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Abstract

We present MMORF—FSL’s MultiMOdal Registration Framework—a newly
released nonlinear image registration tool designed primarily for application
to MRI images of the brain. MMORF is capable of simultaneously optimis-
ing both displacement and rotational transformations within a single regis-
tration framework by leveraging rich information from multiple scalar and
tensor modalities. The regularisation employed in MMORF promotes lo-
cal rigidity in the deformation, and we have previously demonstrated how
this effectively controls both shape and size distortion, and leads to more
biologically plausible warps. The performance of MMORF is benchmarked
against three established nonlinear registration methods—FNIRT, ANTs and
DR-TAMAS—across four domains: FreeSurfer label overlap, DTI similarity,
task-fMRI cluster mass, and distortion. Results show that MMORF per-
forms as well as or better than all other methods across every domain—both
in terms of accuracy and levels of distortion. MMORF is available as part
of FSL, and its inputs and outputs are fully compatible with existing work-
flows. We believe that MMORF will be a valuable tool for the neuroimaging
community, regardless of the domain of any downstream analysis, providing
state-of-the-art registration performance that integrates into the rich and
widely adopted suite of analysis tools in FSL.
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1. Introduction1

In this paper we describe and evaluate FSL’s MultiMOdal Registration2

Framework (MMORF). MMORF is a nonlinear image registration tool, pri-3

marily intended for magnetic resonance imaging (MRI) of the brain.4

Biomedical image registration is a core component in most neuroimaging5

processing pipelines. If we assume that all brains, regardless of appear-6

ance, are built using the same anatomical components arranged in the same7

configuration (i.e., they are topologically identical), then we can use image8

registration to find the set of deformations that map all brains to a com-9

mon reference space/template brain in a one-to-one manner. In this case, a10

template may refer to either a group-average brain or an individual subject11

brain. Although this assumption may not always hold, it is valid enough12

for registration to be used in both the localisation and quantification of sim-13

ilarities and differences between individuals or population groups—that is,14

the template allows us to say where the differences occur, and the mappings15

ensure that what we are comparing is measured at the same place in all sub-16

jects. A poor registration will, therefore, impact both the power to detect17

and the ability to accurately localise any effects of interest across subjects.18

However, the reality is that image registration is an ill-posed problem,19

and therefore the true, one-to-one mapping can generally never be found.20

By ill-posed, we mean that there is typically not enough information in an21

image itself to find a mapping that uniquely maximises some measure of sim-22

ilarity between a subject’s brain and the template. Therefore, registration23

methods require regularisation to constrain the solution to be unique. Reg-24

ularisation achieves this by encoding a model of which types of deformations25

are considered more likely than others. The challenge in designing a regis-26

tration tool is then to find the best way to combine image information and27

regularisation to produce as good an approximation to the true mapping as28

possible.29

MMORF addresses the image information aspect of this challenge by30

taking a multimodal approach to computing brain similarity. Up until now we31

have described registration as if there is only one measurement/image of the32

brain that we can use to find the correct mapping. However, with MRI we are33

able to acquire a number of different image modalities—all within the same34

imaging session, and each with different contrast and information content.35

In MMORF, we have leveraged this complementary information to reduce36

the degree to which the registration problem is ill-posed, thereby improving37
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our confidence that we are finding an accurate mapping for each subject.38

MMORF’s registration abilities extend beyond scalar modalities to include39

diffusion tensor imaging (DTI). When using the full tensor data (rather than40

scalar, rotationally-invariant, derived features such as fractional anisotropy41

(FA)), it matches the directional information in the diffusion tensor to guide42

the alignment of, in particular, white matter.43

MMORF’s regularisation method is one of its most unique attributes. By44

employing a penalty that aims to preserve the original shape and volume of45

the data as far as is reasonable, it is able to produce deformations that are far46

more biologically plausible than those generated by conventional techniques.47

A detailed description of its implementation in MMORF, and a thorough48

evaluation of the benefits of this form of regularisation, can be found in49

Lange et al. (2020).50

The cost of combining multiple modalities with a complex regularisation51

model is that the computational requirements of the method increase. We52

have addressed this from the outset by designing MMORF to use graphics53

processing units (GPUs) to parallelise its execution. This allows MMORF to54

execute 1mm isotropic registrations with reasonable runtimes of between 555

and 45 minutes on modern hardware, depending on the number of modalities56

used.57

Through reducing the degree to which the registration problem is ill-58

posed (using multimodal data), and producing more realistic deformations59

in those regions where it is (using biomechanically realistic regularisation),60

MMORF is capable of state-of-the-art registration accuracy. In the methods61

section below we detail the most important design decisions made when de-62

veloping MMORF, so that how it operates can be clearly understood. We63

then contextualise these decisions with reference to a set of comparable cur-64

rent registration tools. Finally, we validate and benchmark MMORF against65

these tools in order to demonstrate its performance and utility.66

2. Methods67

As stated in the introduction, the true one-to-one mapping between brain68

images can never be known, and therefore image registration can only find the69

“optimal” mapping based on the available information and our prior beliefs70

about what mappings are more likely than others. Unsurprisingly then,71

registration is normally formulated as an optimisation problem, requiring a72

cost function to minimise. MMORF is intended to be used with any number73
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of scalar and tensor images driving the registration, and we therefore choose74

to minimise a total cost function Ctot that is defined as follows:75

Ctot(w) =
∑

x∈Ω

(
∑

s

λsCs(w,x) +
∑

t

λtCt(w,x) + λrCr(w,x)

)

(1)

where w are the warp parameters being optimised, Ω is the domain over76

which the warp is defined, λ∗ are cost function weightings, and subscripts s,77

t, and r refer to scalar, tensor and regularisation respectively.78

Each scalar and tensor cost function is based on an image dissimilarity79

metric between a pair of images—one belonging to the reference subject (of-80

ten a template), and one to the moving subject. Although Equation 1 shows81

that these cost functions are separable, and can therefore be evaluated in-82

dependently, it is critical that within each subject all images are accurately83

co-registered. If not, then a single warp cannot correctly map all modalities84

between subjects, and registration accuracy will suffer. We do not attempt85

to ensure this within MMORF itself. Rather, we rely on running accurate,86

rigid, between-modality, within-subject registration using FSL FLIRT (Jenk-87

inson and Smith, 2001; Jenkinson et al., 2002), as well as distortion correction88

for relevant modalities such as DTI (Andersson et al., 2003; Andersson and89

Sotiropoulos, 2016), before performing nonlinear registration. However, it is90

not necessary to resample any of the images following rigid alignment be-91

fore feeding them into MMORF. Instead, MMORF expects a separate affine92

transformation matrix to be supplied for each image being registered (in93

both the moving and reference subject datasets). This affine transformation94

points to a separate, user-specified, “warp-space image”, whose extents de-95

fine the domain over which MMORF will estimate and output its nonlinear96

deformation. This eliminates the need for multiple resampling of the data,97

and requires no matching of the image resolution or dimensions of any of the98

images being registered.99

With this information in hand, the following sections elaborate on some100

of the key decisions that went into MMORF’s design, and the role they play101

in its performance.102

2.1. Optimisation Strategy103

Nonlinear image registration tools generally use one of two iterative op-104

timisation approaches—first or second order. First order methods consider105
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only the gradient of the cost function, with respect to each optimisable pa-106

rameter, when picking a parameter update step. Second order methods ex-107

tend this by also considering how long the derivative is valid for and the108

interaction between parameters. First order algorithms tend to have up-109

date steps that can be calculated more quickly, but second order algorithms110

tend to require fewer update steps to reach convergence. In our experience,111

the trade-off tends to favour second order approaches for methods such as112

MMORF.113

We have, therefore, implemented two variants of the (second-order) Gauss-114

Newton (GN) optimisation strategy—which is itself a variation on Newton’s115

method.116

Newton’s method is an iterative optimisation algorithm that uses a quadratic
Taylor approximation of the cost function C around the current set of pa-
rameters w (Nocedal and Wright, 2006, Ch.10, pp 254). That is:

C(w +∆w) ≈ C(w) +∇C(w)⊺∆w +
1

2
∆w⊺H(w)∆w (2)

where ∇C and H are the gradient and the Hessian of the cost function,
respectively. The update ∆w that minimises this approximation to the cost
function (when the cost function is convex) is then:

∆w = −H−1(w)∇C(w) (3)

For cost functions that can be written in the form:

