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Abstract

Motivation: Recent advances in reconstructing 3D neuron morphologies at the whole brain level offer exciting opportunities
to study single cell genotyping and phenotyping. However, it remains challenging to define cell types and sub-types properly.
Results: As morphological feature spaces are often too complicated to classify neurons, we introduce a method to detect
the optimal subspace of features so that neurons can be well clustered. We have applied this method to one of the largest
curated databases of morphological reconstructions that contains more than 9,400 mouse neurons of 19 cell types. Our
method is able to detect the distinctive feature subspaces for each cell type. Our approach also outperforms prevailing cell
typing approaches in terms of its ability to identify key morphological indicators for each neuron type and separate super-
classes of these neuron types. the subclasses of neuronal types could supply information for brain connectivity and modeling,
also promote other analysis including feature spaces.

Availability: All datasets used in this study are publicly available. All analyses were conducted with python package Scikit-
learn 0.23.1 version. Source code used for data processing, analysis and figure generation is available as an open-source

Python package, on https://github.com/SEU-ALLEN-codebase/ManifoldAnalysis

Contact: ljliu@braintell.org

1 Introduction

The problem of classifying neurons has been studied both
qualitatively and quantitatively (Cajal and Azoulay,1952), but
falls into disagreements in lumping-splitting cell types (Zeng,
2022). Molecular and anatomical approaches, including the
profiling of RNA transcripts (transcriptomics) as well as
characterization of spatial distribution and morphology of single
neuron, are prevalent in cell type classification (Zeng, 2022; Peng
et al., 2021; Gouwens et al., 2019). It is common to relate
transcriptomic profiles with other modalities (Gala et al., 2019)
since effective single-cell molecular profiling can be easily
achieved with traditional clustering approaches (Figure 1 A2).
However, the extent to which transcriptome clusters can represent
true cell types and what level of granularity is appropriate is still
a question. For definitive cell type -classification, a full
representative set of morphology and connectivity, which are
regarded as the most defining features for neurons since the era of
Cajal, is required (Zeng, 2022). Neural morphology and
connectivity form the physical system of the brain (‘hardware’
base) (Pfeifer and Gomez, 2009), so they are pivotal to understand
how a brain works. In fact, neuron morphology alone can be used
to identify cell types or subtypes, such as five neuron classes of
layer-5 neurons of mouse primary visual cortex determined using
hierarchical clustering (Tsiola et al., 2003). Besides morphology
is quite robust to experimental conditions among the features
commonly used to describe neurons (Ascoli and Wheeler, 2016).
But morphology-based cell typing remains unclear considering
that ~ morphological  characteristics are  difficult to
comprehensively capture and too complicated to cluster by
traditional methods, unlike transcriptomic data.

With the rapidly available brain-wide, digitally reconstructed
single neuron morphology from high-resolution microscopy
images (Winnubst et al.,2019; Peng et al., 2015), the number of
neuron morphology datasets has sprung up from dozens to
thousands during the last twenty years. A cutting-edge research
field is how to analyze these datasets with sufficient biological
relevance. Typical way is to first extract morphological or
topological features, like L-measure features that describe global
attributes of neuronal structures (Scorcioni et al., 2008), and then
choose a clustering algorithm to classify neurons (McGarry, 2010;
Karagiannis et al., 2009; Armafianzas and Ascoli, 2015, Peng et
al., 2021). Considering the difficulty in validating results from
unsupervised learning and the applicability of -clustering
algorithms, finding an optimal algorithm has always been focus of
the study (Masood, M. and Khan, M.N.A., 2015). In contrast,
representation and feature learning for clustering have not been
explored extensively (Karim et al., 2021).

