

1 **Genomic evolution of SARS-CoV-2 variants of concern under *in vitro* neutralising selection
2 pressure following two doses of the Pfizer-BioNTech BNT162b2 COVID-19 vaccine**

3

4 Kerri Basile^{*1}, Jessica E. Agius², Winkie Fong², Kenneth McPhie^{1,3}, Michael Fennel¹ Danny Ko¹, Linda
5 Heuston^{1,4}, Connie Lam², Alicia Arnott¹, Sharon C-A Chen^{1,2,5}, Susan Maddocks¹, Matthew V. N.
6 O'Sullivan^{1,2,5}, Dominic E. Dwyer^{1,2,5}, Vitali Sintchenko^{1,2,5}, Jen Kok^{1,2} and Rebecca J. Rockett^{* 2,5} for the
7 **CIDMLS COVID-19 Study Group***

8

9 1. Centre for Infectious Diseases and Microbiology Laboratory Services, NSW Health Pathology - Institute of Clinical Pathology and
10 Medical Research, Westmead Hospital, Westmead, New South Wales, 2145, Australia

11 2. Centre for Infectious Diseases and Microbiology – Public Health, Westmead Hospital, Westmead, New South Wales, 2145, Australia.

12 3. The Westmead Institute for Medical Research, Westmead, New South Wales, 2145, Australia

13 4. Menzies Health Institute Queensland, Griffith University, Queensland, 4222, Australia

14 5. Sydney Institute for Infectious Diseases, Sydney Medical School, The University of Sydney, Westmead, New South Wales, 2145,
15 Australia

16

17

18 ***Corresponding authors**

19 **Dr Rebecca J. Rockett** rebecca.rockett@health.nsw.gov.au

20 **Dr Kerri Basile** kerri.basile@health.nsw.gov.au

21

22 **Key words:** Neutralising antibodies; SARS-CoV-2; VOC; B.1.167.2; B.1.351; COVID-19;

23

24 ***CIDMLS COVID-19 Study group**

25 Hossinur Rahman¹, Tyna Tran¹, Shani Kumar¹, Ian Carter¹, Tharshini Sivaruban¹, Linda Donovan¹, Susan Alderson¹, Mailie Gall¹, Jenny
26 Draper¹, Elena Martinez¹, Clement Lee¹, Christine Ngo¹, Jimmy Ng¹, Basel Suliman¹, Rita Baini¹, Neisha Jeoffreys¹, Neela Joshi Rai¹
27 and Janette Taylor¹

28 **Abstract:**

29 **Aims:**

30 To explore viral evolution during *in vitro* neutralisation using next generation sequencing, and to determine
31 whether sera from individuals immunised with two doses of the Pfizer-BioNTech vaccine (BNT162b2) are as
32 effective at neutralising the SARS-CoV-2 variant of concern (VOC) Delta (B.1.617.2) compared to the earlier
33 lineages Beta (B.1.351) and wild-type (A.2.2) virus.

34 **Methods:**

35 Using a live-virus SARS-CoV-2 neutralisation assay in Vero E6 cells we determined neutralising antibody titres
36 (nAbT) in 14 participants (vaccine-naïve (n=2) and post-second dose of BNT162b2 vaccination (n=12), median
37 age 45 years [IQR 29–65], median time after second dose = 21 days [IQR 19–28] against three SARS-CoV-2
38 strains: wild-type, Beta and Delta. The determination of nAbT was performed by visual inspection of cytopathic
39 effect (CPE) and in-house quantitative reverse transcriptase real time quantitative polymerase chain reaction
40 (RT-qPCR) to confirm SARS-CoV-2 replication. A total of 110 representative samples including inoculum,
41 neutralisation breakpoints at 72 hrs, negative and positive controls underwent genome sequencing using the
42 Respiratory Viral Oligo Panel version 2 (RVOP) (Illumina Inc. (San Diego, United States of America)) viral
43 enrichment and short read sequencing using (Illumina Inc. San Diego, United States of America)(Figure 1).

44 **Results:**

45 There was a significant reduction in nAbT observed against the Delta and Beta VOC compared with wild-type,
46 4.4-fold ($p = >0.0006$) and 2.3-fold ($p = 0.0140$), respectively (Figure 2). Neutralizing antibodies were not
47 detected in one vaccinated immunosuppressed participant nor the vaccine-naïve participants (n=2). The
48 highest nAbT against the SARS-CoV-2 variants investigated was obtained from a participant who was
49 vaccinated following SARS-CoV-2 infection 12 months prior (Table S1). Limited consensus level mutations
50 occurred in the SARS-CoV-2 genome of any lineage during *in vitro* neutralisation, however, consistent minority
51 allele frequency variants (MFV) were detected in the SARS-CoV-2 polypeptide, spike (S) and membrane
52 protein.

53 **Discussion:**

54 Significant reductions in nAbT post-vaccination were identified, with Delta demonstrating a 4.4-fold reduction.
55 The reduction in nAbT for the VOC Beta has been previously documented, however, limited data is available
56 on vaccine evasion for the Delta VOC, the predominant strain currently circulating worldwide at the time.
57 Studies in high incidence countries may not be applicable to low incidence settings such as Australia as nAbT
58 may be significantly higher in vaccine recipients previously infected with SARS-CoV-2, as seen in our cohort.
59 Monitoring viral evolution is critical to evaluate the impact of novel SARS-CoV-2 variants on vaccine
60 effectiveness as mutational profiles in the sub-consensus genome could indicate increases in transmissibility,
61 virulence or allow the development of antiviral resistance.

62 Introduction

63 There remains ongoing worldwide spread of SARS-CoV-2, with variants of concern (VOC) arising
64 independently in multiple locations worldwide. This, coupled with a notable increase in the substitution rate,
65 suggests that positive selection of advantageous mutations is occurring within the SARS-CoV-2 genome.
66 These mutations are particularly frequent in the spike (S) glycoprotein, the target for many vaccines and
67 therapeutic antibody interventions [1,2]. Given this rapid vaccine development with roll out commencing 12
68 months following the first reported cases of COVID-19 with the Pfizer-BioNTech vaccine (BNT162b2), a
69 nucleoside-modified RNA (mRNA) vaccine targeting the S protein in December 2020 [3,4]. This meant trials
70 were largely conducted prior to the widespread circulation of VOC resulting in limited vaccine efficacy data
71 against the VOC.

72 The constellation of mutations in the S glycoprotein of each VOC can reduce the effectiveness of natural and
73 vaccine-induced protection [4–9]. The Delta (B.1.617.2) VOC possesses 12 mutations, most notably non-
74 synonymous S mutations L452R, T478K, and P681R relative to the wildtype SARS-CoV-2, it lacks markers
75 of convergent evolution such as mutations in S at amino acid positions N501Y or E484K/Q in its angiotensin-
76 converting enzyme 2 (ACE2) receptor-binding domain [10]. The Delta VOC [11] does contain novel non-
77 synonymous mutations within the S, such as T478K which has been previously described to decrease
78 susceptibility to monoclonal antibody (mAb) treatment and acquired during persistent infection in an
79 immunocompromised host [12].

80 Concerningly, this increased substitution rate coinciding with subsequent waves of infections and the roll out
81 of COVID-19 vaccines globally, could be due to selective pressure from natural immunity, or have emerged
82 through infection in immunosuppressed hosts [12,13]. Whilst genomic surveillance of SARS-CoV-2 can be
83 used to monitor for new mutations, to predict the impact of these mutations on the efficacy of natural and or
84 vaccine-derived immunity phenotypic assays are required.

85 Whilst live virus neutralisation remains the gold standard for determining antibody efficacy, [14] and
86 neutralising antibodies (nAb) elicited by vaccination are considered correlates of protection from SARS-CoV-
87 2 infection [15]. Reports of rapid evolution of SARS-CoV-2 during propagation in VeroE6 cells have emerged.

88 Including the generation of large genomic deletions removing the S1/S2 junction which encodes a putative
89 furin cleavage site [29] and minority allele frequency variants (MFV) [50]. This cleavage site primes S for cell
90 entry by exposing the S2 fusion peptide to enable virion fusion with the host cell membrane. Transmission of
91 the virus with the deletion is attenuated in hamsters and ferrets but outgrows wild-type virus in VeroE6 cells
92 [37,51]. This is of particular concern as VeroE6 cells are the predominate cell line used in studies reporting
93 decreases in neutralising antibody titres (nAbT) of SARS-CoV-2 variants to sera from individuals post COVID-
94 19 vaccination. Fold reductions in neutralisation reported from live virus micro-neutralisation assays performed
95 in VeroE6 cells could therefore be overestimated by these common mutations occurring due to culture
96 adaptation.

97 In this study we used sera collected from Australian health care workers after two doses of BNT162b2 to
98 assess vaccine effectiveness when challenged during live virus infections with the Delta and Beta VOC
99 compared with the wild-type strain. We sequenced the viral outgrowth to monitor the consensus and sub-

100 consensus viral evolution *in vitro* to gain a greater understanding of genomic sites under evolutionary pressure
101 or culture adaptation to potentially inform effective public health measures to limit the transmission of VOC.

102

103 **Methods:**

104 **SARS-CoV-2 culture**

105 Upper respiratory tract specimens collected in universal transport media (UTM) where SARS-CoV-2 RNA was
106 detected by real time reverse transcriptase real time polymerase chain reaction (RT-PCR) one either a Cobas®
107 6800 (Roche Diagnostics GmbH (Mannheim, Germany)), a BD MAX™ (Becton Dickinson (Franklin Lakes,
108 United States of America)), or an in-house assay [16] were used to inoculate Vero C1008 (Vero 76, clone E6,
109 Vero E6 (ECACC 85020206), or Vero E6 expressing transmembrane serine protease 2 (TMPRSS2) cells
110 [JCRB1819] cells as previously outlined [17].