C(w) =
1

2

N∑

i=1

c2i (w) (4)

The gradient is then:

∇C(w) =
N∑

i=1

ci(w)
∂ci
∂w

(5)

And the Hessian is:

H(w) =
N∑

i=1

∂ci
∂w

⊺ ∂ci
∂w

+ ci(w)
∂2ci
∂w2

(6)
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Gauss-Newton approximatesH by dropping the second, mixed partial deriva-117

tive, term in Equation 6. Close to the optimum set of w, the Newton and118

Gauss-Newton Hessians tend towards equivalence. Further from the opti-119

mum, the Gauss-Newton Hessian has the benefit of being symmetric positive120

definite, and therefore the approximation of the cost function is always con-121

vex. This ensures that each step is always in a direction that would improve122

the original cost function.123

However, the Gauss-Newton step can still lead to an increase in the cost
function if it oversteps. This can be addressed by the Levenberg-Marquardt
(LM) extension (Nocedal and Wright, 2006, Ch.10, pp258), which replaces
the Gauss-Newton Hessian (HGN) with:

HLM = HGN + λI. (7)

For small values of λ, the update ∆w behaves much like a Gauss-Newton124

update, and for large values of λ it behaves more like gradient descent. After125

choosing a sensible starting value for λ (e.g., 0.001), a typical Levenberg-126

Marquardt iteration then proceeds as follows:127

• Calculate a candidate parameter update ∆w using Equation 3.128

• If C(w +∆w) < C(w) accept the update and set λ = λ÷ 10.129

• If C(w+∆w) > C(w) set λ = λ×10 and recompute ∆w and C(w+∆w),130

repeating until C(w +∆w) < C(w) and then accept the update.131

The Majorise-Minimisation (MM) algorithm (Hunter and Lange, 2004)132

is a method for cost function minimisation that can be used when storing133

the full Gauss-Newton Hessian is infeasible (e.g., due to memory constraints,134

which prove to be important in this application). In essence, what this135

algorithm states is that if z(w) g y(w), ∀w, with both y and z convex136

and touching, then wk+1 = argmin
w

z(w) will either reduce y or leave it137

unchanged.138

Since the quadratic Taylor approximation of C(w) usingHGN in Equation
2 is convex, it may serve as y. Chun and Fessler (2018) showed that because
the diagonal elements of HGN are all positive:

HMM = diag(|HGN |1) ° HGN (8)

where |HGN | is the matrix of the absolute values of HGN and 1 is column139

vector of ones. The ° symbol means that HMM is at least as positive definite140
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as HGN . Therefore, substituting HMM for HGN in the quadratic Taylor141

approximation of C(w) majorises y, and may serve as z. In other words142

simply, replacing HGN with HMM in the LM algorithm and solving as usual143

satisfies the MM algorithm requirements.144

The major advantage of using HMM is that it is only non-zero along its145

main diagonal, and therefore requires far less memory to store than HGN .146

This is particularly important when the number of parameters in w is large,147

as it may not be possible to store HGN .148

The reason for including both the Levenberg-Marquardt and Majorise-149

Minimisation modifications of Gauss-Newton, is that MMORF both calcu-150

lates the Hessian and solves for the update step on GPU hardware. GPUs151

typically have a limited amount of RAM, and, therefore, storing the full152

Gauss-Newton Hessian becomes impossible for warps beyond a certain res-153

olution. At this point, MMORF switches to Majorise-Minimisation, which154

requires on the order of 1000 times less memory. In practice, Majorise-155

Minimisation requires more steps to converge, but requires no other changes156

to the registration algorithm, making it an appealing option.157

2.2. Transformation Model158

MMORF employs a transformation of the small deformation framework159

variety (Bajcsy and Kovačič, 1989; Miller et al., 1997)—that is, it defines the160

deformation as a displacement field, rather than a velocity field as per the161

large deformation framework (Bro-Nielsen and Gramkow, 1996; Miller et al.,162

1997). A major difference between these two frameworks is their relationship163

to diffeomorphism.164

Diffeomorphism is a desirable property in image registration. Diffeomor-165

phic transformations are smooth, one-to-one, and onto, and are therefore166

guaranteed to induce neither folding nor tearing when applied to an image.167

The large deformation framework, and in particular the large deformation168

diffeomorphic metric mapping (LDDMM) (Beg et al., 2005) family of tools,169

have the advantage that their transformation model can be made inherently170

diffeomorphic—i.e., they are, in principle, diffeomorphic by construction.171

However, despite not being inherently diffeomorphic, the small deforma-172

tion framework can be made diffeomorphic by employing a regularisation173

penalty that enforces diffeomorphism (Rohlfing et al., 2003). This has the174

benefit that warp-induced distortions, such as changes in shape and volume,175

can be calculated (and therefore controlled) directly from the model param-176

eters themselves. In contrast, large deformation models require the vector177

7
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field that they parametrise to first be integrated over time and converted into178

a displacement field before being able to calculate such measures. Therefore,179

explicitly controlling the amount of distortion is harder in the large deforma-180

tion framework, despite its guarantee of diffeomorphism. This is important in181

our case, as the advantage of MMORF’s regularisation (described in Section182

2.4) is that it nonlinearly penalises the stretching and compressing effects of183

the warp directly.184

MMORF’s transformation is parametrised using cubic B-splines (Unser185

et al., 1993a,b). This imposes an inherent smoothness to the deformations,186

as cubic B-splines, and therefore the warps, have C2 continuity. The warp187

field is then also well defined across all of the image (i.e., not just at voxel188

centres), eliminating any need to match image subsampling or resolution ei-189

ther before or during registration. Despite their smoothness, B-splines still190

have compact support (i.e., the effect of a particular spline is exactly zero191

at a fixed distance from the spline centre), and therefore interaction effects192

between splines are fixed and finite. This has important implications for193

second order optimisation (such as the Gauss-Newton method employed by194

MMORF), since it means that the Hessian matrix (which encodes the inter-195

action between optimisable parameters) is sparse and predictably patterned.196

Furthermore, the spatial derivatives of B-splines are smooth and have a197

closed form solution. Since these derivatives are required to calculate gradi-198

ents and Hessians for the optimisation of warps in MMORF, this is compu-199

tationally beneficial.200

We now provide a more explicit description of how we have formulated our201

transformation model, and how this interacts with calculation of the Hessian202

during optimisation (the most computationally intensive part of the registra-203

tion algorithm). A set of B-spline basis functions can be used to transform204

a set of sample coordinates in a reference image f to their corresponding205

coordinates in a moving image g as follows:206
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f = Reference image

g = Moving image

N = Number of sampled voxels in f

x/y/z = x, y and z coordinates of samples in f

X =





x⊺

y⊺

z⊺





︸ ︷︷ ︸

3×N

=





x0 x1 · · · xN

y0 y1 · · · yN
z0 z1 · · · zN





M = Number of splines per warp direction

wx/wx/wz = x, y and z direction warp parameters

W =





w⊺

x

w⊺

y

w⊺

z





︸ ︷︷ ︸

3×M

=





wx0 wx1 · · · wxM

wy0 wy1 · · · wyM

wz0 wz1 · · · wzM





bm = Vectorised mth B-spline at sample positions X

B =








b
⊺

0

b
⊺

1
...

b
⊺

M








︸ ︷︷ ︸

M×N

=








b00 b01 · · · b0N

b10
. . .

...
...

