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Abstract

A broad range of neuropsychiatric disorders are associated with alterations in
macroscale brain circuitry and connectivity. ldentifying consistent brain patterns
underlying these disorders by means of structural and functional MRI has proven
challenging, partly due to the vast number of tests required to examine the entire
brain, which can lead to an increase in missed findings. In this study, we propose
polyconnectomic score (PCS) as a metric designed to quantify the presence of
disease-related brain connectivity signatures in connectomes. PCS summarizes
evidence of brain patterns related to a phenotype across the entire landscape of
brain connectivity into a subject-level score. We evaluated PCS across four brain
disorders (autism spectrum disorder, schizophrenia, attention deficit hyperactivity
disorder, and Alzheimer's disease) and 14 studies encompassing ~35,000
individuals. Our findings consistently show that patients exhibit significantly higher
PCS compared to controls, with effect sizes that go beyond other single MRI metrics
([min, max]: Cohen's d =[0.30, 0.87], AUC = [0.58, 0.73]). We further demonstrate
that PCS serves as a valuable tool for stratifying individuals, for example within the
psychosis continuum, distinguishing patients with schizophrenia from their first-
degree relatives (d = 0.42, p = 4 x 10-%, FDR-corrected), and first-degree relatives
from healthy controls (d = 0.34, p = 0.034, FDR-corrected). We also show that PCS
is useful to uncover associations between brain connectivity patterns related to
neuropsychiatric disorders and mental health, psychosocial factors, and body

measurements.
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Introduction

Understanding the circuitry architecture of the human brain is a major goal in
neuroscience and medicine. Magnetic resonance imaging (MRI) provides a non-
invasive method for mapping macroscale structural and functional connections in the
brain. The field of network neuroscience' describes and analyzes the intricate
system of connections within the nervous system, examining variations in brain

connectivity underlying healthy and pathological conditions?2.

Detecting consistent and reliable neurobiological processes underlying
neuropsychiatric disorders*® has proven challenging due to methodological
limitations®-° and the inherent heterogeneity of the phenotypes studied*'°, among
other factors'"'2. One methodological challenge arises when examining the
extensive number of connections in the brain. Network studies often overlook the
contribution from connections that do not reach significance after controlling for
multiple comparisons®'3, and these 'missed connections'® might constitute a
substantial portion of the truly involved brain circuitry'4-'6, The search for brain
signatures underlying neuropsychiatric disorders is further complicated by the co-
occurrence of different disorders within a single individual'” and the overlapping
neurobiological alterations among conditions'®-22, Studying heterogeneous
populations can result in a spatially distributed neural circuitry associated with a
phenotype, complicating the identification of consistent brain patterns across

individuals.

We propose polyconnectomic score (PCS)? as a metric to capture connectome

signatures in individual subjects. Drawing inspiration from polygenic score in
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genetics?®, PCS quantifies the presence of brain circuitry associated with a specific
phenotype in an individual's brain connectome. By distilling the biological evidence of
both subtle and pronounced connectivity alterations into a single score, PCS
provides a global depiction of the disorder-related neural circuitry present in an
individual while reducing the number of tests required. We show the utility of PCS in
three different applications: identifying individuals predisposed to disease based on
their brain connectivity, stratifying patients according to disease liability, and
uncovering brain-behavior correlations. PCS provides a way to quantify the presence
of connectivity signatures related to a phenotype within a connectome, facilitating

further investigation into the brain's role in health and disease states.

Materials and Methods

Studies and subjects

Resting-state functional MRI (fMRI) data from a total of 34,570 individuals were
included from 14 different studies. Each study received approval from the relevant
ethics committee, and participants provided written informed consent. Descriptions of
these studies and their corresponding scanning parameters are detailed in the
Supplemental Methods and Table S1, respectively.

We initially evaluated case-control differences in PCS by examining 12
studies including 4,610 healthy controls and 2,683 individuals with schizophrenia
(SC2Z), autism spectrum disorder (ASD), attention deficit hyperactivity disorder
(ADHD), or Alzheimer's disease (AD)?**-3%. Table 1 provides a demographic overview
of these studies. Additionally, a 13th study was included for stratification of
individuals based on their liability to psychosis, comprising individuals with SCZ,

schizoaffective disorder (SCA), and psychotic bipolar disorder (BD; n = 126, 59, and
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72, respectively), as well as their first-degree relatives (n = 113, 71, and 75,
respectively), and healthy controls (n = 88)3¢. We further incorporated data from the
UK Biobank (UKB)3’ to measure brain-behavior associations, including 26,673

individuals with both neuroimaging and behavioral assessments.