111 In brief, cells were seeded at $1-3 \times 10^4$ cells/cm² whilst in the log phase of replication with Dulbecco's minimal
112 essential medium (DMEM) (BE12-604F, Lonza Group AG (Basel, Switzerland)) supplemented with 9% foetal
113 bovine serum (FBS) (10099, Gibco™, Thermo Fisher Scientific Inc. (Waltham, United States of America)) in
114 Costar® 25 cm² cell culture flasks (430639, Corning Inc. (Corning, United States of America)). The media was
115 changed within 12 hrs for inoculation media containing 1% FBS and 1% antimicrobials (including amphotericin
116 B deoxycholate (25 µg/mL), penicillin (10,000 U/mL), and streptomycin (10,000 µg/mL)) (17-745E, Lonza
117 Group AG (Basel, Switzerland)) to prevent microbial overgrowth and then inoculated with 500 µL of clinical
118 specimen into Costar® 25cm² cell culture flasks. Following inoculation of the clinical sample, all manipulation
119 of SARS-CoV-2 cultures was performed under biosafety level 3 (BSL3) conditions [18].

120 Cultures were inspected daily for cytopathic effect (CPE); the inoculum and supernatant were sampled at 96
121 hrs for SARS-CoV-2 in-house quantitative reverse transcriptase real time polymerase chain reaction (RT-
122 qPCR) targeting the *N*-gene as previously described [19]. A ≥ 3 cycle decrease in the cycle threshold (Ct) from
123 the inoculum RT-qPCR result (equivalent to a one log increase in viral load - data not shown) as well as the
124 presence of CPE was used to determine the propagation of SARS-CoV-2. Viral culture supernatant was
125 harvested 96 hrs post-infection and a 500 µL aliquot was used to make a SARS-CoV-2 culture bank, where a
126 large volume of passage one stock was made and stored at -80°C in 500 µL aliquots in 2 ml cryovials
127 (72.694.406, Sarstedt Inc. (Nümbrecht, Germany)) until required, detailed in (Table 2). SARS-CoV-2 complete
128 genomes were sequenced from the initial clinical specimen, positive culture supernatant, and passage one
129 virus stock to quantify genomic variations that may have developed during propagation (Table S2).

130 **Human sera bank**

131 Human sera was sourced from Australian healthcare workers caring for, or handling specimens from,
132 individuals exposed to, or diagnosed with, SARS-CoV-2 infection enrolled in the COVID Heroes Serosurvey
133 (<http://www.covidheroes.org.au>). Sera were tested upon receipt with an in-house immunofluorescence assay
134 (IFA) against SARS-CoV-2 specific IgA, IgM and IgG [20] and then stored at -80°C. Fourteen sera samples
135 were included from an age and sex matched cohort of 12 participants (Table S1). This included two vaccine-

136 naïve individuals and 12 individuals who received two doses of BNT162b2 according to the schedule. Median
137 age was 46 years [IQR 29–65] and median time after second dose of vaccine was 21 days [IQR 19–28]. Eleven
138 of the 12 vaccine recipients had no documented history of prior SARS-CoV-2 infection, as confirmed by
139 absence of SARS-CoV-2-specific antibodies on serial sampling since study enrolment. The remaining vaccine
140 participant had laboratory confirmed SARS-CoV-2 infection one year prior to vaccination. Sera was heat-
141 inactivated at 56 °C for 30 min to inactivate complement prior to microneutralisation.

142 ***Determination of 50% tissue culture infective dose (TCID₅₀)***

143 The viral 50% tissue culture infective dose (TCID₅₀) was determined for each variant virus. Briefly, a passage
144 one aliquot of virus stock was serially diluted ($1 \times 10^{-2} - 1 \times 10^{-7}$) in virus inoculation media. Virus dilutions
145 were used to inoculate Vero C1008 (Vero 76, clone E6, Vero E6 [ECACC 85020206]) cells at 80% confluence
146 in Costar® 24-well clear tissue culture-treated multiple well plates (Corning Inc. (Corning, United States of
147 America)). Dilutions were seeded in duplicate with two negative (no virus) controls per plate. Plates were
148 sealed with AeraSeal® Film (BS-25, Excel Scientific Inc. (Victorville, United States of America)) to minimise
149 evaporation, spillage, and well-to-well cross-contamination. Plates were inspected daily for CPE and 100 µL
150 sampled from each duplicate after inoculation and at 72 hrs. Infections were terminated at 72 hrs based on
151 visual inspection for CPE and used in conjunction with RT-qPCR results to determine the TCID₅₀ of each
152 isolate.

153 ***Micro-neutralisation assay***

154 Vero C1008 (Vero 76, clone E6, Vero E6 [ECACC 85020206]) cells were seeded with DMEM (BE12-604F,
155 Lonza Group AG (Basel, Switzerland)) from stocks in Costar® 96-well clear tissue culture-treated flat bottom
156 plates (353072) (Corning Inc. (Corning, United States of America)) at 40% confluence. Cells were incubated
157 at 37 °C with 5% CO₂ for 12 hrs or until they reached 80% confluence. Virus stocks were diluted to 200 TCID₅₀
158 in inoculation media. Doubling dilutions from 1:10 to 1:320 of vaccine-naïve and post BNT162b2 vaccination
159 sera were added in equal proportions with virus in a 96 well plate and incubated for 60 min at 37°C 5% CO₂ to
160 enable virus neutralisation. After this incubation the media was removed from the cell monolayer and 100 µL
161 of fresh media was added. Each dilution of sera was performed in duplicate per virus variant, 12 wells of
162 uninfected cells were used on each plate as a negative control. Plates were sealed with AeraSeal® Film to
163 minimise evaporation, spillage, and well-to-well cross-contamination. After 60 mins of viral neutralisation a
164 residual 110 µL was sampled from the 12 naïve patient wells per virus for extraction and RT-qPCR. The plates
165 were inspected daily for CPE with a final read recorded at 72 hrs independently by two scientists. SARS-CoV-
166 2 in-house RT-qPCR was used to quantify the viral load post-neutralisation, with 110 µL of each dilution
167 removed at 72 hrs to determine viral load. The 110 µL of each dilution was added to 110 µL of External Lysis
168 buffer (06374913001, Roche Diagnostics GmbH, (Mannheim, Germany)) at a 1:1 ratio in a 96-well deep-
169 well extraction plate (Roche Diagnostics GmbH), covered with a MagNA Pure Sealing Foil (06241603001,
170 Roche Diagnostics GmbH (Mannheim, Germany)), and left to rest in the biosafety class two cabinet for 10
171 mins, a time-period shown to inactivate SARS-CoV-2 by in-house verification of a published protocol [21]. The
172 RNA was then extracted with the Viral NA Small volume kit (06 543 588 001, Roche Diagnostics GmbH
173 (Mannheim, Germany)) on the MagNA Pure 96 system (Roche Diagnostics GmbH (Mannheim, Germany)).

174 **SARS-CoV-2 genome sequencing following Respiratory Viral Oligo Panel enrichment**

175 A total of 110 samples underwent SARS-CoV-2 whole genome sequencing. These included RNA extracts
176 collected 1 hr post neutralisation (replicates of naïve 1:10 sera neutralisation) representing the baseline viral
177 inoculum and neutralisation breakpoints as defined by CPE for each sera tested 72 hrs post neutralisation.
178 Both biological replicates of each breakpoint were included, as were replicates of the naïve neutralisation at
179 the highest sera dilution (1:10 and 1:20). Five specimens collected 72 hrs after neutralisation from uninfected
180 wells on each plate were used as negative controls. A synthetic RNA SARS-CoV-2 construct (TWIST
181 Biosciences) containing the reference SARS-CoV-2 sequence (National Center for Biotechnology Information
182 (NCBI) GenBank accession MN908947.3) was diluted in negative control RNA (1:10) and was included in
183 triplicate to control for library preparation and sequencing artefacts.

184

185 Viral enrichment was performed using the Illumina RNA Prep with the Respiratory Viral Oligo Panel version 2
186 (RVOP) (Illumina Inc. (San Diego, United States of America)) (Figure 1). RNA extracts from the
187 microneutralisation and TCID₅₀ experiments were used as input into the RNA Prep with Enrichment kit (Illumina
188 Inc. (San Diego, United States of America)). RNA denaturation, first and second strand cDNA synthesis, cDNA
189 fragmentation, library MFV construction, clean up and normalisation were performed according to
190 manufacturer's instructions. Individual libraries were then combined in 3-plex reactions for probe hybridisation.
191 The RVOP was used for probe hybridisation with the final hybridisation step held at 58°C overnight. Hybridised
192 probes were then captured and washed according to manufacturer's instructions and amplified as follows:
193 initial denaturation 98°C for 30 s, 14 cycles of: 98°C for 10 s, 60°C for 30 s, 72°C for 30 s, and a final 72°C for
194 5 mins. Library quantities and fragment size were determined using Qubit™ 1x dsDNA HS Assay (Invitrogen
195 – ThermoFisher Scientific Inc. (Waltham, United States of America)) and Agilent HS D1000 ScreenTapes
196 (Agilent Technologies Inc. (Santa Clara, United States of America)) Resulting libraries were pooled with the
197 aim of generating 1x10⁶ raw reads per specimen and sequenced producing paired 74 base pair reads on the
198 Illumina MiniSeq or iSeq instruments (Illumina Inc. (San Diego, United States of America)) (Figure 1).