. . .
...

bM0 · · · · · · bMN














︸ ︷︷ ︸

1 voxel per column

1 spline per row

φ (X,W) = Transformed sample coordinates

= X+WB

Note that here we assume that the warp space and the reference image207

f are the same, and that f and g are already affinely registered to each208

other. We use the same configuration of B-splines to define the warps in all209

3 directions (i.e., the number, order and spatial extent of splines defining210

the displacements in each direction (x, y and z) is the same, and they are211

located identically in space). M is chosen to be the set of splines whose212

spatial support, wholly or partially, overlaps with the domain over which f213

is defined. The warp parameters wx/y/z are then the coefficients of each B-214

spline, and each parameter only affects the displacement in a single direction.215
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The compact support of B-splines means that B is very sparse. Addi-216

tionally, (disregarding edge cases) each row of B is simply a shifted version217

of any other row. We therefore never store B explicitly, and instead compute218

WB using convolution.219

Another benefit of the sparsity in B is that it induces sparsity in the
Hessian of cost functions based on this transformation. For a mean squared
error cost function, each element of the Hessian can be calculated as:

Hij =
∑

x∈bi∩bj

︸ ︷︷ ︸

spline intersection

bi(x)bj(x)
∂g

∂xyz(i)
(φ(x))

∂g

∂xyz(j)
(φ(x))

︸ ︷︷ ︸

gradient image

, (9)

where ∂g
∂xyz(i)

means “differentiate with respect to the direction in which B-220

spline i causes displacement to occur”. As each entry in the Hessian repre-221

sents the interaction between two of the B-spline basis functions, only those222

combinations of splines that overlap in their spatial support will ever produce223

non-zero entries. The number of non-zero entries per row of the Hessian is at224

most 3× 73 = 1026 for 3D images and cubic B-splines. Considering that the225

number of parameters being optimised over can easily exceed 106, this would226

lead to a matrix that is at least 99.9% sparse. The redundancy increases227

as the warp resolution increases (the knot-spacing is reduced), which means228

that the more parameters one attempts to estimate, the sparser the Hessian229

becomes. Therefore, the memory requirement for the Hessian scales much230

better with resolution than might initially be feared.231

2.3. Image Cost Functions232

As stated earlier, MMORF optimises the cost function defined in Equa-233

tion 4, which is the sum over individual cost functions for each pair of images.234

In this section we describe the choice of cost function for scalar and tensor im-235

ages, as well as how MMORF implements cost function masking/weighting.236

2.3.1. Scalar237

Scalar image dissimilarity is calculated using the mean squared error
(MSE) across the image. That is, for two scalar images f and g:

Cs (w, f, g) =
1

Ω

∑

x∈Ω

(f (x)− g (x,w))2 (10)

10
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MSE is ideally suited to the GN family of optimisation methods, which have238

an implicit assumption that the cost function being optimised is some form239

of squared difference.240

Robust mean intensity estimation is used to scale each image separately in241

order to account for linear scaling intensity differences between image pairs.242

When using MSE cost functions, spatial intensity inhomogeneities (e.g., due243

to transmit and receive bias fields in MRI (Vovk et al., 2007; Andersson et al.,244

2019)) can be mistakenly interpreted as image misalignment, leading to un-245

necessary (and incorrect) image warping. In MMORF we therefore provide246

the option to explicitly model such inhomogeneities as a smoothly varying247

multiplicative field acting on the reference image. This can be enabled or dis-248

abled for each image pair independently. The bias field is parametrised using249

cubic B-splines, and the resolution (knot-spacing) and smoothness (bending250

energy (Bookstein, 1997)) are set on a per image pair basis.251

2.3.2. Tensor252

Tensor image dissimilarity is calculated using the mean squared Frobenius253

norm (MSFN) across the image. This is exactly equivalent to summing the254

MSE for each of the 9 elements of the diffusion tensor, and therefore fits our255

GN optimisation strategy. That is, for two tensor images F and G:256

Ct (w,F,G) =
1

Ω

∑

x∈Ω

3∑

i=1

3∑

j=1

(Fij (x,w)−Gij (x,w))2 (11)

Note that, in contrast to the scalar case, the values in the reference image257

F are also a function of the warp parameters w. This is because MMORF258

applies the rotational effect of the warp only to the reference image, as well259

as the usual displacement effect only on the moving image.260

Rotation of tensors uses the finite strain (FS) method (Alexander et al.,261

2001). The Jacobian matrix of the warp at each position J(x,w) represents262

the first order linear approximation of the deformation at that point, and263

from it the local rotational effect of the warp R(x,w) can be calculated264

using:265

R = (JJ⊺)−
1

2J (12)
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We include the effects of both displacement and rotation when calculating266

the gradient and the Hessian of the tensor cost function, using the derivation267

of Yeo et al. (2009) for the closed-form of the derivative due to rotation.268

Since the diffusion tensor model is quantitative, no intensity rescaling is269

performed. This implicitly assumes that the tensors are always represented270

with the same units. Similarly, fitting of the diffusion tensor compensates for271

any intensity inhomogeneity present in the raw diffusion-weighted images,272

and therefore no bias field estimation is required .273

MMORF assumes that diffusion tensors are stored in FSL dtifit1 for-274

mat—i.e., a 4D volume where the 4th dimension contains the 6 upper-diagonal275

elements vectorised row-wise, and the x-direction is defined in radiological276

convention (R-L).277

2.3.3. Masking278

In certain instances it may be beneficial to focus a registration algorithm279

on a particular part of an image or, alternatively, for it to ignore a cer-280

tain region. To this end, we have implemented masking/weighting within281

MMORF.282

Masks can be supplied for all reference and moving images independently,283

and it is required that these masks be in the same space as their corresponding284

images. The masks are treated as containing voxelwise multiplicative factors285

that are applied to the cost function during optimisation. Setting any region286

of a mask to zero will cause the algorithm to ignore the impact of that region’s287

similarity between reference and moving images, and the deformation in that288

region will be determined purely by the regularisation. However, masks do289

not have to be binary, and so a “soft” mask can be used to favour the290

alignment of one region (e.g., the brain over the rest of the head), without291

ignoring it completely.292

In MMORF, masks can be enabled or disabled for each image at every293

iteration independently, allowing for maximum flexibility. We have, at times,294

found it useful to have a mask be applied only during higher resolution iter-295

ations of the registration.296

2.4. Regularisation297

Since image registration is an under-constrained problem, regularisation298

is essential to ensure that the resulting warp fields are biologically plausible.299

1https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FDT/UserGuide#DTIFIT
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A plausible warp should, at the very least, be diffeomorphic. Diffeomorphic300

warps are both one-to-one and onto—that is, each point in the reference301

space maps to a unique point in the moving space, and each point in the mov-302

ing space is reachable from the reference space. They require the mapping303

to be continuous, smooth (i.e., have a continuous derivative), and invert-304

ible (i.e., have a finite, positive Jacobian determinant everywhere). B-spline305

parametrised warps are, by definition, smooth and continuous. Therefore,306

provided the Jacobian determinant remains > 0 everywhere, the warp is307

diffeomorphic.308

Diffeomorphism is, however, only one desirable trait in a warp. It guar-309

antees that an image is never torn or folded, but that is all. Typically,310

penalising the variation of the Jacobian determinant from a value of 1 is311

used to encourage or ensure (depending on the choice of penalty) that warps312

remain diffeomorphic in the small deformation framework. However, penal-313

ising the Jacobian determinant directly only controls volumetric distortion314

(i.e., changes in an object’s size), and does not in any way control shape dis-315

tortion (i.e., changes in an object’s shape). The singular values of the local316

Jacobian represent stretches/compressions along three orthogonal directions.317

Therefore, the difference between them indicates the degree of shape distor-318

tion. Because the Jacobian determinant is the product of the singular values319

of the Jacobian, one can control changes in both size and shape by controlling320

only the singular values. Penalising deviations of the singular values from 1,321

and ensuring that none become negative, leads to diffeomorphic warps with322

desirably little distortion in both volume and shape.323

In MMORF, the specific penalty used is the mean (across the image) of324

the sum of the squared logarithms of the singular values at each voxel, as325

shown in Equation 13 where si is the i
th singular value of the local Jacobian326

matrix J. This is an adaptation of the penalty first proposed by Ashburner327

et al. (1999, 2000). Its implementation in MMORF is described (and eval-328

uated) in detail in Lange et al. (2020), where we demonstrate the positive329

effect that this form of regularisation has on the biological plausibility of the330

warps MMORF produces.331

Cr (w) =
1

Ω

∑

x∈Ω

3∑

i=1

(log si (J (x)))
2 (13)

