pa-
rameters w (Nocedal and Wright, 2006, Ch.10, pp 254). That is:

1
C(w+ Aw) = C(w) + VC(wW)TAw + §AWTH(W)AW (2)
where VC and H are the gradient and the Hessian of the cost function,

respectively. The update Aw that minimises this approximation to the cost
function (when the cost function is convex) is then:

Aw = —H 1(w)VC(w) (3)

For cost functions that can be written in the form:

N
1
Clw) = 5 3" ) ®
i=1
The gradient is then:
N dc;
vew) = 3 etz o)
And the Hessian is:
N
Oc; T Oc; 9%c;
H(w) = ow 0w il )8W2 (6)
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w7 Gauss-Newton approximates H by dropping the second, mixed partial deriva-
us tive, term in Equation 6. Close to the optimum set of w, the Newton and
o Gauss-Newton Hessians tend towards equivalence. Further from the opti-
20 mum, the Gauss-Newton Hessian has the benefit of being symmetric positive
121 definite, and therefore the approximation of the cost function is always con-
122 vex. This ensures that each step is always in a direction that would improve
123 the original cost function.

However, the Gauss-Newton step can still lead to an increase in the cost
function if it oversteps. This can be addressed by the Levenberg-Marquardt
(LM) extension (Nocedal and Wright, 2006, Ch.10, pp258), which replaces
the Gauss-Newton Hessian (Hgy) with:

H;, = Hoy + AL (7)

124 For small values of A, the update Aw behaves much like a Gauss-Newton
s update, and for large values of \ it behaves more like gradient descent. After
16 choosing a sensible starting value for A (e.g., 0.001), a typical Levenberg-
12z Marquardt iteration then proceeds as follows:

128 e Calculate a candidate parameter update Aw using Equation 3.
120 o If C(w+ Aw) < C(w) accept the update and set A = X\ + 10.

130 o IfC(w+Aw) > C(w) set A = Ax10 and recompute Aw and C(W+Aw),
131 repeating until C(w + Aw) < C(w) and then accept the update.

132 The Majorise-Minimisation (MM) algorithm (Hunter and Lange, 2004)
133 is a method for cost function minimisation that can be used when storing
13 the full Gauss-Newton Hessian is infeasible (e.g., due to memory constraints,
135 which prove to be important in this application). In essence, what this
13 algorithm states is that if z(w) > y(w),Vw, with both y and z convex

137 and touching, then wy,; = argmin z(w) will either reduce y or leave it
W
s unchanged.

Since the quadratic Taylor approximation of C(w) using Hgy in Equation
2 is convex, it may serve as y. Chun and Fessler (2018) showed that because
the diagonal elements of Hgy are all positive:

Hyn = diag(|[Hen (1) = Hen (8)

130 where |Hgy| is the matrix of the absolute values of Hgy and 1 is column
o vector of ones. The > symbol means that H,,,, is at least as positive definite

6
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w as Hgy. Therefore, substituting Hy s for Hgy in the quadratic Taylor
12 approximation of C(w) majorises y, and may serve as z. In other words
w3 simply, replacing Hgy with Hj s in the LM algorithm and solving as usual
s satisfies the MM algorithm requirements.

145 The major advantage of using Hys,, is that it is only non-zero along its
us main diagonal, and therefore requires far less memory to store than Hgy.
w7 This is particularly important when the number of parameters in w is large,
1us as it may not be possible to store Hgy.

149 The reason for including both the Levenberg-Marquardt and Majorise-
150 Minimisation modifications of Gauss-Newton, is that MMORF both calcu-
151 lates the Hessian and solves for the update step on GPU hardware. GPUs
12 typically have a limited amount of RAM, and, therefore, storing the full
153 Gauss-Newton Hessian becomes impossible for warps beyond a certain res-
154 olution. At this point, MMORF switches to Majorise-Minimisation, which
155 requires on the order of 1000 times less memory. In practice, Majorise-
155 Minimisation requires more steps to converge, but requires no other changes
157 to the registration algorithm, making it an appealing option.

18 2.2. Transformation Model

150 MMORF employs a transformation of the small deformation framework
160 variety (Bajcsy and Kovacic, 1989; Miller et al., 1997)—that is, it defines the
11 deformation as a displacement field, rather than a velocity field as per the
162 large deformation framework (Bro-Nielsen and Gramkow, 1996; Miller et al.,
163 1997). A major difference between these two frameworks is their relationship
1« to diffeomorphism.

165 Diffeomorphism is a desirable property in image registration. Diffeomor-
16 phic transformations are smooth, one-to-one, and onto, and are therefore
17 guaranteed to induce neither folding nor tearing when applied to an image.
s The large deformation framework, and in particular the large deformation
160 diffeomorphic metric mapping (LDDMM) (Beg et al., 2005) family of tools,
o have the advantage that their transformation model can be made inherently
i diffeomorphic—i.e., they are, in principle, diffeomorphic by construction.

172 However, despite not being inherently diffeomorphic, the small deforma-
173 tion framework can be made diffeomorphic by employing a regularisation
17+ penalty that enforces diffeomorphism (Rohlfing et al., 2003). This has the
s benefit that warp-induced distortions, such as changes in shape and volume,
s can be calculated (and therefore controlled) directly from the model param-
17 eters themselves. In contrast, large deformation models require the vector

7
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s field that they parametrise to first be integrated over time and converted into
e a displacement field before being able to calculate such measures. Therefore,
o explicitly controlling the amount of distortion is harder in the large deforma-
1 tion framework, despite its guarantee of diffeomorphism. This is important in
182 our case, as the advantage of MMORF’s regularisation (described in Section
183 2.4) is that it nonlinearly penalises the stretching and compressing effects of
1s  the warp directly.

185 MMORF’s transformation is parametrised using cubic B-splines (Unser
s et al., 1993a,b). This imposes an inherent smoothness to the deformations,
17 as cubic B-splines, and therefore the warps, have C2 continuity. The warp
s field is then also well defined across all of the image (i.e., not just at voxel
180 centres), eliminating any need to match image subsampling or resolution ei-
1o ther before or during registration. Despite their smoothness, B-splines still
1 have compact support (i.e., the effect of a particular spline is exactly zero
102 at a fixed distance from the spline centre), and therefore interaction effects
13 between splines are fixed and finite. This has important implications for
e second order optimisation (such as the Gauss-Newton method employed by
1ws MMORF), since it means that the Hessian matrix (which encodes the inter-
106 action between optimisable parameters) is sparse and predictably patterned.
197 Furthermore, the spatial derivatives of B-splines are smooth and have a
108 closed form solution. Since these derivatives are required to calculate gradi-
109 ents and Hessians for the optimisation of warps in MMORF, this is compu-
200 tationally beneficial.

