

Article

1 Muscle cell atrophy induced by miR-155-5p reveals molecular targets in skeletal muscle 2 disorders

3 Letícia Lopes ¹, Sarah Santiloni Cury ¹, Diogo de Moraes ¹, Jakeline Santos Oliveira ¹, Grasieli de Oliveira ¹, Otavio
4 Cabral-Marques ^{2,3,4,5,6}, Geysson Javier Fernandez ^{1,7}, Mario Hiroyuki Hirata ³, Da-Zhi Wang ⁸, Maeli Dal-Pai-Silva ¹, Robson
5 Francisco Carvalho ^{1*}, Paula Paccielli Freire ^{1,2,3*}

6 **Abstract:** MicroRNAs are small regulatory molecules that control gene expression. An emerging property of muscle miRNAs is the
7 cooperative regulation of transcriptional and epitranscriptional events controlling muscle phenotype. miR-155 has been related to
8 muscular dystrophy and muscle cell atrophy. However, the function of miR-155 and its molecular targets in muscular dystrophies
9 remain poorly understood. Through *in silico* and *in vitro* approaches we identify distinct transcriptional profile of muscle cell atrophy
10 induced by miR-155-5p. The atrophic myotubes changed the expression of 359 genes (166 up-regulated and 193 down-regulated).
11 We reanalyzed muscle transcriptomic data from dystrophin-deficient patients and detected overlap with gene expression patterns in
12 miR-155-treated myotubes. Our analysis indicated that miR-155 regulates a set of transcripts, including Aldh1l, Nek2, Bub1b, Ramp3,
13 Slc16a4, Plce1, Dync1i1, and Nr1h3. Enrichment analysis demonstrates 20 targets involved in metabolism, cell cycle regulation,
14 muscle cell maintenance, and immune system. Moreover, digital cytometry confirmed a significant increase in M2 macrophages,
15 indicating miR-155 effects on immune response in dystrophic muscles. We highlight a critical miR-155 associated with disease-related
16 pathways in skeletal muscle disorders.

17 **Keywords:** miR-155; microRNA; non-coding RNAs; muscular dystrophies; DMD; RNA-sequencing

18

19 1. Introduction

20 The skeletal muscle is the largest protein reservoir in the body and exhibits high plasticity in response to processes regulating growth, regeneration, metabolism, and atrophy (Miyazaki & Esser, 2009; Rennie *et al*, 2004).
21 Muscle atrophy is characterized by decreased protein content, muscle fiber diameter, force production, and increased fatigue (Glass, 2005; Jackman & Kandarian, 2004; Lecker *et al*, 2004). The ubiquitin-proteasome and autophagy-lysosome are the main cellular degradation systems that regulate muscle atrophy (Bodine *et al*, 2001; Zhao *et al*, 2007; Mammucari *et al*, 2008, 2007). Through protein degradation, these systems are also responsible for modulating cytokine expression, transcription, and epigenetic factors (Dogra *et al*, 2006; Muñoz-Cánoves *et al*, 2013; Dogra *et al*, 2007). Furthermore, cytokines and growth factors modify signaling pathways that promote protein assembly and organelle turnover (Dogra *et al*, 2006; Muñoz-Cánoves *et al*, 2013; Dogra *et al*, 2007). The complexity of the mechanisms that induce muscle atrophy is regulated by non-coding RNAs, including microRNAs (miRNAs).

30 miRNAs are small non-coding RNAs that control gene expression post-transcriptionally (Kozomara *et al*, 2019;
31 Lau *et al*, 2001; Lee & Ambros, 2001; Pasquinelli *et al*, 2000; Filipowicz *et al*, 2008), leading to global effects on skeletal muscle fibers (Chen *et al*, 2006; Luo *et al*, 2013; McCarthy *et al*, 2009). It involves preferential targeting of mRNAs encoding transcription factors, kinases, and phosphatases, leading to amplified impacts (Hu *et al*, 2012). These miRNA-mediated effects orchestrate pathways and biological functions, broadening their spectrum of action in skeletal muscle function and diseases.

32 Among the diverse of miRNAs acting on skeletal muscles, miR-155 plays a crucial role in regulating the immune system, aging-related alterations, development, regeneration, and muscle wasting in cancer-associated cachexia (Eisenberg *et al*, 2007; Freire *et al*, 2017; Meyer *et al*, 2015; Nie *et al*, 2016; Parkes *et al*, 2015; Seok *et al*, 2011; Zhao *et al*, 2012; Liu *et al*, 2022). miR-155 influences myoblast proliferation and differentiation into myotubes during *in vitro* myogenesis (Freire *et al*, 2017; Seok *et al*, 2011) and is consistently increased in primary muscular disorders, such as Duchenne muscular dystrophy (DMD) (Eisenberg *et al*, 2007; Parkes *et al*, 2015). Under such conditions, Eisenberg *et al*. (Eisenberg *et al*, 2007) demonstrated that mRNA-miRNAs predicted interactions in DMD participate in muscle regeneration, suggesting a specific physiological pathway underlying disease pathology.

¹ Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, SP, Brazil; leticia.oliveira@unesp.br (L.L.); santiloni.curv@unesp.br (S.C.); dioxide2@gmail.com (D.M.); jakeline.oliveira@unesp.br (J.O.); oliveira.grase@gmail.com (G.O.); maeli.dal-pai@unesp.br (M.D.P.)

² Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil; otavio.cmaraques@gmail.com (O.C.M.)

³ Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil; mhhirata@usp.br (M.H.H.)

⁴ Network of Immunity in Infection, Malignancy, and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), São Paulo, Brazil.

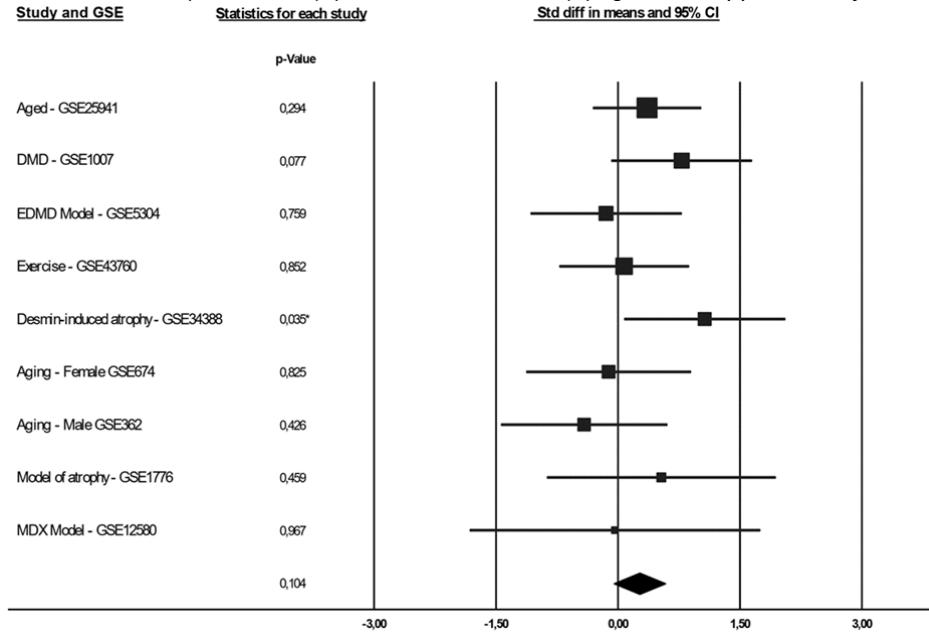
⁵ Department of Medicine, Division of Molecular Medicine, University of São Paulo School of Medicine

⁶ Laboratory of Medical Investigation 29, University of São Paulo School of Medicine

⁷ College of Medicine, University of Antioquia, UdeA, Medellin, Colombia; papaciolla@gmail.com (G.F.)

⁸ Center for Regenerative Medicine, University of South Florida, Health Heart Institute, Tampa, FL, United States of America; dazhw@usf.edu (D.Z. W.)

* Correspondence: robson.carvalho@unesp.br (R.F.C) or freirepp2@gmail.com (P.P.F.); Tel.: +55 14 3880 0473 R.F.C. or +55 11 3091 7397 P.P.F.


© 2023 The Authors. Published under the terms of the CC BY 4.0 license.

Given the emerging cooperative property of molecular networks regulated by miRNA targets, identifying the global transcriptional modulation triggered by miR-155 can help us understand post-transcriptional mechanisms in muscle diseases. Here, we characterized the transcriptional profile of muscle cells in response to increased miR-155 expression to identify direct and indirect sets of genes involved in skeletal muscle atrophy. We used computational biology and *in vitro* approaches to identify potential transcripts regulated by miR-155. Our investigation involved the C2C12 muscle cells and skeletal muscle samples obtained from individuals with DMD.