By taking the squared logarithm, this penalty tends to infinity as any332

singular value tends to either zero or infinity. Additionally, this does not333
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penalize any transformations that are locally rigid (i.e., regions that are334

only translated and/or rotated). Therefore, MMORF regularisation enforces335

diffeomorphism and encourages local rigidity thereby controlling both volu-336

metric and shape distortions. The highly nonlinear form of the regularisation337

also allows the weighting to be set such that large deformations are allowed338

when necessary, while still ensuring diffeomorphism, thereby overcoming one339

of the perceived limitations of the small deformation framework.340

2.5. Inverse Consistency341

An inverse consistent registration algorithm will produce the inverse of the342

original warp when the reference and moving images swap roles (Christensen,343

1999). Since we often consider the choice of reference and moving image to344

be arbitrary (e.g., such as when registering two individuals to each other),345

this is a desirable property to have.346

Some tools, such as ANTs (Avants et al., 2008), are inverse consistent347

by design (excluding the affine initialisation). This is achieved by registering348

both moving and reference images to a mid-space. However, this essentially349

means running two registrations per pair of subjects, which takes double the350

time to compute.351

In MMORF we have taken a different approach where, rather than en-352

forcing a symmetric warp, we symmetrise the cost function being minimised353

instead. This is achieved by multiplying each cost function (both image sim-354

ilarity and regularisation) by a weighting term of 1 + |J|. Since the cost355

functions are evaluated on a regularly sampled grid in the space of the refer-356

ence image, the intuition for this weighting is that it always accounts for the357

total volume in both images to which that value of the cost function applies.358

In the continuous case, this can been shown to exactly symmetrise the cost359

function (Tagare et al., 2009). However, since we are dealing with discretely360

sampled data, this correction is only approximate in MMORF. Nevertheless,361

this is a better solution than leaving symmetry unaccounted for, and has362

the computational benefit that only one warp field need be calculated during363

registration.364

2.6. Multiresolution Pyramid365

MMORF employs a coarse-to-fine multiresolution optimisation strategy366

(Bajcsy and Kovačič, 1989; Szeliski and Coughlan, 1997). This has been367

shown to be beneficial in avoiding local minima during optimisation, as well368

as accelerating convergence, across a wide variety of nonlinear registration369
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tools (Zhang et al., 2006; Andersson et al., 2007; Ashburner, 2007; Avants370

et al., 2008; Modat et al., 2010). In principle, such approaches try to match371

low-frequency image information first, followed by progressively higher fre-372

quency information at each subsequent level. Traditionally, users are required373

to specify a downsampling factor and amount of smoothing for each level of374

the pyramid. The lower-resolution warp is then defined on the coarser, down-375

sampled reference image grid. A potential pitfall of this approach is that if376

insufficient smoothing is applied to the image, then the process of down-377

sampling introduces aliases in the information being aligned due to violation378

of the Nyquist criterion. MMORF overcomes this by defining the pyramid379

according to warp resolution (knot spacing) and image smoothing only. An380

acceptable level of subsampling is then automatically determined by treating381

the Gaussian smoothing kernel as a low-pass frequency filter. Therefore, the382

user can iteratively optimise the registration of different frequency content383

within the image through applying decreasing amounts of smoothing while384

keeping the warp resolution the same, without any problems with aliasing.385

In practice, we restrict the downsampled resolution to be at least as high as,386

and at most four times higher than, the warp resolution at each level of the387

pyramid.388

2.7. Other Implementation Considerations389

MMORF is written in C++ and makes extensive use of GPU parallelisa-390

tion using Nvidia’s CUDA framework (NVIDIA, 2019). Without the use of391

GPU parallelisation, certain aspects of the registration would be too compu-392

tationally burdensome to allow MMORF registrations to complete within a393

reasonable runtime. With GPU acceleration, a typical 1mm isotropic regis-394

tration with MMORF takes ≈10min for a single scalar, unimodal image pair395

and ≈45minutes for a single scalar, single tensor, multimodal image pair.396

However, this reliance on CUDA means that MMORF is only supported397

on Linux devices with Nvidia GPUs. MMORF uses a mixed computation398

model, with only the most time-consuming components of the registration399

algorithm being ported to the GPU. These include400

• Image interpolation401

• Cost, gradient and Hessian calculations402

• Solving the system of linear equations for update steps403
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Of these, the Hessian calculation is by far the most computationally com-404

plex, with those of the regularisation and the rotational component of the405

DTI cost functions being particularly burdensome. For these calculations,406

GPU acceleration is on the order of 20-40x (depending on warp resolution,407

image dimensions and image subsampling (Lange et al., 2020, Supplementary408

Material: GPU Considerations and Code Profiling)).409

MMORF has been designed from the outset for integration into the FSL410

suite of neuroimaging tools (Jenkinson et al., 2012). As such, it expects411

inputs in FSL convention. Specifically, affine matrices between input images412

and the warp space should be in FLIRT format and DTI images should be in413

dtifit format. MMORF output warp fields follow existing FSL conventions414

and can therefore serve as drop-in replacements for FSL commands such as415

applywarp.416

3. Theoretical Differences Between Methods417

With an understanding of the design considerations that went into MMORF,418

we will now briefly describe how some of these choices compare to three ex-419

isting registration tools, namely: FNIRT (Andersson et al., 2007), ANTs420

Avants et al. (2008) and DR-TAMAS (Irfanoglu et al., 2016). These three421

tools will then be used to validate and evaluate the performance of MMORF422

in Section 4.423

FNIRT was chosen as it is the predecessor to MMORF, and the cur-424

rent nonlinear registration tool in FSL. The largest differences between these425

methods are MMORF’s multimodal capabilities, regularisation, inverse-consistency426

and GPU parallelisation. In terms of similarities, they share the same trans-427

formation and bias field models, and very similar optimisation strategies at428

low resolutions. At higher resolutions, FNIRT switches to a Scaled Conju-429

gate Gradient algorithm (Møller, 1993), in contrast to MMORF’s MM ap-430

proach. Finally, FNIRT performs a simultaneous optimisation of both warp431

and bias fields, whereas these are optimised in a greedy, interleaved manner432

by MMORF. This is because simultaneous optimisation results in a Hessian433

without the regular diagonal structure, on which MMORF relies for efficient434

GPU parallelisation. In practice, despite some similarities in design choices,435

they perform very differently—even when MMORF is run, like FNIRT, in a436

unimodal configuration. The resulting warps have a very different character,437

which we largely attribute to the superior regularisation metric employed in438

MMORF. MMORF’s inputs and output files are fully compatible with those439
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of FNIRT, and it can therefore serve as a drop-in replacement in FSL analysis440

pipelines.441

ANTs was chosen due to its consistently high performance, including in442

dedicated registration comparisons (Klein et al., 2009). It has become a de443

facto standard for nonlinear registration in much of medical imaging, and444

serves as a benchmark against which to compare MMORF’s performance.445

ANTs is a purely scalar registration method, although it can be applied to446

multiple scalar input modalities simultaneously. ANTs uses a symmetric,447

greedy approximation of large deformation diffeomorphic metric mapping448

(LDDMM) known as symmetric normalisation (SyN). At each iteration, an449

update step is composed with the current warp until convergence is reached..450

If each update step is diffeomorphic, then the composition of all updates is451

also diffeomorphic (apart from arithmetic floating point errors). Symmetry452

is achieved by registering both reference and moving images to a mid-space453

at each iteration. There are a number of similarity metrics implemented,454

but we will limit ourselves to locally normalised cross-correlation (LNCC),455

as this has proven to perform best in previous studies. ANTs regularisation456

consists of simple Gaussian smoothing, which may be applied independently457

to both update steps and to the final deformation field.458

DR-TAMAS was chosen as it is currently the only other tool, to our459

knowledge, which can simultaneously register both tensor and scalar modal-460

ities in a single framework. It has also proven to match or exceed the best461

performing diffusion registration tools currently available. As in MMORF,462

finite-strain reorientation of the tensors is taken into consideration during463

each update step (i.e., it contributes to the gradient of the cost function,464

and is not simply applied after each update step). In contrast to MMORF,465

the DTI dissimilarity is divided into two separate cost functions—the trace466

similarity (a rotationally invariant scalar), and the deviatoric tensor similar-467

ity (sensitive to relative tensor orientation). For scalar inputs, DR-TAMAS468

uses an LNCC cost function. The transformation model and optimisation469

strategy are the same as ANTs, and therefore DR-TAMAS can be considered470

as a truly multimodal variant of ANTs. In many ways, then, DR-TAMAS is471

the natural alternative to MMORF.472

There are clearly many other nonlinear registration tools against which we473

could have compared, but we believe that these choices allow us to effectively474

benchmark the relative performance of MMORF against those tools that are475

most likely to be considered as an alternative by users.476
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4. Validation477

Benchmarking a registration tool can be difficult to do well. Measures of478

accuracy are often biased towards metrics based on the modalities that drove479

the registration (Irfanoglu et al., 2016), and evaluations hence risk some de-480

gree of circularity. Methods often perform best when evaluated using metrics481

based on the same data that drove the registration (Irfanoglu et al., 2016),482

which risks introducing a degree of circularity in these types of evaluations.483