Data processing

Anatomical T1-weighted images were parcellated into 68 cortical regions following
the Desikan—Killiany atlas3® using FreeSurfer v7.1.1%. Functional connectivity (FC)
reconstruction was done with CATO 3.1.22°, Motion parameters and the signal
intensity of white matter and cerebrospinal fluid were regressed out from the fMRI
time-series. Global mean correction was performed by regressing out the mean
signal intensity of all voxels in the brain from the time-series*?. Next, bandpass
filtering (0.01 - 0.1 Hz) and motion scrubbing*' (max FD = 0.25, max DVARS = 1.5)
were applied to the BOLD time-series. FC between all pairs of brain regions was
estimated by extracting the mean time-series from the cortical regions and
computing Pearson's correlation coefficient between each pair of regions*?43, Quality
control was performed based on two criteria: individuals were removed if either their
mean positive connections or more than 1% of their total connections deviated
beyond three standard deviations from the study mean. For each study, the effects
of covariates age, sex, site, and total in-scanner motion were regressed out from the
FC. Sensitivity analyses were conducted using higher resolution atlases** describing
114 and 219 cortical regions (data shown in Supplemental Results), and without

applying global mean correction (data shown in Supplemental Results).

Polyconnectomic score
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Figure 1 outlines the steps to compute polyconnectomic score (PCS), a method that
leverages 'connectome summary statistics' (CSS). These statistics represent the
strength and direction of the association between brain connections and the
phenotype of interest (POI)*. CSS are typically represented by a symmetric matrix
of size n by n, where each element denotes the association strength of a connection
between a pair of regions. CSS can be based on either a discovery dataset or a
previously conducted independent study. In this work, we tested the PCS framework
by deriving it from the CSS of a single study, or by aggregating CSS from multiple
independent studies using a meta-analytic approach with a random-effects model*®.
The strength of an association between a connection and a POl is quantified using
regression coefficients for scale variables or t-statistics and Cohen's d for group
contrasts. The PCS for an out-of-sample individual can then be computed as the

weighted average of the CSS and the individual's brain connectivity map:
PCS = =3 (B*C)
Here B is the CSS matrix and C is the connectivity map of the new subject. As such,

PCS serves as a relative measure, attaining interpretative significance when

compared with other subjects within the same sample.

Statistical analyses

Simulations

We examined the theoretical predictive power of PCS by means of Monte Carlo
simulations. A FC matrix was generated by sampling from a Gaussian distribution of
size n by n (here, n = 68) with a mean of zero and standard deviation of 0.2, resulting
in values ranging from -1 to 1. Studies were simulated with varying sample sizes (50,

100, 200, 500, 800, and 1600 subjects), and each study was partitioned into two
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equally-sized non-overlapping groups representing cases and controls. We
generated a simulated contrast covering 10% of connections by sampling from a
Gaussian distribution with a mean of zero and a standard deviation of 0.03, and
subsequently applied this contrast to all cases. The simulated contrast resulted in a
mixture of increased and decreased connectivity values in cases compared to
controls, alterations equivalent to a distribution of Cohen's d with mean zero and a
standard deviation of 0.15. In each experiment, two studies of the same sample size
were simulated. CSS were extracted from one study to compute PCS in the second
study. We then evaluated the predictive power of PCS by estimating the Cohen's d
case-control differences in PCS. PCS was further evaluated using a logistic
regression to classify each subject's diagnosis and compute the area under the
curve (AUC) of the receiver operating characteristic curve, with an AUC above 0.5
indicating a prediction better than random chance. The experiments were conducted
in two scenarios: in the first scenario, cases from both studies received alterations on
identical connections; in the second scenario, the alteration was applied in randomly
different connections between studies. We conducted the experiment 1,000 times,
considering both connectivity alteration scenarios, various sample sizes, and multiple
p-value thresholds for the inclusion of connections from the CSS (ranging from 1 to 1

x 10°9).

