

1 **Evolution of wheat blast resistance gene *Rmg8* accompanied by**
2 **differentiation of variants recognizing the powdery mildew fungus**

3

4 Soichiro Asuke^{1†}, Kohei Morita^{1†}, Motoki Shimizu², Fumitaka Abe³, Ryohei
5 Terauchi^{2,4}, Chika Nago¹, Yoshino Takahashi¹, Mai Shibata¹, Motohiro
6 Yoshioka¹, Mizuki Iwakawa¹, Mitsuko Kishi-Kaboshi³, Zhuo Su⁴, Shuhei
7 Nasuda⁴, Hirokazu Handa⁵, Masaya Fujita³, Makoto Tougou³, Koichi Hatta³,
8 Naoki Mori¹, Yoshihiro Matsuoka¹, Kenji Kato⁶, and Yukio Tosa^{1*}

9

10 ¹ Graduate School of Agricultural Science, Kobe University, Kobe 657-8501, Japan.

11 ² Iwate Biotechnology Research Centre, Kitakami 024-0003, Japan.

12 ³ Institute of Crop Science, National Agriculture and Food Research Organization,
13 Tsukuba 305-8518, Japan.

14 ⁴ Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan.

15 ⁵ Graduate School of Life and Environmental Sciences, Kyoto Prefectural University,
16 Kyoto, 606-8522, Japan.

17 ⁶ Graduate School of Environmental and Life Science, Okayama University, Okayama
18 700-8530, Japan.

19 [†]These authors contributed equally to this work.

20 *Corresponding author (E-mail: tosayuki@kobe-u.ac.jp)

21

22

23

24 **Abstract**

25

26 Wheat blast, a devastating disease having spread recently from South America to Asia
27 and Africa, is caused by *Pyricularia oryzae* pathotype *Triticum* which emerged in 1985.
28 *Rmg8* and *Rmg7*, genes for resistance to wheat blast found in common wheat and
29 tetraploid wheat, respectively, recognize the same avirulence gene, *AVR-Rmg8*. Here,
30 we show an evolutionary process in which resistance gene(s), which had obtained an
31 ability to recognize *AVR-Rmg8* before the differentiation of *Triticum* and *Aegilops*, has
32 expanded its target pathogens. Molecular cloning revealed that *Rmg7* was one of alleles
33 of *Pm4* (*Pm4a*), a gene for resistance to wheat powdery mildew on 2AL, whereas *Rmg8*
34 was its homoeolog on 2BL ineffective against wheat powdery mildew. *Rmg8* variants
35 with the ability to recognize *AVR-Rmg8* were distributed not only in *Triticum* spp. but
36 also in *Aegilops speltoides*, *Ae. umbellulata*, and *Ae. comosa*. This result suggests that
37 the origin of resistance gene(s) recognizing *AVR-Rmg8* dates back to the time before
38 differentiation of A, B, S, U, and M genomes, that is, ~5 million years before the
39 emergence of its current target, the wheat blast fungus. Phylogenetic analyses suggested
40 that, in the evolutionary process thereafter, some of their variants gained the ability to
41 recognize the wheat powdery mildew fungus and evolved into genes for resistance to
42 wheat powdery mildew.

43

44 **Introduction**

45

46 Wheat cultivation is now threatened by an expanding pandemic disease – wheat
47 blast¹. Its causal agent is a subgroup of a filamentous fungus, *Pyricularia oryzae* (syn.
48 *Magnaporthe oryzae*) pathotype *Triticum* (MoT)², which is specifically pathogenic on
49 the genus *Triticum*³. MoT first emerged in Brazil in 1985⁴ through a host jump of *P.*
50 *oryzae* pathotype *Lolium* (MoL) or its relatives⁵, then spread to neighboring countries
51 such as Bolivia, Paraguay, and Argentina, and became one of the most serious wheat
52 diseases in South America. Recently, it spread to Asia and Africa, and caused severe
53 outbreaks of wheat blast in Bangladesh (in 2016)⁶⁻⁸ and Zambia (in 2018)⁹. Molecular
54 analyses of isolates collected in these countries suggested that the outbreaks in
55 Bangladesh and Zambia were caused by a lineage which spread from South America to
56 Asia and Africa through independent introductions¹. To control this devastating disease,
57 we need resistance genes effective against MoT. The only genetic resource currently
58 used in farmer's field against MoT is a 2NS chromosomal segment¹⁰ introduced from
59 *Aegilops ventricosa*¹¹. However, the resistance gene on this segment has not been
60 identified. Furthermore, the 2NS resistance has already been overcome by new MoT
61 strains in South America^{10,12}.

62 Genes for resistance to MoT have been considered to be rarely found in the current
63 wheat population because MoT is a new pathogen which emerged only ~40 years ago;
64 most of current wheat accessions have not been exposed to the attack or infection
65 pressures by MoT. However, Tagle et al.¹³ identified a resistance gene in cultivated
66 emmer wheat and designated it as *Rmg7*. Anh et al.¹⁴ identified another resistance gene
67 in common wheat cultivar S-615 and designated it as *Rmg8*. *Rmg7* and *Rmg8* were

68 located on distal ends of the long arms of chromosome 2A (2AL) and 2B (2BL),
69 respectively¹⁴. In addition, these genes corresponded to the same avirulence gene, *AVR-*
70 *Rmg8*¹⁵. These results suggested that they might be homoeologous genes derived from
71 the same ancestral gene¹⁵. To be useful in farmer's fields, wheat blast resistance genes
72 must be effective even at high temperature because wheat blast is severe at high
73 temperature with an optimum between 25 and 30°C². *Rmg8* was effective at high
74 temperature but *Rmg7* was not¹⁵, suggesting that *Rmg8* is the only wheat blast resistance
75 gene identified so far as a major gene which may be useful in fields.

76 To find additional resistance genes, Wang et al.¹⁶ screened 520 local landraces of
77 common wheat collected from various countries over the world, and found 18
78 accessions resistant to MoT. We initially expected that several resistance genes might
79 be found in these resistant accessions. However, all of these accessions recognized
80 *AVR-Rmg8*, which led us to infer that they are all *Rmg8* carriers although one of them
81 had an additional gene tentatively designated as *RmgGR119*¹⁶. These resistant
82 accessions had been collected in Europe and Middle East between 1924 and 1971
83 (before the emergence of MoT), and should not have had interactions with MoT. Why
84 have these accessions in Europe and Middle East maintained *Rmg8*, a gene for
85 resistance to MoT? In the present study we isolated *Rmg8* and *Rmg7*, and found that
86 they are a homoeolog and an allele, respectively, of *Pm4*, a gene for resistance to wheat
87 powdery mildew (*Blumeria graminis* f. sp. *tritici*, Bgt). In addition, we found their
88 functional variants in *Aegilops speltoides*, *Ae. umbellulata*, and *Ae. comosa*, suggesting
89 that the origin of resistance genes recognizing *AVR-Rmg8* dates back to the time before
90 the differentiation of *Triticum* and *Aegilops*, that is, ~5 million years before the
91 emergence of its target pathogen, MoT. Based on these results, we present a model of

92 evolutionary processes in which a resistance gene has gained new target pathogens
93 through differentiation of variants.

94

95 **Results**

96

97 ***Rmg8* is a homoeolog of *Pm4*, a gene for resistance to wheat powdery mildew**

98 To isolate *Rmg8* from common wheat, the resistant cultivar S-615 carrying *Rmg8*
99 was crossed with a susceptible cultivar, Shin-chunaga (Sch), resulting in 165 F_{2:3} lines.

100 When inoculated with MoT isolate Br48, homozygous resistant, segregating, and
101 homozygous susceptible lines segregated in a 1:2:1: ratio (45:87:33) as expected.

102 Molecular markers (KM markers) for mapping were produced using high confidence
103 genes on 2BL found in the whole genome sequence of cv. Chinese Spring in the
104 database (International Wheat Genome Sequencing Consortium; IWGSC). Mapping
105 with the KM markers delimited the candidate region to ~12Mb between KM25 and the
106 telomere (Fig. 1a). However, we could not narrow down the candidate region further
107 because all markers produced on its 8.4Mb distal region co-segregated with the *Rmg8*
108 phenotype (Fig. 1a).

109 We then adopted the RaIDeN method developed by Shimizu et al.¹⁷ with some
110 modifications. Briefly, RNA-seq reads obtained from primary leaves of Sch and nine
111 F_{2:3} lines with homozygous susceptible genotypes were aligned to a reference sequence
112 of a gene set which was constructed by de novo assembly of RNA-seq reads obtained
113 from S-615 leaves (Extended Data Fig. 1a). We selected genes (i) which showed
114 polymorphisms (presence/absence or single-nucleotide polymorphisms) between S-615
115 and Sch, (ii) whose Sch allele was shared by all of the nine susceptible F_{2:3} lines, and

116 (iii) which encoded NBS (nucleotide-binding site), NLR (nucleotide-binding site –
117 leucine-rich repeat), or RLK (receptor-like kinase). Consequently we found 10 genes
118 that fulfilled the three requirements (Extended Data Fig. 1b). *In silico* analyses with
119 whole genome sequences in the databases suggested that six out of the 10 genes were
120 located on the 2B chromosome of *T. turgidum* subsp. *durum* cv. Svevo. PCR markers
121 designed on these 6 genes co-segregated with *Rmg8* in the F_{2:3} lines derived from Sch x
122 S-615, indicating that they are actually located on 2B of common wheat. Finally, these
123 candidate genes were subjected to an association analysis using 20 common wheat lines
124 recognizing *AVR-Rmg8* (S-615, the 18 local landraces mentioned above, and GR341, an
125 additional local landrace which proved to recognize *AVR-Rmg8*) and 20 common wheat
126 cultivars that did not recognize *AVR-Rmg8*. One candidate, the Can-I gene amplified
127 with PCR marker KM171, showed a perfect association with the *Rmg8* phenotype (Fig.
128 1b) whereas the others did not (Extended Data Fig. 1b). From these results, we assumed
129 that the Can-I gene might be *Rmg8*. Intriguingly, the Can-I transcript sequence was
130 almost identical to that of *Pm4b_V2*, one of the two splicing variants of *Pm4b*
131 controlling the resistance to wheat powdery mildew¹⁸. Further analyses revealed that
132 transcripts from S-615 also contained another splicing variant which was almost
133 identical to *Pm4b_V1*, the other splicing variant of *Pm4b*. These alternative splicing
134 variants derived from S-615 were designated as *Rmg8-V2* and *Rmg8-V1*, respectively. A
135 comparison of these transcripts with the genome sequence of S-615 revealed that the
136 exon/intron structure was the same as *Pm4b* (Fig. 1c).

137 To check whether *Rmg8-V1* and *Rmg8-V2* recognize *AVR-Rmg8* and induce
138 hypersensitive reaction, a protoplast cell death assay¹⁹ was performed. cDNA fragments
139 of *Rmg8-V1*, *Rmg8-V2*, and a genomic fragment of the entire gene was inserted into

140 pZH2Bik²⁰ so as to be driven by the rice ubiquitin promoter, and established as pRmg8-
141 V1, pRmg8-V2, and pRmg8-genome, respectively. Barley protoplasts were co-
142 transfected with these constructs, a plasmid carrying *AVR-Rmg8* (pAVR-Rmg8), and a
143 plasmid carrying a luciferase reporter gene. As a negative control, pPWT3 with the
144 *PWT3* avirulence gene⁵ corresponding to *Rwt3* was employed instead of pAVR-Rmg8.
145 Fluorescence was not reduced in pAVR-Rmg8/pRmg8-V1 or pAVR-Rmg8/pRmg8-V2
146 combinations (Fig. 1d). When protoplasts were co-transfected with pAVR-Rmg8 and a
147 mixture of pRmg8-V1 and pRmg8-V2, however, fluorescence was significantly
148 reduced. This reduction was also observed in the pAVR-Rmg8/pRmg8-genome
149 combination, but was cancelled when pAVR-Rmg8 was replaced with pPWT3. These
150 results suggest that the Can-I gene is *Rmg8* and that both of its splicing variants are
151 required for the recognition of *AVR-Rmg8*. This is in accordance with the report¹⁸ that
152 both of *Pm4b_V1* and *Pm4b_V2* are required for the resistance to powdery mildew
153 conferred by *Pm4b*.

