

1 The impact of phage and phage resistance on microbial 2 community dynamics

3 Ellinor O Alseth^{1,2,3¶*}, Rafael Custodio^{1¶}, Sarah A Sundius^{2,4,5}, Rachel A Kuske^{2,4}, Sam P.
4 Brown^{2,3&}, Edze R Westra^{1&}

5

6 ¹Environment and Sustainability Institute, Biosciences, University of Exeter, Penryn, UK

7 ²Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta,
8 Georgia, USA

9 ³School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA

10 ⁴School of Math, Georgia Institute of Technology, Atlanta, Georgia, USA

11 ⁵Interdisciplinary Program in Quantitative Biosciences, Georgia Institute of Technology,
12 Atlanta, Georgia, USA

13

14 * Corresponding author

15 E-mail: ealseth3@gatech.edu (EOA)

16

17 ¶ These authors contributed equally to this work.

18 & These authors also contributed equally to this work.

19 Abstract

20 Where there are bacteria, there will be bacteriophages. These viruses are known to be
21 important players in shaping the wider microbial community in which they are embedded,
22 with potential implications for human health. On the other hand, bacteria possess a range
23 of distinct immune mechanisms that provide protection against bacteriophages, including
24 the mutation or complete loss of the phage receptor, and CRISPR-Cas adaptive
25 immunity. Yet little is known about how interactions between phages and these different
26 phage resistance mechanisms affect the wider microbial community in which they are
27 embedded. Here, we conducted a 10-day, fully factorial evolution experiment to examine
28 how phage impact the structure and dynamics of an artificial four-species bacterial
29 community that includes either *Pseudomonas aeruginosa* wild type or an isogenic mutant
30 unable to evolve phage resistance through CRISPR-Cas. Our results show that the
31 microbial community structure is drastically altered by the addition of phage, with
32 *Acinetobacter baumannii* becoming the dominant species and *P. aeruginosa* being driven
33 nearly extinct, whereas *P. aeruginosa* outcompetes the other species in the absence of
34 phage. Moreover, we find that a *P. aeruginosa* strain with the ability to evolve CRISPR-
35 based resistance generally does better when in the presence of *A. baumannii*, but that
36 this benefit is largely lost over time as phage is driven extinct. Combined, our data
37 highlight how phage-targeting a dominant species allows for the competitive release of
38 the strongest competitor whilst also contributing to community diversity maintenance and
39 potentially preventing the reinvasion of the target species, and underline the importance
40 of mapping community composition before therapeutically applying phage.

41

42 Introduction

43 Microbiome research is a dynamic and growing field in microbiology, producing an
44 incredible amount of sequence data from a wide range of clinical and environmental
45 samples. Humans, for instance, are colonised by a large number of microorganisms and
46 research continues to implicate microbial communities as potential drivers behind multiple
47 important biological processes [1–3]. These processes may play important roles in human
48 health and disease, with some work focusing on correlations based on microbiome
49 composition [4–8] while others look more closely for direct causality [9–12]. Still, the
50 challenge to move beyond descriptive and correlative approaches remains, and there is
51 a need to develop bottom-up mechanistic and quantitative understanding of the forces
52 acting upon and shaping microbial communities. To this end, synthetic polymicrobial
53 communities are being designed, and are gaining traction in both pure and applied
54 microbiome studies [13–16]. Synthetic microbiomes allow for precise and malleable
55 experimental testing of the basic rules that govern both microbial organisation and
56 functioning on molecular and ecological scales [17–20], as well as allowing for exploration
57 of causal roles connecting specific microbiome structures to potential outcomes of
58 interest.

59

60 Bacteria and their viral predators, bacteriophages (phages), have long been of interest in
61 microbiological research, in part due to being the most abundant biological entity on the
62 planet [21,22]. Phages are highly diverse in terms of their morphology, genetics, and life
63 histories [21,23], with a clear distinction between obligatory killing lytic phages and
64 temperate phages that can either cause a dormant infection (lysogenic cycle) or cell lysis

65 to release new phage particles (lytic cycle). Phages are thought to play a key role in
66 shaping both the taxonomic and functional composition of microbial communities as well
67 as their stability, ecology and evolution [23–26]. For example, lytic replication will per
68 definition cause a reduction in the density of the bacterial host strain or species, which in
69 turn can have knock-on effects for the microbial community composition through the
70 enabling of invasion and/or co-existence of competitor species. Despite the large potential
71 impact of lytic phage, only a very limited number of experimental studies have explored
72 the ecology and evolution of bacteria-phage interactions in a microbial community context
73 [27,28], and it remains unclear if and how interactions between different species in more
74 complex communities shape the effects of lytic phages on microbial eco-evolutionary
75 dynamics. Consequently, we lack the steppingstones to understand how phages shape
76 microbial community dynamics (reviewed in [23]), which are urgently needed to
77 understand potentially causal relationships between natural phage communities and a
78 variety of human diseases [29–34], and for optimising the therapeutic application of
79 phages in the clinic .

80

81 A key consideration in this context is that bacteria can overcome phage infection through
82 a range of different means [35,36], with varied underlying molecular mechanisms and
83 which can act during different stages of phage infection [37–40]. Through the
84 modification, masking or complete loss of phage-binding surface receptors for example,
85 bacteria can prevent phage adsorption and injection [39,41]. Systems such as CRISPR-
86 Cas on the other hand work by inserting short DNA sequences from phage and other
87 invasive mobile genetic elements into the host genome to provide future immunological

88 memory [42]. Unlike CRISPR-based resistance [15], phage resistance through receptor
89 mutation can be associated with substantial phenotypic shifts and fitness trade-offs,
90 through changes to virulence [43,44], biofilm formation [45], or antibiotic resistance [46].

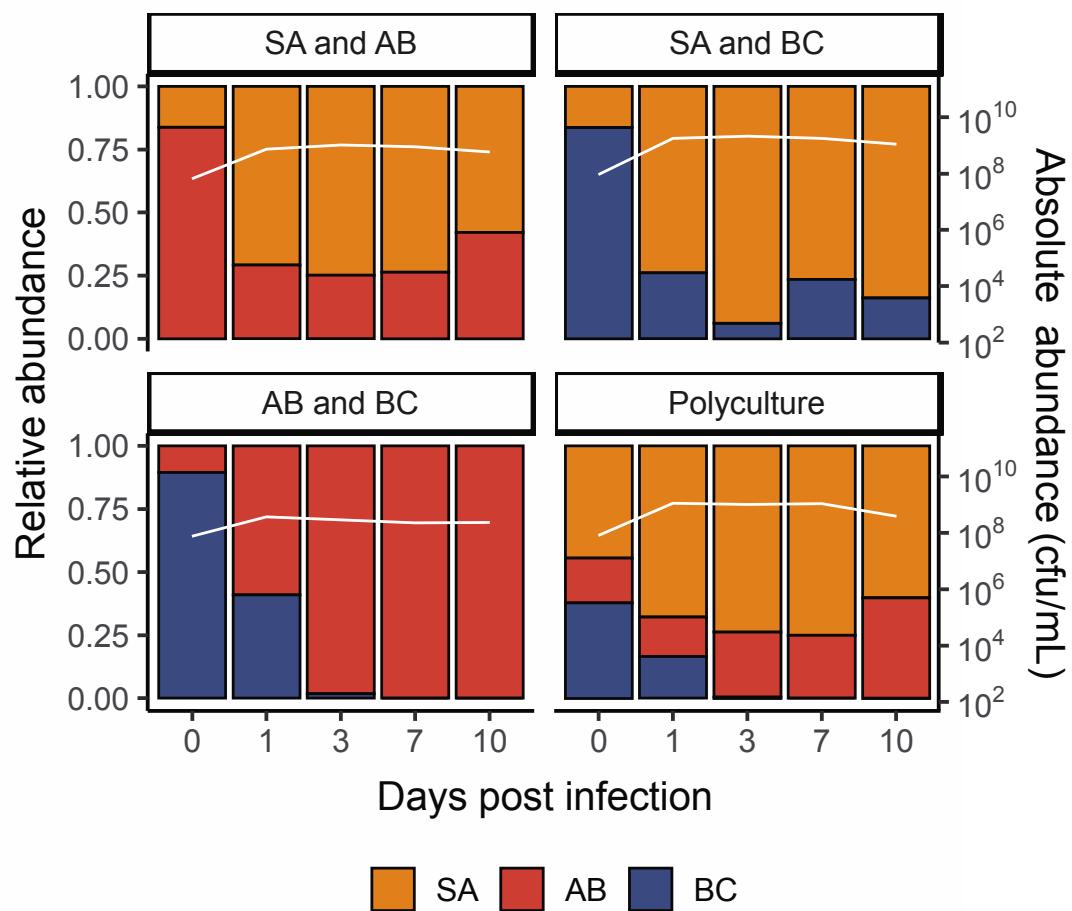
91

92 Combining an exploratory and hypothesis driven approach, we applied experimental
93 evolution to examine how a phage impacts the dynamics of an artificial bacterial
94 community. This community consisted of *Pseudomonas aeruginosa*, *Staphylococcus*
95 *aureus*, *Acinetobacter baumannii*, and *Burkholderia cenocepacia*, all of which are
96 opportunistic pathogens that can cause severe infection and may co-infect with one
97 another [47–50]. Firstly, we hypothesised that the addition of a *P. aeruginosa* specific
98 phage would promote species coexistence by limiting *P. aeruginosa* dominance through
99 competitive release (expansion of phage resistant competitors, following removal of
100 phage susceptible competitor) in a way akin to what is commonly observed with
101 antibiotics [14,51–54]. Secondly, we hypothesised that blocking the ability of *P.*
102 *aeruginosa* to evolve CRISPR-based immunity would reduce *P. aeruginosa* persistence
103 due to community dependent fitness costs of surface-modification [15]. We found that the
104 addition of a *P. aeruginosa* targeting phage resulted in the general maintenance of
105 community diversity and coexistence, but also a shift in dominant species from *P.*
106 *aeruginosa* to *A. baumannii* – with the former being unable to reinvoke even after the
107 phage was driven extinct. The impact of the type of phage resistance was limited or
108 transient, however: While a *P. aeruginosa* wild-type with the ability to evolve CRISPR-
109 based phage resistance initially had a slight fitness advantage in the presence of *A.*

110 *baumannii* over its CRISPR-negative isogenic mutant, this effect was lost over time as
111 the phage was driven extinct.

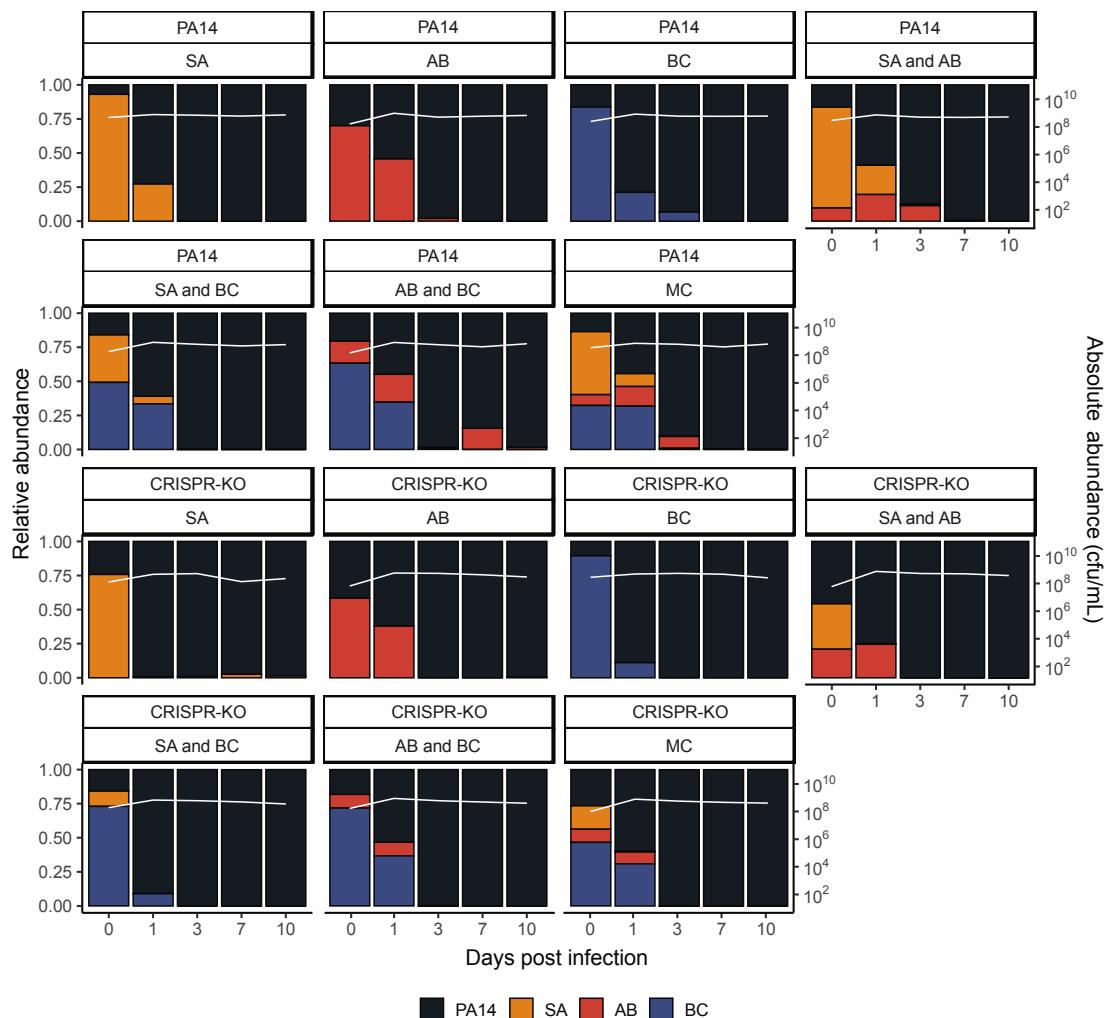
112

113 **Results**


114 To measure the effect of phage on microbial community dynamics, we carried out a fully
115 factorial 10-day *in vitro* evolution experiment using all possible combinations of one, two,
116 three or four competitor species: *S. aureus*, *A. baumannii*, *B. cenocepacia*, and *P.*
117 *aeruginosa* PA14 in the presence or absence of lytic phage DMS3vir. Additionally, to
118 examine the impact of CRISPR-Cas vs surface modification on these dynamics, we used
119 both the wild-type (WT) *P. aeruginosa* PA14 strain, which can evolve CRISPR-based
120 phage resistance and an isogenic mutant lacking a functional CRISPR system. Following
121 inoculation, we tracked the microbial community dynamics for all experimental treatments
122 at regular intervals over a period of 10 days. All experiments were conducted in Lysogeny
123 Broth (LB) at 37°C (see methods for details).

124

125 ***P. aeruginosa* dominates in the absence of phage**


126 Without *P. aeruginosa* present in the community, *S. aureus* was primarily the dominant
127 species – with the ability to co-exist with *A. baumannii* while outcompeting *B. cenocepacia*
128 (Figs 1 and S1). This, however, was not reflected once *P. aeruginosa* was introduced to
129 the community. In the absence of phage, *P. aeruginosa* quickly became the dominant
130 species in the microbial community, regardless of starting composition and the *P.*
131 *aeruginosa* genotype (PA14 WT vs CRISPR-KO) (Figs 2 and S3). Consistent with this,
132 the densities of the competitor species rapidly declined during these co-culture

133 experiments (Fig 2). Yet there was a clear difference in the rate at which competitor
134 species declined in frequency, which was highest for *S. aureus* and lowest for *A.*
135 *baumannii* (Fig 2, ANOVA: effect of treatment on *S. aureus*; $F = 2.2$, $p = 0.09$; overall
136 model fit; adjusted $R^2 = 0.60$, $F_{20,171} = 15.45$, $p < 2.2 \times 10^{-16}$: effect of treatment on *A.*
137 *baumannii*; $F = 0.52$, $p = 0.67$; overall model fit; adjusted $R^2 = 0.66$, $F_{20,171} = 19.89$, $p <$
138 2.2×10^{-16} : effect of treatment on *B. cenocepacia*; $F = 1.36$, $p = 0.26$; overall model fit;
139 adjusted $R^2 = 0.69$, $F_{20,171} = 22.45$, $p < 2.2 \times 10^{-16}$).

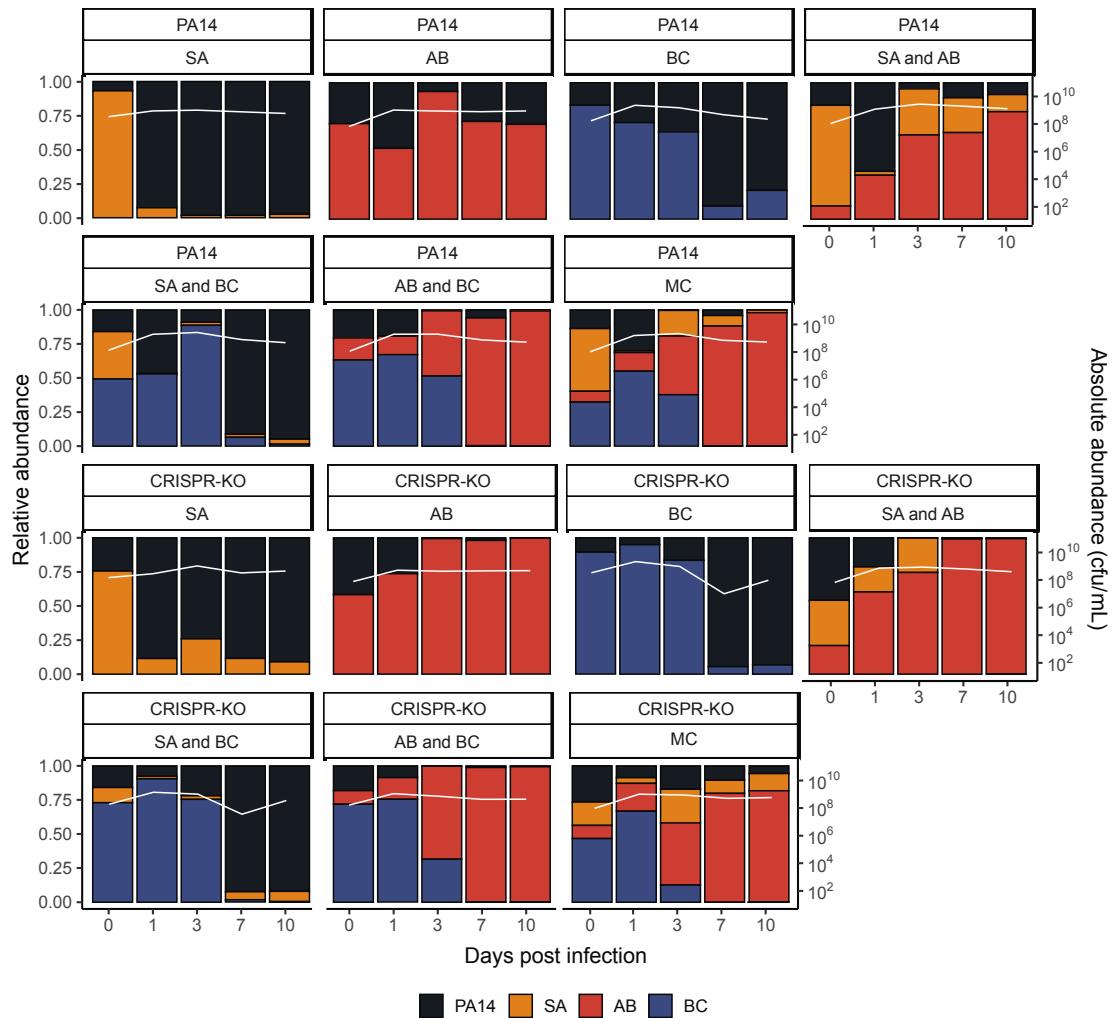
140
141 **Fig 1. *S. aureus* and *A. baumannii* both perform well in the absence of *P.*
142 *aeruginosa*.** Showing the community composition and bacterial densities in cfu/mL over
143 time for the microbial communities in the absence of *P. aeruginosa*. The community

144 composition was estimated by qPCR at days 0, 1, 3, 7 and 10 of the experiment. The
145 coloured bars represent the relative abundance of each species (left y axis), while the
146 white line represents total abundance in cfu/mL (right y axis). Each panel represents
147 average composition across six replicates for each treatment over time. SA = *S. aureus*,
148 AB = *A. baumannii*, BC = *B. cenocepacia*. For individual replicates of species abundance,
149 see Fig. S1.

150
151 **Fig 2. *Pseudomonas aeruginosa* becomes the dominant species in the absence of**
152 **phage.** Showing the community composition and bacterial densities in cfu/mL over time

153 for the microbial communities in the absence of phage. The community composition was

154 estimated by qPCR at days 0, 1, 3, 7 and 10 of the experiment. The coloured bars
155 represent the relative abundance of each species (left y axis), while the white line
156 represents total abundance in cfu/mL (right y axis). Each panel represents average
157 composition across six replicates for each treatment over time. PA14 = *P. aeruginosa*,
158 SA = *S. aureus*, AB = *A. baumannii*, BC = *B. cenocepacia*, MC = microbial community.
159 For individual replicates of species abundance, see Fig. S3.


160
161 While the microbial community dynamics were relatively similar for the WT and CRISPR-
162 KO strains, some significant differences were observed. For example, the densities of the
163 CRISPR-KO strain were slightly lower in the presence compared to the absence of *S.*
164 *aureus* on its own (Fig 2, linear model: $t = 2.048$, $p = 0.0413$; overall model fit; adjusted
165 $R^2 = 0.21$, $F_{36,345} = 3.77$, $p < 6.03 \times 10^{-11}$). Moreover, *S. aureus* and *A. baumannii* reached
166 higher densities in the presence of the PA14 WT compared to the CRISPR-KO strain,
167 particularly at the earlier timepoints (Fig 2). In contrast to this, densities of *B. cenocepacia*
168 over time were similar in the presence of both *P. aeruginosa* genotypes (Fig 2).
169 Regardless these minor differences, *P. aeruginosa* consistently and readily outcompeted
170 the other community members in the absence of phage, with all three being extinct or
171 close to extinction by day 10 (Fig 2). For visualisation purposes, the data from Figure 2 is
172 also presented as an ordination plot (Fig S2).