Connectome summary statistics

We computed PCS using CSS representing FC differences between patients with
neuropsychiatric disorders and controls. For the section on phenotypic prediction, we
sourced CSS from the studies that had the largest patient samples available to us for

ASD, SCZ, ADHD, and AD?6:2%31.33 |n the subsequent analyses, we conducted a
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meta-analysis using the CSS from four studies focusing on SCZ patients?53032.33 and
four studies on ASD patients?6-28.2933 to compute PCS for SCZ (PCS-SCZ) and PCS
for ASD (PCS-ASD), respectively. In each analysis, we ensured that the CSS were
derived from studies independent of those where PCS was calculated. Table S1
provides the meta-analytic CSS for each disorder, allowing researchers to compute

PCS for ASD, SCZ, ADHD, and AD in their own studies.

Phenotypic prediction

PCS was computed for patients with ASD, SCZ, ADHD, AD, and healthy controls.
We assessed the ability of PCS to differentiate between patients and controls using
Cohen's d, obtaining p-values from a Student's t-test and correcting for false
discovery rate (FDR)*. The ability of PCS to classify individuals' disease status more
accurately than random chance was evaluated through a logistic regression with
PCS as the predictor and diagnosis as the outcome variable. We computed the AUC
to evaluate the model's accuracy, using class weights to balance the differences in

sample size between patient and control groups.

Patient stratification based on disease liability

We carried out analyses to investigate whether PCS can distinguish individuals
based on their predisposition to psychosis. PCS-SCZ was computed in an
independent study including patients with SCZ, SCA, BD, their first-degree relatives,
and healthy controls®6. PCS-SCZ levels were statistically compared across all groups

using Cohen's d, and p-values derived from Student's t-test statistic (FDR-corrected).

Brain-behavior associations
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We evaluated the utility of PCS in uncovering brain-behavior associations. We
computed PCS-SCZ and PCS-ASD within the UKB cohort®’. The relationship
between PCS and cognitive measures, mental health factors, psychosocial
questionnaires, and body measurements was analyzed. Pearson's correlation
coefficient was estimated for scaled variables, and Cohen's d for categorical
variables with p-values derived from Student's t-test statistic (FDR-corrected). We
replicated the analysis focusing on a subclinical population of subjects without
clinical records of neuropsychiatric disorders or self-reported diagnoses

(Supplemental Results).

Results

Evaluating PCS performance through simulation studies

In each iteration, we simulated two studies (Methods). The connectome summary
statistics (CSS) from the first simulated study were extracted to compute
polyconnectomic score (PCS) in the second study (PCS framework is illustrated in
Figure 1). Simulations showed that when two studies presented different sets of
altered connections, PCS revealed no significant differences between cases and
controls (Figure S1). On the other hand, when identical connections were
manipulated in cases from both studies, and the sample size was 100 individuals or
more, PCS was higher in cases compared to controls (p < 0.05; Figure S1). In
simulations with 100 individuals, group differences in PCS decreased when
increasing the p-value thresholds for the inclusion of connections from the CSS, with
Cohen's d ranging from 0.52 (no p-value threshold) to 0.22 (p-value threshold < 5 x
10#). For larger sample sizes, the predictive power of PCS declined when reaching

Bonferroni correction. In simulations with 400 individuals, Cohen's d for group
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differences in PCS started at 0.97 (no p-value threshold), peaked at 1.18 (p-value
threshold < 0.01), and then declined, reaching 0.61 at Bonferroni correction (p-value
threshold < 1 x 10®°). Only in simulations with 1,600 individuals, we found
comparable group differences in PCS, regardless of whether all connections were

included (d = 1.56) or Bonferroni correction was applied (d = 1.63).

PCS capture brain patterns related to neuropsychiatric disorders
We evaluated the ability of PCS to identify ASD-associated brain connectivity
patterns and differentiate patients from controls (Methods; Figure 1). ASD patients
exhibited significantly higher PCS-ASD levels compared to controls (d = 0.45, p = 3 x
10", FDR-corrected), and using PCS-ASD led to a classification of individuals'
disease status more accurate than would expected by random chance (AUC = 0.63).
We further evaluated the reliability of PCS in detecting ASD-related brain signatures
by incorporating two additional independent studies. Consistent with our initial
findings, ASD patients in both studies displayed higher PCS-ASD compared to
controls (d =0.30 and 0.43, p =2 x 10 and 1.2 x 103, FDR-corrected; AUC = 0.58
and 0.61, respectively; Figure 2A; Table S2).