154 To confirm that the Can-I gene is *Rmg8*, pRmg8-genome was introduced into *T.*
155 *aestivum* cv. Fielder (susceptible to Br48) through Agrobacterium-mediated
156 transformation. In the T₁ generation, resistant and susceptible individuals against Br48
157 segregated in a 3:1 ratio (Fig. 1e). Furthermore, these reactions to Br48 were perfectly
158 concordant with the presence/absence of the transgene. By contrast, the T₁ individuals
159 were all susceptible to Br48ΔA8 (*AVR-Rmg8* disruptant derived from Br48) irrespective
160 of the presence/absence of the transgene. Against Br48ΔA8+eI (transformant of
161 Br48ΔA8 carrying re-introduced *AVR-Rmg8* derived from Br48), resistant and
162 susceptible T₁ individuals again segregated in a 3:1 ratio in concordance with the
163 presence/absence of the transgene. Transformants carrying pRmg8-V1 alone and those

164 carrying pRmg8-V2 alone were all susceptible to Br48, Br48ΔA8, and Br48ΔA8+eI
165 (Extended Data Fig. 2), supporting the observation in the protoplast assay. From these
166 results, we concluded that we successfully isolated *Rmg8*. Sánchez-Martin et al.¹⁸ found
167 six “alleles” of *Pm4*, i.e., *Pm4a*, *Pm4b*, *Pm4d*, *Pm4f*, *Pm4g*, *Pm4h* in breeding lines or
168 global collections of common wheat through PCR amplification and Sanger sequencing.
169 The genetically identified *Pm4* alleles, i.e., *Pm4a*, *Pm4b*, and *Pm4d*, were located on
170 2A^{21,22} while chromosomal locations of *Pm4f*, *Pm4g*, *Pm4h* have not been determined.
171 *Rmg8* was identical to *Pm4f* in the nucleotide sequence, but was located on 2B (Fig. 2a).
172 From these results, we concluded that *Rmg8* is a homoeolog of *Pm4*.

173

174 ***Rmg7* is an allele of *Pm4*, a gene for resistance to wheat powdery mildew**

175 *Rmg7* was identified in three accessions of tetraploid wheat, *T. dicoccum* KU-112
176 (abbreviated as St17), KU-120 (St24), and KU-122 (St25)¹³ using Br48 as a test isolate.
177 Since *Rmg7* was located on the distal end of 2AL in which the *Pm4* locus resided, we
178 assumed that *Rmg7* might be an allele of *Pm4*. PCR amplification and sequencing
179 revealed that these three accessions shared a gene identical to *Pm4a*. In 93 F_{2:3} lines
180 derived from St24 x Tat14 (*T. paleocolchicum* KU-156, susceptible to Br48), reactions
181 to Br48 (conferred by *Rmg7*) perfectly co-segregated with the presence/absence of
182 *Pm4a* (Fig. 2a) determined by KM200, another presence/absence PCR marker designed
183 on *Rmg8*-V2 (Fig. 1c, Extended Data Fig. 3).

184 To confirm that *Pm4a* recognize *AVR-Rmg8*, a protoplast cell death assay was
185 performed. cDNA fragments of the two alternative splicing variants derived from *Pm4a*
186 in St24 was inserted into pZH2Bik and established as pRmg7-V1 and pRmg7-V2,
187 respectively. Fluorescence was not reduced in pAVR-Rmg8/pRmg7-V1 or pAVR-

188 Rmg8/pRmg7-V2 combinations (Fig. 2b). When protoplasts were co-transfected with
189 pAVR-Rmg8 and a mixture of pRmg7-V1 and pRmg7-V2, however, fluorescence was
190 significantly reduced. This reduction was cancelled when pAVR-Rmg8 was replaced
191 with pPWT3. These results suggest that *Pm4a* specifically recognizes *AVR-Rmg8*, and
192 is therefore *Rmg7*.

193

194 **Distribution of *Rmg8* variants in common wheat**

195 From here, we will call genes that can be amplified with KM171 or KM200
196 (including *Rmg8*, *Rmg7*, and *Pm4* alleles reported previously) as *Rmg8* variants
197 collectively. As mentioned above, we previously screened 520 local landraces of
198 common wheat by inoculation with Br48 and found 18 accessions that recognized *AVR-*
199 *Rmg8*¹⁶. Although they assumed that these 18 accessions were *Rmg8* carriers, there
200 remained a possibility that some of them might be *Rmg7* carriers because *Rmg7* also
201 recognized *AVR-Rmg8*. In the present study we again screened a total of 526 local
202 landraces (the 520 accessions plus 6 additional accessions) with Br48, and found 21
203 resistant accessions (the 18 accession plus 3 additional accessions). They were all
204 susceptible to Br48ΔA8 but resistant to Br48ΔA8+eI, and therefore, confirmed to
205 recognize *AVR-Rmg8* (Extended Data Table 1). Sequence analysis revealed that more
206 than half of them (12 accessions) carried *Pm4f* as expected. However, the other
207 accessions were composed of one *Pm4b* carrier and eight *Pm4a* carriers. These *Pm4a*
208 carriers included three accessions (IL92, CP71, GR250) which had already been
209 confirmed to carry a single resistance gene at the same locus as S-615, i.e. on 2BL²³. To
210 further check chromosomal locations of *Pm4a* in common wheat, we chose two *Pm4a*
211 carriers (IL186, CP20) and crossed them with S-615. In the resulting F₂ populations,

212 resistant and susceptible seedlings segregated in 15:1 ratios (Extended Data Table 2),
213 suggesting that they were carriers of *Rmg7* located on 2AL. Taken together, these
214 results suggest that the chromosomal location of the *Pm4a* sequence is not restricted to
215 2AL; it resides on 2AL in some accessions but on 2BL in others.

216 To find other *Rmg8* variants, we screened the rest of the local landraces (505
217 susceptible accessions) with the PCR marker KM200, and found 7 accessions carrying
218 *Pm4g* and 3 accessions carrying a new variant tentatively designated as *PM4_h1*
219 (Extended Data Table 1). They were considered to be ineffective to MoT (Extended
220 Data Table 1). *Pm4d* or *Pm4h* were not detected in our collection of common wheat
221 local landraces.

222 These *Rmg8* variants were plotted on maps of Europe, Middle East, and Africa
223 (Ethiopia). *Pm4f* and *Pm4a*, which are effective against MoT, were distributed from
224 Middle East through southern Europe (Fig. 3a). On the other hand, *Pm4g*, which is
225 ineffective against MoT, was distributed around mid-northern areas of Europe. The
226 *Rmg8* variants were scarcely detected in accessions collected in Asia and the Americas
227 (Extended Data Table 3).

228

229 **Distribution of *Rmg8* variants in tetraploid wheat**

230 To trace the origin of the *Rmg8* variants, we screened tetraploid wheat composed
231 of 46 accessions of *T. dicoccoides*, 76 accessions of *T. dicoccum*, 72 accessions of *T.*
232 *durum*, and 4 accessions of *T. paleocolchicum* with KM200. For accessions positive
233 with KM200, the entire gene was amplified and sequenced. In the wild emmer wheat (*T.*
234 *dicoccoides*) *Pm4f* was detected more frequently than *Pm4a* (Extended Data Table 3).
235 In the cultivated emmer wheat (*T. dicoccum*), however, *Pm4a* extremely predominated

236 over *Pm4f* (Extended Data Table 3). Their geographical distribution suggested that,
237 after the domestication of emmer wheat, *Pm4a* was preferentially transmitted from
238 Fertile Crescent to Spain and Ethiopia (Fig. 3b, c) probably due to its advantageous
239 character – the resistance to wheat powdery mildew. A new variant designated
240 tentatively as *PM4_h2* was found in two accessions of *T. dicoccum* collected in
241 Ethiopia. *Pm4a* and *Pm4f* were also detected in *T. durum* (Extended Data Table 3).

242

243 **Distribution of *Rmg8* variants in *Aegilops* spp.**

244 To reveal the origin of the functional genes recognizing *AVR-Rmg8*, *Aegilops* spp.
245 composed of 909 accessions were screened by inoculation. Accessions resistant to Br48
246 but weakly resistant or susceptible to Br48ΔA8 were determined to be carriers of
247 functional *Rmg8* variants. Such accessions were found in *Ae. umbellulata*, *Ae.*
248 *speltoides*, and *Ae. comosa* (Extended Data Tables 4, 5). It should be noted that, in *Ae.*
249 *umbellulata*, the 27 accessions resistant to Br48 were either susceptible (26 accessions)
250 or weakly resistant (1 accession) to Br48ΔA8, suggesting that they all recognize *AVR-*
251 *Rmg8*. Geographically, they were distributed around Fertile Crescent and Turkey (Fig.
252 3d).

253 Six accessions were arbitrarily chosen from the 26 accessions mentioned above and
254 crossed with susceptible accessions. In each F₂ population resistant and susceptible
255 seedlings segregated in a 3:1 ratio (Extended Data Table 6), suggesting that the
256 resistance of each accession is controlled by a single major gene. In addition, crosses
257 among resistant accessions yielded no susceptible F₂ seedlings (Extended Data Table 6),
258 which was consistent with an assumption that they were allelic at the same locus.

259

260 **Phylogenetic analysis of *Rmg8* variants**

261 The resistance genes recognizing *AVR-Rmg8* (*Rmg8* homologs) were amplified from
262 seven, two, and one accessions of *Ae. umbellulata*, *Ae. speltoides*, and *Ae. comosa*,
263 respectively, and sequenced. *Rmg8* variants from these species were designated as
264 *AeuRmg8*, *AesRmg8*, and *AecRmg8*, respectively. These nucleotide sequences were
265 aligned with those of tetraploid and hexaploid wheat lines, and a phylogenetic tree was
266 constructed using MEGA7 (Fig. 4a). SY-Mattis, a common wheat cultivar carrying
267 *Pm4d*¹⁸, was included in the materials. *AeuRmg8* and *AecRmg8* were grouped into a
268 cluster remote from the others while *AusRmg8* was clustered with those of *Triticum* spp.
269 and formed a subcluster with *Pm4g*. This is reasonable because the S genome in *Ae.*
270 *speltoides* is close to the B genome of *Triticum* spp.^{24,25}. *Rmg8* variants in *Triticum* spp.
271 except *Pm4g* formed another subcluster. *Pm4f* was located on the basal part of this large
272 subcluster and composed of various haplotypes, suggesting that *Pm4f* emerged earlier
273 than the others. The topology suggested that *Pm4a*, *Pm4d*, *PM4_h1*, and *PM4_h2*
274 originated from *Pm4f*, and that *Pm4b* originated from *Pm4d*.

275 Amino acid sequences of those variants are summarized in Fig. 4b with one
276 representative from each of the *Aegilops* variants, i.e., *AeuRmg8_h1* from *Ae.*
277 *umbellulata* KU-4026, *AesRmg8_h1* from *Ae. speltoides* KU-7707, and *AecRmg8_h1*
278 from *Ae. comosa* KU-17-2. The various haplotypes of *Pm4f* encoded the same protein
279 with an identical amino acid sequence. *Pm4a*, *Pm4d*, *PM4_h1*, and *PM4_h2* had a
280 single amino acid substitution at different sites in comparison with *Pm4f*, suggesting
281 that they emerged from *Pm4f* independently. *Pm4b* had two amino acid substitutions in
282 comparison with *Pm4f*, but one of them was shared with *Pm4d*, supporting the idea that
283 *Pm4b* evolved from *Pm4d*. *AesRmg8_h1* was very similar to the *Rmg8* variants in

284 *Triticum* spp. while AeuRmg8_h1 and AecRmg8_h1 had large indels in comparison
285 with them (Fig. 4b).