199 **Bioinformatic analysis**

200 Raw sequence data were processed using an in-house quality control procedure prior to further analysis. De-
201 multiplexed reads were quality trimmed using Trimmomatic v0.36 (sliding window of 4, minimum read quality
202 score of 20, leading/trailing quality of 5 and minimum length of 36 after trimming) [22]. Briefly, reads were
203 mapped to the reference SARS-CoV-2 genome (NCBI GenBank accession MN908947.3) using Burrows-
204 Wheeler Aligner (BWA)-mem version 0.7.17 [23], with unmapped reads discarded. Average genome coverage
205 was estimated by determining the number of missing bases (N's) in each sequenced genome. Variants were
206 called using VarScan v 2.3.9 [24] (min. read depth >10x, quality >20, min. frequency threshold of 0.1). Single
207 nucleotide polymorphisms (SNP)s were defined based on an alternative frequency ≥ 0.75 whereas MFV were
208 defined by an alternative frequency between 0.1 and 0.75. Variants falling in the 5' and 3' UTR regions were
209 excluded due to poor sequencing quality of these regions. Polymorphic sites that have previously been
210 highlighted as problematic were monitored and annotated in the results [25]. To ensure the accuracy of variant
211 calls, only high-quality genomes with greater than 99% genome coverage and a median depth of 200x were
212 included. The MFV calls were excluded in the base pair either side of the 5' or 3'-end of indels due to miss-

213 mapping. SARS-CoV-2 lineages were inferred using Phylogenetic Assignment of Named Global Outbreak
214 LINEages v1.36.8 (PANGO).[26] Graphs were generated using RStudio (version 3.6.1).

215 **Statistical analysis**

216 Mean nAbT were evaluated and statistical significance assessed using the t test with a 2 tailed hypothesis.
217 Results were considered statistically significant at $p < 0.05$.

218 **Results**

219 **Levels of neutralising antibody against different SARS-CoV-2 lineages**

220 Genomic sequencing results indicated that the samples sequenced were wild-type strain (lineage A.2.2), Beta
221 (lineage B.1.351) or Delta (lineage B.1.617.2) VOC. Following-vaccination with two doses of BNT162b2, 11 of
222 12 recipients demonstrated a functional neutralisation response to wild-type virus (Table S1 and Figure 1).
223 The sera from an immunosuppressed participant that failed to mount a serological response to wild-type virus
224 post-vaccination was excluded from further analysis to calculate fold reductions in nAbT (Table S1). No
225 detectable antibodies or functional neutralisation responses were seen in sera collected prior to vaccination
226 ($n=2$) (Table S1).

227 The median nAbT in BNT162b2 vaccine recipients who responded ($n=11$) when challenged with wild-type
228 virus was 160 (range $<10 - 320$), compared to 80 (range $<10 - 320$) and 40 (range $<10 - 80$) for Beta and
229 Delta respectively (Figure 2). There was a significant fold reduction in nAbT observed between both the Delta
230 ($M = 4.4$, $SD = 2$), $t(11) = -4.9$, $p = 0.00059$, and Beta ($M=2.3$, $SD=2$) $t(11) = -3$ $p = 0.01397$ compared with
231 wild-type (Figure 2). There was also a significant fold reduction in nAbT between Beta ($M = 2.6$, $SD = 1.4$), t
232 ($11) = -2.5$, $p = 0.02897$ and Delta (Figure 2).

233 Participants aged ≤ 45 years had a significantly higher fold reductions in nAbT for ($M = 5.6$, $SD = 2.2$) compared
234 with those aged > 46 ($M=3.3$, $SD=1$) between the wild-type and Delta strains $t(5) = 4.9$ $p = 0.00788$. The ≤ 45
235 years cohort also had significantly higher fold reductions in nAbT $M = 4$, $SD = 0$ compared with >46 yrs ($M=1.4$,
236 $SD=0.7$) between Beta and Delta $t(5) = -3.2$, $p = 0.03397$. No significant gender specific effects were identified.
237 The highest nAbT for all SARS-CoV-2 variants investigated was obtained from a participant who was infected
238 with SARS-CoV-2 one year prior to vaccination (Table S1).

239 **Quantification of inoculation dose for different lineages of SARS-CoV-2**

240 The mutational profile of the inoculum (Table S2 and S3) for each lineage was consistent with the mutational
241 profile defining the PANGO lineages assigned to the original clinical specimen (Figure 3). The SARS-CoV-2
242 genomes of the inoculated viruses, the original clinical specimens and viruses isolated in cell culture were
243 compiled with representation of the global SARS-CoV-2 diversity ($n=1000$) curated by Nextstrain
244 (Nextstrain.org) (Figure 3). The viral stock used had an infecting dose of 200 TCID₅₀. The Ct value of the
245 inoculum of the wildtype and Beta VOC was 28, whereas the Ct of the Delta was 24. This difference in Ct
246 values could be explained by the increased sensitivity of PCR assays, however PCR is unable to differentiate
247 between infectious SARS-CoV-2 virions and non-viable virus.

249 **SARS-CoV-2 polymorphism in culture**

250 A total of 110 samples underwent SARS-CoV-2 sequencing including 102 extracts from the microneutralisation
251 experiment, five negative controls, and the three SARS-CoV-2 synthetic constructs as positive controls (TWIST
252 Biosciences, encoding NCBI GenBank accession MN908947.3). All but one genome was recovered with high
253 read depth (average depth 3300.5x (range 174 - 11844) and the average genome coverage was 99.97%
254 (range 99.73 - 100%). The five negative control samples contained <10 SARS-CoV-2 specific reads.

255 A total of 3039 polymorphisms were detected during neutralisation (majority allele variants =2715 and MFV =
256 324), and the highest frequency base change was C>U (Figure S2). We focused our investigation on genomic
257 variants that were not in the viral inoculum and developed 72 hrs post-neutralisation (majority allele variants =
258 21 and MFV = 176). Base change dynamics were similar between majority variant polymorphisms, *de novo*
259 consensus level changes and *de novo* MFV, apart from G>C changes noted at high frequency in the *de novo*
260 MFV (Figure S2). Non-synonymous mutations were detected at greater frequency than synonymous, indels
261 and nonsense mutations. A higher ratio of non-synonymous to synonymous (Ka/Ks) mutations was detected
262 when comparing *de novo* MFV (Ka/Ks 3.35) to majority frequency variants (Ka/Ks 1.38) (Figure S2).

263 Aliquots of the viral-sera inoculum were collected 1-hour post-neutralisation in biological replicates for each
264 SARS-CoV-2 variant investigated. The consensus and MFV mutations were tabulated and used as a baseline
265 for our analysis (Table S3).

266 No additional mutations or MFV were noted in the viral inoculum within the furin cleavage site, previously
267 reported after long term passage in VeroE6 cells (Table S3)[27–33].

268 **Persistence and conversion of minority frequency allele variants 72hours post-
269 neutralisation**

270 Minimal consensus level mutations were noted 72 hrs post-neutralisation compared to the viral inoculum
271 (Figure 4 and Supplementary Figure 3); however, sub-consensus MFV persisted in Beta and Delta infections
272 (Supplementary Figure 3). Persistence of MFV at position C13667T (nsp12, orf1ab p.4468T>I) detected at a
273 read frequency of 0.06 - 0.22 was noted in 32/33 biological replicates, including the inoculating virus. A total
274 of six MFV were detected in the Beta inoculum, four of which persisted and generally increased in frequency
275 72 hrs post-neutralisation. The MFV at position C11249T (nps6, orf1ab p.3662R>C) was detected 1-hour post-
276 neutralisation at an average frequency of 0.53, the mutation persisted in 26/32 replicate infections at 72 hrs
277 and developed into a consensus base change in 13/26 replicates. The MFV at position C11750T (nsp6, orf1ab
278 p.3829L>F) was detected 1-hour post-neutralisation at a median frequency of 0.25 and persisted in 20/32
279 infections at 72 hrs, developing into consensus mutations in 6 infections. Synonymous mutations at C27911T
280 (orf8 p.6F) were detected at an average frequency of 0.065 1-hour post-neutralisation, and persisted in 9/32
281 infections, converting to a consensus mutation in a single infection. A second synonymous MFV at position
282 C29077T (N: p.268Y) was detected at a frequency of 0.66 1-hour post-neutralisation and was detected in
283 27/32 infections at 72 hrs converting to a SNP in 12/27 infections. However, the two MFV detected 1-hour
284 post-neutralisation for the wild-type variant (G18670T, nsp14, orf1ab p.6136D>Y, G22316A S: p.252G>S)
285 were detected at low read frequency (<0.01) and did not persist in any infections at 72-hrs.

286

287 ***De novo majority frequency variants***

288 *De novo* mutations that were not detected 1-hour post-neutralisation were also investigated (n=21, Figure 4,
289 Supplementary Figure 2). When wildtype virus (A.2.2) was neutralised, a maximum of three consensus level
290 mutations developed in any infection compared to the sequence of the inoculum (median 0, range 0 - 3) (Figure
291 3 and 4, Table S3). Of 11 consensus level mutations within the coding region, six were synonymous and five
292 were non-synonymous (Figure S2). Only eight *de novo* consensus level mutations were detected 72 hrs post-
293 neutralisation after inoculating with the Beta variant. A maximum of two consensus level mutations developed
294 in any infection compared to the inoculum sequence (median 0, range 0-1). None of the genomic positions
295 detected were replicated over the 32 infections. No consensus level mutations developed 72 hrs post infection
296 when Delta was neutralised in the 34 infections.

297 ***Development of de novo minority allele frequency variants***

298 MFV were generally homogeneously detected across the SARS-CoV-2 genome; however, a concentration of
299 MFV in the S protein was noted (Figure 4). Novel MFV (n=63) were detected at 32 unique genomic positions
300 72 hrs post-neutralisation of the wild-type virus (Figure 4). Three of these genomic locations (C2156T nsp2
301 orf1ab p.631L>F, G25337C S:p.1258D>H, C26895T M:p.125H>Y) were reproducibly detected in >5 infections
302 (Figure 5). The MFV converted to a consensus change at position C2156T in a single infection.

303 Novel MFV (n= 86) were detected in 50 unique position 72 hrs post-neutralisation of the Beta VOC. Three
304 genomic positions ((C541A nsp1 orf1ab p.92L), (T14249G nsp8, orf1ab p.4662L>W), (G25337C
305 S:p.1258D>H)) were reproducibly detected in >5 biological replicates. The MFV converted to a consensus
306 change at position T14249G in a single infection.