We expanded our analyses to compute PCS for SCZ, ADHD, and AD (Table
S2). In three studies, individuals diagnosed with SCZ displayed elevated PCS-SCZ
relative to controls ([min, max]: d = [0.54, 0.87], p < 0.05, FDR-corrected; AUC =
[0.65, 0.73]; Figure 2B). Individuals with ADHD showed no differences in PCS-ADHD
compared to controls (p > 0.05, FDR-corrected; Figure 2C). In one study, AD
patients presented elevated PCS-AD compared to controls (d = 0.48, p = 0.034,
FDR-corrected; AUC = 0.63), while no such difference was found in the other study

(p > 0.05, FDR-corrected; Figure 2D). Differences in PCS between groups remained
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consistent under various conditions, including evaluations against a null model that
permuted the effect sizes from the CSS (Table S2), computations of PCS using a
meta-analytical CSS (Figure 3 and Table S3), utilizing higher-resolution atlases or

without applying global mean correction (Supplemental Results).

PCS stratifies individuals across the psychosis continuum

We investigated the ability of PCS to differentiate individuals based on their
predisposition to psychosis by computing PCS-SCZ for patients with SCZ, first-
degree relatives of SCZ patients, and healthy controls (Methods). Analysis revealed
that SCZ patients exhibited higher PCS-SCZ compared to both their first-degree
relatives (d = 0.42, p = 4 x 103, FDR-corrected; Figure S7) and healthy controls (d =
0.77, p = 1 x 10, FDR-corrected). First-degree relatives of SCZ patients also
presented significantly elevated PCS-SCZ compared to healthy controls (d = 0.34, p
= 0.034, FDR-corrected).

We expanded our analysis to the complete psychosis continuum, including
patients with schizoaffective disorder (SCA) and bipolar disorder (BD), as well as
their first-degree relatives (Figure 4). SCZ patients showed the largest difference in
PCS-SCZ compared to healthy controls (d = 0.77), followed by patients with SCA (d
= 0.66, p = 7.4 x 10, FDR-corrected) and BD (d = 0.57, p = 1.6 x 103, FDR-
corrected). No statistical differences were observed in PCS-SCZ among SCZ, SCA,
and BD patients (p > 0.05, FDR-corrected). Within individual disorders, patients with
SCA exhibited PCS-SCZ levels that were nominally higher than those of their first-
degree relatives (d = 0.31, p = 0.12, FDR-corrected), and first-degree relatives also
showed a slight increase in PCS-SCZ compared to healthy controls (d = 0.35, p =

0.11, FDR-corrected), although these effects did not reach significance after
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correction for multiple comparisons. BD patients presented a significant increase in
PCS-SCZ compared to their first-degree relatives (d = 0.59, p = 1.6 x 103, FDR-
corrected), while first-degree relatives of BD patients showed no differences with

healthy controls (p > 0.05, FDR-corrected).

PCS detects brain-behavior associations

We further assessed the relationship between PCS and clinical as well as behavioral
measures in the UK Biobank (UKB; Methods). Individuals exhibiting higher PCS-SCZ
displayed lower fluid intelligence (r = -0.037, p = 1.1 x 10-°, FDR-corrected) and
slower reaction times (r = 0.033, p = 5.7 x 10°, FDR-corrected; Figure 5). No specific
effects on cognition were found for PCS-ASD (Figure S8). Regarding mental health
indicators, elevated PCS-SCZ was correlated with a higher likelihood of experiencing
nervous feelings (d = 0.12, p = 2.8 x 10, FDR-corrected), increased neuroticism
scores (r=0.031, p = 1.5 x 10-°, FDR-corrected), and decreased propensity for risk-
taking (d = -0.09, p = 1.8 x 10”7, FDR-corrected), among other aspects (complete
results in Table S4). Subjects with higher PCS-ASD were likely to have more
consultations with a psychiatrist for issues related to nerves, anxiety, tension, or
depression (d = 0.08, p = 4.7 x 10-3, FDR-corrected). Our analysis also uncovered
potential links between PCS and measures of well-being. We observed a negative
correlation between happiness and both PCS-SCZ (r = -0.023, p = 6.4 x 10, FDR-
corrected) and PCS-ASD (r=-0.026, p = 9.1 x 104, FDR-corrected). Individuals with
higher PCS-SCZ reported lower levels of job satisfaction (r=-0.047, p = 1.6 x 1012,
FDR-corrected) and health satisfaction (r = -0.032, p = 1.1 x 10, FDR-corrected),
whereas individuals with elevated PCS-ASD reported reduced levels of friendship

