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Abstract 
Motivation: Recent advances in reconstructing 3D neuron morphologies at the whole brain level offer exciting opportunities 
to study single cell genotyping and phenotyping. However, it remains challenging to define cell types and sub-types properly.  
Results: As morphological feature spaces are often too complicated to classify neurons, we introduce a method to detect 
the optimal subspace of features so that neurons can be well clustered. We have applied this method to one of the largest 
curated databases of morphological reconstructions that contains more than 9,400 mouse neurons of 19 cell types. Our 
method is able to detect the distinctive feature subspaces for each cell type. Our approach also outperforms prevailing cell 
typing approaches in terms of its ability to identify key morphological indicators for each neuron type and separate super-
classes of these neuron types. the subclasses of neuronal types could supply information for brain connectivity and modeling, 
also promote other analysis including feature spaces. 
Availability: All datasets used in this study are publicly available. All analyses were conducted with python package Scikit-
learn 0.23.1 version. Source code used for data processing, analysis and figure generation is available as an open-source 
Python package, on https://github.com/SEU-ALLEN-codebase/ManifoldAnalysis  
Contact: ljliu@braintell.org 

 

 

1 Introduction 
 

The problem of classifying neurons has been studied both 

qualitatively and quantitatively (Cajal and Azoulay,1952), but 

falls into disagreements in lumping-splitting cell types (Zeng, 

2022). Molecular and anatomical approaches, including the 

profiling of RNA transcripts (transcriptomics) as well as 

characterization of spatial distribution and morphology of single 

neuron, are prevalent in cell type classification (Zeng, 2022; Peng 

et al., 2021; Gouwens et al., 2019). It is common to relate 

transcriptomic profiles with other modalities (Gala et al., 2019) 

since effective single-cell molecular profiling can be easily 

achieved with traditional clustering approaches (Figure 1 A2). 

However, the extent to which transcriptome clusters can represent 

true cell types and what level of granularity is appropriate is still 

a question. For definitive cell type classification, a full 

representative set of morphology and connectivity, which are 

regarded as the most defining features for neurons since the era of 

Cajal, is required (Zeng, 2022). Neural morphology and 

connectivity form the physical system of the brain (‘hardware’ 

base) (Pfeifer and Gomez, 2009), so they are pivotal to understand 

how a brain works. In fact, neuron morphology alone can be used 

to identify cell types or subtypes, such as five neuron classes of 

layer-5 neurons of mouse primary visual cortex determined using 

hierarchical clustering (Tsiola et al., 2003). Besides morphology 

is quite robust to experimental conditions among the features 

commonly used to describe neurons (Ascoli and Wheeler, 2016). 

But morphology-based cell typing remains unclear considering 

that morphological characteristics are difficult to 

comprehensively capture and too complicated to cluster by 

traditional methods, unlike transcriptomic data. 

     With the rapidly available brain-wide, digitally reconstructed 

single neuron morphology from high-resolution microscopy 

images (Winnubst et al.,2019; Peng et al., 2015), the number of 

neuron morphology datasets has sprung up from dozens to 

thousands during the last twenty years. A cutting-edge research 

field is how to analyze these datasets with sufficient biological 

relevance. Typical way is to first extract morphological or 

topological features, like L-measure features that describe global 

attributes of neuronal structures (Scorcioni et al., 2008), and then 

choose a clustering algorithm to classify neurons (McGarry, 2010; 

Karagiannis et al., 2009; Armañanzas and Ascoli, 2015, Peng et 

al., 2021). Considering the difficulty in validating results from 

unsupervised learning and the applicability of clustering 

algorithms, finding an optimal algorithm has always been focus of 

the study (Masood, M. and Khan, M.N.A., 2015). In contrast, 

representation and feature learning for clustering have not been 

explored extensively (Karim et al., 2021). 