173

174 **Phage affects microbial community dynamics**

175 Whereas *P. aeruginosa* dominated in the absence of phage, we hypothesised this would
176 change once a PA14 targeting phage (DMS3vir) was introduced, largely by a virulent

177 phage reducing the susceptible host population, facilitating expansion of other species
178 through competitive release [14,51–54]. As expected, phage DMS3vir initially reached
179 high titres due to replication on sensitive *P. aeruginosa* hosts, followed by a rapid decline
180 in phage densities due to the evolution of phage resistance, regardless of whether the
181 host had a functional CRISPR-Cas system or not (Fig S4). Crucially however, the
182 presence of phage caused microbial communities to no longer be dominated by *P.*
183 *aeruginosa*, as when compared to the no phage treatments, very few to none of the
184 experimental repeats had one or more bacterial species go extinct, with *A. baumannii*
185 reaching particularly high abundance (Figs 3 and S5). It is here worth noting that while *B.*
186 *cenocepacia* is not visible at later timepoints in the compositional plot due to low relative
187 abundance of <0.1 (Fig 3), we consistently observed persistence of *B. cenocepacia* at an
188 average of $\sim 10^4$ cfu/mL across all treatments (see Fig S5). For visualisation purposes,
189 the data from Figure 3 is also presented as an ordination plot (Fig S6).

190

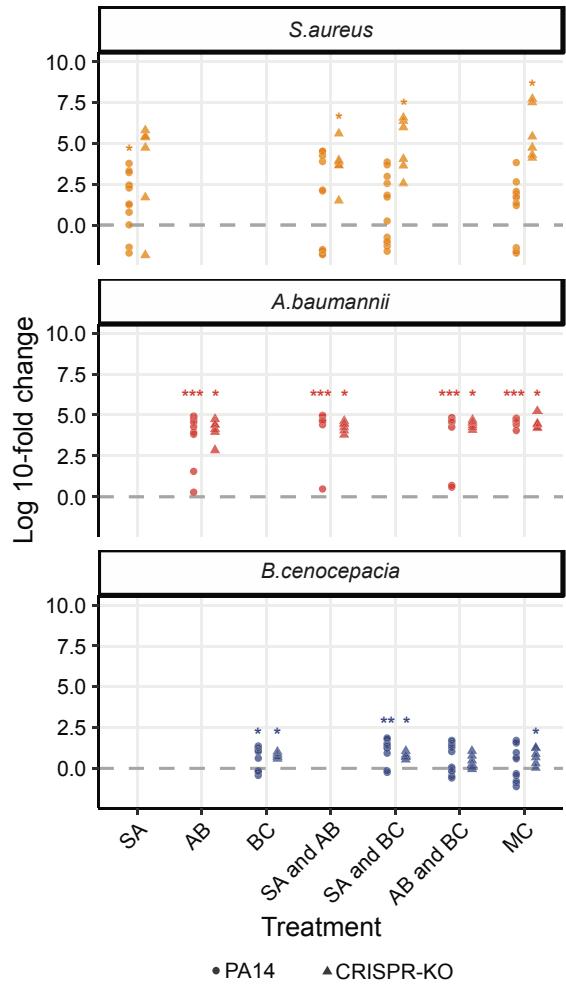
191 **Fig 3. Phage allows for the maintenance of all microbial community members, with**
192 **A. baumannii becoming the new dominant species.** Showing the community
193 composition and bacterial densities in cfu/mL over time for the microbial communities in
194 the presence of phage. The community composition was estimated by qPCR at days 0,
195 1, 3, 7 and 10 of the experiment. The coloured bars represent the relative abundance of
196 each species (left y axis), while the white line represents total abundance in cfu/mL (right
197 y axis). Each panel represents average composition across six replicates for each
198 treatment over time. PA14 = *P. aeruginosa*, SA = *S. aureus*, AB = *A. baumannii*, BC = *B.*

199 *cenocepacia*, MC = Microbial community. For individual replicates of species abundance,
200 see Fig. S5.

201
202 Interestingly, the PA14 WT generally reached greater relative abundance than the
203 CRISPR-KO strain when in the presence of *A. baumannii*, consistently doing so early in
204 the experiment when phage remained in the population (Figs 3 and S2). This was in
205 concordance with *P. aeruginosa* evolving higher levels of CRISPR-based immunity
206 against phage DMS3vir in treatments including *A. baumannii* due to the increased fitness
207 cost of surface modification (Fig S7 and [15]): At 3 days post infection, there was a
208 significant effect of all treatments on the proportion of CRISPR-based resistance that had
209 evolved compared to the PA14 monoculture, but this effect was strongest for treatments
210 that contained *A. baumannii*. At timepoint 10 we only found an increased proportion of *P.*
211 *aeruginosa* clones immune through CRISPR-Cas when the treatment included *A.*
212 *baumannii* (GLM; *A. baumannii*; $t = 2.637$, $p = 0.01$; *S. aureus* and *A. baumannii*, $t =$
213 2.283 , $p = 0.025$; *A. baumannii* and *B. cenocepacia*, $t = 2.689$, $p = 0.0087$; polyculture, t
214 $= 2.141$, $p = 0.035$).

215
216 **The type of evolved phage resistance does not have a knock-**
217 **on effect on microbial community dynamics**

218 We have previously shown that the evolution of phage resistance by mutation of the Type
219 IV pilus (the phage receptor) is associated with large fitness trade-offs in a microbial
220 community context, whereas evolution of CRISPR-based immunity is not associated with
221 any detectable trade-offs [15]. We therefore predicted that the ability to evolve phage

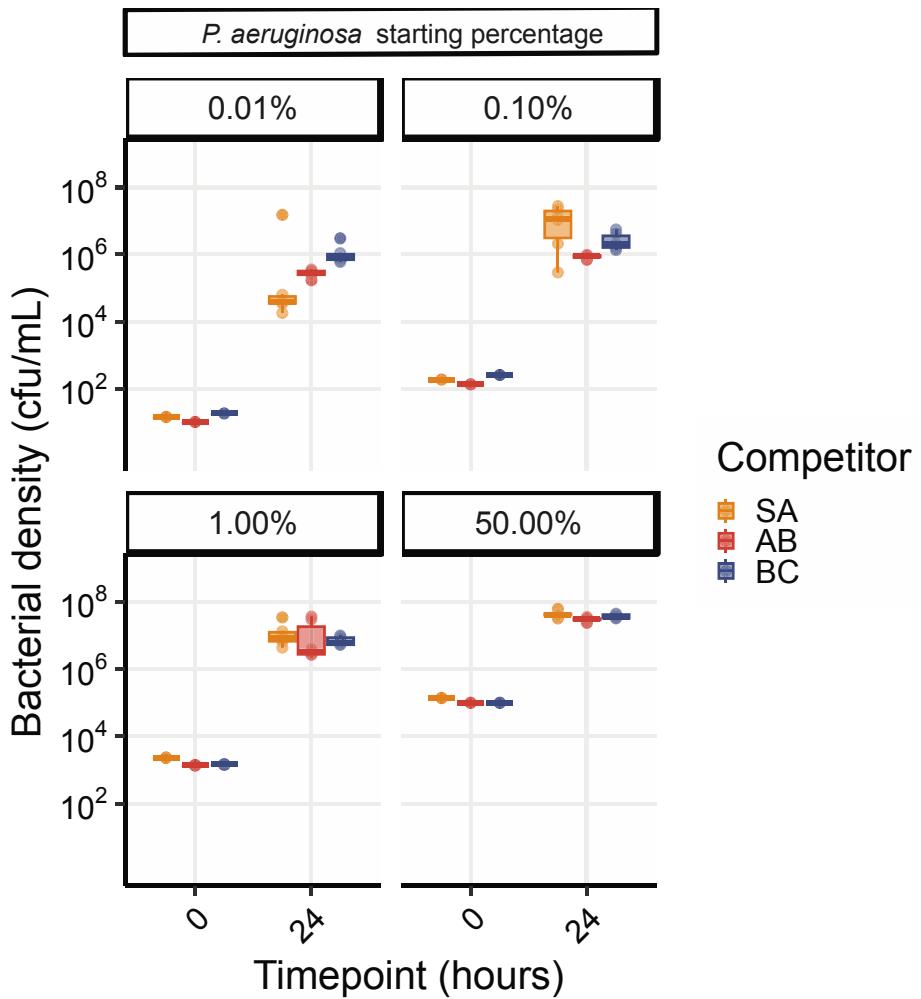

222 resistance through CRISPR-Cas would also have knock-on effects for the microbial
223 community dynamics. However, measurement of the abundance of the competitors
224 revealed that these were overall largely unaffected by the presence of a functional
225 CRISPR-Cas immune system in *P. aeruginosa* with the exception of *S. aureus*: In the
226 presence of the *P. aeruginosa* WT strain, *S. aureus* densities were significantly lower in
227 two of the microbial communities compared to the same co-culture experiments with the
228 CRISPR-KO strain (Figs 3 and S5, Effect of *P. aeruginosa* clone on *S. aureus* abundance,
229 linear model: Treatment *S. aureus*; $t = -2.363$, $p = 0.0216$, adjusted $R^2 = 0.2659$, $F_{14,57} =$
230 2.837 , $p = 0.002786$; Treatment *S. aureus* and *A. baumannii*; $t = -2.043$, $p = 0.0457$,
231 adjusted $R^2 = 0.3867$, $F_{14,57} = 4.198$, $p = 5.3 \times 10^{-5}$).

232

233 **A *P. aeruginosa* targeting phage results in the competitive 234 release of *A. baumannii* and general diversity maintenance**

235 We hypothesised that the effect of phage on microbial community structure could largely
236 be explained by the competitive release (increase in absolute abundance, following
237 removal of competitor) of *A. baumannii*, which then takes over to become the dominant
238 species [55]. To assess this, we examined the fold change difference for the final
239 abundance of all three community members in the presence versus absence of phage
240 (Fig 4). Crucially, this revealed a strong increase in *A. baumannii* density in the presence
241 of a phage, supporting the idea that it becomes the dominant and determinant community
242 member when *P. aeruginosa* is inhibited by phage (Fig 3). By contrast, when phage was
243 added, *S. aureus* only experienced a clear fold change increase if it was co-cultured with
244 the CRISPR-KO strain and an additional competitor species. *B. cenocepacia* meanwhile

245 seemed to be the species with the least benefit of phage, but still with a small fold change
246 increase for some treatments (Fig 4).



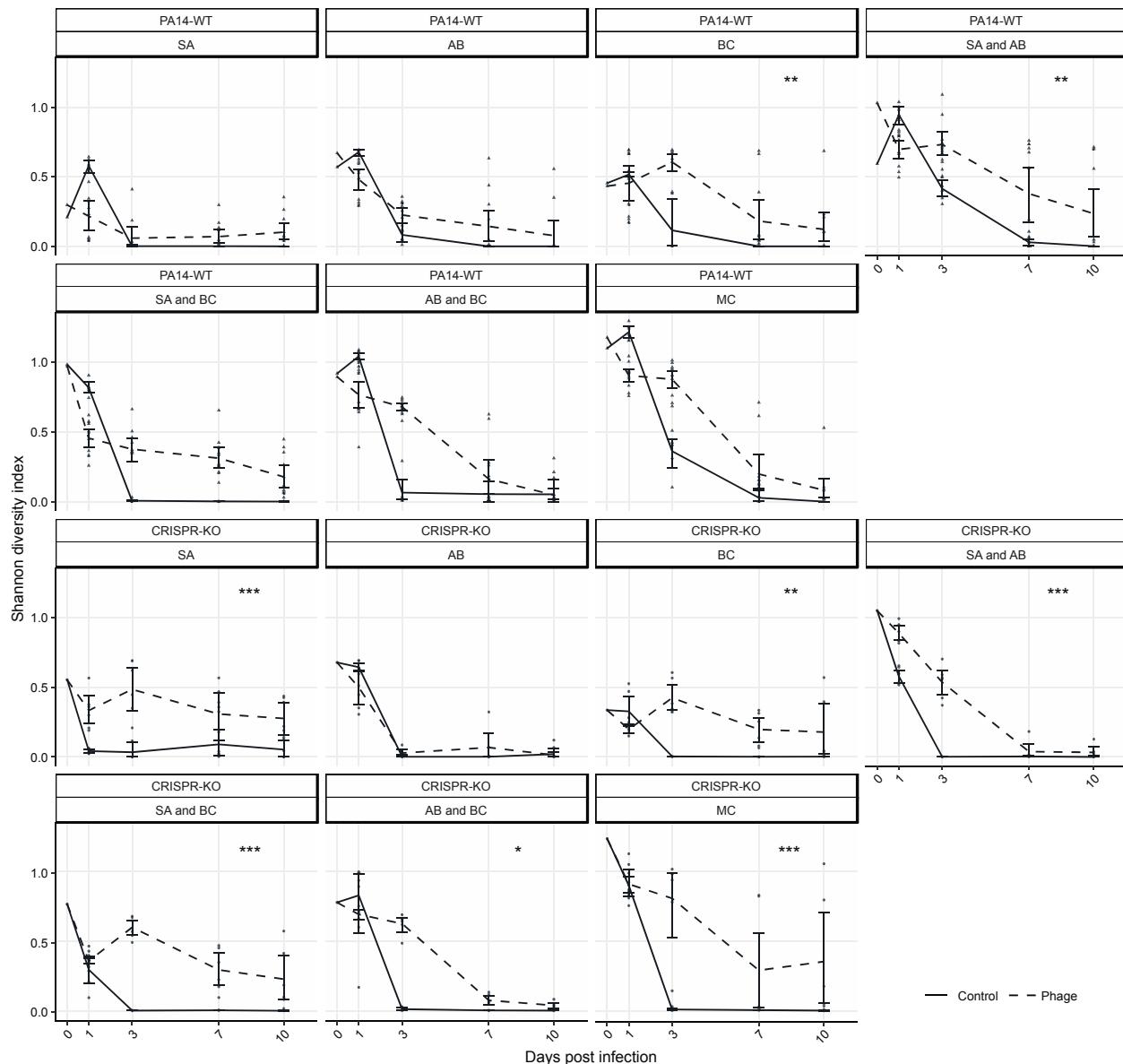
247 •PA14 ▲CRISPR-KO

248 **Fig 4. Fold change between no phage and phage treatments at the end of the**
249 **experiment.** The fold change difference of the individual community species not targeted
250 by phage when comparing absolute densities in the presence of phage to the absence at
251 the final experimental timepoint. Asterisks indicate higher final absolute density in the
252 presence versus absence of phage (Wilcoxon signed rank exact test: * $p < 0.05$, ** $p <$
253 0.01 , *** $p < 0.001$).

254

255 The substantial 5-fold increase in *A. baumannii* given the presence of phage (Fig 4)
256 reflects a sustained divergence in the trajectory of *A. baumannii* in the phage
257 treatments, despite the attenuation of phage titre by day 7 (Fig S4). We hypothesised
258 that the lack of *P. aeruginosa* rebound after phage clearance was due to a frequency-
259 dependent shift in competitive dominance. To test this hypothesis, we competed
260 ancestral *A. baumannii*, *S. aureus* and *B. cenocepacia* against increasingly rare *P.*
261 *aeruginosa* challenge, and found no barrier to *P. aeruginosa* invasion in pairwise
262 experiments, down to a frequency of 1 in 10,000 cells (Fig 5). This result suggests that
263 the failure of *P. aeruginosa* to return to dominance following phage clearance is due to
264 more complex community-mediated interactions.

265


266 **Fig 5. *P. aeruginosa* can reinvoke from rare against all community members.**

267 Showing *P. aeruginosa* density in cfu/mL from competition experiments between PA14
268 wild-type with variable starting densities against either *S. aureus* (SA), *A. baumannii* (AB)
269 or *B. cenocepacia* (BC). The species densities were estimated by qPCR at time-point 0
270 and 24 h post co-culture. Box plots show the median, 25th and 75th percentile, and the
271 interquartile range. Raw values from each replicate are shown as points (n= 6 per
272 pairwise competition).

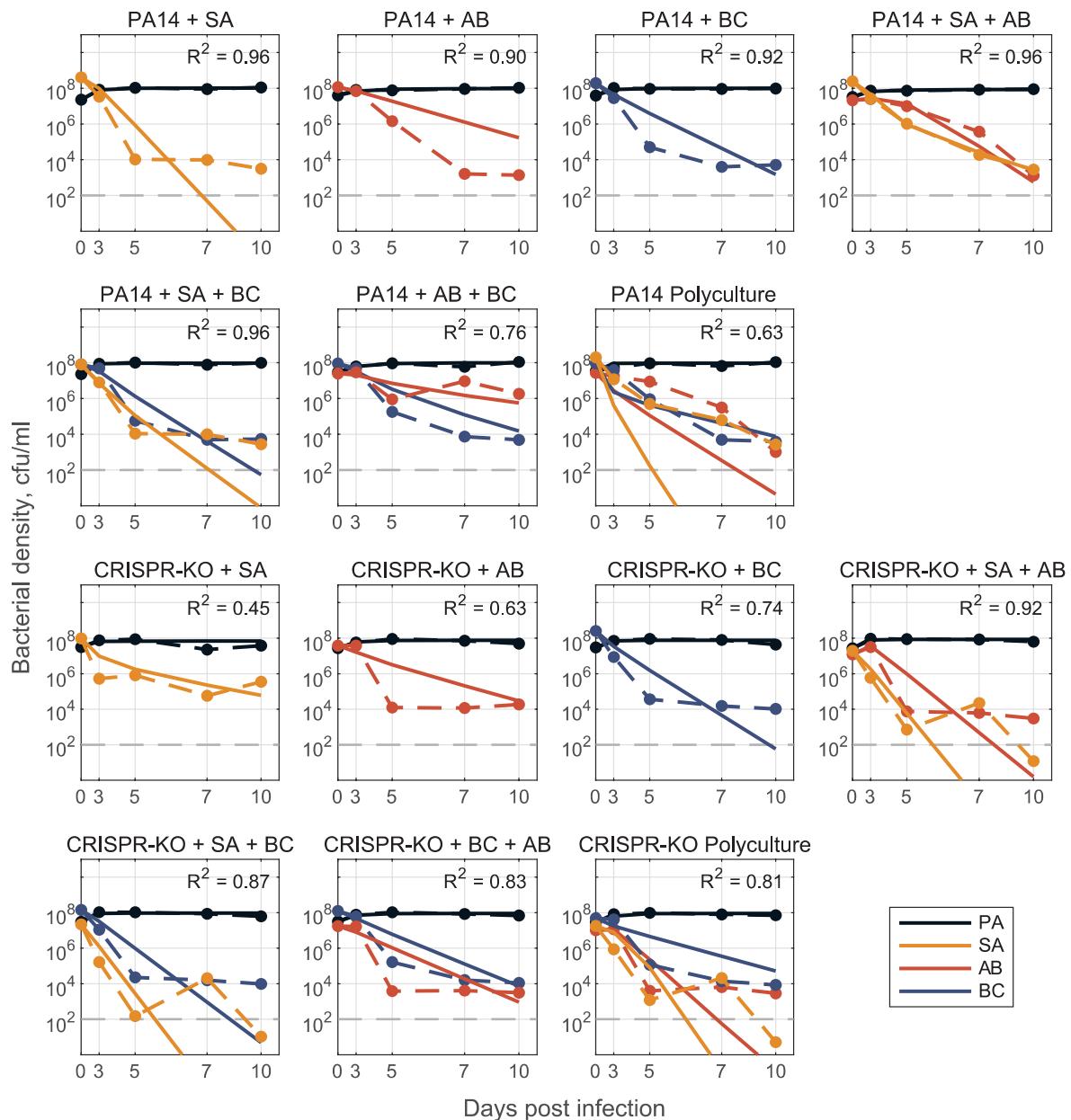
273

274 To quantitatively assess changes in community diversity, we calculated Shannon diversity
275 indexes for all experimental treatments. We hypothesised that the addition of phage not
276 only results in competitive release of one other bacterium (Fig 4), but facilitates general
277 maintenance of microbial diversity. Plotting these diversity scores over time shows that
278 without phage there is a rapid loss of diversity over time, whereas community complexity
279 persists in the presence of phage (Fig 6: ANOVA: PA14 WT effect of phage; $F = 27.57$, p
280 $= 2.3 \times 10^{-7}$; CRISPR-KO effect of phage; $F = 89.19$, $p < 2.2 \times 10^{-16}$; Overall model fit for
281 PA14 WT: adjusted $R^2 = 0.64$, $F_{38,465} = 24.87$, $p < 2.2 \times 10^{-16}$; Overall model fit for CRISPR-
282 KO: adjusted $R^2 = 0.56$, $F_{32,303} = 14.56$, $p < 2.2 \times 10^{-16}$). This was true for treatments for
283 both *P. aeruginosa* genotypes, but the trend became most pronounced for the CRISPR-
284 KO strain when applying direct comparisons using Tukey contrasts, in which case we
285 found phage to significantly increase diversity over time in nearly all treatments (Fig 6,
286 indicated by asterisks).