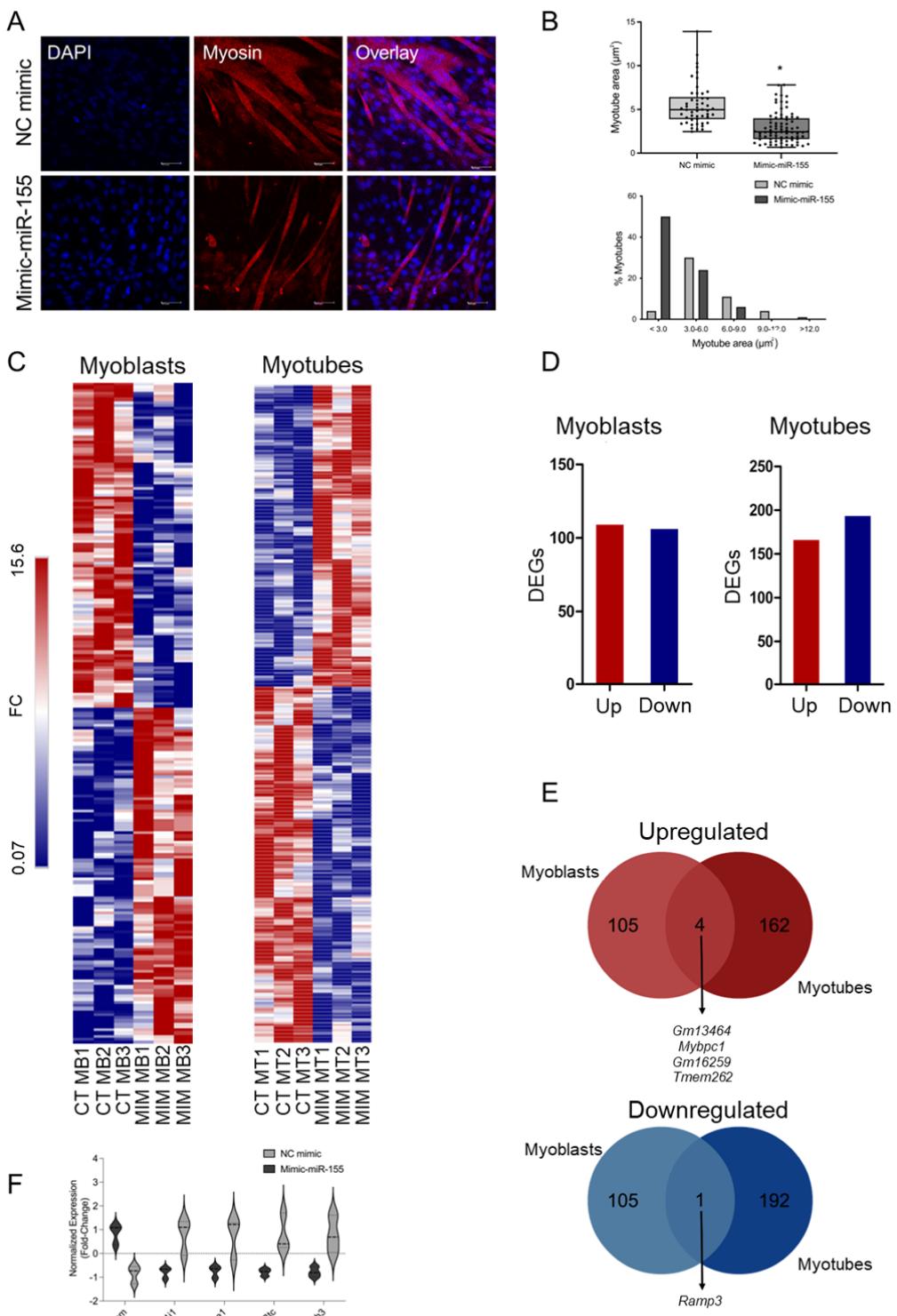
2. Results

2.1 Relevance of miR-155 in different skeletal muscle conditions

We reviewed the literature and observed that the expression of miR-155 is altered in myopathies, muscular dystrophies, muscle regeneration, and embryonic development of skeletal muscles (Supplementary Table 1). In addition to alterations in miR-155 expression in nine primary skeletal muscle diseases (Eisenberg *et al*, 2007), we performed a meta-analysis of transcriptome data obtained from different experimental murine or human samples with altered expression of miR-155 in skeletal muscle or C2C12 cells. Ten studies were identified in four conditions related to aging, muscular dystrophies, physical exercise, and skeletal muscle atrophy models. We observed increased expression of this miRNA in a mouse model of atrophy induced by desmin deletion (knockout) (GSE34388) (Meyer & Lieber, 2012). Meanwhile, miR-155 showed a tendency to increase expression without statistical significance (p -value = 0.077) in Duchenne's muscular dystrophy (GSE1007) (Haslett *et al*, 2003). In addition, no difference in the expression of this miRNA was observed in other muscle dystrophy models (GSE5304, GSE1776, GSE12580) (Stevenson *et al*, 2005; Stillwell *et al*, 2009), aging (GSE 25941, GSE674, GSE362) (Raué *et al*, 2012; Welle *et al*, 2003, 2004) and exercise studies (GSE43760) (Poelkens *et al*, 2013) (Figure 1, Supplementary Table S2).

Figure 1. Forest plot (random-effects model) demonstrating alterations in the expression of the miR-155 in skeletal striated muscle under experimental conditions or animal models. Squares indicate a relative change in study-specific miR-155 (square size reflects study-specific statistical weight); horizontal lines indicate a 95% confidence interval (CI); and diamonds indicate the summary estimate of the relative change with a 95% CI.

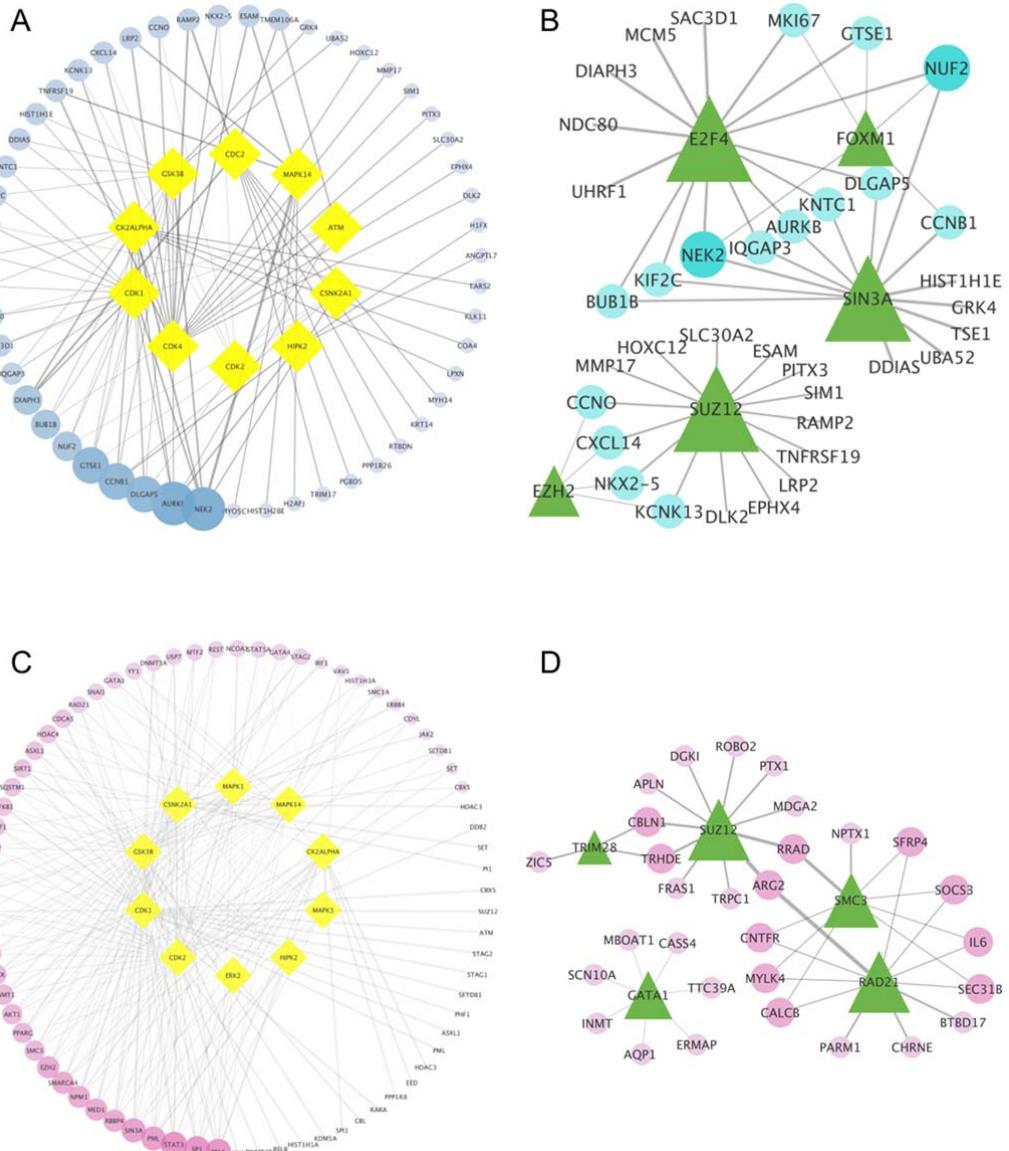
2.2 miR-155 induces a transcriptional profile associated with morphological changes


To assess the potential changes in the myotube area induced by the increased expression of miR-155, we transfected C2C12 myotubes with mimic-miR-155-5p. This analysis revealed that miR-155 transfection significantly reduced the number and area of multinucleated myotubes (Figure 2A-B). Since it was previously demonstrated that miR-155 overexpression reduces myoblast proliferation and migration (Freire *et al*, 2017), we next sought to evaluate the effects of mimic-miR-155 in both myoblast and myotube gene expression. Our transcriptome analysis using RNA-Seq of C2C12 cells transfected with miR-155 revealed 215 dysregulated transcripts in myoblasts (109 upregulated and 106 downregulated) and 359 in myotubes (165 upregulated and 194 downregulated) (Figure 2C-D, Supplementary Table S3).

We predicted the direct miR-155 targets using the miRWalk, miRTarBase, and TargetScan algorithms. We identified 511 transcripts predicted to be direct targets of miR-155. Among these direct targets, we identified five deregulated transcripts (*Cpm*, *Plice1*, *Dync1i1*, *Btc*, and *Nr1h3*) in the transcriptome of C2C12 myotubes transfected with miR-155 (Figure 2F). Additionally, miR-155 overexpression decreased the expression of *Ramp3* in both my-

83 oblasts and myotubes (Figure 2E). On the other hand, we found that miR-155 overexpression increased the ex-
84 pression of *Gm13454*, *Mybpc1*, *Gm16529*, and *Tmem262* in myoblasts and myotubes (Figure 2E).

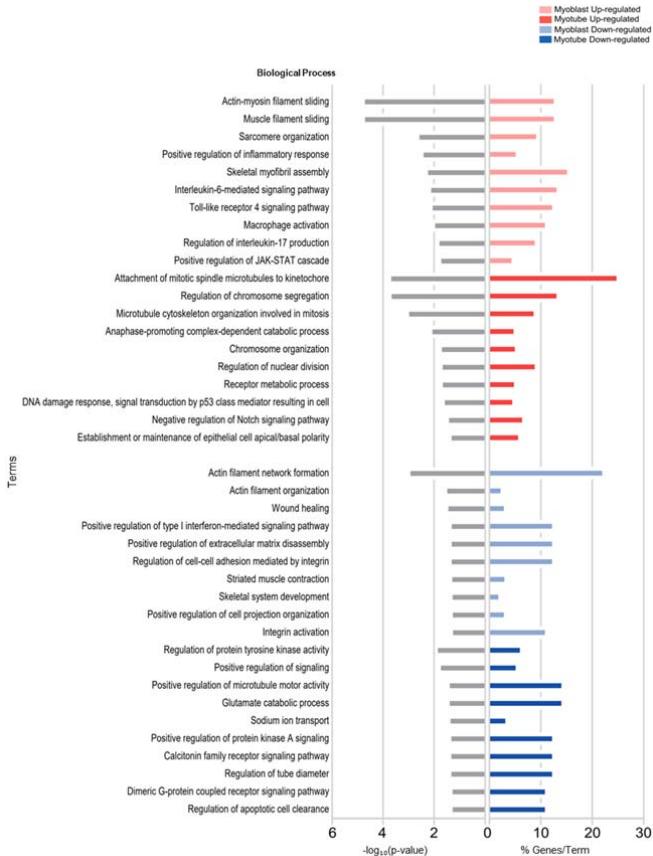
85 To determine the intermediate regulators of miR-155 target transcripts (indirect targets), we assessed potential
86 *in silico* transcription factors (TF) and kinases that regulate the set of differentially expressed genes induced by
87 miR-155 overexpression in C2C12 myotubes. Our differentially expressed genes were indicated as controlled by a
88 network of TF and kinases using the X2K web tool. These regulatory gene networks of TF and kinases were struc-
89 tured according to the molecule's connectivity, as indicated by network analysis using the Cytoscape pro-
90 gram(Shannon *et al*, 2003) (Figure 3). For data representation, we used the four transcriptional factors with p-values
91 < 0.05; and the top 10 kinases with p-values < 0.05, considering that 68 kinases were indicated as subnetwork
92 regulators (Figure 3A, 3C). The transcription factors E2F4, SIN3A, and FOXM1 were suggested to regulate genes
93 associated with phosphorylation during cell proliferation and differentiation, sarcomere rupture, and apoptosis (Fig-
94 ure 3B, 3D). MAPK14, CDK4, and HIPK2 were identified as kinases regulating genes associated with transcriptional
95 activation and repression, cell cycle progression, inflammation, and fibrogenesis (Figure 3A, 3C).


96

97

Figure 2. The gene expression profiles of C2C12 myoblasts and myotubes treated with miR-155 are distinct. FC (fold-change). (A) Immunofluorescence of C2C12 myotubes with mimic-miR-155 stained with an antibody that recognizes Myh2 (myosin heavy chain, red). DAPI-stained nuclei. (B) Quantitative analysis of C2C12 myotube size (top) and size distribution (bottom) in the control and miR-155-overexpressing cells. The myofiber area was determined using the ImageJ software. The data represent the mean \pm standard deviation of at least three independent experiments. Statistical significance was analyzed using the Student's t-test. (C) Heatmap of differentially expressed genes (DEGs) between myoblast (MB) or myotube (MT) groups overexpressing miR-155 and their respective controls (CT; 1, 2, and 3 represent independent biological replicates for each group). Unsupervised hierarchical cluster analysis was performed using DEGs with p-value <0.05 and fold-change >1.5 and is presented as a color scale. (D) Bar graphs show the number of DEGs (upregulated and downregulated) in miR-155-treated C2C12 myoblasts (left) and myotubes (right). (E) Venn diagram showing DEGs shared between miR-155-treated C2C12 myoblasts and myotubes. (F)

108 Normalized expression (RNA-Seq) of five potential direct targets of miR-155, identified by network analysis of C2C12 myotubes
109 treated with miR-155 and their respective controls. P-value <0.05. NC mimic = control. Mimic-miR-155 = treatment.