Many existing feature selection methods screen features
subjectively with prior biology knowledge or automatically by
dimension reduction algorithms (Marx and Feldmeyer, 2012;
DeFelipe et al.,2013; Armafianzas and Ascoli, 2015). This does
not necessarily improve the clustering quality but sometimes
causes loss of important features instead. Besides, researchers
usually increase the number or variety of features, optimize
network architectures, or use more complicated classifiers (Kanari
et al., 2019; Lin and Zheng, 2019; Deitcher et al., 2017; Gillette
and Ascoli, 2015; Wan et al., 2015) to obtain better clustering
results. Although these approaches could categorize neurons to
some extent, it is difficult to separate neurons with complex
morphologies. Differentiating highly similar neuron structures is
also a challenge.
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This paper introduces a method to identify characterizing
feature subspace where neurons may be optimally grouped. We
rank the data clustering in a series of feature space subsets
according to a separability measure, so that within-class and
between-class discrimination are optimized while the integrity of
information is retained. Applying our method in a neuron
morphology dataset containing over 9,400 mouse neurons of 19
cell types, we have identified morphologically distinct neuronal
subtypes from certain anatomical brain regions. Comparison with
other classic clustering approaches illustrates the effectiveness
and advantages of our method.

2 Results

2.1 Optimal subspace-based clustering framework

The primary scope of our study is classification of single neuron
morphology by automatic detection of the optimal feature
subspace. Under the detected feature subspace, retained structure
characteristics is consistent with molecular profiling to a certain
extent (Figure 1A). We developed a framework where the search
strategies employed are greedy sequential searches through
subsets of the original feature space, followed by an evaluation for
each of them (Blum and Langley, 1997). Like most approaches to
subspace analysis, our measurement is based on a density-based
clustering notion (Procopiuc et al., 2002; Baumgartner et al.,
2004). The screening-retention process is evaluated by a score
(see Materials and Methods) computed from clustering results
from the density-based algorithm DBSCAN (Density-Based
Spatial Clustering of Applications with Noise).
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Figure 1. Workflow of the feature s (A)Characterization of cell types
and subtypes by feature subspace. (A1) A given dataset of neurons can be well classified under the
optimal characteristic subspace detected by our algorithm, where neurons show their greatest
specificity and intrinsic patterns. (A2) Cell typing and subtyping under the detected feature
subspace can correspond to the molecular profiling to some extent. (B) Comprehensive framework
for feature subspace selection and clustering. (B1) In order to find the optimal subspace, the
algorithm iteratively deletes a feature vector in turn during each dimension reduction step and
reserve PCs which can generate the maximum score into the next step, repeating until the
dimension reaches 3 or the result cannot be split. (B2) KANN-DBSCAN model, able to
automatically to adjust parameters, runs with the remaining eigenvectors and then the score((inter-
similarity/intra-similarity) * (1-outlier%), see Methods) is computed. Among all the results, the
case with the largest score is the best, and the corresponding feature space is the optimal feature
subspace.

bspace selecti

DBSCAN has two major parameters, the neighborhood size, Eps,
and the number of data objects in that neighborhood, MinPts
(Galan, 2019). And KANN-DBSCAN, a self-adaptive algorithm

used here, is capable of automatically acquiring the best
combination of the two parameters for DBSCAN. Considering
that DBSCAN outputs both clusters and outliers, the customized
evaluation score is formulated by both Euclidean distance
between data points and the number of outliers (Figure 1 B2),
which reflects not only the aggregation within a cluster and
separation between clusters, but also the extent of information loss.
Larger the score is, better the classification result, which means
the optimal feature subspace is the one under which the highest
clustering score is achieved.

The complete procedure goes as follows. The initial step
involves data preprocessing and orthogonal transformation into an
eigenspace with PCA (Principle Component Analysis). For each
step afterwards, all subsets with one eigenvector removed from
the current feature space are tested. The dataset is clustered with
KANN-DBSCAN, a self-adaptive algorithm for DBSCAN, and
then the corresponding score is calculated for each subspace. The
feature subspace with the highest score will be reserved as input
to the next step. One dimension is reduced in one step and such
process will repeat iteratively until the dimension reaches 3
(Figure 1 B1).
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Figure 2. Classification results of single cell types (A B). Sub-divisible cell types. Each point
represents a neuron cell. 13 out of 19 types of neurons are considered well separable using our
algorithm, exemplified by specific neuron morphologies visualized in the optimal PC subspace and
mapped to the CCF brain template (right panel). Sub-clusters from both are distinct to each other
in their locations and morphologies, clearly seen in the brain map. There is a correspondence
between the division of clusters and soma locations in A but not in B (middle panel). Due to uniform
feature distribution (C), some cell types are considered completely non-divisible here: ILA, LGd,
MOp, VPL, SSs and VPM.