201 We now provide a more explicit description of how we have formulated our
202 transformation model, and how this interacts with calculation of the Hessian
203 during optimisation (the most computationally intensive part of the registra-
204 tion algorithm). A set of B-spline basis functions can be used to transform
205 & set of sample coordinates in a reference image f to their corresponding
206 coordinates in a moving image g as follows:
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f = Reference image
g = Moving image
N = Number of sampled voxels in f

x/y/z = x, y and z coordinates of samples in f

XT Ty X1 e IN

X=|y"|= |y w1 - yn
VAl 20 21 *c 2N
3xXN

M = Number of splines per warp direction

w,./w,/w, =z, y and z direction warp parameters

w;r; Wyro Wzl -+ WeMm

W= |wl|l = wo wy - wyy
Wl Wz Wz -+ WM
3xM

b,, = Vectorised m™ B-spline at sample positions X

b} boo bor -+ bon
T : :
. bl . blO S . .
B=| | = 1 spline per row
T
b M bao -+ -+ bun
- ~~ g
MxN 1 voxel per column

¢ (X, W) = Transformed sample coordinates
=X+ WB

207 Note that here we assume that the warp space and the reference image
28 f are the same, and that f and g are already affinely registered to each
200 other. We use the same configuration of B-splines to define the warps in all
20 3 directions (i.e., the number, order and spatial extent of splines defining
au the displacements in each direction (z, y and z) is the same, and they are
212 located identically in space). M is chosen to be the set of splines whose
213 spatial support, wholly or partially, overlaps with the domain over which f
24 is defined. The warp parameters w,, /. are then the coefficients of each B-
215 spline, and each parameter only affects the displacement in a single direction.
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216 The compact support of B-splines means that B is very sparse. Addi-
27 tionally, (disregarding edge cases) each row of B is simply a shifted version
218 of any other row. We therefore never store B explicitly, and instead compute
20 WB using convolution.
Another benefit of the sparsity in B is that it induces sparsity in the
Hessian of cost functions based on this transformation. For a mean squared
error cost function, each element of the Hessian can be calculated as:

9g 99
H,; = bi(x)b; (%) 5 ($(x)) 5 (H(x)), (9
=Y hOb 0 5 T (600) 5 T (00), ()
xebmbj N ~ _
— radient image
spline intersection gradient &
20 where #ﬁ(i) means “differentiate with respect to the direction in which B-

21 spline ¢ causes displacement to occur”. As each entry in the Hessian repre-
222 sents the interaction between two of the B-spline basis functions, only those
223 combinations of splines that overlap in their spatial support will ever produce
24 non-zero entries. The number of non-zero entries per row of the Hessian is at
»s most 3 x 73 = 1026 for 3D images and cubic B-splines. Considering that the
»s number of parameters being optimised over can easily exceed 10°, this would
27 lead to a matrix that is at least 99.9% sparse. The redundancy increases
»s  as the warp resolution increases (the knot-spacing is reduced), which means
29 that the more parameters one attempts to estimate, the sparser the Hessian
230 becomes. Therefore, the memory requirement for the Hessian scales much
2 better with resolution than might initially be feared.

22 2.3. Image Cost Functions

233 As stated earlier, MMORF optimises the cost function defined in Equa-
234 tion 4, which is the sum over individual cost functions for each pair of images.
235 In this section we describe the choice of cost function for scalar and tensor im-
26 ages, as well as how MMORF implements cost function masking/weighting.

ar 2.8.1. Scalar
Scalar image dissimilarity is calculated using the mean squared error
(MSE) across the image. That is, for two scalar images f and g:

Co(w, f.9) = 5 32 (F (9~ g (x,w))° (10)

x€EQN
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28 MSE is ideally suited to the GN family of optimisation methods, which have
230 an implicit assumption that the cost function being optimised is some form
a0 of squared difference.

281 Robust mean intensity estimation is used to scale each image separately in
a2 order to account for linear scaling intensity differences between image pairs.
23 When using MSE cost functions, spatial intensity inhomogeneities (e.g., due
24 to transmit and receive bias fields in MRI (Vovk et al., 2007; Andersson et al.,
25 2019)) can be mistakenly interpreted as image misalignment, leading to un-
25 mnecessary (and incorrect) image warping. In MMORF we therefore provide
27 the option to explicitly model such inhomogeneities as a smoothly varying
2s  multiplicative field acting on the reference image. This can be enabled or dis-
29 abled for each image pair independently. The bias field is parametrised using
250 cubic B-splines, and the resolution (knot-spacing) and smoothness (bending
251 energy (Bookstein, 1997)) are set on a per image pair basis.

s 2.3.2. Tensor

253 Tensor image dissimilarity is calculated using the mean squared Frobenius
s« norm (MSFN) across the image. This is exactly equivalent to summing the
s MSE for each of the 9 elements of the diffusion tensor, and therefore fits our
6 GN optimisation strategy. That is, for two tensor images F and G:

C(wF.G) = 53 S S (B (ew) ~ Gy (eow) (1)

xeQ i=1 j

257 Note that, in contrast to the scalar case, the values in the reference image
s F are also a function of the warp parameters w. This is because MMORF
0 applies the rotational effect of the warp only to the reference image, as well
20 as the usual displacement effect only on the moving image.

261 Rotation of tensors uses the finite strain (FS) method (Alexander et al.,
22 2001). The Jacobian matrix of the warp at each position J(x, w) represents
%3 the first order linear approximation of the deformation at that point, and
¢ from it the local rotational effect of the warp R(x,w) can be calculated
25 USIng:

R=(JJ")"2J (12)

11


https://doi.org/10.1101/2023.09.26.559484
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.09.26.559484; this version posted September 27, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

266 We include the effects of both displacement and rotation when calculating
»7  the gradient and the Hessian of the tensor cost function, using the derivation
s of Yeo et al. (2009) for the closed-form of the derivative due to rotation.

260 Since the diffusion tensor model is quantitative, no intensity rescaling is
o0 performed. This implicitly assumes that the tensors are always represented
on - with the same units. Similarly, fitting of the diffusion tensor compensates for
o2 any intensity inhomogeneity present in the raw diffusion-weighted images,
o3 and therefore no bias field estimation is required .

274 MMORF assumes that diffusion tensors are stored in FSL dtifit' for-
s mat—i.e., a 4D volume where the 4™ dimension contains the 6 upper-diagonal
a6 elements vectorised row-wise, and the x-direction is defined in radiological
2r - convention (R-L).

s 2.3.3. Masking

279 In certain instances it may be beneficial to focus a registration algorithm
%0 on a particular part of an image or, alternatively, for it to ignore a cer-
21 tain region. To this end, we have implemented masking/weighting within
282 MMORF

283 Masks can be supplied for all reference and moving images independently,
s and it is required that these masks be in the same space as their corresponding
s images. The masks are treated as containing voxelwise multiplicative factors
286 that are applied to the cost function during optimisation. Setting any region
257 of a mask to zero will cause the algorithm to ignore the impact of that region’s
s similarity between reference and moving images, and the deformation in that
20 region will be determined purely by the regularisation. However, masks do
20 not have to be binary, and so a “soft” mask can be used to favour the
21 alignment of one region (e.g., the brain over the rest of the head), without
202 ignoring it completely.

203 In MMORF, masks can be enabled or disabled for each image at every
20 iteration independently, allowing for maximum flexibility. We have, at times,
205 found it useful to have a mask be applied only during higher resolution iter-
206 ations of the registration.

207 2.4. Regularisation

208 Since image registration is an under-constrained problem, regularisation
200 18 essential to ensure that the resulting warp fields are biologically plausible.

Thttps://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FDT /UserGuide#DTIFIT
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s0 A plausible warp should, at the very least, be diffeomorphic. Diffeomorphic
;0 warps are both one-to-one and onto—that is, each point in the reference
32 space maps to a unique point in the moving space, and each point in the mov-
33 ing space is reachable from the reference space. They require the mapping
3¢ to be continuous, smooth (i.e., have a continuous derivative), and invert-
25 ible (i.e., have a finite, positive Jacobian determinant everywhere). B-spline
6 parametrised warps are, by definition, smooth and continuous. Therefore,
so7  provided the Jacobian determinant remains > 0 everywhere, the warp is
308 diffeomorphic.