286

287 **Reactions of *Rmg8* variants to wheat blast and powdery mildew fungi**

288 Reactions of representative *Rmg8* variants in *Triticum* spp. to wheat blast and
289 wheat powdery mildew were tested using three MoT strains (Br48, Br48ΔA8, and
290 Br48ΔA8+eI) and two Bgt isolates (Th1 and Th2) that were selected as representatives
291 of 14 isolates collected in various locations in Japan (Extended Data Table 7). For
292 *Pm4a*, common wheat cultivar Chancellor (Cc) and its near-isogenic line carrying *Pm4a*
293 (Cc-Pm4a) were employed. Cc-Pm4a is a line (Khapli x Cc⁸) bred for mildew resistance
294 by Briggles²⁶. If our analysis mentioned above is correct, Cc-Pm4a should recognize
295 *AVR-Rmg8*. Actually, Cc-Pm4a was resistant to Br48, susceptible to Br48ΔA8, and
296 again resistant to Br48ΔA8+eI while Cc was susceptible to all of the three strains (Fig.
297 5). Against Bgt, Cc-Pm4a was resistant to Th2 while Cc was susceptible (Fig. 5),
298 confirming that *Pm4a* is effective against Bgt. Cc-Pm4a was susceptible to another Bgt
299 isolate Th1, suggesting that the avirulence gene corresponding to *Pm4a* is carried by
300 Th2 but not by Th1. St24 is a tetraploid accession in which *Rmg7* (=*Pm4a*) was first
301 identified¹³. Against the three MoT strains, St24 showed the same reactions as Cc-Pm4a
302 as expected (Fig. 5). In addition, St24 showed strong resistance to the Bgt isolates (Fig.
303 5). Taken together, we confirmed that *Pm4a* is effective to both MoT and Bgt.

304 For *Pm4f*, common wheat cultivar Chikugoizumi (ChI) and its near-isogenic line
305 carrying *Rmg8* (=*Pm4f*) (ChI-Rmg8)²⁷ were employed. ChI-Rmg8 was resistant to
306 Br48, susceptible to Br48ΔA8, and again resistant to Br48ΔA8+eI as expected while
307 ChI was susceptible to all of the three strains (Fig. 5). Other *Pm4f* carriers (S-615 and

308 IL191) showed the same reactions. By contrast, these *Pm4f* carriers were all susceptible
309 to Th1 and Th2 (Fig. 5). Furthermore, Chi-Rmg8 were susceptible to all Japanese Bgt
310 isolates tested (Extended Data Table 7). Taken together, we concluded that *Pm4f* is
311 effective to MoT but ineffective to Bgt.

312 GR192 carrying *Pm4b* and SY-Mattis carrying *Pm4d* were resistant to Br48,
313 susceptible to Br48ΔA8, and resistant to Br48ΔA8+eI (Fig. 5), indicating that these
314 alleles recognize *AVR-Rmg8*. They were also resistant to the Bgt isolates (Fig. 5). These
315 results suggest that *Pm4b* and *Pm4d* are effective to both MoT and Bgt. On the other
316 hand, IL16 carrying *Pm4g* was susceptible to all of the MoT strains and Bgt isolates
317 tested (Fig. 5, Extended Data Table 7), suggesting that *Pm4g* is ineffective to both MoT
318 and Bgt.

319 *Ae. umbellulata* KU-4026 carrying *AeuRmg8_h1* was resistant to Br48, susceptible
320 to Br48ΔA8, and resistant to Br48ΔA8+eI (Fig. 5), confirming that *AeuRmg8_h1*
321 recognizes *AVR-Rmg8*. When inoculated with the Th1 and Th2, primary leaves of KU-
322 4026 became slightly chlorotic, but produced conidia enough to proceed to the next
323 infection cycle (Fig. 5). KU-4026 showed similar reactions to all Japanese Bgt isolates
324 tested (Extended Data Table 7). These results suggest that *AeuRmg8_h1* is effective to
325 MoT but ineffective to Bgt.

326

327 **Discussion**

328

329 In the present study we isolated *Rmg8*, the only genetic factor that has been
330 identified as a major gene for resistance to MoT and supposed to be effective against
331 wheat blast in farmer's fields²⁷. Intriguingly, *Rmg8* was identical to *Pm4f*, which was

332 reported to be an “allele” of *Pm4*, a gene for resistance to wheat powdery mildew¹⁸.
333 *Rmg8* was located on 2BL^{14,27} (Fig. 2a) while *Pm4a*, *Pm4b*, and *Pm4d* were reported to
334 reside on 2AL^{21,22}. This apparent discrepancy could be explained by considering that
335 *Pm4f* was not a genetically identified allele but was found through PCR amplification
336 and sequencing. We suggest that *Rmg8* is a homoeologous gene of *Pm4* alleles on 2AL.
337 We further isolated *Rmg7* located on 2AL and found that this gene is identical to *Pm4a*.
338 This is reasonable because *Rmg7* and *Rmg8* have been inferred to be homoeologous
339 genes¹⁴. Intriguingly, the *Pm4a* sequence was also detected at the *Rmg8* locus on 2BL in
340 some accessions (Extended Data Table 1). The *Pm4a* gene in these accessions should be
341 considered to be *Rmg8* from the viewpoint of Mendelian genetics, but is identical to
342 *Rmg7* at the molecular level.

343 The *Pm4* “alleles” tested were divided into three groups from the viewpoint of
344 reactions to MoT and Bgt. The first one composed of *Pm4a*, *Pm4b*, and *Pm4d* was
345 effective against both MoT and Bgt while the second one, *Pm4f*, was effective to MoT
346 but ineffective to Bgt (Fig. 5). The third one, *Pm4g*, was ineffective to both MoT and
347 Bgt (Fig. 5). *Pm4a*, *Pm4b*, and *Pm4d* have been identified as genes for resistance to Bgt
348 and used for breeding. On the other hand, *Pm4f* and *Pm4g* were suggested to be
349 susceptible “alleles” against Bgt¹⁸. In addition, carriers of these “alleles” were
350 susceptible to all Japanese Bgt isolates tested (Extended Data Table 7). One hypothesis
351 to explain this general susceptibility would be that they had been effective against Bgt
352 at the time of their emergence, but were later overcome by newly evolved virulent races.
353 However, this scenario implies that their corresponding avirulence genes have been
354 eliminated from the Bgt populations in both Europe and Far East, and therefore requires
355 a wide cultivation of wheat lines carrying these ‘resistance genes’. Considering their

356 low frequencies in local landraces and no record of wide cultivation of such cultivars,
357 however, such perfect elimination is unlikely to occur. Therefore, *Pm4f* and *Pm4g* are
358 considered to have been ineffective against Bgt from the time of their emergence. The
359 phylogenetic tree (Fig. 4) suggested that *Pm4a*, *Pm4b*, and *Pm4d* evolved from *Pm4f*.
360 Taken together with the above discussion, we suggest that these *Pm4* alleles for
361 resistance to powdery mildew have evolved from *Pm4f* through gaining an ability to
362 recognize Bgt. The predominated distribution of *Pm4a* over *Pm4f* in the cultivated
363 emmer wheat in contrast to their distribution in the wild emmer wheat (Figs. 3, 4) may
364 be attributable to preferential transmission of *Pm4a* carriers by peoples who noticed the
365 advantage of powdery mildew resistance conferred by this allele.

366 The gain of the ability to recognize Bgt was caused by a single amino acid
367 substitution (Fig. 4b), and resulted in the generation of the alleles expressing resistance
368 to both MoT and Bgt (Fig. 5). There are two additional examples suggesting close
369 associations of recognition of *P. oryzae* and *B. graminis*. Two amino acid deletion of
370 *Rwt4*, a gene for resistance to an *Avena* isolate of *P. oryzae*, resulted in a gain of
371 resistance to Bgt^{28,29}. *Mla3*, an allele at the *Mla* locus conditioning the resistance of
372 barley to *B. graminis* f. sp. *hordei* (Bgh, the barley powdery mildew fungus),
373 recognized *PWL2*, an avirulence gene derived from *P. oryzae* pathotype *Oryza* (the rice
374 blast fungus)³⁰. Mechanisms of such dual specificity with *P. oryzae* and *B. graminis*
375 should be elucidated at the level of molecular structures.

376 Functional *Rmg8* variants were also detected in *Ae. umbellulata* (U genome), *Ae.*
377 *speloides* (S genome), and *Ae. comosa* (M genome). This result suggests that the
378 prototype of *Rmg8* equipped with the function for recognizing *AVR-Rmg8* was
379 established before the differentiation of the A, B, U, S, and M genomes in the *Triticum*

380 – *Aegilops* complex, which was estimated to be 5–6 million years ago³¹. This implies
381 that this gene has maintained the function for recognizing *AVR-Rmg8* for 5–6 million
382 years without infection pressure exerted by MoT because MoT first emerged in 1985.
383 However, it seems unlikely that a resistance gene has maintained its function for such a
384 long time under no infection pressure by pathogens. One possibility is that *Rmg8* and its
385 variants had been interacting with *P. oryzae* before the differentiation into pathotypes,
386 and after the differentiation, have been interacting with pathotype(s) that maintained
387 *AVR-Rmg8*. The most probable candidate of such pathotypes is inferred to be MoL
388 (*Lolium* pathotype) with three reasons. First, MoL is phylogenetically the closest to
389 MoT³². Second, functional *AVR-Rmg8* is widely distributed in the population of MoL³³.
390 Third, its hosts (Italian ryegrass and perennial ryegrass) are widely distributed in Middle
391 East and southern Europe³⁴⁻³⁶ where functional *Rmg8* variants are frequently found (Fig.
392 3). Another possibility is that the *Rmg8* variants have been effective against pathogens
393 other than the blast fungus (and the powdery mildew fungus). It should be noted that
394 *Sr33* in wheat and *Sr50* in rye, genes for resistance to stem rust, are homologs of *Mla*, a
395 barley gene for resistance to Bgh^{37,38}. Also, an allele at the *Mla* locus, *Mla8*, was shown
396 to be effective against wheat stripe rust³⁹.

397 In Introduction we raised a question why common wheat accessions in Europe and
398 Middle East have maintained *Rmg8*, a gene for resistance to MoT. The present study
399 revealed that “*Rmg8*” detected in those accessions was composed of *Pm4a*, *Pm4b*, and
400 *Pm4f*. We suggest that about a half of them (carriers of *Pm4a* and *Pm4b*) have
401 maintained these genes due to their effectiveness against wheat powdery mildew. The
402 maintenance of *Pm4f* in the other accessions may be explained by the same reasoning as
403 the *Rmg8* variants in *Aegilops* spp; *Pm4f* may have been effective against MoL or other

404 pathogens. It is suggestive that *Pm4f* is distributed in similar regions as the *Rmg8*
405 variants in *Aegilops* spp., i.e., warm areas around the same latitude (Fig. 3).

406 The evolutionary process of *Rmg8* inferred from the present study is summarized
407 in Fig. 6. The prototype of *Rmg8* gained an ability to recognize *AVR-Rmg8* before the
408 differentiation of *Triticum* and *Aegilops*. It then differentiated into variants including
409 *Pm4g* and *Pm4f*. Some variants derived from *Pm4f* gained an ability to recognize Bgt,
410 and evolved into *Pm4a*, *Pm4d*, and *Pm4b*, genes for resistance to wheat powdery
411 mildew. Finally, when MoT emerged in 1985, those *Rmg8* variants appeared as genes
412 for resistance to wheat blast because they recognized an effector encoded by *AVR-Rmg8*
413 of MoT. This figure illustrates an evolutionary process in which a resistance gene has
414 expanded its target pathogens. The present study also provides perspectives from the
415 viewpoint of breeding. When a resistance gene to a known pathogen is cloned,
416 nucleotide sequences of its “susceptible alleles” should be also clarified. If a
417 “susceptible allele” maintaining an ORF is distributed in the crop population in a certain
418 frequency, it may be a functional resistance gene against other pathogen(s) which is
419 prevailing now or those which will emerge in future. Conversely, when a new disease
420 emerges, resistance genes against its causal agent (a new pathogen) may be found
421 among known resistance genes against currently prevailing pathogens.