We tested our method on 19 cell types totally, where ‘cell type’
here is defined by soma locations in the standard mouse brain atlas:
ACAd, ACAv, Ald, Alv, CP, FRP, ILA, LGd, MOp, MOs, ORBI,
ORBm, ORBvl, PL, SSp, SSs, SUB, VPL, VPM (Jones et al.,
2009; Dong, 2008). Overall, there are two outcomes: 1.
Subdivisible cell types where neurons can be clearly divided into
multiple clusters. Based on whether there exists some
correspondence between clustering results and their anatomical
locations, two more groups are identified (Figure 2A 2B); 2. non-
subdivisible cell types (Figure 2C).

2.2 Influence of algorithm’s parameters and
performance analysis

As we mentioned before, DBSCAN two parameters, Eps and
MinPts (Galan, 2019), which have been proved to have a great and
import influence on the clustering result (Figure 3A). KANN-
DBSCAN can help to find the best combination after
automatically trying all parameter pairs. Next, to evaluate the
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impact of feature subspaces, we visualized the results of all
subsets. As the feature subspace changes, data distributions and
clustering results are quite different even for the same dimension
(Figure 3C). As the dimension is reduced, the score (see
Methodology) also varies a lot (Figure 3B). Thus, through
adjustment of model parameters and appropriate selection of
feature spaces, we can find the optimal feature subspace for a best
classification. We have also noted that when separating the super-
class dataset (e.g. VPM and CP), the difference in quantity of cell
types could affect the final optimal subspace remained and the
compactness of clusters (Figure 3D). But the concordance of
classification produced three datasets that consist of different
components verifies the stability and robustness of our method,
and its effectiveness on super-class classifications too.
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Figure 3. Impacts of algorithm parameters and dataset selection on classification results (CP
cells as an example). (A) Parameter sensitivity of DBSCAN model. DBSCAN has 2 major tuning
parameters: Eps (left) and MinPts (right). Different choices of the two parameters will lead to
different classification results. (B, C) Influence of feature subspace. (B) The score
((inter_dist/intra_dist) * (1-outlier%), see Methodology) varies with the reduction of PC
dimensions and the peak corresponds to the optimal dimension of PC subspace. (C) The 3D
visualization indicates distinct distributions of CP cells in subspaces with the same dimension (16)
but different principle components. (D) Effect of dataset sampling. Due to the difference in data
volumes (e.g. VPM:406; CP: 312), we analyzed the full dataset (718 neurons) and 2 datasets with
equal numbered VPM and CP neurons (randomly selected 312 neurons from the VPM dataset).
The three results are consistent, indicating the conservation of our algorithm.

Exactly how good is the performance and how much improvement
our method would make in morphological classification? For this
purpose, we compared our method with 4 typical clustering
methods: KMeans, affinity propagation, hierarchical clustering
and normal DBSCAN. We used all 5 algorithms to classify
datasets of single cell type and conducted morphological analysis
on each result. While results were overall comparable, there were
indeed some differences between our method and the other four.
Taking PL neurons as an example, quantitative comparison of
most differentiating morphological indicators shows more
prominent distinctions between sub-clusters achieved by
DBSCAN than those by the other three (Figure 4A). Besides,
DBSCAN preserved underlying continuous manifolds better.

Among all the methods, our method has the biggest score,
indicating a better classification result. Note that our method (in
optimal subspace) performed similar to the normal DBSCAN, but
had less outliers, meaning more information was kept (Figure 4B).
This emphasizes the role of the optimal feature subspace. Notably,
our method is primarily intended to detect the optimal subspace.
As above, we could tell features of the highest interestingness
were reserved in our method, making it easier to extract the key
characteristics for sub-clusters in such feature space (Zhang et al.,
2005).
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Figure 4. Comparison with typical classification algorithms. 4 typical algorithms are chosen to
compare with our method: KMeans, affinity propagation, hierarchical clustering and normal
DBSCAN. (A) Clustering results of PL neurons, visualized with three most significant
morphological indicators: average contraction, Hausdorff dimension and overall width. The sub-
clusters identified with DBSCAN method show obvious differ both in morphological
structures and under the PC feature space. (B) The table verifies that DBSCAN works better than
the other three. On this basis, our method turns out to have less outliers and better separation and
cohesion (reflecting in the score), compared with DBSCAN without optimization of feature spaces.
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Altogether, the analysis demonstrates the stability and
performance improvement of our method when confronted with
datasets of different cell types, confirming that the optimal feature
subspace may advance the classification of neuron cells and help
with the morphological characterization.