satisfaction (r=-0.017, p = 0.033, FDR-corrected) and family satisfaction (r = -0.021,
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p =7.1 x 103, FDR-corrected). These findings were consistent when focusing on

healthy subjects without any neuropsychiatric diagnosis (Table S5).

Discussion

We investigated the ability of PCS to capture and quantify disorder-related brain
signatures in individual connectomes. Our findings suggest that PCS has several
valuable applications, including distinguishing populations with neuropsychiatric
disorders, stratifying patients by disease risk, and uncovering links between brain

connectivity and behavior.

PCS associated with neuropsychiatric disorders were generally higher in patients
compared to controls. SCZ patients in particular showed elevated PCS-SCZ than
controls across three different datasets ([min, max]: d = [0.54, 0.87]; Figure 2B and
Table S2), supporting the hypothesis of dysconnectivity as a basis for the
neuropathology of SCZ*84°. The mean effect of PCS-SCZ across studies (d = 0.74)
exceeded the largest effect sizes of previously reported brain alterations in SCZ,
such as cortical thickness thinning (d = -0.54)%, reductions in total gray matter (d = -
0.58)%" and thalamus volume (d = -0.68)%", enlargement of the third ventricle (d =
0.60)%", and alteration in overall white matter microstructure (d = -0.42)%2. ASD
patients similarly showed higher PCS-ASD than controls in three studies (d = [0.30,
0.45]; Figure 2A and Table S2) with a mean effect size of 0.39, an effect comparable
to the largest effect sizes reported for whole brain thickness in ASD patients (d =
0.41)%. Furthermore, larger group differences in PCS were generally found as a
result of employing a meta-analytic CSS for the computation of PCS (Figure 3 and

Table S3). These results support the utility of PCS as a valuable brain metric for
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distinguishing patient groups with neuropsychiatric disorders from control

populations.

PCS differentiated patients from controls more robustly when all connections were
included in the analysis, compared to when only connections that remained
significant after Bonferroni correction were incorporated. Both our simulations
(Figure S1) and empirical analyses (Figure 3) showed that connections containing
relevant information about the phenotype under investigation often were discarded in
traditional neuroimaging studies after controlling for multiple comparisons. Such
findings are consistent with existing evidence suggesting that effects found in
spatially localized sets of connections may constitute only a small fraction of a
broader global brain involvement'-'6_1In line with this evidence, differences in PCS
between patients and controls exceeded those in global FC, potentially due to the
inclusion of the entire connectome combined with the disease-specific circuitry

information (Figure S4 and Figure S5).

A crucial question regarding PCS is whether this method captures connectivity
patterns specific to the disease of interest or whether it represents a general
alteration common across disorders. Our data indicate that PCS-ASD levels are
higher in ASD patients compared to controls, an effect generally not observed when
comparing PCS-ASD levels between individuals with other neuropsychiatric
disorders and controls (Figure S3). These observations suggest that PCS was able
to capture disease-specific brain predispositions, rather than a general cross-
disorder vulnerability'®-22, which is critical for developing connectomic markers with

potential clinical applications®. However, PCS was not always disease-specific.
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Patients with BD, ASD, and major depressive disorder also exhibited elevated PCS-
SCZ compared to controls (Figure S3). Additional analyses indicated that PCS-SCZ
appears to identify brain signatures related to psychosis liability, not exclusively
specific to SCZ. Across the psychosis continuum, SCZ patients presented the
highest PCS-SCZ levels, followed by SCA and BD patients, as well as their
respective first-degree relatives (Figure 4), suggesting an overlap in the functional

brain circuitry alterations across psychotic disorders??54.