We have, therefore, endeavoured to perform a holistic evaluation of registra-484

tion performance by including a range of structural-, diffusion-, functional-485

and morphometry-derived metrics. Structural and diffusion metrics are the486

most circular, since these are the modalities that drive the registration (ei-487

ther individually or jointly) in all methods—however, they may highlight488

both the value and the pitfalls of using the data you wish to analyse to489

drive alignment. Functional metrics are based on a fully held-out modality490

(that is not seen by any of the registration tools) and therefore serves as491

the best proxy of true consistency of anatomical alignment across individ-492

uals—since overfitting to a driving-modality (e.g., unrealistically deforming493

the brain to make structural images appear very similar) is likely to have a494

negative effect on functional alignment (Coalson et al., 2018; Robinson et al.,495

2018). Morphometry metrics (e.g., measures of distortion that represent how496

aggressively the images are deformed) are essential to contextualise and in-497

terpret the accuracy/similarity metrics—that is, it is important to know how498

aggressively a tool needs to deform an image to achieve a certain degree of499

registration accuracy, with less distortion being preferred.500

We chose the Human Connectome Project (HCP) young adult 1200 re-501

lease (100 unrelated subjects subset) dataset as the basis for our testing502

(Van Essen et al., 2012, 2013; Glasser et al., 2013). The HCP dataset con-503

tains high quality T1w (0.7mm isotropic), diffusion (1.25mm isotropic) and504

task-fMRI (2.0mm isotropic) scans. This allows both unimodal T1w and505

multimodal T1w + DTI registration to be conducted with the same dataset,506

as well as evaluating registration metrics based on all three modalities. The507

minimally preprocessed HCP data were used as far as possible (Glasser et al.,508

2013), which includes motion and distortion correction with FSL topup and509

eddy (Andersson et al., 2003; Andersson and Sotiropoulos, 2016), and coreg-510

istration of the diffusion data to T1w space. The task-fMRI data were,511

however, reprocessed in subject T1w space with no smoothing (rather than512

in MNI-152 space with 2.0mm isotropic smoothing). The diffusion tensor513
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model was fit to the b=1000 s/mm2 shell only using FSL dtifit.514

The Oxford-MultiModal-1 (OMM-1)2 template was used as the reference515

space for all registrations (Arthofer et al., 2021, 2022). This template was516

constructed from 240 UK Biobank (Miller et al., 2016) subjects, and has517

both T1w and DTI volumes that are intrinsically co-registered. The OMM-1518

therefore provides a common space in which to compare methods that either519

use T1w images only, or a combination of T1w and DTI images to drive the520

registration.521

We calculate two structural accuracy metrics based on pairwise label sim-522

ilarity. The first is a measure of overlap (specifically, the Jaccard coefficient)523

and the second a measure of distance (specifically, the Hausdorff distance)524

of automatically generated cortical and subcortical labels for each pair of525

subjects following resampling to template space (see Section 4.2 for details).526

The Jaccard coefficient for two regions A and B is defined as:527

A ∩ B

A ∪ B
, (14)

and ranges from 0 for no overlap to 1 for perfect overlap. The Hausdorff528

distance is the maximum distance between the surfaces of the regions being529

compared. The labels are derived from the T1w images, and therefore we530

expect them to favour scalar registration methods that can match the T1w531

images without being penalised if that reduces DTI similarity. We have532

avoided any simple intensity-based or tissue-type overlap metrics, as these533

are known to correlate poorly with true anatomical consistency (Rohlfing,534

2012).535

We then calculate three diffusion accuracy metrics that compare the sim-536

ilarity of the template DTI modality with each subject’s DTI data after537

resampling to template space. Each subject is compared voxelwise to the538

template, and the average across all voxels within a mask is taken as the539

overall metric for that subject. Overall tensor similarity (OVL, Equation 15)540

is the first metric, and balances directional and magnitude similarity between541

tensors and is a good general indicator of the similarity between two tensors.542

Linear-shape weighted V1 similarity (CLV1, Equation 17) is the second met-543

ric, and is defined as the inner product of the first eigenvector of the diffusion544

tensor (V1) from the template with V1 from the warped subject, weighted545

2DOI 10.17605/OSF.IO/S9GE4
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by the coefficient of linear shape (CL) for the template tensor (i.e., how sim-546

ilar V1 is, weighted by how informative V1 is). Planar-shape weighted V3547

(CPV3, Equation 19) is the third metric, and is defined as the inner product548

of the third eigenvector of the diffusion tensor (V3) from the template with549

V3 from the warped subject weighted by the coefficient of planar shape (CP)550

for the template tensor (i.e., how similar V3 is, weighted by how informative551

V3 is). See Figure 1 for a visual depiction of CL and CP maps of the OMM-552

1 template. In areas where CL is large, the tensor shape is largely prolate553

(cigar-shaped), and therefore the direction of maximum diffusivity (i.e., V1)554

is well defined. In areas where CP is large, the tensor shape is largely oblate555

(plate-shaped), and therefore the direction of minimum diffusivity (i.e., V3)556

is well defined. CLV1 and CPV3 specifically probe how well orientational in-557

formation has been aligned, which is most relevant in white matter regions.558

We expect those tools that consider rotational information (i.e., DTI data)559

during registration to perform best in these metrics.560

The fMRI accuracy metric used is task-fMRI cluster mass. This measures561

how consistently the registration tools are able to align those regions of the562

brain that are significantly activated (or deactivated) when performing a task.563

This assumes a general correspondence between brain structure and function,564

but this need not be exact. The benefit of this metric is that it is entirely565

independent of the modalities driving registration (i.e., T1w and DTI) and,566

therefore, there is little to no circularity in its interpretation, which cannot567

be said for the previous metrics.568

Finally we calculate both size (|J|) and shape (CVAR—see Section 4.2.5569

for definition) distortion metrics to evaluate how much each tool has had570

to deform the subject’s images to match the template. For any given level571

of accuracy (i.e., the preceding metrics) a smaller amount of distortion is572

usually preferred, as this indicates that the registration method is changing573

the original data as little as possible.574

4.1. Ethics575

All human imaging data used in this work are part of the open access576

Human Connectome Project Young Adult (HCP-YA) dataset. The data are577

pseudonymised and identifiable visual features, such as the face and ears, are578

obscured. Written informed consent to share the data “broadly and openly”579

was obtained for all participants by the original HCP-YA researchers (Elam580

et al., 2021).581
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Figure 1: Visualisation of linear and planar shape coefficients in OMM-1 space:
From top to bottom: Linear coefficient (CL) map of the template, T1w template for
reference, planar coefficient (CP) map of the template. Images are directionally encoded
colour maps of V1 and V3 respectively. Green = Anterior-Posterior, Red = Left-Right,
Blue = Inferior-Superior. Both CL and CP values are highest in the white matter, but
cover complementary regions therein. CLV1 is most sensitive to how well the primary
diffusion direction is matched in voxels where diffusion occurs parallel to that axis only.
CPV3 is most sensitive to how well the tertiary diffusion direction is matched in voxels
where diffusion occurs within a plane defined by the primary and secondary diffusion
directions. Together, these represent the voxels where tensor orientation can be reliably
described by a single direction. 21

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 27, 2023. ; https://doi.org/10.1101/2023.09.26.559484doi: bioRxiv preprint 

https://doi.org/10.1101/2023.09.26.559484
http://creativecommons.org/licenses/by/4.0/