287

288

289 **Fig 6. Shannon diversity over time illustrating the diversity maintaining effects of**
290 **phage.** The change in diversity over time, illustrated using Shannon diversity indexes, for
291 both the PA14 WT and CRISPR-KO strains across all treatments (SA = *S. aureus*, AB =
292 *A. baumannii*, BC = *B. cenocepacia*, MC = microbial community). Data are mean \pm 95%
293 CI, and asterisks indicate a significant difference over time in Shannon diversity between
294 treatments with phage or no phage (n = 6 per timepoint for all expect the PA14 WT with

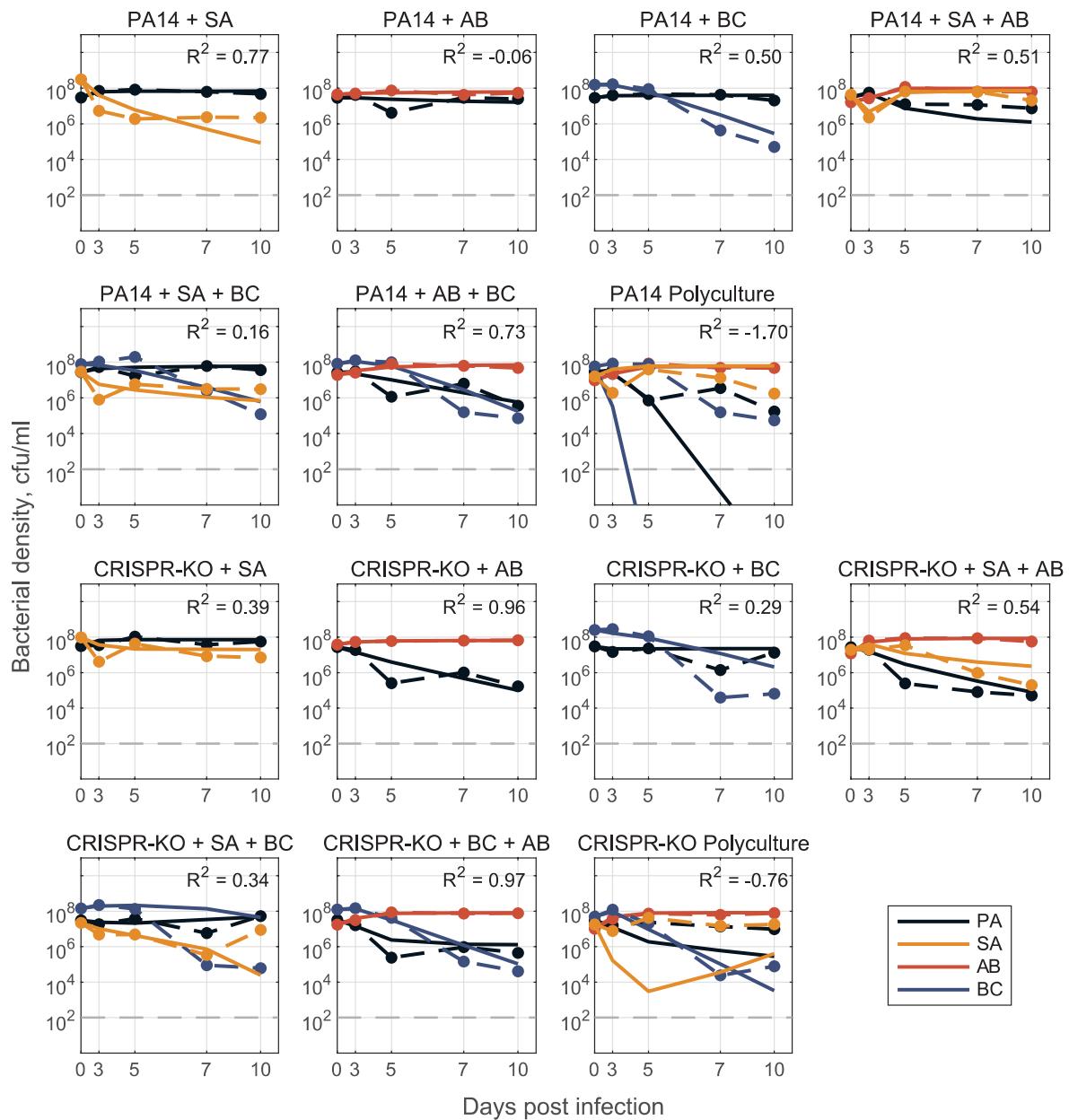

295 phage treatments, where $n = 12$) (effect of *P. aeruginosa* clone; linear model with Tukey
296 contrasts: * $p < 0.05$, ** $p < 0.01$, *** $p < 0.001$).

297

298 **Four species community dynamics are predictable from two 299 and three species community data, in the absence of phage**

300 A major challenge in synthetic community research is developing robust modelling
301 frameworks that are capable of predicting community dynamics [56]. In a final set of
302 analyses, we sought to assess the predictive performance of generalized Lotka Volterra
303 (gLV) competition equations, trained on just 2-species data or a combination of 2- and 3-
304 species data. Our results showed that fitting gLV models with pairwise only datasets led
305 to predictive failures when applied to 3- or 4-species datasets (Fig S8), consistent with
306 the presence of higher order interactions effects (when the effect of species A on species
307 B is dependent on the presence of species C [57]). In contrast, fitting gLV models to 2-
308 and 3-species data and using the resulting interaction terms to predict 4-species
309 dynamics reasonably fit the data in the absence of phage (Fig 7).

310


311

312 **Fig 7. Model for no phage data.** Model fit predictions for two-, three-, and full four
313 species community dynamics (solid lines) compared to experimental data (dashed
314 lines). Models of 2- and 3- species dynamics were parameterized via optimization with
315 least-squares to fit to a system of ODEs (defined as a generalized Lotka-Volterra
316 competition model with n species, where $n=1,2,3,4$). Only single species maximal
317 growth rates (r_i for species $i = 1, \dots, n$) were fixed from fitting mono-culture data, all

318 interaction coefficients ($\beta_{i,j}$ describing the inhibitory effect of species j on species i for
319 all $i,j = 1,2$ in the 2-species case, for all $i,j = 1,2,3$ in the 3-species case) were open for
320 fitting. We construct the full 4-species community interaction matrices (one for PA14
321 and one for CRISPR-KO) by averaging corresponding $\beta_{i,j}$ interaction terms from the fit
322 2- and 3- species models (see Text S1), and use this matrix to simulate dynamics in the
323 respective polyculture cases. See Methods and Text S1 for detailed description of
324 mathematical modelling.

325

326 In the presence of phage (Fig 8), we again utilised the gLV framework where the impact
327 of phage is implicit (quantified by how interaction coefficients change as compared to the
328 no-phage case). The gLV model framework could adequately describe 2- and 3-species
329 data, but the interaction coefficients did not generalise quantitatively to 4-species data –
330 likely reflecting the structural limitation of a gLV competition model that does not explicitly
331 capture phage predation dynamics. However, the model parameterised with 1-, 2- and 3-
332 species data did capture a qualitative shift in ecological outcomes from sole *P. aeruginosa*
333 survival to competitive release of *A. baumannii* and *S. aureus* when *P. aeruginosa* is
334 targeted by phage (Fig S9).

335

336 **Fig 8. Model for phage data.** Model fit predictions for two-, three-, and full four species
337 community dynamics (solid lines) in the presence of phage compared to experimental
338 data (dashed lines). Here, models were parameterized via optimization with least-
339 squares to fit a system of ODEs (defined as a generalized Lotka-Volterra competition
340 model with n species, where $n=1,2,3,4$), where we don't explicitly track the phage
341 population dynamics. Instead, we assume that the phage acts as some external

342 perturbation that leads to changes in the interactions between community members ($\beta_{i,j}$)
343 values differ from values in Figure 7). Only single species maximal growth rates were
344 fixed from fitting mono-culture data (r_i for species $i = 1, \dots, n$), all interaction coefficients
345 were open for parameterizing 2- and 3- species models ($\beta_{i,j}$ describing the inhibitory
346 effect of species j on species i for all $i, j = 1, 2$ for the 2-species case, for all $i, j = 1, 2, 3$ for
347 the 3-species case). We then construct the full 4-species community interaction
348 matrices (one for PA14 and one for CRISPR-KO) by averaging corresponding $\beta_{i,j}$,
349 interaction terms from the fit 3- species models (treatments: PA+AB+SA, PA+BC+SA,
350 PA+AB+BC with phage), and use this matrix to simulate dynamics in the respective
351 polyculture cases. See Methods and Text S1 for detailed description of mathematical
352 modelling.

353

354 **Discussion**

355 The advent of deep sequencing has dramatically increased our knowledge of the
356 composition and functioning of microbiomes both in and around us. The role of microbial
357 communities in human health has consequentially received increasing attention, with
358 research focusing on how changes in microbiome composition over time may affect
359 human health and define patient outcomes (reviewed in 57). In addition, an increasing
360 number of correlational studies find associations between virome composition and the
361 health status of their host [23,59–61], likely mediated by changes in the microbiome that
362 could be either cause or effect. A deeper understanding of the impact of phages on
363 microbiomes is likely to help to infer causal relationships between viromes and human
364 health, and to design optimal therapeutic phage interventions (phage therapy).

365

366 Here, we expanded on our previous work on how interspecific competition can shape the
367 evolution of phage resistance in a focal species (*P. aeruginosa*)[15], to study how the
368 interaction between phage and bacterial immune mechanisms affects the broader
369 microbial community dynamics. We found that whereas *P. aeruginosa* dominated in the
370 absence of a phage, the presence of phage resulted in microbial diversity maintenance
371 and *A. baumannii* becoming the dominant species (Figs 3 and 4). Interestingly, the
372 competitive release of *A. baumannii* occurred in all treatments and was virtually
373 independent of whether *P. aeruginosa* had a functional CRISPR-Cas immune system or
374 not. This showed that the amplification of the fitness cost of *P. aeruginosa* receptor
375 mutation in the presence of competitor species [15] has limited impact on the overall
376 community dynamics. Overall, our experimental data align with the notion of phages
377 having the potential to increase microbiome stability [62,63], and support the idea that
378 phages can be useful in the designing of synthetic microbial communities [64].
379 Surprisingly, our data do not support the hypothesis that bacterial adaptive immune
380 systems play an important role in phage-mediated microbial community structuring under
381 the experimental conditions tested here.

382

383 Our mathematical analyses focused on the ability of generalised Lotka-Volterra (gLV)
384 models to predict community dynamics. While our analyses showed reasonable
385 predictive success when incorporating 3-species data, we note that our analyses pose
386 two distinct questions: (1) how can we provide more accurate predictions? (2) what
387 general lessons can we draw from our model analyses?

388

389 In agreement with a growing number of gLV-based analyses, we found that a simple
390 ‘bottom up’ model fitting approach (fitting single species growth, then all pairwise
391 interactions, then predicting larger system behaviour [14]) performed poorly, indicating
392 the presence of significant higher order interactions [57,65,66]. Consistent with this
393 conclusion, we found that allowing pairwise interactions to vary (contingent on the
394 presence of a third species) produced both qualitative and quantitative improvements in
395 predicting community dynamics (Figs 7 and 8). In the presence of phage, our model
396 successfully predicted the qualitative result of *A. baumannii* competitive release, but failed
397 to quantitatively replicate observed community dynamics (Fig 8). This quantitative failure
398 suggests that our underlying gLV model structure excludes critical components, such as
399 higher order and/or heterogeneous (in time or space) interactions as well as the explicit
400 predatory effect of phage on *P. aeruginosa* (also likely time and spatially dependent).
401 Additionally, it emphasises an ongoing need in microbiome modelling to evaluate
402 functional forms that can efficiently – with respect to parameter number – and accurately
403 capture the complexities of community dynamics.

404

405 Our parameterised models are tuned to the data generated by our specific 4-species
406 community, which raises the question of ‘can we learn more general lessons from our
407 model?’ If we simplify our analysis to a 2-species context (focal pathogen, subject to
408 phage, plus a second, non-focal species), we can translate recent analyses on the impact
409 of (antibiotic) perturbations in a two species context [54]. This approach delivers a couple
410 of general messages. First, we can provide a general mathematical definition of

411 'competitive release' mediated by phage predation (see Text S1) highlighting the
412 importance of both demographic and species interaction parameters. Second, we can
413 underline that phage control of a focal pathogen presents secondary ecological problems,
414 if the pathogen is competing with other pathogens that are not targeted by the phage. In
415 this scenario, phage therapy (or other 'narrow spectrum' treatment) can lead to
416 competitive release of previously rare pathogens, as seen in our experimental data
417 showing the replacement of *P. aeruginosa* by *A. baumannii*, following phage treatment.
418 These results imply that 'narrow spectrum' anti-microbials, such as phages, may not
419 always be the best option when multiple pathogen species are competing within a single
420 polymicrobial infection. One counter-intuitive suggestion, grounded in the idea of
421 'beneficial resistance' [54], is to co-administer probiotic competitors that are resistant to
422 the treatment (i.e. phage or antibiotic resistant) and can therefore continue to exert
423 ecological suppression on the focal pathogen during the course of treatment, while
424 presenting minimal direct risk of disease. Alternatively, one could apply phage cocktails
425 that target not just the dominant pathogen, but also other co-existing bacterial pathogens,
426 to pre-emptively prevent their invasion [67].

427

428 **Materials and Methods**

429 **Bacteria and phages**

430 The bacteria *P. aeruginosa* UCBPP-PA14 strain marked with streptomycin resistance,
431 the PA14 *csy3::LacZ* strain (CRISPR-KO), and phages DMS3vir and DMS3vir+acrF1
432 were used throughout this study and have all been previously described [67,68]. The
433 microbial community consisted of *S. aureus* strain 13 S44 S9, *A. baumannii* clinical isolate

434 FZ21, and *B. cenocepacia* J2315, and were all isolated at Queen Astrid Military Hospital,
435 Brussels, Belgium.

436

437 **Evolution experiment**

438 The evolution experiment was performed by inoculating 60 μ l from overnight cultures, that
439 were grown for 24 hours, into glass microcosms containing 6 ml fresh LB medium (60 μ l
440 of culture containing ca. 10^6 cfu). All polyculture mixes were prepared so that *P.*
441 *aeruginosa* made up approximately 25% of the total inoculation volume (15 μ l of 60 μ l),
442 with the rest being made up of one or equal amounts of the microbial community bacteria.
443 In all monoculture controls, *P. aeruginosa* was diluted in LB medium to adjust starting
444 densities for consistency across all treatments ($n = 6$ per treatment, unless indicated
445 otherwise). Phage DMS3vir was added at 10^6 PFU. prior to inoculation. The experiment
446 ran for ten days, with transfers of 1:100 into fresh LB medium being done every 24 hours.
447 Throughout the experiment, the bacterial mixtures were grown at 37°C and shaking at
448 180 r.p.m. Phage titres were monitored daily, and were determined using chloroform-
449 treated lysate dilutions which were spotted onto lawns of *P. aeruginosa* *csy::LacZ*. To
450 determine which mechanism of phage-resistance had evolved, 24 randomly selected
451 clones per treatment replica from timepoints 3 and 10 were analysed using methods as
452 detailed in Westra *et al.* 2015 [68].

453

454 **DNA extraction and qPCR**

455 Bacterial densities, for both PA14 strains and the other individual microbial community
456 bacteria, were determined using DNA extractions followed by qPCR analyses. DNA

457 extractions were done using the DNeasy UltraClean Microbial Kit (Qiagen), following
458 instructions from the manufacturer, but with an additional pre-extraction step where
459 samples were treated with 15 µl lysostaphin (Sigma) at 0.1 mg ml⁻¹ as previously
460 described [15] to ensure lysis of *S. aureus*. The qPCR primers for *P. aeruginosa*, *A.*
461 *baumannii*, and *B. cenocepacia* were the same as in Alseth *et al.* [15], whereas the *S.*
462 *aureus* primers used are previously described [69]. All reactions were done in triplicates,
463 using Brilliant SYBR Green reagents (Agilent) and the Applied Biosystems QuantStudio
464 7 Flex Real-Time PCR system. For reaction mixture and details on PCR programme, see
465 ref. [15]. Bacterial cfu/ mL were calculated from the quantities offered by the standard
466 curve method, adjusting for gene copy number (4, 1, 6, and 6, for *P. aeruginosa*, *S.*
467 *aureus*, *A. baumannii*, and *B. cenocepacia* respectively).

468

469 **Competition experiment**

470 All strains were grown overnight at 37°C with agitation in 30 ml glass universals containing
471 6 ml of LB medium. For pairwise competition assays, bacteria from overnight cultures
472 were mixed thoroughly at different starting densities of PA14 (i.e., for 50% starting density
473 o *P. aeruginosa* - 30 µl of PA14 + 30 µl of competitor strain) and a total of 60 µl inoculated
474 into 6 ml of LB (*n* = 6 per treatment). Bacteria were grown for 24 hours in a shaking
475 incubator at 180 r.p.m at 37°C. Samples of 500 µl were taken at 0 and 24 hours post
476 competition and mixed with equal volume of 60% glycerol and stored at -70°C until further
477 DNA extraction and qPCR analysis to quantify species densities.

478

479 To determine the competitive performance of the focal species relative to competitor
480 strain we used the selection rate (r) formula as it follows: (r) each day (t) 1 (n) day post
481 incubation ($r = (\ln [\text{density strain A at } t_n/\text{density strain A at } t_{n-1}] - \ln [\text{density strain B at } t_n/\text{density strain B at } t_{n-1}])/day$) [70,71].

483

484 **Mathematical modelling**

485 Models were parameterized via optimization with least-squares regression to fit the
486 generalized Lotka-Volterra competition model, $\frac{dN_i}{dt} = r_i N_i - \sum_{j=1}^n \beta_{ij} N_i N_j$, where $N_i(t)$ is
487 the density of the i th species, r_i is the respective single species maximal growth rate, β_{ij}
488 describes the per capita effect of species j on species i , and n is the total number of
489 species. We take a 'bottom up' approach [72] to determine the interaction coefficients β_{ij} .

490 In all cases, we determine single species maximal growth rates r_i from mono-culture time
491 series data and fix them for 2-, 3-, and 4-species model parameterization. Initially, we fit
492 pairwise interaction coefficients for all possible 2-species co-cultures and from here,
493 construct an interaction matrix to predict the dynamics for the 3- and 4- species
494 communities (Fig S8). This is done for both PA14 and CRISPR-KO strains, with and
495 without phage, where phage effects are implicitly represented by changes in interaction
496 parameters between the models with and without phage. To improve results, we
497 additionally fit pairwise interaction parameters β_{ij} using 3-species experimental data
498 where all interaction parameters are open (only growth rates fixed). Using either the
499 resulting interaction terms or averaging these coefficients with the 2-species coefficients
500 (in PA14 no phage case, Text S1), we are again able to construct an interaction matrix to
501 predict 4-species community dynamics (Fig 7 and 8).

502

503 See Text S1 for further description of above model parameterization methods, simulation
504 methods (Fig S9), and mathematical analysis of phage dependent competitive release.
505 All modelling and analysis was done using Matlab 2021b and the code is publicly available
506 at: <https://github.com/GaTechBrownLab/phage-community-dynamics.git>.

507

508 **Statistical analyses**

509 Analysis of the effects of the various species compositions on *P. aeruginosa* densities in
510 the absence (Fig 2) or presence (Fig 3) of phage were done using a generalised linear
511 model (GLM) approach, with log10 cfu/mL set as the response variable. The explanatory
512 variables used in the analyses were type of PA14 clone (PA14 WT or CRISPR-KO),
513 treatment, timepoint, replica, and experimental repeat to account for potential pseudo-
514 replication.

515 To explore the impact of interspecific competition on the evolution of phage resistance at
516 timepoints 3 and 10 (Fig S7), we used a quasibinomial GLM where the proportion of
517 evolved CRISPR-based phage resistance was the response variable, and treatment,
518 replica, and experimental repeat were the explanatory variables.

519 The analyses of fold-changes to assess competitive release by comparing absolute
520 density differences of the individual community members in the absence v presence of
521 phage (Fig 4; *S. aureus*, *A. baumannii*, and *B. cenocepacia*) was done through Wilcox
522 signed rank exact tests. A non-parametric test was chosen after performing a Shapiro-
523 Wilk test for normality.

524 Next, the diversity maintaining effects were examined through assessing the effect of
525 phage DMS3vir on Shannon Diversity index scores over time (Fig 5). This was done
526 through a linear model where the Shannon Diversity index score (H) was the response
527 variable, and treatment, timepoint, the presence of phage, PA14 clone (PA14WT and
528 CRISPR-KO), experimental repeat, and replica were the explanatory variables. Shannon
529 Diversity (H), was calculated as $H = -\sum p_i * \ln(p_i)$, where Σ is the sum and p_i is the proportion
530 of the entire community made up of species i .

531 For the competition assay (Fig 5), Graphpad Prism9 software (San Diego, CA) was used
532 for statistical analysis. We used one-way ANOVA with Tukey post hoc testing for multiple
533 comparisons, in which, $p < 0.05$ was considered statistically significant.

534 Throughout the paper, pairwise comparisons were done using the Emmeans package
535 [73], and model fits were assessed using Chi-squared tests and by comparing Akaike
536 information criterion (AIC) values, as well as plotting residuals and probability distributions
537 using histograms and quantile-quantile plots (Q-Q plots) respectively. All statistical
538 analyses were done using R version 4.3.0. [74], its built-in methods, and the Tidyverse
539 package version 2.0.0 [75]. All data is available at: 10.6084/m9.figshare.24187284.

540

541 Acknowledgements

542 This work was supported by a grant from the ERC (ERC-STG-2016-714478 -
543 EVOIMMECH), a Biotechnology and Biological Sciences Research Council (BBSRC)
544 sLoLa grant BB/X003051/1, awarded to E.R.W, a NHI grant (NIH 5R21AI156817-02)
545 awarded to S.P.B, and a BBSRC-National Science Foundation (NSF) grant xxxx,
546 awarded to S.P.B., R.A.K & E.R.W.

547 Competing Interests

548 E.R.W. is inventor on patent GB2303034.9.

549

550 References

551 1. Byrd AL, Belkaid Y, Segre JA. The human skin microbiome. *Nat Rev Microbiol.*

552 2018;16: 143–155. doi:10.1038/nrmicro.2017.157

553 2. Thursby E, Juge N. Introduction to the human gut microbiota. *Biochem J.* 2017;474:

554 1823–1836. doi:10.1042/BCJ20160510

555 3. Pearl Mizrahi S, Goyal A, Gore J. Community interactions drive the evolution of

556 antibiotic tolerance in bacteria. *Proc Natl Acad Sci.* 2023;120: e2209043119.