300 Diffeomorphism is, however, only one desirable trait in a warp. It guar-
a0 antees that an image is never torn or folded, but that is all. Typically,
su  penalising the variation of the Jacobian determinant from a value of 1 is
a2 used to encourage or ensure (depending on the choice of penalty) that warps
sz remain diffeomorphic in the small deformation framework. However, penal-
s ising the Jacobian determinant directly only controls volumetric distortion
a5 (i.e., changes in an object’s size), and does not in any way control shape dis-
u6  tortion (i.e., changes in an object’s shape). The singular values of the local
a7 Jacobian represent stretches/compressions along three orthogonal directions.
s1s Therefore, the difference between them indicates the degree of shape distor-
a9 tion. Because the Jacobian determinant is the product of the singular values
»0 of the Jacobian, one can control changes in both size and shape by controlling
;21 only the singular values. Penalising deviations of the singular values from 1,
s and ensuring that none become negative, leads to diffeomorphic warps with
23 desirably little distortion in both volume and shape.

324 In MMORF, the specific penalty used is the mean (across the image) of
w5 the sum of the squared logarithms of the singular values at each voxel, as
2 shown in Equation 13 where s; is the i*® singular value of the local Jacobian
7 matrix J. This is an adaptation of the penalty first proposed by Ashburner
2 et al. (1999, 2000). Its implementation in MMORF is described (and eval-
2o uated) in detail in Lange et al. (2020), where we demonstrate the positive
a0 effect that this form of regularisation has on the biological plausibility of the
s warps MMORF produces.

€ (w) = o 303 (o, (3 () (13)

xe 1=1
33 By taking the squared logarithm, this penalty tends to infinity as any
;3 singular value tends to either zero or infinity. Additionally, this does not
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3¢ penalize any transformations that are locally rigid (i.e., regions that are
135 only translated and/or rotated). Therefore, MMORF regularisation enforces
136 diffeomorphism and encourages local rigidity thereby controlling both volu-
;37 metric and shape distortions. The highly nonlinear form of the regularisation
s also allows the weighting to be set such that large deformations are allowed
139 when necessary, while still ensuring diffeomorphism, thereby overcoming one
a0 of the perceived limitations of the small deformation framework.

s 2.5, Inverse Consistency

342 An inverse consistent registration algorithm will produce the inverse of the
.3 original warp when the reference and moving images swap roles (Christensen,
sa 1999). Since we often consider the choice of reference and moving image to
1s be arbitrary (e.g., such as when registering two individuals to each other),
us this is a desirable property to have.

347 Some tools, such as ANTs (Avants et al., 2008), are inverse consistent
us by design (excluding the affine initialisation). This is achieved by registering
s both moving and reference images to a mid-space. However, this essentially
0 means running two registrations per pair of subjects, which takes double the
51 time to compute.

352 In MMORF we have taken a different approach where, rather than en-
13 forcing a symmetric warp, we symmetrise the cost function being minimised
3¢ instead. This is achieved by multiplying each cost function (both image sim-
355 ilarity and regularisation) by a weighting term of 1 + |J|. Since the cost
36 functions are evaluated on a regularly sampled grid in the space of the refer-
37 ence image, the intuition for this weighting is that it always accounts for the
s total volume in both images to which that value of the cost function applies.
9 In the continuous case, this can been shown to exactly symmetrise the cost
w0 function (Tagare et al., 2009). However, since we are dealing with discretely
1 sampled data, this correction is only approximate in MMOREF. Nevertheless,
w2 this is a better solution than leaving symmetry unaccounted for, and has
3 the computational benefit that only one warp field need be calculated during
¢ registration.

s 2.6, Multiresolution Pyramid

366 MMORF employs a coarse-to-fine multiresolution optimisation strategy
w7 (Bajesy and Kovacic, 1989; Szeliski and Coughlan, 1997). This has been
e shown to be beneficial in avoiding local minima during optimisation, as well
w0 as accelerating convergence, across a wide variety of nonlinear registration

14
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s tools (Zhang et al., 2006; Andersson et al., 2007; Ashburner, 2007; Avants
s et al., 2008; Modat et al., 2010). In principle, such approaches try to match
sz low-frequency image information first, followed by progressively higher fre-
sz quency information at each subsequent level. Traditionally, users are required
s to specify a downsampling factor and amount of smoothing for each level of
ss the pyramid. The lower-resolution warp is then defined on the coarser, down-
s sampled reference image grid. A potential pitfall of this approach is that if
sz insufficient smoothing is applied to the image, then the process of down-
ws  sampling introduces aliases in the information being aligned due to violation
sre - of the Nyquist criterion. MMORF overcomes this by defining the pyramid
30 according to warp resolution (knot spacing) and image smoothing only. An
;1 acceptable level of subsampling is then automatically determined by treating
;2 the Gaussian smoothing kernel as a low-pass frequency filter. Therefore, the
;3 user can iteratively optimise the registration of different frequency content
;s within the image through applying decreasing amounts of smoothing while
s keeping the warp resolution the same, without any problems with aliasing.
6 In practice, we restrict the downsampled resolution to be at least as high as,
;7 and at most four times higher than, the warp resolution at each level of the
388 pyramid.

0 2.7. Other Implementation Considerations

390 MMOREF is written in C++ and makes extensive use of GPU parallelisa-
;1 tion using Nvidia’s CUDA framework (NVIDIA, 2019). Without the use of
32 GPU parallelisation, certain aspects of the registration would be too compu-
503 tationally burdensome to allow MMORF registrations to complete within a
54 reasonable runtime. With GPU acceleration, a typical 1 mm isotropic regis-
s tration with MMORF takes /=10 min for a single scalar, unimodal image pair
s and /45 minutes for a single scalar, single tensor, multimodal image pair.
s However, this reliance on CUDA means that MMORF is only supported
38 on Linux devices with Nvidia GPUs. MMORF uses a mixed computation
0 model, with only the most time-consuming components of the registration
a0 algorithm being ported to the GPU. These include

401 e [Image interpolation
402 e Cost, gradient and Hessian calculations
403 e Solving the system of linear equations for update steps

15
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as  Of these, the Hessian calculation is by far the most computationally com-
w5 plex, with those of the regularisation and the rotational component of the
ws DTI cost functions being particularly burdensome. For these calculations,
wr GPU acceleration is on the order of 20-40x (depending on warp resolution,
w8 image dimensions and image subsampling (Lange et al., 2020, Supplementary
w0  Material: GPU Considerations and Code Profiling)).

410 MMOREF has been designed from the outset for integration into the FSL
a1 suite of neuroimaging tools (Jenkinson et al., 2012). As such, it expects
a2 inputs in FSL convention. Specifically, affine matrices between input images
a3 and the warp space should be in FLIRT format and DTI images should be in
aia dtifit format. MMORF output warp fields follow existing FSL conventions
a5 and can therefore serve as drop-in replacements for FSL commands such as
a6 applywarp.

a7 3. Theoretical Differences Between Methods

418 With an understanding of the design considerations that went into MMORF,
a0 we will now briefly describe how some of these choices compare to three ex-
20 isting registration tools, namely: FNIRT (Andersson et al., 2007), ANTs
21 Avants et al. (2008) and DR-TAMAS (Irfanoglu et al., 2016). These three
w22 tools will then be used to validate and evaluate the performance of MMORF
a3 1n Section 4.