307 When the Delta VOC was sequenced 72 hrs post-neutralisation, novel MFVs (n= 48) were detected at 28
308 unique genomic positions. A single MFV at position G25337C was repeatedly detected in 18/32 infections.

309 A high frequency of MVF variants in the S protein coding region were detected during genome-wide analysis.
310 Of the 51 MVF variants detected in the S protein 72 hrs post-neutralisation with any SARS-CoV-2 virus, 41/51
311 were detected at position 25337 which encodes a non-synonymous mutation D1259H in the C-terminal domain
312 of the S protein. This mutation was not detected in the genomes generated one-hour post-neutralisation. Only
313 three MVF variants were detected within the S1/S2 cleavage site at nucleotide positions 23606 (S p.682R>W),
314 23616 (S p.691S>A), and 23633 (S p.697M>T) at read frequencies of 0.05, 0.09 and 0.08 respectively.

315 The only MFV that persisted across all lineages was at position G25337C. This variant was detected in 41/102
316 infections but was not detected in the three viral inocula. The MFV persisted at a low frequency (median 0.08
317 min 0.05 max 0.15)

318 Indels detected in the minority of reads were also uncovered in 9/102 infections, generating six deletions and
319 four insertions. A 10bp deletion was detected at nucleotide position 685 (AAAGTCATT685A, orf1ab p.141-
320 144KSFD>X) 72 hrs after the Beta VOC was neutralised in two infections at a read frequency of 0.06 and 0.17.
321 Two additional deletions were detected in nsp1 at positions 514 and 515 ((TGTTATG515T orf1ab p.84-
322 85VM>X) and (GTTA515G orf1ab p.84-85VM>-)). Single base insertions and deletions were identified in single

323 infections ((G1772GT orf1ab p.503V>F), (TG16911T orf1ab p.5550V>X), (T25878TC ORF3a p.162-163->X),
324 (GA27396G ORF7a p.2K>X) (G27906GT ORF8 p.5V>VX).

325 Discussion

326 The rapid and widespread global adoption of genomic sequencing combined with traditional epidemiology, to
327 address the COVID-19 pandemic has enabled real-time surveillance of SARS-CoV-2 evolution. The ability to
328 determine the frequency of cases with specific mutational profiles has provided strong indicators of SARS-
329 CoV-2 variants with selective advantage [34–36]. Supporting evidence from *in vitro* studies, and SARS-CoV-
330 2 coding positions demonstrating convergent evolution, has clearly highlighted mutations in the S protein that
331 have increased infectivity [33,37].

332 In this study we confirm a reduction in nAbT after BNT162b2 vaccination when challenged with the Beta VOC
333 [38–40], and demonstrated a significant 4.4-fold reduction in nAbT against the Delta VOC. Herein we highlight
334 the higher fold reduction in nAbT against the Delta compared to the Beta VOC. Concordant with other studies,
335 we demonstrate that sera from a vaccine recipient who was previously infected with SARS-CoV-2 mounted
336 the highest nAbT against all virus variants [41] and immunocompromised individuals may fail to mount
337 neutralising antibody responses after completing a two-dose BNT162b2 vaccination schedule [43].
338 Furthermore, assessments of vaccine effectiveness in populations with higher incidences of COVID-19 may
339 not apply to populations with lower rates of COVID-19, such as Australia [42].

340 To ensure the validity of our findings and to control for genomic adaptations in the furin cleavage site,
341 commonly reported when SARS-CoV-2 is cultured in VeroE6 cells, we undertook genomic analysis of the viral
342 inoculum and outgrowth compared with the original clinical isolate.

343 At 72 hrs post-neutralisation limited *de novo* consensus mutations were noted when compared to the infecting
344 VOC. However, several *de novo* MFV were detected in the inoculum and persisted in biological replicates post
345 neutralisation demonstrating the utility of deep sequencing and hybridisation probe capture [44] to accurately
346 monitor MFV. The higher resolution provided by sequencing enabled accurate monitoring of MFV but is
347 confounded by homoplasy in the SARS-CoV-2 genome, transmission bottlenecks and the transient nature of
348 many MFV during the course of infection [44–46].

349 With one exception these genomic locations were not conserved between infecting viral lineages, and the
350 genomic positions were not in identified homoplastic sites. One MFV in the C-terminal of S was detected in
351 41/96 infections 72 hrs post-neutralisation. This MFV results in a D1258H mutation, which has only been
352 reported in 50 SARS-CoV-2 consensus sequences available on the Global Initiative on Sharing All Influenza
353 Data (GISAID) EpiCoV database as of 12 November 2021[47]. Rocheleau *et al* reported the detection of this
354 MFV in both clinical and cultured SARS-CoV-2 genomes and provides evidence that missense mutations that
355 truncate the C-terminal domain of the S protein enable more efficient viral exocytosis by promoting direct cell-
356 cell fusion. [48] The reproducible detection of this MFV requires further investigation to determine if it provides
357 a selective advantage, or if this genomic site is homoplastic.

358 The importance of SARS-CoV-2 diversity driven by *de novo* mutations that occur within hosts is of great
359 importance, particularly as evidence of positive selection of mutations that can evade immunity and

360 therapeutics and have been demonstrated in immunocompromised patients and in *in vitro* systems
361 [13,44,49].

362 The use of *in vitro* systems is critical for understanding population dynamics of SARS-CoV-2 infections as
363 mutational profiles in the sub-consensus genome may potentially inform surveillance for variants that increase
364 transmissibility, virulence and/or antiviral and mAb resistance, with controls in place for mutations driven by
365 culture adaptation that may not correlate *in vivo*. Despite the relatively low number of participants studied
366 herein, the cohort included age and sex matched participants being immunised with BNT162b2 exactly three
367 weeks apart and a median date of sera collection post dose two of 21 (IQR21-29) to control for expected peak
368 immunity post vaccination. The lack of detectable antibodies reflects the relatively low incidence of COVID-19
369 infection and initial slow vaccine uptake in the Australian population [42].

370 Conclusion and future directions

371 More studies assessing convalescent samples and other markers of immunity to determine correlates and
372 duration of protection against emerging variants of interest and VOC, as well as assessing nAbT responses in
373 serially collected samples are required. Similar approaches could also be used for sera from individuals
374 receiving other mRNA, viral vector, protein or inactivated SARS-CoV-2 vaccines [52]. Comparisons between
375 primary and booster vaccinations should also be investigated to determine the optimal vaccination strategy at
376 an individual (including those that are immunocompromised) and population level. In conclusion there is a
377 significant reduction in nAb against the Delta compared to Beta and wild-type variants. Modelling has predicted
378 that a five-fold decrease in nAbT would likely reduce the effectiveness of current vaccines from 95% to 77%
379 for high efficacy vaccines and 70% to 32% for lower efficacy vaccines [53]. Deep sequencing and hybridisation
380 probe capture, an approach less hampered by amplification biases, enables high resolution monitoring of
381 SARS-CoV-2 evolution including mutational profiles in the sub-consensus genome. This is a critical factor in
382 evaluating vaccine effectiveness as population level vaccination is underway. to evaluate as mutational profiles
383 in the sub-consensus genome could indicate increases in transmissibility and or virulence.

384 **Acknowledgements:**

385 The authors would like to acknowledge the Sydney Informatics Hub, a Core Research Facility of the University
386 of Sydney, for the use of high-performance computing infrastructure. We would also like to acknowledge the
387 COVID Heroes (A serosurvey of healthcare workers caring for, or handling specimens from, individuals
388 exposed to, or diagnosed with, SARS-CoV-2 infection in Australia) study participants from donation of sera
389 samples. All laboratories who referred samples to the Centre for Infectious Diseases and Microbiology
390 Laboratory Services, NSW Health Pathology - Institute of Clinical Pathology and Medical Research, Westmead
391 Hospital, Westmead NSW 2145, Australia for testing that were included in this analysis.

392 **Ethics:**

393 Ethical and governance approval for the study was granted by the Western Sydney Local Health District
394 Human Research Ethics Committee (2020/ETH02426) and (2020/ETH00786)

395 **Financial support:**

396 This study was supported by Prevention Research Support Program and NSW Health COVID-19 priority
397 funding. Both grants are funded by the NSW Ministry of Health. Additional funding was provided by the National
398 Health and Medical Research Council, Australia APPRISE program (1116530). Kerri Basile is supported by a
399 Jerry Koutts PhD Scholarship, Institute of Clinical Pathology and Medical Research Trust Fund and Rebecca
400 Rockett is supported by a National Health and Medical Research Council Investigator grant (2018222).

401 **Author contributions:**

Designed experiments	KB, KM, DD, MO, VS, JK and RR
Performed experiments	KB, JA, WF, KM, LH, HR, MF, DK, TT, SK, IC, TS, LD, SA and RR
Data analysis and visualisation	KB, JA, WF, AA, KM CL, JD, MG, EM, SC, SM, DD, MO, VS, JK and RR
Performed bioinformatic analyses	KB, JA, WF, CL, JD, MG, EM and RR
Logistics and resources	KB, KM, LH, AA, HR, TT, LD, EM, CL, CN, JN, BS, RB, NJ, NR, JT, KK, HV, MO, VS, JK and RR
Drafting the initial manuscript	KB and RR
Critical manuscript revision and supervision of research	KB, SC, SM, DD, MO, VS, JK and RR

402

403 **References:**

404

405 1. Baden, L.R.; el Sahly, H.M.; Essink, B.; Kotloff, K.; Frey, S.; Novak, R.; Diemert, D.; Spector, S.A.;
406 Roush, N.; Creech, C.B.; et al. Efficacy and Safety of the mRNA-1273 SARS-CoV-2 Vaccine. *New
407 England Journal of Medicine* **2021**, *384*, 403–416, doi:10.1056/nejmoa2035389.