557 doi:10.1073/pnas.2209043119

558 4. Manichanh C, Borruel N, Casellas F, Guarner F. The gut microbiota in IBD. *Nat Rev*

559 *Gastroenterol Hepatol.* 2012;9: 599–608. doi:10.1038/nrgastro.2012.152

560 5. Freitas AC, Chaban B, Bocking A, Rocco M, Yang S, Hill JE, et al. The vaginal

561 microbiome of pregnant women is less rich and diverse, with lower prevalence of

562 Mollicutes, compared to non-pregnant women. *Sci Rep.* 2017;7: 9212.

563 doi:10.1038/s41598-017-07790-9

564 6. Lloyd-Price J, Mahurkar A, Rahnavard G, Crabtree J, Orvis J, Hall AB, et al. Strains,

565 functions and dynamics in the expanded Human Microbiome Project. *Nature.*

566 2017;550: 61–66. doi:10.1038/nature23889

567 7. Glassner KL, Abraham BP, Quigley EMM. The microbiome and inflammatory bowel
568 disease. *J Allergy Clin Immunol.* 2020;145: 16–27. doi:10.1016/j.jaci.2019.11.003

569 8. Azimi S, Lewin GR, Whiteley M. The biogeography of infection revisited. *Nat Rev*
570 *Microbiol.* 2022;20: 579–592. doi:10.1038/s41579-022-00683-3

571 9. Scher JU, Sczesnak A, Longman RS, Segata N, Ubeda C, Bielski C, et al. Expansion
572 of intestinal *Prevotella copri* correlates with enhanced susceptibility to arthritis.
573 Mathis D, editor. *eLife.* 2013;2: e01202. doi:10.7554/eLife.01202

574 10. Lam V, Su J, Hsu A, Gross GJ, Salzman NH, Baker JE. Intestinal microbial
575 metabolites are linked to severity of myocardial infarction in rats. *PLoS One.* 2016;11:
576 e0160840. doi:10.1371/journal.pone.0160840

577 11. Livanos AE, Greiner TU, Vangay P, Pathmasiri W, Stewart D, McRitchie S, et al.
578 Antibiotic-mediated gut microbiome perturbation accelerates development of type 1
579 diabetes in mice. *Nat Microbiol.* 2016;1: 16140. doi:10.1038/nmicrobiol.2016.140

580 12. Surana NK, Kasper DL. Moving beyond microbiome-wide associations to causal
581 microbe identification. *Nature.* 2017;552: 244–247. doi:10.1038/nature25019

582 13. Castledine M, Padfield D, Buckling A. Experimental (co)evolution in a multi-species
583 microbial community results in local maladaptation. *Ecol Lett.* 2020;23: 1673–1681.
584 doi:10.1111/ele.13599

585 14. Varga JJ, Zhao CY, Davis JD, Hao Y, Farrell JM, Gurney JR, et al. Antibiotics drive
586 expansion of rare pathogens in a chronic infection microbiome model. *mSphere*.
587 2022;7: e00318-22. doi:10.1128/msphere.00318-22

588 15. Alseth EO, Pursey E, Luján AM, McLeod I, Rollie C, Westra ER. Bacterial biodiversity
589 drives the evolution of CRISPR-based phage resistance. *Nature*. 2019;574: 549–
590 552. doi:10.1038/s41586-019-1662-9

591 16. Piccardi P, Vessman B, Mitri S. Toxicity drives facilitation between 4 bacterial
592 species. *Proc Natl Acad Sci*. 2019;116: 15979–15984.
593 doi:10.1073/pnas.1906172116

594 17. Großkopf T, Soyer OS. Synthetic microbial communities. *Curr Opin Microbiol*.
595 2014;18: 72–77. doi:10.1016/j.mib.2014.02.002

596 18. De Roy K, Marzorati M, Van den Abbeele P, Van de Wiele T, Boon N. Synthetic
597 microbial ecosystems: an exciting tool to understand and apply microbial
598 communities: Synthetic microbial ecosystems. *Environ Microbiol*. 2014;16: 1472–
599 1481. doi:10.1111/1462-2920.12343

600 19. Karkaria BD, Manhart A, Fedorec AJH, Barnes CP. Chaos in synthetic microbial
601 communities. *PLOS Comput Biol*. 2022;18: e1010548.
602 doi:10.1371/journal.pcbi.1010548

603 20. Wang T, Weiss A, Aqeel A, Wu F, Lopatkin AJ, David LA, et al. Horizontal gene
604 transfer enables programmable gene stability in synthetic microbiota. *Nat Chem Biol*.
605 2022; 1–8. doi:10.1038/s41589-022-01114-3

606 21. Dion MB, Oechslin F, Moineau S. Phage diversity, genomics and phylogeny. *Nat*
607 *Rev Microbiol.* 2020;18: 125–138. doi:10.1038/s41579-019-0311-5

608 22. Suttle CA. Viruses in the sea. *Nature.* 2005;437: 356–361. doi:10.1038/nature04160

609 23. Chevallereau A, Pons BJ, van Houte S, Westra ER. Interactions between bacterial
610 and phage communities in natural environments. *Nat Rev Microbiol.* 2021; 1–14.
611 doi:10.1038/s41579-021-00602-y

612 24. Sullivan MB, Weitz JS, Wilhelm S. Viral ecology comes of age. *Environ Microbiol*
613 *Rep.* 2017;9: 33–35. doi:<https://doi.org/10.1111/1758-2229.12504>

614 25. Fazzino L, Anisman J, Chacón JM, Heineman RH, Harcombe WR. Lytic
615 bacteriophage have diverse indirect effects in a synthetic cross-feeding community.
616 *ISME J.* 2020;14: 123–134. doi:10.1038/s41396-019-0511-z

617 26. Castledine M, Sierociński P, Inglis M, Kay S, Hayward A, Buckling A, et al. Greater
618 phage genotypic diversity constrains arms-race coevolution. *Front Cell Infect*
619 *Microbiol.* 2022;12: 834406. doi:10.3389/fcimb.2022.834406

620 27. Tecon R, Mitri S, Ciccarese D, Or D, van der Meer JR, Johnson DR. Bridging the
621 holistic-reductionist divide in microbial ecology. *mSystems.* 2019;4: e00265-18,
622 /msystems/4/1/msys.00265-18.atom. doi:10.1128/mSystems.00265-18

623 28. Blazanin M, Turner PE. Community context matters for bacteria-phage ecology and
624 evolution. *ISME J.* 2021; 1–10. doi:10.1038/s41396-021-01012-x

625 29. Clooney AG, Sutton TDS, Shkoporov AN, Holohan RK, Daly KM, O'Regan O, et al.
626 Whole-virome analysis sheds light on viral dark matter in Inflammatory Bowel
627 Disease. *Cell Host Microbe*. 2019;26: 764-778.e5. doi:10.1016/j.chom.2019.10.009

628 30. Norman JM, Handley SA, Baldridge MT, Droit L, Liu CY, Keller BC, et al. Disease-
629 specific alterations in the enteric virome in Inflammatory Bowel Disease. *Cell*.
630 2015;160: 447-460. doi:10.1016/j.cell.2015.01.002

631 31. Zuo T, Lu X-J, Zhang Y, Cheung CP, Lam S, Zhang F, et al. Gut mucosal virome
632 alterations in ulcerative colitis. *Gut*. 2019;68: 1169-1179. doi:10.1136/gutjnl-2018-
633 318131

634 32. Ma Y, You X, Mai G, Tokuyasu T, Liu C. A human gut phage catalog correlates the
635 gut phageome with type 2 diabetes. *Microbiome*. 2018;6: 24. doi:10.1186/s40168-
636 018-0410-y

637 33. Tetz G, Brown SM, Hao Y, Tetz V. Parkinson's disease and bacteriophages as its
638 overlooked contributors. *Sci Rep*. 2018;8: 10812. doi:10.1038/s41598-018-29173-4

639 34. Mirzaei MK, Khan MAA, Ghosh P, Taranu ZE, Taguer M, Ru J, et al. Bacteriophages
640 isolated from stunted children can regulate gut bacterial communities in an age-
641 specific manner. *Cell Host Microbe*. 2020;27: 199-212.e5.
642 doi:10.1016/j.chom.2020.01.004

643 35. Mayo-Muñoz D, Pinilla-Redondo R, Birkholz N, Fineran PC. A host of armor:
644 Prokaryotic immune strategies against mobile genetic elements. *Cell Rep*. 2023;42.
645 doi:10.1016/j.celrep.2023.112672

646 36. Georjon H, Bernheim A. The highly diverse antiphage defence systems of bacteria.

647 Nat Rev Microbiol. 2023; 1–15. doi:10.1038/s41579-023-00934-x

648 37. Labrie SJ, Samson JE, Moineau S. Bacteriophage resistance mechanisms. Nat Rev

649 Microbiol. 2010;8: 317–327. doi:10.1038/nrmicro2315

650 38. Bikard D, Marraffini LA. Innate and adaptive immunity in bacteria: mechanisms of

651 programmed genetic variation to fight bacteriophages. Curr Opin Immunol. 2012;24:

652 15–20. doi:10.1016/j.coi.2011.10.005

653 39. Rostøl JT, Marraffini L. (Ph)ighting Phages: How Bacteria Resist Their Parasites.

654 Cell Host Microbe. 2019;25: 184–194. doi:10.1016/j.chom.2019.01.009

655 40. Dimitriu T, Szczelkun MD, Westra ER. Evolutionary ecology and interplay of

656 prokaryotic innate and adaptive immune systems. Curr Biol CB. 2020;30: R1189–

657 R1202. doi:10.1016/j.cub.2020.08.028

658 41. Harvey H, Bondy-Denomy J, Marquis H, Sztanko KM, Davidson AR, Burrows LL.

659 *Pseudomonas aeruginosa* defends against phages through type IV pilus

660 glycosylation. Nat Microbiol. 2018;3: 47–52. doi:10.1038/s41564-017-0061-y

661 42. Barrangou R, Fremaux C, Deveau H, Richards M, Boyaval P, Moineau S, et al.

662 CRISPR provides acquired resistance against viruses in prokaryotes. Science.

663 2007;315: 1709–1712. doi:10.1126/science.1138140

664 43. Laanto E, Bamford JKH, Laakso J, Sundberg L-R. Phage-driven loss of virulence in
665 a fish pathogenic bacterium. PLoS ONE. 2012;7: e53157.
666 doi:10.1371/journal.pone.0053157

667 44. León M, Bastías R. Virulence reduction in bacteriophage resistant bacteria. Front
668 Microbiol. 2015;6. doi:10.3389/fmicb.2015.00343

669 45. Hosseiniidoust Z, Tufenkji N, van de Ven TGM. Formation of biofilms under phage
670 predation: considerations concerning a biofilm increase. Biofouling. 2013;29: 457–
671 468. doi:10.1080/08927014.2013.779370

672 46. Chan BK, Sistrom M, Wertz JE, Kortright KE, Narayan D, Turner PE. Phage selection
673 restores antibiotic sensitivity in MDR *Pseudomonas aeruginosa*. Sci Rep. 2016;6:
674 26717. doi:10.1038/srep26717

675 47. Bhargava N, Sharma P, Capalash N. Pyocyanin stimulates quorum sensing-
676 mediated tolerance to oxidative stress and increases persister cell populations in
677 *Acinetobacter baumannii*. Infect Immun. 2014;82: 3417–3425.
678 doi:10.1128/IAI.01600-14

679 48. Drevinek P, Mahenthiralingam E. *Burkholderia cenocepacia* in cystic fibrosis:
680 epidemiology and molecular mechanisms of virulence. Clin Microbiol Infect. 2010;16:
681 821–830. doi:10.1111/j.1469-0691.2010.03237.x

682 49. Pendleton JN, Gorman SP, Gilmore BF. Clinical relevance of the ESKAPE
683 pathogens. Expert Rev Anti Infect Ther. 2013;11: 297–308. doi:10.1586/eri.13.12

684 50. Stacy A, McNally L, Darch SE, Brown SP, Whiteley M. The biogeography of
685 polymicrobial infection. Nat Rev Microbiol. 2016;14: 93–105.
686 doi:10.1038/nrmicro.2015.8

687 51. Thingstad TF. Elements of a theory for the mechanisms controlling abundance,
688 diversity, and biogeochemical role of lytic bacterial viruses in aquatic systems.
689 Limnol Oceanogr. 2000;45: 1320–1328. doi:10.4319/lo.2000.45.6.1320

690 52. de Roode JC, Culleton R, Bell AS, Read AF. Competitive release of drug resistance
691 following drug treatment of mixed *Plasmodium chabaudi* infections. Malar J. 2004;3:
692 33. doi:10.1186/1475-2875-3-33

693 53. Wale N, Sim DG, Jones MJ, Salathe R, Day T, Read AF. Resource limitation
694 prevents the emergence of drug resistance by intensifying within-host competition.
695 Proc Natl Acad Sci. 2017;114: 13774–13779. doi:10.1073/pnas.1715874115

696 54. Wollein Waldehoff K, Sundius S, Kuske R, Brown SP. Defining the benefits of
697 antibiotic resistance in commensals and the scope for resistance optimization. mBio.
698 2022;14: e01349-22. doi:10.1128/mbio.01349-22

699 55. Lloyd-Smith JO. Vacated niches, competitive release and the community ecology of
700 pathogen eradication. Philos Trans R Soc B Biol Sci. 2013;368: 20120150.
701 doi:10.1098/rstb.2012.0150

702 56. Widder S, Allen RJ, Pfeiffer T, Curtis TP, Wiuf C, Sloan WT, et al. Challenges in
703 microbial ecology: building predictive understanding of community function and
704 dynamics. ISME J. 2016;10: 2557–2568. doi:10.1038/ismej.2016.45

705 57. Wootton JT. The nature and consequences of indirect effects in ecological
706 communities. 1994. doi:10/dzfmpb

707 58. Petersen C, Round JL. Defining dysbiosis and its influence on host immunity and
708 disease. *Cell Microbiol.* 2014;16: 1024–1033. doi:10.1111/cmi.12308

709 59. Waller AS, Yamada T, Kristensen DM, Kultima JR, Sunagawa S, Koonin EV, et al.
710 Classification and quantification of bacteriophage taxa in human gut metagenomes.
711 *ISME J.* 2014;8: 1391–1402. doi:10.1038/ismej.2014.30

712 60. Dahlman S, Avellaneda-Franco L, Barr JJ. Phages to shape the gut microbiota? *Curr*
713 *Opin Biotechnol.* 2021;68: 89–95. doi:10.1016/j.copbio.2020.09.016

714 61. Sweere JM, Van Belleghem JD, Ishak H, Bach MS, Popescu M, Sunkari V, et al.
715 Bacteriophage trigger antiviral immunity and prevent clearance of bacterial infection.
716 *Science.* 2019;363: eaat9691. doi:10.1126/science.aat9691

717 62. Coyte KZ, Schluter J, Foster KR. The ecology of the microbiome: Networks,
718 competition, and stability. *Science.* 2015;350: 663–666.
719 doi:10.1126/science.aad2602

720 63. Hofbauer J, Sigmund K. On the stabilizing effect of predators and competitors on
721 ecological communities. *J Math Biol.* 1989;27: 537–548. doi:10.1007/BF00288433

722 64. Coyte KZ, Rao C, Rakoff-Nahoum S, Foster KR. Ecological rules for the assembly
723 of microbiome communities. *PLoS Biol.* 2021;19: e3001116.
724 doi:10.1371/journal.pbio.3001116

725 65. Bairey E, Kelsic ED, Kishony R. High-order species interactions shape ecosystem
726 diversity. *Nat Commun.* 2016;7: 12285. doi:10.1038/ncomms12285

727 66. Grilli J, Barabás G, Michalska-Smith MJ, Allesina S. Higher-order interactions
728 stabilize dynamics in competitive network models. *Nature.* 2017;548: 210–213.
729 doi:10.1038/nature23273

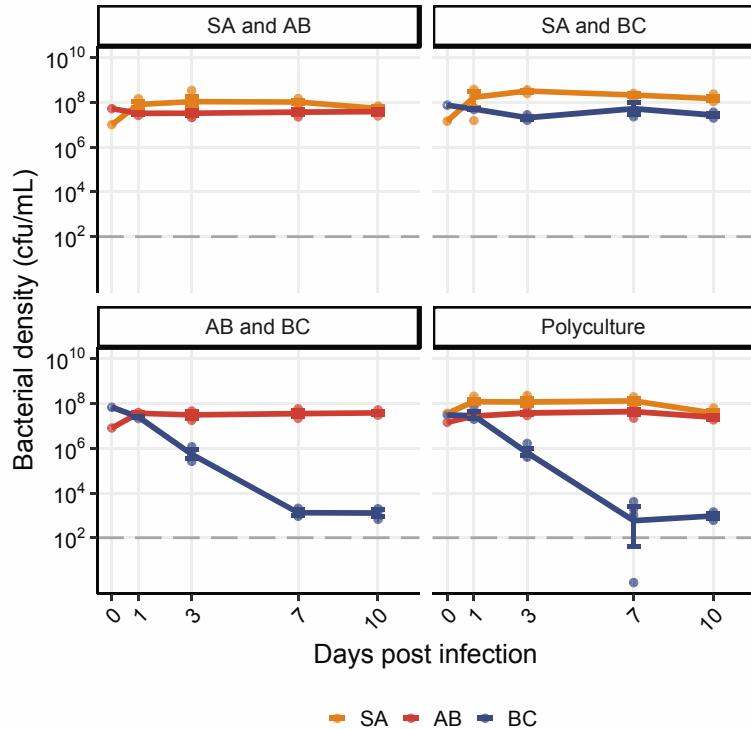
730 67. van Houte S, Ekroth AKE, Broniewski JM, Chabas H, Ashby B, Bondy-Denomy J, et
731 al. The diversity-generating benefits of a prokaryotic adaptive immune system.
732 *Nature.* 2016;532: 385–388. doi:10.1038/nature17436

733 68. Westra ER, van Houte S, Oyesiku-Blakemore S, Makin B, Broniewski JM, Best A, et
734 al. Parasite exposure drives selective evolution of constitutive versus inducible
735 defense. *Curr Biol.* 2015;25: 1043–1049. doi:10.1016/j.cub.2015.01.065

736 69. Goto M, Takahashi H, Segawa Y, Hayashidani H, Takatori K, Hara-Kudo Y. Real-
737 time PCR method for quantification of *Staphylococcus aureus* in milk. *J Food Prot.*
738 2007;70: 90–96. doi:10.4315/0362-028X-70.1.90

739 70. Lenski RE, Rose MR, Simpson SC, Tadler SC. Long-term experimental evolution in
740 *Escherichia coli*. I. Adaptation and divergence during 2,000 generations. *Am Nat.*
741 1991;138: 1315–1341. doi:10.1086/285289

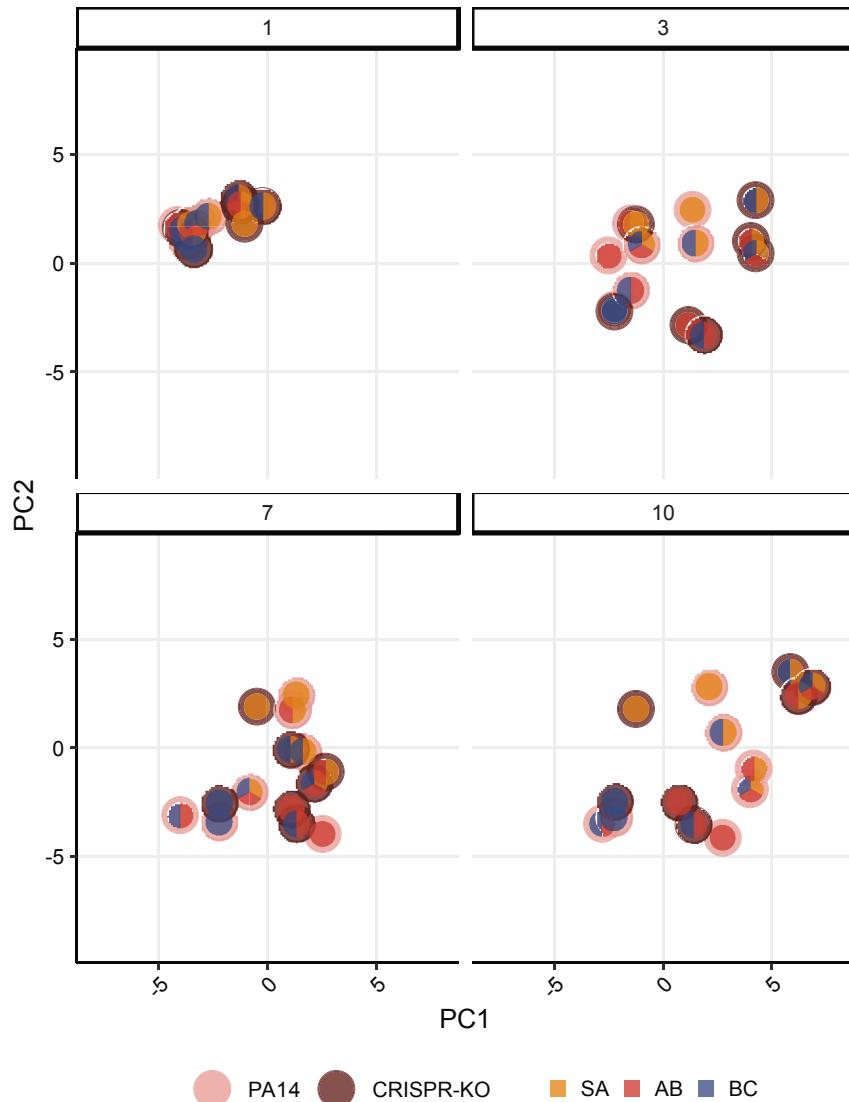
742 71. Travisano M, Lenski RE. Long-Term Experimental evolution in *Escherichia coli*. IV.
743 Targets of selection and the specificity of adaptation. *Genetics.* 1996;143: 15–26.
744 doi:10.1093/genetics/143.1.15


745 73. Davis JD, Olivença DV, Brown SP, Voit EO. Methods of quantifying interactions
746 among populations using Lotka-Volterra models. *Front. Syst. Biol.* 2022;2.
747 doi.org/10.3389/fsysb.2022.1021897

748 73. Lenth RV. Least-squares means: The R package *lsmeans*. *J Stat Softw.* 2016;69:
749 1–33. doi:10.18637/jss.v069.i01

750 74. R Core Team. R: A language and environment for statistical computing. R
751 Foundation for Statistical Computing, Vienna, Austria. 2020. Available:
752 <https://www.R-project.org/>