PCS shows potential in uncovering associations between brain connectivity and
cognitive measures, mental health factors, psychosocial questionnaires, and body
measurements. Individuals with connectomes resembling those typically seen in
SCZ exhibited reduced cognitive performance, echoing the well-established
relationship between SCZ and intelligence (Figure 5)%5-%8. Additionally, we observed
significant correlations of PCS-SCZ and PCS-ASD with neuroticism. This
observation aligns with existing research identifying links between neuroticism and
both SCZ and ASD at the behavioral®®€? and genetic levels®'-3. Given that
neuroticism and intelligence are associated with a general factor of psychopathology
(p-factor)®4, it is plausible that PCS-SCZ could serve as a broader marker for
transdiagnostic psychopathology. In terms of physical measurements, elevated PCS-
ASD was associated with a lower body mass index (Figure S8). A negative
association between male children with ASD and body mass index has been
previously reported®®, although other studies report a positive association®¢”. These
findings demonstrate the utility of PCS for detecting links between brain connectivity
and behavior, contributing to a deeper understanding of the neural underpinnings of

clinical traits.
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PCS sets itself apart from existing methods such as examining graph metrics’,
network-based statistics®®, regional vulnerability index®%, and connectome-based
predictive modeling’®. One key strength of PCS is the inclusion of whole-brain
connectivity information to provide an interpretable metric that quantifies the
resemblance of a given connectome to the neural circuitry associated with a
phenotype. PCS is not constrained by the topological organization of brain circuits
related to a phenotype, offering a comprehensive and unbiased view on the
implicated brain connections. PCS is also designed to take into account both the
strength of individual connections and their similarity to the phenotype-associated
neural circuitry, maximizing the information utilized to detect relevant brain
signatures. Additionally, PCS is a computationally inexpensive method and does not
require data normalization across subjects, reducing the risk of data leakage
between patient and control groups. Previous studies have used frameworks similar
to PCS for analyzing brain functional activation’! and connectivity’?, providing
compelling evidence of the predictive power to detect individual differences in
cognitive performance. Building upon this work, our study replicates these findings in
the UKB (Figure S6), and further extends the application of PCS to both healthy and

diseased connectomes across multiple independent studies.

There are several limitations that should be noted. Similar to polygenic score??, PCS
serves as a relative measure and its interpretation becomes meaningful only within
the context of the same sample. The development of an absolute scale is crucial to
enhance its clinical utility. PCS do not consider potential interactions within the brain,

treating each connection independently. A model that accounts for the
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autocorrelated structure of the brain could improve the predictive power of
neuroimaging markers’"-7374 although this is not always the case’?. Previous studies
have highlighted the potential of connectivity markers in predicting the progression of
brain disorders’®76. While PCS distinguished groups of individuals based on
psychosis risk in cross-sectional analyses, the ability of PCS to predict disease onset
in longitudinal studies remains to be determined. Furthermore, PCS showed limited
effectiveness in distinguishing ADHD patients from controls. This result could be due
to a pronounced disease heterogeneity across ADHD studies (Figure S2), potentially
reducing the predictive power of PCS in identifying disorder-related brain patterns in

diverse patient groups.

PCS provides a way to address the challenges inherent in network neuroimaging
studies. Using PCS to integrate information from the entire brain into a single score
has the potential to create robust endophenotypes while boosting statistical power.
We show evidence that PCS can aid researchers to identify subjects with
neuropsychiatric disorders, stratify individuals based on disease risk, and uncover
brain-behavior associations. PCS stands as a promising tool for deepening our
understanding of both healthy and diseased brains, with a wide range of potential

applications in the field of neuroscience.
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Tables

Study Diagnosis Male/Female, n  x2, p-value Age, years (Mean + SD) t, p-value Head motion, FD (Mean + SD) t, p-value
ASD I Control, n=527 527/0 14.8 £ 9.0 0.14 £+ 0.16

Autism, n=437 368/69 87.27, <0.001 14.6 + 8.0 -0.52, 0.602 0.18 £+ 0.22 2.89, 0.004
ASD IT Control, n=691 400/291 314 +104 0.12 £ 0.07

Autism, n=125 109/16 37.52, <0.001 32.5 + 8.0 1.27, 0.206 0.15 £ 0.09 3.59, <0.001
ASD III Control, n=156 86/70 109 + 34 0.24 £0.3

Autism, n=109 91/18 22.00, <0.001 11.6 £ 3.7 1.70, 0.091 0.33 £ 0.43 2.00, 0.047
ASD IV Control, n=506 415/91 174+ 76 0.13 £ 0.08