a2 FNIRT was chosen as it is the predecessor to MMORF, and the cur-
o5 rent nonlinear registration tool in FSL. The largest differences between these
w6 methods are MMORF’s multimodal capabilities, regularisation, inverse-consistency
w27 and GPU parallelisation. In terms of similarities, they share the same trans-
w8 formation and bias field models, and very similar optimisation strategies at
29 low resolutions. At higher resolutions, FNIRT switches to a Scaled Conju-
w0 gate Gradient algorithm (Mgller, 1993), in contrast to MMORF’s MM ap-
a1 proach. Finally, FNIRT performs a simultaneous optimisation of both warp
a2 and bias fields, whereas these are optimised in a greedy, interleaved manner
13 by MMORF. This is because simultaneous optimisation results in a Hessian
sa without the regular diagonal structure, on which MMORF relies for efficient
a5 GPU parallelisation. In practice, despite some similarities in design choices,
a6 they perform very differently—even when MMORF is run, like FNIRT, in a
s37  unimodal configuration. The resulting warps have a very different character,
a3 which we largely attribute to the superior regularisation metric employed in
10 MMORF. MMORF’s inputs and output files are fully compatible with those
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a0 of FNIRT, and it can therefore serve as a drop-in replacement in FSL analysis
a1 pipelines.

a2 ANTSs was chosen due to its consistently high performance, including in
a3 dedicated registration comparisons (Klein et al., 2009). It has become a de
wa  facto standard for nonlinear registration in much of medical imaging, and
ws serves as a benchmark against which to compare MMOREF’s performance.
ws ANTs is a purely scalar registration method, although it can be applied to
w7 multiple scalar input modalities simultaneously. ANTSs uses a symmetric,
us  greedy approximation of large deformation diffeomorphic metric mapping
1o (LDDMM) known as symmetric normalisation (SyN). At each iteration, an
w0 update step is composed with the current warp until convergence is reached..
1 If each update step is diffeomorphic, then the composition of all updates is
w2 also diffeomorphic (apart from arithmetic floating point errors). Symmetry
3 is achieved by registering both reference and moving images to a mid-space
s at each iteration. There are a number of similarity metrics implemented,
ss5 but we will limit ourselves to locally normalised cross-correlation (LNCC),
s6  as this has proven to perform best in previous studies. ANTs regularisation
ss7  consists of simple Gaussian smoothing, which may be applied independently
s to both update steps and to the final deformation field.

459 DR-TAMAS was chosen as it is currently the only other tool, to our
wo  knowledge, which can simultaneously register both tensor and scalar modal-
w1 ities in a single framework. It has also proven to match or exceed the best
w2 performing diffusion registration tools currently available. As in MMORF,
a3 finite-strain reorientation of the tensors is taken into consideration during
se each update step (i.e., it contributes to the gradient of the cost function,
w5 and is not simply applied after each update step). In contrast to MMORF,
w6 the DTI dissimilarity is divided into two separate cost functions—the trace
w7 similarity (a rotationally invariant scalar), and the deviatoric tensor similar-
s ity (sensitive to relative tensor orientation). For scalar inputs, DR-TAMAS
w0 uses an LNCC cost function. The transformation model and optimisation
a0 strategy are the same as ANTs, and therefore DR-TAMAS can be considered
- as a truly multimodal variant of ANTs. In many ways, then, DR-TAMAS is
a2 the natural alternative to MMOREF.

473 There are clearly many other nonlinear registration tools against which we
s could have compared, but we believe that these choices allow us to effectively
a5 benchmark the relative performance of MMORF against those tools that are
a6 most likely to be considered as an alternative by users.

17
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sz 4. Validation

a78 Benchmarking a registration tool can be difficult to do well. Measures of
a0 accuracy are often biased towards metrics based on the modalities that drove
s0 the registration (Irfanoglu et al., 2016), and evaluations hence risk some de-
a1 gree of circularity. Methods often perform best when evaluated using metrics
12 based on the same data that drove the registration (Irfanoglu et al., 2016),
w3 which risks introducing a degree of circularity in these types of evaluations.
ssa We have, therefore, endeavoured to perform a holistic evaluation of registra-
w5 tion performance by including a range of structural-, diffusion-, functional-
w6 and morphometry-derived metrics. Structural and diffusion metrics are the
s most circular, since these are the modalities that drive the registration (ei-
s ther individually or jointly) in all methods—however, they may highlight
w0 both the value and the pitfalls of using the data you wish to analyse to
w0 drive alignment. Functional metrics are based on a fully held-out modality
s (that is not seen by any of the registration tools) and therefore serves as
w2 the best proxy of true consistency of anatomical alignment across individ-
w3 uals—since overfitting to a driving-modality (e.g., unrealistically deforming
w4 the brain to make structural images appear very similar) is likely to have a
w5 negative effect on functional alignment (Coalson et al., 2018; Robinson et al.,
w6 2018). Morphometry metrics (e.g., measures of distortion that represent how
w7 aggressively the images are deformed) are essential to contextualise and in-
w8 terpret the accuracy/similarity metrics—that is, it is important to know how
w0 aggressively a tool needs to deform an image to achieve a certain degree of
so0 Tregistration accuracy, with less distortion being preferred.

501 We chose the Human Connectome Project (HCP) young adult 1200 re-
s lease (100 unrelated subjects subset) dataset as the basis for our testing
s (Van Essen et al., 2012, 2013; Glasser et al., 2013). The HCP dataset con-
soo tains high quality T1w (0.7 mm isotropic), diffusion (1.25mm isotropic) and
sos task-fMRI (2.0 mm isotropic) scans. This allows both unimodal T1w and
sos multimodal T1w + DTI registration to be conducted with the same dataset,
so7 as well as evaluating registration metrics based on all three modalities. The
ss minimally preprocessed HCP data were used as far as possible (Glasser et al.,
so0  2013), which includes motion and distortion correction with FSL topup and
s0 eddy (Andersson et al., 2003; Andersson and Sotiropoulos, 2016), and coreg-
su istration of the diffusion data to T1w space. The task-fMRI data were,
sz however, reprocessed in subject T1w space with no smoothing (rather than
si3 in MNI-152 space with 2.0 mm isotropic smoothing). The diffusion tensor
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s model was fit to the b=1000s/mm? shell only using FSL dtifit.

515 The Oxford-MultiModal-1 (OMM-1)? template was used as the reference
sis space for all registrations (Arthofer et al., 2021, 2022). This template was
sz constructed from 240 UK Biobank (Miller et al., 2016) subjects, and has
sis both T1w and DTI volumes that are intrinsically co-registered. The OMM-1
s10  therefore provides a common space in which to compare methods that either
s0 use T1w images only, or a combination of T1w and DTI images to drive the
so1 Tegistration.

522 We calculate two structural accuracy metrics based on pairwise label sim-
s23 ilarity. The first is a measure of overlap (specifically, the Jaccard coefficient)
2« and the second a measure of distance (specifically, the Hausdorff distance)
s of automatically generated cortical and subcortical labels for each pair of
s subjects following resampling to template space (see Section 4.2 for details).
so7  The Jaccard coefficient for two regions A and B is defined as:

ANB

AUB’
s2s and ranges from 0 for no overlap to 1 for perfect overlap. The Hausdorff
s20 distance is the maximum distance between the surfaces of the regions being
s compared. The labels are derived from the T1w images, and therefore we
s expect them to favour scalar registration methods that can match the T1w
52 images without being penalised if that reduces DTI similarity. We have
533 avoided any simple intensity-based or tissue-type overlap metrics, as these
s3 are known to correlate poorly with true anatomical consistency (Rohlfing,
s 2012).
536 We then calculate three diffusion accuracy metrics that compare the sim-
s37 ilarity of the template DTI modality with each subject’s DTI data after
s resampling to template space. Each subject is compared voxelwise to the
s template, and the average across all voxels within a mask is taken as the
s90 overall metric for that subject. Overall tensor similarity (OVL, Equation 15)
san  is the first metric, and balances directional and magnitude similarity between
se2  tensors and is a good general indicator of the similarity between two tensors.
ses  Linear-shape weighted V1 similarity (CLV1, Equation 17) is the second met-
saa - Tic, and is defined as the inner product of the first eigenvector of the diffusion
ss tensor (V1) from the template with V1 from the warped subject, weighted