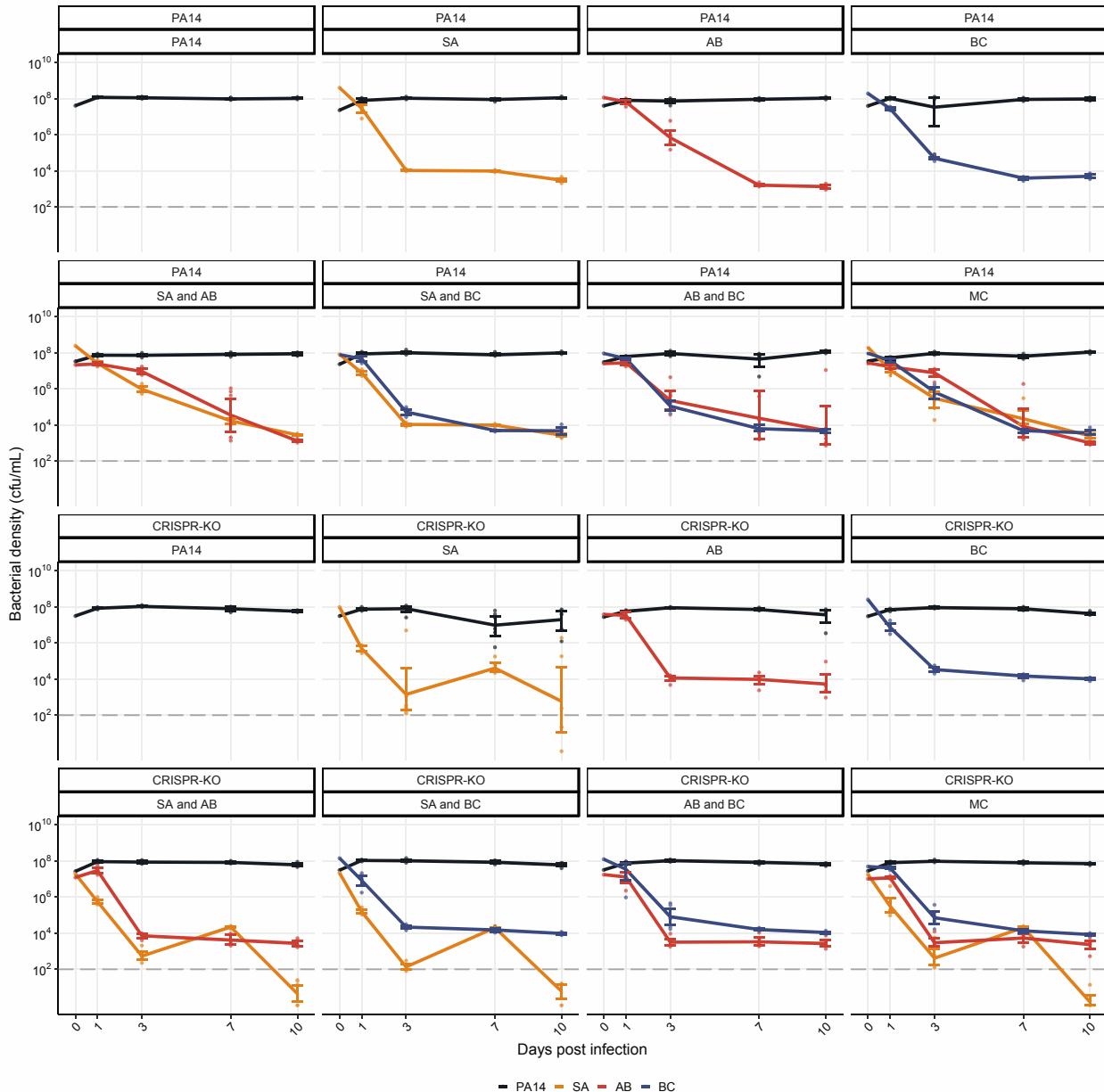
753 75. Wickham H, Averick M, Bryan J, Chang W, McGowan LD, François R, et al.
754 Welcome to the Tidyverse. *J Open Source Softw.* 2019;4. doi:10.21105/joss.01686


755

756

757 **Supplemental Fig 1. Line plot of bacterial densities in the absence of *P. aeruginosa***
758 **and its phage.** Showing the bacterial densities in cfu/mL over time for SA (*S. aureus*),
759 AB (*A. baumannii*), and BC (*B. cenocepacia*) in various co-culture combinations in the
760 absence of *P. aeruginosa* and its phage. Dashed horizontal line at 10^2 cfu/mL marks the
761 threshold of reliable detection where the qPCR results indicate the bacteria has gone or
762 is close to extinction from a population. Data are mean \pm 95% CI.

763

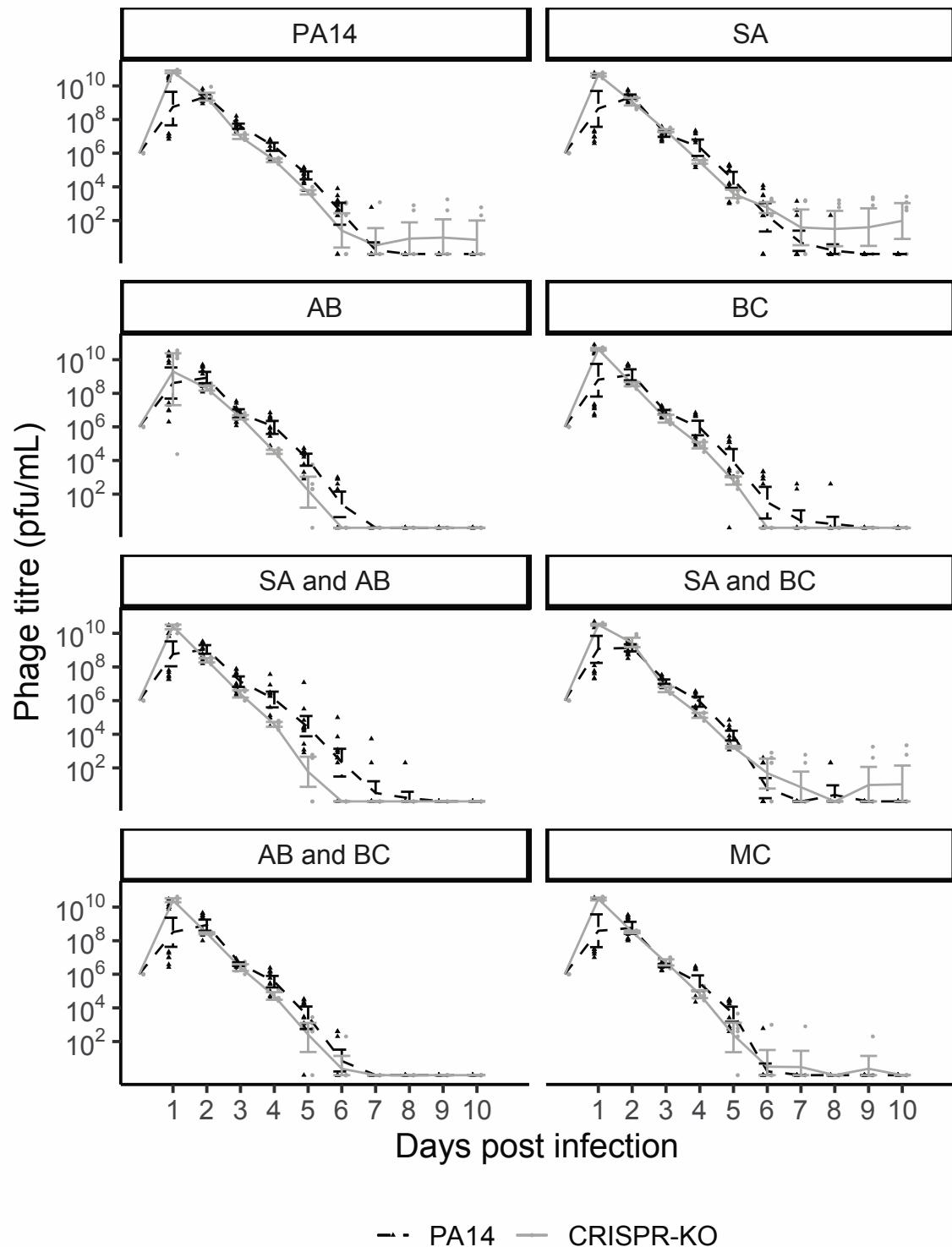


764

765 **Supplemental Fig 2. Ordination plot in the absence of phage.** PCA ordination of
766 relative bacterial abundance in the absence of phage DMS3vir, with grid layouts
767 separated into days post phage infection. Outer circle colour indicates which PA14 clone
768 is present in the population, while inner circle indicates community composition (SA = *S.*
769 *aureus*, AB = *A. baumannii*, BC = *B. cenocepacia*).

770

771

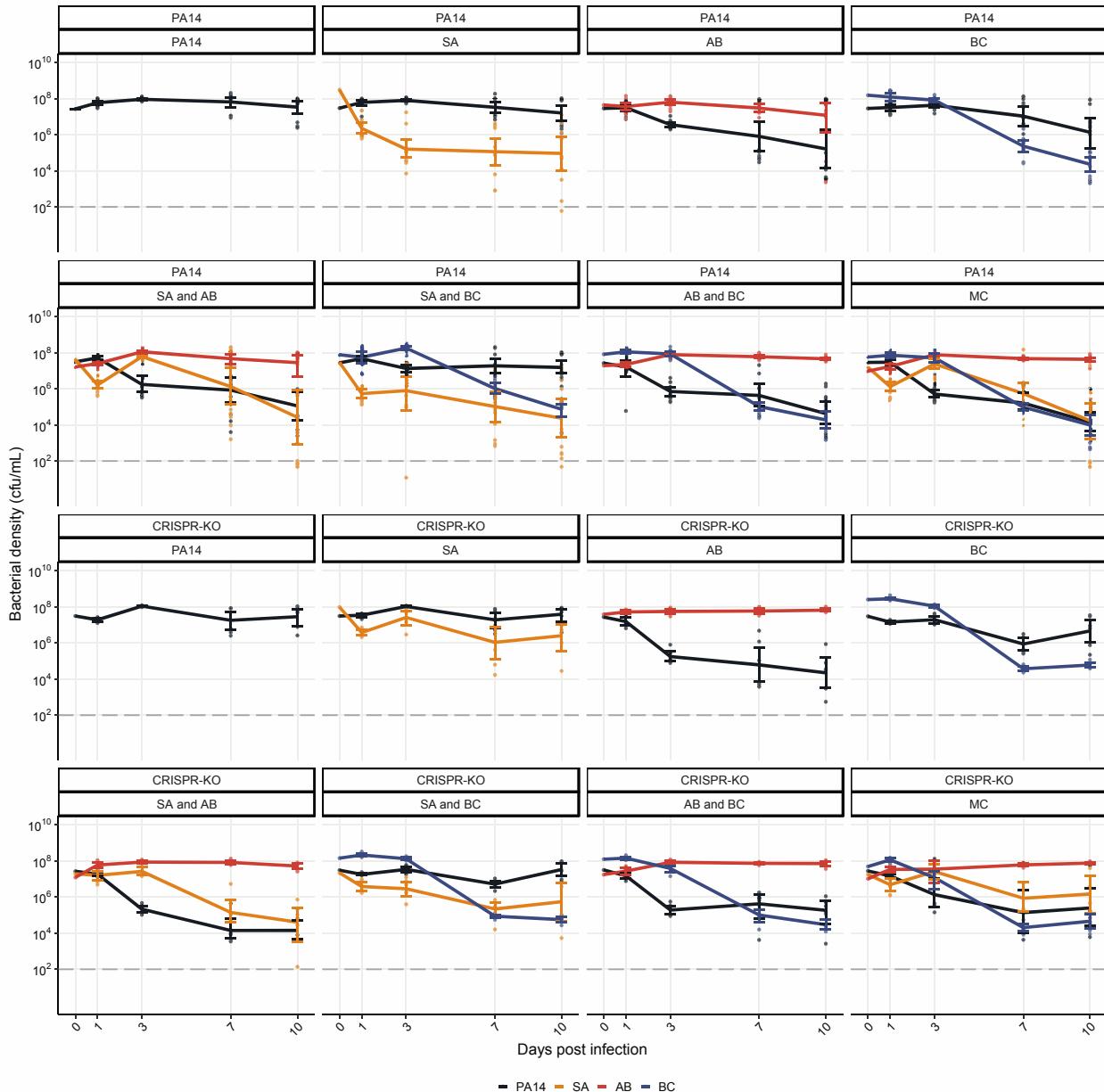


772

773 **Supplemental Fig 3. Line plots of bacterial densities in the absence of phage.**
774 Showing the bacterial densities in cfu/mL over time for the PA14 WT and CRISPR-KO *P.*
775 *aeruginosa* strains, and **b** the other microbial community species (SA = *S. aureus*, AB =
776 *A. baumannii*, BC = *B. cenocepacia*, MC = microbial community) in the absence of phage
777 DMS3vir. Dashed horizontal line at 10² cfu/mL marks the threshold of reliable detection

778 where the qPCR results indicate the bacteria has gone or is close to extinction from a
779 population. Data are mean \pm 95% CI.

780

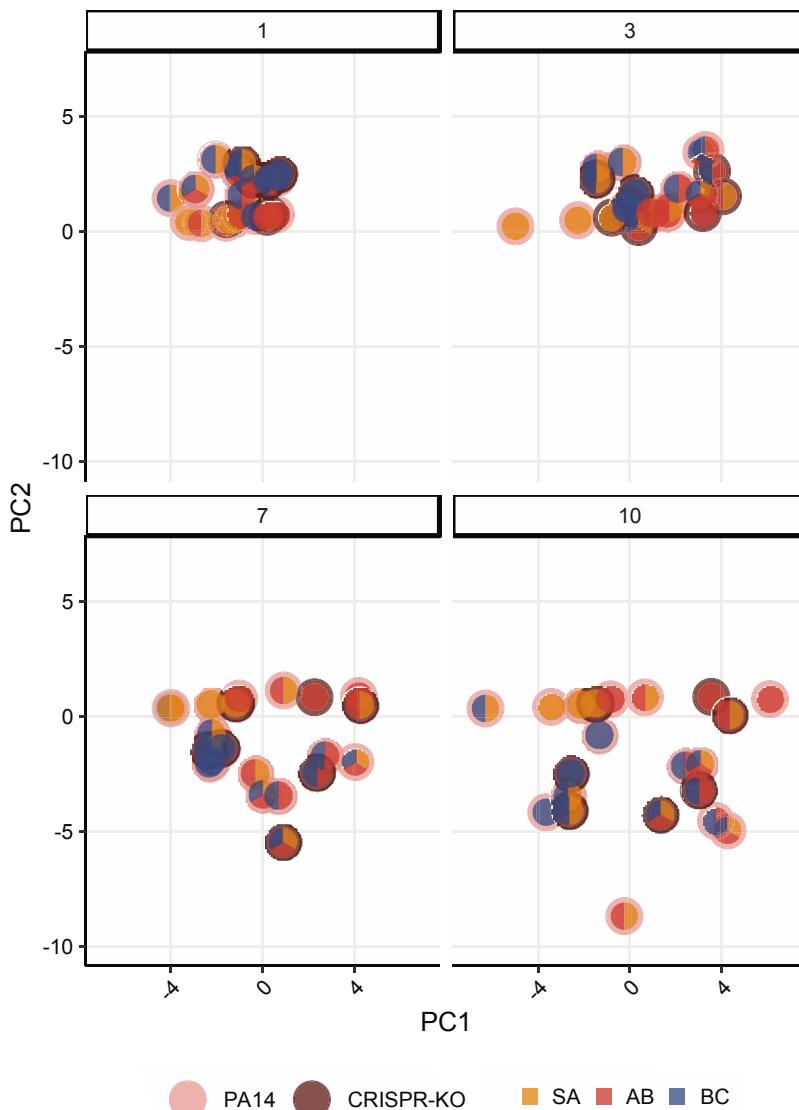


781

782 **Supplemental Fig 4. Phage titres over time for each experimental treatment.** Phage
783 titres for phage DMS3vir over time across all experimental treatments (SA = *S. aureus*,

784 AB = *A. baumannii*, BC = *B. cenocepacia*, MC = microbial community), infecting either
785 the PA14 WT or the CRISPR-KO strain as indicated by line type. Each data point
786 represents a replicate, with lines following the mean and the error bars denoting 95% CI.
787 Asterisks indicate a significant overall difference in phage density between the PA14 WT
788 (n = 12 per timepoint) or CRISPR-KO clone (n = 6 per timepoint) (effect of *P. aeruginosa*
789 clone; linear models: * p < 0.05).

790

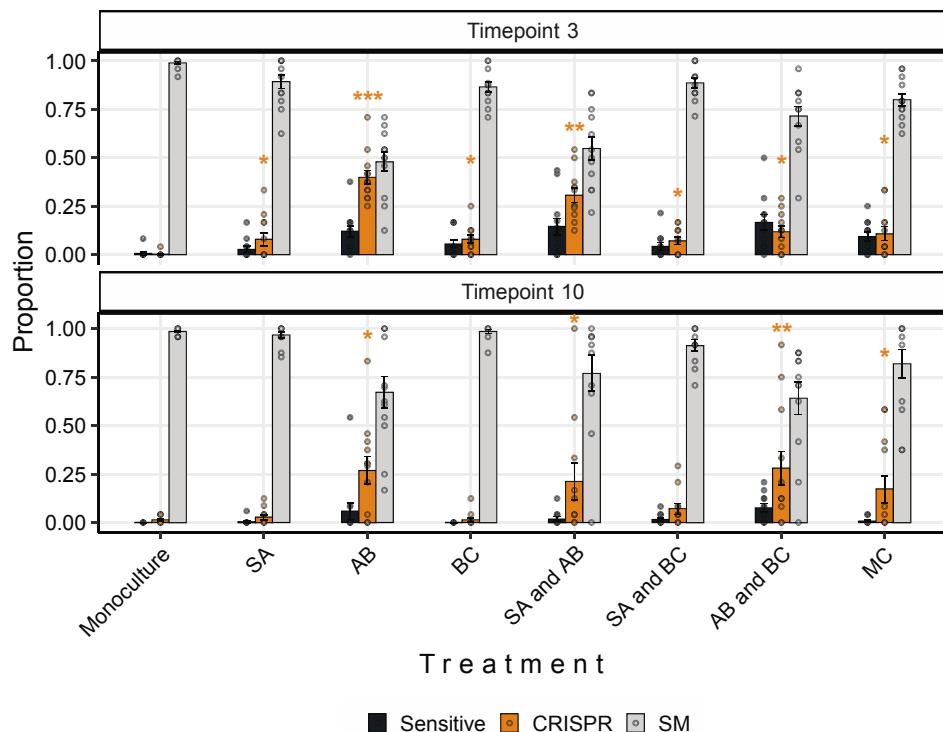


791

792 **Supplemental Fig 5. Line plots of bacterial densities in the presence of phage.**
793 Showing the bacterial densities in cfu/mL over time for the PA14 WT and CRISPR-KO *P.*
794 *aeruginosa* strains, and **b** the other microbial community species (SA = *S. aureus*, AB =
795 *A. baumannii*, BC = *B. cenocepacia*, MC = Microbial community) in the presence of phage
796 DMS3vir. Dashed horizontal line at 10² cfu/mL marks the threshold of reliable detection

797 where the qPCR results indicate the bacteria has gone or is close to extinction from a
798 population. Data are mean \pm 95% CI.

799



800

801 **Supplemental Fig 6. Ordination plots in the presence of phage.** PCA ordination of
802 relative bacterial abundance in the presence of phage DMS3vir, with grid layouts
803 separated into days post phage infection. Outer circle colour indicates which PA14 clone

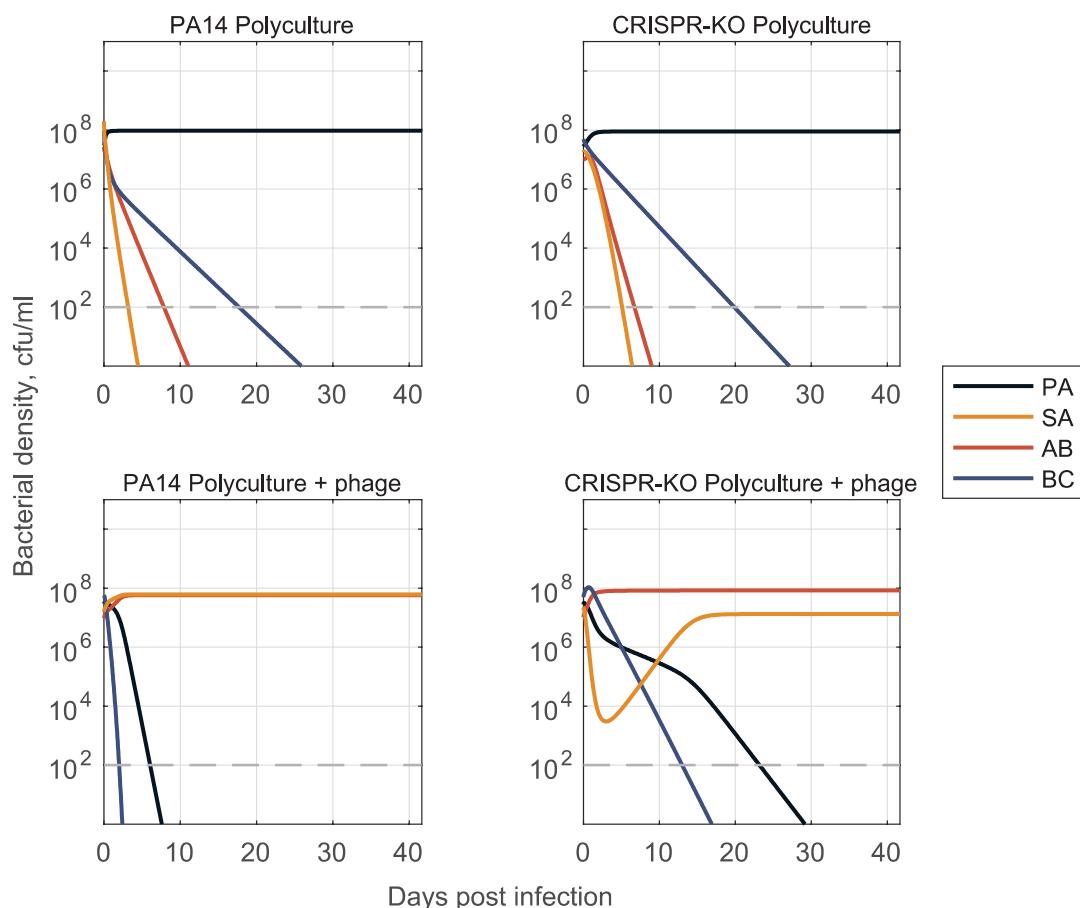
804 is present in the population, while inner circle indicates community composition (SA = *S. aureus*, AB = *A. baumannii*, BC = *B. cenocepacia*).