    Many existing feature selection methods screen features 

subjectively with prior biology knowledge or automatically by 

dimension reduction algorithms (Marx and Feldmeyer, 2012; 

DeFelipe et al.,2013; Armañanzas and Ascoli, 2015). This does 

not necessarily improve the clustering quality but sometimes 

causes loss of important features instead. Besides, researchers 

usually increase the number or variety of features, optimize 

network architectures, or use more complicated classifiers (Kanari 

et al., 2019; Lin and Zheng, 2019; Deitcher et al., 2017; Gillette 

and Ascoli, 2015; Wan et al., 2015) to obtain better clustering 

results. Although these approaches could categorize neurons to 

some extent, it is difficult to separate neurons with complex 

morphologies. Differentiating highly similar neuron structures is 

also a challenge. 
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This paper introduces a method to identify characterizing 

feature subspace where neurons may be optimally grouped. We 

rank the data clustering in a series of feature space subsets 

according to a separability measure, so that within-class and 

between-class discrimination are optimized while the integrity of 

information is retained. Applying our method in a neuron 

morphology dataset containing over 9,400 mouse neurons of 19 

cell types, we have identified morphologically distinct neuronal 

subtypes from certain anatomical brain regions. Comparison with 

other classic clustering approaches illustrates the effectiveness 

and advantages of our method. 

 

2 Results 
 

2.1 Optimal subspace-based clustering framework  
 

The primary scope of our study is classification of single neuron 

morphology by automatic detection of the optimal feature 

subspace. Under the detected feature subspace, retained structure 

characteristics is consistent with molecular profiling to a certain 

extent (Figure 1A). We developed a framework where the search 

strategies employed are greedy sequential searches through 

subsets of the original feature space, followed by an evaluation for 

each of them (Blum and Langley, 1997). Like most approaches to 

subspace analysis, our measurement is based on a density-based 

clustering notion (Procopiuc et al., 2002; Baumgartner et al., 

2004). The screening-retention process is evaluated by a score 

(see Materials and Methods) computed from clustering results 

from the density-based algorithm DBSCAN (Density-Based 

Spatial Clustering of Applications with Noise).  

Figure 1. Workflow of the complete feature subspace selection. (A)Characterization of cell types 

and subtypes by feature subspace. (A1) A given dataset of neurons can be well classified under the 

optimal characteristic subspace detected by our algorithm, where neurons show their greatest 

specificity and intrinsic patterns. (A2) Cell typing and subtyping under the detected feature 
subspace can correspond to the molecular profiling to some extent.  (B) Comprehensive framework 

for feature subspace selection and clustering. (B1) In order to find the optimal subspace, the 

algorithm iteratively deletes a feature vector in turn during each dimension reduction step and 

reserve PCs which can generate the maximum score into the next step, repeating until the 
dimension reaches 3 or the result cannot be split. (B2) KANN-DBSCAN model, able to 

automatically to adjust parameters, runs with the remaining eigenvectors and then the score((inter-

similarity/intra-similarity) × (1-outlier%), see Methods) is computed. Among all the results, the 

case with the largest score is the best, and the corresponding feature space is the optimal feature 
subspace.  

 

DBSCAN has two major parameters, the neighborhood size, Eps, 

and the number of data objects in that neighborhood, MinPts 

(Galán, 2019). And KANN-DBSCAN, a self-adaptive algorithm 

used here, is capable of automatically acquiring the best 

combination of the two parameters for DBSCAN. Considering 

that DBSCAN outputs both clusters and outliers, the customized 

evaluation score is formulated by both Euclidean distance 

between data points and the number of outliers (Figure 1 B2), 

which reflects not only the aggregation within a cluster and 

separation between clusters, but also the extent of information loss. 

Larger the score is, better the classification result, which means 

the optimal feature subspace is the one under which the highest 

clustering score is achieved. 

The complete procedure goes as follows. The initial step 

involves data preprocessing and orthogonal transformation into an 

eigenspace with PCA (Principle Component Analysis). For each 

step afterwards, all subsets with one eigenvector removed from 

the current feature space are tested. The dataset is clustered with 

KANN-DBSCAN, a self-adaptive algorithm for DBSCAN, and 

then the corresponding score is calculated for each subspace. The 

feature subspace with the highest score will be reserved as input 

to the next step. One dimension is reduced in one step and such 

process will repeat iteratively until the dimension reaches 3 

(Figure 1 B1). 