(14)
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s¢s by the coefficient of linear shape (CL) for the template tensor (i.e., how sim-
s ilar V1 is, weighted by how informative V1 is). Planar-shape weighted V3
ses (CPV3, Equation 19) is the third metric, and is defined as the inner product
s of the third eigenvector of the diffusion tensor (V3) from the template with
ss0 V3 from the warped subject weighted by the coefficient of planar shape (CP)
ss1 for the template tensor (i.e., how similar V3 is, weighted by how informative
52 V3 is). See Figure 1 for a visual depiction of CL and CP maps of the OMM-
53 1 template. In areas where CL is large, the tensor shape is largely prolate
s (cigar-shaped), and therefore the direction of maximum diffusivity (i.e., V1)
5 1s well defined. In areas where CP is large, the tensor shape is largely oblate
sss  (plate-shaped), and therefore the direction of minimum diffusivity (i.e., V3)
ss7 is well defined. CLV1 and CPV3 specifically probe how well orientational in-
sss formation has been aligned, which is most relevant in white matter regions.
50 We expect those tools that consider rotational information (i.e., DTI data)
so0 during registration to perform best in these metrics.

561 The fMRI accuracy metric used is task-fMRI cluster mass. This measures
s how consistently the registration tools are able to align those regions of the
s3  brain that are significantly activated (or deactivated) when performing a task.
ss« T'his assumes a general correspondence between brain structure and function,
sss  but this need not be exact. The benefit of this metric is that it is entirely
ses independent of the modalities driving registration (i.e., Tlw and DTT) and,
ss7 therefore, there is little to no circularity in its interpretation, which cannot
ss¢  be said for the previous metrics.

560 Finally we calculate both size (|J|) and shape (CVAR—see Section 4.2.5
so for definition) distortion metrics to evaluate how much each tool has had
s to deform the subject’s images to match the template. For any given level
s of accuracy (i.e., the preceding metrics) a smaller amount of distortion is
s.3  usually preferred, as this indicates that the registration method is changing
sz the original data as little as possible.

575 4 1. Ethics

576 All human imaging data used in this work are part of the open access
s7 Human Connectome Project Young Adult (HCP-YA) dataset. The data are
s.s - pseudonymised and identifiable visual features, such as the face and ears, are
sto - obscured. Written informed consent to share the data “broadly and openly”
se0 was obtained for all participants by the original HCP-YA researchers (Elam
ss1 et al., 2021).
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Figure 1: Visualisation of linear and planar shape coefficients in OMM-1 space:
From top to bottom: Linear coefficient (CL) map of the template, T1w template for
reference, planar coefficient (CP) map of the template. Images are directionally encoded
colour maps of V1 and V3 respectively. Green = Anterior-Posterior, Red = Left-Right,
Blue = Inferior-Superior. Both CL and CP values are highest in the white matter, but
cover complementary regions therein. CLV1 is most sensitive to how well the primary
diffusion direction is matched in voxels where diffusion occurs parallel to that axis only.
CPV3 is most sensitive to how well the tertiary diffusion direction is matched in voxels
where diffusion occurs within a plane defined by the primary and secondary diffusion
directions. Together, these represent the voxels where tensor orientation can be reliably
described by a single direction. 21
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se2 4.2. Methods

583 Each of the following steps was performed independently for each regis-
ssa  tration method.

sss 4.2.1. Registration

586 All registration was performed to the OMM-1 template. This template
ss7  contains both T1w and DTI volumes with isotropic resolution of 1 mm. Since
sss  both modalities were jointly aligned during template creation, they are intrin-
ss0  sically spatially consistent at the voxel level. It is therefore a good choice for
so0 registration with both unimodal and multimodal tools. Each tool was used
s to register all of the 100 unrelated HCP subjects to the template. FLIRT,
so FNIRT and ANTs used the T1w image only, while MMORF and DR-TAMAS
s used both the T1lw and DTI images. The FLIRT affine matrix was used to
so« initialise both FNIRT and MMORF, whereas ANTs and DR-TAMAS used
sos their own affine registration methods. FNIRT and MMORF were run with
so6 custom configurations identified to empirically produce good results. ANTs
s and DR-TAMAS were run with slightly modified configurations that were
ss found to improve registration accuracy over the defaults. All methods were
s00 TUN using a multi-resolution pyramid approach to a final warp resolution of
60 1mm isotropic.

oor  4.2.2. T1w FreeSurfer Label Overlap

602 Automatically segmented subcortical (ASEG atlas, (Fischl et al., 2002,
s0s 2004)) and cortical (Destrieux 2009 atlas, (Destrieux et al., 2010)) parcella-
s0a tions for each subject were warped into template space. Jaccard coefficients
s0s (measuring label overlap) and Hausdorff distances (measuring the maximum
s0s error in label boundaries) of the corresponding warped parcellations were
o7 calculated for every possible pair of subjects. A pairwise approach was used
s because there are no target labels in template space. The average coefficient
00 for each parcellation was then calculated across pairings for each subject,
s10 resulting in 100 values for each parcellation.

o 4.2.3. DTI Similarity

612 Combined affine and nonlinear (apart from FLIRT) warp fields were used
s13 to resample each subject’s DTI volume into template space. Resampling of
o1 tensors was performed using the FSL tool vecreg, which includes preserva-
a5 tion of principle direction (Alexander et al., 2001) reorientation, which is the
s16 Most accurate way of accounting for the rotational effect of the warps when
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sz resampling DTT data. Tensors were then decomposed into three Eigenvalue-
s FEigenvector pairs (L1/2/3 and V1/2/3 respectively). OVL, CLV1 and CPV3
s were then calculated between each subject’s warped DTI volume and the
20 template. A pairwise approach was not necessary here since the DTI tem-
e21 plate volume itself acts as the target. CL and CP weighting coefficients
622 (Alexander et al., 2000) were generated from the template DTI volume only.
23 V1 and V3 similarity was calculated as the magnitude of the dot product
24 Of template and warped subject vectors in each template voxel. Similarity
s metrics were calculated per voxel according to the following formulae:

S LiyLiy, (VilViy,)®

OVL = - (15)
S LiLiy,
L1, — L2,
CL = L1, + L2, + L3, (16)
CLV1 = CL [V1TV1,,| (17)
2 (L2, — L3,)
P= 1

C L1, + L2, + L3, (18)
CPV3 = CP [V3IV3,,| (19)

s2s where the subscripts » and m represent the reference and resampled moving
sz image respectively. All metrics were calculated within the template brain
s Mmask only.