806

807

808 **Supplemental Fig 7. Interspecific competition affects the proportion of evolved**
809 **CRISPR-based phage resistance.** Proportion of *P. aeruginosa* PA14 WT at timepoints
810 3 and 10 that evolved phage-resistance either through surface modification (SM) or
811 CRISPR immunity, or which remained sensitive to phage DMS3vir when grown in
812 monoculture or different polycultures (SA = *S. aureus*, AB = *A. baumannii*, BC = *B.*
813 *cenocepacia*). Data are mean \pm SE. Asterisks indicate a significant difference in
814 proportion of CRISPR immunity evolved when compared to the PA14 monoculture within
815 each timepoint (n = 12 per treatment) (generalised linear model, quasibinomial: * p < 0.05,
816 ** p < 0.01, *** p < 0.001).

817



818

819 **Supplemental Fig 8. Model from no phage data, trained on only pairwise**
820 **experimental data.** Model fit predictions for two-, three-, and full four species community
821 dynamics (solid lines) compared to experimental data (dashed lines). Models were
822 parameterized via optimization with least-squares to fit a system of ODEs (defined as a
823 generalized Lotka-Volterra competition model with n species, where $n=1,2,3,4$). We
824 parameterize the models via fitting of 1- (for growth rates r_i) and 2- (for all possible

825 pairwise interaction coefficients $\beta_{i,j} \forall i,j = 1,2$) species dynamics and use the resulting
826 coefficients to predict the 3- and 4-species community dynamics. For fitting co-culture
827 data, growth rates r_i were fixed from mono-culture data and interaction parameters $\beta_{i,j}$
828 were all open. See Methods and Text S1 for a detailed description of mathematical
829 modelling.

830

831

832 **Supplemental Fig 9. Long time simulation of full community model shows shift in**
833 **ecological outcomes given inclusion of phage.** Simulation of the 4-species community
834 gLV model over a long time scale reveals a qualitative shift in the outcome of the
835 community when phage is present. In the absence of phage (top), *P. aeruginosa* is the
836 dominant competitor and only surviving species. In the presence of phage (bottom), the

837 dominant competitor is eliminated, and we see competitive release of *A. baumannii* and
838 *S. aureus* – maintaining 2 of the 3 non-targeted species in the community. Growth and
839 interaction coefficients for simulation are from the model fits in Figures 7 and 8. For a
840 detailed description of model parameterization and simulation methods, see Methods and
841 Text S1.