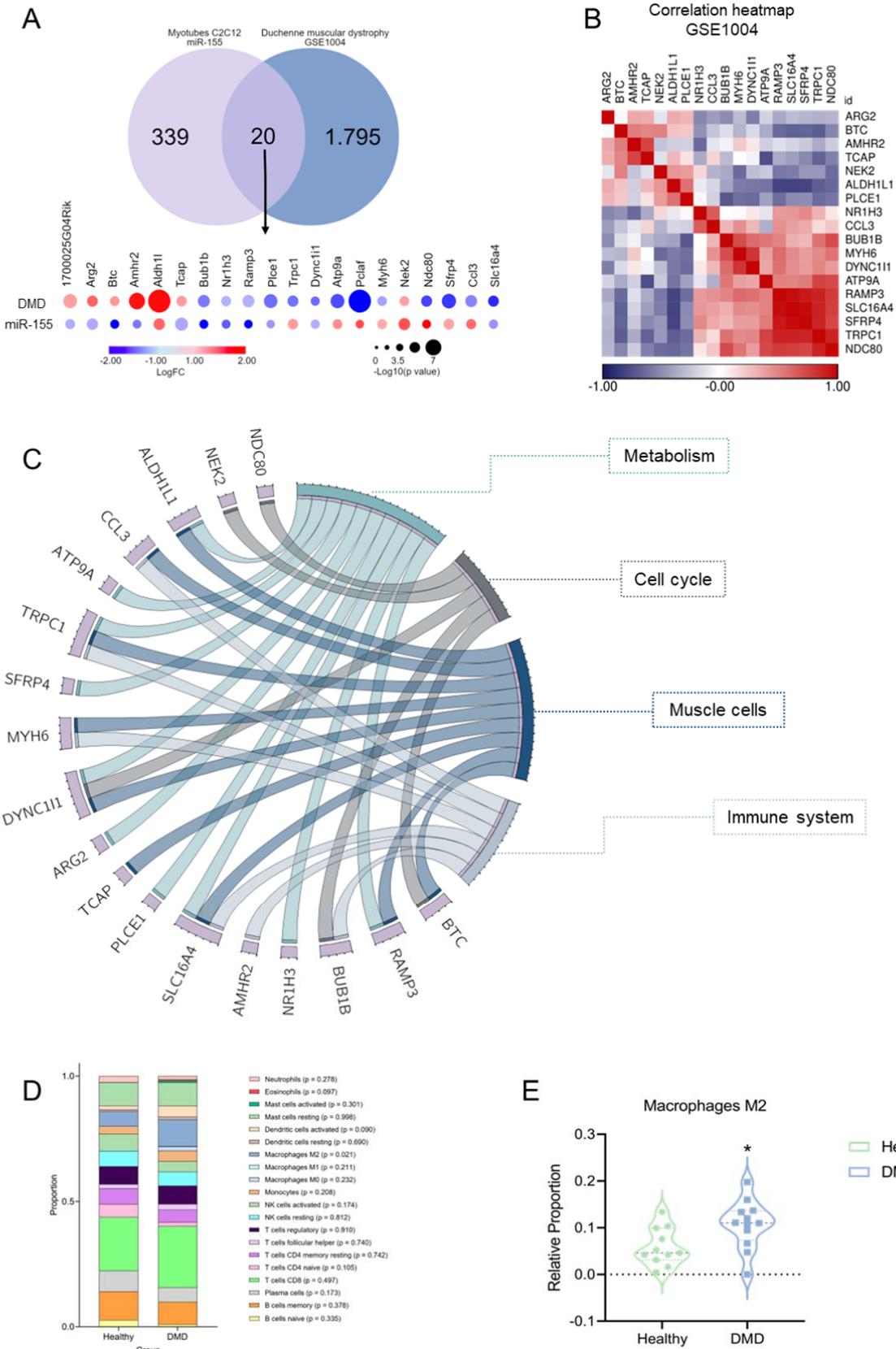

111 **Figure 3.** Potential transcription factors and kinases that regulate the DEGs of miR-155-treated C2C12 myotubes. Gene regulation
112 network of differentially expressed genes (blue – down-regulated; pink – up-regulated), transcription factors (green triangles),
113 and kinases (yellow diamonds), indicating gene enrichment. The genes (ellipse) and their regulatory kinases or transcription
114 factors are sized based on the connectivity score (highest score → largest size). (A) Top 10 kinases (yellow) regulated by miR-155
115 that were down-regulated (blue). (B) Top five transcription factors (green) regulated by miR-155 that were down-regulated (blue).
116 (C) Top 10 kinases (yellow) regulated by miR-155 that were up-regulated (pink). (D) Top 5 transcription factors (green) regulated
117 by miR-155 that were up-regulated (pink).

118

119 2.3 Biological processes enriched in the transcriptome of miR-155-treated myoblasts and myotubes

120 We also investigated the biological processes enriched by DEG in myotubes and myoblasts treated with
121 miRNA-155 (Figure 4). Overexpression of miR-155 induced specific transcriptional changes in C2C12 myoblasts and
122 myotubes. The upregulated genes in miR-155-treated myoblasts were related to sarcomere organization, increased
123 inflammatory responses, interleukin-6-mediated signaling pathways, and macrophage activation (Figure 4). In myo-
124 tubes, genes with increased expression enriched cell cycle processes such as microtubule cytoskeleton organiza-
125 tion involved in mitosis, complex-dependent catabolic process promoting anaphase, and nucleus division (Figure 4).
126 Analysis of down-regulated genes in myoblasts identified different enriched categories associated with actin filament
127 network formation, extracellular matrix assembly, cell-cell adhesion, and skeletal system development (Figure 4).

128 Furthermore, the down-regulated genes were enriched in functions related to protein tyrosine kinase activity, tube
129 diameter regulation, and down-regulation of apoptotic cell removal in myotubes (Figure 4).
130

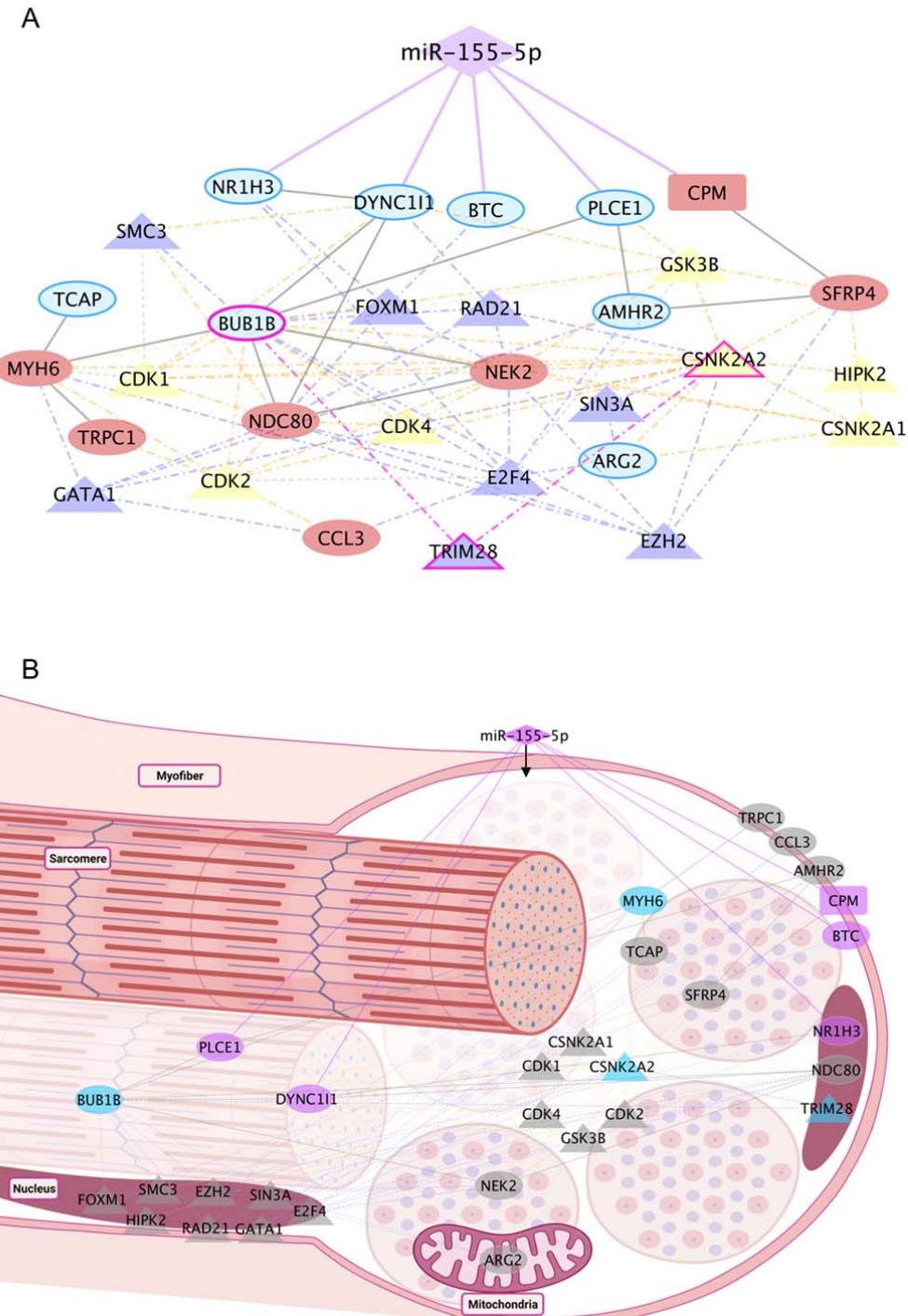


131
132 **Figure 4.** Biological processes enriched by miR-155-treated myoblasts and myotubes. C2C12 myotubes transfected with mim-
133 ic-miR-155-5p induce gene expression changes associated with different functional categories. Gene ontology of differentially
134 expressed genes (DEG) in C2C12 myoblasts after treatment with miR-155 to identify critical ontologies. Each horizontal bar on the
135 left (gray bars) represents the number of enriched ontology terms presented in the dataset, considering -log₁₀ (p-value). Each horizontal bar on the right (colored bars) represents the percentage of genes shown in the dataset compared with the total number
136 of genes in each ontology. Fractions of DEGs in each lane (red, increasing; blue, decreasing) are shown on the x-axis.
137
138