o0 4.2.4. tfMRI Cluster Mass

630 The HCP task battery (Barch et al., 2013) consists of 7 tasks from which
e1 86 contrasts are derived, and used to generate contrast of parameter esti-
2 mate (COPE) images in subject T1w space. For each subject, the 8 COPE
633 images were resampled into template space. FSL Randomise (Winkler et al.,
s 2014) was then used to perform a group-level, non-parametric, ordinary-least-
635 squares, random-effects, one-group t-test on the mean COPE image (across
63 subjects) for each contrast. The results of the group-level processing are 86
e (-statistic maps/images and 86 family-wise-error (FWE) corrected p-value
33 maps/images (one per contrast). The t-statistic map represents the group
e30 activation for a particular contrast, where more accurately aligned activa-
a0 tions lead to higher ¢-statistics. The p-value map represents the statistical
sa1  significance of the t-statistic at each voxel.
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642 Cluster mass was then calculated as follows. Thresholding was applied
3 to the FWE-corrected p-value map (at p < 0.05) for each contrast, to give
saa a binary mask of significantly activated regions. This mask was then ap-
sas  plied voxel-wise to the t-statistic map. The masked t-statistic map was then
sas  multiplied voxel-wise with a grey matter mask of the template, and summed
sar across all voxels. The summed value is what we refer to as cluster mass, and
s 1S a single number per contrast and registration method. Cluster mass is,
a9 therefore, increased by both higher ¢-statistics and better alignment of grey
0 matter. It can be calculated independently for each registration method,
1 simplifying between-method comparisons

2 4.2.5. Distortion

653 Two measures of distortion are considered, both evaluated within the
s« template brain mask.
655 The first is the 5" to 95" percentile range of the log-Jacobian determinant

ess  (log |J|). This is a measure of volumetric distortion. Since the histogram
es7 of log|J| tends to be centred around zero, the mean is uninformative and,
s therefore, a range is more useful. This a fairly robust measure of the extent
ss0 to which the local effect of the warp field is to expand/contract voxels (and
sc0 1is equally sensitive to both).
The second is the average cube-volume aspect ratio (CVAR, (Smith and
Wormald, 1998)), defined as:

3
OVAR = ¢ —Sizmaz__ (20)
S1 X 89 X 83

s1 Where s; are the singular values of the local Jacobian matrix. CVAR repre-
sz sents the cube-root of the ratio of the volume of the smallest regular cube
s which can fully enclose the cuboid, to the cuboid’s own volume. Alterna-
sca  tively, for a deformation one can equally well define it as the cube-root of the
s ratio of the largest Jacobian singular value cubed, to the Jacobian determi-
sss nant. This is a pure shape-distortion measure that is invariant to volumetric
ss7 changes. For a perfect cube its value is 1, and it is greater than 1 for any
s shape where one or more sides of the cube are a different length to the others.
0 Since it is always > 1, the mean across voxels is a meaningful measure of the
s0 extent to which the local effect of the warp field is to alter the original shape
enn  of the underlying voxels.

672 Between them, these two measures present a good summary of the extent
73 to which the warp is distorting the anatomy of the brain to achieve a given
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Table 1: Summary of results for all domains. Structural (FreeSurfer labels): me-
dian Jaccard index (JI) and Hausdorft distance (HD) across subjects for both subcor-
tical and cortical labels. Diffusion (DTI): median overal tensor similarity (OVL), linear
coefficient-weighted V1 similarity (CLV1) and planar coefficient-weighted V3 (CPV3) sim-
ilarity. Functional (¢fMRI): Total cluster mass (CM) for all contrasts. Distortion: median
50 to 95 log-Jacobian determinant range (|J|) and cube-volume aspect ratio (CVAR)
across subjects. The best performing method in each metric is highlighted.

FreeSurfer Labels DTI tfMRI Distortion
Subcort Cort

I1 D 71 HD OVL | CLV1 | CPV3 CM |J] CVAR
FLIRT | 0.449 | 5.794 | 0.197 | 10.797 | 0.669 | 0.802 | 0.755 2.967e+7 - -

FNIRT | 0.606 | 5.160 | 0.409 | 9.329 | 0.776 | 0.873 | 0.854 3.718e+7 | 1.858 | 1.496

ANTSs | 0.652 | 4.707 | 0.397 | 9.147 | 0.802 | 0.886 | 0.867 3.736e+7 | 1.197 | 1.366

DR-TAMAS | 0.640 | 5.287 | 0.373 | 9.406 | 0.817 | 0.896 | 0.869 3.906e+7 | 1.390 | 1.374
MMORF | 0.664 | 4.891 | 0.399  9.102 | 0.825 | 0.900 | 0.872 | 3.917e+7 | 1.202 | 1.353

ea  degree of registration accuracy. In general, lower distortion is for a given
s level of accuracy is preferred. When both distortion and accuracy increase
e76 then a more nuanced interpretation is required based on the relative changes
ez 1n each.

o8 4.3. Results

679 The results across all domains and metrics are summarised in Table 1.
0 More detailed descriptions with accompanying figures are presented in the
1 subsections that follow. Many figures utilise raincloud plots (Allen et al.,
2 2021) that simultaneously show the raw data, a box and whiskers plot, and a
se3 density estimate. In all cases the interpretation of the box and whisker part
e« Of the plots is the same—the box shows the quartiles (258, 50! and 75
sss percentiles), the whiskers extend to the final non-outlier datapoint, and the
sss diamonds show outliers (any point more than 1.5x the interquartile range
ee7 from the edges of the box).

s 4.3.1. T1w FreeSurfer Labels

689 The Jaccard index and Hausdorff distance results are presented in Figures
so 2 and 3 respectively. In all cases, nonlinear registration leads to a major
o1 improvement in both metrics. MMORF and ANTs produce the best Jaccard
02 index results in the subcortex, with FNIRT narrowly outperforming them in
sz cortical regions. Hausdorff distance performance is slightly better in both
soa subcortical and cortical regions for MMORF and ANTs. It is worth noting
s that subcortical contrast is relatively poor in Tlw images from the HCP
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0 dataset, and certain structures (the left pallidum in particular) are poorly
v segmented in a number of subjects. This is the cause of the relatively heavy
e0s tails towards low Jaccard coefficients in Figure 2a.

00 4.3.2. DTI Similarity

700 OVL, CLV1 and CPV3 similarity results are presented in Figures 4 to 6 re-
700 spectively. In all cases, the trend is the same: affine registration with FLIRT
w2 performs worst followed by FNIRT, ANTs, DR-TAMAS, and MMORF (in
703 that order).

s 4.3.3. tfMRI Cluster Mass

705 Cluster mass results are presented in the form of percentage difference
706 plots, and warrant some guidance on their interpretation. Each point on the
77 plot represents one contrast. When comparing method A to method B, the
708 X-axis represents the cluster mass of method A. The z-axis is log-transformed
700 to account for the large range in cluster mass across contrasts. The y-axis
70 represents the percentage improvement in cluster mass by method A over
m1 method B. Therefore, a point at location (z,y) = (10, 10) represents a con-
72 trast with a cluster mass of exp(10) for method A, and a 10 % improvement
713 in cluster mass when using method A over method B. Similarly, a point at
na location (x,y) = (15, —5) represents a contrast with a cluster mass of exp(15)
75 for method A, and a 5 % reduction in cluster mass when using method A over
76 method B. By choosing percentage difference for the y-axis we remove the
77 bias towards large cluster mass contrasts, which would otherwise dominate
ns if y were instead the simple difference in cluster mass between methods.

719 Cluster mass comparisons for MMORF vs FLIRT, FNIRT, ANTs and
720 DR-TAMAS are presented in Figures 7 to 10 respectively. MMORF produces
71 a large improvement across all contrasts compared to FLIRT, confirming
722 that the CM metric is sensitive to improved registration accuracy. MMORF
723 improves CM across most contrasts compared to FNIRT and, to a slightly
724 lesser extent, ANTs. MMORF and DR-TAMAS produce very similar results
s for contrasts with high CM (towards the right of the x-axis), but MMORF
726 performs consistently better for small and medium CM contrasts.