408 2. Polack, F.P.; Thomas, S.J.; Kitchin, N.; Absalon, J.; Gurtman, A.; Lockhart, S.; Perez, J.L.; Pérez
409 Marc, G.; Moreira, E.D.; Zerbini, C.; et al. Safety and Efficacy of the BNT162b2 mRNA Covid-19
410 Vaccine. *New England Journal of Medicine* **2020**, *383*, 2603–2615, doi:10.1056/nejmoa2034577.

411 3. COVID-19 Advice for the Public: Getting Vaccinated, The World Health Organization. Accessed on 12
412 September 2022. Available at: <https://www.who.int/emergencies/diseases/novel-coronavirus-2019/covid-19-vaccines/advice>.

413 4. Liu, Y.; Liu, J.; Xia, H.; Zhang, X.; Fontes-Garfias, C.R.; Swanson, K.A.; Cai, H.; Sarkar, R.; Chen, W.;
414 Cutler, M.; et al. Neutralizing Activity of BNT162b2-Elicited Serum. *New England Journal of Medicine*
415 **2021**, *384*, 1466–1468, doi:10.1056/nejmc2102017.

416 5. Lopez Bernal, J.; Andrews, N.; Gower, C.; Gallagher, E.; Simmons, R.; Thelwall, S.; Stowe, J.;
417 Tessier, E.; Groves, N.; Dabrer, G.; et al. Effectiveness of Covid-19 Vaccines against the B.1.617.2
418 (Delta) Variant. *New England Journal of Medicine* **2021**, *385*, 585–594, doi:10.1056/nejmoa2108891.

419 6. Chemaitelly, H.; Yassine, H.M.; Benslimane, F.M.; al Khatib, H.A.; Tang, P.; Hasan, M.R.; Malek, J.A.;
420 Coyle, P.; Ayoub, H.H.; al Kanaani, Z.; et al. mRNA-1273 COVID-19 Vaccine Effectiveness against the
421 B.1.1.7 and B.1.351 Variants and Severe COVID-19 Disease in Qatar. *Nat Med* **2021**, *27*, 1614–1621,
422 doi:10.1038/s41591-021-01446-y.

423 7. Graham, M.S.; Sudre, C.H.; May, A.; Antonelli, M.; Murray, B.; Varsavsky, T.; Kläser, K.; Canas, L.S.;
424 Molteni, E.; Modat, M.; et al. Changes in Symptomatology, Reinfection, and Transmissibility
425 Associated with the SARS-CoV-2 Variant B.1.1.7: An Ecological Study. *Lancet Public Health* **2021**, *6*,
426 e335–e345, doi:10.1016/S2468-2667(21)00055-4.

427 8. Jangra, S.; Ye, C.; Rathnasinghe, R.; Stadlbauer, D.; Alshammary, H.; Amoako, A.A.; Awawda, M.H.;
428 Beach, K.F.; Bermúdez-González, M.C.; Chernet, R.L.; et al. SARS-CoV-2 Spike E484K Mutation
429 Reduces Antibody Neutralisation. *Lancet Microbe* **2021**, *2*, e283–e284.

430 9. Xie, X.; Liu, Y.; Liu, J.; Zhang, X.; Zou, J.; Fontes-Garfias, C.R.; Xia, H.; Swanson, K.A.; Cutler, M.;
431 Cooper, D.; et al. Neutralization of SARS-CoV-2 Spike 69/70 Deletion, E484K and N501Y Variants by
432 BNT162b2 Vaccine-Elicited Sera. *Nat Med* **2021**, *27*, 620–621, doi:10.1038/s41591-021-01270-4.

433 10. Harvey, W.T.; Carabelli, A.M.; Jackson, B.; Gupta, R.K.; Thomson, E.C.; Harrison, E.M.; Ludden, C.;
434 Reeve, R.; Rambaut, A.; Peacock, S.J.; et al. SARS-CoV-2 Variants, Spike Mutations and Immune
435 Escape. *Nat Rev Microbiol* **2021**, *19*, 409–424.

437 11. Cherian, S.; Potdar, V.; Jadhav, S.; Yadav, P.; Gupta, N.; Das, M.; Rakshit, P.; Singh, S.; Abraham, P.; Panda, S. Sars-Cov-2 Spike Mutations, L452r, T478k, E484q and P681r, in the Second Wave of
438 Covid-19 in Maharashtra, India. *Microorganisms* **2021**, *9*, doi:10.3390/microorganisms9071542.

440 12. Planas, D.; Veyer, D.; Baidaliuk, A.; Staropoli, I.; Guivel-Benhassine, F.; Rajah, M.M.; Planchais, C.;
441 Porrot, F.; Robillard, N.; Puech, J.; et al. Reduced Sensitivity of SARS-CoV-2 Variant Delta to Antibody
442 Neutralization. *Nature* **2021**, *596*, 276–280, doi:10.1038/s41586-021-03777-9.

443 13. Kemp, S.A.; Collier, D.A.; Datir, R.P.; Ferreira, I.A.T.M.; Gayed, S.; Jahun, A.; Hosmillo, M.; Rees-
444 Spear, C.; Mlcochova, P.; Lumb, I.U.; et al. SARS-CoV-2 Evolution during Treatment of Chronic
445 Infection. *Nature* **2021**, *592*, 277–282, doi:10.1038/s41586-021-03291-y.

446 14. Muruato, A.E.; Fontes-Garfias, C.R.; Ren, P.; Garcia-Blanco, M.A.; Menachery, V.D.; Xie, X.; Shi, P.Y.
447 A High-Throughput Neutralizing Antibody Assay for COVID-19 Diagnosis and Vaccine Evaluation. *Nat
448 Commun* **2020**, *11*, doi:10.1038/s41467-020-17892-0.

449 15. Feng, S.; Phillips, D.J.; White, T.; Sayal, H.; Aley, P.K.; Bibi, S.; Dold, C.; Fuskova, M.; Gilbert, S.C.;
450 Hirsch, I.; et al. Correlates of Protection against Symptomatic and Asymptomatic SARS-CoV-2
451 Infection. *Nat Med* **2021**, doi:10.1038/s41591-021-01540-1.

452 16. Rahman, H.; Carter, I.; Basile, K.; Donovan, L.; Kumar, S.; Tran, T.; Ko, D.; Alderson, S.; Sivaruban,
453 T.; Eden, J.-S.; et al. Interpret with Caution: An Evaluation of the Commercial AusDiagnostics versus
454 in-House Developed Assays for the Detection of SARS-CoV-2 Virus. *Journal of Clinical Virology* **2020**,
455 127, doi:10.1016/j.jcv.2020.104374.

456 17. Basile, K.; McPhie, K.; Carter, I.; Alderson, S.; Rahman, H.; Donovan, L.; Kumar, S.; Tran, T.; Ko, D.;
457 Sivaruban, T.; et al. Cell-Based Culture Informs Infectivity and Safe De-Isolation Assessments in
458 Patients with Coronavirus Disease 2019. *Clinical Infectious Diseases* **2020**, doi:10.1093/cid/ciaa1579.

459 18. The World Health Organization: Laboratory Biosafety Guidance Related to Coronavirus Disease
460 (COVID-19): Interim Guidance, 28 January 2021, WHO Reference Number: WHO/WPE/GIH/2021.1.
461 Available at: <https://www.who.int/publications/item/WHO-WPE-GIH-2021.1>. Accessed 5 November
462 2021.

463 19. Lam, C.; Gray, K.; Gall, M.; Sadsad, R.; Arnott, A.; Johnson-Mackinnon, J.; Fong, W.; Basile, K.; Kok,
464 J.; Dwyer, D.E.; et al. *SARS-CoV-2 Genome Sequencing Methods Differ in Their Abilities To Detect
465 Variants from Low-Viral-Load Samples*; 2021;

466 20. Hueston, L.; Kok, J.; Guibone, A.; McDonald, D.; Hone, G.; Goodwin, J.; Carter, I.; Basile, K.;
467 Sandaradura, I.; Maddocks, S.; et al. The Antibody Response to SARS-CoV-2 Infection. *Open Forum
468 Infect Dis* **2020**, *7*, doi:10.1093/ofid/ofaa387.

469 21. *SARS-CoV-2 Inactivation Testing: Interim Report, 13 June 2020, High Containment Microbiology, NIS
470 Laboratories, National Infection, Public Health England. Available Online:
471 https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/898679/HCM-CoV2-023-V1_Triton_X-100_Serum.Pdf (Accessed on 1 August 2021);*

473 22. Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A Flexible Trimmer for Illumina Sequence Data.
474 *Bioinformatics* **2014**, *30*, 2114–2120, doi:10.1093/bioinformatics/btu170.

475 23. Li, H.; Durbin, R. Fast and Accurate Short Read Alignment with Burrows-Wheeler Transform.
476 *Bioinformatics* **2009**, *25*, 1754–1760, doi:10.1093/bioinformatics/btp324.

477 24. Koboldt, D.C.; Zhang, Q.; Larson, D.E.; Shen, D.; McLellan, M.D.; Lin, L.; Miller, C.A.; Mardis, E.R.;
478 Ding, L.; Wilson, R.K. VarScan 2: Somatic Mutation and Copy Number Alteration Discovery in Cancer
479 by Exome Sequencing. *Genome Res* **2012**, *22*, 568–576, doi:10.1101/gr.129684.111.

480 25. Turakhia, Y.; de Maio, N.; Thornlow, B.; Gozashti, L.; Lanfear, R.; Walker, C.R.; Hinrichs, A.S.;
481 Fernandes, J.D.; Borges, R.; Slodkowicz, G.; et al. Stability of SARS-CoV-2 Phylogenies. *PLoS Genet*
482 **2020**, *16*, doi:10.1371/journal.pgen.1009175.