139 2.4 The transcriptional overlap between miR-155 target and DMD patients

140 Through a study by Eisenberg *et al.* 2007 21, we sought to reanalyze the expression of miR-155 as one of the
141 deregulated miRNAs in nine human muscle disorders. The selection criterion for the dataset was to search for ho-
142 mogeneous data between the number (n) of healthy controls and patients with muscle disorders. We retrieved a
143 dataset of DMD samples (accession GSE1004) to investigate the differentially expressed genes in dystro-
144 phin-deficient patients and healthy skeletal muscles. We sought to identify a transcriptional profile overlapping the
145 expression of miR-155-target genes in treated C2C12 myotubes with mimic-miR-155 and the transcriptome of
146 muscle samples from DMD patients. Gene expression levels in DMD biopsies and normal skeletal muscle
147 (GSE1004) were used for transcriptomic profile analysis. We compared our list of DEGs affected by the overex-
148 pression of the miR-155 with DEGs from 12 muscle biopsies with DMD (GSE1004). Overlap analysis identified 20
149 shared targets (Figure 5A). Among the direct targets of miR-155, we found three common genes downregulated in
150 dystrophic samples: *Plice1*, *Dync1i1*, and *Nr1h3*, all exhibiting the same differential expression pattern. Of these 20
151 common targets, we focused on 18 genes that consistently appeared in our data analysis and previous literature
152 (Supplementary Table S4-5) (Zhang *et al.* 2015, 2015; Ceafalan *et al.* 2015; Markert *et al.* 2008; Wirianto *et al.* 2020;
153 Markert *et al.* 2010; Damal Villivalam *et al.* 2021; Hessvik *et al.* 2010; Zhang *et al.* 2016, 2018; Civatte *et al.* 2005;
154 Baker *et al.* 2011; Wijschake *et al.* 2012; Okadome *et al.* 2018; Chen *et al.* 2018; Stuart *et al.* 2016; Zhu *et al.* 2016;
155 Kelahmetoglu *et al.* 2020; Best *et al.* 2019; Lund *et al.* 2018; Hörbelt *et al.* 2019; Zhang *et al.* 2014; Cheung *et al.*
156 2011; Feng *et al.* 2017; Formigli *et al.* 2009; Gailly, 2012). Correlation analysis identified eighteen differentially ex-
157 pressed genes (Figure 5B). Enrichment analysis demonstrated that 20 shared target genes play a role in biological
158 processes, such as metabolism, cell cycle, muscle cell maintenance, and the immune system. The Circos plot shows
159 the four main categories of biological processes and their respective targets (Figure 5C). Interestingly, we observed
160 that six genes (*Amhr2*, *Ccl3*, *Bub1b*, *Myh6*, *Slc16a4*, and *Trpc1*) are involved in immune responses. Furthermore, to

161 determine which type of immune cell would be the sensor for the immune response in DMD samples, we performed
 162 a CIBERSORT analysis that indicated a significant increase in M2 macrophages (Figure 5D-E).
 163



165 **Figure 5.** miR-155 mediates immunomodulatory pathology in Duchenne Muscular Dystrophy (DMD). **(A)** Comparative Bubble
166 heatmap plotted in nodes to represent 20 differentially expressed genes in patients with DMD and C2C12 myotubes treated with
167 miR-155. Consider the colors for \log_{10} FC (fold change) and dimensioned by $-\log_{10}(p\text{-value})$. **(B)** Correlation heatmap of gene
168 expression data using microarrays (HG_U95Av2) of quadriceps biopsies from 12 DMD patients. Unsupervised hierarchical cluster
169 analysis was performed using DEGs with $p\text{-value} < 0.05$ and fold-change > 1.5 and is presented as a color scale. The data are
170 presented in Supplementary Table S4. **(C)** The circle represents the genes shared between the four biological categories (me-
171 tabolism, cell cycle, muscle cells, and immune system). **(D)** The proportion of immune cells associated with differentially ex-
172 pressed genes was similar between patients with DMD and healthy controls. **(E)** The relative proportion of M2 macrophages in 12
173 muscle samples from DMD patients was statistically significantly compared with healthy control ($p\text{-value} = 0.021$).
174

175 2.5 Direct and indirect targets of miR-155-Based Network

176 Analysis of gene pathways under the post-transcriptional control of miR-155 revealed multiple gene interactions
177 contributing to the cellular immune response (Figure 6A). These findings indicate that miR-155 plays a crucial role in
178 regulating inflammatory processes in skeletal muscle under atrophic and dystrophic conditions. We observed that
179 genes indirectly associated with the regulatory network are predominantly translated into kinases and transcription
180 factors.

181 Specifically, CSNK2A1, which encodes CK2, a constitutively active protein kinase, was identified in this study
182 (Götz & Montenarh, 2017; Meggio & Pinna, 2003; Salvi *et al*, 2009). Deletion of CK2 β in myofibers results in a
183 myasthenic phenotype, whereas CK2 α '-null mice exhibit a reduced regeneration area in muscle fibers after injury
184 (Cheusova *et al*, 2006; Shi *et al*, 2012). CK2 subunits are critical in regulating Myod1 expression and controlling
185 myoblast fusion (Cheusova *et al*, 2006). Additionally, CK2 binds to the tyrosine kinase BUB1B, producing the BUBR1
186 protein (Baker *et al*, 2008). Appropriate centrosomal localization of BUB1B is paramount for precise chromosome
187 segregation during mitosis and the preservation of genomic stability (Okadome *et al*, 2018) (Figure 6B). BUBR1
188 deficiency in skeletal muscle activates p14ARF, protecting against aging-related deterioration and senescence
189 (Baker *et al*, 2008). BUBR1 is also involved in mitotic checkpoints and has angiogenic functions (Baker *et al*, 2008;
190 Okadome *et al*, 2018). Furthermore, these two essential kinases are regulated by the transcription factor TRIM28,
191 which regulates skeletal muscle size and function (Steinert *et al*, 2021). Notably, TRIM28 acts as an indirect target of
192 miR-155, mediating two gene hubs involved in cell cycle processes and muscle cells, thus contributing to the overall
193 dysregulation observed in dystrophic muscles 76. TRIM28 exhibits predominant nuclear localization within skeletal
194 muscle cells, signifying its pivotal role as a crucial constituent in the assembly of regulatory complexes and modu-
195 lation of specific transcription factors and kinases (Steinert *et al*, 2021) (Figure 6B).
196
197

Figure 6. Integrated analysis revealed PPI pathways and regulatory factors associated with increased miR-155 expression in C2C12 skeletal muscle cells and individuals with DMD. The interaction network was predicted by the overlap of direct targets, TF, kinases, and common targets with DMD (GSE1004). **(A)** Gene regulatory network of differentially expressed genes induced by miR-155 overexpression. The five direct targets are linked to miR-155 by a solid purple line. Purple triangles represent transcription factors, and yellow triangles represent kinases. The genes described in blue show decreased expression in C2C12 cells treated with mimic-miR-155, and the genes shown in red show increased expression. Dashed lines represent indirect interactions caused by transcriptional factors or kinases. A solid gray line represents interactions between PPI. **(B)** The arrangement of the targets can be visualized in skeletal muscle cells. The TFs are purple, and the kinases are yellow. The solid purple line represents the direct interaction between miR-155-5p with the five direct targets. Purple nodes highlight the direct targets. Genes common to DMD are shown in ellipses. The rectangle highlights the gene *CPM* gene, which does not overlap with DMD. Diamond-shaped nodes represent TF and kinases. *BUB1B*, *CSNK2A2*, *TRIM28*, and *MYH6* are highlighted in blue as key targets (DMD and miR155).

211 **3. Discussion**

212 The present study aimed to identify direct and indirect targets of miR-155 in C2C12 skeletal muscle cells. Furthermore, integrating transcriptome data from individuals with DMD (public data) allowed us to establish crucial connections with our research objectives. Our results showed that miR-155 differently affected the gene expression profile of myoblasts and myotubes. The treatment of C2C12 myotubes with miR-155 regulated the expression of 359 genes mainly associated with inflammatory processes, dysregulation of the cell cycle, and apoptosis. Among these, 20 genes appeared to play pivotal roles in the muscle of DMD patients. Furthermore, the integrative analysis revealed that *Plice1*, *Dync1i1*, *Ramp3*, *Scl16a4*, *Nr1h3*, and *Bub1b* were downregulated in both miR-155-treated myotubes and skeletal muscle of dystrophic patients, whereas *Aldh1l* and *Nek2* were up-regulated. Thus, our results reveal a specific set of miR155-target genes potentially involved in the pathophysiology of DMD.

221 Several studies have demonstrated that miR-155 is a critical regulator of skeletal muscle plasticity (Freire et al, 222 2017; Nie et al, 2016; Seok et al, 2011; Curtale et al, 2019; O'Connell et al, 2007). Our morphometric analysis of 223 myotubes transfected with miR-155 mimetic molecules agrees with these previous studies, demonstrating that 224 miR-155 induces atrophy in C2C12 myotubes (Seok et al, 2011; Haslett et al, 2003). We observed that the over- 225 expression of miR-155 significantly reduced the area and size of C2C12 myotubes. Our integrative analysis of 226 different studies and data sets identified the relevance of miR-155 in various experimental and clinical conditions that 227 affect skeletal muscles. In addition, when evaluating the transcriptome of C2C12 muscle cells transfected with 228 miR-155, we noted that it mimicked an inflammatory and atrophic state (Figure 2A). Eisenberg et al., 2007 (Eisen- 229 2007) investigated the expression profile of 185 miRNAs in 10 major muscle disorders in humans, including 230 DMD. The authors observed that among the miRNAs analyzed, miR-155 was dysregulated in nine of these 231 ten primary muscular dystrophies, suggesting the relevance of this miRNA in primary muscle disorders.

232 On the other hand, it is known that this miRNA plays an essential role in immune-mediated inflammatory my- 233 opathies. Macrophages also act as crucial regulators of the inflammatory response during skeletal muscle regen- 234 eration, affecting resident muscle cells, including myogenic and endothelial cells, and fibro-adipogenic progenitors 235 involved in fibrofatty scar formation (Theret et al, 2022). While macrophage function is tightly coordinated during 236 muscle regeneration, its dysregulation in muscular dystrophies leads to a chronic inflammatory state (Theret et al, 237 2022). Consistent with previous studies, our findings support the notion that dysregulation of miRNAs, including 238 miR-155, occurs in response to inflammation associated with autoimmunity, potentially influencing muscle activation 239 or degeneration processes and implicating muscle cell differentiation in macrophage-mediated inflammatory re- 240 sponses (Onodera et al, 2018; O'Connell et al, 2007; Georgantas et al, 2014). Furthermore, miR-155 in the immune 241 response is essential for myeloid cell activation and balanced regulation of M1 and M2 macrophages during muscle 242 regeneration (Nie et al, 2016). Our reanalysis of the study by Meyer and Lieber et al., 2012 (Meyer & Lieber, 2012), in 243 which desmin was deleted in mice, resulted in skeletal muscle fibrosis and a significant increase in miR-155 ex- 244 pression. Moreover, infectious processes associated with pathogens and inflammatory stimuli, such as TNF or in- 245 terferons, and even injury processes, lead to a rapid increase in the expression of miR-155 (Alivernini et al, 2018; 246 Vigorito et al, 2013). Considering that fibrotic muscle adaptation without desmin increases the number of inflam- 247 matory cells, we note that myoblasts treated with mimic-miR-155 corroborate these investigations (Novak et al, 2017; 248 Pillon et al, 2013). Although our findings and those of previous studies have demonstrated the pro-atrophic effects of 249 this miRNA, the molecular mechanisms underlying its expression remain unknown.