4.2. Methods582

Each of the following steps was performed independently for each regis-583

tration method.584

4.2.1. Registration585

All registration was performed to the OMM-1 template. This template586

contains both T1w and DTI volumes with isotropic resolution of 1mm. Since587

both modalities were jointly aligned during template creation, they are intrin-588

sically spatially consistent at the voxel level. It is therefore a good choice for589

registration with both unimodal and multimodal tools. Each tool was used590

to register all of the 100 unrelated HCP subjects to the template. FLIRT,591

FNIRT and ANTs used the T1w image only, while MMORF and DR-TAMAS592

used both the T1w and DTI images. The FLIRT affine matrix was used to593

initialise both FNIRT and MMORF, whereas ANTs and DR-TAMAS used594

their own affine registration methods. FNIRT and MMORF were run with595

custom configurations identified to empirically produce good results. ANTs596

and DR-TAMAS were run with slightly modified configurations that were597

found to improve registration accuracy over the defaults. All methods were598

run using a multi-resolution pyramid approach to a final warp resolution of599

1mm isotropic.600

4.2.2. T1w FreeSurfer Label Overlap601

Automatically segmented subcortical (ASEG atlas, (Fischl et al., 2002,602

2004)) and cortical (Destrieux 2009 atlas, (Destrieux et al., 2010)) parcella-603

tions for each subject were warped into template space. Jaccard coefficients604

(measuring label overlap) and Hausdorff distances (measuring the maximum605

error in label boundaries) of the corresponding warped parcellations were606

calculated for every possible pair of subjects. A pairwise approach was used607

because there are no target labels in template space. The average coefficient608

for each parcellation was then calculated across pairings for each subject,609

resulting in 100 values for each parcellation.610

4.2.3. DTI Similarity611

Combined affine and nonlinear (apart from FLIRT) warp fields were used612

to resample each subject’s DTI volume into template space. Resampling of613

tensors was performed using the FSL tool vecreg, which includes preserva-614

tion of principle direction (Alexander et al., 2001) reorientation, which is the615

most accurate way of accounting for the rotational effect of the warps when616
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resampling DTI data. Tensors were then decomposed into three Eigenvalue-617

Eigenvector pairs (L1/2/3 and V1/2/3 respectively). OVL, CLV1 and CPV3618

were then calculated between each subject’s warped DTI volume and the619

template. A pairwise approach was not necessary here since the DTI tem-620

plate volume itself acts as the target. CL and CP weighting coefficients621

(Alexander et al., 2000) were generated from the template DTI volume only.622

V1 and V3 similarity was calculated as the magnitude of the dot product623

of template and warped subject vectors in each template voxel. Similarity624

metrics were calculated per voxel according to the following formulae:625

OVL =

∑3
i=1 LirLim (Vi⊺rVim)

2

∑3
i=1 LirLim

(15)

CL =
L1r − L2r

L1r + L2r + L3r
(16)

CLV1 = CL |V1⊺rV1m| (17)

CP =
2 (L2r − L3r)

L1r + L2r + L3r
(18)

CPV3 = CP |V3⊺rV3m| (19)

where the subscripts r and m represent the reference and resampled moving626

image respectively. All metrics were calculated within the template brain627

mask only.628

4.2.4. tfMRI Cluster Mass629

The HCP task battery (Barch et al., 2013) consists of 7 tasks from which630

86 contrasts are derived, and used to generate contrast of parameter esti-631

mate (COPE) images in subject T1w space. For each subject, the 86 COPE632

images were resampled into template space. FSL Randomise (Winkler et al.,633

2014) was then used to perform a group-level, non-parametric, ordinary-least-634

squares, random-effects, one-group t-test on the mean COPE image (across635

subjects) for each contrast. The results of the group-level processing are 86636

t-statistic maps/images and 86 family-wise-error (FWE) corrected p-value637

maps/images (one per contrast). The t-statistic map represents the group638

activation for a particular contrast, where more accurately aligned activa-639

tions lead to higher t-statistics. The p-value map represents the statistical640

significance of the t-statistic at each voxel.641
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Cluster mass was then calculated as follows. Thresholding was applied642

to the FWE-corrected p-value map (at p < 0.05) for each contrast, to give643

a binary mask of significantly activated regions. This mask was then ap-644

plied voxel-wise to the t-statistic map. The masked t-statistic map was then645

multiplied voxel-wise with a grey matter mask of the template, and summed646

across all voxels. The summed value is what we refer to as cluster mass, and647

is a single number per contrast and registration method. Cluster mass is,648

therefore, increased by both higher t-statistics and better alignment of grey649

matter. It can be calculated independently for each registration method,650

simplifying between-method comparisons651

4.2.5. Distortion652

Two measures of distortion are considered, both evaluated within the653

template brain mask.654

The first is the 5th to 95th percentile range of the log-Jacobian determinant655

(log |J|). This is a measure of volumetric distortion. Since the histogram656

of log |J| tends to be centred around zero, the mean is uninformative and,657

therefore, a range is more useful. This a fairly robust measure of the extent658

to which the local effect of the warp field is to expand/contract voxels (and659

is equally sensitive to both).660

The second is the average cube-volume aspect ratio (CVAR, (Smith and
Wormald, 1998)), defined as:

CV AR =
3

√

s3i−max

s1 × s2 × s3
(20)

where si are the singular values of the local Jacobian matrix. CVAR repre-661

sents the cube-root of the ratio of the volume of the smallest regular cube662

which can fully enclose the cuboid, to the cuboid’s own volume. Alterna-663

tively, for a deformation one can equally well define it as the cube-root of the664

ratio of the largest Jacobian singular value cubed, to the Jacobian determi-665

nant. This is a pure shape-distortion measure that is invariant to volumetric666

changes. For a perfect cube its value is 1, and it is greater than 1 for any667

shape where one or more sides of the cube are a different length to the others.668

Since it is always g 1, the mean across voxels is a meaningful measure of the669

extent to which the local effect of the warp field is to alter the original shape670

of the underlying voxels.671

Between them, these two measures present a good summary of the extent672

to which the warp is distorting the anatomy of the brain to achieve a given673
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Table 1: Summary of results for all domains. Structural (FreeSurfer labels): me-
dian Jaccard index (JI) and Hausdorff distance (HD) across subjects for both subcor-
tical and cortical labels. Diffusion (DTI): median overal tensor similarity (OVL), linear
coefficient-weighted V1 similarity (CLV1) and planar coefficient-weighted V3 (CPV3) sim-
ilarity. Functional (tfMRI): Total cluster mass (CM) for all contrasts. Distortion: median
5th to 95th log-Jacobian determinant range (|J|) and cube-volume aspect ratio (CVAR)
across subjects. The best performing method in each metric is highlighted.

FreeSurfer Labels DTI tfMRI Distortion

Subcort Cort
OVL CLV1 CPV3 CM |J| CVAR

JI HD JI HD

FLIRT 0.449 5.794 0.197 10.797 0.669 0.802 0.755 2.967e+7 - -
FNIRT 0.606 5.160 0.409 9.329 0.776 0.873 0.854 3.718e+7 1.858 1.496
ANTs 0.652 4.707 0.397 9.147 0.802 0.886 0.867 3.736e+7 1.197 1.366

DR-TAMAS 0.640 5.287 0.373 9.406 0.817 0.896 0.869 3.906e+7 1.390 1.374
MMORF 0.664 4.891 0.399 9.102 0.825 0.900 0.872 3.917e+7 1.202 1.353

degree of registration accuracy. In general, lower distortion is for a given674

level of accuracy is preferred. When both distortion and accuracy increase675

then a more nuanced interpretation is required based on the relative changes676

in each.677

4.3. Results678

The results across all domains and metrics are summarised in Table 1.679

More detailed descriptions with accompanying figures are presented in the680

subsections that follow. Many figures utilise raincloud plots (Allen et al.,681

2021) that simultaneously show the raw data, a box and whiskers plot, and a682

density estimate. In all cases the interpretation of the box and whisker part683

of the plots is the same—the box shows the quartiles (25th, 50th and 75th684

percentiles), the whiskers extend to the final non-outlier datapoint, and the685

diamonds show outliers (any point more than 1.5× the interquartile range686

from the edges of the box).687

4.3.1. T1w FreeSurfer Labels688

The Jaccard index and Hausdorff distance results are presented in Figures689

2 and 3 respectively. In all cases, nonlinear registration leads to a major690

improvement in both metrics. MMORF and ANTs produce the best Jaccard691

index results in the subcortex, with FNIRT narrowly outperforming them in692

cortical regions. Hausdorff distance performance is slightly better in both693

subcortical and cortical regions for MMORF and ANTs. It is worth noting694

that subcortical contrast is relatively poor in T1w images from the HCP695
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dataset, and certain structures (the left pallidum in particular) are poorly696

segmented in a number of subjects. This is the cause of the relatively heavy697

tails towards low Jaccard coefficients in Figure 2a.698

4.3.2. DTI Similarity699

OVL, CLV1 and CPV3 similarity results are presented in Figures 4 to 6 re-700

spectively. In all cases, the trend is the same: affine registration with FLIRT701