Figure 2. Classification results of single cell types (A B). Sub-divisible cell types. Each point 

represents a neuron cell. 13 out of 19 types of neurons are considered well separable using our 

algorithm, exemplified by specific neuron morphologies visualized in the optimal PC subspace and 

mapped to the CCF brain template (right panel). Sub-clusters from both are distinct to each other 
in their locations and morphologies, clearly seen in the brain map. There is a correspondence 

between the division of clusters and soma locations in A but not in B (middle panel). Due to uniform 

feature distribution (C), some cell types are considered completely non-divisible here: ILA, LGd, 

MOp, VPL, SSs and VPM. 

 

We tested our method on 19 cell types totally, where ‘cell type’ 

here is defined by soma locations in the standard mouse brain atlas: 

ACAd, ACAv, AId, AIv, CP, FRP, ILA, LGd, MOp, MOs, ORBl, 

ORBm, ORBvl, PL, SSp, SSs, SUB, VPL, VPM (Jones et al., 

2009; Dong, 2008). Overall, there are two outcomes: 1. 

Subdivisible cell types where neurons can be clearly divided into 

multiple clusters. Based on whether there exists some 

correspondence between clustering results and their anatomical 

locations, two more groups are identified (Figure 2A 2B); 2. non-

subdivisible cell types (Figure 2C). 
 

2.2 Influence of algorithm’s parameters and 

performance analysis 
 

As we mentioned before, DBSCAN two parameters, Eps and 

MinPts (Galán, 2019), which have been proved to have a great and 

import influence on the clustering result (Figure 3A). KANN-

DBSCAN can help to find the best combination after 

automatically trying all parameter pairs. Next, to evaluate the 
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impact of feature subspaces, we visualized the results of all 

subsets. As the feature subspace changes, data distributions and 

clustering results are quite different even for the same dimension 

(Figure 3C). As the dimension is reduced, the score (see 

Methodology) also varies a lot (Figure 3B). Thus, through 

adjustment of model parameters and appropriate selection of 

feature spaces, we can find the optimal feature subspace for a best 

classification. We have also noted that when separating the super-

class dataset (e.g. VPM and CP), the difference in quantity of cell 

types could affect the final optimal subspace remained and the 

compactness of clusters (Figure 3D). But the concordance of 

classification produced three datasets that consist of different 

components verifies the stability and robustness of our method, 

and its effectiveness on super-class classifications too. 

Figure 3. Impacts of algorithm parameters and dataset selection on classification results (CP 

cells as an example). (A) Parameter sensitivity of DBSCAN model. DBSCAN has 2 major tuning 

parameters: Eps (left) and MinPts (right). Different choices of the two parameters will lead to 
different classification results. (B, C) Influence of feature subspace. (B) The score 

((inter_dist/intra_dist) × (1-outlier%), see Methodology) varies with the reduction of PC 

dimensions and the peak corresponds to the optimal dimension of PC subspace. (C) The 3D 

visualization indicates distinct distributions of CP cells in subspaces with the same dimension (16) 
but different principle components. (D) Effect of dataset sampling. Due to the difference in data 

volumes (e.g. VPM:406; CP: 312), we analyzed the full dataset (718 neurons) and 2 datasets with 

equal numbered VPM and CP neurons (randomly selected 312 neurons from the VPM dataset). 

The three results are consistent, indicating the conservation of our algorithm.  

 

Exactly how good is the performance and how much improvement 

our method would make in morphological classification? For this 

purpose, we compared our method with 4 typical clustering 

methods: KMeans, affinity propagation, hierarchical clustering 

and normal DBSCAN. We used all 5 algorithms to classify 

datasets of single cell type and conducted morphological analysis 

on each result. While results were overall comparable, there were 

indeed some differences between our method and the other four. 