250 Our transcriptome analysis indicated that miR-155 directly or indirectly controls genes that regulate biological 251 functions in skeletal muscle diseases. Myoblasts and myotubes exhibited different gene expression patterns fol- 252 lowing miR-155 treatment. Quantitatively, myotubes had 144 additional DEGs compared with myoblasts. Regarding 253 the direction of expression, only Receptor Activity Modifying Protein 3 (*Ramp3*) was downregulated in myoblasts and 254 myotubes. In addition, only four transcripts were common when comparing upregulated genes in myoblasts and 255 myotubes (*Gm13464*, *Mybpc1*, *Gm16259*, and *Tmem262*). Given the role of miRNAs as critical regulators of myo- 256 genesis, our observations revealed distinct gene expression profiles between myoblast and myotube stages, high- 257 lighting the enrichment of different gene sets (Figure 4). Specifically, in the myoblast stage, the enriched processes 258 were primarily associated with differentiation and immune regulation, whereas in myotubes, the enriched processes 259 were predominantly related to the cell cycle. Among the 359 dysregulated genes in C2C12 myotubes, five are pot- 260 tential direct targets of miR-155: *Cpm*, *Plice1*, *Dync1i1*, *Btc*, and *Nr1h3* (Figure 5A). Among these targets, *Cpm* 261 showed an increase in expression in C2C12 myotubes with mimic-miR-155, which corroborates the findings of 262 previous studies (Krause et al, 1998; Rehli et al, 2000; Tsakiris et al, 2012), linking this upregulation to inflammation, 263 monocyte to macrophage differentiation, and M2-macrophage maturation (Krause et al, 1998; Rehli et al, 2000; 264 Tsakiris et al, 2012). *Cpm* encodes a phosphoinositol-linked endopeptidase, an enzyme also associated with 265 monocyte-macrophage differentiation in human cells of hematopoietic origin, suggesting an association between 266 increased *Cpm* expression and cytotoxic macrophages (Krause et al, 1998). Additionally, this gene is involved in 267 macrophage maturation, and its upregulation has been detected as a crucial selective marker for the differentiation of 268 active lipid-laden macrophages, including the appearance of foam-cells *in vivo* (Krause et al, 1998; Rehli et al, 2000; 269 Tsakiris et al, 2012). However, to our knowledge, no studies have shown the interaction between miR-155 and *Cpm* 270 in conditions that induce skeletal muscle alterations. Among the direct targets that showed decreased expression 271 after transfections with miR-155, *Btc* was involved in an angiogenic activity in trials with mice after acute mechanical 272 trauma to the skeletal muscle (Ceafalan et al, 2015), an essential process during muscle regeneration. Another 273 target, *Nr1h3* (or *Lxra*), which plays a crucial role in macrophage response to intracellular bacterial infections (Joseph 274 et al, 2004), inflammatory response, and metabolic homeostasis (A-González & Castrillo, 2011; Shavva et al, 2018), 275 showed the same pattern of expression as observed in DMD samples. Although the ability of *Nr1h3* to regulate its

276 promoter induces the physiological response of macrophages to lipid loading, its expression in mouse cells or tissues
277 is not similarly detectable. Still, the basis for this interspecies difference is unknown (A-González & Castrillo, 2011;
278 Laffitte *et al*, 2001).

279 To understand how miR-155-affected genes might be involved in muscular dystrophies, we reanalyzed the
280 transcriptome of DMD patients and found 20 overlapping genes with our data. Some of these genes play essential
281 roles in immune response (Civatte *et al*, 2005; Zhang *et al*, 2018) (Supplementary Table S5). In myotubes, inhibiting
282 the *Aldh1l1* transcription pathway restores oxidative stress and causes mitochondrial dysfunction (Damal Villivalam
283 *et al*, 2021), *Tcap* knockdown inhibits the differentiation of myoblasts into myotubes (Markert *et al*, 2008; Wirianto *et*
284 *al*, 2020), and its null mutation causes muscular limb-girdle dystrophy type 2G (LGMD2G) (Markert *et al*, 2010).
285 *Bub1b* encodes a protein associated with mitotic checkpoint control (Baker *et al*, 2011), and *Ccl3* is a critical
286 chemokine for idiopathic inflammatory myopathies, with high expression in injured skeletal muscle and responsible
287 for recruiting Treg cells to these sites (Civatte *et al*, 2005; Zhang *et al*, 2018). Altogether, these data suggest that
288 miR-155 and its targets *Plce1*, *Dync1i1*, *Ramp3*, *Scl16a4*, *Nr1h3*, *Bub1b*, *Aldh1l1*, and *Nek2* are involved in the
289 pathological immune response of muscles in DMD patients, as indicated by the overlapping genes that control the
290 inflammatory response. In this context, our reanalysis of DMD samples showed a higher proportion of M2 macro-
291 phages than in healthy human muscle tissues, and we reckoned that miR-155 can be delivered to muscle via M2
292 macrophages.

293 Moreover, the validation of the interaction with the set of genes must be performed in future studies to verify that
294 miR-155 affects the phenotype of dystrophic cells. In addition, it is worth mentioning that the results showing an
295 important change in the immune system corroborate studies of the top 18 genes shared between DMD and C2C12
296 myotubes with mimic-miR-155. Interactions with this set of genes should be validated in future studies to verify
297 whether miR-155 affects the dystrophic cell phenotypes.

298

299 4. Materials and Methods

300

4.1 Literature review and meta-analysis

301 We performed a meta-analysis of studies data available in the literature (PubMed;
302 <https://www.ncbi.nlm.nih.gov/pubmed>) that have identified changes in miR-155 expression in skeletal muscle or
303 C2C12 cells under different experimental conditions. In addition, we searched the Entrez GEO Profiles database
304 (<https://www.ncbi.nlm.nih.gov/geoprofiles/>) using the keywords "miR-155 and skeletal muscle", focusing on clinical
305 studies and cell models (human and murine). We selected ten studies on different conditions, such as aging, mus-
306 cular dystrophies, physical exercise, and models of skeletal muscle atrophy (Meyer & Lieber, 2012; Haslett *et al*,
307 Stevenson *et al*, 2005; Stillwell *et al*, 2009; Raue *et al*, 2012; Welle *et al*, 2003, 2004; Poelkens *et al*, 2013).
308 These selected studies showed alteration in the expression levels of miR-155 (p-value < 0.05; control vs. condition),
309 according to the results of the GEO2R tool (<https://www.ncbi.nlm.nih.gov/geo/geo2r/>). The reanalyzed miR-155
310 expression data were presented in a forest plot generated by the Comprehensive Meta-Analysis software
311 (<https://www.metaanalysis.com/index.php?cart=BXVZ2967855>).
312

313

4.2 Cell culture and muscle differentiation

314 C2C12 myoblast cells (ATCC® CRL-1772 TM) were cultured in Dulbecco's modified Eagle's Medium (DMEM),
315 Thermo Fisher Scientific, USA) supplemented with 10% Fetal Bovine Serum (FBS, Thermo Fisher Scientific, USA),
316 1% penicillin-streptomycin (Thermo Fisher Scientific, USA) in a humidified incubator at 37 °C and 5% CO₂. Sub-
317 sequently, the cells were transferred to and cultured in 6-well plates (1 × 10⁵ cells / well). C2C12 myoblasts were
318 collected or induced to undergo myogenic differentiation after transfections with mimic-miR-155-5p. For differentia-
319 tion, once the myoblasts reached 80-90% confluence, the growth medium was replaced with FBS-free,
320 DMEM-containing Horse Serum (2%), L-glutamine, and penicillin/streptomycin (1%) for 120 h. All experiments were
321 performed in triplicates for each group.
322

323

4.3 Oligonucleotides and transfection

324 The mimic-miR-155-5p (Thermo Fisher, mirVanaTM miRNA Mimic, code: 4464066; MC13058 - MC10203) and
325 the respective negative control (CT) (Thermo Fisher, mirVanaTM miRNA Mimic Negative Control, code: 4464058)
326 were transfected into C2C12 myoblasts, at 80% confluence. For transfection, the two complexes were combined into
327 the final transfection solution. First, Lipofectamine RNAiMAX (Thermo Fisher, USA) was diluted in Opti-MEM®
328 Reduced Serum Medium (Thermo Fisher, USA) to form the first complex. Next, mimic-miR-155 oligonucleotides and
329 negative control were diluted in Opti-MEM® to form the second complex. Finally, Lipofectamine + Opti-MEM®
330 complex was mixed with the oligonucleotide + Opti-MEM® complex and incubated for 5 min at room temperature.
331 After this period, 250µl of the final transfection solution was added to each well containing C2C12 cells (80% con-
332 fluent) in normal growth medium. The cells were then incubated for 15 h. Next, the myoblasts were transferred to a
333 medium containing 2% horse serum to induce differentiation in myotubes. The myotube area and gene expression
334 were analyzed after five days of differentiation. The experimental design for functional analysis of the miR-155-mimic
335 during myogenesis is described in Supplementary Figure 1.
336
337

338 **4.4 Immunostaining**

339 For immunostaining, C2C12 myotubes treated in 6-well plates were fixed with 4% paraformaldehyde for 15 min,
340 washed with PBS and 0.1% Triton X-100 (Sigma, USA), and incubated with a blocking solution containing 1% glycine,
341 3% BSA, 8% SFB in PBS and Triton X-100 for 1 h at room temperature. Primary antibody (Myh2) was incubated
342 at 1: 600 dilution, then overnight at 4 °C and, washed with PBS, incubated with secondary antibody (anti-rabbit) at 1:
343 600 dilution for 2 h at 4 °C, and counterstained with DAPI (Vector Laboratories, USA). Digital fluorescent images
344 were captured at room temperature using a TCS SP5 confocal scanning microscope (Leica Microsystems, UK).
345 Myh2 pixels were counted using TCS SP5 (Leica Microsystems software, United Kingdom). ImageJ software
346 measured the total nuclei, myotube nuclei, and myotube area. The fusion index was determined as (total myotube
347 nucleus/total nucleus) x 100.

348 **349 4.5 Total RNA extraction**

350 Total RNA was extracted from C2C12 myotubes using TRIzol reagent (Thermo Fisher Scientific, USA), ac-
351 cording to the manufacturer's instructions. Total RNA was quantified by spectrophotometry using a NanoVue spec-
352 trrophotometer (GE Life Sciences, USA). The extracted RNA was treated with TURBO DNase (Thermo Fisher Sci-
353 entific, USA) to remove contamination with genomic DNA. RNA quality was determined by RNA Integrity Number
354 (RIN) using a 2100 Bioanalyzer system (Agilent, USA). Samples with RIN > 9 were considered in the subsequent
355 analysis.

356 **357 4.6 RNA sequencing**

358 The construction of the RNA-Seq library for the CT (n = 3) and Mimic-mir-155 (n = 3) groups was based on 5 µg
359 of total RNA according to the manufacturer's protocol using the Illumina HiScanSQ Instrument (Illumina, USA) and
360 sequenced in the same flow cell as paired-end (2 × 100 bp). The sequencing generated an average of 25 million
361 paired-end readings per sample. Raw sequence reads (.fastq files) were subjected to quality control analysis using
362 the FastQC tool (version 0.11.5, <http://www.bioinformatics.babraham.ac.uk/projects/fastqc/>), and the process con-
363 sidered average quality scores Phred 20. For reading mapping of cDNA fragments, we used TopHat (version 1.3.2,
364 <http://tophat.cbcb.umd.edu>) (Trapnell et al, 2012), a reading mapping algorithm capable of aligning RNA-Seq
365 readings to a reference transcriptome in the case of the mouse (RefSeq, mm10). To count transcribed mapped
366 readings and perform differential expression analysis, t R software HTSeq and DEseq packages (version 4.1.2,
367 <https://cran.r-project.org/bin/windows/base/>), respectively, were used. We considered a fold-change >1.5 and a
368 p-value <0.05.

369

370 **4.7 Expression pattern visualization**

371 The transcriptome data for C2C12 myoblast and myotube cells were represented by heatmaps generated using
372 Morpheus software (<https://software.broadinstitute.org/morpheus>), which allows easy visualization and matrix
373 analysis of the data sets. Venn's graphs, which showed the interaction of the myoblasts and myotubes DEGs, were
374 generated from the Cacoo by Nulab 2019 software (<https://cacoo.com>).

375

376 **4.8 In silico prediction of direct target transcripts of miR-155**

377 Potential miR-155 targets were predicted using the computational algorithms miRWalk (Sticht et al, 2018),
378 miRTarBase (Huang et al, 2020), and TargetScan (Agarwal et al, 2015). Using more than one algorithm becomes
379 essential to expand the number of predicted targets and filter the search by considering those mRNAs predicted by at
380 least four distinct algorithms as possible targets. MiRWalk v.3.0 (<http://mirwalk.umm.uni-heidelberg.de>) provides
381 experimentally predicted and validated information (miRNA) about the miRNA-target interaction. This algorithm of-
382 fers target miRNA predictions within the complete sequence for humans, rats, and mice. MiRTarBase v.7.0
383 (<http://mirtarbase.mbc.nctu.edu.tw/php/search.php>) has over 360.000 microRNA-Target interactions. The miR-
384 NA-target interactions collected are experimentally validated by reporter assays, western blotting, microarray, and
385 sequencing experiments. TargetScan v.7.2 (http://www.targetscan.org/vert_72/) predicts miRNA biological targets
386 by scanning for the presence of conserved 8mer, 7mer, and 6mer sites that correspond to regions essential for
387 miRNA binding in the mRNA and uses curated updated miRNA families from Chiang et al., 2010 (Chiang et al, 2010)
388 and Fromm et al., 2015 (Fromm et al, 2015).