483 26. GitHub - Cov-Lineages / Pangolin, Accessed 11 August 2021, Available at: [Https://Github.Com/Cov-Lineages/Pangolin](https://github.com/Cov-Lineages/Pangolin).

485 27. Ogando, N.S.; Dalebout, T.J.; Zevenhoven-Dobbe, J.C.; Limpens, R.W.A.L.; van der Meer, Y.; Caly,
486 L.; Druce, J.; de Vries, J.J.C.; Kikkert, M.; Barcena, M.; et al. SARS-CoV-2 Replication in Vero
487 E6 Cells: Replication Kinetics, Rapid Adaptation and Cytopathology. *Journal of General Virology* **2020**,
488 *101*, 925–940, doi:10.1099/jgv.0.001453.

489 28. Chun Wong, Y.; Ying Lau, S.; Kai Wang To, K.; Wing Yee Mok, B.; Li, X.; Wang, P.; Deng, S.; Fai
490 Woo, K.; Du, Z.; Li, C.; et al. *Natural Transmission of Bat-like SARS-CoV-2 DPRRA Variants in*
491 *COVID-19 Patients*;

492 29. Klimstra, W.B.; Tilston-Lunel, N.L.; Nambulli, S.; Boslett, J.; McMillen, C.M.; Gilliland, T.; Dunn, M.D.;
493 Sun, C.; Wheeler, S.E.; Wells, A.; et al. SARS-CoV-2 Growth, Furin-Cleavage-Site Adaptation and
494 Neutralization Using Serum from Acutely Infected Hospitalized COVID-19 Patients. *Journal of General*
495 *Virology* **2020**, *101*, 1156–1169, doi:10.1099/jgv.0.001481.

496 30. Davidson, A.D.; Williamson, M.K.; Lewis, S.; Shoemark, D.; Carroll, M.W.; Heesom, K.J.; Zambon, M.;
497 Ellis, J.; Lewis, P.A.; Hiscox, J.A.; et al. Characterisation of the Transcriptome and Proteome of SARS-
498 CoV-2 Reveals a Cell Passage Induced in-Frame Deletion of the Furin-like Cleavage Site from the
499 Spike Glycoprotein. *Genome Med* **2020**, *12*, doi:10.1186/s13073-020-00763-0.

500 31. Sasaki, M.; Uemura, K.; Sato, A.; Toba, S.; Sanaki, T.; Maenaka, K.; Hall, W.W.; Orba, Y.; Sawa, H.
501 SARS-CoV-2 Variants with Mutations at the S1/ S2 Cleavage Site Are Generated in Vitro during
502 Propagation in TMPRSS2-Deficient Cells. *PLoS Pathog* **2021**, *17*, doi:10.1371/journal.ppat.1009233.

503 32. Zhu, Y.; Feng, F.; Hu, G.; Wang, Y.; Yu, Y.; Zhu, Y.; Xu, W.; Cai, X.; Sun, Z.; Han, W.; et al. A
504 Genome-Wide CRISPR Screen Identifies Host Factors That Regulate SARS-CoV-2 Entry. *Nat*
505 *Commun* **2021**, *12*, doi:10.1038/s41467-021-21213-4.

506 33. Liu, Z.; Zheng, H.; Lin, H.; Li, M.; Yuan, R.; Peng, J.; Xiong, Q.; Sun, J.; Li, B.; Wu, J.; et al.
507 Identification of Common Deletions in the Spike Protein of Severe Acute Respiratory Syndrome
508 Coronavirus 2. *J Virol* **2020**, *94*, doi:10.1128/jvi.00790-20.

509 34. Leung, K.; Shum, M.H.H.; Leung, G.M.; Lam, T.T.Y.; Wu, J.T. Early Transmissibility Assessment of
510 the N501Y Mutant Strains of SARS-CoV-2 in the United Kingdom, October to November 2020.
511 *Eurosurveillance* **2020**, *26*, doi:10.2807/1560-7917.ES.2020.26.1.2002106.

512 35. Imai, M.; Halfmann, P.J.; Yamayoshi, S.; Iwatsuki-Horimoto, K.; Chiba, S.; Watanabe, T.; Nakajima,
513 N.; Ito, M.; Kuroda, M.; Kiso, M.; et al. Characterization of a New SARS-CoV-2 Variant That Emerged
514 in Brazil., doi:10.1073/pnas.2106535118/-/DCSupplemental.

515 36. Tegally, H.; Wilkinson, E.; Giovanetti, M.; Iranzadeh, A.; Fonseca, V.; Giandhari, J.; Doolabh, D.;
516 Pillay, S.; San, E.J.; Msomi, N.; et al. Detection of a SARS-CoV-2 Variant of Concern in South Africa.
517 *Nature* **2021**, *592*, 438–443, doi:10.1038/s41586-021-03402-9.

518 37. Peacock, T.P.; Goldhill, D.H.; Zhou, J.; Baillon, L.; Frise, R.; Swann, O.C.; Kugathasan, R.; Penn, R.;
519 Brown, J.C.; Sanchez-David, R.Y.; et al. The Furin Cleavage Site in the SARS-CoV-2 Spike Protein Is
520 Required for Transmission in Ferrets. *Nat Microbiol* **2021**, *6*, 899–909, doi:10.1038/s41564-021-
521 00908-w.

522 38. Madhi, S.A.; Baillie, V.; Cutland, C.L.; Voysey, M.; Koen, A.L.; Fairlie, L.; Padayachee, S.D.; Dheda,
523 K.; Barnabas, S.L.; Bhorat, Q.E.; et al. Efficacy of the ChAdOx1 NCoV-19 Covid-19 Vaccine against
524 the B.1.351 Variant. *New England Journal of Medicine* **2021**, *384*, 1885–1898,
525 doi:10.1056/nejmoa2102214.

526 39. Wu, K.; Werner, A.P.; Koch, M.; Choi, A.; Narayanan, E.; Stewart-Jones, G.B.E.; Colpitts, T.; Bennett,
527 H.; Boyoglu-Barnum, S.; Shi, W.; et al. Serum Neutralizing Activity Elicited by mRNA-1273 Vaccine.
528 *New England Journal of Medicine* **2021**, *384*, 1468–1470, doi:10.1056/nejmc2102179.

529 40. Chen, X.; Chen, Z.; Azman, A.S.; Sun, R.; Lu, W.; Zheng, N.; Zhou, J.; Wu, Q.; Deng, X.; Zhao, Z.; et
530 al. Neutralizing Antibodies Against Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2)
531 Variants Induced by Natural Infection or Vaccination: A Systematic Review and Pooled Analysis.
532 *Clinical Infectious Diseases* **2021**, doi:10.1093/cid/ciab646.

533 41. Pouwels, K.B.; Pritchard, E.; Matthews, P.C.; Stoesser, N.; Eyre, D.W.; Vihta, K.D.; House, T.; Hay, J.;
534 Bell, J.I.; Newton, J.N.; et al. Effect of Delta Variant on Viral Burden and Vaccine Effectiveness against
535 New SARS-CoV-2 Infections in the UK. *Nat Med* **2021**, doi:10.1038/s41591-021-01548-7.

536 42. The World Health Organization - WHO Coronavirus (COVID-19) Dashboard, Accessed: July 30 2021,
537 Available at: <https://Covid19.Who.Int/>, n.d.) .

538 43. Boyarsky, B.J.; Werbel, W.A.; Avery, R.K.; Tobian, A.A.R.; Massie, A.B.; Segev, D.L.; Garonzik-Wang,
539 J.M. Antibody Response to 2-Dose Sars-Cov-2 Mrna Vaccine Series in Solid Organ Transplant
540 Recipients. *JAMA - Journal of the American Medical Association* **2021**, *325*, 2204–2206.

541 44. Lythgoe, K.A.; Hall, M.; Ferretti, L.; de Cesare, M.; MacIntyre-Cockett, G.; Trebes, A.; Andersson, M.;
542 Otecko, N.; Wise, E.L.; Moore, N.; et al. SARS-CoV-2 within-Host Diversity and Transmission. *Science*
(1979) **2021**, *372*, doi:10.1126/SCIENCE.ABG0821.

544 45. Popa, A.; Genger, J.-W.; Nicholson, M.D.; Penz, T.; Schmid, D.; Aberle, S.W.; Agerer, B.; Lercher, A.;
545 Endler, L.; Colaço, H.; et al. Genomic Epidemiology of Superspreading Events in Austria Reveals
546 Mutational Dynamics and Transmission Properties of SARS-CoV-2. *Sci Transl Med* **2020**, *12*,
547 doi:10.1126/scitranslmed.abe2555.

548 46. Tonkin-Hill, G.; Martincorena, I.; Amato, R.; Lawson, A.R.J.; Gerstung, M.; Johnston, I.; Jackson, D.K.;
549 Park, N.R.; Lensing, S. v.; Quail, M.A.; et al. Patterns of Within-Host Genetic Diversity in SARS-CoV-2.
550 *Elife* **2020**, *10*, doi:10.1101/2020.12.23.424229.

551 47. CovSPECTRUM Available at: <Https://Cov-Spectrum.Ethz.Ch>, Accessed: 12 November 2021.

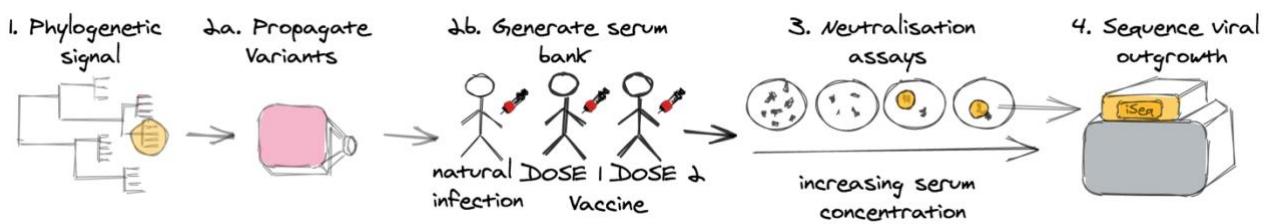
552 48. Rocheleau, L.; Laroche, G.; Fu, K.; Stewart, C.M.; Mohamud, A.O.; Côté, M.; Giguère, P.M.; Langlois,
553 M.A.; Pelchat, M. Identification of a High-Frequency Intrahost SARS-CoV-2 Spike Variant with
554 Enhanced Cytopathic and Fusogenic Effects. *mBio* **2021**, *12*, e0078821, doi:10.1128/mBio.00788-21.