422

423 **Literature cited**

424

425 1. Latorre, S. M. et al. Genomic surveillance uncovers a pandemic clonal lineage of the
426 wheat blast fungus. *PLoS Biol.* **21**, e3002052 (2023).

427 2. Valent, B. et al. Recovery plan for wheat blast caused by *Magnaporthe oryzae*
428 pathotype *Triticum*. *Plant Health Prog.* **22**, 182-212 (2021).

429 3. Tosa, Y. et al. Genetic constitution and pathogenicity of *Lolium* isolates of
430 *Magnaporthe oryzae* in comparison with host species-specific pathotypes of the
431 blast fungus. *Phytopathology* **94**, 454-462 (2004).

432 4. Urashima, A.S., Igarashi, S. & Kato, H. Host range, mating type, and fertility of
433 *Pyricularia grisea* from wheat in Brazil. *Plant Dis.* **77**, 1211–1216 (1993).

434 5. Inoue, Y. et al. Evolution of the wheat blast fungus through functional losses in a
435 host specificity determinant. *Science* **357**, 80-83 (2017).

436 6. Callaway, E. Devastating wheat fungus appears in Asia for first time. *Nature* **532**,
437 421–422 (2016).

438 7. Islam, M. T. et al. Emergence of wheat blast in Bangladesh was caused by a South
439 American lineage of *Magnaporthe oryzae*. *BMC Biol.* **14**, 84 (2016).

440 8. Malaker, P. K. et al. First report of wheat blast caused by *Magnaporthe oryzae*
441 pathotype *triticum* in Bangladesh. *Plant Dis.* **100**, 2330 (2016).

442 9. Tembo, B. et al. Detection and characterization of fungus (*Magnaporthe oryzae*
443 pathotype *Triticum*) causing wheat blast disease on rain-fed grown wheat (*Triticum*
444 *aestivum* L.) in Zambia. *PLoS One* **15**, e0238724 (2020).

445 10. Cruz, C. D. et al. The 2NS translocation from *Aegilops ventricosa* confers resistance
446 to the *Triticum* pathotype of *Magnaporthe oryzae*. *Crop Sci.* **56**, 990-1000 (2016).

447 11. Helguera, M. et al. PCR assays for the *Lr37-Yr17-Sr38* cluster of rust resistance
448 genes and their use to develop isogenic hard red spring wheat lines. *Crop Sci.* **43**,
449 1839-1847 (2003).

450 12. Cruppe, G. et al. Novel sources of wheat head blast resistance in modern breeding
451 lines and wheat wild relatives. *Plant Dis.* **104**, 35-43 (2020).

452 13. Tagle, A. G., Chuma, I., & Tosa, Y. *Rmg7*, a new gene for resistance to *Triticum*
453 isolates of *Pyricularia oryzae* identified in tetraploid wheat. *Phytopathology* **105**,
454 495-499 (2015).

455 14. Anh, V. L. et al. *Rmg8*, a new gene for resistance to *Triticum* isolates of *Pyricularia*
456 *oryzae* in hexaploid wheat. *Phytopathology* **105**, 1568-1572 (2015).

457 15. Anh, V. L. et al. *Rmg8* and *Rmg7*, wheat genes for resistance to the wheat blast
458 fungus, recognize the same avirulence gene *AVR-Rmg8*. *Mol. Plant Pathol.* **19**,
459 1252-1256 (2018).

460 16. Wang, S. et al. A new resistance gene in combination with *Rmg8* confers strong
461 resistance against *Triticum* isolates of *Pyricularia oryzae* in a common wheat
462 landrace. *Phytopathology* **108**, 1299-1306 (2018).

463 17. Shimizu, M. et al. A genetically linked pair of NLR immune receptors shows
464 contrasting patterns of evolution. *Proc. Natl. Acad. Sci.* **119**, e2116896119 (2022).

465 18. Sánchez-Martin, J. et al. Wheat *Pm4* resistance to powdery mildew is controlled by
466 alternative splice variants encoding chimeric proteins. *Nat. Plants* **7**, 327-341
467 (2021).

468 19. Saur, I. M. L., Bauer, S., Lu, X. & Schulze-Lefert, P. A cell death assay in barley
469 and wheat protoplasts for identification and validation of matching pathogen AVR
470 effector and plant NLR immune receptors. *Plant Methods* **15**, 118 (2019).

471 20. Kuroda, M., Kimizu, M. & Mikami, C. Simple set of plasmids for the production of
472 transgenic plants. *Biosci. Biotechnol. Biochem.* **74**, 2348-2351 (2010).

473 21. The, T. T., McIntosh, R. A. & Bennett, F. G. A. Cytogenetical studies in wheat. IX.
474 Monosomic analyses, telocentric mapping and linkage relationships of genes *Sr21*,
475 *Pm4* and *Mle*. *Aust. J. Biol. Sci.* **32**, 115-126 (1979).

476 22. Schmolke, M., Mohler, V., Hartl, I., Zeller, F. J. & Hsam, S. L. K. A new powdery
477 mildew resistance allele at the *Pm4* wheat locus transferred from einkorn (*Triticum*
478 *monococcum*). *Mol. Breed.* **29**, 449-456 (2012).

479 23. Inoue, Y., Vy, T.T.P., Tani, D. & Tosa, Y. Suppression of wheat blast resistance by
480 an effector of *Pyricularia oryzae* is counteracted by a host specificity resistance
481 gene in wheat. *New Phytol.* **229**, 488-500 (2021).

482 24. Li, L. -F. et al. Genome sequences of five *Sitopsis* species of *Aegilops* and the origin
483 of polyploid wheat B subgenome. *Mol. Plant* **15**, 488-503 (2022).

484 25. Miki, Y. et al. Origin of wheat B-genome chromosomes inferred from RNA
485 sequencing analysis of leaf transcripts from section *Sitopsis* species of *Aegilops*.
486 *DNA Res.* **26**, 171-182 (2019).

487 26. Briggle, L. W. Near-isogenic lines of wheat with genes for resistance to *Erysiphe*
488 *graminis* f. sp. *tritici*. *Crop Sci.* **9**, 70-72 (1969).

489 27. Yoshioka, Y. et al. Breeding of a near-isogenic wheat line resistant to wheat blast at
490 both seedling and heading stages through incorporation of *Rmg8*. bioRxiv. doi:
491 <https://doi.org/10.1101/2023.07.12.546477> (2023).

492 28. Arora, S. et al. A wheat kinase and immune receptor form host-specificity barriers
493 against the blast fungus. *Nature Plants* **9**, 385-392 (2023).

494 29. Lu, P. et al. A rare gain of function mutation in a wheat tandem kinase confers
495 resistance to powdery mildew. *Nat. Commun.* **11**, 680 (2020).

496 30. Brabham, H. J. et al. Barley MLA3 recognizes the host-specificity determinant
497 PWL2 from rice blast (*M. oryzae*). bioRxiv. doi:
498 <https://doi.org/10.1101/2022.10.21.512921> (2022)

499 31. Fu, Y.-B. Characterizing chloroplast genomes and inferring maternal divergence of
500 the *Triticum-Aegilops* complex. *Sci. Rep.* **11**, 15363 (2021).

501 32. Gladieux, P. et al. Gene flow between divergent cereal- and grass-specific lineages
502 of the rice blast fungus *Magnaporthe oryzae*. *mBio* **9**, e01219-17 (2018).

503 33. Jiang, Y., Asuke, S., Vy, T.T.P., Inoue, Y. & Tosa, Y. Evaluation of durability of
504 blast resistance gene *Rmg8* in common wheat based on analyses of its corresponding
505 avirulence gene. *J. Gen. Plant Pathol.* **87**, 1-8 (2021).

506 34. Clayton, W. E. & Renvoize, S. A. Genera Gramineum: Grasses of the world. Her
507 Majesty's Stationery Office, London (1986).

508 35. Popay, L. *Lolium perenne* (perennial ryegrass). CABI Compendium.
509 <https://doi.org/10.1079/cabicompendium.31166> (2013).

510 36. CABI. *Lolium multiflorum* (Italian ryegrass). CABI Compendium.
511 <https://doi.org/10.1079/cabicompendium.31165> (2021).

512 37. Periyannan, S. et al. The gene *Sr33*, an ortholog of barley *Mla* genes, encodes
513 resistance to wheat stem rust race Ug99. *Science* **341**, 786-788 (2013).

514 38. Mago, R. et al. The wheat *Sr50* gene reveals rich diversity at a cereal disease
515 resistance locus. *Nat. Plants* **1**, 15186 (2015).

516 39. Bettgenhaeuser, J. et al. The barley immune receptor *Mla* recognizes multiple
517 pathogens and contributes to host range dynamics. *Nat. Commun.* **12**, 6915 (2021).

518 **Methods**

519

520 **Plant materials**

521 Parental cultivars for mapping of *Rmg8*, *Triticum aestivum* cv. S-615 and cv. Shin-
522 chunaga (Sch), were provided by K. Tsunewaki, Emeritus professor at Kyoto
523 University, Japan. Parental accessions for mapping of *Rmg7*, *T. dicoccum* St24
524 (accession No. KU-120) and *T. paleocolchicum* Tat14 (KU-156), were provided by S.
525 Sakamoto, Emeritus professor at Kyoto University. *Hordeum vulgare* cv. Golden
526 Promise (GP) for protoplast assay and *T. aestivum* cv. Fielder (KT020-061) for
527 transformation were provided by K. Sato, Okayama University, Japan, and the National
528 BioResource Project –Wheat (NBRP) (<https://shigen.nig.ac.jp/wheat/komugi/>), Japan,
529 respectively. *T. aestivum* cv. Chancellor (Cc) and its near isogenic line Cc-Pm4a
530 carrying *Pm4a* (=Khapli x Cc⁸ produced by Briggles²⁶) were provided by U. Hiura,
531 Emeritus professor at Okayama University. *T. aestivum* cv. Chikugoizumi (Chi) and its
532 near-isogenic line carrying *Rmg8* (Chi-Rmg8)²⁷ were produced in the BRAIN project
533 (see Acknowledgments), and maintained at NARO (National Agriculture and Food
534 Research Organization), Japan. *T. aestivum* cv. SY-Mattis, one of the accessions
535 analyzed by the wheat pangenome project⁴⁰, was provided by John Innes Centre to S.
536 Nasuda and maintained at Kyoto University. The 526 local landraces of *T. aestivum*
537 used for the distribution analysis were a collection of K. Kato, Okayama University,
538 Japan. Original providers of the *T. aestivum* accessions carrying the *Rmg8* variants are
539 shown in Extended Data Table 1. The accessions of tetraploid wheat used for the
540 distribution analysis were collections of N. Mori, Kobe University, and S. Nasuda,
541 Kyoto University. The tetraploid accessions carrying the *Rmg8* variants are shown in

542 Fig. 4. Among them accessions with the prefix KU- were provided by NBRP while
543 those with the prefixes PI and Citr were provided by the U.S. National Plant Germplasm
544 System. The 909 accessions of *Aegilops* spp. used for screening for functional *Rmg8*
545 variants were provided by NBRP.

546

547 **Fungal materials**

548 Wheat blast strains used for infection assay were *Pyricularia oryzae* pathotype *Triticum*
549 wild isolate Br48 collected in 1990 in Brazil, Br48ΔA8_d6 (abbreviated as Br48ΔA8), a
550 disruptant of *AVR-Rmg8* derived from Br48¹⁶, and Br48ΔA8+eI-3 (abbreviated as
551 Br48ΔA8+eI), a transformant of Br48ΔA8 carrying the eI type of *AVR-Rmg8*⁴¹. They
552 have been maintained on sterilized barley seeds at Kobe University.