389

390 **4.9 In silico prediction of transcriptional factors and kinases**

391 A network of transcriptional factors and kinases was predicted to regulate the differentially expressed genes of
392 miR-155-treated myotubes, that is, the potential indirect targets, using the computational algorithms of the eXpres-
393 sion2Kinases (Clarke et al, 2018) (X2K Web; kinases, and transcriptional factors), and STRING Consortium v.11.0
394 (Szklarczyk et al, 2019) (protein-protein interaction). First, we considered transcriptional factors and kinases pre-
395 dicted by X2K Web (<http://amp.pharm.mssm.edu/X2K/>), with a p-value < 0.05. We then compared differentially ex-
396 pressed genes to the list of genes translated into mouse kinases and transcription factors to identify which presented
397 altered expression. Finally, we connected these transcription factors and enriched kinases through known pro-
398 tein-protein interactions (PPIs) to build a subnetwork. The categories with a p-value < 0.05 were considered statis-
399 tically significant.

400

401 4.10 Enrichment analysis

402 DEGs were used to identify enriched biological processes using the EnrichR tool (Chen *et al*, 2013; Kuleshov *et*
403 *al*, 2016), powered by the Gene Ontology Consortium (Ashburner *et al*, 2000) (The Gene Ontology Consortium,
404 2019) (<http://geneontology.org/>) library 'GO_Biological_Process_2018', by PANTHER version 17.0 (Mi *et al*, 2021)
405 (available at <http://www.pantherdb.org/>). Gene ontology (GO) categories with a p-value <0.05 were statistically sig-
406 nificant. We use the REViGO (Supek *et al*, 2011) tool (<http://revigo.irb.hr/>) to summarize long lists of GO terms by
407 removing redundant gene ontology terms. Ontology data were plotted using GraphPad Prism 8 software
408 (<https://www.graphpad.com/>).

409

410 4.11 Differential expression analysis of dystrophin-deficient patients

411 We retrieved a data set of DMD samples (accession GSE1004) to investigate the differentially expressed genes
412 in the skeletal muscles of dystrophin-deficient patients and healthy individuals. The dataset used in this analysis was
413 selected from the GEO public repository maintained by the National Center for Biotechnology Information (NCBI)
414 (<https://www.ncbi.nlm.nih.gov/geo/>) (Barrett *et al*, 2012). Intensity table was downloaded and processed, and DEGs
415 between groups were identified using the Limma-Voom pipeline of the GEO2R web tool
416 (<https://www.ncbi.nlm.nih.gov/geo/geo2r/>). Thus, the log transformation was automatically applied to the data using
417 GEO2R. We applied the statistical cut-offs of log2 fold change > 1.2 and p-value < 0.05 to determine DEGs between
418 DMD and normal samples. Next, we compared our list of 359 differentially expressed genes in miR-155-treated
419 myotubes. The CIBERSORTx tool (<https://cibersortx.stanford.edu/>) was used to estimate cell fractions by relative
420 proportion in the reanalysis of the two groups previously compared in GEO2R: 1) healthy skeletal muscle samples
421 and 2) dystrophin-deficient patients (Aran *et al*, 2017). Gene expression normalized data with standard annotation
422 was loaded into the CIBERSORTx algorithm, processed using the LM22 signature and 1000 permutations, and
423 considered fractions with p-value < 0.05. Genes in major functional categories of the top genes shared between DMD
424 samples, and C2C12 myotubes with mimic-miR-155 were displayed using the Circos plot (<http://circos.ca/>)
425 (Krzywinski *et al*, 2009).

426

427 4.12 Reconstruction of molecular networks and data visualization

428 The direct targets of miR-155, in addition to its transcriptional factors (TF) and predicted kinases (see in "In silico
429 prediction of transcriptional factors and kinases" section), were grouped by overlapping genes that were also de-
430 regulated in DMD samples. PPI networks were generated using the STRING Consortium v.11.0 (Szklarczyk *et al*,
431 2019). All interactions were derived from laboratory experiments with high-performance screening, text mining, and
432 previous knowledge in selected databases with a high confidence level (sources: experiments, databases; confi-
433 dence score ≥ 0.90). Furthermore, visualization and annotation of data from gene-PPI interaction networks were
434 performed using the Cytoscape tool (Shannon *et al*, 2003). Finally, the graphical representation of the miR-targets
435 inside the muscle cell was created with BioRender.com.

436

437 4.13 Statistical analysis

438 Values are reported as mean \pm standard deviation (SD) unless otherwise indicated. Student's t-test was used to
439 establish the DEGs (GraphPad Prism V.9) with significant values. P-values < 0.05 were considered statistically
440 significant.

441

5. Conclusions

442 In conclusion, our findings indicate that miR-155 induces a distinct transcriptional profile of genes encoding
443 proteins associated with anti-proliferative, pro-apoptotic, and inflammatory functions. Digital cytometry analysis of
444 skeletal muscle samples from DMD patients revealed a potential association between miR-155 and M2 macro-
445 phages, suggesting its involvement in tissue remodeling and immune regulation. The increased expression of
446 miR-155 leads to the downregulation of genes involved in apoptotic cell clearance, thereby compromising the effi-
447 ciency of the apoptosis-signaling pathway. This observation highlights the gene expression pattern and regulatory
448 directionality similarity between mimic-miR-155 and DMD. Furthermore, miR-155 directly controls the expression of
449 at least five critical genes and indirectly influences numerous other genes through post-transcriptional processes.
450 Our results support that miR-155 contributes to the atrophy of C2C12 muscle cells by orchestrating the regulation of
451 genes involved in inflammation and apoptosis.

452

Supplementary Materials: Figure S1: Experimental design for the functional analysis of miR-155-mimic during myogenesis;
453 Figure S2: Potential transcription factors and kinases that regulate the DEGs of miR-155-treated C2C12 myotubes; Table S1:
454 Differentially Expressed Genes(DEGs) in C2C12 myotubes with mimic-miR-155; Table S2: Meta-analysis for a forest plot of
455 conditions associated with skeletal muscle with altered miR-155 expression; Table S3: 18 Differently expressed genes in common
456 between C2C12 muscle cells treated with miR-155 and Duchenne muscular dystrophy; Table S4: Role of important genes directly
457 and indirectly deregulated by miR-155.

458

Author Contributions: L.L. wrote the manuscript and conducted the experimental analysis and the study. S.C., D.M., J.O., G.O.,
459 G.F., and O.C.M. conducted some analyses. G.F., L.L., R.F.C, and P.P.F conducted the RNA sequence analysis. M.H.H and
460 D-Z.W. review the manuscript. R.F.C., M.D.P, and P.P.F. provided the infrastructure and intellectual content. R.F.C. and P.P.F

461 received funding, planned, and conducted the study, and wrote the manuscript. All authors have read and agreed to the published
462 version of the manuscript.

463 **Funding:** This research was funded by São Paulo Research Foundation (FAPESP), grant numbers #2018/23923-0,
464 #2020/01688-0, #2014/13783-6, #2020/09146-1, #13/50343-1, #12/13961-6.

465 **Data Availability Statement:** The RNAseq count table is available at GEO database number **GSEXXX - We are awaiting pub-
466 lication.** The DMD published microarray data can be found in the GEO database (GSE1004).

467 **Acknowledgments:** We acknowledge the São Paulo Research Foundation (FAPESP grants 2018/23923-0 to L.L.,
468 2020/01688-0 to O.C.M, 2014/13783-6 and 2020/09146-1 to P.P.F; 2013/50343-1 and 2012/13961-6 to R.F.C) for financial
469 support.

470 **Conflicts of Interest:** The authors declare no competing financial and/or non-financial interests in relation to the work described.

471 References

472 Agarwal V, Bell GW, Nam J-W & Bartel DP (2015) Predicting effective microRNA target sites in mammalian
473 mRNAs. *Elife* 4

474 A-González N & Castrillo A (2011) Liver X receptors as regulators of macrophage inflammatory and metabolic
475 pathways. *Biochim Biophys Acta* 1812: 982–994

476 Alivernini S, Gremese E, McSharry C, Tolusso B, Ferraccioli G, McInnes IB & Kurowska-Stolarska M (2018) Mi-
477 croRNA-155—at the Critical Interface of Innate and Adaptive Immunity in Arthritis. *Front Immunol* 8: 1932

478 Aran D, Hu Z & Butte AJ (2017) xCell: digitally portraying the tissue cellular heterogeneity landscape. *Genome Biol*
479 18: 220

480 Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, et al
481 (2000) Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. *Nat Genet* 25: 25–
482 29

483 Baker DJ, Perez-Terzic C, Jin F, Pitel KS, Pitel K, Niederländer NJ, Jeganathan K, Yamada S, Reyes S, Rowe L, et al
484 (2008) Opposing roles for p16Ink4a and p19Arf in senescence and ageing caused by BubR1 insufficiency. *Nat
485 Cell Biol* 10: 825–836

486 Baker DJ, Wijshake T, Tchkonia T, LeBrasseur NK, Childs BG, van de Sluis B, Kirkland JL & van Deursen JM (2011)
487 Clearance of p16Ink4a-positive senescent cells delays ageing-associated disorders. *Nature* 479: 232–236

488 Barrett T, Wilhite SE, Ledoux P, Evangelista C, Kim IF, Tomashevsky M, Marshall KA, Phillippy KH, Sherman PM,
489 Holko M, et al (2012) NCBI GEO: archive for functional genomics data sets—update. *Nucleic Acids Research*
490 41: D991–D995

491 Best JT, Xu P & Graham TR (2019) Phospholipid flippases in membrane remodeling and transport carrier biogene-
492 sis. *Curr Opin Cell Biol* 59: 8–15

493 Bodine SC, Latres E, Baumhueter S, Lai VK-M, Nunez L, Clarke BA, Poueymirou WT, Panaro FJ, Na E, Dharmara-
494 jan K, et al (2001) Identification of Ubiquitin Ligases Required for Skeletal Muscle Atrophy. *Science* 294: 1704–
495 1708

496 Ceafalan LC, Manole E, Tanase CP, Codrici E, Mihai S, Gonzalez A & Popescu BO (2015) Interstitial Outburst of
497 Angiogenic Factors During Skeletal Muscle Regeneration After Acute Mechanical Trauma. *Anat Rec (Hoboken)*
498 298: 1864–1879

499 Chen EY, Tan CM, Kou Y, Duan Q, Wang Z, Meirelles GV, Clark NR & Ma'ayan A (2013) Enrichr: interactive and
500 collaborative HTML5 gene list enrichment analysis tool. *BMC Bioinformatics* 14: 128

501 Chen J-F, Mandel EM, Thomson JM, Wu Q, Callis TE, Hammond SM, Conlon FL & Wang D-Z (2006) The role of
502 microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation. *Nat Genet* 38: 228–233

503 Chen R, Jiang T, She Y, Xie S, Zhou S, Li C, Ou J & Liu Y (2018) Comprehensive analysis of lncRNAs and mRNAs
504 with associated co-expression and ceRNA networks in C2C12 myoblasts and myotubes. *Gene* 647: 164–173

505 Cheung K-K, Yeung SS, Au SW, Lam LS, Dai Z-Q, Li Y-H & Yeung EW (2011) Expression and association of
506 TRPC1 with TRPC3 during skeletal myogenesis. *Muscle Nerve* 44: 358–365