2.3 Detecting optimal feature subspace and
identifying cell subtypes

2.3.1 Identification of key morphological features and
multiple subtypes

To gain explanatory power of the optimal feature subspace on its
benefits to morphological characterization and categorization, we
visualized and quantified the clustering results. In one sub-cluster
situation, neurons are morphologically similar to each other. The
morphological features have nearly Gaussian distributions in
single cell type so that their distribution is homogeneous and
sparse under the feature space (Figure 1C). While mostly, sub-
clusters divided actually show significant morphological
distinctions from each other. Here, we take ACAv and CP as
examples. For CP, 7 eigenvectors are preserved (PC-0,4,5,7,10,16)
(Figure 5A). The most significant differential morphological
features are mean Euclidean distance, mean path distance, overall
width and overall depth (Figure 5B). The two sub-clusters of CP
neurons both grow densely at the two ends and smoothly at the
long projection part. Neither of them has large branches along the
bypassing fibers. The most obvious indicator is the length of the
long projection part, clearly seen from the representative neurons,
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reflecting in the features like Euclidean and path distances (Figure
5C). As for ACAv, the optimal PC subspace has 3 eigenvectors
reserved (PC-0,12,14). We checked the correlation between PC
subspace and its original features. The main difference lies in
overall width, mean Euclidean distance, mean path distance,
overall height, overall width, overall depth and total length
(Figure 5A 5B) according to the heatmap. Figure 5C validates our
result that representative neurons from the two sub-clusters differ
remarkedly in branching complexities and overall sizes. These
observations and analyses highlight the ability optimal feature
subspace to identify sub-type of neurons and the key

morphological features.
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Figure 5. Analysis of clustering results with multiple sub-clusters. Among 13 separable cell types,
clustering of 720 ACAv neurons (upper part) and 312 CP neurons (lower part) both have 2 distinct
subtypes. (4) Analysis of optimal PC sub-feature space. The heatmap displays the correlation
between the optimal reduced components and the original morphological features. Darker the red
is, more important the original feature is. And the blue color bar below indicates the contribution
ratio of each component, which gets smaller from left to right. (B) According to the heatmap, the
most significant morphology indicators are selected with contribution ratio over 0.6. (C)
Morphological comparison between two sub-clusters. Left panel: representative neurons for each
sub-cluster including their relative locations in the brain and detailed morphological structures.
Right panel: distribution of most distinct morphological features (min-max standardized) for each
sub-cluster.

2.3.2 Explorative analysis for unsatisfactory clustering

Overall, our method works well on most classification of single
cell type but some are exceptions. Due to the morphological
specificity of certain cell types, which have uniform and
widespread feature distribution, it is hard to conduct a clear sub-
division. These kinds of neurons are considered morphologically
hard separable. For instance, SSp neurons cannot form large
groups where neurons are neither highly similar to each other nor
highly different from each other in structures. They distribute
dispersively in the optimal subspace, so that the sub-clusters are
not so compact and badly differentiated (Figure 6A). On the other
hand, sometimes we can only separate neurons based upon their
reconstruction sources. In the MOs case, neurons from ION are
more easily recognized (Figure 6B). The ION data are structurally
incomplete, lack of dendritic parts, making them essentially

different in morphologies from data from other two sources,
Janelia Mouselight and SEU-Allen. The two sets of data are far
apart in the clustering result. Therefore, we clustered these two
sets separately to see whether our method still worked. It turns out
the sub-clusters obtained are more distanced between and tightly
packed within, which proves the robustness of our method on the