553 Wheat powdery mildew strains used were wild isolates of *Blumeria graminis* f. sp.
554 *tritici* collected in various regions in Japan (Extended Data Table 7). They were purified
555 through single-conidium isolation and have been maintained at 4°C on primary leaves
556 of *T. aestivum* cv. Norin 4 through subculturing.

557

558 **Inoculation with wheat blast strains**

559 Seeds of *Triticum* and *Aegilops* spp. were pregerminated on a moistened filter paper for
560 24h. Germinated seeds of *Triticum* spp. were sown in vermiculite supplied with liquid
561 fertilizer in a seedling case (5.5 x 15 x 10 cm) and grown at 22°C with a 12-h
562 photoperiod of fluorescent lighting for 8 days. Germinated seeds of *Aegilops* spp.
563 accessions were sown in the seedling case filled with Sakata Prime Mix soil (Sakata,
564 Japan) and grown at 22°C with a 12-h photoperiod of fluorescent lighting for 21 days.
565 Primary leaves of eight-day-old wheat seedlings or first to third leaves of 21-day-old

566 *Aegilops* seedlings were fixed onto a plastic board with rubber bands just before
567 inoculation. Conidial suspensions (1×10^5 conidia/ml) prepared as described previously¹³
568 were sprayed onto fixed leaves using an air compressor. The inoculated seedlings were
569 incubated in a sealed box under dark and humid conditions at 22°C for 24h, then
570 transferred to dry conditions with a 12h photoperiod of fluorescent lighting, and
571 incubated for additional 3-5 days at 22°C. Four to six days after inoculation, symptoms
572 were evaluated based on the color of lesions and the affected leaf area. The affected area
573 was rated by six progressive grades from 0 to 5: 0 = no visible evidence of infection; 1
574 = pinhead spots; 2 = small lesions (<1.5 mm); 3 = scattered lesions of intermediate size
575 (<3 mm); 4 = large typical blast lesions; and 5 = complete blighting of leaf blades. A
576 disease score (infection type) was designated by combining a number which denotes the
577 size of lesions and a letter or letters indicating the lesion color, i.e., 'B' for brown and
578 'G' for green. Infection types 0 to 5 with brown lesions were considered to be resistant
579 while infection types 3G, 4G, and 5G were considered to be susceptible. Infection type
580 3BG accompanies by a mixture of brown and green lesions were taken as weakly
581 resistant.

582

583 **Inoculation with powdery mildew isolates**

584 Seeds of test plants were sown in autoclaved soil in 2×30cm or 2×35 cm test tubes.
585 Eight days after sowing, primary leaves were inoculated with conidia from eight-day-
586 old colonies using writing brushes. The seedlings were incubated at 22 °C in a
587 controlled-environment room with a 12-h photoperiod of fluorescent lighting. Seven to
588 eight days after inoculation, infection types were recorded using five progressive grades

589 from 0 to 4: 0, no mycelial growth or sporulation; 1, scant sporulation; 2, reduced
590 sporulation; 3, slightly reduced sporulation; 4, heavy sporulation.

591

592 **Mapping of *Rmg8* and *Rmg7***

593 A total of 165 F_{2:3} lines derived from a cross between S-615 and Sch were used for
594 mapping of *Rmg8*. Twenty seeds were retrieved from each F_{2:3} line and subjected to
595 infection assay with Br48 for phenotyping. Another set of 20 seeds was retrieved from
596 each F_{2:3} line, sown in vermiculite, and grown at 22°C for 7 days. Seven-day-old
597 primary leaves were bulked, and subjected to DNA extraction by the CTAB method.

598 For detecting polymorphisms between S-615 (*Rmg8*) and Sch (*rmg8*), total RNA was
599 extracted from their primary leaves using Maxwell RSC Plant RNA Kit (Promega).

600 Sequence libraries were generated by NEBNext Ultra II Directional RNA Library Prep
601 Kit, and sequenced using Illumina Hiseq (paired-end) by sequencing service of
602 Novogene, Japan. Sequence reads of S-615 and Sch were aligned to the reference
603 genome of Chinese Spring version 1.1 and 2.0^{42,43} using HISAT2 (v2.1.1), and variants
604 were called by samtools (v1.8) to generate VCF files. Using the VCF files, Cleaved
605 Amplified Polymorphic Sequence (CAPS) and presence/absence markers were
606 developed. Marker fragments were amplified from genomic DNA of the parental
607 cultivars and the F_{2:3} lines using 2x Quick Taq HS DyeMix (TOYOBO, Osaka, Japan)
608 following the manufacturer's instructions. Fragments amplified with primers for CAPS
609 markers were digested with appropriate restriction enzymes supplied by Takara Bio
610 (Kusatsu, Japan) or New England Biolabs Japan (Tokyo, Japan) (Extended Data Table
611 8). PCR products were electrophoresed in 0.7-2.0% agarose gels and stained with
612 ethidium bromide for visualization. MAPMAKER/EXP version 3.0 was used for

613 constructing a genetic map⁴⁴. The logarithm-of-odds (LOD) threshold for declaration of
614 linkage was set at 4.0. Genetic distance was calculated with the Kosambi function.

615 For mapping of *Rmg7*, RNA sequencing of St24 and Tat14 was performed in a
616 similar way as mentioned above. Sequenced reads were aligned to the reference genome
617 of *Triticum dicoccoides* cv. Svevo (EnsemblPlants,
618 https://plants.ensembl.org/Triticum_turgidum/Info/Index) to develop genetic markers.

619

620 **Screening for a transcript derived from *Rmg8* based on an association analysis
621 with susceptible F_{2:3} lines.**

622 To detect candidate genes for *Rmg8*, we carried out association analysis of expressed
623 genes. First, cDNA sequence of S-615 transcripts was generated by sequencing service
624 (GeneBay, Japan). Base calling of ONT reads was performed on FAST5 files using
625 Guppy (Oxford Nanopore Technologies). Hybrid de novo assembly was performed by
626 rnaSPEdes⁴⁵ using ONT reads and Illumina short reads both, resulting in 161,852
627 transcripts. ORFs coding more than 300 amino acids in these transcripts were predicted
628 by TransDecodar⁴⁶ and cd-hit⁴⁷, resulting in a reference cDNA sequence set of S-615
629 composed of 27,205 transcripts.

630 Next, we chose nine F_{2:3} lines susceptible to Br48 arbitrarily, extracted total RNA
631 from three leaves of each F₃ line using Maxwell RSC Plant RNA Kit (Promega),
632 prepared sequence libraries, and sequenced them using Illumina Hiseq4000 (150 bp
633 Paired-End reads) in a similar way as mentioned above. The presence/absence analysis
634 was carried out based on the transcripts per million (TPM) value of the transcripts for
635 selecting genes which were expressed in S-615 but not in either Sch or the nine
636 susceptible F_{2:3} lines.

637

638 **Cell death assay with barley protoplasts**

639 The genomic sequence of *Rmg8* (*Rmg8-genome*) and the transcript variants of *Rmg8*
640 and *Rmg7* (*Rmg8-V1*, *Rmg8-V2*, *Rmg7-V1* and *Rmg7-V2*) were employed for
641 protoplast cell death assays. The fragment of *Rmg8-genome* was amplified from
642 genomic DNA of S-615. *Rmg8-V1* and *Rmg8-V2* were amplified from cDNA of S-615
643 while *Rmg7-V1* and *Rmg7-V2* were amplified from cDNA of St24. RNA extraction
644 and cDNA synthesis were performed as mentioned in the previous sections. The ORFs
645 of *PWT3* and *AVR-Rmg8* without signal peptides were amplified from genomic DNA of
646 Br58⁵ and Br48, respectively. Primers used for these PCR reactions are shown in
647 Extended Data Table 8. All of these fragments were cloned into the *Kpn*I site in the
648 pZH2Bik vector using In-Fusion cloning (Takara) so as to be driven by the rice
649 ubiquitin promoter, resulting in pRmg8-genome, pRmg8-V1, pRmg8-V2, pRmg7-V1,
650 pRmg7-V2, pPWT3, and pAVR-Rmg8. Established plasmids were extracted by
651 NucleoBond Xtra Maxi (Macherey-Nagel, Düren, Germany). Barley cultivar GP was
652 employed as a recipient of transgenes because barley epidermis could be peeled off
653 more easily than wheat epidermis for releasing protoplasts. Mesophyll protoplasts were
654 prepared from eight-day-old primary leaves of GP. Transfection assays with these
655 plasmids were performed as described in Saur et al.¹⁹. Briefly, plasmids containing
656 AVR and resistance genes were introduced into the GP protoplasts with a plasmid
657 containing the luciferase gene (pAHC17-LUC) via the polyethylene glycol treatment.
658 After 18 hours incubation at 20°C in the dark, the protoplasts were lysed, and luciferase
659 activity in the resulting cell extracts was measured for 1 second/well on the Tristar 3
660 luminometer mode (Berthold). The measured luminescence was normalized using the

661 negative control in which the AVR gene was substituted with the empty pZH2Bik
662 vector. This experiment was repeated four times independently.

663

664 **Production of transgenic plants**

665 pRmg8-V1, pRmg8-V2, and pRmg8-genome were introduced into *T. aestivum* cv.
666 Fielder via the Agrobacterium-mediated transformation as described by Ishida et al.⁴⁸
667 Insertions of transgenes were checked by PCR with the HPT primers (Extended Data
668 Table 8). We obtained three, eleven, and three T₁ lines carrying *Rmg8-V1*, *Rmg8-V2*,
669 and *Rmg8-genome*, respectively. Transgenic T₁ seedlings were inoculated with Br48,
670 Br48ΔA8, and Br48ΔA8+eI to evaluate functions of transgenes.

671

672 **Sequencing of *Rmg8* variants and phylogenetic analysis**

673 In the distribution analyses in *Triticum* spp. all test accessions were screened with
674 KM171 and KM200, and those with amplicons were subjected to sequence analyses
675 irrespective of their phenotypes (resistant or susceptible). In the analysis of *Aegilops*
676 spp. all accessions were first screened by inoculation with Br48 and Br48ΔA8, and
677 those recognizing *AVR-Rmg8* were subjected to sequence analyses. Two primer pairs
678 were used to amplify two different regions of the *Rmg8* genomic fragment, one
679 encoding exons 1 to 5 and the other encoding exons 6 and 7. These fragments were
680 inserted into the *EcoRV* site of pBSIISK+, sequenced with ABI capillary sequencers,
681 and aligned with MAFFT (v7.520). Coding sequences were extracted from obtained
682 sequences and concatenated. A maximum likelihood tree was constructed using MEGA
683 X⁴⁹ with 1,000 bootstrap replicates. Primers used in this section are listed in Extended
684 Data Table 8.

685

686 **Data availability**

687 Sequence data for the genes described in the present study can be found in the
688 GenBank/EMBL database under the accession numbers LC779671, LC779672,
689 LC779673, and LC779674. All plasmids, plant lines, and fungal strains generated in
690 this work are available from the authors upon request.

691

692 40. Walkowiak S. et al. Multiple wheat genomes reveal global variation in modern
693 breeding. *Nature* **588**, 277-283 (2020).

694 41. Horo, J. T., Asuke, S., Vy, T. T. P. & Tosa, Y. Effectiveness of the wheat blast
695 resistance gene *Rmg8* in Bangladesh suggested by distribution of an *AVR-Rmg8*
696 allele in the *Pyricularia oryzae* population. *Phytopathology* **110**, 1802-1807 (2020).

697 42. International Wheat Genome Sequencing Consortium (IWGSC). Shifting the limits
698 in wheat research and breeding using a fully annotated reference genome. *Science*
699 **361**, eaar7191 (2018).