507 Cheusova T, Khan MA, Schubert SW, Gavin A-C, Buchou T, Jacob G, Sticht H, Allende J, Boldyreff B, Brenner HR,
508 *et al* (2006) Casein kinase 2-dependent serine phosphorylation of MuSK regulates acetylcholine receptor ag-
509 gregation at the neuromuscular junction. *Genes Dev* 20: 1800–1816

510 Chiang HR, Schoenfeld LW, Ruby JG, Auyeung VC, Spies N, Baek D, Johnston WK, Russ C, Luo S, Babiarz JE, *et al*
511 (2010) Mammalian microRNAs: experimental evaluation of novel and previously annotated genes. *Genes*
512 *Dev* 24: 992–1009

513 Civatte M, Bartoli C, Schleinitz N, Chetaille B, Pellissier JF & Figarella-Branger D (2005) Expression of the beta
514 chemokines CCL3, CCL4, CCL5 and their receptors in idiopathic inflammatory myopathies. *Neuropathol*
515 *Appl Neurobiol* 31: 70–79

516 Clarke DJB, Kuleshov MV, Schilder BM, Torre D, Duffy ME, Keenan AB, Lachmann A, Feldmann AS, Gundersen
517 GW, Silverstein MC, *et al* (2018) eXpression2Kinases (X2K) Web: linking expression signatures to upstream
518 cell signaling networks. *Nucleic Acids Res* 46: W171–W179

519 Curtale G, Rubino M & Locati M (2019) MicroRNAs as Molecular Switches in Macrophage Activation. *Front Im-*
520 *munol* 10: 799

521 Damal Villivalam S, Ebert SM, Lim HW, Kim J, You D, Jung BC, Palacios HH, Tcheau T, Adams CM & Kang S
522 (2021) A necessary role of DNMT3A in endurance exercise by suppressing ALDH1L1-mediated oxidative
523 stress. *EMBO J* 40: e106491

524 Dogra C, Changotra H, Mohan S & Kumar A (2006) Tumor Necrosis Factor-like Weak Inducer of Apoptosis Inhib-
525 its Skeletal Myogenesis through Sustained Activation of Nuclear Factor- κ B and Degradation of MyoD Pro-
526 tein. *Journal of Biological Chemistry* 281: 10327–10336

527 Dogra C, Changoua H, Wedhas N, Qin X, Wergedal JE & Kumar A (2007) TNF-related weak inducer of apoptosis
528 (TWEAK) is a potent skeletal muscle-wasting cytokine. *FASEB J* 21: 1857–1869

529 Eisenberg I, Eran A, Nishino I, Moggio M, Lamperti C, Amato AA, Lidov HG, Kang PB, North KN, Mi-
530 trani-Rosenbaum S, *et al* (2007) Distinctive patterns of microRNA expression in primary muscular disorders.
531 *Proc Natl Acad Sci U S A* 104: 17016–17021

532 Feng L, Yang X, Asweto CO, Wu J, Zhang Y, Hu H, Shi Y, Duan J & Sun Z (2017) Genome-wide transcriptional
533 analysis of cardiovascular-related genes and pathways induced by PM2.5 in human myocardial cells. *Envi-*
534 *ron Sci Pollut Res Int* 24: 11683–11693

535 Filipowicz W, Bhattacharyya SN & Sonenberg N (2008) Mechanisms of post-transcriptional regulation by mi-
536 croRNAs: are the answers in sight? *Nat Rev Genet* 9: 102–114

537 Formigli L, Sassoli C, Squecco R, Bini F, Martinesi M, Chellini F, Luciani G, Sbrana F, Zecchi-Orlandini S, Francini
538 F, *et al* (2009) Regulation of transient receptor potential canonical channel 1 (TRPC1) by sphingosine
539 1-phosphate in C2C12 myoblasts and its relevance for a role of mechanotransduction in skeletal muscle dif-
540 ferentiation. *J Cell Sci* 122: 1322–1333

541 Freire PP, Cury SS, de Oliveira G, Fernandez GJ, Moraes LN, da Silva Duran BO, Ferreira JH, Fuziware CS, Kimura
542 ET, Dal-Pai-Silva M, *et al* (2017) Osteoglycin inhibition by microRNA miR-155 impairs myogenesis. *PLoS One*
543 12: e0188464

544 Fromm B, Billipp T, Peck LE, Johansen M, Tarver JE, King BL, Newcomb JM, Sempere LF, Flatmark K, Hovig E, *et*
545 *al* (2015) A Uniform System for the Annotation of Vertebrate microRNA Genes and the Evolution of the
546 Human microRNAome. *Annu Rev Genet* 49: 213–242

547 Gailly P (2012) TRP channels in normal and dystrophic skeletal muscle. *Curr Opin Pharmacol* 12: 326–334

548 Georgantas RW, Streicher K, Greenberg SA, Greenlees LM, Zhu W, Brohawn PZ, Higgs BW, Czapiga M, More-
549 house CA, Amato A, *et al* (2014) Inhibition of myogenic microRNAs 1, 133, and 206 by inflammatory cyto-
550 kines links inflammation and muscle degeneration in adult inflammatory myopathies. *Arthritis Rheumatol* 66:
551 1022–1033

552 Glass DJ (2005) Skeletal muscle hypertrophy and atrophy signaling pathways. *Int J Biochem Cell Biol* 37: 1974–1984

553 Götz C & Montenarh M (2017) Protein kinase CK2 in development and differentiation. *Biomed Rep* 6: 127–133

554 Haslett JN, Sanoudou D, Kho AT, Han M, Bennett RR, Kohane IS, Beggs AH & Kunkel LM (2003) Gene expression
555 profiling of Duchenne muscular dystrophy skeletal muscle. *Neurogenetics* 4: 163–171

556 Hessvik NP, Boekschoten MV, Baltzersen MA, Kersten S, Xu X, Andersén H, Rustan AC & Thoresen GH (2010)
557 LXR β is the dominant LXR subtype in skeletal muscle regulating lipogenesis and cholesterol efflux. *Am
558 J Physiol Endocrinol Metab* 298: E602–613

559 Hörbelt T, Knebel B, Fahlbusch P, Barbosa D, de Wiza DH, Van de Velde F, Van Nieuwenhove Y, Lapauw B,
560 Thoresen GH, Al-Hasani H, *et al* (2019) The adipokine sFRP4 induces insulin resistance and lipogenesis in
561 the liver. *Biochim Biophys Acta Mol Basis Dis* 1865: 2671–2684

562 Hu Y, Matkovich SJ, Hecker PA, Zhang Y, Edwards JR & Dorn GW (2012) Epitranscriptional orchestration of ge-
563 netic reprogramming is an emergent property of stress-regulated cardiac microRNAs. *Proc Natl Acad Sci U S
564 A* 109: 19864–19869

565 Huang H-Y, Lin Y-C-D, Li J, Huang K-Y, Shrestha S, Hong H-C, Tang Y, Chen Y-G, Jin C-N, Yu Y, *et al* (2020)
566 miRTarBase 2020: updates to the experimentally validated microRNA-target interaction database. *Nucleic
567 Acids Res* 48: D148–D154

568 Jackman RW & Kandarian SC (2004) The molecular basis of skeletal muscle atrophy. *Am J Physiol Cell Physiol* 287:
569 C834–843

570 Joseph SB, Bradley MN, Castrillo A, Bruhn KW, Mak PA, Pei L, Hogenesch J, O'connell RM, Cheng G, Saez E, *et al*
571 (2004) LXR-dependent gene expression is important for macrophage survival and the innate immune re-
572 sponse. *Cell* 119: 299–309

573 Kelahmetoglu Y, Jannig PR, Cervenka I, Koch LG, Britton SL, Zhou J, Wang H, Robinson MM, Nair KS & Ruas JL
574 (2020) Comparative Analysis of Skeletal Muscle Transcriptional Signatures Associated With Aerobic Exer-
575 cise Capacity or Response to Training in Humans and Rats. *Front Endocrinol (Lausanne)* 11: 591476

576 Kozomara A, Birgaoanu M & Griffiths-Jones S (2019) miRBase: from microRNA sequences to function. *Nucleic Ac-
577 ids Res* 47: D155–D162

578 Krause SW, Rehli M & Andreesen R (1998) Carboxypeptidase M as a marker of macrophage maturation. *Immunol
579 Rev* 161: 119–127

580 Krzywinski M, Schein J, Birol I, Connors J, Gascoyne R, Horsman D, Jones SJ & Marra MA (2009) Circos: an infor-
581 mation aesthetic for comparative genomics. *Genome Res* 19: 1639–1645

582 Kuleshov MV, Jones MR, Rouillard AD, Fernandez NF, Duan Q, Wang Z, Koplev S, Jenkins SL, Jagodnik KM,
583 Lachmann A, *et al* (2016) Enrichr: a comprehensive gene set enrichment analysis web server 2016 update.
584 *Nucleic Acids Res* 44: W90–97

585 Laffitte BA, Joseph SB, Walczak R, Pei L, Wilpitz DC, Collins JL & Tontonoz P (2001) Autoregulation of the Human
586 Liver X Receptor α Promoter. *Mol Cell Biol* 21: 7558–7568

587 Lau NC, Lim LP, Weinstein EG & Bartel DP (2001) An abundant class of tiny RNAs with probable regulatory roles
588 in *Caenorhabditis elegans*. *Science* 294: 858–862

589 Lecker SH, Jagoe RT, Gilbert A, Gomes M, Baracos V, Bailey J, Price SR, Mitch WE & Goldberg AL (2004) Multiple
590 types of skeletal muscle atrophy involve a common program of changes in gene expression. *FASEB J* 18: 39–
591 51

592 Lee RC & Ambros V (2001) An extensive class of small RNAs in *Caenorhabditis elegans*. *Science* 294: 862–864

593 Liu Y, Wang M, Deng T, Liu R, Ning T, Bai M, Ying G, Zhang H & Ba Y (2022) Exosomal miR-155 from gastric

594 cancer induces cancer-associated cachexia by suppressing adipogenesis and promoting brown adipose dif-

595 ferentiation via C/EPB β . *Cancer Biol Med* 19: 1301–1314

596 Lund J, Aas V, Tingstad RH, Van Hees A & Nikolić N (2018) Utilization of lactic acid in human myotubes and in-

597 terplay with glucose and fatty acid metabolism. *Sci Rep* 8: 9814

598 Luo W, Nie Q & Zhang X (2013) MicroRNAs Involved in Skeletal Muscle Differentiation. *Journal of Genetics and*

599 *Genomics* 40: 107–116

600 Mammucari C, Milan G, Romanello V, Masiero E, Rudolf R, Del Piccolo P, Burden SJ, Di Lisi R, Sandri C, Zhao J, et

601 al (2007) FoxO3 Controls Autophagy in Skeletal Muscle In Vivo. *Cell Metabolism* 6: 458–471

602 Mammucari C, Schiaffino S & Sandri M (2008) Downstream of Akt: FoxO3 and mTOR in the regulation of autoph-

603 agy in skeletal muscle. *Autophagy* 4: 524–526

604 Markert CD, Meaney MP, Voelker KA, Grange RW, Dalley HW, Cann JK, Ahmed M, Bishwokarma B, Walker SJ,

605 Yu SX, et al (2010) Functional muscle analysis of the Tcap knockout mouse. *Hum Mol Genet* 19: 2268–2283

606 Markert CD, Ning J, Staley JT, Heinzke L, Childers CK, Ferreira JA, Brown M, Stoker A, Okamura C & Childers

607 MK (2008) TCAP knockdown by RNA interference inhibits myoblast differentiation in cultured skeletal

608 muscle cells. *Neuromuscul Disord* 18: 413–422

609 McCarthy JJ, Esser KA, Peterson CA & Dupont-Versteegden EE (2009) Evidence of MyomiR network regulation of

610 β -myosin heavy chain gene expression during skeletal muscle atrophy. *Physiological Genomics* 39: 219–226