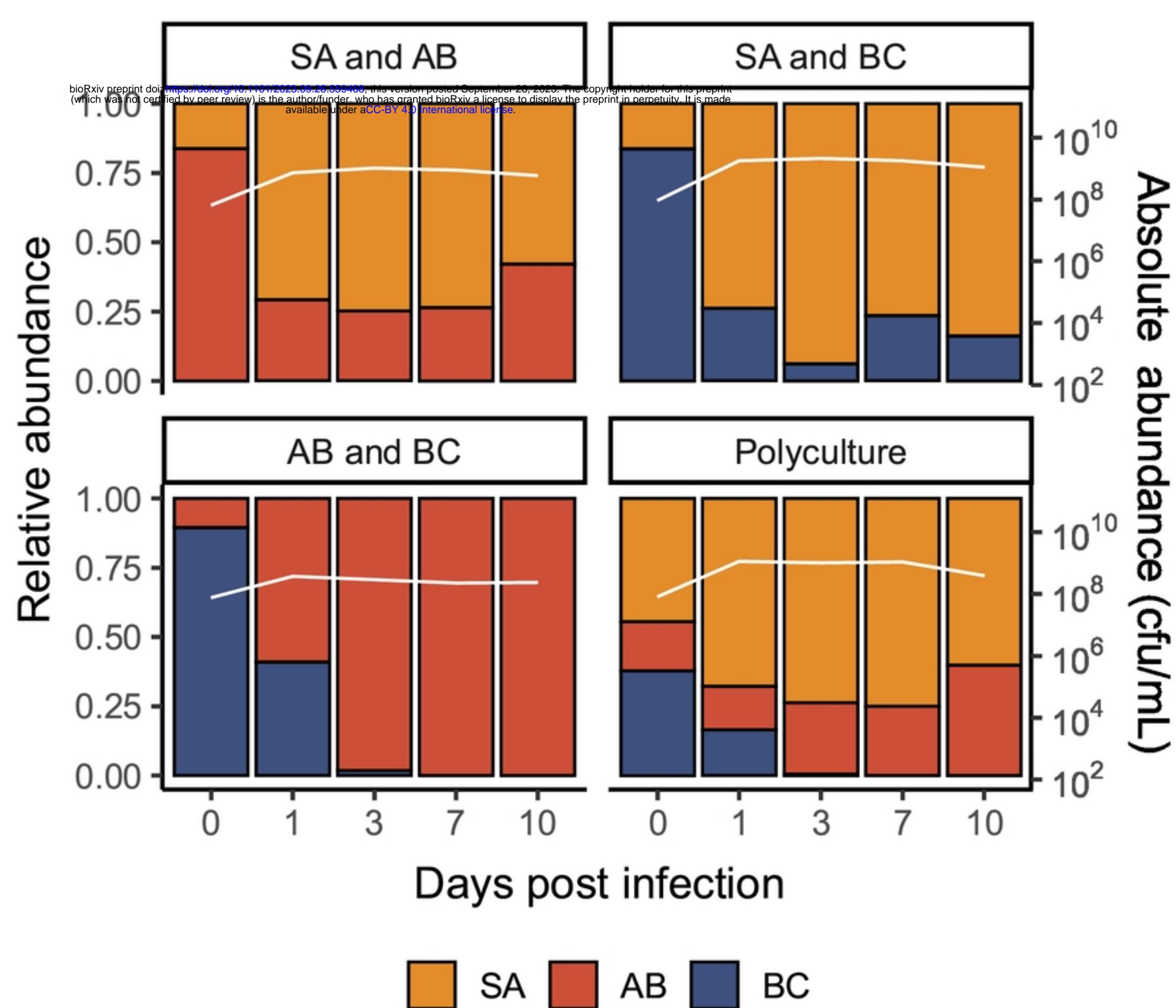


Figure1

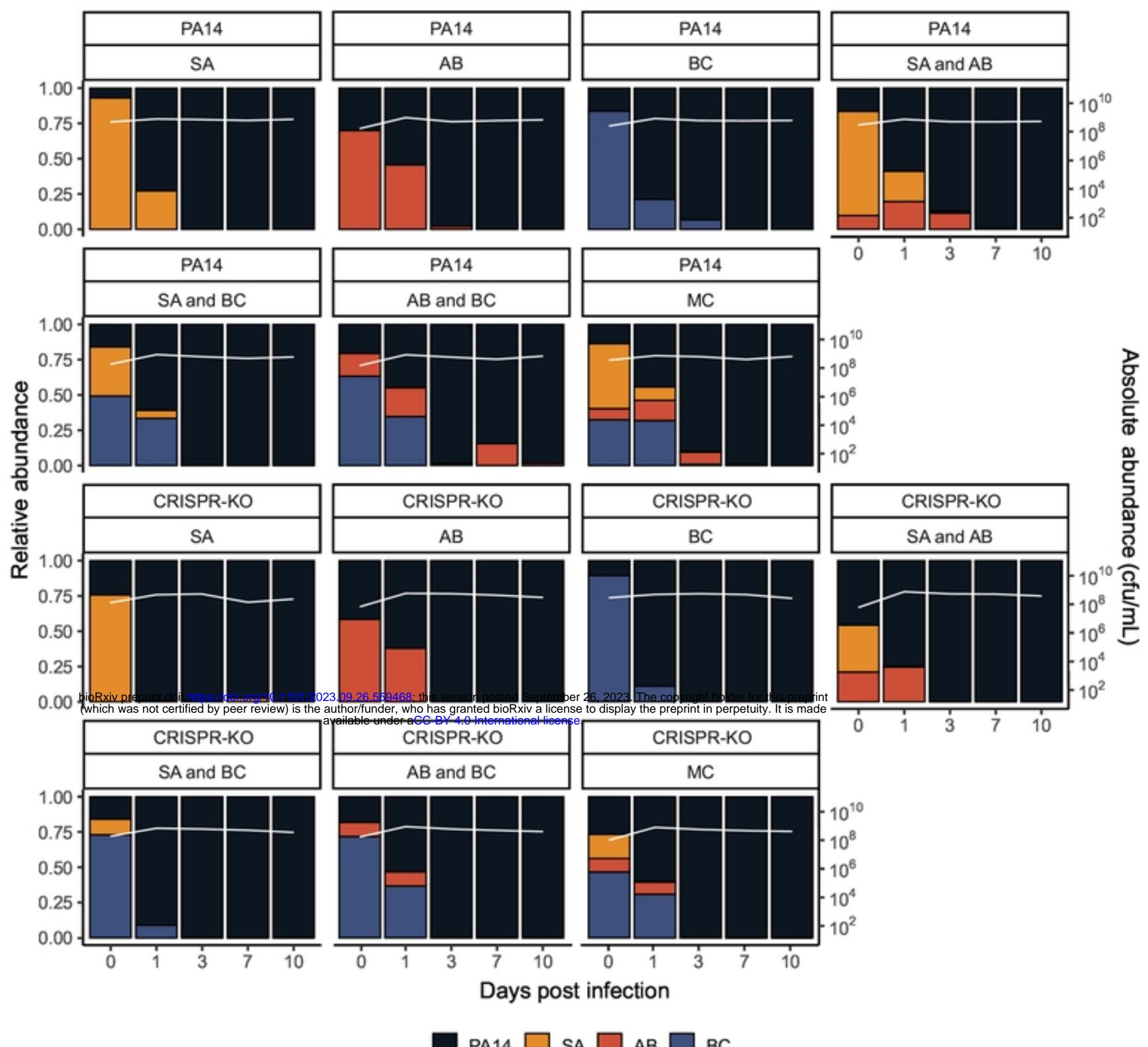


Figure 2

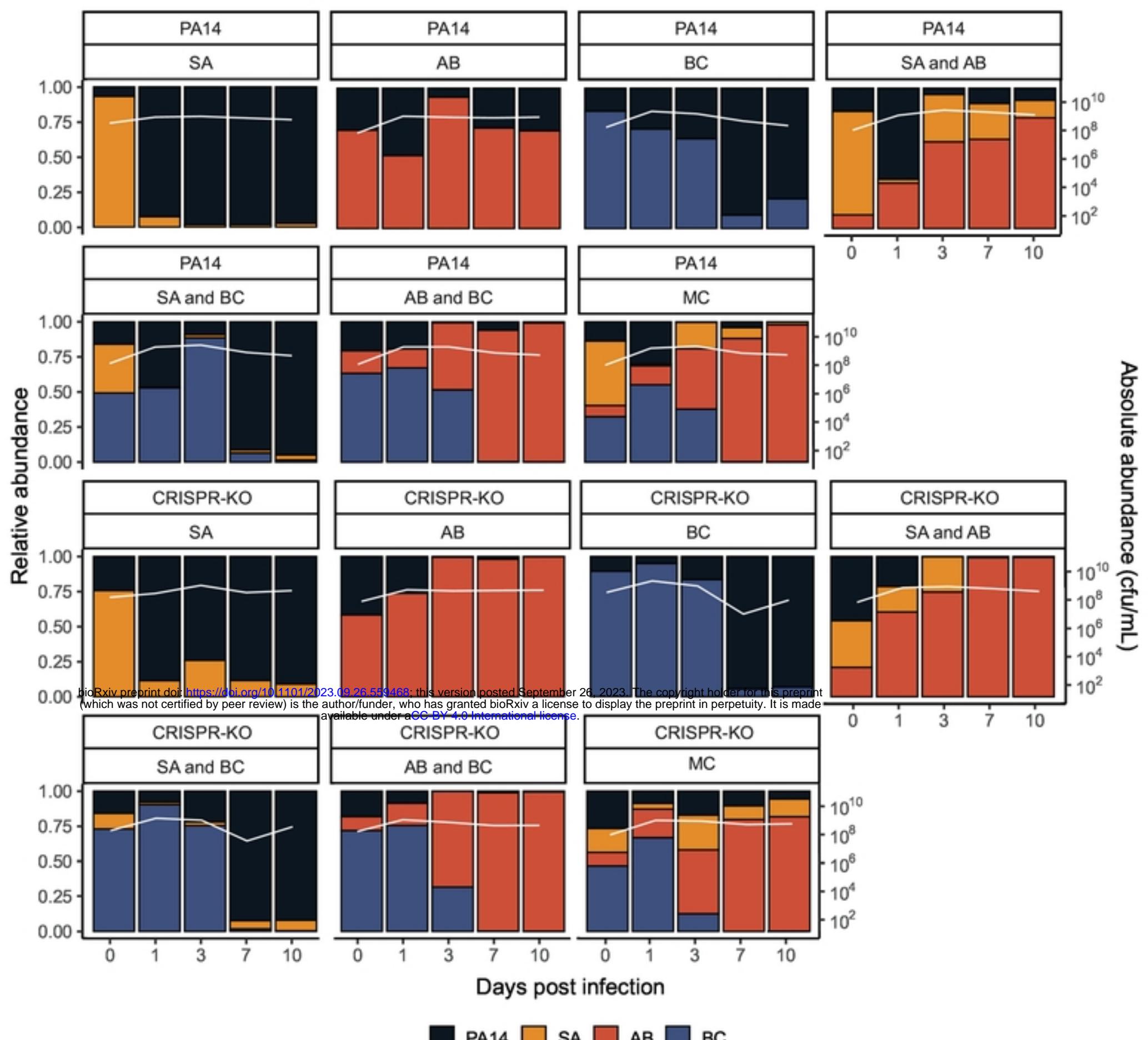


Figure 3

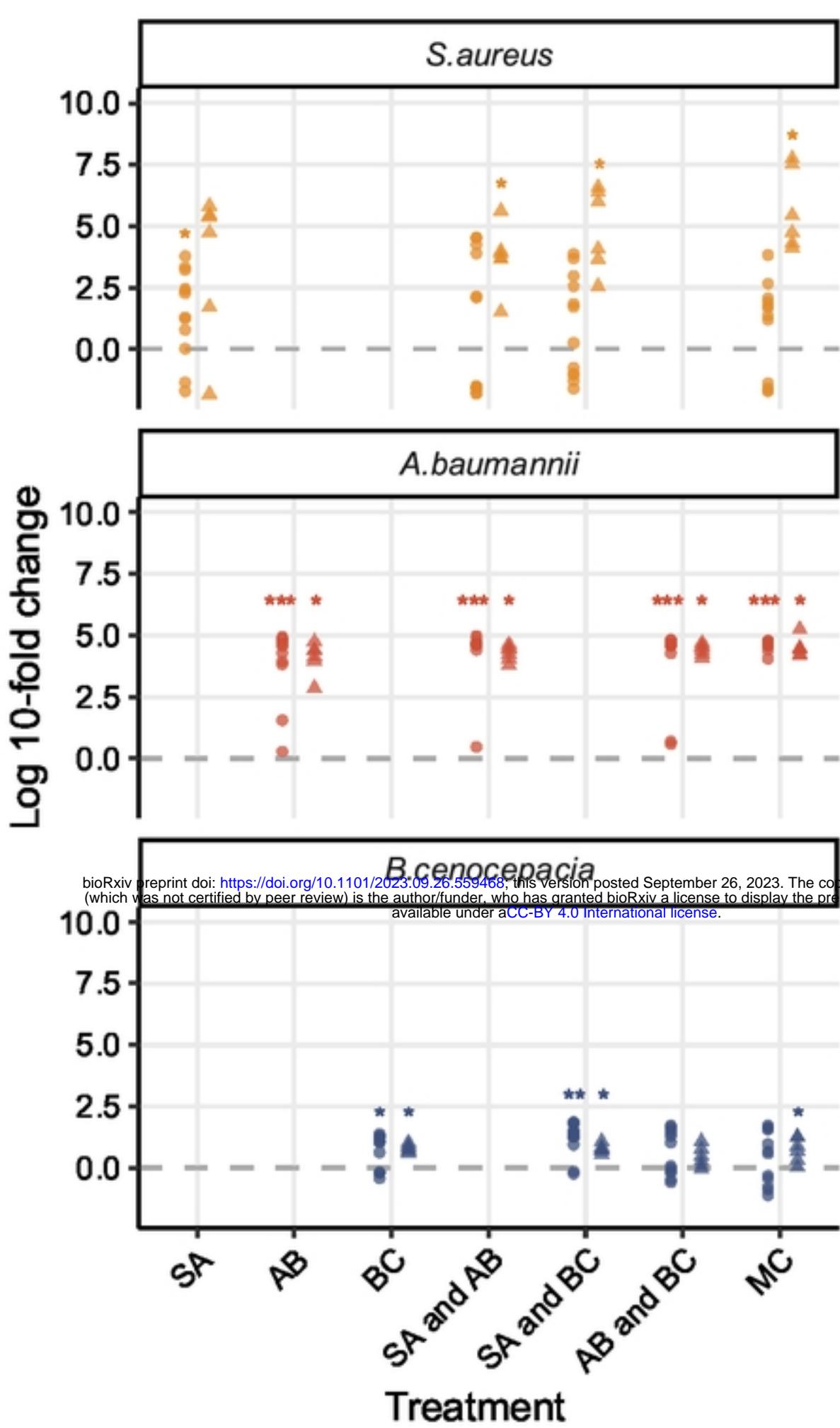


Figure 4

P. aeruginosa starting percentage

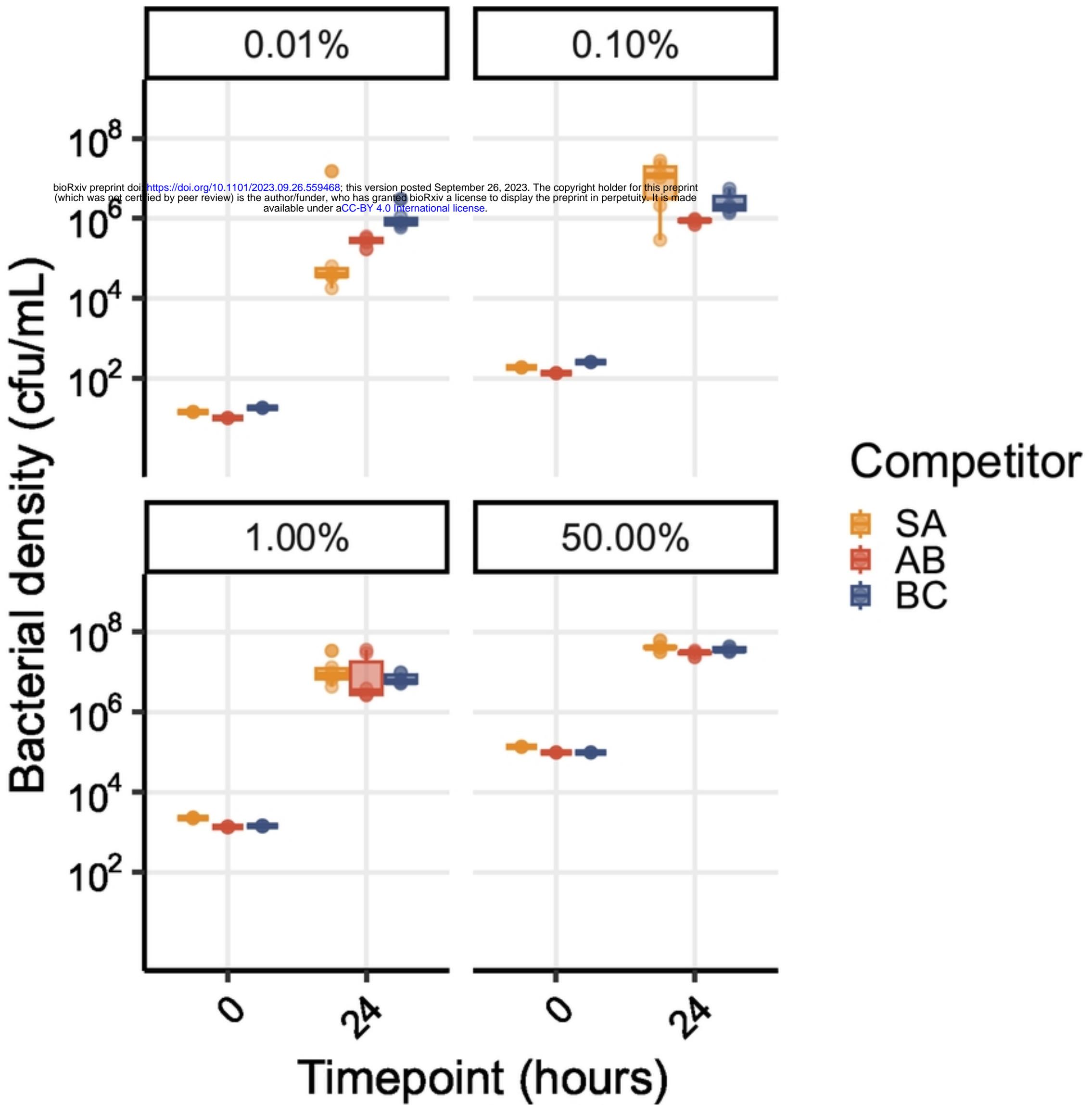


Figure 5

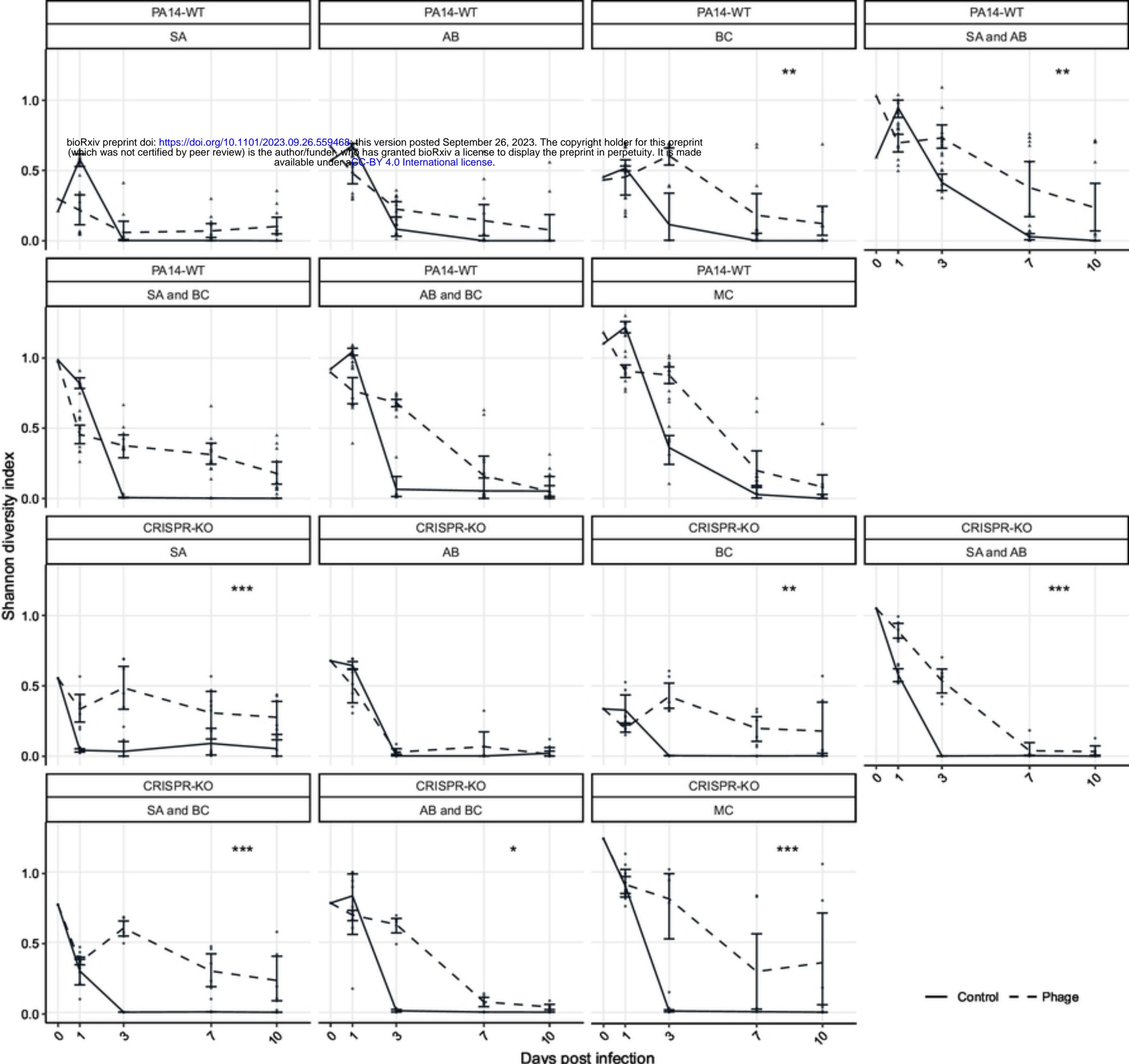


Figure 6

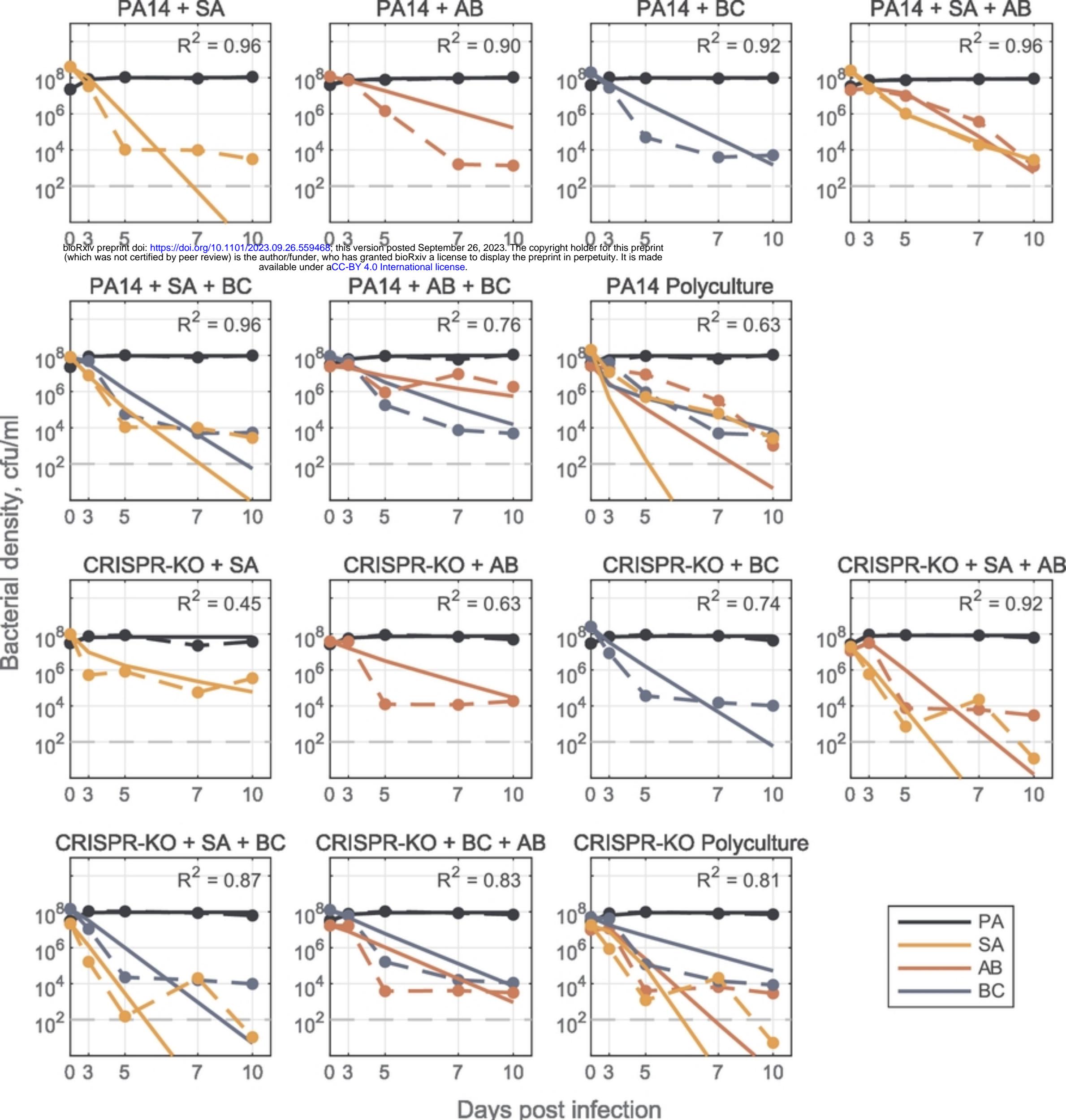


Figure 7

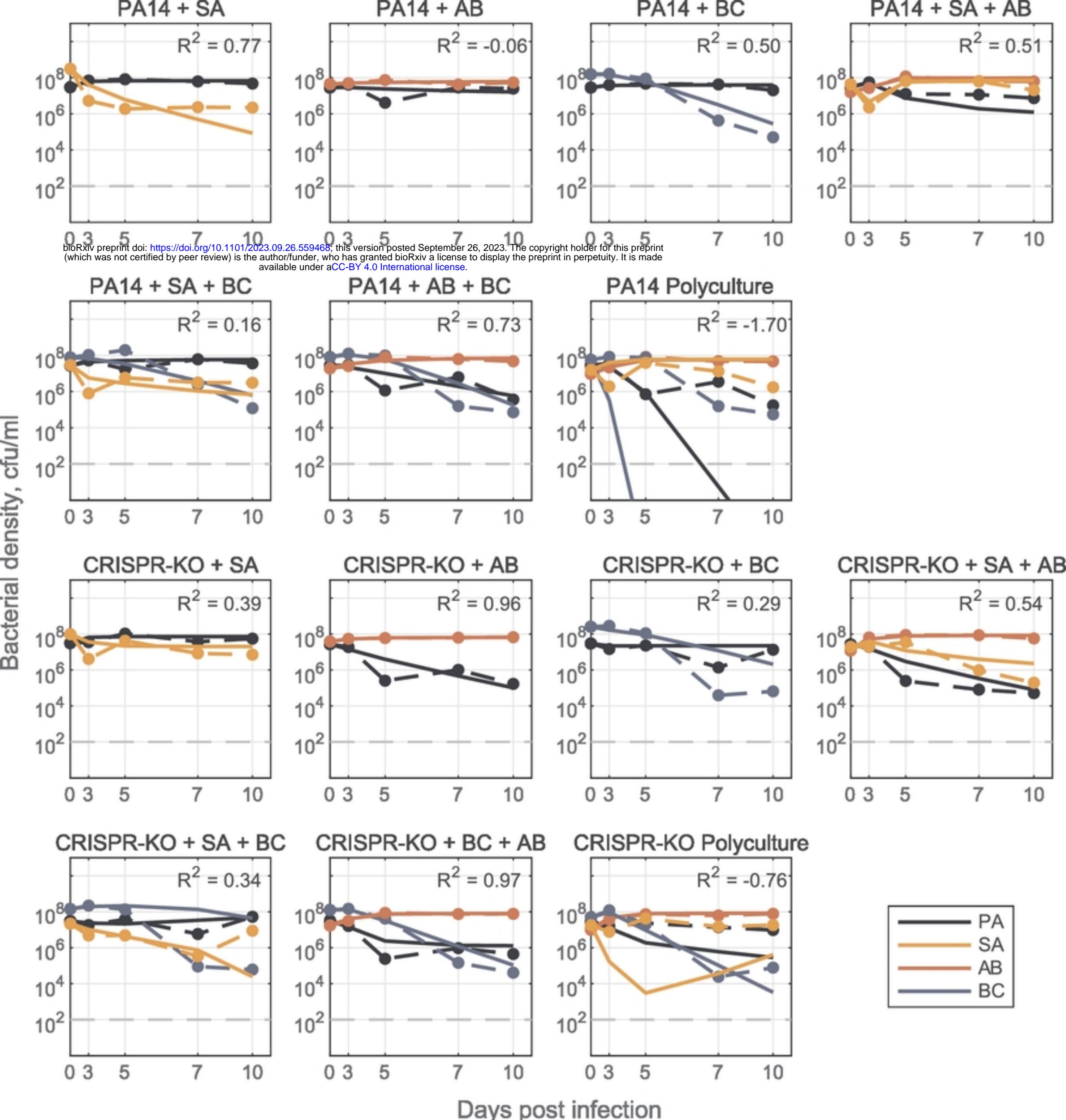


Figure 8