555 49. Choi, B.; Choudhary, M.C.; Regan, J.; Sparks, J.A.; Padera, R.F.; Qiu, X.; Solomon, I.H.; Kuo, H.-H.;
556 Boucau, J.; Bowman, K.; et al. *Persistence and Evolution of SARS-CoV-2 in an Immunocompromised*
557 *Host*; 2020;

558 50. M. Zeeshan Chaudhry; Eschke, K.; Hoffmann, M.; Grashoff, M.; Abassi, L.; Kim, Y.; Brunotte, L.;
559 Ludwig, S.; Kröger, A.; Klawonn, F.; et al. Rapid SARS-CoV-2 Adaptation to Available Cellular
560 Proteases. *bioRxiv* **2020.08.10.241414**; doi: <https://doi.org/10.1101/2020.08.10.241414> 28,
561 doi:10.1101/2020.08.10.241414.

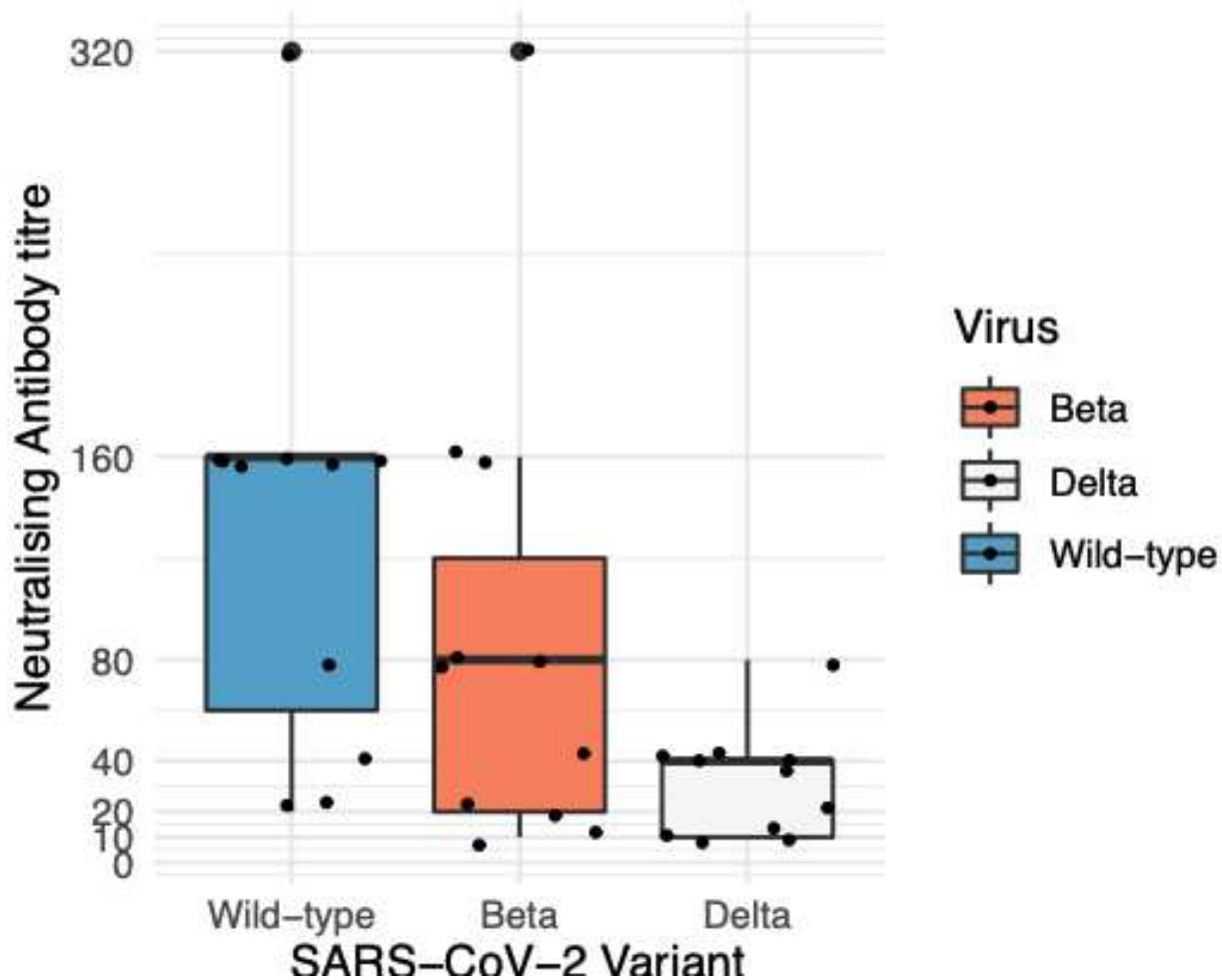
562 51. Johnson, B.A.; Xie, X.; Bailey, A.L.; Kalveram, B.; Lokugamage, K.G.; Muruato, A.; Zou, J.; Zhang, X.;
563 Juelich, T.; Smith, J.K.; et al. Loss of Furin Cleavage Site Attenuates SARS-CoV-2 Pathogenesis.
564 *Nature* **2021**, *591*, 293–299, doi:10.1038/s41586-021-03237-4.

565 52. The World Health Organization - WHO Lists Additional COVID-19 Vaccine for Emergency
566 Use and Issues Interim Policy Recommendations, Published May 7 2021, Accessed: July 9 2021,
567 Available at: <Https://Www.Who.Int/News/Item/07-05-2021-Who-Lists-Additional-Covid-19-Vaccine-for-Emergency-Use-and-Issues-Interim-Policy-Recommendations>.

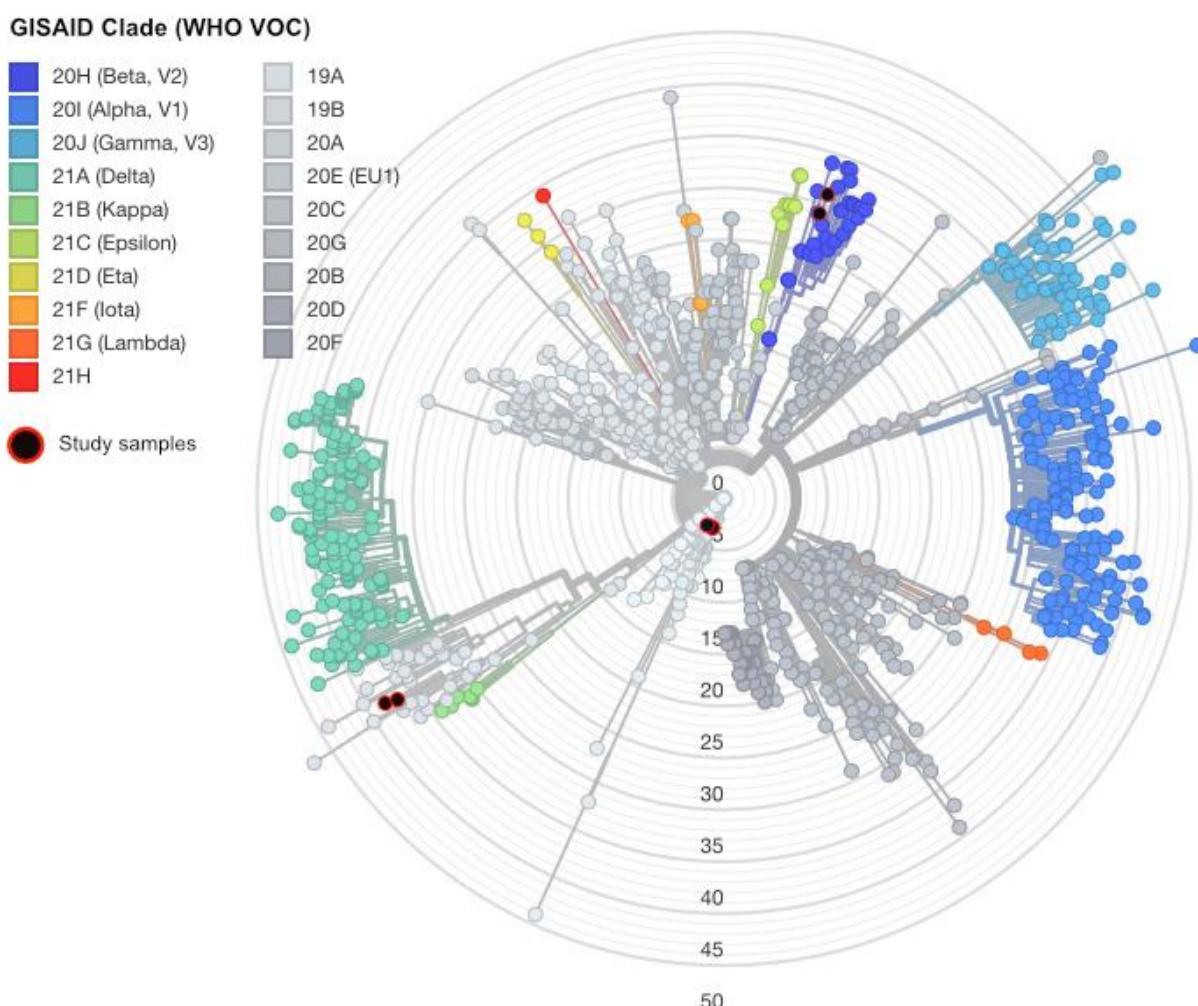

569 53. Khoury, D.S.; Cromer, D.; Reynaldi, A.; Schlub, T.E.; Wheatley, A.K.; Juno, J.A.; Subbarao,
570 K.; Kent, S.J.; Triccas, J.A.; Davenport, M.P. Neutralizing Antibody Levels Are Highly Predictive of
571 Immune Protection from Symptomatic SARS-CoV-2 Infection. *Nat Med* **2021**, *27*, 1205–1211,
572 doi:10.1038/s41591-021-01377-8.