21 4.3.4. Distortion

728 Comparisons of the 5% to 95" percentile Jacobian determinant range
720 (volumetric distortion) and the average CVAR (shape distortion), which are
730 both evaluated only within a brain mask, are presented in Figures 11 and
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(a) Jaccard Index: Subcortical
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(b) Jaccard Index: Cortical
Figure 2: Subcortical (a) and cortical (b) Jaccard indices for FreeSurfer seg-
mentation overlaps: All nonlinear methods improve over affine only, with the greatest

improvement being in the cortex. Across all labels, MMORF and ANTSs perform similarly
(and best), with only FNIRT slightly outperforming them in the cortex.
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Figure 3: Subcortical (a) and cortical (b) Hausdorff distances for FreeSurfer
segmentation overlaps: All nonlinear methods improve over affine only, with larger
improvements evident in the cortex. Performance is very similar across all methods, with
ANTs and MMOREF slightly outperforming the others.
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Figure 4: Overall tensor similarity (OVL): Calculated within a mask of the template
white matter, defined as FA > 0.2. All nonlinear methods improve over affine only, with
those methods that include DTI data in the registration (MMORF and DR-TAMAS) out-
performing the T1w-only methods (FNIRT and ANTs). MMORF performs best overall.
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Figure 5: Linear shape weighted V1 similarity (CLV1): All nonlinear methods
improve over affine only, with those methods that include DTI data in the registration
(MMORF and DR-TAMAS) outperforming the T1w-only methods (FNIRT and ANTs).
MMOREF performs best overall.
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Figure 6: Planar shape weighted V3 similarity (CPV3): All nonlinear methods
improve over affine only, with those methods that include DTI data in the registration
(MMORF and DR-TAMAS) outperforming the T1w-only methods (FNIRT and ANTS).
MMORF performs best overall.
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Figure 7: MMORF vs FLIRT cluster mass: Across clusters of all size, MMORF
(nonlinear) outperforms FLIRT (linear), with an average improvement in cluster mass of
~ 75%. This is not surprising, but serves to demonstrate that cluster mass is sensitive to
registration accuracy.
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Figure 8: MMORF vs FNIRT cluster mass: MMORF outperforms FNIRT with an
average improvement in cluster mass of ~ 12%. The largest improvements are in the
mid-sized clusters.
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Figure 9: MMORF vs ANTSs cluster mass: MMORF outperforms ANTs with an
average improvement in cluster mass of ~ 7.5%. The largest improvements are in the
mid-sized clusters.
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Figure 10: MMORF vs DR-TAMAS cluster mass: MMORF outperforms DR-
TAMAS with an average improvement in cluster mass of ~ 2%. The largest improvements
are in the mid-sized clusters.
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7 12 respectively. FNIRT shows significantly more distortion than the other
722 methods. ANTs and MMORF display similar levels of volumetric distortion,
733 that are lower than DR-TAMAS. MMORF displays the least shape distor-
74 tion, followed by ANTs and DR-TAMAS. The difference between ANTs and
75 DR-TAMAS is likely due to larger deformations within the white matter with
76 DR-TAMAS, due to diffusion information driving the registration harder in
737 those regions.

138 4.4. Summary

739 Of the methods tested, MMORF is the most consistently high-performing
0 across the full range of evaluation metrics.

741 It might be expected that the T1w-only-driven registration methods would
72 perform well when evaluated with a T1w-derived similarity metric (particu-
73 larly in the cortex) and, indeed, both FNIRT and ANTSs perform very well in
74 the label overlap metric in this region. It is also possible that the inclusion
75  of DTT information during registration might negatively affect such a metric
26 and, again, we do indeed see that DR-TAMAS performs relatively poorly in
7 the cortex, despite good subcortical performance. MMORF, however, does
78 not seem to suffer in the same way—performing on par with ANTs both
79 cortically and subcortically. We may, therefore, conclude that MMORF is
70 a good choice of method, on par with ANTs, when a structurally-derived
71 segmentation comparison is the type of study for which registration is being
752 employed.

753 The value of including DTI information in the registration is clear, if
74 unsurprising. MMORF and DR-TAMAS noticeably outperform both FNIRT
755 and ANTs across all DTT similarity metrics. Of the multimodal registration
76 methods, MMORF has the advantage over DR-TAMAS across all metrics.
77 'The OVL metric shows that, within the white matter, both the shape and
78 the size of the tensors are better matched by MMOREF. The CLV1 and CPV3
70 metrics show that the most informative directions of the tensor are also best
760 aligned by MMORF.

761 We believe the tfMRI results to be the most unbiased assessment of
72 registration accuracy presented here, since it is evaluated using a modal-
763 ity that was never seen by any of the registration methods being tested.
s Since MMORF outperforms all other methods under test, this is the clearest
7s indication of its high registration accuracy. It is notable that FNIRT, the
76 best performing method in terms of cortical label overlaps, does not perform
77 as well in this (also cortical) metric. Similarly, DR-TAMAS is the closest
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Figure 11: 5" to 95" percentile Jacobian determinant range: MMORF and ANTs
have the lowest, and very similar, levels of volumetric distortion. This is despite the fact
that the MMORF warps are also trying to align the DTT information in the white matter,
which would be expected to increase the amount of distortion (as can be seen has happened
for DR-TAMAS). FNIRT shows the largest amount of distortion.
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Figure 12: Mean cube-volume aspect ratio (CVAR) shape distortion: MMORF
produces the lowest level of shape distortion on average, followed by ANTs, DR-TAMAS
and FNIRT. As with the volumetric distortion, this is in spite of the fact that the MMORF
warps are also trying to align the DTT information in the white matter, which would be
expected to increase the amount of distortion (as can be seen has happened for DR-
TAMAS). This also demonstrates that MMORF’s low levels of volumetric distortion (see
Figure 11) do not come at the cost of increased shape distortion, which can be observed

when using a regularisation that penalises only the Jacobian determinant (Lange et al.,
2020).
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s performing method to MMORF in the tfMRI evaluation, but is the poor-
70 est performing method in cortical label overlap. This is a clear example of
70 the benefit in not only considering the more circular evaluation metrics (i.e.,
m  those derived from the same modalities that are driving the registration)
772 when comparing registration tools.

773 Finally, in terms of distortion, MMORF demonstrates levels that are sim-
72 ilar to or lower than those of ANTSs, despite matching it in label overlap and
75 bettering it in both the DTT and tfMRI metrics. DR-TAMAS produces more
76 distortion on average than its sibling method, ANTs, which is not unexpected
777 given that DR-TAMAS is also being driven by DTI information in the white
77s matter. FNIRT produces larger distortions than the other nonlinear meth-
779 ods. Without MMORF for comparison, this might easily be interpreted as
70 the inevitable consequence of driving a small deformation framework method
71 very hard to maximise accuracy metrics. However, given that MMORF and
72 FNIRT have the same transformation model, this instead highlights the value
73 of using a more biologically plausible regularisation model within the small-
78« deformation framework.

s 5. Discussion

786 The primary objective in developing MMORF was to exploit the rich
77 information available in multimodal datasets in order to align brain images
788 with maximal accuracy. A truly multimodal tool must be able to leverage in-
780 formation about both magnitude and directionality in each voxel, since we are
790 able to capture and represent both of these with MRI. To this end, MMORF
701 is able to explicitly, and simultaneously, optimise both the displacement and
72 rotational effects of a warp field. Importantly, not optimising for rotation
793 (as is the case for any scalar registration method) does not mean that there
704 1S no rotation, only that it cannot be controlled to either improve directional
705 alignment or prevent the introduction of misalignment. Simultaneously opti-
796 mising over multiple modalities through a single warp both allows the unique
707 information from each modality to influence the resulting transformation (as
798 when each modality is aligned separately), and ensures that all modalities
790 remain co-registered following warping (as when using only a single modality
g0 to drive alignment).