700 43. Zhu, T. et al. Optical maps refine the bread wheat *Triticum aestivum* cv. Chinese
701 Spring genome assembly. *Plant J.* **107**, 303–314 (2021).

702 44. Lander, E.S. et al. MAPMAKER: An interactive computer package for constructing
703 primary genetic linkage maps of experimental and natural populations. *Genomics* **1**,
704 174-181 (1987).

705 45. Bushanova, E., Antipov, D., Lapidus, A. & Prjibelski, A. D. rnaSPAdes: a de
706 novo transcriptome assembler and its application to RNA-Seq data. *GigaScience* **8**,
707 giz100 (2019).

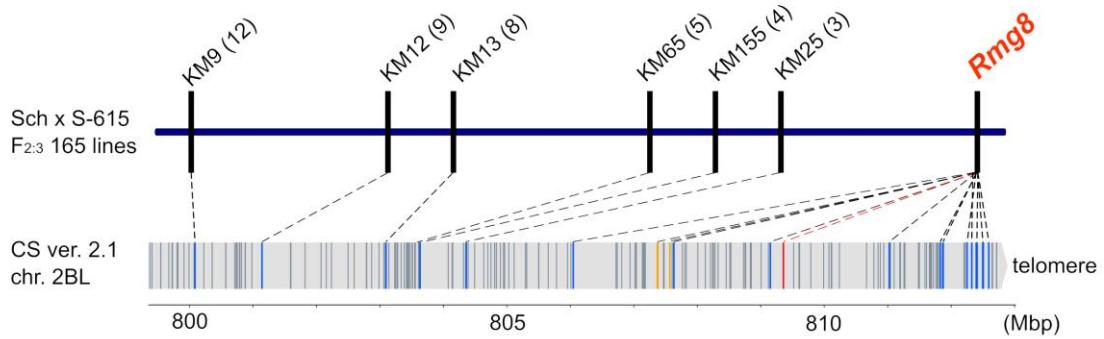
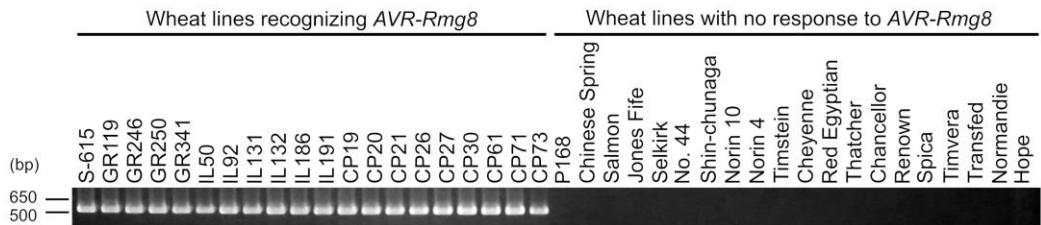
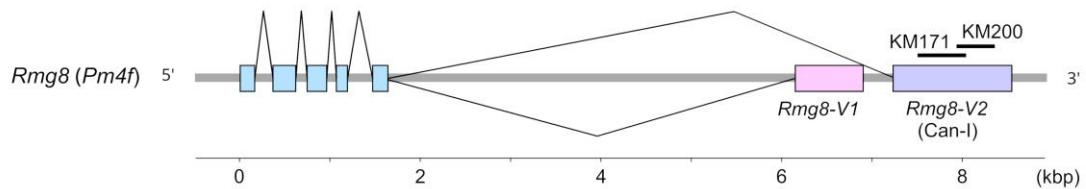
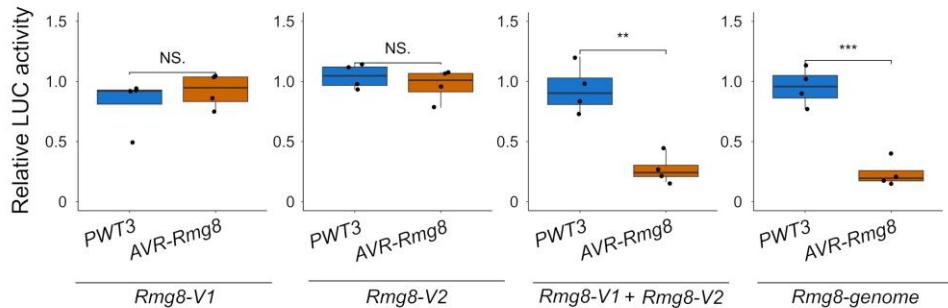
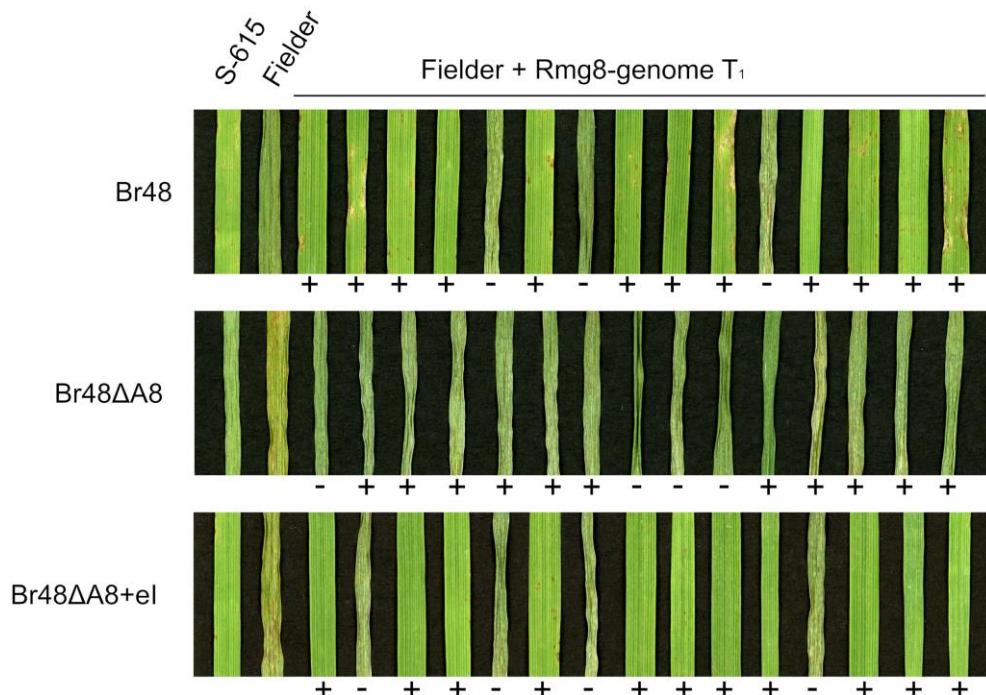
708 46. Haas, B. J. et al. De novo transcript sequence reconstruction from RNA-seq using
709 the Trinity platform for reference generation and analysis. *Nat. Protoc.* **8**, 1494-
710 1512 (2013).

711 47. Fu, L., Niu, B., Zhu, Z., Wu, S. & Li, W. CD-HIT: accelerated for clustering the
712 next-generation sequencing data. *Bioinformatics* **28**, 3150–3152 (2012).

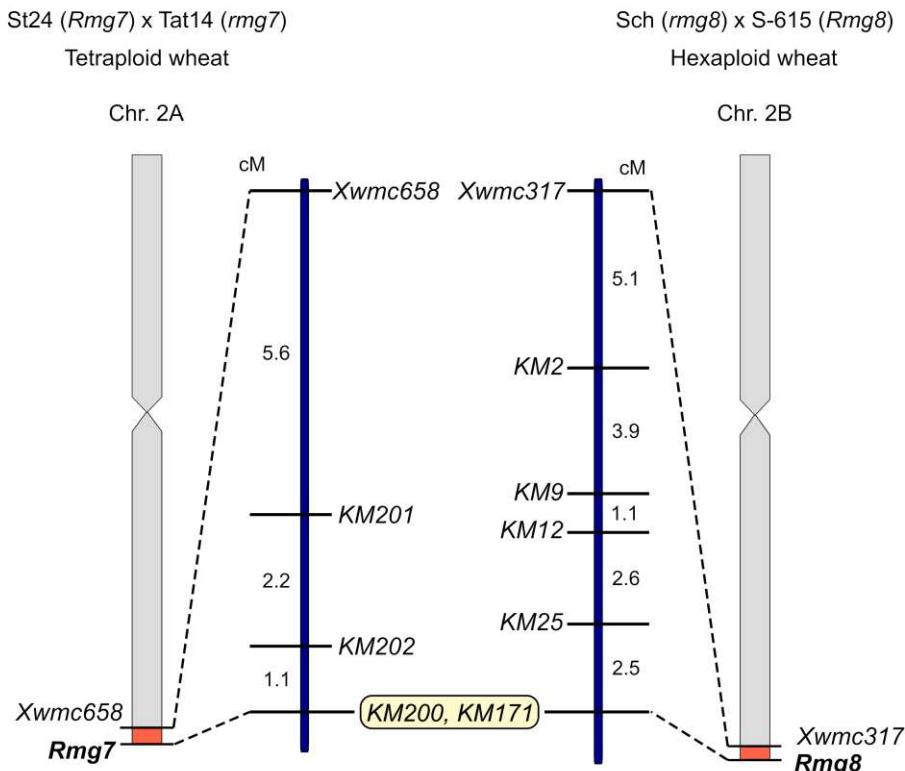
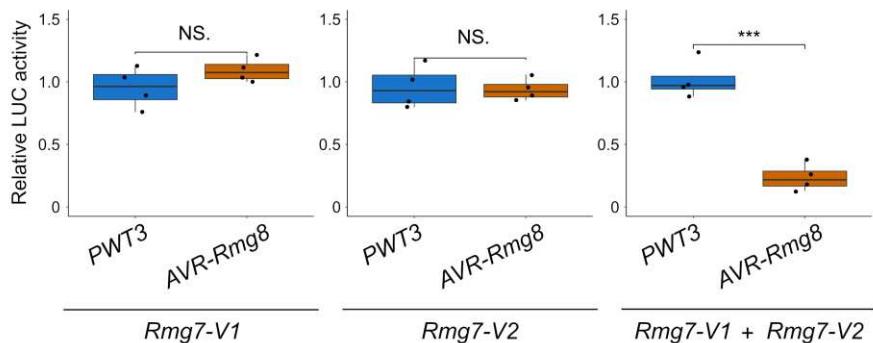
713 48. Ishida, Y., Tsunashima, M., Hiei, Y. & Komari, T. Wheat (*Triticum aestivum* L.)
714 transformation using immature embryos. *Methods Mol. Biol.* **1223**, 189-198 (2015).

715 49. Kumar, S., Stecher, G., Li, M., Knyaz, C. & Tamura, K. MEGA X: Molecular
716 evolutionary genetics analysis across computing platforms. *Mol. Biol. Evol.* **35**,
717

718 **Acknowledgments**






719

720 We thank Izumi Chuma (Obihiro University, Japan), Kaori Nakajima (Mie Prefecture
721 Agricultural Research Institute, Japan), Atsushi Ohta (Kyoto University, Japan), Kaichi
722 Uchihashi (Hyogo Prefectural Technology Center for Agriculture, Japan), Hisashi
723 Tsujimoto (Tottori University, Japan), and Tomomori Kataoka (National Agricultural
724 Research Center for Kyushu Okinawa Region, Japan) for providing powdery-mildewed
725 wheat leaves collected in fields. We also thank Paul Nicholson (John Innes Centre,
726 U.K.), Barbara Valent (Kansas State University, U.S.A.), and Brian Staskawicz
727 (University of California, Berkeley, U.S.A.) for valuable suggestions on the manuscript.



728 *Aegilops* spp. accessions were provided by the National BioResource Project–Wheat
729 with support in part by the National BioResource Project of the MEXT, Japan.

730 Computations were partially performed on the NIG supercomputer owned by National
731 Institute of Genetics, Research Organization of Information and Systems. This research
732 was supported by the research program on development of innovative technology grants
733 (JPJ007097) from the project of the Bio-oriented Technology Research Advancement
734 Institution (BRAIN) and a grant, "International collaborative research project for
735 solving global issues", from Agriculture, Forestry and Fisheries Research Council
736 Secretariat, Ministry of Agriculture, Forestry and Fisheries (MAFF), Japan.