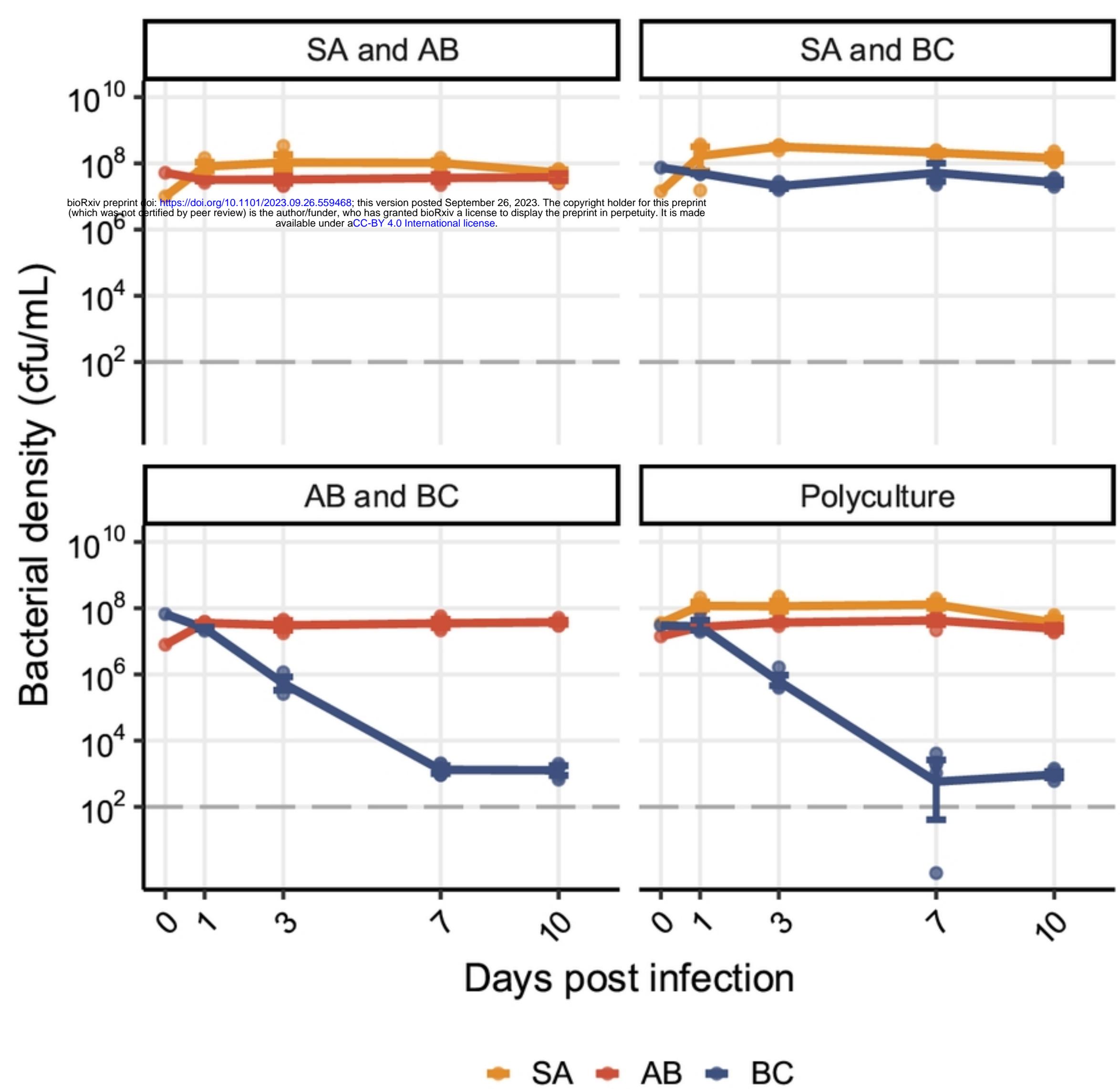


Figure S1

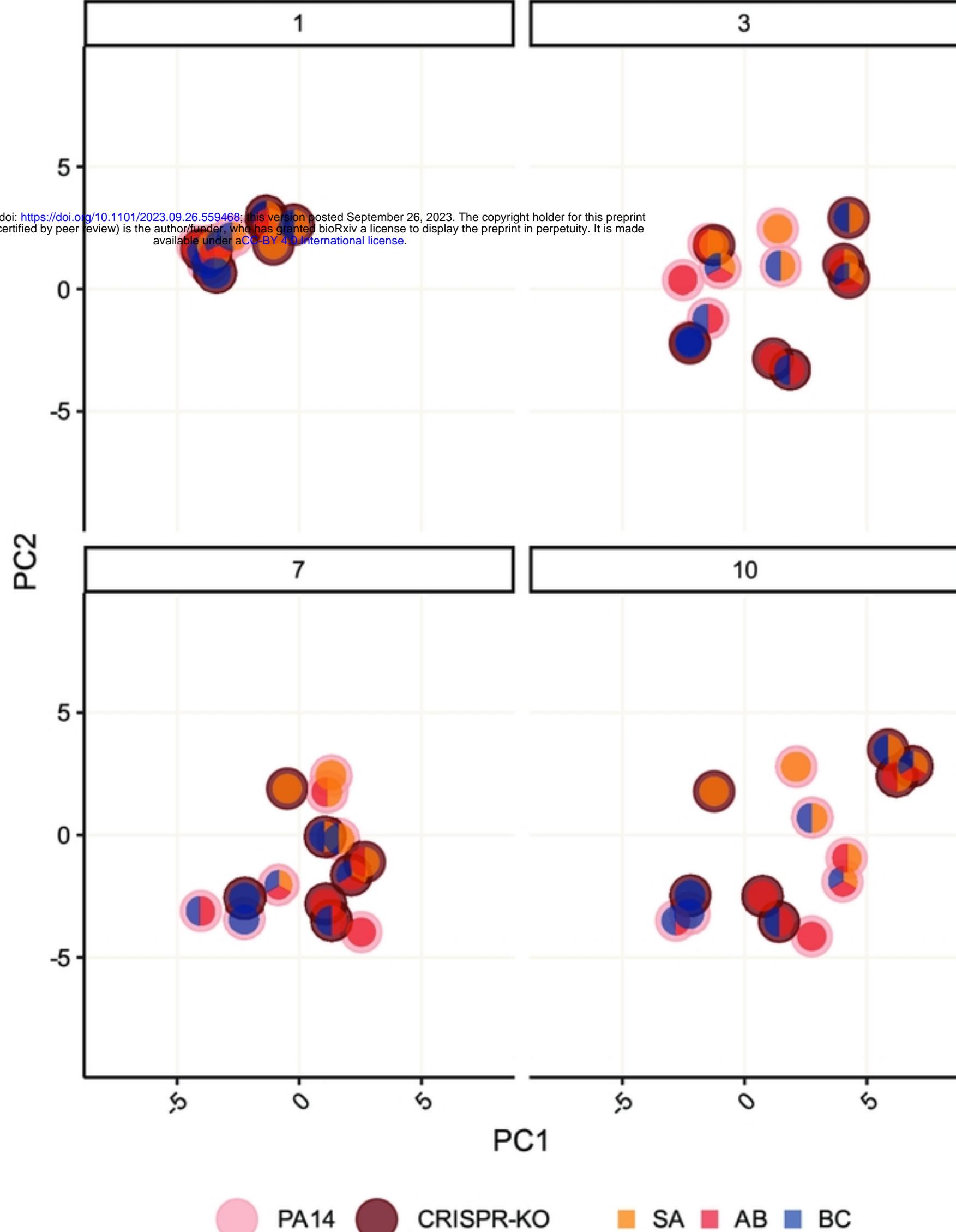


Figure S2

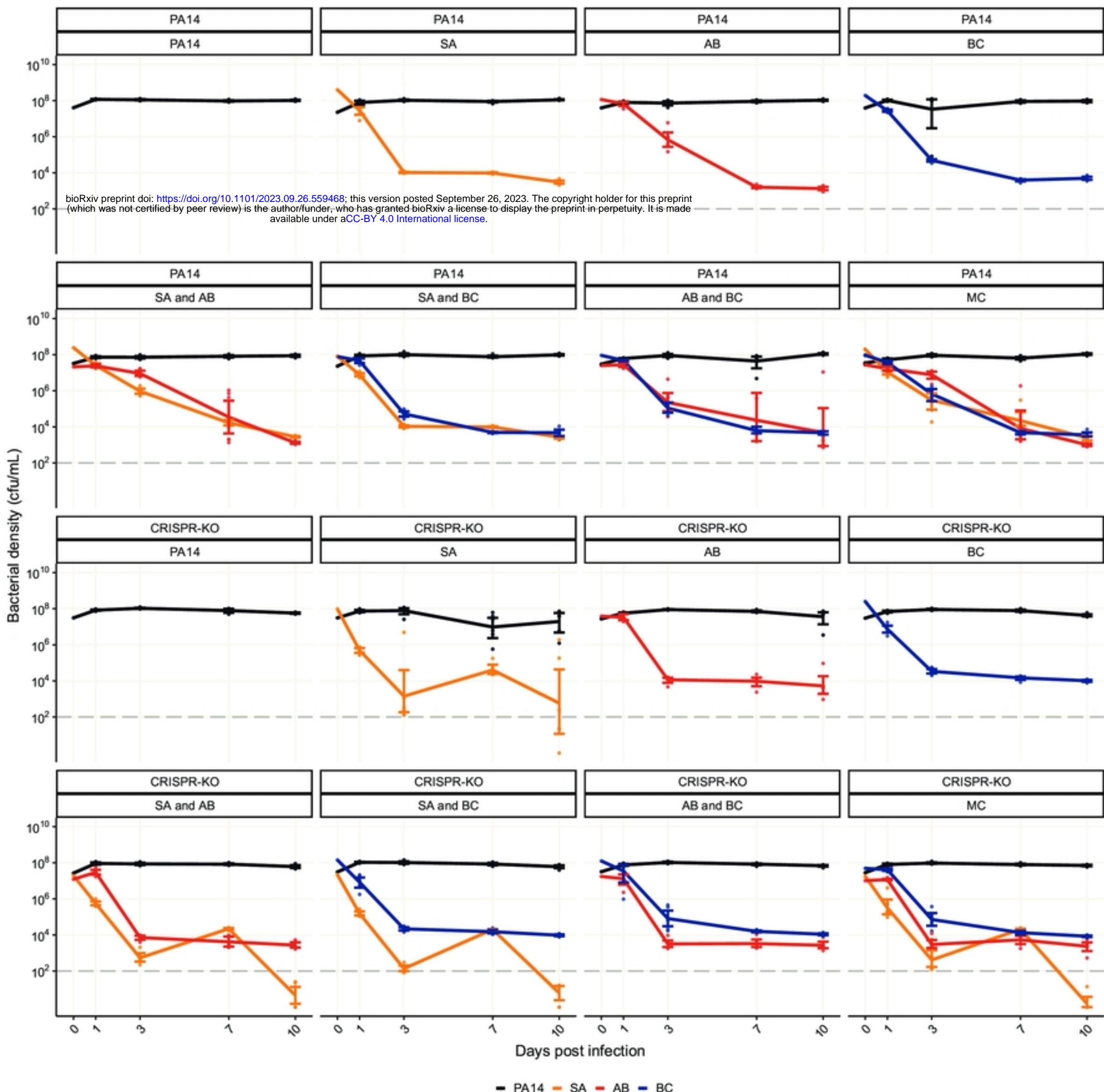


Figure S3

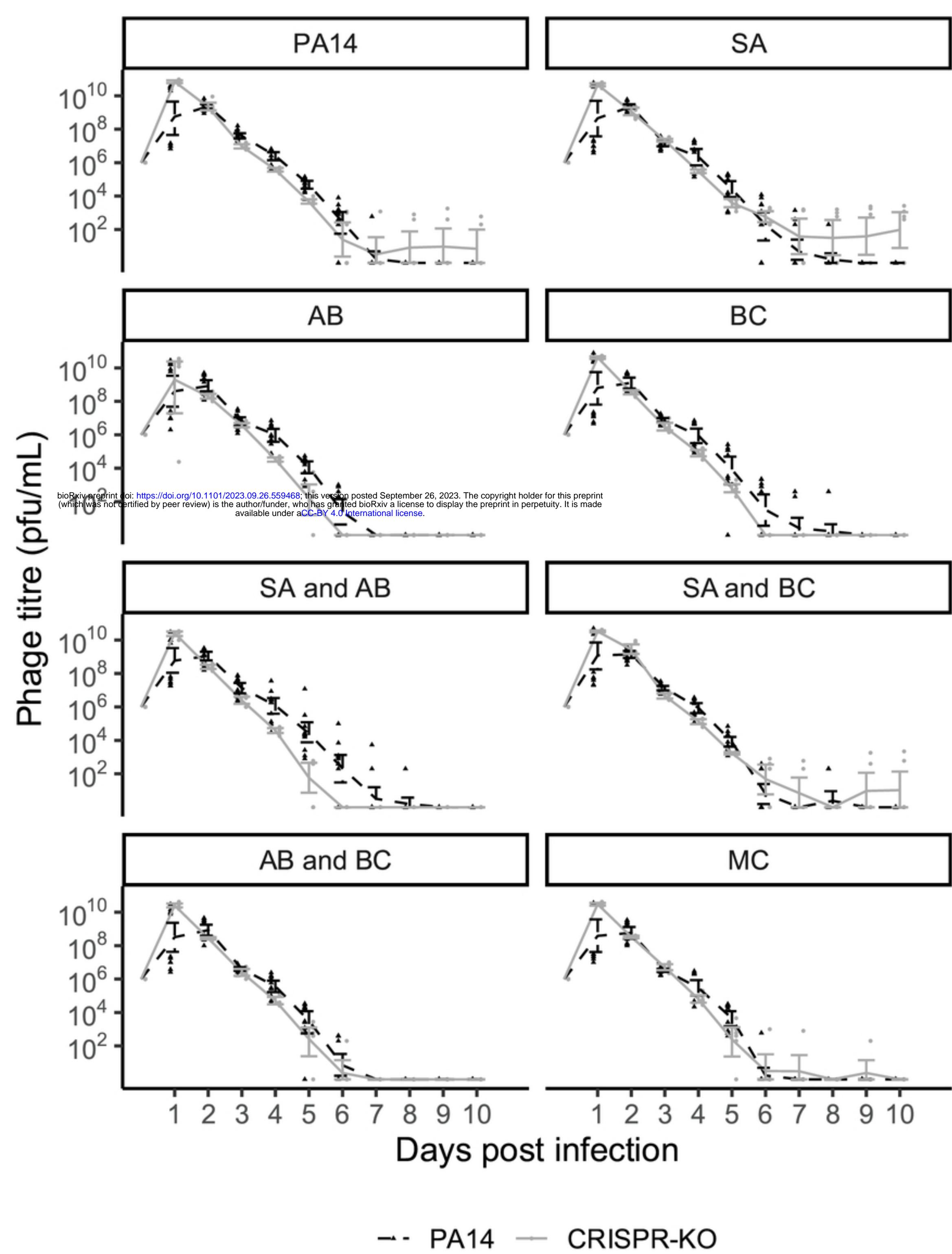


Figure S4

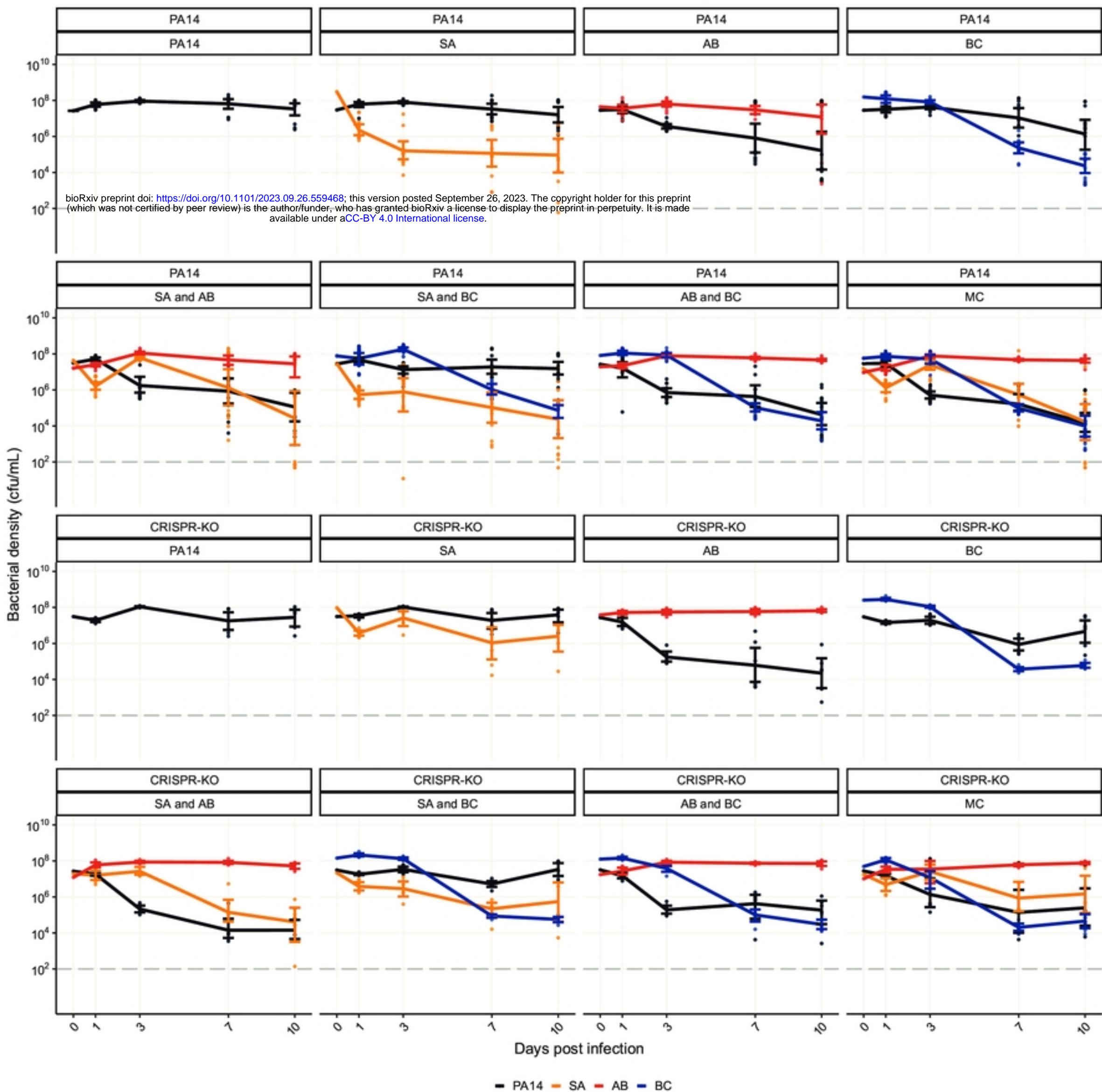


Figure S5

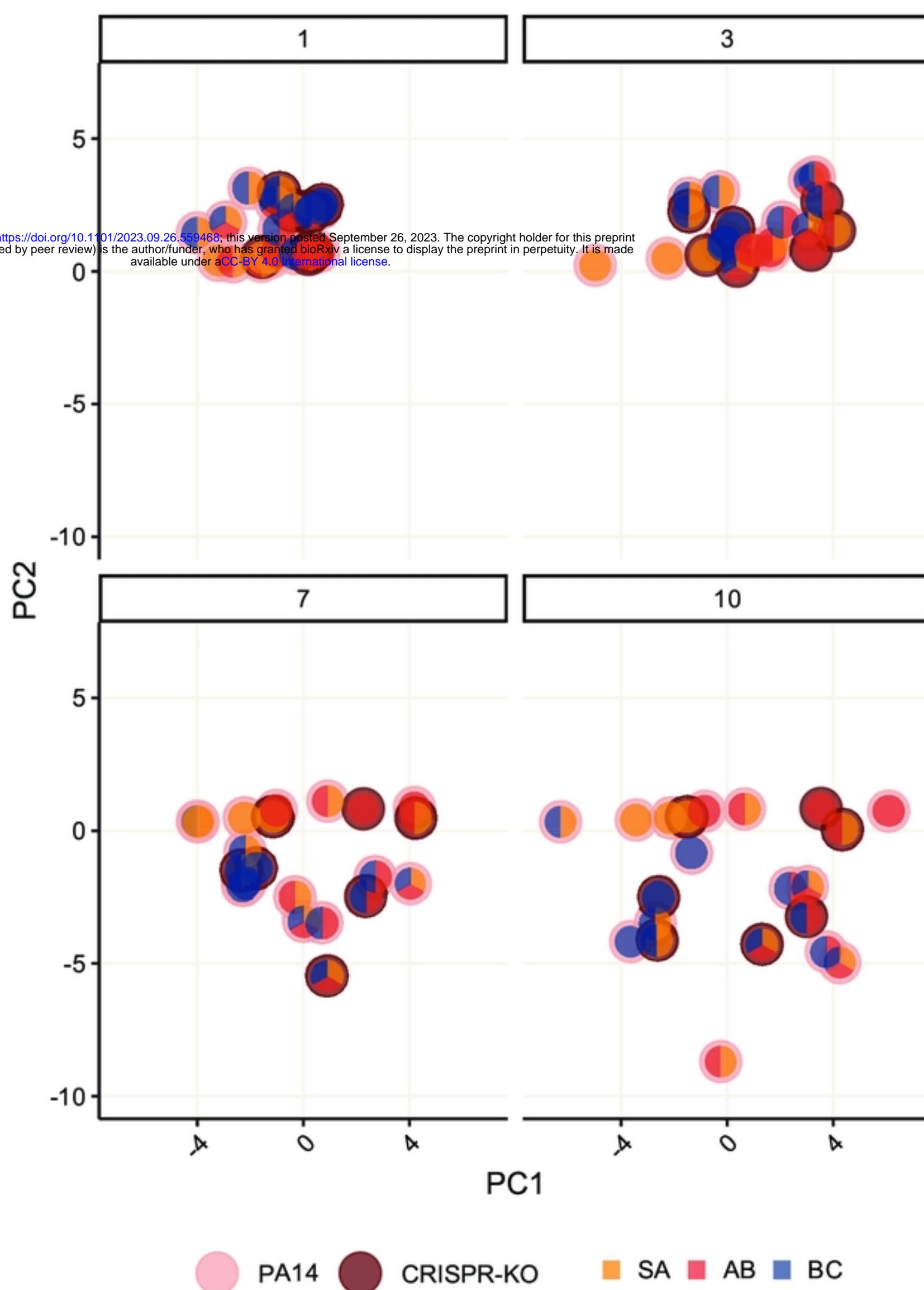


Figure S6

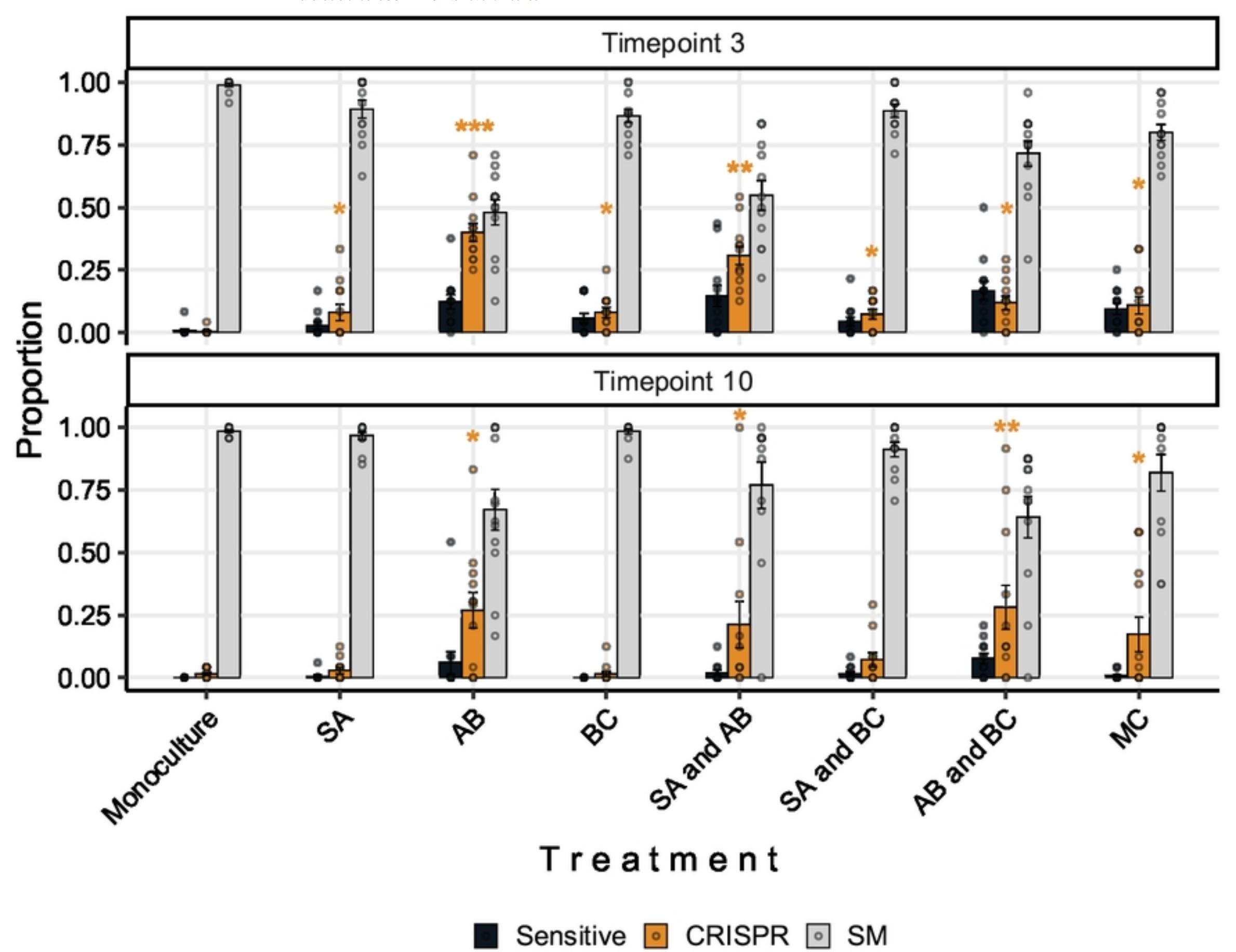


Figure S7

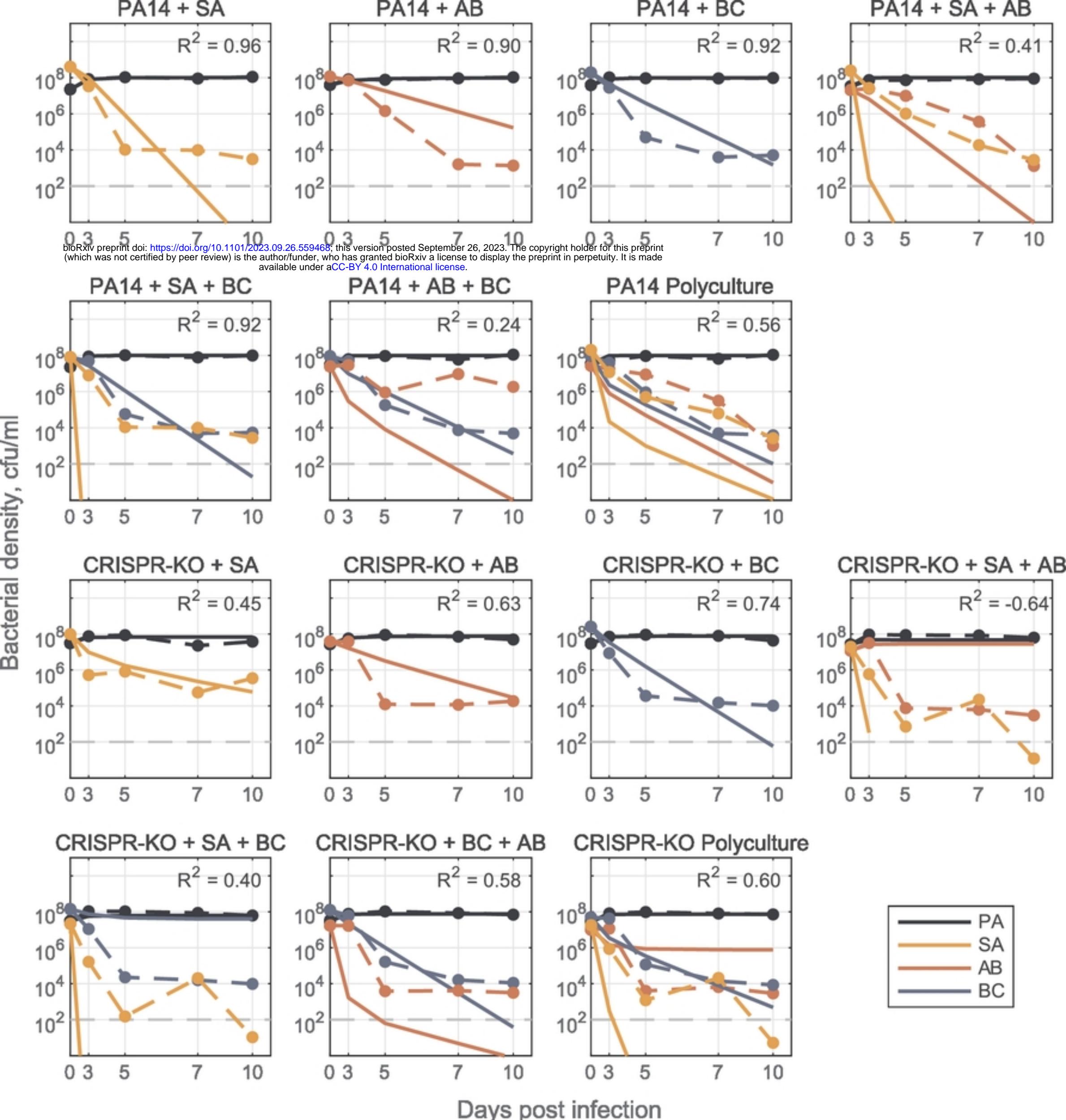


Figure S8

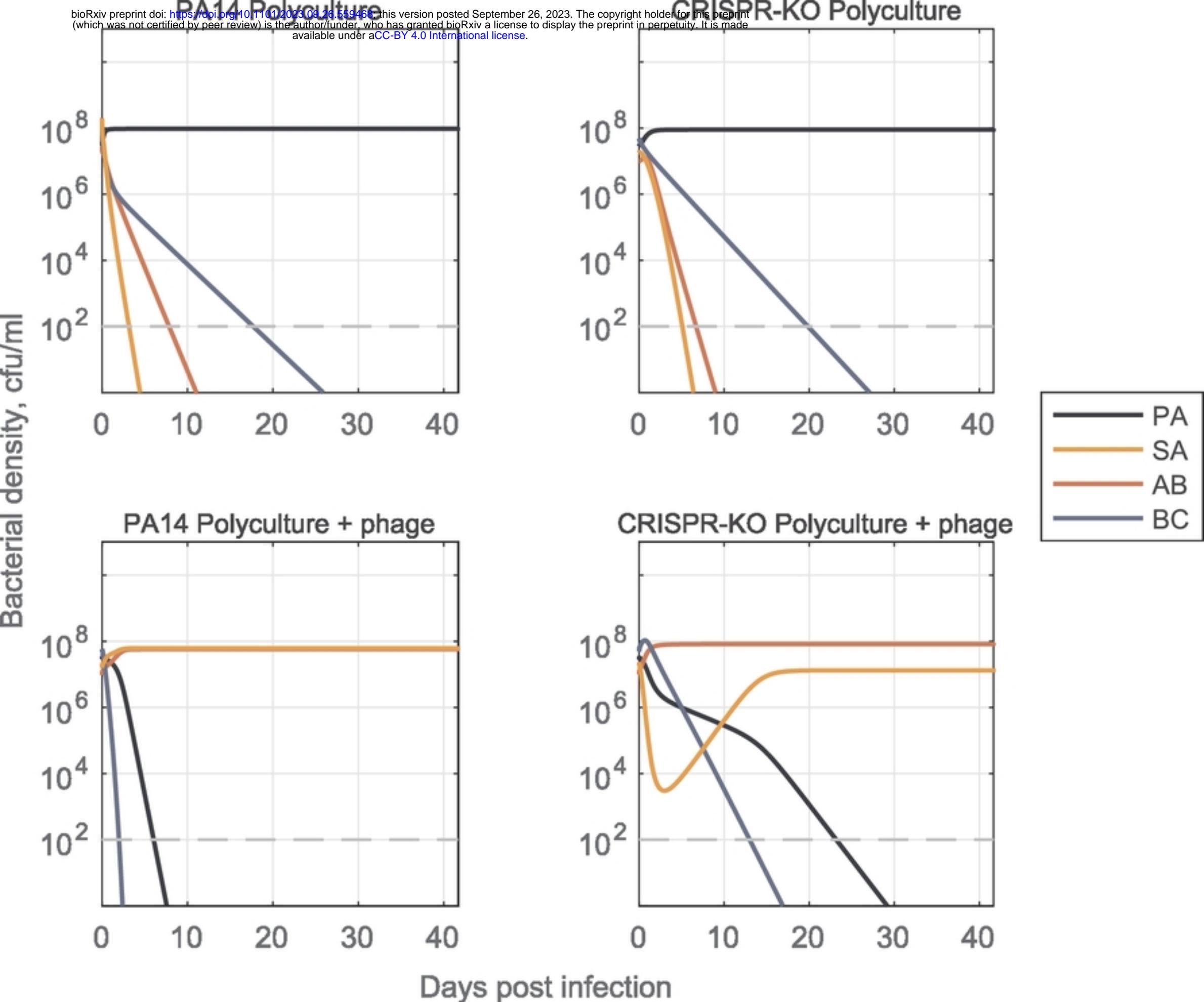


Figure S9