Taking PL neurons as an example, quantitative comparison of 

most differentiating morphological indicators shows more 

prominent distinctions between sub-clusters achieved by 

DBSCAN than those by the other three (Figure 4A). Besides, 

DBSCAN preserved underlying continuous manifolds better. 

Among all the methods, our method has the biggest score, 

indicating a better classification result. Note that our method (in 

optimal subspace) performed similar to the normal DBSCAN, but 

had less outliers, meaning more information was kept (Figure 4B). 

This emphasizes the role of the optimal feature subspace. Notably, 

our method is primarily intended to detect the optimal subspace. 

As above, we could tell features of the highest interestingness 

were reserved in our method, making it easier to extract the key 

characteristics for sub-clusters in such feature space (Zhang et al., 

2005).  

Figure 4. Comparison with typical classification algorithms. 4 typical algorithms are chosen to 

compare with our method: KMeans, affinity propagation, hierarchical clustering and normal 

DBSCAN. (A) Clustering results of PL neurons, visualized with three most significant 
morphological indicators: average contraction, Hausdorff dimension and overall width. The sub-

clusters identified with DBSCAN method show obvious differentiations both in morphological 

structures and under the PC feature space. (B) The table verifies that DBSCAN works better than 

the other three. On this basis, our method turns out to have less outliers and better separation and 
cohesion (reflecting in the score), compared with DBSCAN without optimization of feature spaces.  

 

Altogether, the analysis demonstrates the stability and 

performance improvement of our method when confronted with 

datasets of different cell types, confirming that the optimal feature 

subspace may advance the classification of neuron cells and help 

with the morphological characterization.  
 

2.3 Detecting optimal feature subspace and 

identifying cell subtypes 
 

2.3.1 Identification of key morphological features and 

multiple subtypes 
 

To gain explanatory power of the optimal feature subspace on its 

benefits to morphological characterization and categorization, we 

visualized and quantified the clustering results. In one sub-cluster 

situation, neurons are morphologically similar to each other. The 

morphological features have nearly Gaussian distributions in 

single cell type so that their distribution is homogeneous and 

sparse under the feature space (Figure 1C). While mostly, sub-

clusters divided actually show significant morphological 

distinctions from each other. Here, we take ACAv and CP as 

examples. For CP, 7 eigenvectors are preserved (PC-0,4,5,7,10,16) 

(Figure 5A). The most significant differential morphological 

features are mean Euclidean distance, mean path distance, overall 

width and overall depth (Figure 5B). The two sub-clusters of CP 

neurons both grow densely at the two ends and smoothly at the 

long projection part. Neither of them has large branches along the 

bypassing fibers. The most obvious indicator is the length of the 

long projection part, clearly seen from the representative neurons, 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 27, 2023. ; https://doi.org/10.1101/2023.09.26.559442doi: bioRxiv preprint 

https://doi.org/10.1101/2023.09.26.559442
http://creativecommons.org/licenses/by-nc/4.0/


 

reflecting in the features like Euclidean and path distances (Figure 

5C). As for ACAv, the optimal PC subspace has 3 eigenvectors 

reserved (PC-0,12,14). We checked the correlation between PC 

subspace and its original features. The main difference lies in 

overall width, mean Euclidean distance, mean path distance, 

overall height, overall width, overall depth and total length 

(Figure 5A 5B) according to the heatmap. Figure 5C validates our 

result that representative neurons from the two sub-clusters differ 

remarkedly in branching complexities and overall sizes. These 

observations and analyses highlight the ability optimal feature 

subspace to identify sub-type of neurons and the key 

morphological features. 

Figure 5. Analysis of clustering results with multiple sub-clusters. Among 13 separable cell types, 

clustering of 720 ACAv neurons (upper part) and 312 CP neurons (lower part) both have 2 distinct 

subtypes. (A) Analysis of optimal PC sub-feature space. The heatmap displays the correlation 
between the optimal reduced components and the original morphological features. Darker the red 

is, more important the original feature is. And the blue color bar below indicates the contribution 

ratio of each component, which gets smaller from left to right. (B) According to the heatmap, the 

most significant morphology indicators are selected with contribution ratio over 0.6. (C) 
Morphological comparison between two sub-clusters. Left panel: representative neurons for each 

sub-cluster including their relative locations in the brain and detailed morphological structures. 