Autism, n=446 397/49 8.70, 0.003 174 + 8.4 -0.03, 0.974 0.18 £ 0.19 5.15, <0.001
SCzZ1 Control, n=79 59/20 38.2 £ 11.8 0.25 + 0.14

Schizophrenia, n—=66 52/14 0.15, 0.701 37.8 £ 13.6 -0.16, 0.872 0.35 + 0.26 2.85, 0.005
SCZ 11 Control, n=509 175/334 36.9 + 13.1 0.19 + 0.11

Schizophrenia, n—=63 34/29 8.45, 0.004 38.8 +12.3 1.16, 0.248 0.29 £ 0.17 4.39, <0.001
SCZ IIT Control, n=95 50/45 321 £85 0.13 £ 0.09

Schizophrenia, n—29 21/8 2.79, 0.095 36.9 £ 9.2 2.52, 0.015 0.18 £ 0.09 2.60, 0.012
SCZ IV Control, n—=840 478/362 34.6 £ 13.7 0.12 £ 0.07

Schizophrenia, n=121  72/49 0.20, 0.658 37.1+104 2.32, 0.022 0.13 £ 0.07 1.36, 0.177
ADHD I Control, n=511 263,248 124+ 3.1 0.14 £ 0.14

ADHD, n=303 239/64 59.30, <0.001 11.8 £ 3.0 -2.49, 0.013 0.15 £ 0.11 1.12, 0.263
ADHD II  Control, n=>528 191/337 32.2 £ 18.2 0.26 + 0.22

ADHD, n=60 40,20 19.74, <0.001 18.3 + 14.1 -7.00, <0.001 0.24 £+ 0.11 -1.13, 0.259
ADHD I Control, n=102 52/50 31.3 £ 8.7 0.13 + 0.09

ADHD, n—35 18/17 0.00, 1.000 32.5 4+ 10.2 0.59, 0.556 0.12 & 0.06 -0.52, 0.603
ADHD IV Control, n=159 88/71 10.8 + 3.5 0.26 £ 0.35

ADHD, n—666 473/193 13.78, <0.001 10.5 + 3.0 -0.98, 0.330 0.37 £ 0.61 3.21, 0.001
ADI Control, n=23 10/13 744 +£6.0 0.52 + 0.32

Alzheimer, n=29 14/15 0.00, 0.948 73.1+£7.0 -0.72, 0.473 0.67 £ 1.3 0.60, 0.554
ADII Control, n=160 78/82 77273 0.75 £ 0.5

Alzheimer, n=29 18/11 1.25, 0.263 762 £ 74 -0.69, 0.497 0.92 £ 0.81 1.08, 0.287
AD III Control, n=665 278/387 69.9 + 8.4 0.27 £ 0.14

Alzheimer, n=165 94/71 11.69, <0.001 748 £ 7.6 7.31, <0.001  0.27 + 0.12 -0.03, 0.979

Table 1. Demographic overview of included studies.

A demographic overview of the studies included in the main analysis is presented.
For each study (first column), the table provides the number of patients and controls
(second column), the number of males and females (third column), the mean and
standard deviation for age (fifth column) and head motion (seventh column).
Statistics used to evaluate differences in these measurements between patients and
controls are also given (fourth, sixth, and eighth columns). A positive t-value
indicates higher values in patients compared to controls. Bolded values denote
statistically significant group differences. ASD, autism spectrum disorder; SCZ,
schizophrenia; ADHD, attention deficit hyperactivity disorder; AD, Alzheimer's

disease; FD, framewise displacement; SD, standard deviation.
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Fig 1. Computation of polyconnectomic score.

The computation of the polyconnectomic score (PCS) relies on connectome
summary statistics (CSS). These statistics represent the strength and direction of the
association between brain connections and the phenotype of interest (POI),
measured using regression coefficients for scaled variables or Cohen's d for binary
variables. CSS can be based on either a discovery dataset or a previously
conducted independent study. The PCS for an out-of-sample individual can then be
computed as the weighted average of the CSS and the individual's brain connectivity
map, capturing how closely a subject's connectome resembles the brain signature
associated with the POI. The efficacy of PCS is evaluated by comparing scores
between cases and controls. PCS, polyconnectomic score; POI, phenotype of

interest; d, Cohen's d.
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Figure 2. Polyconnectomic score for autism spectrum disorder, schizophrenia,
attention deficit hyperactivity disorder, and Alzheimer's disease.