737

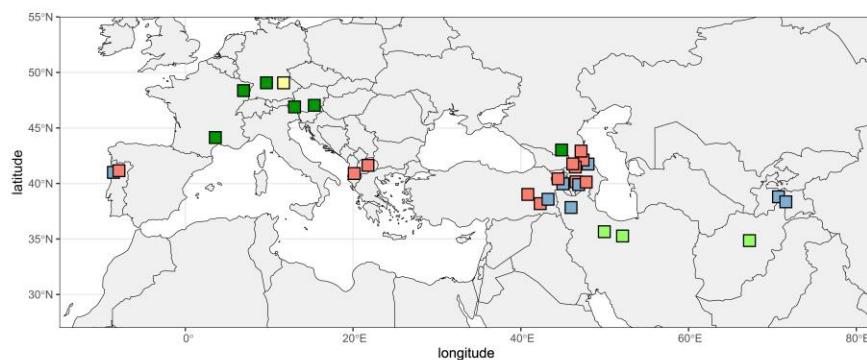

a**b****c****d****e**

Fig. 1. Cloning of *Rmg8* identified on chr. 2BL in common wheat. **a**, Genetic and physical maps around *Rmg8* on chr. 2BL. In the genetic map, numbers of recombinants between each molecular marker and *Rmg8* are shown in parentheses. In the physical map, positions of high confidence genes annotated in the Chinese Spring reference genome v2.1 are indicated by vertical lines. Genes used as molecular markers, a Can-I-like gene, and other genes picked up through the association analysis (see Extended Data Fig. 1) are highlighted with blue, red, and yellow, respectively. **b**, Association between responses to *AVR-Rmg8* and amplifications with the KM171 primers in common wheat. **c**, Structure of the gene producing the Can-I transcript. Can-I was one of the two splicing variants (*Rmg8-V1* and *Rmg8-V2*) of the gene. Bold lines represent positions of presence/absence PCR markers (KM171 and KM200) used for mapping and detection of *Rmg8*. **d**, Cell death assay with protoplasts. Protoplasts isolated from barley primary leaves were transfected with pAHC17-LUC containing a luciferase gene, pZH2Bik containing avirulence genes (*PWT3* or *AVR-Rmg8* lacking signal peptides) or no insert (empty vector), and pZH2Bik containing constructs of the *Rmg8* candidate gene (*Rmg8-V1*, *Rmg8-V2*, *Rmg8-genome*) or a mixture of pRmg8-V1 and pRmg8-V2 in a 1:1 molar ratio. Luciferase activity was determined 18-hours after transfection and represented as relative activities compared with those in samples with the empty vector. Double and triple asterisks indicate significant differences at the 1 and 0.1% levels, respectively, in the Tukey post hoc test. NS, not significant. The experiments were repeated four times. **e**, Validation of *Rmg8* through transformation. S-615 (*Rmg8*), Fielder (*rmg8*), and T_1 individuals derived from transformation of Fielder with the genomic fragment (*Rmg8-genome*) were inoculated with Br48 (wild MoT isolate), Br48 Δ A8 (disruptant of *AVR-Rmg8* derived from Br48), and Br48 Δ A8+eI (transformant of Br48 Δ A8 carrying re-introduced *AVR-Rmg8* derived from Br48), and incubated for five days. Presence (+) /absence (-) of the transgene confirmed by PCR with the KM171 and HPT markers are shown below the panels.

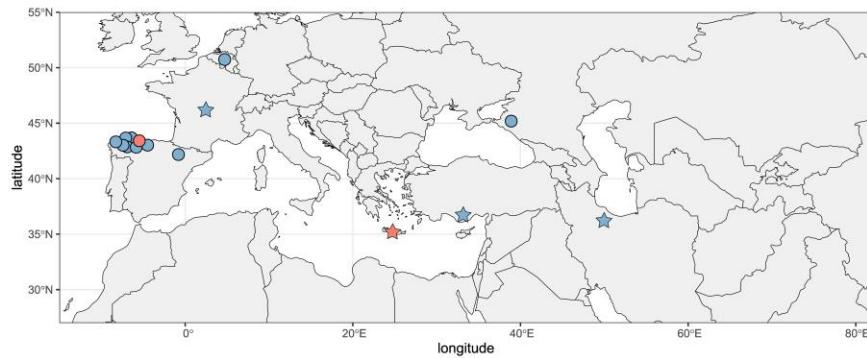
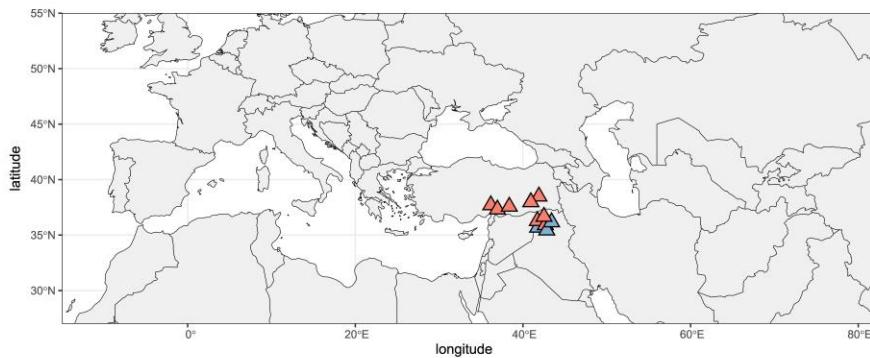
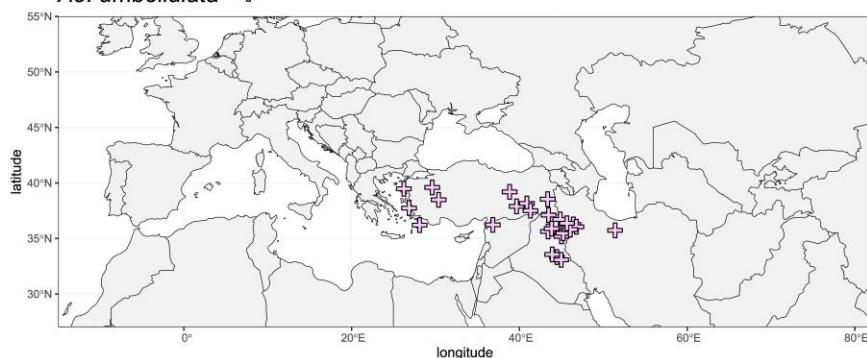

a**b**

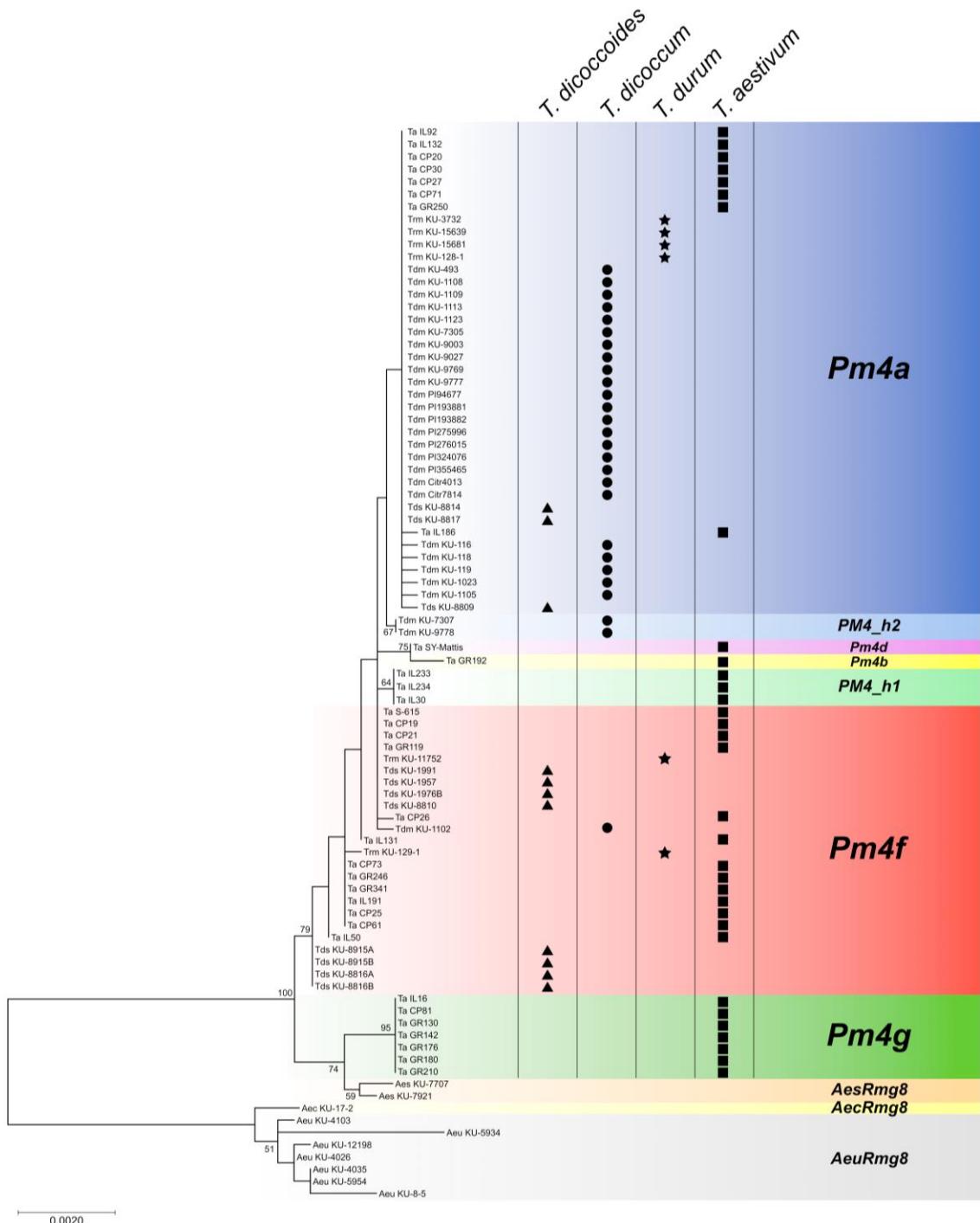
Fig. 2. Cloning of *Rmg7* identified on chr. 2AL in tetraploid wheat. a, Genetic map around *Rmg7* constructed using 93 $F_{2:3}$ lines derived from *T. dicoccum* accession St24 (*Rmg7*) x *T. paleocolchicum* accession Tat14 (*rmg7*). For a comparison a genetic map around *Rmg8* on 2BL was shown on the right which was constructed using 91 $F_{2:3}$ lines derived from *T. aestivum* cv. Shin-Chunaga (Sch, *rmg8*) x *T. aestivum* cv. S-615 (*Rmg8*). KM200 and KM171, PCR markers designed on *Rmg8*, perfectly co-segregated with phenotypes conferred by *Rmg7*. **b**, Cell death assay with protoplasts. Protoplasts isolated from barley primary leaves were transfected with pAHC17-LUC containing a luciferase gene, pZH2Bik containing avirulence genes (PWT³ or AVR-Rmg8 lacking signal peptides) or no insert (empty vector), and pZH2Bik containing constructs of the *Rmg7* candidate gene (Rmg7-V1, Rmg7-V2) or a mixture of pRmg7-V1 and pRmg7-V2 in a 1:1 molar ratio. Luciferase activity was determined 18-hours after transfection and represented as relative activities compared with those in samples with the empty vector. Triple asterisks indicate significant differences at the 0.1 % level in the Tukey post hoc test. NS, not significant. The experiments were repeated four times.