contrary.
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Figure 6. Exple i lysis for i 'y clustering cases. (A) Due to feature dispersion.
The left panel displays clustering results of SSp and the morphological analysis corr dingly.
The distribution of SSp neurons in the feature space is relatively dispersed. Heatmap shows
structural similarity between pairs of SSp neuron cells, where the similarity here is calculated by
‘distance’, defined as average distance among all nearest point pairs of neural structures. The
neurons are neither highly similar nor highly different to as we can see, so it is intrinsically difficult
to achieve an ideal clustering. (B) Due to differences in the neuron dataset. Data from ION do not
have dendritic parts but make up the most of MOs. These ION neurons are uniformly distributed
in the optimal PCA subspace, making them hard to be separated. Therefore, we conducted
clustering separately: (1) ION; (2) Mouselight+SEU-ALLEN. The results are much better.

2.4 Applications in recognition of multiple cell
types from super-class datasets
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ILA (Cortex but different cortical layers). Clustering process can be iterated more than one time,
and finally cell types are distinguished from the super-class.

So far, we mainly focused on the subtyping problem of individual
cell type. We conducted this super-class separation to further
validate capability and applicability of our method. Since we
already have the prior biological knowledge, it is easier to do
quantitative check if the classification result is satisfactory or not.
As is known that CP neurons have two subtypes (Figure 5), in the
first result clearly CP is divided into two groups. And LGd can be
considered separated partially at the first place, since LGd neurons
seem structurally similar to one sub-type of CP neurons. After the
second round of clustering, both LGd and one sub-cluster of CP
are identified. The ACAv and VPM case is similar, only that part
of ACAv are still mixed up with VPM neurons (Figure 7A). Then
we tried a dataset containing three different types from cortex.
After two rounds of clustering, the overlapping among cell types
does not decrease much. But remarkably, we observed that most
Ald neurons were separated from the dataset. The third result
indicates that roughly cortical neurons share a relatively high
structural similarity, among which some types are more
recognizable, supporting that there exists some concordance
between anatomical regions and neuronal morphology (Figure
7B).

In conclusion, with our method, neurons from different brain

regions (roughly labeled, e.g. thalamus, cortex) could be separated.

While the results also suggest there is some morphological
consistency in neurons from the same region. And there is a
potential that such super-class problem could be well explored
with iteration of exploiting our method.

3 Discussion

Previous classifications based on neuron morphology are focused
more on dendritic structure mainly, long projection pattern or
cross-modality analysis (Milosevic et al., 2009; Cervantes et al.,
2019; Peng et al., 2022). In this study, we proposed a new
framework for detection of optimal feature subspace and
identification of sub-types of neurons. We employed a novel
strategy combining greedy optimal eigenspace selection and
KANN-DBSCAN to find out such subspace and the
corresponding intrinsic morphological features. We used a dataset
of 9187 neuron reconstructions from three different sources (ION,
Janelia, SEU-ALLEN) and applied our method to decompose
single cell types. It turned out 13 of 19 cell types could be
separated in the optimal feature subspace we detected. And for the
poorly separable cases, most are morphologically similar within
cell types.

The whole framework as well as the algorithm were validated
in several aspects. First, from the perspective of the algorithm
itself, we investigated the influence of model parameters and
feature screening on the classification results. Taking these, we
optimized the scheme of our method by exploiting the Greedy
strategy and introducing a self-defined evaluation score. Second,
we found our classification results outperformed those from other
algorithms that have been widely used before. Quantitative
morphological analysis of identified sub-clusters further
confirmed the robustness in that the selected dimensions well
preserved significant features, and neurons from different sub-
clusters showed great differences in their structures. Besides, we

could distinguish neuron cell types, which are previously labeled,
in a super-class group with applications of our algorithm. In
general, our method demonstrates great power in detection of key
morphological features and classification of neuronal cell types.