performs worst followed by FNIRT, ANTs, DR-TAMAS, and MMORF (in702

that order).703

4.3.3. tfMRI Cluster Mass704

Cluster mass results are presented in the form of percentage difference705

plots, and warrant some guidance on their interpretation. Each point on the706

plot represents one contrast. When comparing method A to method B, the707

x-axis represents the cluster mass of method A. The x-axis is log-transformed708

to account for the large range in cluster mass across contrasts. The y-axis709

represents the percentage improvement in cluster mass by method A over710

method B. Therefore, a point at location (x, y) = (10, 10) represents a con-711

trast with a cluster mass of exp(10) for method A, and a 10% improvement712

in cluster mass when using method A over method B. Similarly, a point at713

location (x, y) = (15,−5) represents a contrast with a cluster mass of exp(15)714

for method A, and a 5% reduction in cluster mass when using method A over715

method B. By choosing percentage difference for the y-axis we remove the716

bias towards large cluster mass contrasts, which would otherwise dominate717

if y were instead the simple difference in cluster mass between methods.718

Cluster mass comparisons for MMORF vs FLIRT, FNIRT, ANTs and719

DR-TAMAS are presented in Figures 7 to 10 respectively. MMORF produces720

a large improvement across all contrasts compared to FLIRT, confirming721

that the CM metric is sensitive to improved registration accuracy. MMORF722

improves CM across most contrasts compared to FNIRT and, to a slightly723

lesser extent, ANTs. MMORF and DR-TAMAS produce very similar results724

for contrasts with high CM (towards the right of the x-axis), but MMORF725

performs consistently better for small and medium CM contrasts.726

4.3.4. Distortion727

Comparisons of the 5th to 95th percentile Jacobian determinant range728

(volumetric distortion) and the average CVAR (shape distortion), which are729

both evaluated only within a brain mask, are presented in Figures 11 and730
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(a) Jaccard Index: Subcortical

(b) Jaccard Index: Cortical

Figure 2: Subcortical (a) and cortical (b) Jaccard indices for FreeSurfer seg-
mentation overlaps: All nonlinear methods improve over affine only, with the greatest
improvement being in the cortex. Across all labels, MMORF and ANTs perform similarly
(and best), with only FNIRT slightly outperforming them in the cortex.
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(a) Hausdorff Distance: Subcortical

(b) Hausdorff Distance: Cortical

Figure 3: Subcortical (a) and cortical (b) Hausdorff distances for FreeSurfer
segmentation overlaps: All nonlinear methods improve over affine only, with larger
improvements evident in the cortex. Performance is very similar across all methods, with
ANTs and MMORF slightly outperforming the others.
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Figure 4: Overall tensor similarity (OVL): Calculated within a mask of the template
white matter, defined as FA > 0.2. All nonlinear methods improve over affine only, with
those methods that include DTI data in the registration (MMORF and DR-TAMAS) out-
performing the T1w-only methods (FNIRT and ANTs). MMORF performs best overall.
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Figure 5: Linear shape weighted V1 similarity (CLV1): All nonlinear methods
improve over affine only, with those methods that include DTI data in the registration
(MMORF and DR-TAMAS) outperforming the T1w-only methods (FNIRT and ANTs).
MMORF performs best overall.
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Figure 6: Planar shape weighted V3 similarity (CPV3): All nonlinear methods
improve over affine only, with those methods that include DTI data in the registration
(MMORF and DR-TAMAS) outperforming the T1w-only methods (FNIRT and ANTs).
MMORF performs best overall.
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Figure 7: MMORF vs FLIRT cluster mass: Across clusters of all size, MMORF
(nonlinear) outperforms FLIRT (linear), with an average improvement in cluster mass of
≈ 75%. This is not surprising, but serves to demonstrate that cluster mass is sensitive to
registration accuracy.
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Figure 8: MMORF vs FNIRT cluster mass: MMORF outperforms FNIRT with an
average improvement in cluster mass of ≈ 12%. The largest improvements are in the
mid-sized clusters.
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Figure 9: MMORF vs ANTs cluster mass: MMORF outperforms ANTs with an
average improvement in cluster mass of ≈ 7.5%. The largest improvements are in the
mid-sized clusters.
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Figure 10: MMORF vs DR-TAMAS cluster mass: MMORF outperforms DR-
TAMAS with an average improvement in cluster mass of ≈ 2%. The largest improvements
are in the mid-sized clusters.
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12 respectively. FNIRT shows significantly more distortion than the other731

methods. ANTs and MMORF display similar levels of volumetric distortion,732

that are lower than DR-TAMAS. MMORF displays the least shape distor-733

tion, followed by ANTs and DR-TAMAS. The difference between ANTs and734

DR-TAMAS is likely due to larger deformations within the white matter with735

DR-TAMAS, due to diffusion information driving the registration harder in736

those regions.737

4.4. Summary738

Of the methods tested, MMORF is the most consistently high-performing739

across the full range of evaluation metrics.740

It might be expected that the T1w-only-driven registration methods would741

perform well when evaluated with a T1w-derived similarity metric (particu-742

larly in the cortex) and, indeed, both FNIRT and ANTs perform very well in743

the label overlap metric in this region. It is also possible that the inclusion744

of DTI information during registration might negatively affect such a metric745

and, again, we do indeed see that DR-TAMAS performs relatively poorly in746

the cortex, despite good subcortical performance. MMORF, however, does747

not seem to suffer in the same way—performing on par with ANTs both748

cortically and subcortically. We may, therefore, conclude that MMORF is749

a good choice of method, on par with ANTs, when a structurally-derived750

segmentation comparison is the type of study for which registration is being751

employed.752

The value of including DTI information in the registration is clear, if753

unsurprising. MMORF and DR-TAMAS noticeably outperform both FNIRT754

and ANTs across all DTI similarity metrics. Of the multimodal registration755

methods, MMORF has the advantage over DR-TAMAS across all metrics.756

The OVL metric shows that, within the white matter, both the shape and757

the size of the tensors are better matched by MMORF. The CLV1 and CPV3758

metrics show that the most informative directions of the tensor are also best759

aligned by MMORF.760

We believe the tfMRI results to be the most unbiased assessment of761

registration accuracy presented here, since it is evaluated using a modal-762

ity that was never seen by any of the registration methods being tested.763

Since MMORF outperforms all other methods under test, this is the clearest764

indication of its high registration accuracy. It is notable that FNIRT, the765

best performing method in terms of cortical label overlaps, does not perform766

as well in this (also cortical) metric. Similarly, DR-TAMAS is the closest767
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Figure 11: 5th to 95th percentile Jacobian determinant range: MMORF and ANTs
have the lowest, and very similar, levels of volumetric distortion. This is despite the fact
that the MMORF warps are also trying to align the DTI information in the white matter,
which would be expected to increase the amount of distortion (as can be seen has happened
for DR-TAMAS). FNIRT shows the largest amount of distortion.
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Figure 12: Mean cube-volume aspect ratio (CVAR) shape distortion: MMORF
produces the lowest level of shape distortion on average, followed by ANTs, DR-TAMAS
and FNIRT. As with the volumetric distortion, this is in spite of the fact that the MMORF
warps are also trying to align the DTI information in the white matter, which would be
expected to increase the amount of distortion (as can be seen has happened for DR-
TAMAS). This also demonstrates that MMORF’s low levels of volumetric distortion (see
Figure 11) do not come at the cost of increased shape distortion, which can be observed
when using a regularisation that penalises only the Jacobian determinant (Lange et al.,
2020).
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performing method to MMORF in the tfMRI evaluation, but is the poor-768

est performing method in cortical label overlap. This is a clear example of769

the benefit in not only considering the more circular evaluation metrics (i.e.,770

those derived from the same modalities that are driving the registration)771

when comparing registration tools.772

Finally, in terms of distortion, MMORF demonstrates levels that are sim-773

ilar to or lower than those of ANTs, despite matching it in label overlap and774

bettering it in both the DTI and tfMRI metrics. DR-TAMAS produces more775

distortion on average than its sibling method, ANTs, which is not unexpected776

given that DR-TAMAS is also being driven by DTI information in the white777

matter. FNIRT produces larger distortions than the other nonlinear meth-778

ods. Without MMORF for comparison, this might easily be interpreted as779

the inevitable consequence of driving a small deformation framework method780

very hard to maximise accuracy metrics. However, given that MMORF and781

FNIRT have the same transformation model, this instead highlights the value782

of using a more biologically plausible regularisation model within the small-783

deformation framework.784

5. Discussion785

The primary objective in developing MMORF was to exploit the rich786

information available in multimodal datasets in order to align brain images787

with maximal accuracy. A truly multimodal tool must be able to leverage in-788

formation about both magnitude and directionality in each voxel, since we are789

able to capture and represent both of these with MRI. To this end, MMORF790

is able to explicitly, and simultaneously, optimise both the displacement and791

rotational effects of a warp field. Importantly, not optimising for rotation792

(as is the case for any scalar registration method) does not mean that there793

is no rotation, only that it cannot be controlled to either improve directional794

alignment or prevent the introduction of misalignment. Simultaneously opti-795

mising over multiple modalities through a single warp both allows the unique796

information from each modality to influence the resulting transformation (as797

when each modality is aligned separately), and ensures that all modalities798

remain co-registered following warping (as when using only a single modality799

to drive alignment).800

But even when combining information across modalities, image regis-801

tration is still a highly underdetermined problem and, therefore, alignment802

accuracy (as measured by how well anatomy are co-localised) is highly depen-803
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dent on the choice of warp regularisation. We therefore included in MMORF804

a regularisation model that promotes highly biologically plausible deforma-805

tions, thereby effectively controlling excessive levels of distortion in both806

shape and size.807

The combination of our multimodal approach and our regularisation met-808

ric is computationally intensive, particularly when it comes to calculating the809