Right panel: distribution of most distinct morphological features (min-max standardized) for each 

sub-cluster. 

 

2.3.2 Explorative analysis for unsatisfactory clustering 
 

Overall, our method works well on most classification of single 

cell type but some are exceptions. Due to the morphological 

specificity of certain cell types, which have uniform and 

widespread feature distribution, it is hard to conduct a clear sub-

division. These kinds of neurons are considered morphologically 

hard separable. For instance, SSp neurons cannot form large 

groups where neurons are neither highly similar to each other nor 

highly different from each other in structures. They distribute 

dispersively in the optimal subspace, so that the sub-clusters are 

not so compact and badly differentiated (Figure 6A). On the other 

hand, sometimes we can only separate neurons based upon their 

reconstruction sources. In the MOs case, neurons from ION are 

more easily recognized (Figure 6B). The ION data are structurally 

incomplete, lack of dendritic parts, making them essentially 

different in morphologies from data from other two sources, 

Janelia Mouselight and SEU-Allen. The two sets of data are far 

apart in the clustering result. Therefore, we clustered these two 

sets separately to see whether our method still worked. It turns out 

the sub-clusters obtained are more distanced between and tightly 

packed within, which proves the robustness of our method on the 

contrary. 

Figure 6. Explorative analysis for unsatisfactory clustering cases. (A) Due to feature dispersion. 

The left panel displays clustering results of SSp and the morphological analysis correspondingly. 

The distribution of SSp neurons in the feature space is relatively dispersed. Heatmap shows 
structural similarity between pairs of SSp neuron cells, where the similarity here is calculated by 

‘distance’, defined as average distance among all nearest point pairs of neural structures. The 

neurons are neither highly similar nor highly different to as we can see, so it is intrinsically difficult 

to achieve an ideal clustering. (B) Due to differences in the neuron dataset. Data from ION do not 
have dendritic parts but make up the most of MOs. These ION neurons are uniformly distributed 

in the optimal PCA subspace, making them hard to be separated. Therefore, we conducted 

clustering separately: (1) ION; (2) Mouselight+SEU-ALLEN. The results are much better. 

 

2.4 Applications in recognition of multiple cell 

types from super-class datasets 

Figure 7. Super-class separation (super-class: ensemble of multiple cell types). 3 datasets are 

tested: CP(Striatum) and LGd (Thalamus), ACAv (Cortex) and VPM(Thalamus), AId, ORBvl and 
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ILA (Cortex but different cortical layers). Clustering process can be iterated more than one time, 
and finally cell types are distinguished from the super-class.  

 

So far, we mainly focused on the subtyping problem of individual 

cell type. We conducted this super-class separation to further 

validate capability and applicability of our method. Since we 

already have the prior biological knowledge, it is easier to do 

quantitative check if the classification result is satisfactory or not. 

As is known that CP neurons have two subtypes (Figure 5), in the 

first result clearly CP is divided into two groups. And LGd can be 

considered separated partially at the first place, since LGd neurons 

seem structurally similar to one sub-type of CP neurons. After the 

second round of clustering, both LGd and one sub-cluster of CP 

are identified. The ACAv and VPM case is similar, only that part 

of ACAv are still mixed up with VPM neurons (Figure 7A). Then 

we tried a dataset containing three different types from cortex. 

After two rounds of clustering, the overlapping among cell types 

does not decrease much. But remarkably, we observed that most 

AId neurons were separated from the dataset. The third result 

indicates that roughly cortical neurons share a relatively high 

structural similarity, among which some types are more 

recognizable, supporting that there exists some concordance 

between anatomical regions and neuronal morphology (Figure 

7B). 