573

574

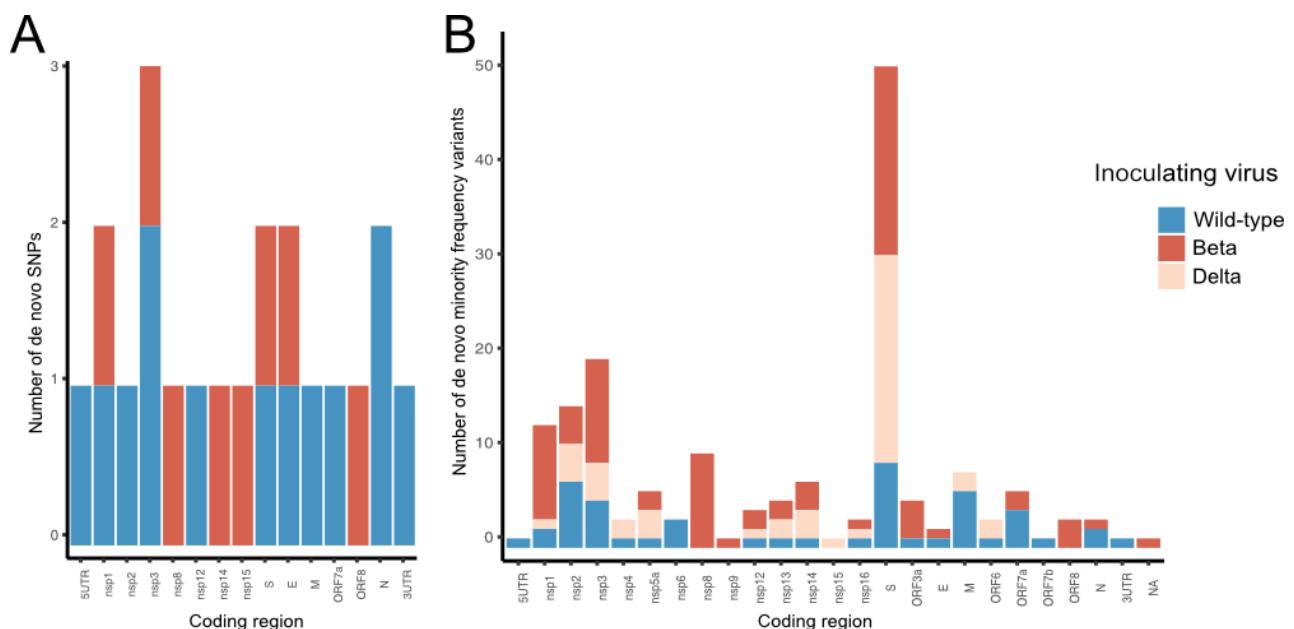

1 **Figure 1. Outline of virus neutralisation assays of emerging SARS-CoV-2 variants of**
2 **concern**

3



4

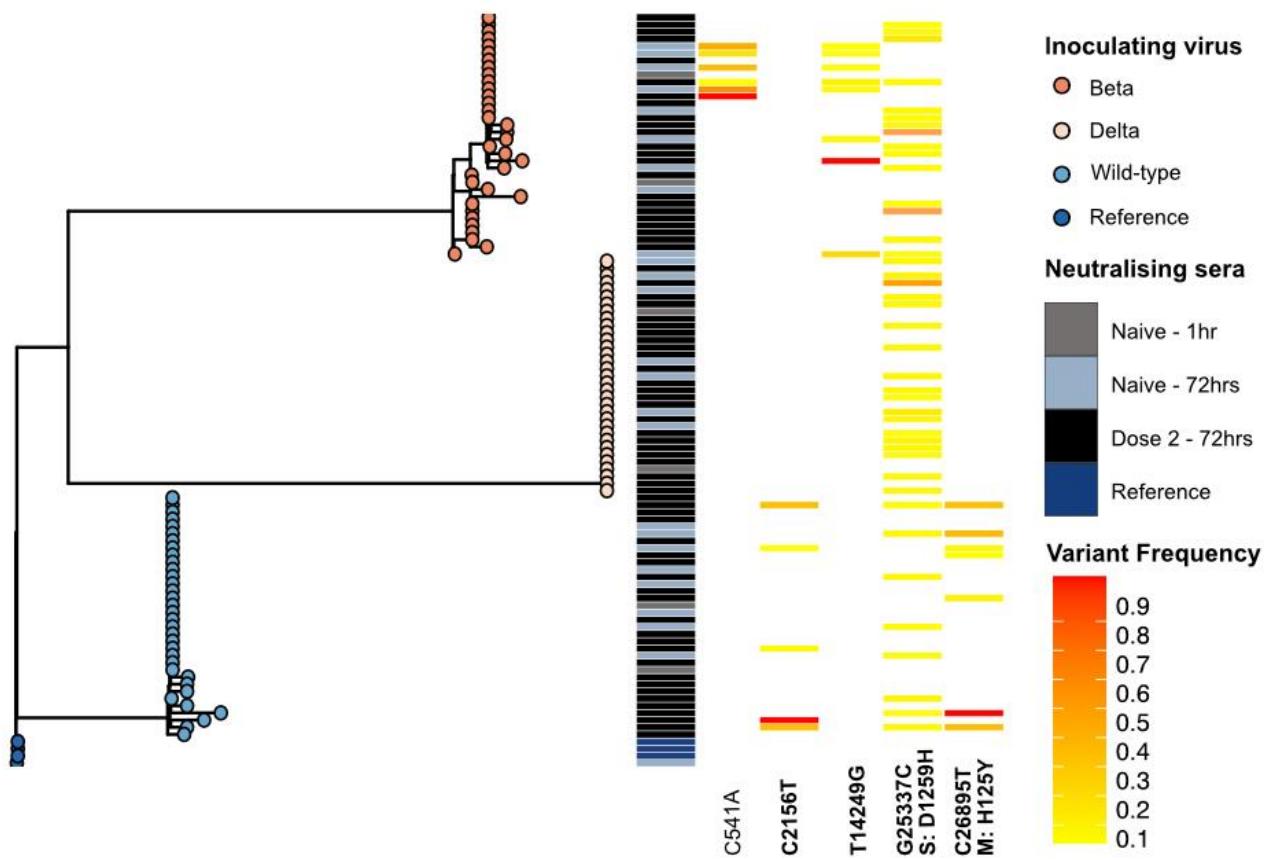
5 **Figure 2: Neutralising Antibody Titres**


17 **Figure 3. Global SARS-CoV-2 diversity demonstrating representativeness of**
18 **inoculating viruses used in this study**

19
20 **Figure Description:** The genome sequence of the SARS-CoV-2 lineages neutralised by sera post complete
21 vaccination with BNT162b2 were included in the subsampled global phylogeny of SARS-CoV-2.
22 Representative sequences were selected by Nextstrain and used to generate a global phylogeny, the
23 original clinical specimen and inoculating virus sequence is highlighted in black with red outline.
24 **Key:** VOC – variant of concern; WHO – World health organization;

25 **Figure 4. Frequency of consensus and minority allele frequency variants within the**
26 **SARS-CoV-2 genome**

27


28

29 **Figure Description:** Count of *de novo* consensus (A) and minority frequency allele variants (MFV) (B) within
30 SARS-CoV-2 genes 72 hours post neutralisation. Consensus and MFV detected in the inoculating virus of
31 each lineage have been excluded. Although few consensus level mutations were detected 72 hours post-
32 neutralisation, a high number of MFV were detected within the spike (S) coding region.

33

34 **Key:** structural proteins [S - spike ; E – envelope; M – membrane and N – nucleocapsid]; nsp – non-
35 structural protein; ORF – open reading frame; NC – non-coding region, 5UTR – 5' untranslated region, 3UTR
36 – 3' untranslated region, Delta – Delta (B.1.617.2) lineage; Beta – Beta (B.1.351) lineage; Wildtype –
37 Wildtype (A.2.2) lineage; Dose 2 – post the 2nd dose of Pfizer-BioNTech (BNT162b2) SARS-CoV-2
38 vaccination; Reference – reference SARS-CoV-2 genome (NCBI GenBank accession MN908947.3)

39 **Figure 5. Phylogeny of SARS-CoV-2 diversity during neutralisation highlighting**
40 **minority variants reproducibly detected at the same genomic location**

41

42 **Figure Description:** A maximum likelihood phylogeny of the 109 SARS-CoV-2 genomes generated in this
43 study. Tree node colours indicate the lineage of the inoculating virus and the heatmap highlights the time of
44 sampling and the vaccine dose of the sera used. *De novo* minority allele frequency variants (MVF) which
45 were consistently detected (≥ 5 biological replicates) at specific genomic locations are shown in the heatmap.
46 The read frequency of these sub-consensus variants is depicted by the colour scale, where a frequency of
47 0.1 is shown in yellow and a frequency of 0.9 is shown in red. The MVF variants detected in the inoculating
48 viruses were not included.

49

50 **Key:** Delta – Delta (B.1.617.2) lineage; Beta – Beta (B.1.351) lineage; Wildtype – Wildtype (A.2.2) lineage;
51 72 hrs – samples collected at 72 post neutralisation, Clinical sample – from the original patient's sample used
52 to generate the culture isolate.