801 But even when combining information across modalities, image regis-
sz tration is still a highly underdetermined problem and, therefore, alignment
so3 accuracy (as measured by how well anatomy are co-localised) is highly depen-
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soa dent on the choice of warp regularisation. We therefore included in MMORF
sos & regularisation model that promotes highly biologically plausible deforma-
oo tions, thereby effectively controlling excessive levels of distortion in both
sor shape and size.

808 The combination of our multimodal approach and our regularisation met-
oo Tic is computationally intensive, particularly when it comes to calculating the
s Hessian matrix required by MMOREF’s Gauss-Newton optimisation strategy.
s We address this through GPU parallelisation of the most computationally
s12  intensive parts of the algorithm, allowing MMORF to run to 1 mm warp res-
13 olutions within 5 to 45 minutes (depending on image resolution and number
sie  of modalities).

815 We have evaluated MMORF across four domains—T1w-label overlap,
g1 DT similarity, tfMRI cluster mass and image distortion. Performance was
si7 benchmarked against three established registration tools—FNIRT, ANTs,
sis and DR-TAMAS. These tools represent MMOREF’s predecessor, a state-
10 of-the-art unimodal method, and the most similar multimodal alternative,
s20 respectively. A common theme was that methods performed well when
e21 tested on metrics derived from modalities used in their respective cost func-
g2 tions—e.g., FNIRT performed well on T1w-label overlap, and DR-TAMAS
23 performed well on DTI similarity. MMORF performed best or near-best in
g2 both scalar and tensor evaluations, best in the held-out tfMRI evaluation,
25 and best in terms of distortion.

826 FNIRT was able to slightly outperform MMORF in cortical T1w-label
g2z overlap, but was outperformed by MMORF across all other metrics. FNIRT
28 induces the most distortion out of the methods tested. This likely contributed
20 to the relatively poor DTI similarity results, since excessive deformations are
20 likely to cause incorrect rotation of the tensors. Interestingly, having the
sa1 best cortical label overlap has not translated to the best tfMRI performance,
g2 with FNIRT actually showing the poorest performance, despite both domains
33 being evaluated on the cortex. The strong cortical T1w-label performance
ssa 18, therefore, likely due to overfitting of the T1w image similarity metric, and
s3s  highlights the importance of holistically evaluating registration performance,
s3s including the use of a held-out modality. These results demonstrate the
s37  significant improvement in performance of MMORF over its predecessor.
g8 Since both the inputs and outputs to MMORF are fully compatible with
g0 FNIRT and FSL, the benefits of this improvement can be realised by simply
g0 substituting in the new method.

8a1 ANTs performed near-identically to MMORF in both cortical and sub-
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sz cortical T1w-label overlap measures, making them the best performing meth-
g3 0ds in this domain. The inclusion of DTT data in MMORF registration has,
saa  therefore, not compromised the alignment of the T1w channel, which is not
a5 necessarily a given (see the comparison to DR-TAMAS below). The ben-
s efits of including the DTI data are evident in the DTI similarity results,
ser - where MMOREF clearly has the advantage over ANTs. MMORF consistently
sas  outperforms ANTs in the tfMRI evaluation, indicating better anatomical
g9 consistency in grey matter, despite similar label overlap performance. Lev-
o els of distortion are very comparable between these two methods, despite
ss1  there being more information to drive white matter deformations harder in
g2 MMORF.

853 DR-TAMAS was the poorest performing nonlinear method in terms of
ssa  cortical T1w-label overlap, and second-poorest subcortically. Since it largely
ess  shares its scalar registration algorithm with ANTs, this suggests that this is
sss due to the inclusion of DTI data in driving the registration. As has already
ss7  been noted, this was not the case for MMORF. This could therefore be at-
s tributed to the differences in DTI cost functions employed by DR-TAMAS
sso and MMORF-—where MMORF uses the whole tensor, while DR-TAMAS
g0 uses a combination of the mean diffusivity (a scalar) and the deviatoric ten-
s sor (shape and direction information only). DR-TAMAS came a close second
sz to MMORF across all DTT similarity metrics, with performance clearly better
83 than the scalar-only methods. DR-TAMAS was also the closest performing
sss - method to MMORF in the tfMRI evaluation, demonstrating again that corti-
s cal segmentation performance does not necessarily translate to well matched
s cortical activations. In terms of amount of deformation, DR-TAMAS induced
s more deformations than MMORF, despite having been outperformed across
ss all accuracy measures.

869 One limitation of this and, in fact, most evaluations of registration meth-
sro - 0ds is that we are likely to be able to better tune our own method than those
s against which we are comparing. However, starting from the default settings,
sz we have made an effort to optimise the performance of each, and kept any
s3  adjustments that proved beneficial. As such, we believe that our results are
sra  representative of what can be expected in real-world use. While there was
srs  always at least one tool with similar performance to MMOREF in each test,
g76  none were consistently as high-performing across the board.

877 Note that, although our primary objective was human brain alignment,
ss. MMORF does not rely on any human brain priors (e.g., tissue maps or
o assumed brain size), and may be applied to any domain of medical imag-
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sso ing. For example, MMORF has been successfully used in the generation of
ss1 - multimodal, non-human primate brain templates of several phylogenetically
g2 distant species for the purpose of performing comparative anatomy of white
ses matter tracts (Roumazeilles et al., 2022). Similarly, while the HCP enables
ssa  US to compare the relative performance of each registration tools across mul-
s tiple imaging modalities using a single dataset, our evaluation here is largely
sss confined to the cerebrum as there is little to no labelled data in the cere-
sz bellum, brain stem, and spinal cord. MMORF may, in fact, be particularly
sss  beneficial for studying these non-cerebral regions, and we hope to explore
sso  this is in future.

890 In this work we have only considered MMORF’s performance in compari-
o1 son to other volumetric registration tools. There is strong evidence that using
sz surface-based registration has a beneficial effect on cortical alignment accu-
g3 racy (Coalson et al., 2018), and we are not advocating the use of MMORF
sa instead of those methods when performing cortical or surface-based cross-
s subject fMRI analyses, for example. However, volumetric registration is, as
oo yet, still the only way to align non-cortical brain regions, and is likely to
g7 remain just as valuable as surface registration in neuroimaging research for
s the foreseeable future, especially when data are registered intra-individually
g0 and when surface reconstructions fail, for example, due to the presence of
w0 intra-axial lesions (such as brain tumours).

901 Given MMOREF’s performance, reasonable execution times, and simple
w2 compatibility with FSL, we believe it to be an excellent choice of tool for vol-
o3 umetric registration—regardless of the domain of any follow-on analysis. As
o4 such, it is easy to recommend MMOREF to all users working with multimodal
os neuroimaging data, and in particular those who already rely on FSL for their
ws analyses. They will benefit from state-of-the-art registration accuracy across
o7 all domains of their downstream analyses, with very little modification to
ws any existing pipelines. MMORF is available as part of FSL in releases newer
oo than 6.0.7.

a0 6. Data and Code Availability

o11 MMORF binaries and the associated source code are available for down-
o2 load via the standard FSL installer®. A stand-alone Singularity image, in-
a3 structions for running MMORF, and example configuration files are available

Shttps://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FslInstallation
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as on the FMRIB GitLab server?. All analysis scripts, figures, figure source code
a5 and latex source code that were used to generate this manuscript are available
a6 on the FMRIB GitLab server®.
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