In conclusion, with our method, neurons from different brain 

regions (roughly labeled, e.g. thalamus, cortex) could be separated. 

While the results also suggest there is some morphological 

consistency in neurons from the same region. And there is a 

potential that such super-class problem could be well explored 

with iteration of exploiting our method. 

 

3 Discussion 
 

Previous classifications based on neuron morphology are focused 

more on dendritic structure mainly, long projection pattern or 

cross-modality analysis (Milosevic et al., 2009; Cervantes et al., 

2019; Peng et al., 2022). In this study, we proposed a new 

framework for detection of optimal feature subspace and 

identification of sub-types of neurons. We employed a novel 

strategy combining greedy optimal eigenspace selection and 

KANN-DBSCAN to find out such subspace and the 

corresponding intrinsic morphological features. We used a dataset 

of 9187 neuron reconstructions from three different sources (ION, 

Janelia, SEU-ALLEN) and applied our method to decompose 

single cell types. It turned out 13 of 19 cell types could be 

separated in the optimal feature subspace we detected. And for the 

poorly separable cases, most are morphologically similar within 

cell types. 

The whole framework as well as the algorithm were validated 

in several aspects. First, from the perspective of the algorithm 

itself, we investigated the influence of model parameters and 

feature screening on the classification results. Taking these, we 

optimized the scheme of our method by exploiting the Greedy 

strategy and introducing a self-defined evaluation score. Second, 

we found our classification results outperformed those from other 

algorithms that have been widely used before. Quantitative 

morphological analysis of identified sub-clusters further 

confirmed the robustness in that the selected dimensions well 

preserved significant features, and neurons from different sub-

clusters showed great differences in their structures. Besides, we 

could distinguish neuron cell types, which are previously labeled, 

in a super-class group with applications of our algorithm. In 

general, our method demonstrates great power in detection of key 

morphological features and classification of neuronal cell types.  

    However, there are still several limitations. The core idea of 

our method is to try all the subsets of space dimensions and figure 

out the best among them, so it will be quite time consuming when 

the dataset has dozens or even hundreds of features. And as we 

have discussed in Figure 6A, neurons like SSp with relatively 

uniform distribution in the feature space are not well classified. 

Addressing these issues will require future work. Furthermore, 

some findings in this study deserve more researches. We have 

discovered some connections between morphological 

characteristics and soma locations (Figure 2A 2B). The question 

here is if there exists a pattern, especially for the cortical neurons. 

For instance, a new subtype from Cortical Layer 5 (L5) has been 

revealed, showing distinct morphology, physiology and visual 

response, unlike previously described L5 cortico-cortical and 

cortico-subcortical types (Kim, E.J. et al., 2015). The cerebral 

cortex is populated by excitatory and inhibitory neurons of high 

diversity, which plays a vital role in mediating interactions 

between various brain regions. But current studies demonstrate 

mainly on a limited number of types, such as L5 pyramidal 

neurons. Taking the result we achieved here as the first step, we 

could be able to build a more detailed model in morphological 

structures of cortical neurons across layers.  

    Since we have proved its feasibility in dividing super-class 

dataset, it is possible to identify an unknown neuron based on its 

morphological structures, like telling where the neuron locates, 

through establishing models in optimal feature subspace. 

However, the question that needs to be answered is that when 

should we stop the iteration of our algorithm, which is when the 

clustering is suitable to distinguish both cell types and their sub-

types or if these types are truly have significant differences. 

    In summary, our study highlights the value of detecting 

optimal feature subspace in classification of neural cells. With the 

classification and characterization results based on our method, 

we could establish a standard for morphology-based cell type 

division. And it is possible to bridge the neural morphology with 

other modalities such as anatomical definition, electrophysiology 

and so on, so that if the morphology of an unknown neuron is 

given, we can tell its cell type and other related biological 

information. As the number of single full neurons increases, the 

subtype analysis will be more accurate and better for separation of 

more cell types.  Also, our method provides clues for brain 

connectivity and modeling and the complexed subtypes in brain 

promote the other feature space analysis and artificial intelligence. 