611 Meggio F & Pinna LA (2003) One-thousand-and-one substrates of protein kinase CK2? *FASEB J* 17: 349–368

612 Meyer GA & Lieber RL (2012) Skeletal muscle fibrosis develops in response to desmin deletion. *Am J Physiol Cell*

613 *Physiol* 302: C1609–1620

614 Meyer SU, Sass S, Mueller NS, Krebs S, Bauersachs S, Kaiser S, Blum H, Thirion C, Krause S, Theis FJ, et al (2015)

615 Integrative Analysis of MicroRNA and mRNA Data Reveals an Orchestrated Function of MicroRNAs in

616 Skeletal Myocyte Differentiation in Response to TNF- α or IGF1. *PLoS One* 10: e0135284

617 Mi H, Ebert D, Muruganujan A, Mills C, Albou L-P, Mushayamaha T & Thomas PD (2021) PANTHER version 16: a

618 revised family classification, tree-based classification tool, enhancer regions and extensive API. *Nucleic Acids*

619 *Research* 49: D394–D403

620 Miyazaki M & Esser KA (2009) Cellular mechanisms regulating protein synthesis and skeletal muscle hypertrophy

621 in animals. *J Appl Physiol* (1985) 106: 1367–1373

622 Muñoz-Cánoves P, Scheele C, Pedersen BK & Serrano AL (2013) Interleukin-6 myokine signaling in skeletal muscle:

623 a double-edged sword? *FEBS J* 280: 4131–4148

624 Nie M, Liu J, Yang Q, Seok HY, Hu X, Deng Z-L & Wang D-Z (2016) MicroRNA-155 facilitates skeletal muscle re-

625 generation by balancing pro- and anti-inflammatory macrophages. *Cell Death Dis* 7: e2261

626 Novak JS, Hogarth MW, Boehler JF, Nearing M, Vila MC, Heredia R, Fiorillo AA, Zhang A, Hathout Y, Hoffman

627 EP, et al (2017) Myoblasts and macrophages are required for therapeutic morpholino antisense oligonucleo-

628 tide delivery to dystrophic muscle. *Nat Commun* 8: 941

629 O'Connell RM, Taganov KD, Boldin MP, Cheng G & Baltimore D (2007) MicroRNA-155 is induced during the

630 macrophage inflammatory response. *Proc Natl Acad Sci U S A* 104: 1604–1609

631 Okadome J, Matsumoto T, Yoshiya K, Matsuda D, Tamada K, Onimaru M, Nakano K, Egashira K, Yonemitsu Y &

632 Maehara Y (2018) BubR1 insufficiency impairs angiogenesis in aging and in experimental critical limb is-

633 chemic mice. *J Vasc Surg* 68: 576–586.e1

634 Onodera Y, Teramura T, Takehara T, Itokazu M, Mori T & Fukuda K (2018) Inflammation-associated miR-155 ac-

635 tivates differentiation of muscular satellite cells. *PLoS ONE* 13: e0204860

636 Parkes JE, Day PJ, Chinoy H & Lamb JA (2015) The role of microRNAs in the idiopathic inflammatory myopathies.
637 *Curr Opin Rheumatol* 27: 608–615

638 Pasquinelli AE, Reinhart BJ, Slack F, Martindale MQ, Kuroda MI, Maller B, Hayward DC, Ball EE, Degnan B, Müll-
639 ler P, et al (2000) Conservation of the sequence and temporal expression of let-7 heterochronic regulatory
640 RNA. *Nature* 408: 86–89

641 Pillon NJ, Bilan PJ, Fink LN & Klip A (2013) Cross-talk between skeletal muscle and immune cells: muscle-derived
642 mediators and metabolic implications. *Am J Physiol Endocrinol Metab* 304: E453–465

643 Poelkens F, Lammers G, Pardoel EM, Tack CJ & Hopman MTE (2013) Upregulation of skeletal muscle inflamma-
644 tory genes links inflammation with insulin resistance in women with the metabolic syndrome. *Exp Physiol* 98:
645 1485–1494

646 Raué U, Trappe TA, Estrem ST, Qian H-R, Helvering LM, Smith RC & Trappe S (2012) Transcriptome signature of
647 resistance exercise adaptations: mixed muscle and fiber type specific profiles in young and old adults. *J Appl
648 Physiol* (1985) 112: 1625–1636

649 Rehli M, Krause SW & Andreesen R (2000) The membrane-bound ectopeptidase CPM as a marker of macrophage
650 maturation in vitro and in vivo. *Adv Exp Med Biol* 477: 205–216

651 Rennie MJ, Wackerhage H, Spangenburg EE & Booth FW (2004) Control of the size of the human muscle mass.
652 *Annu Rev Physiol* 66: 799–828

653 Salvi M, Sarno S, Cesaro L, Nakamura H & Pinna LA (2009) Extraordinary pleiotropy of protein kinase CK2 re-
654 vealed by weblogo phosphoproteome analysis. *Biochim Biophys Acta* 1793: 847–859

655 Seok HY, Tatsuguchi M, Callis TE, He A, Pu WT & Wang D-Z (2011) miR-155 inhibits expression of the MEF2A
656 protein to repress skeletal muscle differentiation. *J Biol Chem* 286: 35339–35346

657 Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B & Ideker T (2003) Cyto-
658 scape: a software environment for integrated models of biomolecular interaction networks. *Genome Res* 13:
659 2498–2504

660 Shavva VS, Mogilenko DA, Nekrasova EV, Trulioff AS, Kudriavtsev IV, Larionova EE, Babina AV, Dizhe EB,
661 Missyul BV & Orlov SV (2018) Tumor necrosis factor α stimulates endogenous apolipoprotein A-I expres-
662 sion and secretion by human monocytes and macrophages: role of MAP-kinases, NF- κ B, and nuclear recep-
663 tors PPAR α and LXRs. *Mol Cell Biochem* 448: 211–223

664 Shi X, Seldin DC & Garry DJ (2012) Foxk1 recruits the Sds3 complex and represses gene expression in myogenic
665 progenitors. *Biochem J* 446: 349–357

666 Steinert ND, Potts GK, Wilson GM, Klamen AM, Lin K-H, Hermanson JB, McNally RM, Coon JJ & Hornberger TA
667 (2021) Mapping of the contraction-induced phosphoproteome identifies TRIM28 as a significant regulator of
668 skeletal muscle size and function. *Cell Rep* 34: 108796

669 Stevenson EJ, Koncarevic A, Giresi PG, Jackman RW & Kandarian SC (2005) Transcriptional profile of a myotube
670 starvation model of atrophy. *J Appl Physiol* (1985) 98: 1396–1406

671 Sticht C, De La Torre C, Parveen A & Gretz N (2018) miRWalk: An online resource for prediction of microRNA
672 binding sites. *PLoS One* 13: e0206239

673 Stillwell E, Vitale J, Zhao Q, Beck A, Schneider J, Khadim F, Elson G, Altaf A, Yehia G, Dong J, et al (2009) Blasto-
674 cyst injection of wild type embryonic stem cells induces global corrections in mdx mice. *PLoS One* 4: e4759

675 Stuart CA, Stone WL, Howell MEA, Brannon MF, Hall HK, Gibson AL & Stone MH (2016) Myosin content of indi-
676 vidual human muscle fibers isolated by laser capture microdissection. *Am J Physiol Cell Physiol* 310: C381–389

677 Supek F, Bošnjak M, Škunca N & Šmuc T (2011) REVIGO summarizes and visualizes long lists of gene ontology
678 terms. *PLoS One* 6: e21800

679 Szklarczyk D, Gable AL, Lyon D, Junge A, Wyder S, Huerta-Cepas J, Simonovic M, Doncheva NT, Morris JH, Bork
680 P, *et al* (2019) STRING v11: protein-protein association networks with increased coverage, supporting func-
681 tional discovery in genome-wide experimental datasets. *Nucleic Acids Res* 47: D607–D613

682 Theret M, Saclier M, Messina G & Rossi FMV (2022) Macrophages in Skeletal Muscle Dystrophies, An Entangled
683 Partner. *J Neuromuscul Dis* 9: 1–23

684 Trapnell C, Roberts A, Goff L, Pertea G, Kim D, Kelley DR, Pimentel H, Salzberg SL, Rinn JL & Pachter L (2012)
685 Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks.
686 *Nat Protoc* 7: 562–578

687 Tsakiris I, Torocsik D, Gyongyosi A, Dozsa A, Szatmari I, Szanto A, Soos G, Nemes Z, Igali L, Marton I, *et al* (2012)
688 Carboxypeptidase-M is regulated by lipids and CSFs in macrophages and dendritic cells and expressed se-
689 lectively in tissue granulomas and foam cells. *Lab Invest* 92: 345–361

690 Vigorito E, Kohlhaas S, Lu D & Leyland R (2013) miR-155: an ancient regulator of the immune system. *Immunol Rev*
691 253: 146–157

692 Welle S, Brooks AI, Delehanty JM, Needler N, Bhatt K, Shah B & Thornton CA (2004) Skeletal muscle gene expres-
693 sion profiles in 20–29 year old and 65–71 year old women. *Exp Gerontol* 39: 369–377

694 Welle S, Brooks AI, Delehanty JM, Needler N & Thornton CA (2003) Gene expression profile of aging in human
695 muscle. *Physiol Genomics* 14: 149–159

696 Wijshake T, Malureanu LA, Baker DJ, Jeganathan KB, van de Sluis B & van Deursen JM (2012) Reduced life- and
697 healthspan in mice carrying a mono-allelic BubR1 MVA mutation. *PLoS Genet* 8: e1003138

698 Wirianto M, Yang J, Kim E, Gao S, Paudel KR, Choi JM, Choe J, Gloston GF, Ademoji P, Parakramaweera R, *et al*
699 (2020) The GSK-3 β -FBXL21 Axis Contributes to Circadian TCAP Degradation and Skeletal Muscle Function.
700 *Cell Rep* 32: 108140

701 Zhang B, Shang P, Qiangba Y, Xu A, Wang Z & Zhang H (2016) The association of NR1H3 gene with lipid deposi-
702 tion in the pig. *Lipids Health Dis* 15: 99

703 Zhang B-T, Yeung SS, Cheung K-K, Chai ZY & Yeung EW (2014) Adaptive responses of TRPC1 and TRPC3 during
704 skeletal muscle atrophy and regrowth. *Muscle Nerve* 49: 691–699

705 Zhang C, Qiao Y, Huang L, Li F, Zhang Z, Ping Y, Shen Z, Lian J, Li F, Zhao L, *et al* (2018) Regulatory T cells were
706 recruited by CCL3 to promote cryo-injured muscle repair. *Immunol Lett* 204: 29–37

707 Zhang J, Chen L, Long KR & Mu ZP (2015) Hypoxia-related gene expression in porcine skeletal muscle tissues at
708 different altitude. *Genet Mol Res* 14: 11587–11593

709 Zhao J, Brault JJ, Schild A, Cao P, Sandri M, Schiaffino S, Lecker SH & Goldberg AL (2007) FoxO3 Coordinately
710 Activates Protein Degradation by the Autophagic/Lysosomal and Proteasomal Pathways in Atrophying
711 Muscle Cells. *Cell Metabolism* 6: 472–483

712 Zhao S, Zhang J, Hou X, Zan L, Wang N, Tang Z & Li K (2012) OLFML3 expression is decreased during prenatal
713 muscle development and regulated by microRNA-155 in pigs. *Int J Biol Sci* 8: 459–469

714 Zhu J, Shi X, Lu H, Xia B, Li Y, Li X, Zhang Q & Yang G (2016) RNA-seq transcriptome analysis of extensor digi-
715 torum longus and soleus muscles in large white pigs. *Mol Genet Genomics* 291: 687–701

716