However, there are still several limitations. The core idea of
our method is to try all the subsets of space dimensions and figure
out the best among them, so it will be quite time consuming when
the dataset has dozens or even hundreds of features. And as we
have discussed in Figure 6A, neurons like SSp with relatively
uniform distribution in the feature space are not well classified.
Addressing these issues will require future work. Furthermore,
some findings in this study deserve more researches. We have
discovered some connections between morphological
characteristics and soma locations (Figure 2A 2B). The question
here is if there exists a pattern, especially for the cortical neurons.
For instance, a new subtype from Cortical Layer 5 (L5) has been
revealed, showing distinct morphology, physiology and visual
response, unlike previously described L5 cortico-cortical and
cortico-subcortical types (Kim, E.J. et al., 2015). The cerebral
cortex is populated by excitatory and inhibitory neurons of high
diversity, which plays a vital role in mediating interactions
between various brain regions. But current studies demonstrate
mainly on a limited number of types, such as L5 pyramidal
neurons. Taking the result we achieved here as the first step, we
could be able to build a more detailed model in morphological
structures of cortical neurons across layers.

Since we have proved its feasibility in dividing super-class
dataset, it is possible to identify an unknown neuron based on its
morphological structures, like telling where the neuron locates,
through establishing models in optimal feature subspace.
However, the question that needs to be answered is that when
should we stop the iteration of our algorithm, which is when the
clustering is suitable to distinguish both cell types and their sub-
types or if these types are truly have significant differences.

In summary, our study highlights the value of detecting
optimal feature subspace in classification of neural cells. With the
classification and characterization results based on our method,
we could establish a standard for morphology-based cell type
division. And it is possible to bridge the neural morphology with
other modalities such as anatomical definition, electrophysiology
and so on, so that if the morphology of an unknown neuron is
given, we can tell its cell type and other related biological
information. As the number of single full neurons increases, the
subtype analysis will be more accurate and better for separation of
more cell types. Also, our method provides clues for brain
connectivity and modeling and the complexed subtypes in brain
promote the other feature space analysis and artificial intelligence.
The updated method in neuronal analysis will help more other
fields.

4 Materials and Methods

4.1 Dataset

We used totally 9187 complete morphologically reconstructed
neuron structures in the standard SWC file format (Cannon et al.,
1998), of which 1741 from SEU-ALLEN, 1200 form MouseLight
(Winnubst, J. et al., 2019) and 6246 from ION (Gao, 2022),
involving 173 anatomical regions defined from the Allen
Reference Atlas ontology. Among them, the ION data does not
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have dendritic parts. All these data have been registered to the
CCFv3 framework. Then we focused on 19 cell types (based on
the anatomical regions of somas) with the highest amount and
most interest for analysis.

4.2 Feature extraction and pre-processing

23 morphological features were extracted for each neuron with the
plugin ‘global neuron feature’ from Vaa3D platform (Scorcioni
et al., 2008) and we kept 17 of them which can better describe
their morphologies: “Number of Stems”, “Number of
Bifurcations”, ‘“Number of Branches”, “Number of Tips”,
“Overall Width”, “Overall Height”, “Overall Depth”, “Total
Length”, “Total Volume”, “Max Euclidean Distance”, “Max Path
Distance”, “Max Branch Order”, “Average Contraction”,
“Average Parent-daughter Ratio”, “Average Bifurcation Angle
Local”, “Average Bifurcation Angle Remote” and “Hausdorff
Dimension”. These features then are normalized to 0-1 with a
min-max standardization and transformed with PCA into a new
PC space.

4.3 KANN-DBSCAN

DBSCAN is typical of density-based spatial clustering algorithms.

The prominent advantages include: 1. no need to specify the
number of clusters in advance; 2. outliers can be labeled while
clustering; 3. dense datasets of any arbitrary shapes can be
clustered. As is known that DBSCAN is very sensitive to its
parameters Eps and MinPts. Therefore, in order to achieve the best
clustering performance, it is necessary to search for the best
combination of the two. We chose KANN-DBSCAN (Li et al.,
2019), a self-adaptive algorithm that can automatically determine
the parameters. This algorithm, based on the parameter
optimization strategy, first generate candidate Eps according to
the dataset’s own distribution properties and candidate MinPts.
Then it runs DBSCAN repeatedly with these possible parameters
to find the stable interval for cluster number change among all the
clustering results. The optimal pair of parameters is the one with
the minimum density threshold in this interval.