The updated method in neuronal analysis will help more other 

fields. 

 

4 Materials and Methods 
 

4.1 Dataset  
 

We used totally 9187 complete morphologically reconstructed 

neuron structures in the standard SWC file format (Cannon et al., 

1998), of which 1741 from SEU-ALLEN, 1200 form MouseLight 

(Winnubst, J. et al., 2019) and 6246 from ION (Gao, 2022), 

involving 173 anatomical regions defined from the Allen 

Reference Atlas ontology. Among them, the ION data does not 
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have dendritic parts. All these data have been registered to the 

CCFv3 framework. Then we focused on 19 cell types (based on 

the anatomical regions of somas) with the highest amount and 

most interest for analysis.  
 

4.2 Feature extraction and pre-processing 
 

23 morphological features were extracted for each neuron with the 

plugin ‘global_neuron_feature’ from Vaa3D platform (Scorcioni 

et al., 2008) and we kept 17 of them which can better describe 

their morphologies: “Number of Stems”, “Number of 

Bifurcations”, “Number of Branches”, “Number of Tips”, 

“Overall Width”, “Overall Height”, “Overall Depth”, “Total 

Length”, “Total Volume”, “Max Euclidean Distance”, “Max Path 

Distance”, “Max Branch Order”, “Average Contraction”, 

“Average Parent-daughter Ratio”, “Average Bifurcation Angle 

Local”, “Average Bifurcation Angle Remote” and “Hausdorff 

Dimension”. These features then are normalized to 0-1 with a 

min-max standardization and transformed with PCA into a new 

PC space. 
 

4.3 KANN-DBSCAN 
 

DBSCAN is typical of density-based spatial clustering algorithms. 

The prominent advantages include: 1. no need to specify the 

number of clusters in advance; 2. outliers can be labeled while 

clustering; 3. dense datasets of any arbitrary shapes can be 

clustered. As is known that DBSCAN is very sensitive to its 

parameters Eps and MinPts. Therefore, in order to achieve the best 

clustering performance, it is necessary to search for the best 

combination of the two. We chose KANN-DBSCAN (Li et al., 

2019), a self-adaptive algorithm that can automatically determine 

the parameters. This algorithm, based on the parameter 

optimization strategy, first generate candidate Eps according to 

the dataset’s own distribution properties and candidate MinPts. 

Then it runs DBSCAN repeatedly with these possible parameters 

to find the stable interval for cluster number change among all the 

clustering results. The optimal pair of parameters is the one with 

the minimum density threshold in this interval.  

 

4.4 Performance assessment 
 

The result of DBSCAN model includes outliers (invalid points) 

and clustered points. Referencing Silhouette Coefficient 

(Kaufman et al., 2005), we designed a score to evaluate its 

performance, formulating by the data retention rate and the 

difference of clusters. 
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Where d is Euclidean distance between data points and n is the 
total number of clusters. 

The average within-cluster similarity reflects the degree of 

cohesion and average between-cluster similarity represents the 

separation of clusters. And the percentage of non-outlier indicate 

the integrity of information. Obviously, the score becomes bigger 

when 1. distance among data points in the same cluster is smaller; 

2. distance among data points between different clusters is bigger; 

3. less outliers are produced. Therefore, the larger the score, the 

better the clusters are separated. 
 

4.5 Eigenvector filtering based on the Greedy 

strategy 
 

Using PCA, we obtained all the eigenvectors from the 

standardized data. For each dimension reduction step, we removed 

one eigenvector in turn and ran the KANN-DBSCAN algorithm 

with the remaining eigenvectors and computed the corresponding 

score. Then we reserved the combination of eigenvectors with the 

highest score for the next dimension reduction. We repeated this 

process until the dimension reaches 3. In the meantime, if 

dimensionality reduction fails to divide the data into multiple 

classes, the algorithm stops. The case with the largest score in all 

reduction steps is the best, also indicating that the remaining 

eigenvectors form the optimal PC subspace. 
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Figure 7 
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