a *T. aestivum* □

b *T. dicoccum* ○ *T. durum* ☆



c *T. dicoccoides* △



Pm4a
Pm4b
Pm4f
Pm4g
PM4_h1
PM4_h2

d *Ae. umbellulata* +

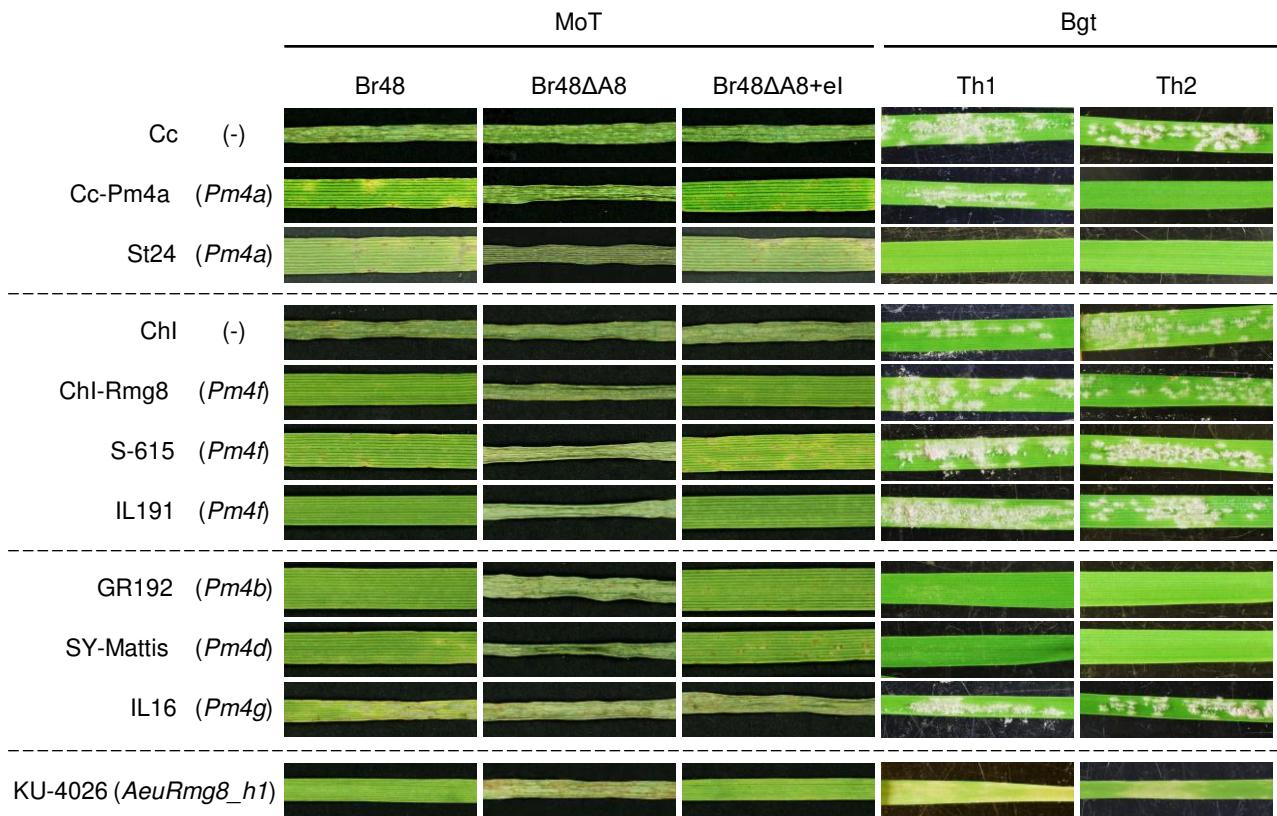
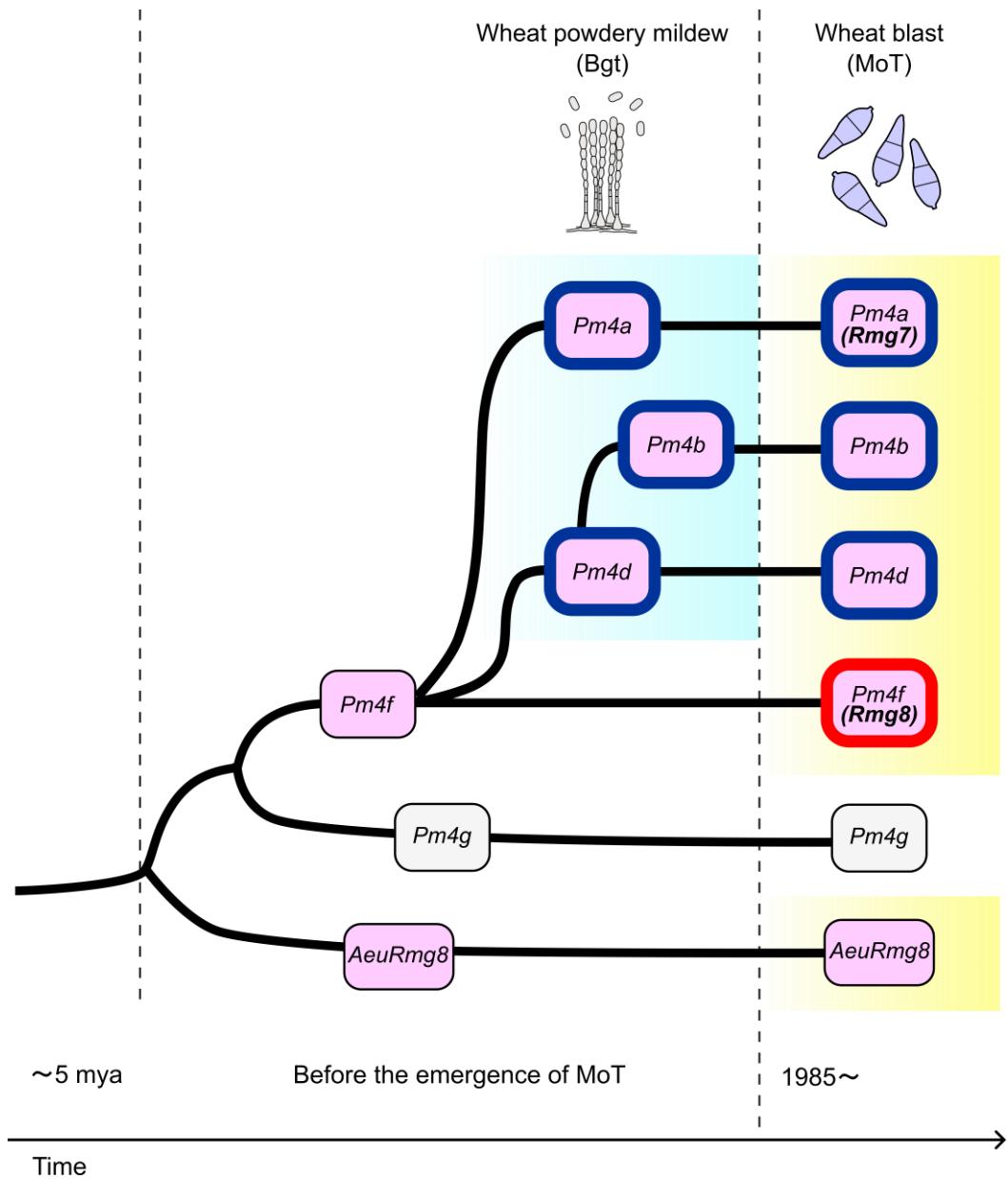


Fig. 3. Geographical distribution of *Rmg8* variants. In common wheat (a), cultivated tetraploid wheat (b) and wild tetraploid wheat (c), accessions carrying *Pm4* “alleles” were plotted. The *Pm4* “alleles” were color-coded. In *Ae. umbellulata* (d), accessions recognizing *AVR-Rmg8* were plotted without differentiation of their *Rmg8* variants.


a**b**

Kinase	V1															V2																															
	1	2	2	2	3	3	3	3	3	3	3	3	3	3	4	4	4	4	5	5	5	5	5	5	5	3	3	4	4	4	5	5	6	6	7												
	2	0	0	5	2	3	3	352 - 353	6	6	7	7	7	7	8	0	2	7	0	0	1	3	4	4	5	6	8	6	6	6	6	9	2	2	8	8	1										
6	5	8	5	1	2	5			2	9	0	1	2	3	4	1	0	1	3	6	7	2	7	8	9	7	3	9	2	5	6	2	8	9	2	6	3										
Pm4f	E	K	L	R	V	T	S								V	M	K	L	R	L	P	G	Y	L	D		V	S	H	L	Q	L	D	P	P	A	L	S	V	A							
Pm4a	.	.	W
Pm4b	.	E
Pm4d	.	E
Pm4g	K
PM4_h1
PM4_h2	.	.	S
AesRmg8_h1
AecRmg8_h1	.	.	K	A	S	T	D	P	P	E	M	V	I	L						A	H	E	C	D	E	P	R	.	H	H	H	A	A	.	T	.	V	.	.	.							
AeuRmg8_h1	.	.	K	A	S	T	D	P	P	E	M	V	I	L						A	H	E	C	D	E	P	R	.	V	H	H	.	A	A	G	V	T	.	.	.							

Fig. 4. Phylogenetic relationships among *Rmg8* variants in *Triticum* and *Aegilops*. **a**, Maximum likelihood phylogenetic tree of *Rmg8* variants constructed using nucleotide sequences of the coding region. *Rmg8* variants in *Triticum* spp. are represented by their *Pm4* “allele” symbols. *PM4_h1* and *PM4_h2* are new variants which have not been reported previously. *AesRmg8*, *AecRmg8*, and *AeuRmg8* are *Rmg8* variants found in *Ae. speltoides*, *Ae. comosa*, and *Ae. umbellulata*, respectively. Bootstrap values (more than 50) from 1,000 replications are shown at nodes. *Ta*, *T. aestivum*; *Trm*, *T. durum*; *Tdm*, *T. dicoccum*; *Tds*, *T. dicoccoides*; *Aes*, *Ae. speltoides*; *Aec*, *Ae. comosa*; *Aeu*, *Ae. umbellulata*. **b**, Amino acid alignments of *Rmg8* variants detected in *Triticum* and *Aegilops* spp. *AesRmg8_h1*, *AecAmg8_h1*, and *AeuRmg8_h1* are representatives of *AesRmg8*, *AecAmg8*, and *AeuRmg8* detected in *Ae. speltoides* KU-7707, *Ae. comosa* KU-17-2, and *Ae. umbellulata* KU-4026, respectively.

Fig. 5. Reactions of *Rmg8* variants to wheat blast (MoT) and wheat powdery mildew (Bgt) fungi. Wheat accessions carrying *Rmg8* variants were inoculated with Br48 (wild MoT isolate), Br48ΔA8 (disruptant of *AVR-Rmg8*), and Br48ΔA8+eI (transformant of Br48ΔA8 carrying re-introduced *AVR-Rmg8*), and incubated for five days, or were inoculated with Th2 (Bgt carrying *AvrPm4a*, the putative avirulence gene corresponding to *Pm4a*) and Th1 (Bgt carrying *avrPm4a*, the non-functional allele of *AvrPm4a*), and incubated for eight days. *Rmg8* variants carried by the wheat lines are shown in parentheses. St24 and KU-4026 are a tetraploid accession and an *Ae. umbellulata* accession, respectively, and the others are common wheat lines. Cc-Pm4a is a near-isogenic line of cv. Chancellor (Cc) carrying *Pm4a* while ChI-Rmg8 is a near-isogenic line of cv. Chikugoizumi (ChI) carrying *Rmg8*.

Fig. 6. A model illustrating evolutionary processes in which resistance gene *Rmg8* has gained new target pathogens through differentiation of variants. The *Rmg8* variants painted in pink and enclosed in a blue rectangle indicate those with functions for recognizing wheat blast (MoT) and wheat powdery mildew (Bgt), respectively. The red rectangle indicates recognition as a useful gene for resistance to wheat blast. mya, million years ago.