Hessian matrix required by MMORF’s Gauss-Newton optimisation strategy.810

We address this through GPU parallelisation of the most computationally811

intensive parts of the algorithm, allowing MMORF to run to 1mm warp res-812

olutions within 5 to 45 minutes (depending on image resolution and number813

of modalities).814

We have evaluated MMORF across four domains—T1w-label overlap,815

DTI similarity, tfMRI cluster mass and image distortion. Performance was816

benchmarked against three established registration tools—FNIRT, ANTs,817

and DR-TAMAS. These tools represent MMORF’s predecessor, a state-818

of-the-art unimodal method, and the most similar multimodal alternative,819

respectively. A common theme was that methods performed well when820

tested on metrics derived from modalities used in their respective cost func-821

tions—e.g., FNIRT performed well on T1w-label overlap, and DR-TAMAS822

performed well on DTI similarity. MMORF performed best or near-best in823

both scalar and tensor evaluations, best in the held-out tfMRI evaluation,824

and best in terms of distortion.825

FNIRT was able to slightly outperform MMORF in cortical T1w-label826

overlap, but was outperformed by MMORF across all other metrics. FNIRT827

induces the most distortion out of the methods tested. This likely contributed828

to the relatively poor DTI similarity results, since excessive deformations are829

likely to cause incorrect rotation of the tensors. Interestingly, having the830

best cortical label overlap has not translated to the best tfMRI performance,831

with FNIRT actually showing the poorest performance, despite both domains832

being evaluated on the cortex. The strong cortical T1w-label performance833

is, therefore, likely due to overfitting of the T1w image similarity metric, and834

highlights the importance of holistically evaluating registration performance,835

including the use of a held-out modality. These results demonstrate the836

significant improvement in performance of MMORF over its predecessor.837

Since both the inputs and outputs to MMORF are fully compatible with838

FNIRT and FSL, the benefits of this improvement can be realised by simply839

substituting in the new method.840

ANTs performed near-identically to MMORF in both cortical and sub-841
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cortical T1w-label overlap measures, making them the best performing meth-842

ods in this domain. The inclusion of DTI data in MMORF registration has,843

therefore, not compromised the alignment of the T1w channel, which is not844

necessarily a given (see the comparison to DR-TAMAS below). The ben-845

efits of including the DTI data are evident in the DTI similarity results,846

where MMORF clearly has the advantage over ANTs. MMORF consistently847

outperforms ANTs in the tfMRI evaluation, indicating better anatomical848

consistency in grey matter, despite similar label overlap performance. Lev-849

els of distortion are very comparable between these two methods, despite850

there being more information to drive white matter deformations harder in851

MMORF.852

DR-TAMAS was the poorest performing nonlinear method in terms of853

cortical T1w-label overlap, and second-poorest subcortically. Since it largely854

shares its scalar registration algorithm with ANTs, this suggests that this is855

due to the inclusion of DTI data in driving the registration. As has already856

been noted, this was not the case for MMORF. This could therefore be at-857

tributed to the differences in DTI cost functions employed by DR-TAMAS858

and MMORF—where MMORF uses the whole tensor, while DR-TAMAS859

uses a combination of the mean diffusivity (a scalar) and the deviatoric ten-860

sor (shape and direction information only). DR-TAMAS came a close second861

to MMORF across all DTI similarity metrics, with performance clearly better862

than the scalar-only methods. DR-TAMAS was also the closest performing863

method to MMORF in the tfMRI evaluation, demonstrating again that corti-864

cal segmentation performance does not necessarily translate to well matched865

cortical activations. In terms of amount of deformation, DR-TAMAS induced866

more deformations than MMORF, despite having been outperformed across867

all accuracy measures.868

One limitation of this and, in fact, most evaluations of registration meth-869

ods is that we are likely to be able to better tune our own method than those870

against which we are comparing. However, starting from the default settings,871

we have made an effort to optimise the performance of each, and kept any872

adjustments that proved beneficial. As such, we believe that our results are873

representative of what can be expected in real-world use. While there was874

always at least one tool with similar performance to MMORF in each test,875

none were consistently as high-performing across the board.876

Note that, although our primary objective was human brain alignment,877

MMORF does not rely on any human brain priors (e.g., tissue maps or878

assumed brain size), and may be applied to any domain of medical imag-879
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ing. For example, MMORF has been successfully used in the generation of880

multimodal, non-human primate brain templates of several phylogenetically881

distant species for the purpose of performing comparative anatomy of white882

matter tracts (Roumazeilles et al., 2022). Similarly, while the HCP enables883

us to compare the relative performance of each registration tools across mul-884

tiple imaging modalities using a single dataset, our evaluation here is largely885

confined to the cerebrum as there is little to no labelled data in the cere-886

bellum, brain stem, and spinal cord. MMORF may, in fact, be particularly887

beneficial for studying these non-cerebral regions, and we hope to explore888

this is in future.889

In this work we have only considered MMORF’s performance in compari-890

son to other volumetric registration tools. There is strong evidence that using891

surface-based registration has a beneficial effect on cortical alignment accu-892

racy (Coalson et al., 2018), and we are not advocating the use of MMORF893

instead of those methods when performing cortical or surface-based cross-894

subject fMRI analyses, for example. However, volumetric registration is, as895

yet, still the only way to align non-cortical brain regions, and is likely to896

remain just as valuable as surface registration in neuroimaging research for897

the foreseeable future, especially when data are registered intra-individually898

and when surface reconstructions fail, for example, due to the presence of899

intra-axial lesions (such as brain tumours).900

Given MMORF’s performance, reasonable execution times, and simple901

compatibility with FSL, we believe it to be an excellent choice of tool for vol-902

umetric registration—regardless of the domain of any follow-on analysis. As903

such, it is easy to recommend MMORF to all users working with multimodal904

neuroimaging data, and in particular those who already rely on FSL for their905

analyses. They will benefit from state-of-the-art registration accuracy across906

all domains of their downstream analyses, with very little modification to907

any existing pipelines. MMORF is available as part of FSL in releases newer908

than 6.0.7.909

6. Data and Code Availability910

MMORF binaries and the associated source code are available for down-911

load via the standard FSL installer3. A stand-alone Singularity image, in-912

structions for running MMORF, and example configuration files are available913

3https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FslInstallation
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on the FMRIB GitLab server4. All analysis scripts, figures, figure source code914

and latex source code that were used to generate this manuscript are available915

on the FMRIB GitLab server5.916
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Beg, M.F., Miller, M., Trouvé, A., Younes, L., 2005. Computing large defor-991

mation metric mappings via geodesic flows of diffeomorphisms. Interna-992

tional Journal of Computer Vision 61, 139–157.993

Bookstein, F.L., 1997. Quadratic variation of deformations, in: Lecture994

Notes in Computer Science (Including Subseries Lecture Notes in Artificial995

Intelligence and Lecture Notes in Bioinformatics). volume 1230, pp. 15–28.996

Bro-Nielsen, M., Gramkow, C., 1996. Fast fluid registration of medical im-997

ages, in: Lecture Notes in Computer Science (Including Subseries Lecture998

Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). vol-999

ume 1131, pp. 267–276.1000

Christensen, G.E., 1999. Consistent linear-elastic transformations for image1001
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