4.4 Performance assessment

The result of DBSCAN model includes outliers (invalid points)
and clustered points. Referencing Silhouette Coefficient
(Kaufman et al., 2005), we designed a score to evaluate its
performance, formulating by the data retention rate and the
difference of clusters.

average withinCluster distance score = ﬁjzzﬂzi,jec}{,#i?da'”

n

n-1
1
average betweenCluster distance score = N Z Z
b a=1

2-d(L))

b=a+1i€Cq,jEC)

1
average distance score

average similarity =

average betweenClsuter similarity

score = X (1 — outlier%)

average withinCluster similarity

Where d is Euclidean distance between data points and n is the
total number of clusters.

The average within-cluster similarity reflects the degree of
cohesion and average between-cluster similarity represents the
separation of clusters. And the percentage of non-outlier indicate
the integrity of information. Obviously, the score becomes bigger
when 1. distance among data points in the same cluster is smaller;
2. distance among data points between different clusters is bigger;
3. less outliers are produced. Therefore, the larger the score, the
better the clusters are separated.

4.5 Eigenvector filtering based on the Greedy
strategy

Using PCA, we obtained all the eigenvectors from the
standardized data. For each dimension reduction step, we removed
one eigenvector in turn and ran the KANN-DBSCAN algorithm
with the remaining eigenvectors and computed the corresponding
score. Then we reserved the combination of eigenvectors with the
highest score for the next dimension reduction. We repeated this
process until the dimension reaches 3. In the meantime, if
dimensionality reduction fails to divide the data into multiple
classes, the algorithm stops. The case with the largest score in all
reduction steps is the best, also indicating that the remaining
eigenvectors form the optimal PC subspace.
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Figure 4

A PL: Quantitative Analysis of Clustering with Typical Clustering Methods and Our Method
Afﬁnity Propagation

) KMeans

Hausdorff Dimension Average Contraction

Overall Width

Hausdorff Dimension Average Contraction

Overall Width

Average Contraction Hausdorff Dimension  Overal

Overall Width

Hausdorff Dimension Averaae Contraction

Overall Width

Average Contraction

Our Method

Hausdorff Dimension Average Contraction

Average Contraction Hausdorff Dimension

Hausdorff Dimension  Overal

" Overall Width

Hierarchical Clustering

P

i
5-
i
g X
H Cluster
5 o1
§ - e2
& 3
£~ @ Outlier
5
§ -
5
B Comparative Table
Algorithm  Feature #Cluster Outlier Score
Space (%)
KMeans Full 3 - 0.8018
Affinity Full 3 - 0.8029
Propagation
Hierarchical Full 3 - 0.8148
Clustering
DBSCAN Full 2 1411 1.0273
our method  selected 2 492 11621



https://doi.org/10.1101/2023.09.26.559442
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.09.26.559442; this version posted September 27, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.
Figure 5

A Reserved Optimal PC Subspace B Morphological Indicators
CP ACAv Corresponding to PCs
Stems —_ Depth
Bifurcations — cp o iy,
Euclidean .~
Branches — " n-st-nz;-
Width - | \
v g I [\
eight —— |
Depth  — b o
Length — ] o0 oistance ‘
Volume — | e =
Euclidean
Bisisear o Nt ndiop o gy
Path Distance —| I " ACAv
Branch Order — Length
Contraction — -
DauSﬁlrgP Eatio i f / th
Bifurcation __ \ / L
Angle Local \
Bifurcation — A ,/
Angle Remote \ L
E’;'i;uesﬁsci'g; - oy —«— Cluster 1
PC 02 4 5 7 10 16 0 12 14 o Cluster 2
Contribution ratio 0% 10% 52%
C Morphological Analysis of Sub-classes
CP Representative Neurons Significant Morphological Indicators

{ Subcluster 1

| ] g i
o EPEAS T P * * ‘ 6
5 ,”sidt;élﬁé{éfzi 777777777777777777777777777777 ) ) ‘

Y * ks = i ‘/ Width  Euclidean Path Depth  Hausdorff Bifurcation
- - Distance Length Dimension
. mmm Cluster 1
ACAv Representative Neurons B Cluster 2

{ Subcluster 1

e L YU,

i i i ' Euclidean Width  Path  Height  Length  Depth
Distance Length



https://doi.org/10.1101/2023.09.26.559442
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.09.26.559442; this version posted September 27, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY-NC 4.0 International license.

Figure 6
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Figure 7

A. Clustering of two cell types
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