Connectome summary statistics (CSS) are estimated from a previously conducted
study (left column). These statistics quantify the strength of the association (x-axis)
and the level of significance (y-axis) for each brain connection in relation to (A)
autism spectrum disorder, (B) schizophrenia, (C) attention deficit hyperactivity
disorder, and (D) Alzheimer's disease. Blue and red dots represent connections with
decreased and increased functional connectivity in patients compared to controls,

respectively. These CSS are used to calculate the polyconnectomic score (PCS) in
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an independent study (middle column). In each study, we statistically compare PCS
levels between patients and controls (y-axis; white dots indicate group means) to
assess the method's efficacy in capturing brain connectivity signatures linked to
neuropsychiatric disorders. Asterisks denote studies where significant differences in
PCS between groups were observed, as estimated by f-test statistics (FDR-
corrected). Logistic regression analysis (right column) is used to evaluate the
predictive power of PCS in classifying individual diagnoses by estimating the area
under the receiver operating characteristic curve (AUC; x-axis for false positive rate,
y-axis for true positive rate). A dotted line at an AUC of 0.5 corresponds to random
guessing. CSS, connectome summary statistics; PCS, polyconnectomic score; ASD,
autism spectrum disorder; SCZ, schizophrenia; ADHD, attention deficit hyperactivity
disorder; AD, Alzheimer's disease; AUC, area under the curve of the receiver

operating characteristic curve.
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Figure 3. Computation of polyconnectomic score using meta-analytic summary
statistics.

A leave-one-out meta-analysis is conducted to derive robust connectome summary
statistics (CSS) for calculating the polyconnectomic score (PCS) in independent
studies. Within each study (x-axis), differences in PCS levels between patients and
controls are estimated using Cohen's d (y-axis). Connections from the CSS are
thresholded based on p-value significance levels, ranging from no threshold to
approximately Bonferroni correction (p-value threshold < 1 x 10°). Asterisks indicate
studies where significant differences in PCS between patients and controls are
observed, as estimated by t-test statistics (FDR-corrected). PCS, polyconnectomic
score; ASD, autism spectrum disorder; SCZ, schizophrenia; ADHD, attention deficit

hyperactivity disorder; AD, Alzheimer's disease.
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Figure 4. Using polyconnectomic score for schizophrenia to stratify individuals
across the psychosis continuum

The polyconnectomic score (PCS) for schizophrenia (SCZ) is computed across the
psychosis continuum, including patients with SCZ, schizoaffective disorder (SCA),
and psychotic bipolar disorder (BD), as well as first-degree relatives from each
group, and healthy controls. (A) Violin plots display the distribution of PCS-SCZ (y-
axis) for each group (x-axis; white dot denotes the mean). (B) A histogram shows the
frequency count (y-axis) of PCS-SCZ values (x-axis) among individuals in each
group. Patients with SCZ present the largest differences in PCS-SCZ compared to
healthy controls (d = 0.77), followed by SCA (d = 0.66) and BD (d = 0.57). SCZ,
schizophrenia; SCA, schizoaffective disorder; BD, bipolar disorder; SCZ-rel, first-
degree relatives of schizophrenia patients; SCA-rel, first-degree relatives of
schizoaffective disorder patients; BD-rel, first-degree relatives of bipolar disorder

patients; PCS-SCZ, polyconnectomic score for schizophrenia.
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Figure 5. Brain-behavior correlations using polyconnectomic score for

schizophrenia.

A circle plot illustrates the association between the polyconnectomic score for

schizophrenia (PCS-SCZ) and measures of cognition (dark blue), mental health (light

blue), and self-reported medical conditions (pink), based on data from the UK

Biobank. Pearson's correlation coefficients are displayed only for associations that

remain significant after FDR correction (gray indicates non-significant effects).

Dichotomous variables measured with Cohen's d are converted to Pearson's

correlation coefficient for visualization purposes. Elevated levels of PCS-SCZ are

associated with reduced cognitive performance, increased neuroticism, and a higher

incidence of mental health complaints. Similar associations are observed in

subclinical populations. PCS-SCZ, polyconnectomic score for schizophrenia.
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